

Thesis Dissertation

Polarization Analysis and

Detection Mobile Application

Panayiotis Liotatis

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2025

 i

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

Polarization Analysis and

Detection Mobile Application

Panayiotis Liotatis

Advisor: Demetris Paschalides, PHD Candidate

Supervisor: Dr. George Pallis

Thesis submitted in partial fulfilment of the requirements for the award of Bachelor’s

degree in Computer Science at University of Cyprus

May 2025

 ii

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. George Pallis, and my advisor

Demetris Paschalides for their continuous guidance, valuable feedback, and

encouragement throughout the development of this thesis.

 iii

Abstract

Polarization is a significant issue, particularly prevalent in contemporary times due to the

abundance of mass media, social media, news articles, and related sources. During

periods of substantial division over critical societal issues, individuals often struggle to

maintain clarity of thought, as news media may present information biased toward the

political party they support or by which they are sponsored. Paschalides et al. [1] address

this challenge with POLAR, a holistic framework designed for modelling polarization in

news media. My thesis builds upon this framework by extending it into a mobile

application for analysis and detection of polarization. This application, named

Polarization Detector, is a first-of-its-kind, on-demand polarization analysis and

detection application, giving the user the control of extracting the polarization level in the

articles they consume, so that they can be better informed. The idea for this application is

to allow the user to share with it any articles they browse, group the articles shared as

they want, and analyse the batch of articles for polarization. The result, is a summary of

polarization existence in the batch, mentioning the topics most polarized, and the

opposing groups that create this polarization. The important part is that when analysing

the polarization of each batch, the backend doesn’t execute the whole POLAR model

from start to end. Instead, POLAR executes once on a large corpus of articles (as a case

study around the context of U.S. elections 2024) and stores the knowledge extracted in a

graph database. When the user wants to analyse polarization in a batch, the polarization

knowledge is queried from the database with the results summarised using an LLM and

presented to the user.

 iv

Contents

Chapter 1 Introduction ... 1

Chapter 2 Related Work ... 3

 2.1 Understanding Political Polarization 3

 2.2 The Challenge of Measuring Polarization 4

 2.3 Polarization in Media and Online Discourse 5

 2.4 Automated Detection and Mitigation Strategies 6

 2.5 The POLAR Framework 7

Chapter 3 Methodology .. 10

 3.1 Overall Research Approach 10

 3.2 Leveraging the POLAR Framework: Foundation and Initial Setup 11

 3.3 System Architecture 16

 3.4 Knowledge Base Construction and Management 20

 3.5 Real-time Polarization Analysis for User Batches 26

 3.6 Mobile Application Development 37

 3.7 Tools and Technologies Summary 46

Chapter 4 System Evaluation and Limitations ... 48

 4.1 Performance and Efficiency Evaluation 49

 4.2 Qualitative Accuracy Assessment 49

 4.3 UI/UX Considerations 50

 4.4 Limitations 50

Chapter 5 Conlusion ... 52

 1

Chapter 1

Introduction

Polarization is a significant issue, particularly prevalent in contemporary times due to the

abundance of mass media, social media, news articles, and related sources. During

periods of substantial division over critical societal issues, individuals often struggle to

maintain clarity of thought, as news media may present information biased toward the

political party they support or by which they are sponsored. In the United States

specifically, partisan divisions have steadily deepened over the past several decades, with

the ideological gap between the “left” and “right” continually widening [2]. This issue is

considered crucial for the smooth functioning of society. As this divergence in views and

beliefs increases, it can foster significant dislike – and in some instances, animosity –

towards opposing groups – term known as “affective polarization” [3]. This, in turn, may

lead to widespread mistrust, challenges to democratically elected authorities, and a

general antipathy towards the political system and its elected officials.

The severity of this phenomenon has motivated various attempts to mitigate its effects,

ranging from crowdsourcing content reviews and presenting diverse viewpoints side-by-

side, to educational games designed to enhance critical understanding. However, much

of the existing research has concentrated on narrow contexts, often focusing on single

issues or reducing complex dynamics to a binary left-versus-right dichotomy, particularly

on platforms such as Twitter. Such a restricted focus hinders a comprehensive

understanding of how polarization manifests across different topics, public figures, and

media outlets. An essential step towards addressing this challenge arguably involves the

capacity to model the issue effectively, mapping its principal points of contention.

Addressing the need for a broader mapping and understanding of polarization and its

engagement with various entities, coalitions, and conflicts, Paschalides et al. introduced

the POLAR framework. POLAR is an unsupervised, domain-agnostic system that

processes large collections of news articles to model polarization without requiring prior

domain-specific knowledge. It constructs a knowledge graph of entities (such as political

 2

figures and organisations) by analysing their co-occurrence with supportive or

oppositional language, thereby enabling the determination of inter-entity attitudes. This

process helps reveal clusters of like-minded entities (termed “fellowships”) and opposing

groups (“fellowship dipoles”). Consequently, the framework yields data outputs that,

upon correct processing, enable the extraction of this polarization knowledge. While

POLAR provides a powerful and comprehensive framework for analysing polarization at

a large scale, there is no opportunity for individual users to extract such knowledge and

apply it for their everyday news consumption.

This thesis, contributes by building upon the POLAR framework, utilising it as the

foundational basis for a novel polarization detection application. As a case study, POLAR

was applied to be executed with context related to the U.S. elections 2024 – a context

recognised for its strong partisan divisions. The data extracted, following intermediate

cleaning processes, were stored in a graph database to enable efficient knowledge

retrieval. Subsequently, a backend system was developed. This system, by executing a

minimal set of POLAR commands (specifically entity and noun phrases extraction)

adapted for batch processing of smaller article sets, can leverage the previously stored

knowledge to query the polarization index of a new batch. This approach is significant as

it minimises the execution of the time-consuming POLAR pipeline, replacing substantial

portions of it with rapid database queries. The results from these queries are not left in

their raw state. They are later processed to generate an English prompt for a Large

Language Model (LLM), which then provides a summarisation of the detected

polarization.

To further contribute to the need of citizens better informed about polarization, the

development of a mobile application was identified as a suitable approach, due to its

everyday use, being the main point of consumption for news, and for its ease of sharing

articles. Its main objective is to enable users browsing articles to easily share them with

the application, and with a simple interaction, the application then analyses and detects

polarization – using the backend system mentioned, thereby informing the user about any

partisan characteristics of the content. Additionally, the application includes different

features, for example organising articles easily into batches, for better user experience

and control over their articles.

 3

Chapter 2

Related Work

2.1 Understanding Political Polarization 3

2.2 The Challenge of Measuring Polarization 4

2.3 Polarization in Media and Online Discourse 5

2.4 Automated Detection and Mitigation Strategies 6

2.5 The POLAR Framework 7

This chapter reviews existing literature relevant to understanding and tackling political

polarization, especially concerning news media and online discussions. It starts by

defining political polarization and the factors that drive it. Then, it explores the difficulties

in measuring polarization and how it appears in media, including the influence of

hyperpartisanship and misinformation. Finally, the chapter looks at various

computational and digital methods designed to detect and reduce media polarization,

2.1 Understanding Political Polarization

Political polarization is broadly understood as the widening ideological distance or

deepening social separation between different political groups [4]. This is not a single

concept; researchers identify forms like ideological polarization, which is about differing

policy views, and affective polarization, marked by rising dislike and distrust between

opposing partisan groups [5]. Affective polarization has notably increased, especially in

the U.S., where individuals often view those from other parties negatively, even if their

policy disagreements are not so far apart [3]. Such animosity often stems from social

identity, where party loyalty can overshadow other considerations, leading to less cross-

 4

party cooperation and a decline in civil public discussion [6]. The widespread impact of

polarization includes obstructing democratic debate, fuelling online conflicts, weakening

social unity, and making it harder to reach consensus in times of crisis [7].

Certain social-cognitive processes tend to reinforce polarization. Group polarization, for

example, shows how like-minded groups can become more extreme in their views after

internal discussions [8]. This is supported by homophily, the tendency to associate with

similar people, and confirmation bias, our inclination to favour information that confirms

what we already believe [9]. These factors create echo chamber effects, especially online,

where constant agreement can push moderate views to the extreme [10]. As this happens,

opposing sides may see each other as threats, making compromise difficult and straining

democratic values like mutual respect [11].

2.2 The Challenge of Measuring Polarization

While understanding polarization is important, accurately measuring it is a persistent

challenge [12]. Polarization is complex, appearing differently across various contexts,

such as social media discussions which are influenced by platform algorithms, user

actions, and network effects [12].

Much of the work in political science has used bimodality – the presence of two distinct

peaks in how beliefs are distributed – as a key sign of polarization [12]. Various statistical

methods try to measure how far a distribution deviates from having a single peak

(unimodality) to quantify polarization [12]. A comparative study by Di Martino et al.

reviewed five common measures, including the Bimodality Coefficient and Hartigan’s

Dip Test, noting their individual strengths and weaknesses [12]. For instance, some

measures might misinterpret skewed distributions or be overly sensitive to the distance

between opinion clusters [12].

This review of measurement techniques shows that no single metric works perfectly for

all situations. Applying concepts like bimodality accurately can be tricky with large

datasets where manual checks are not feasible, requiring dependable automated methods.

This underscores the ongoing need for better tools to effectively analyse complex patterns

of polarization.

 5

2.3 Polarization in Media and Online Discourse

Political polarization is a significant aspect of modern public discussion, especially in

countries like the United States where partisan gaps have widened noticeably [13] [14]

[15]. This is driven by factors like ideological sorting in political parties and the strong

influence of today’s media.

A key factor in media polarization is hyperpartisan news, which involves articles with

strong, often extreme, biases supporting a particular political stance or party [16]. This

type of reporting often uses sensationalized, one-sided language, valuing ideological

loyalty over objective reporting. The spread of such news can worsen polarization among

readers and reduce trust in established government and news sources. Hyperpartisan news

is generally considered a form of misinformation and often shares traits with fake news.

Linguistically, these articles might use more adjectives and adverbs, emotionally charged

words, and a sensational style in both their content and titles. Hyperpartisanship

essentially involves an exaggerated use of various biases – like spin, ad hominem attacks,

or framing – to aggressively push one viewpoint [16].

The digital environment has further complicated this landscape. Traditional partisan

media (like certain news channels or websites) can reinforce polarization by exposing

audiences to one-sided content [17]. Social media platforms add another layer, raising

concerns about echo chambers and filter bubbles that might limit exposure to diverse

viewpoints [18]. While the exact impact of filter bubbles is still debated [19], social media

undoubtedly helps spread hyperpartisan content and misinformation quickly. Misleading

information often thrives in polarized settings, where people are more likely to believe

and share content that confirms their biases, leading to a cycle that deepens these divides

[20]. Interestingly, efforts to counter this by showing people opposing views on social

media have sometimes backfired, causing individuals to become even more set in their

original opinions [21]. This shows that digital media’s role is complex, with algorithms,

misinformation, and online interaction styles all contributing to current levels of

polarization. Studies on platforms like YouTube have also noted ideological segregation,

though some centrally-positioned content might encourage more interaction between

different viewpoints [12].

 6

2.4 Automated Detection and Mitigation Strategies

The issues of media polarization and hyperpartisanship have led to significant research

into automated methods for detecting them and potentially reducing their impact. These

tools often aim to predict a text’s political leaning, identify if it’s hyperpartisan [16], or

pinpoint specific topics that are highly polarized [22].

Maggini et al. offer a systematic review of automated text-based methods for finding

hyperpartisan news articles [16]. These methods often analyse linguistic cues (like n-

grams or sentiment), semantic information from word embeddings or topic models,

stylistic features like readability, and sometimes metadata like publisher details. A variety

of machine learning models have been used, from traditional ones like SVMs and

Random Forests to advanced deep learning models like CNNs, RNNs, and Transformers

(e.g. BERT). While Transformers perform well, the use of very large language models

(LLMs) for this specific task is still an emerging area [16].

Beyond classifying whole articles, some research focuses on identifying specific

polarized topics within news. He et al. proposed PaCTE (Partisanship-aware

Contextualised Topic Embeddings), a method to find such topics in partisan news [22].

PaCTE involves using Latent Dirichlet Allocation (LDA) for initial topic discovery, then

fine-tuning a language model like BERT to recognise partisanship. It represents a news

source’s ideological stance on a topic using specialised “corpus-contextualised topic

embeddings” and measures polarization by the cosine distance between these embeddings

from different sources. This technique aims for a detailed, topic-level understanding of

polarization using modern NLP.

Other digital solutions also try to address these issues. Some use crowdsourcing to

identify misleading content or rate news source trustworthiness [23]. Platforms like

AllSides present news from multiple perspectives to help users see media bias [24].

Educational games such as “Bad News” use “inoculation theory” to help users spot

misinformation tactics [25]. There are also efforts to create dialogues between opposing

groups, though these have had varied success [26].

 7

2.4.1 Identifying the Gap: The Need for User-Centric Real-Time Analysis

The existing research shows a strong and developing field focused on understanding,

measuring, and detecting political polarization and hyperpartisanship. Quantitative

measures [12] help define polarized distributions, and many automated methods,

including advanced deep learning techniques like PaCTE [22], work to identify biased

content or polarized topics. Digital tools also offer media literacy education and exposure

to different views.

However, many advanced analytical systems are primarily for researchers or large-scale

operations, often needing significant technical resources or expert handling. While they

improve our understanding, there’s a clear need for tools that directly empower individual

news readers. Specifically, accessible, user-driven applications are lacking that can offer

on-demand insights into the polarization of news content people encounter daily. Most

current solutions don’t provide a mobile-friendly, real-time way for users to submit

articles, group them as desired, and get an immediate, summarised analysis of

polarization regarding specific topics and entities. This thesis seeks to fill this gap by

using a powerful, pre-calculated model of polarization from a comprehensive framework

to provide such a tool.

2.5 The POLAR Framework

Addressing the limitations of existing tools in comprehensively mapping and

understanding polarization across various topics, entities, coalitions, and diverse

conflicts, Paschalides et al. [1] developed POLAR. POLAR is described as a holistic

pipeline designed for modelling polarization within collections of news articles and for

identifying the most polarized topics within a given discourse. In essence, the framework

automates a form of content analysis to delineate opposing factions and the core issues

that divide them. The data model and definitions established by POLAR are central to its

methodology. Key concepts defined by Paschalides et al. include:

i. Polarization: Drawing from social science, as a societal process where a group

splits into two or more sub-groups with opposing and conflicting beliefs. Within their

 8

model, this manifests when entity attitudes towards specific topics shift to more extreme

positions, leading to this group division.

ii. Entity: Any real-world subject of interest, such as a person, organisation, location,

political group, or specific event, each uniquely identified and classified by type.

iii. Sentiment Attitude Graph (SAG): In this graph, entities are depicted as nodes, and

the connections (edges) between them are weighted by the sentiment (e.g. positive,

neutral, or negative) expressed in their interactions.

iv. Fellowship: Identified within the SAG as a distinct cluster of entities

predominantly interconnected by positive sentiment and relationships. It signifies a group

of like-minded entities that generally support one another or share common stances.

v. Fellowship Dipole: Models two opposing fellowships and the predominantly

negative or conflictual relationships that exist between these two groups. It is a core

structure used to represent instances of polarization and conflict.

vi. Polarizing Topic: An issue or theme of discussion that evokes strong

disagreement and opposing attitudes from the entities within a fellowship dipole. The

degree to which a topic is polarizing is quantified by POLAR using a “polarization

index”, which measures the extent of this attitudinal opposition.

vii. Polarization Index (pi) [27]: Quantifies the degree to which a topic is polarized.

This index operates on a scale from 0 (no polarization) to 1 (perfect polarization). The

underlying principle is that a topic is perfectly polarized when the opinions expressed

about it are split into two distinct groups of roughly equal size that hold strongly opposing

average views. Consequently, the calculation of this index for a given topic primarily

considers two factors derived from the set of sentiment attitudes expressed by entities

within the dipole’s fellowships: first, the balance in the number of positive versus

negative attitudes, and second, the magnitude of the difference between the average

positive attitude and the average negative attitude. A high polarization index value

therefore indicates that the topic sharply divides the relevant entities into two substantial,

 9

opposing camps. This allows POLAR to generate a ranked list of topics based on their

degree of divisiveness within the analysed discourse.

These definitions and the underlying data model from the POLAR framework are of

fundamental importance to this thesis. The entire methodology for storing the extracted

polarization knowledge, the process of identifying polarization within new data from the

batch, and specifically, the criteria used to define a “polarized batch” of articles, are

directly built upon these foundational principles.

 10

Chapter 3

Methodology

3.1 Overall Research Approach 10

3.2 Leveraging the POLAR Framework: Foundation and Initial Setup 11

3.3 System Architecture 16

3.4 Knowledge Base Construction and Management 20

3.5 Real-time Polarization Analysis for User Batches 26

3.6 Mobile Application Development 37

3.7 Tools and Technologies Summary 46

3.1 Overall Research Approach

This thesis adopts a Design Science Research (DSR) methodology to address the

identified challenges of media polarization for individual news consumers. DSR is an

appropriate approach as the primary focus of this research is the creation and evaluation

of a novel IT artifact – the “Polarization Detector” mobile application – designed to solve

a practical problem – people struggling to maintain clarity of thought, consuming articles

with polarized topics – by extending existing technological capabilities. The core of this

DSR process involves the design, development, and demonstration of this application to

provide users with accessible, real-time insights into the polarization present in the news

content they consume.

 11

The primary research goal, therefore, is to design, develop, and demonstrate the utility of

a mobile application that effectively extends the POLAR framework. This extension aims

to enable real-time polarization detection for end-users by implementing an efficient

backend architecture that leverages pre-computed knowledge modelled by POLAR. This

approach seeks to empower users with greater awareness and critical understanding of

the media landscape, thereby contributing a practical solution to a pressing societal issue.

3.2 Leveraging the POLAR Framework: Foundation and Initial Setup

3.2.1 POLAR Framework Foundation and Case Study Definition

The POLAR framework, developed by Paschalides et al. [1], is fundamental to this

project. The initial execution of POLAR to generate its comprehensive polarization model

represents the first crucial step in the knowledge gathering and construction process for

this thesis. As detailed in Chapter 2, this model encompasses key elements such as entities

(e.g. people, organisations, places), the Sentiment Attitude Graph (SAG) representing

their relationships, fellowships (clusters of entities with predominantly positive internal

attitudes), and dipoles (two opposing fellowships whose entities exhibit predominantly

negative attitudes towards each other, often concerning specific topics). Topics,

particularly “polarizing topics”, are central to the formation of these fellowships and

dipoles within POLAR’s graph-based model, where connections are weighted by

expressed attitudes. The execution of the POLAR pipeline yields structured data files

containing this critical information – including entities, the SAG, fellowships, dipoles,

and polarizing topics with their associated indices – which serves as the foundational

knowledge base for the system developed in this research.

The research for this thesis commenced in the summer of 2024. The period encompassing

the U.S. presidential elections of November 5th, 2024, was selected as a highly relevant

and prominent case study for generating the foundational polarization model with

POLAR. This electoral context was chosen due to its inherent propensity for strong

polarization, typically characterized by contentious debate topics (e.g. immigration and

border control, abortion rights, war conflicts) that receive significant media coverage and

often provoke strong public disagreement. Such periods are generally marked by

heightened public sentiment and political alignment, alongside a high volume of news

 12

article publication, with many outlets presenting distinct partisan perspectives and

extensive coverage of major electoral events.

3.2.2 Data Acquisition and Initial Corpus Generation

Following the selection of this case study context, the initial data acquisition phase of the

POLAR framework was undertaken. POLAR’s data acquisition process begins by

fetching articles from the GDELT Project1, a large, open database of global news. The

selection of articles to be fetched is guided by user-defined keywords and a specified date

range, which are provided as initial parameters to POLAR’s NewsCorpusCollector

module. This module then retrieves article archives from GDELT that fall within the

given date range and contain any of the specified keywords in their URLs.

The selection of keywords and the date range required careful consideration to maximize

the retrieval of relevant articles, thereby ensuring a rich dataset for constructing a

comprehensive polarization model for the chosen context. The chosen keywords included

prominent political figures central to the election (e.g. Donald Trump, Kamala Harris, Joe

Biden), the primary political parties (Democratic and Republican), and terms specific to

the election period (e.g. “running mate”, “super Tuesday”). The keyword selection also

considered typical URL formatting conventions, leading to the use of lowercase terms

with phrases separated by dashes (e.g. “running-mate”). Furthermore, variations in how

terms might appear in URLs were accounted for (e.g. “JD Vance” could be represented

as both “j-d-vance” and “jd-vance”). A full list of the keywords used is provided in

“Appendix A” under the keyword_list parameter.

The selected date range needed to be sufficiently broad to capture adequate contextual

information and generate substantial knowledge yet narrow enough to remain focused on

the U.S. elections 2024 case study. Therefore, the start date was set to June 1st, 2024,

accounting for events such as the first presidential debate between Joe Biden and Donald

Trump on June 27th. The end date was established as January 31st, 2025, allowing for

the inclusion of post-election analyses and coverage of the presidential inauguration on

January 20th, 2025.

1 https://www.gdeltproject.org/

https://www.gdeltproject.org/

 13

With these parameters defined (including an output directory named

outputJuneToJanuary), the NewsCorpusCollector module of polarlib was executed. This

module performed a sequence of operations including downloading relevant daily

GDELT archives, filtering articles based on keywords and other criteria (such as actor

country codes, with “USA” kept as default, and processing up to 128 articles per day),

fetching the HTML content of selected articles, parsing these articles to extract text and

metadata into structured JSON files, and applying an initial text-cleaning pipeline. This

process yielded a total of 7,696 unique news articles, averaging approximately 31.5

articles per day over the defined collection period.

3.2.3 Addressing Entity Extraction Challenges and Data Preprocessing

Following the initial data collection and preprocessing, the subsequent crucial step was

entity extraction using polarlib. However, initial attempts at this stage revealed significant

noise and misclassification of entities within the U.S. election context. For instance, “Joe

DiMaggio” (the baseball player) was frequently extracted from mentions of “Joe Biden”

due to the shared first name. Similarly, mentions of “J.D. Vance” were often misclassified

as “Juris Doctor” or linked to “Zebulon Baird Vance”. A particularly notable issue was

the underrepresentation of Kamala Harris compared to other key figures like Donald

Trump and Joe Biden; this was often because references to “Harris” alone were

ambiguously linked to other entities (e.g. “Harris County”) instead of the Presidential

candidate. Other observed inaccuracies included “Democratic Party” being mapped to the

“Democratic Party of Korea” and mentions of “swing state” being misinterpreted as

“Swing Music”.

To address these challenges and enhance the clarity and accuracy of the knowledge base,

a degree of supervised data cleaning was deemed necessary, despite POLAR’s generally

unsupervised design. Three custom Python scripts were developed specifically for this

U.S. elections 2024 case study. Two of these scripts were designed to run before polarlib’s

EntityExtractor module to preemptively correct or guide the extraction process, while the

third script was applied after entity extraction for post-correction tasks.

The first pre-extraction script performed targeted string manipulations on the raw article

texts. Its primary purpose was to remove common sources of noise that could lead to

incorrect entity extractions, such as ambiguous standalone first names (e.g. deleting “Joe”

when immediately preceding “Biden”), and to eliminate irrelevant boilerplate content like

 14

advertising phrases (e.g. sentences starting with “Click here...”). The second pre-

extraction script, the kamalaHarrisCorrector, specifically aimed to improve the

recognition of Kamala Harris by disambiguating standalone mentions of “Harris”. This

script analysed the current and up to nine preceding sentences, using predefined lists of

contextual keywords (both positive indicators for Kamala Harris and negative indicators

for other entities named Harris) and checking for titles, to determine if a “Harris” mention

likely referred to Kamala Harris and, if so, replaced it with her full name, making sure

the entity extractor would correctly identify it.

3.2.4 Full POLAR Pipeline Execution for Knowledge Generation

After these pre-extraction cleaning steps, the orchestrated polarlib pipeline, proceeded

with the main analysis:

1. Entity Extraction: Performed using polarlib’s EntityExtractor on the refined

article texts.

2. Post-Extraction Entity Correction: Following the initial entity extraction by

polarlib, the third custom script, entitiesCorrector, was executed. This script refined the

generated entity list by applying a set of custom rules defined in an external JSON

mapping file (entity_mappings_corrections.json). For each extracted entity, it checked

against these rules – which specified the original entity URI, its textual mention, and

optional sentence-level conditions – to decide whether to retain the entity, replace it with

a corrected canonical form, or delete it if deemed irrelevant or invalid, performing this

correction process in two passes over the data (first pass could create conditions for

corrections on the second pass).

3. Noun Phrase Extraction: Executed using NounPhraseExtractor to identify key

noun phrases from the cleaned and entity-corrected texts.

4. Topic Identification: Utilised TopicIdentifier to encode the extracted noun phrases

and then cluster semantically similar phrases into topics (using a clustering threshold of

0.8).

 15

5. Sentiment Attitude Calculation: The SyntacticalSentimentAttitudePipeline was

employed (configured with a Spacy en_core_web_sm model and the MPQA subjectivity

lexicon2) to determine attitudes between entities and topics.

6. Sentiment Attitude Graph (SAG) Construction: The SAGGenerator constructed

the SAG. This involved calculating attitude buckets and converting attitude signs based

on specific bins (Negative: [-1.00, -0.02], Neutral: [-0.02, 0.10], Positive: [0.10, 1.00])

and a minimum frequency threshold determined empirically from the 99.2nd percentile

of attitude pair counts for this dataset. This resulted in a SAG with 138 nodes and 256

edges.

7. Fellowship and Dipole Extraction: FellowshipExtractor identified fellowships

with parameters set to n_iter = 25, resolution = 0.7, and merge_iter = 20, values found

suitable for this dataset after experimentation. Subsequently, DipoleGenerator generated

the dipoles representing conflicts between these fellowships.

8. Topic Polarization Calculation: Finally, the TopicAttitudeCalculator was used to

load sentiment attitudes, identify topics relevant to the dipoles, and calculate the

polarization index for these topics, thus concluding the generation of the foundational

polarization model.

3.2.5 Technical Environment and Dependencies

This initial execution of the full POLAR pipeline was conducted using the polarlib

library3 within an isolated conda environment managed via Anaconda4. The process was

run on a 2024 MacBook Pro with M4 Pro chip, 24GB Unified RAM, operating with

Python 3.12.9. The standard dependencies, as listed in the polarlib requirements.txt file,

were primarily specified for a Windows OS and an NVIDIA CUDA-enabled

environment. Consequently, several modifications were necessary to ensure

compatibility and functionality on macOS:

2 https://github.com/beefoo/text-

analysis/blob/master/lexicons_external/subjectivity_clues_hltemnlp05/subjclueslen1-HLTEMNLP05.tff

[Accessed September 2024]. Needs to be downloaded, persistently stored and correctly reference its path.

3 https://github.com/dpasch01/polarlib [Accessed September 2025]

4 https://www.anaconda.com/docs/tools/working-with-conda/environments

https://github.com/beefoo/text-analysis/blob/master/lexicons_external/subjectivity_clues_hltemnlp05/subjclueslen1-HLTEMNLP05.tff
https://github.com/beefoo/text-analysis/blob/master/lexicons_external/subjectivity_clues_hltemnlp05/subjclueslen1-HLTEMNLP05.tff
https://github.com/dpasch01/polarlib
https://www.anaconda.com/docs/tools/working-with-conda/environments

 16

(i) All NVIDIA-specific dependencies for CUDA processing were removed, as macOS

utilises its Metal Performance Shaders (MPS) for GPU acceleration via PyTorch.

(ii) The pickle5 dependency was removed from the requirements, and any import pickle5

statements within the polarlib codebase were replaced with import pickle. This change

was made because pickle5’s functionalities are integrated into the standard pickle library

in Python 3.8 and later versions, including the Python 3.12.9 environment used.

Furthermore, a necessary code modification was made within a polarlib component

responsible for topic identification: the device (dev) specification inside the

encode_noun_phrases function was changed from “cuda” to “mps” to enable GPU-

accelerated processing on the MacBook Pro. These modifications enabled the successful

execution of the POLAR pipeline within this macOS environment.

It is important to note that the entity extraction component depends on DBpedia Spotlight5

for named entity linking [28]. This was run as a Docker container using the

dbpedia/dbpedia-spotlight image (specifically for English, en), exposing port 2222, as per

the polarlib documentation. This container needs to be active during the entity extraction

phase. Additional note is that for calculations related to structural polarization (e.g.

frustration index), it requires the Gurobi Optimizer6. This was installed, and a free

academic license was obtained and activated according to Gurobi’s guidelines.

These environmental configurations and modifications enabled the successful execution

of the complete polarlib pipeline, yielding the structured data files that form the basis for

the knowledge graph.

3.3 System Architecture

This system is designed with a client-server architecture, comprising a mobile application

(frontend) and a sophisticated backend responsible for processing and analysis. The

backend integrates several key services, including adjusted polarlib functionalities, a

graph database for knowledge storage, and a Large Language Model (LLM) for

summarising results. Figure 1 provides a high-level illustration of these components and

5 https://www.dbpedia-spotlight.org/

6 https://www.gurobi.com/downloads/gurobi-software/ [Accessed May 2025]

https://www.dbpedia-spotlight.org/
https://www.gurobi.com/downloads/gurobi-software/

 17

their interactions. The architecture is modular, with key backend components

containerized using Docker, to separate concerns and facilitate efficient real-time

polarization analysis.

3.3.1 Frontend: “Polarization Detector” Mobile Application

This Android mobile application serves as the primary user interface for the “Polarization

Detector” system. Its main objective is to empower users by allowing them to easily

submit articles for polarization analysis and to receive clear, understandable results. The

application facilitates this through several key features:

Users can share article URLs directly from their mobile browser or other compatible

applications, as the “Polarization Detector” is registered as a system share target. Once

articles are shared with the app, users can organise them into custom groups (batches).

This feature provides flexibility, enabling users to group content by source, topic, date,

or any other criteria they find relevant to their analysis needs.

To enhance user control and experience, the application also incorporates features for

managing submitted content. This includes the ability to delete individual articles or

entire batches, with options to either “unbatch” articles or permanently remove them.

Figure 1 – Illustration of primary data flow during polarization analysis of a batch, from mobile app, using backend

API to orchistrate the flow to POLAR, then to Neo4j graph database, then LLM summarisation, and finally the return

of results to user

 18

Users can also remove specific articles from an existing batch. For efficient operation and

offline accessibility of user-created batches, the application caches data locally using a

Room database (an abstraction layer over SQLite).

For any created batch, the user can initiate a comprehensive polarization analysis with a

simple action. This triggers a request to the backend system, which then performs the

necessary processing to determine the polarization characteristics of the articles within

that batch. Upon completion, the backend returns the analysis results, which the

application then displays clearly to the user. The User Interface (UI) adopts a formal

theme, designed with simplicity and ease of use as primary goals, to ensure an intuitive

experience for a general audience.

3.3.2 Backend System

The backend system orchestrates all data processing and analysis tasks, minimizing the

computational load on the user’s device. It is comprised of several key services that work

together:

1. API Gateway: A Flask-based API serves as the central communication hub,

managing requests from the mobile application and coordinating interactions between the

various backend services. It exposes specific endpoints for tasks such as initial article

processing and batched polarization analysis.

2. Adjusted POLAR Processing Module: This module contains adapted

functionalities from the polarlib library, specifically optimized for processing individual

articles or small batches as they are received from the user. Key adjustments include

fetching article content from user-provided URLs (rather than GDELT) and modifying

polarlib functions to operate efficiently on these smaller inputs for tasks like entity and

noun phrases extraction. This module, along with the API, runs within a Docker

container, configured with the necessary dependencies (the requirements.txt file of

polarlib, modified to include Flask, Groq and Neo4j client).

This polar_api docker container, utilises a file system, with similar structure as the one

imagined by polarlib. It mounts a volume to an API_OUTPUT directory, where

subdirectories and files generated during any processing in the backend are stored, to

achieve persistence in generated data.

 19

3. Knowledge Base (Neo4j Graph Database): The system utilises a Neo4j graph

database (Community Edition), deployed as a separate Docker container, to store the

extensive polarization knowledge generated from the initial, large-scale POLAR run

(detailed in Chapter 3.2).

This database is deployed as a separate Docker container. Its role is to persist the pre-

computed SAG, fellowships, dipoles, and polarizing topics for efficient querying during

real-time analysis.

4. LLM Summarisation Service (Groq AI Interface): To provide users with a concise

and understandable summary of the polarization analysis, the backend integrates with a

Large Language Model (LLM) via the Groq AI API. This service takes the structured

polarization data retrieved from the Neo4j database and, using a carefully crafted prompt,

instructs the LLM to generate a textual summary of the findings, including key polarizing

topics and involved entities/groups.

3.3.3 Primary Data Flow

Figure 1 illustrates the primary data flow when a user initiates a polarization analysis for

a batch of articles:

1. The Mobile Application sends the selected batch of article, with identifier the

name of the batch, to the Backend API.

2. The backend’s Adjusted POLAR processing module performs lightweight entity

and noun phrases extraction7 on the articles in the user’s batch. To optimize response

times, some initial processing (individual article preprocessing), occurs when articles are

first shared with the app, leaving just aggregations and filtering of entities and noun

phrases at the time of polarization analysis. Filtering of noun phrases includes keeping

only the ones that are also mentioned in a curated list of 51 manually selected meaningful

topics (details in subsection 3.4.6). The intermediate and final outputs of these executions

are stored permanently to the referencing batch directories.

3. These extracted entities and filtered noun phrases are then used to query the Neo4j

Graph Database to retrieve the relevant pre-computed polarization information, which are

the dipoles and polarization topics that appear in this batch.

7 The reason why it stops there and not further (i.e. topic extraction) is explained in Chapter 3.5.2

 20

4. The retrieved structured data is then passed to the LLM Summarisation Service

(Groq AI Interface), which generates a textual summary.

5. This summary is returned via the API to the Mobile Application for display to the

user, along with a list of key entities and topics identified in their batch.

3.4 Knowledge Base Construction and Management

Following the initial execution of the polarlib pipeline (detailed in Section 3.2), which

generated a comprehensive model of the polarization landscape from the U.S. elections

case study, the next critical step was to store this information in a persistent and query-

efficient manner. This subchapter describes the construction and management of this

knowledge base, which serves as the foundation for the real-time analysis performed.

3.4.1 Purpose and Technology Choice

To enable fast and complex queries for real-time polarization analysis – without re-

running the computationally intensive polarlib pipeline for each user request – a

dedicated, persistent knowledge base was essential. Various database models were

considered. Traditional SQL databases, while structured, are not optimized for traversing

the complex, interconnected relationships inherent in polarization data. Document-

oriented databases were also deemed unsuitable for effectively representing the network

structure of this information. While Vector Databases offered a strong option for semantic

retrieval [29], this project required a more explicit representation of entities and their

relationships rather than purely similarity-based lookups.

Ultimately, a graph database model was selected due to its natural ability to represent and

efficiently query interconnected data, such as the entities, relationships, and group

dynamics central to polarization models. Neo4j (Community Edition) was chosen as the

specific graph database technology, primarily for its robust support for graph traversals,

its expressive Cypher query language, and its ease of deployment [30]. As detailed in

 21

Section 3.3.2, the Neo4j database was deployed as a Docker container for consistent setup

and operational management.

3.4.2 Exporting Knowledge to CSV

The output from the polarlib pipeline (described in Chapter 3.2) consists of various

Python pickle (.pckl) and JSON files that store the Sentiment Attitude Graph (SAG),

entity mappings, fellowship lists, topic dictionaries, dipole lists, and attitude information.

To prepare this data for ingestion into Neo4j, an augmented version of polarlib’s

PolarizationKnowledgeGraph class was utilised.

This class was first used to load and consolidate all the relevant data from the output files.

Subsequently, custom export functions (e.g. export_entity_member_of_fellowship,

export_dipole_polarization_to_topic, etc.) were implemented or leveraged.

These functions transformed the internal graph representation and associated data within

the PolarizationKnowledgeGraph object into a set of structured CSV files. Key CSV files

generated through this process included:

i. entities.csv (listing unique entities – DBpedia URL as Id – and their names)

ii. topics.csv (listing unique topics and their labels)

iii. dipoles.csv (listing unique dipole identifiers)

iv. entity_fellowship.csv (mapping entities to their respective fellowships)

v. fellowship_dipole.csv (linking fellowships to the dipoles they are part of)

vi. entity_entity_attitudes.csv (detailing direct sentiment relationships between

entities)

vii. entity_topic_attitudes.csv (detailing entity attitudes towards specific topics)

viii. fellowship_topic_attitudes.csv (detailing collective fellowship attitudes towards

topics)

ix. dipole_topic_polarization.csv (detailing the polarization of topics within specific

dipoles, including the polarization index)

This intermediate CSV format provided a clean structure ready for batch ingestion into

Neo4j. Figure 2 illustrates this process from data extraction of the initial execution of

POLAR commands pipeline, to the organisation into the CSV files ready for ingestion to

the Neo4j graph database.

 22

3.4.3 Neo4j Graph Schema Design

The Neo4j knowledge base was designed with a schema that mirrors the core components

of the POLAR framework. The primary node labels defined are:

a) Entity: Represents individuals, organisations, locations, etc. Key properties include id

(DBpedia URL) and name.

b) Topic: Represents discussion topics extracted from the news corpus. Key properties

include id and name (topic label).

c) Fellowship: Represents clusters of like-minded entities. Key properties include id

(e.g. F0, F1).

d) Dipole: Represents a conflict between two fellowships. Key properties include id (e.g.

D0_1).

These nodes are interconnected through the following relationship types, which capture

the structure and dynamics of the polarization model:

i. MEMBER_OF (Entity → Fellowship)

ii. PART_OF (Fellowship → Dipole)

iii. HAS_ATTITUDE_TO_ENTITY (Entity → Entity), including weight property

with domain of either -1.0 for hostility or +1.0 for friendliness.

iv. HAS_ATTITUDE_TO_TOPIC (Entity → Topic), with properties of weight –

domain of [-1.0, 1.0] – and observations.

Figure 2 - Flow from initial POLAR exesution, with its output organised into CSV files for ingestion to Neo4j

graph database

 23

v. HAS_COLLECTIVE_ATTITUDE_TO_TOPIC (Fellowship → Topic), with

weight property on domain [-1.0, 1.0].

vi. HAS_POLARIZATION_TOWARDS (Dipole → Topic), with properties of

weight – domain of [0.0, 1.0] from none to high polarization index – and

observations.

Figure 3 illustrates this graph schema.

3.4.4 Data Ingestion into Neo4j

The process of populating the Neo4j database with data from the generated CSV files was

managed by a custom Python class, Neo4jIngestor. This process involved:

i. Node Creation: For each type of primary data element (Entities, Topics, and

Dipoles), – the fellowships were created at the same time as the relationship – the

corresponding CSV file was processed. The injector efficiently created a distinct node in

the graph for each unique item, assigning it the appropriate label and setting its properties,

such as its unique identifier and name. Care was taken to avoid duplicating nodes if they

already existed from previous processing steps.

ii. Relationship Establishment: Once the primary nodes were established in the

database, the relationships that connecting them were created. For each type of

connection, the relevant CSV data was read. The injector then identified the

corresponding source and target nodes in the graph and established the defined

relationship between them, assigning appropriately properties for that relationship

(weight and/or observation).

3.4.5 Final Populated Knowledge Base

Upon completion of the ingestion process, the Neo4j instance contained a fully populated

graph database. This knowledge base represents a structured and ready-to-be-queried

 24

snapshot of the polarization landscape of this case study. Figure 4 shows the size of the

populated neo4j graph database.

Figure 5 provides a visual snapshot of a selected portion of this knowledge base,

illustrating the connections of dipoles, their component fellowships, member entities, and

associated polarizing topics.

This visualisation was generated using a custom script that first queries the Neo4j

database to retrieve information about the top 5 most populous dipoles. The query, fetches

details for each selected dipole, including its member fellowships and their entities, its

top 3 most polarizing topics (filtered from the curated list of meaningful topics), and

examples of entity-to-entity, entity-to-topic, and fellowship-to-topic attitudes within the

context of that dipole. For instance, this visualised example (Figure 5) highlights among

others a notable dipole. This dipole features a fellowship centred around the “Kamala

Harris” entity (associated with entities such as “Tim Walz” and the “California

Democratic Party”), in opposition to a singleton fellowship representing the “Donald

Trump 2024 campaign”. Significantly, among the polarizing topics identified for this

specific dipole are “border” and “health”. This finding corresponds closely with the

prominent real-world political discourse observed during the U.S. 2024 election period,

Figure 3 - Ilustration of the nodes and relationships of the data model of the graph database, including the

relationship weights and value domains

 25

where issues of border control and healthcare policy were indeed central and highly

contested subjects of debate [31].

3.4.6 Curated List of Meaningful topics

To ensure the application provides focused and impactful insights from the many topics

generated by the initial polarlib run (detailed in Chapter 3.2), a curated list of 51

meaningful and highly polarized topics was developed. This step was crucial for

concentrating the analysis on distinct and relevant issues within the U.S. elections 2024

case study, effectively filtering out overly broad, granular, or less pertinent topics.

The curation process began with a quantitative assessment using polarlib’s

TopicLevelPolarizationAnalyser. This tool calculated a “global polarization score” for

every topic, reflecting its overall divisiveness across the dataset. Topics that met a

minimum score threshold of 0.5 were identified as “highly polarized”. This filtered subset

of 581 topics, was then manually and carefully reviewed. During this review, topics were

selected for the final list based on their clarity, direct relevance to major election

Figure 4 - Number of nodes and relationships of each type of the populated neo4j

 26

narratives and key campaign events, and their potential interest to an end-user seeking to

understand media polarization, resulting in the final list of 51 topics. This curated list is

important to the system, as it is subsequently used by the backend system to refine the

focus of real-time polarization analysis. The full list of these topics is displayed in

“Appendix D”.

3.5 Real-time Polarization Analysis for User Batches

This section details the step-by-step process undertaken by the backend system when a

user first shares the articles and places them in a proper batch and then initiates a

polarization analysis request for said batch. The pipeline is designed for efficiency,

leveraging pre-computed knowledge and lightweight processing to deliver timely results

to the mobile application.

Figure 5 - Visually Display of a snapshot of the populated neo4j database showing the 3 dipoles,

with the 3 most polarizing topics and the component entities and fellowships

 27

3.5.1 Individual Article Pre-processing

A key strategy for ensuring system responsiveness is to perform significant groundwork

when individual articles are first shared by the user, rather than deferring all computation

until a full batch analysis is requested. This amortization of processing helps minimize

the final delay perceived by the user, leading to a smoother experience. When a user

shares an article with the application, the following backend operations are triggered:

i. Article Reception and Content Fetching: The mobile application sends a POST

request to the backend API endpoint (/article/preProcess), containing as parameter the

URL of the shared article. The backend then fetches the article’s content from this URL

using a standard HTTP library (python’s “requests”).

ii. Content Parsing and Initial Preprocessing: To handle individual articles

effectively, a custom python class, ArticleCollector, was developed. This class is distinct

from polarlib’s NewsCorpusCollector (which is designed for large-scale GDELT

processing). The ArticleCollector is initialized with three parameters, an output directory,

a batch identifier – set to a temporary (tmp) directory – for the incoming article, and a

URL. It then utilises adapted versions of parse_articles and pre_process_articles

functions, driven from polarlib’s logic, to parse the fetched HTML content and extract

the raw text. This process is streamlined to operate on the single provided URL.

iii. Custom Pre-Entity Extraction Cleaning: The initially processed text of the article

is then passed through the first two custom cleaning scripts – cleanFiles and

kamalaHarrisCorrector – as mentioned in Chapter 3.2, with minor changes to clean only

the file of the specified URL.

iv. Entity Extraction: EntityExtractor class of polarlib was adapted to work on the

single article’s content. A crucial configuration detail for this stage, given the

containerized backend environment, involves setting the DBpedia Spotlight URL. When

services run in separate Docker containers (as is the case for the backend API/polarlib

processing and the DBpedia Spotlight service), they typically communicate using their

defined service names on the Docker network. Therefore, the Spotlight URL parameter

for the EntityExtractor was configured to point to the DBpedia Spotlight container’s

service address (http://spotlight:80/rest/annotate, replacing localhost or 127.0.0.1).

v. Post-Entity Extraction Cleaning: The third custom script, entitiesCorrector (also

described in Chapter 3.2), is then applied to the entities extracted from this single article.

http://spotlight/rest/annotate

 28

vi. Noun Phrase Extraction: Finally, polarlib’s NounPhraseExtractor is executed on

the article’s text to identify and extract relevant noun phrases, similarly adjusted for single

URL processing. This initial pre-processing deliberately concludes at NP extraction due

to efficiency considerations grounded in POLAR’s methodology. According to

Paschalides et al., NPs are the fundamental elements that get subsequently clustered to

form formal topics – a process that is computationally intensive. By extracting only the

NPs at this stage, which can be seen as the unclustered “raw” topics, the system efficiently

gathers essential topical indicators for individual articles. The more demanding task of

semantic clustering and full topic identification is thereby deferred until a user initiates a

complete batch analysis, significantly reducing the processing time for each shared

article. This optimization yields substantial performance benefits; for instance, an earlier

implementation that included full topic identification and clustering required

approximately 1-2 minutes for a small batch of 7 articles, on the contrary however, the

current approach focused on NP extraction reduces this initial processing to a few

seconds. Another major issue with that approach was that the clustering had to be

executed on the whole batch of articles, on the polarization extraction initiation.

vii. Output and Storage of Features: During this article preprocessing, the extracted

entities and noun phrases, and the rest intermediate generated files – are stored as part of

the temporary (tmp) batch.

At the end of this backend processing, a success code (200) is sent to the frontend,

indicating successful fetching (otherwise an error code with explanatory message). The

mobile application then is free to store the new article persistently (using Room [32],

layer over SQLite) to an “Article” table, with batch set to the temporary (further structure

explanation in Section 3.6). This change updates the User Interface automatically.

This process described before, hides the heavy analysis processing by eliminating a big

work part with every article shared. Consequently, when the user groups the articles to a

batch, a simple – almost instant – moving the files to the new batch is enough.

3.5.2 Batch Analysis Initiation

This subsection details the sequence of events and backend processes that are triggered

when a user explicitly requests a polarization analysis for a previously defined batch of

 29

articles. As illustrated in Figure 6, the user, having shared articles and organised them

into a batch, can initiate this analysis with a “Analyse Batch Polarization” button within

the application’s BatchDetailsScreen (Figure 20).

3.5.2.1 First Communication to Backend

The initiation for analysis, starts a sequence of distinct requests to the backend API.

While these could be consolidated into a single request, they were separated during

development for ease of testing and to allow for a more progressive display of results to

the user (e.g. showing entities and topics before the final polarization summary). These

requests include the following functionalities:

1. Batch Entity Aggregation (/batch/entities endpoint): Retrieves a consolidated list of

all unique entities present across the articles in the specified batch, along with their

frequency of mention.

Figure 6 - BatchDetailsScreen for a batch named “major_issues”, with a header, the

list of articles placed in this batch, and at the bottom the “Analyse Batch

Polarization” button

 30

2. Batch Topic Indicator Aggregation (/batch/topics endpoint): Retrieves a list of the

meaningful topics (derived from noun phrases) of the batch, along with number of

mentions.

3. Polarization Analysis and Summarisation (/batch/polarization endpoint): This is the

main analysis call which, if necessary, can internally trigger the entity and topic

aggregation steps. It then queries the knowledge base and returns the LLM-generated

polarization summary and supporting data – the results from the query themselves,

but removing abstract content (e.g. fellowship or dipole ids, etc).

For all three calls, the primary parameter is the unique batch name. The backend functions

handling entity and topic aggregation are designed to first check for previously computed

and cached results for that batch, and if found, these cached results are returned

immediately to avoid redundant processing.

3.5.2.2 Aggregating Entities of Batch

As detailed in Chapter 3.5.1, entity extraction is performed for each individual article

when it is first shared, resulting in JSON files stored in a directory structure like

API_OUTPUT/entities/<batch_name>/<article_identifier>.json. When the

/batch/entities API endpoint is called (or when the main /batch/polarization endpoint

triggers this step), the backend aggregates these individual entity lists for the specified

batch.

This is achieved by the entities_mapping() method within the adapted EntityExtractor

class. For each entities file for each article, it parses the JSON, extracts all identified

entities – using their DBpedia URI as the unique identifier – and accumulates a total count

for each unique entity across all articles in the batch. The aggregated results sorted by

entity frequency are then saved as an entities_mapping.json file within the batch’s entity

directory for caching and is also returned to the mobile application.

3.5.2.3 Aggregating and Filtering Noun Phrases as Topic Indicators of Batch

Similarly, noun phrases are extracted for each individual article during the initial pre-

processing (Section 3.5.1), with results stored in a directory like

API_OUTPUT/noun_phrases/<batch_name>/<article_identifier>.json. When the

/batch/topics API endpoint is called (or this step is triggered by the main polarization

 31

analysis function), these individually extracted noun phrases are aggregated and refined

for the entire batch.

This process is handled by the calculate_batch_meaningful_topics_from_noun_phrases()

function, which internally uses a noun_phrases_mapping() method (placed inside the

NounPhraseExtractor class).

This mapping method first iterates through all individual article noun phrase JSON files

for the given batch. It extracts each noun phrase and accumulates a total count for every

unique noun phrase across all articles in the batch. This raw mapping of all noun phrases

to their frequencies is saved to a file (e.g. topics_name_mapping.json) for caching.

The system filters the noun phrases by loading the curated list of 51 meaningful topic

names (as described in Section 3.4.6). Only the noun phrases from the batch that exactly

match an entry in this curated list are retained.

The final refined list is saved to a separate file – topics_name_mapping_cleaned.json –

and returned to the mobile application.

The output of these aggregation and refinement stages is a list of unique entities present

in the batch (with their frequencies) and a refined list of key topics in the batch (with their

frequencies). These aggregated features are now ready to be used for querying the Neo4j

knowledge base, as detailed in the following section.

3.5.3 Querying the Neo4j Knowledge Base

Once the aggregated entities and meaningful topics for the batch are prepared, the

backend system queries the Neo4j graph database. This step aims to retrieve relevant, pre-

computed polarization information associated with the batch’s content. The primary

function responsible for this is fetch_batch_polarization_data_strict, which takes the list

of entity IDs (Dbpedia URLs) and topic names from the batch as input, along with a

minimum polarization threshold (min_pol = 0.2).

The querying process executed by this function involves several key stages:

1. Identifying Relevant Dipole – Topic Polarizations: A Cypher query is first executed

to find Dipole – Topic pairs where:

 32

a. At least one Entity from the user’s batch is a member of a Fellowship involved

in the Dipole.

b. The Topic name is present in the batch’s topic names.

c. The HAS_POLARIZATION_TOWARDS relationship between the Dipole

and Topic has a weight (polarization index) greater than the specified min_pol

threshold.

2. Strict Filtering: A dipole – topic polarization instance is only retained if both

fellowships of the dipole have at least one entity member that is also present in the

user’s current batch of articles. This ensures that the reported polarization is directly

relevant and represented by entities from the user’s specific input. This can, of course,

be adjusted according to the needs and personal definition of polarization for a batch.

In this case, we could define a batch being polarized on a topic t, iff:

i. t exists in batch

ii. There is a dipole d polarized towards t with two fellowships f1 and f2 part of

d.

ii. There is at least one entity e1 member of f1 part of d and at least one entity e2

member of f2 part of d, f1 ≠ f2, with both e1 and e2 existing in the batch

The final output of this querying stage is a structured JSON object. This object primarily

contains a list under dipole_topic_analysis, where each entry represents a highly relevant

dipole – topic polarization instance. An example structure of the resulting JSON is

displayed in Figure 7.

3.5.4 LLM-based Summarisation

While the Neo4j queries retrieve structured data identifying polarized topics and involved

groups, this raw output can be complex for direct user interpretation. To provide a more

accessible, narrative understanding, the system utilises a Large Language Model (LLM)

to translate these findings into a concise summary. The rapid advancements in LLMs [33],

particularly their ability to understand context and generate coherent text (generative AI),

make them well-suited for transforming structured polarization data into an easily

digestible paragraph.

 33

3.5.4.1 Decision on Interface and LLM

For the decision involved to decision on the LLM technology to use, I needed an LLM

with high accuracy for cost ratio. The Groq AI interface emerged as a strong candidate,

offering rapid inference speeds. Meta’s “llama-3.3-70b-versatile” model (as available via

Groq) was selected as a very good option, providing a powerful balance of contextual

understanding and generation capabilities [34]. As of the time of development, Groq

allows for a generous number of requests and tokens within its free tier8 (e.g. 30 requests

per minute, 1,000 requests per day, 12,000 tokens per minute, and 100,000 tokens per

day), which is suitable for the application’s expected load. As the task for the LLM would

8 https://console.groq.com/docs/rate-limits

Figure 7 - Example Json result from Neo4j query regarding polariation analysis. Shows a dipole with polarization

index 0.72 on topic “immigration” and the two fellowships considting the dipole with their entities and collective

attitude to the topic

https://console.groq.com/docs/rate-limits

 34

be a delicate summarisation of complex relational data, an accurate and capable LLM like

a 70B parameter model was deemed appropriate. Of course, different interfaces or LLMs

could potentially provide similar results, and this choice reflects the tools and

performance characteristics prioritised for this project.

3.5.4.2 Preprocessing results for Prompt Generation

The structured JSON data retrieved from Neo4j, while rich in detail, is not in an optimal

format for direct ingestion by an LLM if the goal is a high-quality narrative summary.

Therefore, a significant preprocessing step is undertaken by the

prepare_polarization_prompt method to transform this data into a more descriptive and

organised textual format, which then forms the core of the prompt.

Algorithmically, this preprocessing involves the following key operations:

1. Iterate and Aggregate by Topic: The function iterates through each entry in the

dipole_topic_analysis list from the Neo4j results.

2. Track Maximum Polarization: For each unique topic_name, it initialises or updates a

record. It keeps track of the max_pi (maximum polarization index observed for that

topic across different dipoles) and the set of source_dipoles contributing to its

polarization.

3. Consolidate Fellowships by Stance: Within each topic, it organises information about

the involved fellowships based on its collective stance (positive, negative, or neutral)

towards that topic.

a. Unique Entity Group Identification: To avoid redundantly listing the same set of

entities if they appear in multiple technically distinct fellowship objects, an

entity_key is created for each group of entities. This key is a tuple of sorted entity

names found within a fellowship in the current batch.

b. Stance Categorisation: The stance is determined by the attitude_score of the

fellowship towards the topic, using predefined thresholds (strongly negative [-

1.0, -0.6], negative (-0.6, -0.2), neutral [-0.2, 0.2], positive (0.2, 0.6], strongly

positive (0.6 – 1.0)).

c. Conflict Resolution for Duplicate Groups: If the same unique group of entities

(identified by entity_key) appears multiple times under the same topic and stance

category (e.g. if different dipoles identify the same group with slightly different

 35

attitude scores), the system retains the instance where the group exhibits the

highest absolute attitude.

4. Sort Topics: After processing all entries, the aggregated topics are sorted in

descending based on their polarization index.

5. Final Formatting: The resulting data is then systematically formatted into a series of

textual lines that will constitute the main informational part of the prompt fed to the

LLM. Helper functions are used to convert polarization index and attitude scores into

qualitative descriptions (e.g. for polarization index: (high: (0.65, 1.0], moderate:

(0.35, 0.65], low [0.0, 0.35]) for better readability within the prompt itself.

This careful preprocessing ensures that the LLM receives a clear, organised, and non-

redundant representation of the polarization data, ready for a summarisation task.

3.5.4.3 Prompt Generation:

The construction of the prompt itself is a critical aspect of obtaining the desired summary

from the LLM. The prepare_polarization_prompt function, after preprocessing the data

as described before, assembles the final prompt using several prompt engineering

techniques [35]:

1. Role Assignment (Persona): The prompt begins by assigning a role to the LLM: “You

are an expert in analysing and summarising political polarization from structured

data.” This helps set the context and primes the LLM to use appropriate style and

knowledge.

2. Clear Task Definition: The task is explicitly stated: “Your task is to generate a

concise, human-readable summary of polarization from the data below.”

3. Contextual Definitions: To ensure the LLM correctly interprets the provided data, the

key terms of “Polarization index (pi)” and stance (the attitude) are given a definition.

4. Structured Output Guidance (Few-shot learning) [36]: The prompt provides explicit

instructions on how the summary should be structured:

a. Start with an overall assessment.

b. Identify the most polarized topics.

c. For each key topic, state its name, polarization level, and describe the groups

holding positive and negative stances, including their representative entities and

interpreted stance. An example output format for this description is provided

(few-shot)

 36

5. Stylistic and Content Constraints: The prompt guides the LLM on the desired style

and content:

a. “Use clear, narrative language. Synthesize the information rather than just listing

data points.”

b. “Keep the summary concise yet informative. Do not include any assumptions,

only knowledge provided here.”

6. Data Presentation Format: The pre-processed polarization data is clearly sectioned

under a heading like “Aggregated Polarization Data by Topic (Groups per Stance):”.

Each topic’s information is then laid out with its overall polarization and lists of

groups under positive and negative stances, including their entities and interpreted

attitudes (e.g. Topic: “Topic Name”, Overall Topic Polarization: High (Max PI:

0.85)).

7. Handling Empty or Insufficient Data: The prompt generation logic includes a

provision for cases where no significant polarization data is found after aggregation,

ensuring a graceful message can be formed.

8. Input Token Limit Awareness: The final prompt string is truncated to 5000 characters

if it exceeds this limit, preventing errors from too long inputs to the LLM API.

This prompt is also saved by the backend (e.g. prompt_<timestamp>.json) for logging

and debugging purposes. See the full prompt instruction in “Appendix E”

3.5.4.4 LLM Configurations

The interaction with the Groq AI API is configured using specific parameters to control

the LLM’s generation process, as implemented in the

get_polarization_analysis_summary method. The chosen model is llama-3.3-70b-

versatile, and the API call uses a messages-based structure, including a system message

that provides a high-level instruction or persona, reinforcing the main prompt (“You are

a concise expert in summarising political polarization based on knowledge provided.”)

and a user message containing the detailed prompt generated.

A max_tokens parameter is set to 500 to limit the maximum length of the generated

summary, ensuring conciseness and managing token consumption. The temperature of

the LLM is set to 0.4 (which is considered low) for a more deterministic, focused, and

 37

less random output [37], which is generally preferred for summarisation tasks that need

to stay close to the source data, balancing factual grounding with readability.

3.5.4.5 Output Handling

Once the LLM generates the summary, the backend performs a few final steps of

whitespace stripping, storing the prompt and summary persistently as files for logging

purposes in the API_OUTPUT/polarization_results/<batch_name> as

prompt_<timestamp>.json and <timestamp>.json accordingly.

3.5.5 Response to Mobile Application

The results of the polarization analysis process that are sent to the mobile application are:

(i) success code (200), otherwise error code + message

(ii) summary generated from LLM

(iii) A simplified version of the structured polarization data queried from the Neo4j –

removed the IDs of dipoles, fellowships and entities. This way allows the application (and

any frontend) to display, along with the summary, the raw data in any other way.

(iv) Remember, from the batch/entities and batch/topics calls, a list of entities with their

frequencies and a list of filtered topics with their frequencies are returned to the app before

everything else. If these exclusive calls would be removed, the lists could be returned

from the main analysis function as well.

The benefit of returning all these different data to the frontend is that it can display

whatever and however it deems appropriate, with easily manageable refinements.

3.6 Mobile Application Development

The “Polarization Detector” mobile application, developed as a proof-of-concept, serves

as the primary interface for end-user interaction with the system. Key objectives guiding

its development included ensuring internal scalability, manageability, efficiency, and data

persistence. Concurrently, the user interface (UI) and user experience (UX) were

designed to adhere to a simple, clean, and minimalistic pattern, emphasising formal

presentation, ease of use, and clarity. The core functionalities addressed by the application

are: (i) seamless sharing of articles by the user, (ii) organisation of shared articles into

 38

user-defined batches, (iii) straightforward review of articles within each batch, and (iv)

clear and appropriate presentation of the polarization analysis results.

This section details the mobile application’s development, focusing on the technologies

employed, mechanisms for persistent and efficient local data storage, strategies for

reliable background execution of long-running tasks, and the design and organisation of

the application’s screens. Emphasis is placed on the AnalysisResultsScreen, which is

responsible for displaying the outcomes of the polarization analysis.

3.6.1 Environment and Technologies

The Android mobile application was natively developed within Android Studio. Kotlin

was chosen as the primary programming language, for its modern features and

conciseness. The user interface (UI) was constructed using Jetpack Compose, Google’s

contemporary declarative UI toolkit for Android9, which facilitates the creation of

dynamic and responsive user interfaces.

The application could have been built using any other environment and target device

group (e.g. IOS, multiplatform), but Android development was chosen due to some prior

experience and consequently helped with faster development.

Material Design 3 guidelines ensured that the application incorporates best practices in

UI/UX design, promoting consistency and a high-quality user experience.

For local data persistence, Room Persistence Library was integrated. Room provides an

abstraction layer over SQLite, simplifying database operations and offering compile-time

verification of SQL queries [32]. Network communication with the backend API was

managed using Retrofit, a type-safe HTTP client for Android and Java, in conjunction

with OkHttp3 as the underlying HTTP engine for efficient request handling and

customization [38]. For managing long-running background tasks, such as article

preprocessing and the final polarization analysis requests, WorkManager was employed

to ensure these operations are persistent and handled reliably, even if the application is

closed or the device restarts [39].

9 https://developer.android.com/compose

https://developer.android.com/compose

 39

The application follows the Model-View-ViewModel (MVVM) architectural pattern.

This architectural choice is recommended by Google for Android development as it

promotes a separation of concerns, making the codebase more modular, testable, and

maintainable. In MVVM, the ViewModel prepares and manages data for the UI, the View

(Composable functions in Compose) observes the ViewModel for data changes and

updates the UI, and the Model represents the data and business logic [40].

3.6.2 Enabling Article Sharing

Seamless article sharing is a pivotal feature enabling the “Polarization Detector” to

function as an on-demand analysis tool. To facilitate direct sharing from a user’s mobile

browser or other news applications, the application was registered as a system share target

[41].

This involved configuring an IntentFilter within the AndroidManifest.xml file for the

Main Activity. This filter specifies that the Activity can handle ACTION_SEND intents

with a data type of text/plain, which is standard for sharing URLs or plain text.

The application’s main activity was then designed to handle two distinct launch modes, a

normal launch – when user opens the app from their phone Home Screen – which

navigates the user to the application’s HomeScreen, and a share intent launch – when the

app opens after a user selects from their browser share menu – which navigates the user

to the UrlSharedScreen having as parameter the URL just shared.

This implementation ensures that users can easily direct articles to the “Polarization

Detector” from various sources within their Android device.

3.6.3 Persistent Local Data Storage

To provide a robust user experience, maintain user-created data across application

sessions, and enable offline access to article batches, the Room Persistence Library was

implemented. Room acts as an Object Relational Mapper (ORM) over SQLite,

simplifying database interactions and providing compile-time checks for SQL queries

[32].

 40

The local database schema includes the following primary tables (Figure 8):

(i) Batch Table: Stores information about user-created batches, as well as a flag and the

batch polarization results. Specifically, a batch contains a mandatory unique name, a

flag indicating whether the batch has been analysed, for better UI presentation, the

polarization summary of the LLM after the batch analysation, and the raw JSON

results (see Section 3.5.5, (iii) on the list) which is converted and stored as a list of

DipoleTopics. A DipoleTopic represents an item in this list of the JSON, with the

topic name, polarization index, the two fellowships with their entities and collective

attitudes. The storage of a list of objects inside a single table was possible with the

use of a TypeConverter that “JSONifies” the object on insertion to the table.

(ii) Article Table: Stores details about individual articles shared by the user. These

include the URL, the article title (which is fetched by the mobile app for better user

experience), and a batch id as a foreign key to the associated batch.

(iii) Topic Table & Entity Table: These tables are used to cache the resulting lists of

articles and topics with their number of mentions, and they also have a reference to

the batch.

A significant advantage of using Room with Jetpack Compose and modern Android

architecture components (like Kotlin Flows) is that changes to the database can be

observed directly. This allows the UI to update automatically when data is modified (e.g.

an article is added to a batch, a batch is deleted), leading to a responsive and up-to-date

user interface. Using this simple SQL schema, results into an effective local storage of

the data benefiting the user experience and data persistence.

Figure 8 - Local Traditional SQL scema of Local Room Database of Android application showing four tables (Batch,

Article, Entity, Topic) with their columns.

 41

3.6.4 Remote Calls to Backend

The backend serves as the analytical core of the system, offloading computationally

intensive processing from the mobile device. Consequently, robust and efficient

communication between the mobile application and the backend is essential for effective

data flow and reliable operation, particularly in handling potential network failures.

3.6.4.1 Establishing the Connections

All network requests to the backend are managed using Retrofit. An EndpointsService

interface defines all the necessary API endpoints (e.g. /article/preProcess, /batch/entities,

/batch/topics, /batch/polarization, /batch/create, etc.), corresponding to the backend’s API

structure. This interface uses annotations to describe HTTP operations, request

parameters, and response types.

Kotlin data classes are utilised to model the structure of request bodies and JSON

responses for each endpoint. Retrofit, configured with a Gson converter, automatically

handles the serialization of outgoing data and deserialization of incoming responses.

The underlying OkHttp3 client, used by Retrofit, is configured with appropriate

parameters, such as read/write timeouts. The base URL for API calls is set to the backend

service address. When the backend is deployed in a Docker container on the same host

machine as the Android Emulator, this URL is typically http://10.0.2.2:8080/, where 8080

is the port exposed by the polar_api Docker container.

A repository file abstracts each of the ports as functions that use the service, call the

backend, and check for successful or error results and acting accordingly – either forwards

the retrieved data or an error message.

3.6.4.2 Persistent Backend calls

Certain backend operations, notably article preprocessing and the multi-stage batch

polarization analysis, can be relatively time-consuming and are susceptible to

interruptions from network instability or application lifecycle changes. Executing such

tasks directly within a ViewModel’s lifecycle could lead to their premature termination

if, for instance, the user navigates away from the app or network connectivity is lost.

To mitigate these issues and ensure the reliable execution of critical background tasks,

WorkManager is used. WorkManager is an Android Jetpack library specifically designed

 42

for deferrable, asynchronous tasks that require guaranteed completion [42]. In this

application, WorkManager is utilised for the four most significant backend interactions:

the initial article preprocessing call and the three distinct API calls involved in the full

batch analysis process. This approach ensures that these operations persist and complete

successfully, even in the face of application closure or transient failures.

3.6.5 Architecture and file organisation

The codebase is structured according to the MVVM (Model-View-ViewModel) pattern.

This architecture was used to separate the presentation logic from the UI, making the app

easier to maintain and extend. For each screen, there are four separate files orchestrated

for its complete functionality.

i. Composable file: This file contains the Jetpack Compose functions responsible

for rendering the user interface of a specific screen. It includes a main

@Composable annotated function representing the screen itself, along with any

helper composable functions used to build smaller UI elements within that screen.

This layer observes data exposed by the ViewModel and reacts to changes by

recomposing the UI.

ii. ViewModel class: Responsible for holding and managing the UI state for that

screen, fetching data from the Model (e.g. repositories), processing user inputs,

and exposing observable data (e.g. using Kotlin Flows) that the Composable UI

can collect and act accordingly.

iii. State data class: Kotlin data class that defined to represent the complete UI state

for a screen. This immutable state object holds all the information the UI needs to

render itself at any given moment (e.g. lists of articles, loading indicators, error

messages).

iv. Event sealed interface: Declares the different types of events or actions that can

originate from the UI (e.g. a button click, a list item selection). The ViewModel

then implements an “onEvent” method to handle these specific events, triggering

appropriate business logic or state updates.

The above structure creates a separation of concern, following the MVVM architecture

and best practises, for maintainable and scalable code.

 43

3.6.6 User Interface – Mobile Application Screens

The “Polarization Detector” mobile application is designed as the primary, user-facing

component of the system, responsible for enabling interaction and delivering polarization

insights. A core principle in its design was the adoption of a simple, clear, and

minimalistic UI. This approach aims to provide an intuitive user experience, ensuring that

the application is easy to navigate and the presented information is easily understandable,

aligning with the formal nature of the analysis provided. The next sections will detail the

key screens of the application, outlining their specific purpose, functionality, and how

they contribute to the user’s journey in obtaining and interpreting polarization data. The

figures for these screens are placed together at “Appendix F”.

The application primarily facilitates user interaction through four main screens: the

HomeScreen, the UrlSharedScreen, the BatchDetailsScreen, and the critically important

AnalysisResultsScreen. A detailed explanation of each screen’s presentation and purpose

follows.

3.6.6.1 Home Screen (Figure 15)

The HomeScreen serves as the initial entry point when the application is launched directly

by the user (e.g. from the device’s main application menu). This screen functions as a

central portal, providing navigation to other key sections of the application. It features a

button labelled “Unbatched Articles”, which directs the user to the UrlShared Screen. In

this context, the UrlShared Screen is presented without any pre-loaded URL parameter,

enabling users to view and manage articles that have been shared with the application but

not yet assigned to a specific batch.

Below the “Unbatched Articles” button, a “Batches” section is displayed. This area

includes a “Create new batch” button and a list of previously created batches. Clicking

on an existing batch from this list navigates the user to the BatchDetailsScreen

corresponding to that batch.

• Create Batch Dialog (Figure 16): This dialog is invoked when the user taps the

“Create New Batch” button, either on the HomeScreen or as an option within the

UrlSharedScreen (detailed subsequently). Its purpose is to allow the user to

specify and submit a unique name for the new batch, ensuring distinct

identification.

 44

• Delete Batch Dialog (Figure 17): For each batch listed, an option for deletion is

provided. When the delete action is initiated by clicking the delete icon, a

confirmation dialog appears. This dialog presents the user with two choices for

handling the articles within the batch, in addition to an option to cancel the

deletion. The user can decide to either “unbatch” the articles, which reassigns

them to a default temporary (tmp), or to delete both the batch and all its contained

articles permanently both from local and backend storage. This approach gives

the user more control over their data management.

3.6.6.2 Url Shared Screen (Figure 18)

The UrlSharedScreen is the application’s entry point when the user shares an article. This

screen is parameterised with the incoming URL. Upon initialisation with a shared URL,

the application initiates the article pre-processing execution (Section 3.5.1). Following a

successful response from the backend, which signifies the completion of initial

preprocessing, the article’s metadata is persisted to the local Room database. The UI then

automatically updates to display the newly shared article.

In addition to the received article, this screen presents a list of all previously shared

articles that are currently unbatched, sorted in descending order by their creation (share)

date. Each article is rendered as a card element, displaying its creation date and time, its

fetched title, and its URL. Users are provided with options to delete individual articles

from this list or to select multiple articles for batch assignment.

A pinned “Add to batch” button is positioned at the bottom of this screen, below the list

of articles. After selecting one or more articles, the user can click this button, which

subsequently presents a bottom sheet dialog (Figure 19). This dialog offers two primary

actions: (i) An “Add to new batch” button, that will show the “Create Batch” dialog, and

allows the user to simultaneously create the batch and populate it with the selected

articles, (ii) A list of the existing batches, to add the articles to a previously created batch.

3.6.6.3 BatchDetails Screen (Figure 20)

The BatchDetailsScreen serves as an intermediary stage, allowing users to review and

manage the contents of a specific batch before initiating a polarization analysis. The user

 45

can reach this screen when they select a batch from the list presented on the HomeScreen.

The screen at the top displays a header containing details of the selected batch, such as

its name, creation date, and number of articles it contains. Below this header, a list of all

articles that populate this batch is presented. For each article in this list, options are

available to either unbatch (an X icon) or to delete it permanently (a trash bin icon).

At the bottom of this screen, a large, screen-wide “Analyse Batch Polarization” button is

featured. Pressing this button is the trigger to start the polarization analysis sequence

(Section 3.5.2) for the current batch, and navigates the user to the AnalysisResultsScreen.

3.6.6.4 AnalysisResults Screen (Figure 21 – Figure 23)

This is the most important screen of the app, that displays the results of the whole

processing. Its information it displays is as follows:

(i) A batch header with its basic info

(ii) List of Polarizing Topics (Figure 21): This list contains card elements, for each distinct

polarizing topic identified in the batch. Each card displays the topic’s name and an

“average polarization score” (scaled from 0 to 100). This score is derived by averaging

the polarization index values (retrieved from the backend, originating from POLAR’s

HAS_POLARIZATION_TOWARDS relationships) associated with that specific topic

across all relevant dipoles identified in the batch analysis. The resulting average is then

multiplied by 100 to enhance user readability and provide an intuitive measure of

polarization intensity.

When the user taps on one of these topic cards, the card expands to reveal a more detailed

breakdown. This expanded view presents entities associated with that topic, categorized

into three groups based on their respective fellowship’s collective attitude (positive,

neutral, or negative) towards the topic. These groups are distinguished through color-

coding (e.g. green for positive, black or grey for neutral, and red for negative), and

arranged in a columnar layout for easy comparison.

(iii) Summary (Figure 22): Positioned after the list of polarizing topics, the LLM

generated summary (as detailed in Section 3.5.4) is presented. Initially, this summary is

displayed in a collapsed state, showing only the first two lines, and a “show more” text.

Clicking on the summary expands the card, revealing the full text. This feature provides

a human-readable narrative that explains the primary polarization findings.

 46

(iv) Key Topics and Entities (Figure 23): At the bottom of the screen, the lists of “Key

Topics” and “Key Entities” (returned from the /batch/entities and /batch/topics calls)

identified across the batch are displayed. Each item in these lists is accompanied by its

number of mentions within the batch. These lists are initially configured to show the top

five mentioned items and are designed to be expandable, allowing the user to view a more

comprehensive list if more items are available.

The structured presentation on the AnalysisResultsScreen is intentionally designed to

offer a clear and progressive disclosure of information. Initially, presenting a more

compact and visually appealing display of the polarizing topics and their associated score,

then a summary of the findings in a human-readable way for extra explanation, and

concludes with some extra details that the user might be interested in. This layered

approach empowers the user to readily understand the polarization context of the articles

they have chosen to analyse.

3.7 Tools and Technologies Summary

This section provides a consolidated summary of the primary tools, libraries, frameworks,

and services utilised throughout the research and development of the “Polarization

Detector” system.

3.7.1 Foundational Polarization Analysis (Backend Knowledge Generation)

• Core Framework: polarlib (Python library for the POLAR framework)

• Data Source: GDELT Project (for initial news article corpus)

• Entity Linking: DBpedia Spotlight (run via Docker: dbpedia/dbpedia-spotlight:en)

• Optimization (Structural Polarization): Gurobi Optimizer

• Development Environment: Python 3.12.9, Anaconda (for environment management)

• Operating System: macOS (with M4 Pro chip)

3.7.2 Backend System (API and Real-time Analysis)

• Programming Language: Python

• Web Framework (API): Flask

 47

• Graph Database: Neo4j Community Edition (run via Docker)

• LLM Service Integration: Groq AI API

• LLM Model: Meta’s “llama-3.3-70b-versatile”

• Containerization: Docker (for Neo4j, DBpedia Spotlight, and the main backend

API/polarlib processing module)

3.7.3 Frontend Mobile Application “Polarization Detector”

• Platform: Android (Native Development)

• IDE: Android Studio

• Programming Language: Kotlin

• UI Toolkit: Jetpack Compose

• Design Guidelines: Material Design 3

• Architecture Pattern: Model-View-ViewModel (MVVM)

• Local Database: Room Persistence Library (SQLite abstraction)

• Networking: Retrofit with OkHttp3

• Background Processing: WorkManager

 48

Chapter 4

System Evaluation and Limitations

4.1 Performance and Efficiency Evaluation 49

4.2 Qualitative Accuracy Assessment 49

4.3 UI/UX Considerations 50

4.4 Limitations 50

A controlled, manual evaluation was conducted to assess the system’s core functionality

and the quality of its polarization detection. This involved the creation of 30 distinct

batches of articles.

These batches were specifically created and populated to include articles with content that

based on the knowledge previously extracted by the full polarlib pipeline, was expected

to indicate clear polarization. This allowed for a targeted assessment of whether the

application could identify and represent these known polarization dynamics.

The evaluation focused on the system’s primary goals:

Efficiency: Achieving near real-time analysis for typical batch sizes.

Accuracy: Ensuring the polarization insights (identified topics, opposing groups, and

overall sentiment) align with real-world facts and the knowledge of the graph database.

User Experience: Presenting this complex information in a clear, user-friendly manner

within the mobile application.

 49

4.1 Performance and Efficiency Evaluation

A key design goal for the “Polarization Detector” was operational efficiency, aiming for

near real-time analysis that would be practical for users. It is imagined that the expected

use of the application, would involve analysing batches of no more than 20 articles.

Performance tests were conducted on batches of varying sizes. For instance, the

maximum processing time observed for a batch containing 20 articles was approximately

4 seconds. This included backend processing for entity and noun phrase aggregation from

pre-processed individual articles, querying the Neo4j knowledge base, and generating the

LLM summary.

This response time is considered within acceptable limits for a real-time user experience.

This efficiency represents a significant improvement over initial development attempts

that integrated full topic identification and clustering (as per the complete polarlib

pipeline) for each batch, instead of terminating at the noun phrases extraction, like

implemented now. Those earlier approaches required 1-2 minutes for a batch of only ~7

articles. The current architecture, which leverages pre-processing of individual articles

and efficient querying of the pre-computed knowledge base, demonstrates a significant

enhancement in processing speed, successfully achieving the goal of rapid analysis.

4.2 Qualitative Accuracy Assessment

Assessing the accuracy of detecting political polarization is inherently complex and often

qualitative. For this study, a thorough quantitative validation was beyond scope,

however, a qualitative assessment was performed on the outputs from the 30 test batches.

The manual review of these batches indicated that the system generally produced

plausible and contextually relevant polarization analyses. The entities, key topics, and the

LLM-generated summaries often aligned with expected real-world political discourse and

the known characteristics of the articles within the test batches.

Instances where the output seemed less aligned with real-world facts or expectations were

observed. These “mistakes” often appeared to originate from the noise within the initial

knowledge base generated by polarlib from the news corpus, rather than fundamental

flaws in the system’s knowledge extraction and summarisation logic.

 50

Nevertheless, the core proof-of-concept – extracting relevant polarization insights from

the structured knowledge base based on user-defined batches – was demonstrated to be

functioning effectively.

4.3 UI/UX Considerations

While extensive formal usability studies were not conducted as part of this thesis,

considerations for user interface (UI) design and user experience (UX) were addressed

during development. To enhance the application’s intuitiveness and overall usability,

advice was taken from a UI/UX design professional regarding screen layout, navigation,

and information presentation. The aim was to create an interface that is both easy to

navigate and allows users to clearly understand the polarization analysis results.

4.4 Limitations

While the “Polarization Detector” system successfully demonstrates a novel approach to

real-time polarization analysis, several limitations in the current implementation and the

broader study should be acknowledged:

i. Static Knowledge base Representation: The foundational polarization knowledge

base, generated by the initial polarlib execution, is static. The process of creating this

knowledge base from the over 7500 article (covering an months-long date range) was

computationally intensive requires many hours to complete. With this implementation,

the current system does not dynamically learn from new articles shared by users or update

its understanding of the polarization landscape over time. This limits its ability to adapt

to evolving discourse without a complete regeneration of the base model.

ii. Restricted Article Accessibility: Some articles cannot be fetched

programmatically due to website restrictions or paywalls. Different libraries were tested

to fetch them but with no success. This constraint limits the set of articles users can

effectively share with the application, resulting to reducing the practical utility and

comprehensiveness of the polarization analysis.

iii. Dependency on Upstream Data Quality: The quality of the polarization insights

provided by the application is inherently dependent on the accuracy and

 51

comprehensiveness of the knowledge generated by the underlying polarlib framework

and the quality of the news corpus it processes. Any noise or biases present in the initial

polarlib output will inevitably propagate to the application’s analysis. An attempt to

minimise the noisy results for the topics is the creation of the meaningful topics list, but

this approach can also be considered too restrictive, raising the need for a better, more

unsupervised motion of good quality topics, in agreement with POLAR’s initial

intentions.

 52

Chapter 5

Conlusion

The “Polarization Detector” system described in this thesis tries to address challenge of

the growing media polarization, utilizing an existing polarization modeling framework.

The system aims to empower individual users with a tool of real-time polarization index

indications, on the articles of their everyday consumption. As a proof-of-concept,

focusing on the U.S. elections as the knowledge context, a server-client architecture is

created, that leverages the polarlib library for the polarization knowledge modelling,

stores generated data in a structured graph database (Neo4j), and in real-time can handle

articles analysis requests, by fetching the polarization knowledge from the database for

insights of polarization within the user-given articles, and in the end display a LLM-

generated summary, along with compact, visually appealing data to the user. This

approach contributes in fighting the expading partisan polarization by enforcing the user

with the ability to detect this polarization, easily from the comfort of their smartphone.

The evaluation demonstrated that this system can process typical batches of articles in

near real-time, a significant improvement over power-intensive methods requiring full

pipeline execution per batch. This work underscores the potential of initially executing

time-consuming work and persisting the results in a way that only a lightweight

processing is necessary in real-time, output accurate insights.

 53

Bibliography

[1] D. Paschalides, G. Pallis and M. Dikaiakos, “POLAR: A Holistic Framework for

the Modelling of Polarization and Identification of Polarizing Topics in News

Media”, in Proc. IEEE/ACM Int. Conf. on Advances in Social Networks Analysis

and Mining (ASONAM), Virtual Event, Netherlands, 2021.

[2] Facing History & Ourselves, “Political Polarization in the United States”, 2024.

[3] J. Druckman and J. Levy, “Affective Polarization in the American Public”, Institute

For Policy Research, Northwestern, 2021.

[4] K. Churcher, “Political polarization”, 2025.

[5] A. Leininger, F. Grünewaldand and N. Buntfuß, “Ideological and affective

polarization in multiparty systems”, 2023. [Online]. Available:

osf.io/preprints/socarxiv/mz6rs_v1. [Accessed 21 May 2025].

[6] J. K. Kobellarz, M. Brocic, D. Silver and t. H. Dilva, “Bubble reachers and uncivil

discourse in polarized online public sphere”, PloS one, vol. 19, no. 6, 2024.

[7] F. Milačić, “THE NEGATIVE IMPACT OF POLARIZATION ON

DEMOCRACY”, Friedrich Ebert Stiftung, 2021.

[8] R. Henderson, “The Science Behind Why People Follow the Crowd”, Psychology

Today, 2017. [Online]. Available:

https://www.psychologytoday.com/us/blog/after-service/201705/the-science-

behind-why-people-follow-the-crowd. [Accessed 21 May 2025].

[9] A. Patov and ., “Homophily Bias: Preference for Similar Others”, 2024. [Online].

Available: https://www.renascence.io/journal/homophily-bias-preference-for-

similar-others. [Accessed May 2025].

[10] B. Baumgaertner and F. Justwan, “The preference for belief, issue polarization, and

echo chambers”, Springer Nature Link, vol. 200, no. 412, 2022.

[11] t. Carothers and A. O’donohue, Democracies Divided: The Global Challenge of

Political Polarization, Brookings Institution Press, 2019.

 54

[12] E. D. Martino, M. Cinelli, R. Cerqueti and W. Quattrociocchi, “Quantifying

Polarization: A Comparative Study of Measures and Methods”, 2025.

[13] C. Doherty, J. Kiley and B. Jameson, “Partisanship and Political Animosity in

2016”, 2016.

[14] L. Boxell and M. S. M. J. Gentzkow, “Cross-Country Trends in Affective

Polarization”, 2021.

[15] J. A. Piazza, “Drivers of Political Violence in the United States”, Sage Journalsc,

vol. 42, no. 1, 2022.

[16] M. J. Maggini, D. Bassi, P. Piot, G. Dias and P. Gamallo, “A systematic review of

automated hyperpartisan news detection”, PLoS ONE, vol. 20, no. 2, 2025.

[17] F. Roscini, “How The American Media Landscape is Polarizing the Country”,

Boston University , 2025.

[18] A. R. Argueda, C. T. Robertson, R. Fletcher and R. K. Nielsen, “Echo Chambers,

Filter Bubbles, and Polarization: A Literature Review”, Royal Society Open

Science, vol. 7, no. 4, 2022.

[19] J. Stray, R. Iyer and H. Larrauri, “The algorithmic management of polarization and

violence on social media”, Knight First Amendment Institute, Columbia University,

2023.

[20] E. B. Marino, J. M. Benitez-Baleato and A. S. Ribeiro, “The Polarization Loop:

How Emotions Drive Propagation of Disinformation in Online Media–The Case of

Conspiracy Theories and Extreme Right Movements in Southern Europe”, Social

Sciences, vol. 13, 2024.

[21] C. Bail, “Exposure to opposing views on social media can increase political

polarization”, Proc. Natl. Acad. Sci. USA , vol. 115, no. 37, pp. 9216-9221, 2018.

[22] Z. He, N. Mokhberian, A. Câmara, A. Abeliuk and K. Lerman, “Detecting Polarized

Topics Using Partisanship-aware Contextualized Topic Embeddings”, arXiv, 2021.

[23] G. Pennycook and D. Rand, “Fighting misinformation on social media using

crowdsourced judgments of news source quality”, Proc. Natl. Acad. Sci. U.S.A.,

vol. 116, no. 7, pp. 2521-2526, 2019.

[24] AllSides, “About AllSides”, [Online]. Available: https://www.allsides.com/about.

[Accessed 21 May 2025].

 55

[25] D. Golay, “The bad news game: a defense against fake news”, XRDS: Crossroads,

The ACM Magazine for Students, vol. 27, no. 1, pp. 32-33, 2020.

[26] S. Balietti, L. Getoor, D. Goldstein and D. Watts, “Reducing opinion polarization:

Effects of exposure to similar people with differing political views”, vol. 118, no.

52, 2021.

[27] A. Morales, J. Losada, R. M. Benito and J. Borondo, “Measuring Political

Polarization: Twitter shows the two sides of Venezuela”, ResearchGate, vol. 25,

2015.

[28] A. Olieman, H. Azarbonyad, M. Dehghani, J. Kamps and M. Marx , “Entity Linking

by Focusing DBpedia Candidate Entities”, in ERD ‘14 Proceedings of the first

international workshop on Entity recognition & disambiguation, Gold Coast,

Australia, 2014.

[29] C. Y. Wijaya, “Semantic Search with Vector Databases”, KDnuggets, 2024.

[30] Neo4j, “Why Neo4j? Top Ten Reasons”, [Online]. Available:

https://neo4j.com/top-ten-reasons/. [Accessed 21 May 2025].

[31] “In Tied Presidential Race, Harris and Trump Have Contrasting Strengths,

Weaknesses”, Pew Research Center, 2024.

[32] Google, “Room Persistence Library”, 2024. [Online]. Available:

https://developer.android.com/training/data-storage/room. [Accessed 21 May

2025].

[33] D. H. Hagos, R. Battle and R. D. B., “Recent Advances in Generative AI and Large

Language Models: Current Status, Challenges, and Perspectives”, arXiv,

Washington DC, 2024.

[34] Groq, “A New Scaling Paradigm: Meta’s Llama 3.3 70B Challenges ‘Death of

Scaling Law’”, 6 Dec 2024. [Online]. Available: https://groq.com/a-new-scaling-

paradigm-metas-llama-3-3-70b-challenges-death-of-scaling-law/. [Accessed 21

May 2025].

[35] P. e. a. Sahoo, “A Systematic Survey of Prompt Engineering in Large Language

Models: Techniques and Applications”, arXiv, 2024.

[36] B. T. B. e. al., “Language Models are Few-Shot Learners”, 2020.

 56

[37] E. Hellstrom, “Temperature Setting in LLMs: A Comprehensive Guide”,

PromptLayer Blog, 2025.

[38] E. Koc, “Retrofit And OkHttp”, 2023. [Online]. Available:

https://medium.com/@erdi.koc/retrofit-and-okhttp-675d34eb7458. [Accessed 21

May 2025].

[39] Google, “WorkManager Overview”, 2024. [Online]. Available:

https://developer.android.com/develop/background-work/background-

tasks/persistent/getting-started. [Accessed 21 May 2025].

[40] O. C. Işık, “Introduction to MVVM Architecture”, 2023. [Online]. Available:

https://medium.com/@onurcem.isik/introduction-to-mvvm-architecture-

5c5558c3679. [Accessed 21 May 2025].

[41] Android Developers, “Receive simple data from other apps”, [Online]. Available:

https://developer.android.com/training/sharing/receive. [Accessed 21 May 2025].

[42] Google Developers, “Schedule tasks with WorkManager”, 2024. [Online].

Available: https://developer.android.com/courses/pathways/android-basics-

compose-unit-7-pathway-1. [Accessed 21 May 2025].

 A-1

Appendix A

Knowledge Gathering and Storage Pipeline

Includes initial pipeline of POLAR, cleaning scripts placement, data preparing for

ingestion and ingestion

keyword_list = [

 ‘harris’, ‘biden’, ‘trump’, ‘kamala-harris’, ‘donald-trump’,

 ‘joe-biden’, ‘jd-vance’, ‘j-d-vance’, ‘tim-walz’, ‘rfk-jr’, ‘robert-f-kennedy-jr’,

 ‘presidential-candidate’, ‘running-mate’, ‘candidacy’, ‘vice-president’, ‘inauguration’,

 ‘presidential-debate’, ‘endorsement’, ‘presidential-election’, ‘usa-election’, ‘us-election’,

 ‘electoral’, ‘democrat’, ‘republican’, ‘democratic-party’, ‘republican-party’, ‘party-convention’,

 ‘presidential-campaign’, ‘election-campaign’, ‘nomination-speech’,’press-conference’, ‘swing-voter’,

 ‘campaign-rally’, ‘swing-state’, ‘president’, ‘debate’,

 ‘super-tuesday’,’convention’, ‘nomination’, ‘conference’

]

corpus_collector = NewsCorpusCollector(

 output_dir = OUTPUT_DIR,

 from_date = date(year = 2024, month = 6, day = 1),

 to_date = date(year = 2025, month = 1, day = 31),

 keywords = keyword_list,

 domains = None

)

 A-2

corpus_collector.collect_archives()

corpus_collector.collect_articles(n_threads_fetching=16, n_articles=128)

corpus_collector.parse_articles(n_threads_parsing = 8)

corpus_collector.pre_process_articles()

cleanFiles(OUTPUT_DIR)

kamalaHarrisCorrector(OUTPUT_DIR, n_threads=10)

nlp = spacy.load(“en_core_web_sm”)

entity_extractor = EntityExtractor(output_dir=OUTPUT_DIR)

entity_extractor.extract_entities(n_processes = 5)

entitiesCorrector(OUTPUT_DIR, “entity_mappings_corrections.json”)

noun_phrase_extractor = NounPhraseExtractor(output_dir=OUTPUT_DIR)

noun_phrase_extractor.extract_noun_phrases(n_workers = 8)

topic_identifier = TopicIdentifier(output_dir=OUTPUT_DIR)

topic_identifier.encode_noun_phrases()

topic_identifier.noun_phrase_clustering()

sentiment_attitude_pipeline = SyntacticalSentimentAttitudePipeline(

 output_dir = OUTPUT_DIR,

 nlp = nlp,

 mpqa_path = “subjectivity_clues_hltemnlp05/subjclueslen1-HLTEMNLP05.tff”

)

 A-3

sentiment_attitude_pipeline.calculate_sentiment_attitudes(n_threads = 10)

sag_generator = SAGGenerator(OUTPUT_DIR)

sag_generator.load_sentiment_attitudes()

bins = sag_generator.calculate_attitude_buckets(verbose=True)

plt.hist([len(v) for v in sag_generator.pair_sentiment_attitude_dict.values()], log=True)

min_freq = sag_generator.percentile(percentile = 99.2)

sag_generator.convert_attitude_signs(

 bin_category_mapping = {

 “NEGATIVE”: [(-1.00, -0.02)],

 “NEUTRAL”: [(-0.02, 0.10)],

 “POSITIVE”: [(0.10, 1.00)]

 },

 minimum_frequency = min_freq,

 verbose = True

)

G, node_to_int, int_to_node = sag_generator.construct_sag()

print(f”SAG constructed with {G.number_of_nodes()} nodes (entities) and {G.number_of_edges()} edges.”)

fellowship_extractor = FellowshipExtractor(OUTPUT_DIR)

fellowships = fellowship_extractor.extract_fellowships(

 n_iter = 25,

 resolution = 0.7,

 A-4

 merge_iter = 20,

 jar_path =‘polarlib/’,

 verbose = True

)

topic_attitude_calculator = TopicAttitudeCalculator(OUTPUT_DIR)

topic_attitude_calculator.load_sentiment_attitudes()

topic_attitude_calculator.get_polarization_topics()

topic_attitude_calculator.get_topic_attitudes()

pkg = PolarizationKnowledgeGraph(“outputJuneToJanuary”)

pkg.construct()

Prepare CSVs for ingestion

pkg.export_all(“my_exports”)

ing = Neo4jIngestor()

Ingest all data from CSVs to neo4j

ing.ingest_all(import_dir=“my_exports”)

ing.close()

By this step we have gathered and stored knowledge in Neo4j

 B-1

Appendix B

PreProcessArticle Implementation Backend

(Simplified Implementation, without loggings or error checks)

polar_api flask endpoint

@app.route(‘/article/preProcess’, methods=[‘POST’])

def preProcessArticle():

 data = request.get_json() or {}

 url = data.get(‘url’)

 status_code, response = preProcessArticleImpl(url=url, batch_name=TEMP_BATCH)

 return jsonify({‘message’: response}), status_code

polar_api_impl

def preProcessArticleImpl(url, batch_name):

 article_collector = ArticleCollector(OUTPUT_DIR, urls=[url], batchName=batch_name)

 article_collector.collect_articles(n_threads_fetching=1)

 article_collector.parse_articles(n_threads_parsing=1)

 article_collector.pre_process_articles(n_threads=1)

 cleanFiles(output_dir=OUTPUT_DIR, urls=[url], batch_name=batch_name)

 kamalaHarrisCorrector(output_dir=OUTPUT_DIR, urls=[url], batch_name=batch_name)

 B-2

 extractor = EntityExtractor(

 output_dir=OUTPUT_DIR,

 batch_name=batch_name,

 urls=[url],

 spotlight_url=‘http://spotlight:80/rest/annotate’

)

 extractor.extract_entities(n_processes=1)

 entitiesCorrector(output_dir=OUTPUT_DIR, urls=[url],

 batch_name=batch_name,

 mappings_file_path=“entity_mappings_corrections.json”

)

 np_extractor = NounPhraseExtractor(

 output_dir=OUTPUT_DIR,

 urls=[url],

 batch_name=batch_name

)

 np_extractor.extract_noun_phrases(n_workers=1, aggregate=False)

 return 200, ““

 C-1

Appendix C

Polarization Analysis Backend

(Simplified Implementation, without loggings or error checks)

def analyse_batch_polarization_simplified(batch_name: str):

 “““

 Highly simplified pipeline for analysing polarization in a batch of articles.

 1. Ensures aggregated entities and topics for the batch are calculated/loaded.

 2. Fetches polarization data from Neo4j (‘strict’ query).

 3. Builds a prompt from the Neo4j data.

 4. Calls the Groq API to generate a summary.

 5. Returns the summary and the raw data from the Neo4j query.

 “““

 calculate_batch_entities(batch_name)

 calculate_batch_meaningful_topics_from_noun_phrases(batch_name)

 with open(ENTITIES_MAPPING_CLEANED_PATH(batch_name), ‘r’, encoding=‘utf-8’) as f:

 emap = json.load(f)

 with open(TOPICS_MAPPING_CLEANED_PATH(batch_name), ‘r’, encoding=‘utf-8’) as f:

 tmap = json.load(f)

 batch_entity_ids = list(emap.keys())

 batch_topic_names = list(tmap.keys())

 # Query to neo4j

 query_results = fetch_batch_polarization_data_strict(

 batch_entity_ids,

 batch_topic_names

)

 ## Save results in a file

 groq_api_client = GroqAPI()

 prompt_text = groq_api_client.prepare_polarization_prompt(query_results)

 ## Save prompt in a file

 C-2

 summary = groq_api_client.get_polarization_analysis_summary(batch_name, prompt_text)

 ## Save summary in a file

 return 200, summary, query_results

Neo4j query for knowledge extraction

def fetch_batch_polarization_data_strict(

 batch_entity_ids,

 batch_topic_names,

 min_pol= 0.2,

) -> dict:

 “““

 Strict mode: skip any dipole-topic if either fellowship

 has zero entities existing in the batch.

 “““

 driver = GraphDatabase.driver(NEO4J_URI, auth=basic_auth(NEO4J_USER, NEO4J_PASS))

 session = driver.session()

 try:

 # Fetch dipole–topic polarization above threshold

 q = “““

 MATCH (e:Entity)-[:MEMBER_OF]->()-->(d:Dipole)-[r:HAS_POLARIZATION_TOWARDS]->(t:Topic)

 WHERE e.id IN $eids

 AND t.name IN $topics

 AND r.weight > $min_pol

 // only keep each (dipole,topic,pol) once

 RETURN DISTINCT

 d.id AS dipole,

 t.name AS topic,

 r.weight AS polarization

 ORDER BY dipole, polarization DESC

 “““

 recs = session.run(q, {

 “eids”: batch_entity_ids,

 “topics”: batch_topic_names,

 “min_pol”: min_pol

 })

 # Group by dipole

 dipole_map = {}

 C-3

 for r in recs:

 dipole_map.setdefault(r[“dipole”], []).append({

 “topic”: r[“topic”],

 “polarization”: r[“polarization”]

 })

 output = []

 # For each dipole fetch its two fellowships

 for did, tlist in dipole_map.items():

 for entry in tlist:

 topic = entry[“topic”]

 pol = entry[“polarization”]

Pull fellowships + their batch‐entities + collective attitude

 q2 = “““

 MATCH (d:Dipole {id:$did})<-[:PART_OF]-(f:Fellowship)

 OPTIONAL MATCH (f)<-[:MEMBER_OF]-(e:Entity)

 WHERE e.id IN $eids

 OPTIONAL MATCH (f)-[r:HAS_COLLECTIVE_ATTITUDE_TO_TOPIC]->(t:Topic {name:$topic})

 RETURN

 f.id AS fellowship,

 collect(DISTINCT {id:e.id, name:e.name}) AS entities,

 coalesce(r.weight, 0.0) AS attitude

 “““

 fellows = []

 for f2 in session.run(q2, {

 “did”: did,

 “eids”: batch_entity_ids,

 “topic”: topic

 }):

 ents = [m for m in f2[“entities”] if m[“id”]]

 fellows.append({

 “fellowship”: f2[“fellowship”],

 “entities”: ents,

 “attitude”: f2[“attitude”]

 })

 # 5) Strict: skip if either fellowship has zero matched entities

 C-4

 if len(fellows) == 2 and all(f[“entities”] for f in fellows):

 output.append({

 “dipole”: did,

 “topic”: topic,

 “polarization”: pol,

 “fellowships”: fellows

 })

 return {“dipole_topic_analysis”: output}

 finally:

 session.close()

 driver.close()

 D-1

Appendix D

List of 51 meaningful topics (> 0.5 polarization index + real-life

meaning/value)

gun regulation birthright citizenship

transportation mass deportation

personal profit economy

arrest ceasefire

climate impeachment process

climate change genocide

fentanyl human trafficking possible replacement

national debt military aid

election denialism immigration issue

communism immigration reform

medication abortion immigration

migration illegal immigration

tax evasion abortion right

criminal activity southern border

bipartisan border security package tariff

 D-2

political violence covid-19 pandemic

health health care

artificial intelligence illegals

border iran

ongoing war drug trafficking

war nuclear power

another trade war poverty

government efficiency vaccine

endless war vaccine skeptic

military aid assassination attempt

military

 E-1

Appendix E

Prompt Generated instruction for LLM

lines = [

“You are an expert in analysing and summarising political polarization from structured data.”,

“Your task is to generate a concise, human-readable summary of polarization from the data below.”,

“This data is aggregated by topic. For each topic, groups of entities are listed under their respective stances

(positive, negative, neutral), reflecting their most pronounced attitude if multiple instances of the same group

were found.”,

““,

“Key Definitions:”,

“ - **Polarization Index (PI):** For each topic, this is the maximum observed polarization score (0.0 low to

1.0 high), indicating how contested it is.”,

“ - **Stance:** Describes a group’s sentiment towards a topic (score from -1.0 strongly negative to +1.0

strongly positive). Groups of entities are categorized by their most definitive positive, negative, or neutral

stance found in the data.”,

““,

“Summary Structure Guidance:”,

“1. Start with an overall assessment of polarization in the batch.”,

“2. Identify the most polarized topics (if there are many, mention them all, but focus on 2-3).”,

“3. For each key topic:”,

“ - State its name and overall polarization level (e.g. ‘high’, ‘moderate’).”,

“ - Describe the groups of entities holding positive stances. List them with their representative entities (as

provided) and their interpreted stance.”,

“ - Similarly, describe the groups of entities holding negative stances.”,

“ - Example: ‘The topic of \”Healthcare Reform\” shows high polarization. Groups with a positive stance

include: Group (entities: Patients United, Doctors for Reform and others; stance: strongly positive). Groups

with a negative stance include: Group (entities: Insurers Alliance, Free Market Medical; stance: negative),

Group (entities: Taxpayers Watchdog; stance: strongly negative).’”,

“4. Use clear, narrative language. Synthesize the information rather than just listing data points.”,

“5. Keep the summary concise yet informative. Do not include any assumptions, only knowledge provided

here”,

““,

“Aggregated Polarization Data by Topic (Groups per Stance):”,

]

 F-1

Appendix F

Polarization Detector Application Screenshots

Figure 10 - Home Screen Figure 9 - Create Batch Dialog

 F-2

Figure 12 - Delete Batch Dialog Figure 11 - UrlShared Screen

 F-3

Figure 14 - Add Articles to Batch Bottom Sheet Figure 13 - BatchDetails Screen

 F-4

Figure 16- AnalysisResults Screen, top part showing list

with polarized topics, one of them expanded to display

the entities and their stance

Figure 15 - AnalysisResults Screen showing the

expanded summary generated by LLM

 F-5

Figure 17 - AnalysisResults Screen, bottom part

showing list of topics and entities, with their frequency

in the batch

 F-6

	Introduction
	Related Work
	2.1 Understanding Political Polarization
	2.2 The Challenge of Measuring Polarization
	2.3 Polarization in Media and Online Discourse
	2.4 Automated Detection and Mitigation Strategies
	2.4.1 Identifying the Gap: The Need for User-Centric Real-Time Analysis

	2.5 The POLAR Framework

	Methodology
	3.1 Overall Research Approach
	3.2 Leveraging the POLAR Framework: Foundation and Initial Setup
	3.2.1 POLAR Framework Foundation and Case Study Definition
	3.2.2 Data Acquisition and Initial Corpus Generation
	3.2.3 Addressing Entity Extraction Challenges and Data Preprocessing
	3.2.4 Full POLAR Pipeline Execution for Knowledge Generation
	3.2.5 Technical Environment and Dependencies

	3.3 System Architecture
	3.3.1 Frontend: “Polarization Detector” Mobile Application
	3.3.2 Backend System
	3.3.3 Primary Data Flow

	3.4 Knowledge Base Construction and Management
	3.4.1 Purpose and Technology Choice
	3.4.2 Exporting Knowledge to CSV
	3.4.3 Neo4j Graph Schema Design
	3.4.4 Data Ingestion into Neo4j
	3.4.5 Final Populated Knowledge Base
	3.4.6 Curated List of Meaningful topics

	3.5 Real-time Polarization Analysis for User Batches
	3.5.1 Individual Article Pre-processing
	3.5.2 Batch Analysis Initiation
	3.5.2.1 First Communication to Backend
	3.5.2.2 Aggregating Entities of Batch
	3.5.2.3 Aggregating and Filtering Noun Phrases as Topic Indicators of Batch

	3.5.3 Querying the Neo4j Knowledge Base
	3.5.4 LLM-based Summarisation
	3.5.4.1 Decision on Interface and LLM
	3.5.4.2 Preprocessing results for Prompt Generation
	3.5.4.3 Prompt Generation:
	3.5.4.4 LLM Configurations
	3.5.4.5 Output Handling

	3.5.5 Response to Mobile Application

	3.6 Mobile Application Development
	3.6.1 Environment and Technologies
	3.6.2 Enabling Article Sharing
	3.6.3 Persistent Local Data Storage
	3.6.4 Remote Calls to Backend
	3.6.4.1 Establishing the Connections
	3.6.4.2 Persistent Backend calls

	3.6.5 Architecture and file organisation
	3.6.6 User Interface – Mobile Application Screens
	3.6.6.1 Home Screen (Figure 15)
	3.6.6.2 Url Shared Screen (Figure 18)
	3.6.6.3 BatchDetails Screen (Figure 20)
	3.6.6.4 AnalysisResults Screen (Figure 21 – Figure 23)

	3.7 Tools and Technologies Summary
	3.7.1 Foundational Polarization Analysis (Backend Knowledge Generation)
	3.7.2 Backend System (API and Real-time Analysis)
	3.7.3 Frontend Mobile Application “Polarization Detector”

	System Evaluation and Limitations
	4.1 Performance and Efficiency Evaluation
	4.2 Qualitative Accuracy Assessment
	4.3 UI/UX Considerations
	4.4 Limitations

	Conlusion

