
Thesis Dissertation

HONEYTRAPS: ENHANCING HONEYWORDS

Panayiotis Charitonos

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2025

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

Honeytraps: Enhancing Honeywords

Panayiotis Charitonos

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2025

Acknowledgments

First and foremost, I would like to express my gratitude to Dr. Elias Athanasopoulos for

his invaluable guidance throughout the course of my thesis. His insights and constructive

feedback have been significant in forming the direction of my research. I am truly grateful

for the opportunity to learn under his mentorship.

I would also like to sincerely thank Dr. Antreas Dionysiou for his expert advice and

thoughtful input at crucial stages of this work. His depth of knowledge and willingness

to share his time and experience played a significant role in the successful completion of

this thesis.

Finally, I would also like to extend my heartfelt thanks to my friends and family for

their support and encouragement throughout this journey.

1

Summary

The growing frequency of credential database breaches presents a major threat to web

applications, enabling attackers to gain unauthorized access, perform identity theft. Hon-

eywords are decoy passwords stored alongside real ones. These decoy passwords are

designed to detect breaches by triggering an alarm when an attacker mistakenly submits a

decoy, believing it to be the real password. However, existing honeyword generation tech-

niques struggle to withstand modern threats, particularly in multi-server breach scenarios

where users reuse passwords. Attackers can exploit intersections across honeyword sets

to identify the true password. Moreover, attempts to fool the detection system by deliber-

ately triggering false breach alarms is also an attack vector honeywords will face. In this

thesis, we introduce HoneyTraps, a plug-and-play replacement for existing password stor-

age schemes that probabilistically defends against intersection attacks, and false-positive

manipulation. HoneyTraps replaces the traditional password hash with a structured list

of credential tokens (CTs), consisting of one real token and multiple probabilistically se-

lected decoys and traps. By modeling adversaries such as baseline-offline, false-positive

(FP+), and hidden-offline attackers as constrained n-shot games, we formally capture

their capabilities and demonstrate the optimality of their strategies. HoneyTraps leverages

system-wide trap-to-honeytoken ratios to distinguish genuine breaches from false alarms,

enabling confident detections. We implement and evaluate the HoneyTraps system using

testbed simulations. Results show that HoneyTraps achieves high detection rates while

producing zero false alarms across all attack scenarios. We also demonstrate its inter-

operability with legacy hash formats and significant storage optimizations via run-length

encoding. Additionally, we discuss and evaluate the limitations of existing honeyword

schemas. Our findings establish HoneyTraps as a practical, deployable framework that

enhances the robustness of honeyword authentication systems.

2

Contents

1 Introduction 7

2 Background 13
2.1 Bloom Filters . 13

2.2 Honeywords . 14

2.3 Honeychecker . 15

2.4 Honeyword Generation Requirements 15

2.5 Machine-Learning Support for Honeyword Generation 16

3 Architecture 17
3.1 Limitations of existing HGTs . 17

3.1.1 HoneyGen . 17

3.1.2 Bernoulli Honeywords . 18

3.2 Threat Model . 21

3.2.1 Online Adversaries . 21

3.2.2 Offline Adversaries . 21

3.3 Security Requirements . 21

3.3.1 Online Guessing Resistance . 22

3.3.2 Offline Distinguishability . 22

3.4 HoneyTraps Overiew & Core Concepts 23

3.5 HoneyTraps Formal Definition . 24

3.6 Honeytoken & Trap Functionalities . 25

3.6.1 Actions Upon Trap Activation 25

3.6.2 Actions Upon Honeytoken Activation 27

4 Implementation 29
4.1 Hyperparameter Tuning . 29

4.1.1 Setting the Success Probability p 29

4.1.2 Setting the token space w . 32

4.1.3 Setting the number of honeytokens 34

3

4.2 Rules of Thumb for Selecting Hyperparameters 35

4.3 Detecting FP+ via System Threshold 35

4.4 Django-Honeytraps . 37

4.4.1 Custom User Model . 38

4.4.2 Honeychecker Service . 38

4.4.3 Migration Strategy . 39

4.4.4 Packaging and Distribution . 40

4.5 Modeling Attackers . 40

4.5.1 FP+ . 41

4.5.2 Baseline-Offline Adversary . 43

4.5.3 Hidden-Offline adversary . 44

4.5.4 Enhancing Offline Avdversaries with Intersection Capabilities . . 47

5 Evaluation 48
5.1 Security Analysis . 48

5.1.1 Relaxing the Per-User Flase-Positive Bound 50

5.2 Storage Requirements . 52

5.3 Efficiency . 53

5.4 Deployment Effort . 53

6 Discussion 55
6.1 Limitations & Future Work . 55

7 Related Work 57

8 Conclusion 58

4

List of Figures

3.1 Illustration of HoneyTraps logic. The function f (x) represents a crypto-

graphically secure hash (e.g., SHA3-256), and w denotes the size of the

token space. 23

4.1 Probability of having at least n common CTs (1≤ n≤ 40) in the intersec-

tion of two sweet-CT lists, where honeytokens are selected via a Bernoulli

process with probability p ∈ {0.01,0.05,0.1}. 31

4.2 Probability of having at least n common CTs (1 ≤ n ≤ 120) in the inter-

section of two sweet-CT lists, each containing x ∈ {40,80,120} CTs per

account. 34

4.3 Ratio gap between trap & honeytoken triggers during an FP+ attack. . . . 36

5.1 Intersection for p = 0.3 . 51

5.2 Intersection for p = 0.1 . 51

5.3 Probability of having at least n common CTs (1 ≤ n ≤ 120) in the inter-

section of sweet-CT lists from x different servers (2≤ x≤ 5), for p = 0.3

and p = 0.1 . 51

5

List of Tables

5.1 Accounts compromised after a three-year test-bed (1,095 epochs). All

scenarios yielded zero false breach alarms. 49

5.2 Accounts compromised after a three-year test-bed (1,095 epochs). All

scenarios yielded zero false breach alarms. 52

6

Chapter 1

Introduction

Passwords have long been the cornerstone of user authentication, yet decades of research

have revealed that they are fundamentally flawed and increasingly inadequate in the face

of modern cybersecurity threats. Numerous studies have demonstrated that passwords

are susceptible to a wide range of attacks—from brute force and phishing to more subtle

issues like password reuse. Given these well-documented shortcomings, many experts ar-

gue that passwords should have been phased out in favor of more secure and user-friendly

alternatives. For example, Bonneau et al. [4] provide a comprehensive evaluation of web

authentication schemes and underscore the inherent vulnerabilities of password-based

systems. Similarly, research by Florêncio and Herley [12] highlights the problematic na-

ture of user-generated passwords and the risks associated with poor password habits. Yet,

despite the availability of more robust authentication mechanisms, the widespread iner-

tia of existing legacy systems and the challenges involved in deploying new technologies

have perpetuated the reliance on passwords across digital platforms.

This persistent reliance on passwords directly contributes to a broader and escalat-

ing security risk. Credential database breaches continue to be a pervasive and escalat-

ing security concern. According to the 2022 Verizon Data Breach Investigations Re-

port, credentials rank among the two most frequently compromised types of confidential

data because of the significant advantage they offer attackers in disquising as legitimate

users [31]. These breaches serve as the primary source of compromised passwords used in

credential stuffing campaigns, which are responsible for most account takeovers [26, 30].

Adding to the challenge is the substantial delay—often estimated to be between six to

eight months—between the occurrence of a data breach and its detection [25, Fig. 45].

This extended period of vulnerability provides attackers with ample time to crack the

stolen passwords offline, subsequently selling them or using them directly to carry out

further unauthorized activities.

A strategy to speedup the detection of credential database breaches, suggested by Juels

and Rivest [20], involves storing decoy passwords—known as honeywords—alongside

7

the actual passwords in a site’s credential database. Honeywords are carefully crafted

to appear indistinguishable from a user’s true password, creating ambiguity for potential

attackers by making it difficult to discern which password is genuine from the list com-

monly referred to as the sweetlist. In a secure system, both the actual password and multi-

ple honeywords are maintained for each user so that any attempt to log in using one of the

decoys immediately triggers a security alert. This approach not only misleads intruders

but also enables rapid detection of unauthorized access attempts, thereby strengthening

the overall security posture of the authentication system.

A key aspect of ensuring the efficacy of this strategy lies in the design of the honey-

word generation process itself. A critical requirement for robust honeyword generation

techniques is that they must be irreversible [17]. In other words, even if an adversary

gains full access to the honeyword generation process (HGT), they should not be able

to reverse-engineer the procedure to retrieve the original password. Specifically, given a

user’s sweetlist, an attacker must not be able to undo the generation process—much like

a cryptographic hash function, where it is computationally infeasible to determine the

original input from its hash value. Additionally, the process must ensure that each time a

password is processed—even if it is the same password—the resulting set of honeywords

is completely different from previous instances. This property is essential because, if the

algorithm were deterministic, an attacker could prompt the HGT with various passwords

and identify the real one as the only input that consistently yields the same list of fake

passwords.

An HGT that satisfies the non-reversibility property guarantees that the honeywords

generated are entirely different with every invocation, even if the same password is sub-

mitted multiple times. While this randomness is crucial for security, it introduces a vul-

nerability: when a user reuses the same password across different servers, the variation

in honeywords may cause the intersection of these sets to converge on a single com-

mon element—the user’s actual password. This phenomenon, known as an intersection

attack [20], highlights a significant risk, especially given the well-documented trend of

password reuse across multiple accounts [8, 24, 32]. To mitigate such attacks, there is a

clear need for a standalone framework that does not rely on server-to-server cooperation

(which is often impractical) but instead guarantees that the intersection of credentials from

different servers—when a user employs the same password—yields multiple elements. In

this scenario, the larger the size of the intersection set, the better the security, as it makes

it considerably harder for an attacker to pinpoint the true password.

A plausible solution is to generate honeywords deterministically so that, when a user

reuses the same password on different systems, the resulting sweetlist remains identi-

cal. This approach increases the overlap across servers without requiring any inter-server

communication. However, there are two major drawbacks. First, because the algorithm is

8

publicly available, it becomes possible to reverse the process by systematically querying

the generation function with each candidate sweetword. The candidate that reproduces

the full, expected sweetlist is likely to be the actual password. Second, this deterministic

approach is vulnerable to online guessing attacks by adversaries who haven’t breached

the database but instead aim to trigger false breach alarms. An attacker could register

with a specific password and, by replicating the publicly available HGT, deliberately use

a honeyword in a login attempt to set off an alert. Since the HGT’s security does not

depend on keeping the algorithm secret, such an attack is feasible.

Huang et al. [17] reveal that contemporary honeyword generation schemes often strug-

gle to balance two opposing errors: false negatives, where real intrusions slip by unde-

tected, and false positives, where innocuous login attempts with decoy credentials trigger

unwarranted breach alarms—especially when an attacker already knows a user’s pass-

word from another service. Building on this insight, our work uncovers an additional

design conflict: reducing the rate of false alarms while also defending against attacks that

leverage password reuse pulls the system in two opposite directions. Specifically:

• Suppressing false positives demands a high degree of randomness in honeyword

creation so that malicious users cannot deliberately trigger a false alarm by inserting

a honeyword.

• Resisting intersection attacks requires deterministic outputs, ensuring that re-

peated use of the same password produces identical sweetlists across different servers.

• The conflicting demand arises because increased randomness undermines cross-

server consistency—weakening defenses against password-reuse exploits—while

greater determinism heightens the likelihood of false alarms.

Consequently, any attempt to optimize for one of these goals inevitably erodes the other,

forcing the need for a careful balance between stochasticity and repeatability in HGTs.

Wang and Reiter [35] introduced Bernoulli Honeywords, the first technique to offer

a precisely controllable false alarm rate. Their method treats honeyword selection as a

Bernoulli process over the entire password space and records each candidate—with a

fixed sampling probability—in a 128-bit Bloom filter (BF) using 20 independent hash

functions, while always inserting the genuine password (sampling probability = 1). As

Wang and Reiter note, explicitly generating and storing all sampled honeywords would

be infeasible. Instead, they implicitly encode them by randomly setting extra bits in the

BF: after the true password’s bits are marked, they continue flipping random positions

until a total of 30 bits are set. During authentication, any password whose hash does not

activate exactly the same subset of 30 bits as the real password immediately triggers a

breach alarm.

9

While Bernoulli Honeywords initially appears as an appealing solution, it ultimately

falls short in several aspects. First, with the utilised BF structure (b = 128, k = 20) an

adversary has a low probability of finding elements (passwords) that return a member-

positive result, other than the user-chosen password and a single honeyword. An accurate

estimate suggests that ≈ 2 stored elements correspond to 30 marked bits in the specific

BF structure [22]. For any other string to appear as a honeyword, it must falsely yield

a member-positive result (false positive), which occurs with a negligible probability of

4.019× 10−12. Additionally, Bernoulli Honeywords do not store arbitrary inputs but

rather user-chosen passwords, which are often short in length and limited to a specific

set of printable characters. This significantly lowers the chance of random inputs repre-

senting viable solutions. These facts deem dictionary attacks as an effective method for

recovering the user-chosen password. Furthermore, the probability of finding a honey-

word in an intersection attack decreases exponentially as the number of breached servers

increases. This is because, for a honeyword to be a potential solution in an intersection

attack, it must yield a member-positive result in all of the user’s BFs, which are derived

from different Bernoulli Honeyword servers.

In this paper, we propose HONEYTRAPS, an enhanced honeyword-based schema that

satisfies both objectives: achieving an acceptably low false alarm rate while offering prob-

abilistic guarantees against intersection and credential stuffing attacks. HONEYTRAPS

uses a single cryptographic hash function (SHA3-256) with modulo reduction to intro-

duce tunable and controllable collisions. This in turn allows us to configure the likelihood

of common decoy credentials in multi-server breach scenarios. Specifically, to compute

the valid Credential Token (CT) for a user-chosen password, the following determinis-

tic operation is performed: SHA3-256(password) mod w, where w is a tunable integer

parameter that determines the range of CTs. Since cryptographic hash functions are de-

signed to uniformly cover their output range [6], constraining the output to a range of

size w ensures uniform collisions per CT. The parameter w is inversely proportional to

the number of collisions—i.e., as w increases, the number of (randomly generated or

human-chosen) passwords mapping to the same CT decreases. Conceptually, HONEY-

TRAPS can be viewed as a flattened BF, which—compared to the BF used in Bernoulli

Honeywords—has a much higher capacity for storing honeywords.

Similar to Bernoulli Honeywords, HONEYTRAPS produces honeytokens indepen-

dently of the user’s password, allowing it to be integrated into existing authentication

systems that store password hashes with any standard cryptographic function—without

requiring users to reset or re-enter their credentials. By contrast, all prior password-

dependent HGTs [10,16,20,23,36] mandate a full re-entry of user passwords to generate

honeywords, a clearly impractical requirement for real-world deployments. To demon-

strate HONEYTRAPS’s deployability, we have released a pip-installable Django package

10

including a custom authentication model with built-in HONEYTRAPS support, which can

be seamlessly added to both new and existing Django projects without any user password

changes.

Additionally, we introduce traps, which we define more concretely in later sections

a mechanism to mitigate online adversaries—those who have not breached the credential

database. These adversaries fall into two main categories. First, some attackers seek to

provoke false breach alarms by deliberately submitting honeywords during login attempts.

For example, an adversary who registers on the target site may craft passwords based on

their understanding of the honeyword generation process, hoping to replicate one of the

decoys. Second, credential-stuffing adversaries exploit credentials leaked from another

service (site B) to infiltrate user accounts on site A [29]. Although, HONEYTRAPS can

defend against both type of adversaries in this thesis we focus on the former type of

adversary.

A key design challenge is determining the optimal number and placement range of

Credential Tokens (CTs) for each user account. This involves balancing security and

practicality: increasing the number of honeytokens strengthens defenses against offline

adversaries but also heightens the likelihood of false breach alarms. Since breach re-

sponses are time-sensitive, costly, and disruptive [18], frequent false alarms may lead

operators to ignore them [35]. To address this, we perform a comprehensive analysis of

HoneyTraps’ hyperparameters to find configurations that minimize false positives, ensure

timely breach detection, and resist intersection attacks effectively.

Our contributions can be summarized as follows.

1. We design, implement, and evaluate HONEYTRAPS, the first standalone frame-

work aimed at defending honeyword-based systems against attacks that exploit

users’ tendency to reuse passwords. Through a comprehensive security analysis,

we demonstrate that HONEYTRAPS provides probabilistic guarantees against on-

line adversaries (e.g. false-positive attacks) and offline adversaries (e.g., honey-

token distinguishing attacks), aligning with thresholds suggested in the literature.

Thus, HONEYTRAPS enhances honeyword-based systems by streamlining their de-

sign and enabling practical, real-world deployment.

2. We are the first to identify a new trade-off in the design of standalone honeyword-

based systems, adding to those previously observed in the literature [17]. Specif-

ically, we show that improving security against online adversaries who know the

user’s real password and aim to trigger false alarms comes at the cost of reduced

detection guarantees against intersection and credential stuffing attacks. This trade-

off highlights the complexity of designing effective standalone honeyword-based

solutions.

3. To support reproducibility, practical adoption, and further research on this topic, we

11

release the following: (i) a pip-installable Django package featuring a custom user

authentication model with built-in HONEYTRAPS support, designed to integrate

seamlessly into both new and existing Django projects—without requiring users to

re-enter their passwords; and (ii) the complete source code for our experiments,

along with a fully functional prototype of the HONEYTRAPS framework. (iii) The

testbed used to model attackers to test the framework before deploying in a real-

world setting.

12

https://anonymous.4open.science/r/HoneyTraps-pckg-D027
https://anonymous.4open.science/r/HoneyTraps-05B3

Chapter 2

Background

2.1 Bloom Filters

A Bloom filter is a space-efficient, probabilistic data structure for representing a set X =

{x1,x2, . . . ,xn} and supporting membership queries with no false negatives and a tunable

false positive rate [3]. Formally, a Bloom filter is defined by:

• A bit array B of length m, initially B[i] = 0 for i = 0,1, . . . ,m−1.

• A family of k independent hash functions {h1,h2, . . . ,hk}, each mapping any ele-

ment x to a uniform position in {0, . . . ,m−1}.

Insertion. To insert an element x ∈ X , compute each hash hi(x) and set

B
[
hi(x)

]
= 1, i = 1, . . . ,k.

Query. To test whether an element y is in X :

if B
[
hi(y)

]
= 1 for all i= 1, . . . ,k, then report “possibly in set”; else “definitely not in set.”

Since any inserted element x will have all its corresponding bits set, membership queries

never yield false negatives. However, non-member elements y /∈ X may have all k bits set

by previous insertions, leading to false positives.

False positive probability. After inserting n elements, the probability that a particular

bit remains zero is

Pr[B[i] = 0] =
(

1− 1
m

)kn
≈ e−

kn
m .

Hence the probability that a bit is one is

Pr[B[i] = 1] = 1− e−
kn
m .

13

A membership query for y /∈ X declares “possibly in set” only if all k hash positions are

ones, giving a false positive rate

pFP =
(

1− e−
kn
m
)k
.

This rate can be tuned by choosing m and k appropriately.

2.2 Honeywords

Password-based authentication systems maintain a sensitive password file, F , containing

each user’s password digest. A login attempt is accepted only if the hash of the provided

password matches the stored digest in F for the corresponding user; otherwise, it is re-

jected. If F is compromised, it is realistic to assume that most (if not all) of the hashes

can be reversed, revealing users’ plaintext passwords. This is due to advanced password-

guessing techniques and the availability of high-performance computing resources, such

as GPUs and distributed clusters [10].

Honeywords are decoy passwords stored alongside each user’s true password in a

credential database. Introduced by Juels and Rivest [20], this mechanism transforms a

stolen password file into a high-risk guessing game for attackers: any attempt to log in

with one of the honeywords immediately triggers an alarm. The combined list of the

real password and its decoys is often called the sweetlist. Honeywords rely on two core

security properties. First, they must be indistinguishable from the real password without

access to a secure “honeychecker.” Second, they must be irreversible, meaning that even

with full knowledge of the honeyword generation algorithm, it remains computationally

infeasible to recover the original password [17]. These properties ensure that attackers

cannot either identify the real password within the sweetlist or evade detection once they

attempt to use a decoy.

This adversarial scenario can be formalized as an one-shot guessing game. Let the

sweetlist for a user be

S = { p, h1, h2, . . . , hk },

where p is the real password and h1, . . . ,hk are the k honeywords, so |S| = k + 1. An

adversary selecting an element g ∈ S faces two outcomes:success without alarm, g = p,

alarm and failure, g 6= p.

If honeywords are truly indistinguishable from the real password, the adversary must

guess uniformly at random, yielding

Pr[win] = Pr[g = p] =
1

k+1
, Pr[lose] = Pr[g 6= p] =

k
k+1

.

14

The adversary’s campaign may span multiple accounts, but the game terminates as soon

as either all targeted accounts have been breached without triggering an alarm or the

adversary is detected by setting off a breach alarm on any single attempt.

2.3 Honeychecker

The honeychecker is a minimal, always-trusted component that holds the secret index

of each user’s real password within their sweetlist. It never learns the passwords them-

selves—only the position i∗ (with 1≤ i∗ ≤ k+1) corresponding to the genuine credential

in

S = {p, h1, h2, . . . , hk}.

When a user submits a login attempt with guess such that g ∈ S, the authentication server

computes its position i in S and sends i (not g) to the honeychecker. The honeychecker

performs a the following check: accept, if i = i∗,

alarm, if i 6= i∗.

In the event that the submitted credential does not match any element of the sweetlist (i.e.

g /∈ S), the honeychecker is not invoked and the system rejects the login silently; no alarm

is raised and access is not granted.

2.4 Honeyword Generation Requirements

A robust honeyword generation technique (HGT) must satisfy several key security prop-

erties to ensure that the addition of decoy credentials does not weaken the underlying

authentication system. First and foremost, honeywords must be indistinguishable from

the real password. In practice, this means that an attacker who obtains a user’s sweetlist

cannot identify the genuine credential by inspecting patterns in the decoys alone; with-

out access to an external “honeychecker,” each entry in the list should appear equally

plausible [20].

Equally important is non-reversibility. Even if an adversary knows the exact algo-

rithm used to produce honeywords, it must remain computationally infeasible to recover

the original password from the sweetlist, just as cryptographic hash functions resist in-

version [17]. This property prevents attackers from feeding candidate passwords into the

HGT and matching outputs against the stored sweetlist to isolate the true credential.

Finally, something often overlook when it comes to HGT’s is the practical consider-

ations impose additional requirements. A generation method should allow tunable false-

alarm rates, so that legitimate login attempts rarely trigger decoys, while still ensuring

15

prompt detection of real breaches [35]. At the same time, the algorithm must be effi-

cient and easy to integrate into existing authentication infrastructures—ideally producing

honeywords without requiring users to reset or re-enter their passwords.

2.5 Machine-Learning Support for Honeyword Genera-
tion

Motivation. Early honeyword schemes relied on ad-hoc "tweak" rules (e.g., flipping

case or appending digits) that often produced unnatural decoys. A modern alternative is

to learn the statistical structure of real passwords from data and then sample honeywords

that match this distribution. The stronger the resemblance, the harder it is for an offline

attacker to filter out the genuine secret.

FastText in a nutshell. FastText [19] is a lightweight neural language-model library

released by Facebook AI Research that learns character n-gram embeddings rather than

whole-word vectors. Given a password such as

“P@ssw0rd!”,

FastText extracts all overlapping n-grams of length n∈{3,4,5,6} (e.g. <P@, P@s, ssw,

sw0, . . .). Each n-gram receives a trainable vector vg; the final embedding of the entire

password is the average

vP@ssw0rd! =
1
|G| ∑g∈G

vg,

where G is the multiset of extracted n-grams. Because any previously unseen string

can be decomposed into known n-grams, FastText embeds out-of-vocabulary passwords

with no loss of fidelity—a crucial property for long-tail, policy-constrained secrets.

Generating honeywords with FastText. To fabricate decoys for a user’s real password

RP:

1. embed real password(RP) to obtain its vector vRP;

2. query the k nearest neighbours of vRP in the learned space;

Because the neighbourhood query returns strings that are statistically indistinguishable

from real passwords, the resulting honeywords blend seamlessly into the site-specific

distribution while requiring only a single embedding lookup at enrolment time.

16

Chapter 3

Architecture

3.1 Limitations of existing HGTs

3.1.1 HoneyGen

At first glance, training a machine-learning model to synthesise honeywords seems ap-

pealing, yet the approach has two underlying limitations:

(1) Model reconstruction. A generator M must be trained on a password corpus D.

An adversary who aggregates large public leaks can approximate D and—by re-training

under similar hyper-parameters—obtain a surrogate model M̃. Because M̃ reproduces a

noticeable fraction of the honeywords that M would emit, the attacker’s chance of guess-

ing a decoy (and so raising a false breach alarm) rises even though the target site itself

was never breached.

(2) Inconsistent sweetlists across sites. Training sets are inherently site-specific.

Two services that deploy the same ML generator will still train on different corpora D1

and D2, producing distinct honeyword distributions for the same reused password. When

an attacker intersects the two sweetlists, the only token common to both lists is over-

whelmingly likely to be the genuine password, introducing intersection attacks rendering

honeywords useless in multi-server breach scenarios.

HoneyGen introduced by Dionysiou et al. [10], instead of applying hand-coded "tweak"

rules, HoneyGen learns a site-specific FastText model on the operator’s own password

database.

Three generation modes.

1. Chaffing-by-tweaking. Applies small random edits to the real password (case flips,

symbol swaps, digit shifts). Fast and policy-aware, but its realism depends on the

quality of the tweak rules.

17

2. Chaffing-with-a-password-model. Retrieves the k nearest neighbours of the real

password in the FastText space; these neighbours already follow the empirical dis-

tribution of the site’s users.

3. Hybrid. Combines the two: half of the honeywords come directly from the FastText

neighbourhood; the other half are tweaked versions of those neighbours. This yields

the best trade-off between realism (from the model) and diversity (from tweaking).

HoneyGen is therefore a useful proxy for evaluating the broader class of ML-based

honeyword generators. To illustrate their inherent limitations we conducted an experi-

ment with the rockyou dataset. First, we trained a FastText model M1 on a subset D1

and a second model M2 on a disjoint subset D2 (D1 ∩D2 = /0). When we queried both

models in Hybrid mode with the same input password, the resulting sweetlists exhibited

zero overlap: a perfect demonstration of how corpus divergence defeats inter-site inter-

section. Conversely, querying M1 (or M2) twice produced identical sweetlists whenever

the optional tweak stage was disabled, showing that an attacker who can reproduce the

training corpus can pre-compute a subset of honeywords and inflate the false-positive rate.

This demonstarates the underlying problem of creating intersection in sweetlists: while

using the same or similar password corpus D to train different models allows for more

intersections it also raises the false-postive occurances.

3.1.2 Bernoulli Honeywords

Wang and Reiter [35] proposed the first honeyword-based framework with a quantifiable

and tunable false alarm rate, called Bernoulli Honeywords. Honeywords are implicitly se-

lected using a Bernoulli process: each password (excluding the user-chosen one) is inde-

pendently selected with a fixed probability ph to be a honeyword. To efficiently select and

store these without explicit enumeration, a BF of size b= 128 bits and k = 20 SHA-1 hash

functions is configured per user. In particular, each user’s real password is first hashed us-

ing SHA3-256 to produce a digest, and bits corresponding to SHA-1(digest+ i) mod

b for 0 ≤ i ≤ 19 are marked (with 1). Finally, an additional y bits are randomly marked

to ensure that the total number of set bits is 30, as specified by the numOnes parameter

in their official implementation. These extra bits are not marked by explicitly inserting

honeywords but are randomly selected from unmarked bits. Essentially, this means that

honeyword creation is out of control and that the stored honeywords are not generated to

be visually similar to the real password or to any password at all. In fact, as we show

below, the BF acts as a deterministic oracle—akin to a cryptographic hash function in

the absence of honeywords—and can be efficiently reversed without diluting the attacker

with multiple possible password options.

18

https://github.com/k3coby/bhwmonitoring-go

To make this clear, consider a very simple BF configuration (e.g., 2 bits, 1 hash func-

tion, and 1 inserted element—the real password). In this case, it is trivial to explicitly

insert honeywords that map to the single marked bit. Reversing this BF is practically

impossible, since any password has a 50% chance of being a potential solution (i.e., map-

ping to the marked bit) during a cracking attempt. In fact, this BF effectively contains

half of all possible honeywords that could be computed with any algorithm. However,

this is not the case with the BF used in Bernoulli Honeywords. Specifically, the configu-

ration parameters suggested by Wang and Reiter [35] make the BF easy to reverse. As the

BF grows (i.e., as the bitmap size and number of hash functions increase), finding inputs

that map to specific, already marked bits becomes increasingly difficult—equivalent to

the probability of a false positive. A false positive occurs only when the input maps to an

exact subset of the bits set by the real password. This probability, which can be computed

using Eq. (3.1) as suggested by Cao and Wang [7], is inversely proportional to the BF’s

size—that is, its bitmap length b, number of hash functions k, and number of inserted

elements n. For the 2-bit BF discussed earlier, the false positive probability pfp is 0.5.

pfp =

(
1−
(

1− 1
b

)kn
)k

(3.1)

Mitzenmacher and Upfal [22] provide a formula for estimating the expected number of

marked bits, X , in a BF, given b, k, and n (Eq. 3.2). By solving for n, this formula can be

adapted to estimate the number of explicitly inserted elements based on the total number

of marked bits X . In Bernoulli Honeywords, only the real password is explicitly inserted

into the BF, and an additional y bits are randomly marked. Thus, we can apply Eq. 3.2

to estimate the number of elements that could have been explicitly inserted. Using the

parameters suggested by Wang and Reiter [35] (i.e., b = 128, k = 20, and X = 30), the

formula yields an estimate of approximately 2 elements (1.7 to be precise). However, this

estimate is not entirely accurate, as there is a possibility of more elements being ‘stored’

in the BF, particularly those that map to an exact subset of the 30 marked bits. These

elements are now difficult to find. In fact, the probability of finding such an input corre-

sponds to the false positive rate of the BF. For the configuration used by Wang and Reiter,

this probability is approximately 4.019×10−12, which is significantly lower than the 50%

false positive rate seen in the earlier 2-bit BF example. As the BF grows, the probability

of a false positive (i.e., encountering another honeyword) decreases, eventually approach-

ing the determinism of a cryptographic digest. In other words, the BF evolves from a

random oracle (e.g., 50% membership probability in a 2-bit BF) to a highly determinis-

tic oracle that minimizes collisions—similar to a cryptographic hash function, where a

19

membership-positive result strongly indicates actual presence in the filter.

X = b

[
1−
(

1− 1
b

)kn
]
⇒ n =

ln
[
1− X

b

]
kn× ln

[
1− 1

b

] (3.2)

As a consequence, the BF structure used in Bernoulli Honeywords also fails to provide

meaningful security guarantees against intersection attacks. The probability P(I) of an

input—other than the user-chosen password—yielding a member-positive result across

all of a user’s BFs on different servers is given by:

P(I) =
y

∏
i=2

pfp =
y

∏
i=2

(
1−
(

1− 1
b

)kn
)k

, (3.3)

where y is the number of breached servers on which the user has accounts with the same

password. As shown, this probability is significantly low and can be considered negli-

gible. For example, performing an intersection attack on two of a user’s BFs yields a

single additional solution—other than the user-chosen password—with a probability of

approximately (4.019×10−12)2.

To further demonstrate the inability of Bernoulli Honeywords to provide meaningful

guarantees against intersection attacks, we conduct the following experiment. First, we

randomly select 1,000 human-chosen passwords from the RockYou dataset [5]. For each

password, we simulate a scenario in which a user registers on two different Bernoulli

Honeywords-enabled servers using the same password. The construction of each user’s

BF follows the implementation by Wang and Reiter [35]. Next, we assume an intersec-

tion adversary who has compromised the credential databases (i.e., the BFs) from both

servers. The adversary compiles a list of one billion human-chosen passwords leaked

from various sites (e.g., RockYou, LinkedIn, Dropbox, Yahoo) and checks each password

for membership in both BFs. A password is considered a potential solution for a user

if both BFs respond affirmatively. The more such solutions per user, the stronger the

protection against intersection attacks.

The experiment yielded no solutions beyond the user-chosen password pwdt for any

of the 1,000 target users—i.e., no false positives. Thus, with Bernoulli Honeywords,

identifying a member-positive input other than pwdt is challenging, and finding one that

intersects across both BFs is exponentially harder. This implies two key observations:

(1) credential stuffing adversaries face negligible risk of triggering honey-bits and getting

detected; and (2) a password that tests positive across all BFs is likely the real password.

Adapting Bernoulli Honeywords involves several inherent trade-offs [35], making it par-

ticularly non-trivial to modify the scheme for mitigating such attacks. Hence, we propose

an alternative design that maps passwords to a configurable set of tokens (digits), offer-

ing both a low false alarm rate and effective resistance against intersection and credential

stuffing attacks.

20

3.2 Threat Model

In this section, we outline the adversarial environments that HONEYTRAPS must with-

stand. We begin by characterizing online adversaries, who interact only through the nor-

mal authentication interface, and then describe offline adversaries, who have exfiltrated

stored CTs but cannot tamper with the live system. For each class, we detail their ob-

jectives, capabilities, and the operational constraints under which HONEYTRAPS remains

secure. We consider two distinct classes of adversaries, online and offline adversaries.

3.2.1 Online Adversaries

Online adversaries have not gained direct access to the site’s credential storage. Their ob-

jectives are twofold: (1) to compromise user accounts by submitting valid CTs (credential-

stuffing attacks), and (2) to provoke false breach alarms by intentionally guessing honey-

tokens (false-positive attacks). This characterization matches prior analyses of online

threats in honeyword systems [17, 35].

3.2.2 Offline Adversaries

Offline adversaries operate under a passive breach scenario, as formalized in AMNE-

SIA [34] and Lethe [9]. We assume they can exfiltrate all persisted CT values and invert

the generation process to recover every associated password. However, they cannot:

• Alter server-side logic or inject malicious code.

• Break cryptographic protections for inter-server channels (e.g., obtain TLS private

keys).

• Launch man-in-the-middle attacks against live communications.

• Predict future randomness used by the system.

Under these constraints, offline adversaries cannot interfere with live authentication oper-

ations but can analyze leaked CTs in bulk.

3.3 Security Requirements

We require HONEYTRAPS to meet two independent security goals: (1) withstand online

guessing campaigns without excessive compromises or false alarms, and (2) prevent of-

fline adversaries from distinguishing the real CT from honeytokens with probability above

a specified bound.

21

3.3.1 Online Guessing Resistance

We model two classes of online attackers based on Florêncio et al. [13]:

• Depth-first attackers repeatedly target a small set of accounts, making up to λd =

106 guesses per account (nd = 10 accounts).

• Breadth-first attackers spread guesses across many accounts, making up to λb =

104 guesses on each of nb = 103 accounts.

Let Ponline(λ ,n) denote the probability that an attacker, making up to λ guesses against

each of n accounts, either (a) correctly hits a genuine CT or (b) triggers a false alarm by

guessing a honeytoken. Following Wang and Reiter [35], we require:

Ponline(λd, nd) ≤ 10−1, Ponline(λb, nb) ≤ 10−1. (3.4)

That is, even if an adversary invests 106 guesses on 10 accounts or 104 guesses on each

of 1000 accounts, the chance of any successful compromise or false alarm remains below

10%.

3.3.2 Offline Distinguishability

An offline adversary who obtains a user’s sweetlist

Hi = {hi,1, . . . ,hi,k+1}

must not be able to identify the real CT ci with probability exceeding the classic honey-

words bound. Let

Poffline(Hi) = Pr[adversary picks ci from Hi] (3.5)

denote the success probability of an uninformed offline guess. We enforce:

Poffline(Hi) ≤ 1
20 ,

i.e., the adversary’s chance of selecting the true CT at random from the (k+ 1)-element

sweetlist does not exceed 5%, matching Juels and Rivest’s original security margin [20].

Furthermore, we assume each honeytoken

hi, j ∈ Hi \{ci}

satisfies the indistinguishability property defined in Section 2.4 of Chapter 2.

22

3.4 HoneyTraps Overiew & Core Concepts

HONEYTRAPS assigns each user a Credential Token (CT) by hashing their password with

SHA3-256 and reducing modulo w:

c = SHA3-256(password) mod w, c ∈ {0,1, . . . ,w−1}.

Here, w is a tunable parameter defining the CT space. Once the real CT c is com-

puted, HONEYTRAPS adds a fixed number of decoys—called honeytokens—around it.

We choose two nonnegative integers, rwin (right-side) and `win (left-side), so that

total credential tokens = `win +1+ rwin.

The amount of honeytokens placed above and below (`win and rwin) c, prevent an attacker

from distinguishing c by position alone.

To select the honeytokens, HONEYTRAPS performs independent Bernoulli trials with

probability p over CT values greater than c, picking right-side tokens until rwin are chosen.

It repeats the process for values less than c to pick `win left-side tokens. All chosen

honeytokens are stored explicitly.

Positions between the outermost honeytokens that were never selected become traps.

A CT in this interval that is neither the true token nor a stored honeytoken. Since traps are

not recorded in the database, any login using one signals an online attack—whether an

adversary who knows the real password tries to force a false alarm, or a credential-stuffing

attacker submits leaked CTs. See Figure 3.1 for a shematic example of HONEYTRAPS.

Figure 3.1: Illustration of HoneyTraps logic. The function f (x) represents a cryptograph-

ically secure hash (e.g., SHA3-256), and w denotes the size of the token space.

23

3.5 HoneyTraps Formal Definition

In HONEYTRAPS, each user’s true Credential Token (CT) is computed as

c = SHA3-256(password) mod w, c ∈ Zw = {0,1, . . . ,w−1}.

For each user i, let

Hi ⊆ Zw = {0,1, . . . ,w−1}, |Hi|= k+1,

denote the sweetlist, consisting of the genuine token ci and k honeytokens. Equivalently,

we may write

Hi = {ci} ∪
{

hi,1, hi,2, . . . , hi,k
}
, ci /∈ {hi,1, . . . ,hi,k}.

For each user i, we first draw two nonnegative integers `win,i and rwin,i, representing

the number of honeytokens to place to the left (values smaller than ci) and to the right

(values larger than ci) of the true token ci. Hence, the total size of the sweetlist Hi satisfies

|Hi| = `win,i +1+ rwin,i.

Define the candidate sets

∆r,i = {ci +1, ci +2, . . . , w−1}, ∆`,i = {0, 1, . . . , ci−1}

We perform independent Bernoulli trials Xx,i ∼ Bernoulli(p) on each element of x ∈ ∆r,i

in ascending order of x. Whenever a trial succeeds (Xx,i = 1), we include x in the right-

side honeytoken set Hr,i. We scan ∆r,i cyclically—wrapping back to ci +1 after w—until

|Hr,i|= rwin,i. Analogously, we scan ∆`,i in descending order (ci−1,ci−2, . . . ,0) to collect

`win left-side honeytokens H`,i, wrapping back to ci−1 if needed. Including the true token

ci for each user i yields the full sweetlist

Hi = {ci} ∪ Hr,i ∪ H`,i, |Hi| = `win,i +1+ rwin,i

More specifically the sweetlist of each user i could be defined as follows

Hi = {ci} ∪ {δ ∈ ∆`,i : Xx,i = 1} ∪ {δ ∈ ∆r,i : Xx,i = 1}, |Hi|= k+1.

Let

Hi = {hi,1,hi,2, . . . ,hi,k+1} and (hi,(1),hi,(2), . . . ,hi,(k+1))

be the same elements arranged so that

hi,(1) < hi,(2) < · · ·< hi,(k+1).

24

We then define

hi,l = hi,(1), hi,r = hi,(k+1),

where hi,l is the smallest (left-most) CT and hi,r the largest (right-most).

Any CT within the window that is not in Hi is treated as a trap. We define the following

window of interest

W = {hi,l, . . . , hi,r} ⊆ Zw.

traps are then the positions in Wi that were not selected as honeytokens:

Ti = Wi \Hi = {x ∈Wi : x /∈ Hi}

Unlike honeytokens, trap positions are not stored; rather, they are implicitly inferred for

each user by hi,l , hi,r and sample outcomes.

3.6 Honeytoken & Trap Functionalities

HONEYTRAPS utilizes both traps and honeytokens to distinguish an actual breach from

other events that may occur in the lifetime of the system (e.g. a false-postive attacker

trying to trigger a flase breach alarm, a user miss-typing their password or even credential

stuffing adversaries that have leaked the sweetlist of a user that uses the same password

on a different service that also employs HONEYTRAPS).

When a submitted password is hashed and reduced modulo w, it maps to a token

g ∈ w. If g /∈ Hi and g /∈Wi \Hi, the server simply rejects the login. If g ∈ Hi, the attempt

corresponds to either a honeytoken or the valid credential token; in this case, the system

executes the procedure in Chapter 3.6.2. Finally, if g ∈Wi \Hi, a trap has been activated

and the system follows the steps outlined in Chapter 3.6.1. Algorithim 1 clearly outlines

the two outcomes the system may follow.

3.6.1 Actions Upon Trap Activation

When a trap is activated for account i, one of two events has occurred:

1. A false-positive attacker (e.g., an adversary who registered a new account solely to

trigger traps) has submitted a trap value while trying to hit a honeytoken, or

2. A credential-stuffing adversary is targeting that specific account.

The probability that a legitimate user accidentally selects a trap—say, through a typo—is

effectively zero. Let Ti be the set of traps for user i and w the total tokens; then

Pr[legitimate typo triggers trap] =
|Ti|
w
≈ 1189−120

11.3×109 ,

25

Algorithm 1 Process Login Attempt for Account i
Require: submitted token g, sweetlist Hi, window Wi, true token index ci

1: if g ∈ Hi then
2: valid← HONEYCHECKER(i, index(g,Hi))

3: if valid = true then
4: Grant access

5: else
6: HANDLEHONEYTOKENACTIVATION(i,g)

7: end if
8: else if g ∈Wi \Hi then
9: HANDLETRAPACTIVATION(i,g)

10: else
11: Reject login; display “Wrong username and/or password.”

12: end if

where the numerator statistics is explained in Chapter. 4.1.3 and the denomenator value is

discussed in Chapter. 4.1.2. (Token space selection)

Upon trap activation, HONEYTRAPS enforces the following sequence:

1. Login rejection. Deny access and display a generic error (e.g., “Wrong username

and/or password”).

2. Alarm suppression for the account. Temporarily disable further breach alarms on

this account, even if additional honeytokens or traps are later triggered.

3. Password reset prompt. Require the account owner to reset their password imme-

diately; the account may be optionally locked until this reset completes. The user

is informed that unusual activity was detected and a password change is necessary.

4. Global trap counter increment. Increment a system-wide counter of trap hits.

This counter influences whether subsequent honeytoken activations should raise a

full breach alarm (see Chapter 4.3).

5. Re-enable alerts after verification. If the account has just undergone a password

reset, further trap activations nor honeytoken triggers for that acoount increment

the counter until the account’s legitimacy is confirmed via standard spam or Sybil-

detection techniques [2, 14, 37]. Once verified, honeytoken-based breach alerts for

that account are reactivated.

26

Algorithm 2 HandleTrapActivation
Require: account identifier i, submitted token g, sweetlist Hi, window Wi

Ensure: take appropriate actions if a trap is activated

1: REJECTLOGIN(i)

2: PROMPTPASSWORDRESET(i)

3: if ¬CANINCREMENTCOUNTERS(i) then . Incrementing suspended

4: return
5: end if
6: SUSPENDALARMS(i) . Disable alarm capabilities and global trigger influence

7: trapCounter← trapCounter+1

3.6.2 Actions Upon Honeytoken Activation

When a honeytoken is activated for account i, one of two events has occurred:

1. A false-positive attacker (e.g., an adversary who registered a new account solely to

trigger traps) has submitted a carefully crafted password to hit a honeytoken and

has succeded, or

2. An adversary that has leaked the credential database has hit a honeytoken mistak-

enly thinking it has the valid credential token.

The probability that a legitimate user accidentally selects a honeytoken—say, through a

typo—is effectively zero. Let Hi be the sweetlist for user i and w the total tokens; then

Pr[legitimate typo triggers trap] =
|Hi|−1

w
≈ 120−1

11.3×109 ,

where the value of the numerator |Hi| (i.e. size of the sweetlist) is derived in Chapter. 4.1.3

and the value of the denomenator w are derived in Chapter. 4.1.2

Upon Honeytoken activation, HONEYTRAPS enforces the following sequence:

1. Login rejection. Deny access and display a generic error (e.g., “Wrong username

and/or password”).

2. Alarm suppression for the account. Temporarily disable further breach alarms on

this account, even if additional honeytokens or traps are later triggered.

3. Password reset prompt. Require the account owner to reset their password imme-

diately; the account may be optionally locked until this reset completes. The user

is informed that unusual activity was detected and a password change is necessary.

27

4. Global trap counter increment. Increment a system-wide counter of honeytoken

hits. This counter influences whether subsequent honeytoken activations should

raise a full breach alarm (see Chapter 4.3).

5. Check for breach. The system then evaluates Eq. 4.3 to determine whether a

breach alarm should be raised. If the equation holds, a breach alarm is confidently

confirmed.

6. Re-enable alerts after verification. If the account has just undergone a password

reset, further trap activations nor honeytoken triggers from that specific account

increment the counter until the account’s legitimacy is confirmed via standard spam

or Sybil-detection techniques [2, 14, 37]. Once verified, honeytoken-based breach

alerts for that account are reactivated.

Algorithm 3 HandleHoneytokenActivation
Require: account identifier i, submitted token g, sweetlist Hi

Ensure: take appropriate actions if a honeytoken is activated

1: REJECTLOGIN(i)

2: PROMPTPASSWORDRESET(i)

3: if ¬CANINCREMENTCOUNTERS(i) then . Incrementing suspended

4: return
5: end if
6: SUSPENDALARMS(i) . Disable alarm capabilities and global trigger influence

7: honeytokenCounter← honeytokenCounter+1

8: UPDATEGLOBALTHRESHOLD(void)

9: if globalThreshold < honeytokenCounter
trapCounter then

10: RAISEBREACHALARM(void)

11: end if

28

Chapter 4

Implementation

4.1 Hyperparameter Tuning

4.1.1 Setting the Success Probability p

HONEYTRAPS assigns honeytokens by performing independent Bernoulli trials on each

CT with success probability p. In this section, we derive the optimal p that simultaneously

satisfies the online and offline security constraints from Chapter 3.3 and maximizes the

expected overlap of honeytokens across different servers to resist intersection attacks.

Online adversaries who already know a user’s true password—whether through phish-

ing, a compromised third-party site, or even by being the account owner—can exploit the

public CT mapping in HONEYTRAPS to provoke false breach alarms. Since the number

of honeytokens is predefined and the Bernoulli process begins adjacent to the valid CT, the

tokens subjected to the Bernoulli process first have a higher probability of being selected

as honeytokens. An attacker with full knowledge of the hash-and-modulo algorithm can

therefore craft a single targeted guess to maximize the chance of hitting a honeytoken and

triggering an alarm.

We therefore define a more advanced online adversary, denoted FP+, whose goal is

to force a false breach alarm by taking advantage of HONEYTRAPS’s randomized hon-

eytoken placement. FP+ examines the CT values immediately surrounding the genuine

token and, knowing the Bernoulli selection probability, identifies the single candidate

most likely to be a honeytoken. The adversary is constrained to one "best-case" guess: if

this choice is not a honeytoken, it must be a trap, instantly triggering the defensive actions

outlined in Chapter 3.6.1. FP+ uses every piece of public information—the user’s actual

password and the honeytoken-generation algorithm—it represents the optimal false-alarm

strategy for an attacker without access to the credential database; in Chapter 4.5.1 we

prove why this is true while also provide a more foraml defition of this adversary’s capa-

bilities and limitations.

29

In the optimal false-positive attack, FP+ succeeds with probability p; hence we must

impose an upper bound on p in order to satisfy the online resistance requirement (Eq. 3.4).

We therefore choose

p≤ 10−1.

An attacker might attempt to boost their odds by registering multiple spam accounts.

However, since each account independently triggers a honeytoken with probability p, the

expected number of accounts needed to achieve one successful false alarm is

1
p
≈ 10,

i.e. about 10 accounts on average. Such large-scale registrations and login patterns would

be readily identified by existing anomaly- and spam-detection systems [1,2,14]. Further-

more, trap activations provide a backstop: if the combined count of honeytoken and trap

triggers exceeds a system-wide threshold, a site-wide breach alert is raised (see Sec. 4.3).

Together, these defenses make p = 0.1 a practical and effective upper bound. If we relax

the per-user false-positive bound of p = 10−1—which is applied solely for FP+—and rely

on system-wide monitoring, p can be raised further, substantially boosting inter-server in-

tersection rates while still preserving breach-detection guarantees and a low false-positive

rate (see Chapter 5.1.1 for a detailed discussion).

Moreover, p should be tuned to increase the intersection of CTs across servers where

a user has reused the same password. To quantify how the Bernoulli parameter p affects

the overlap of Credential Token (CT) sets across multiple servers (when a user reuses the

same password), we performed a large-scale Monte Carlo simulation. Concretely, for a

given triple (s,m, p), where s is the number of servers on which the user has accounts with

the same password, m is the total number of CTs per account |Hi|, and p is the Bernoulli

success probability for selecting any candidate CT as a honeytoken. We ran N = 106

independent trials. Furthermore, we set s = 2 and m = 40 to focus the investigation on

how the value of p effects the intersection accross different servers. Each trial proceeds

as follows:

1. Generate the real CT. We hash the fixed password (e.g. the string “password”)

with SHA-256, interpret the 256-bit digest as an integer, and reduce it modulo the

token-space size w = 11.3×109, yielding the true CT (c).

2. Simulate each server’s sweetlist. For each of the s servers, we invoke the HONEY-

TRAPS honeytoken-generation procedure (with parameters m, p and w) to produce

a sweetlist of size m that always contains c and samples from the w−1 other CTs

via a Bernoulli-scan as described in Chapter 3.4 and 3.5.

30

3. Compute the intersection. We take the set intersection of the s = 2 sweetlists and

record its cardinality κ ∈ {1, . . . ,m}.

4. Accumulate statistics. For each k = 1, . . . ,m, we increment a counter if κ ≥ k.

Periodically and at the end, we normalize these counters by N to estimate

Pr
[
|

2⋂
j=1

H j| ≥ k
]
,

where H j is the sweetlist on server j.

11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

No. of common CTs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a
b
il
it

y

p = 0.09

p = 0.05

p = 0.01

Figure 4.1: Probability of having at least n common CTs (1 ≤ n ≤ 40) in the intersec-

tion of two sweet-CT lists, where honeytokens are selected via a Bernoulli process with

probability p ∈ {0.01,0.05,0.1}.

By sweeping p over the range [0,0.1] and varying s and m, we obtain curves of the

form shown in Figure 4.1, which plot the probability of having at least k common CTs as a

function of p. These results guide the choice of p that maximizes cross-server intersection

(to resist intersection attacks) while still satisfying the security bounds from Section 3.3

As Figure 4.1 illustrates, increasing p raises the expected number of shared CTs be-

tween servers. Consequently, we adopt p = 0.1—the maximum value compatible with

our online resistance requirement—to maximize cross-server intersection. Nevertheless,

HONEYTRAPS remains fully configurable: system operators may choose a different p

to satisfy alternative security or usability constraints. In Chapter 4.2, we present a deci-

sion framework to guide the selection of p and other parameters in accordance with an

organization’s specific threat model and operational priorities.

31

4.1.2 Setting the token space w

Rather than assuming independent draws with replacement, we model an online attacker’s

λ guesses as sampling without replacement from the finite pool of w possible CTs. This

reasoning is because if the attempted CT is not the genuine credential token, the adversary

would not retry the same CT twice. In this setting, the chance of hitting a particular subset

of size k in λ draws follows the hypergeometric distribution. We apply two hypergeomet-

ric bounds to ensure both real-CT compromises and false-positive alarms remain below

our threshold α = 10−1.

1. Genuine-CT compromise. There is exactly one genuine CT among the w tokens. If

the depth-first attacker draws λd = 106 distinct CTs, the probability of not drawing the

real CT is (
w−1

λd

)(
1
0

)
(

w
λd

) ,

since we choose all λd guesses from the w− 1 decoys. Therefore the probability of at

least one successful guess is

Pbreach(λd,1) = 1−
(w−1

λd

)(w
λd

) ≤ α

For nd accounts under simultaneous attack, the probability that none is breached is((w−1
λd

)(w
λd

))nd

To ensure that not even one of the ten accounts is compromised with probability exceeding

α , we require

Pbreach(λd,nd) = 1−

((w−1
λd

)(w
λd

))nd

≤ α (4.1)

2. False-positive alarm. We conservatively assume that the activation of a single hon-

eytoken is sufficient to raise an alarm. In practice, however, HONEYTRAPS estimates a

honeytoken-to-trap ratio to decide whether to raise an alarm (see Sec. 4.3 for details).

There are |Hi| − 1 honeytokens in each user’s sweetlist of size |Hi|. An attacker mak-

ing λd = 106 guesses may trigger a false alarm by drawing at least one of these |Hi|− 1

decoys. The probability of avoiding all honeytokens is(
w− (|Hi|−1)

λd

)(
|Hi|−1

0

)
(

w
λd

)
32

so the probability of at least one honeytoken hit for an account is

Pfp(λd,1) = 1−

(w−(|Hi|−1)
λd

)(w
λd

) ≤ α

For nd accounts under simultaneous attack, the probability that none triggers a false alarm

is ((w−(|Hi|−1)
λd

)(w
λd

))nd

Thus the probability of at least one false-positive breach across nd accounts is

Pfp(λd,nd) = 1−
((w−(|Hi|−1)

λd

)(w
λd

))nd

≤ α (4.2)

Lower-Bound Token-Space w. We choose the smallest integer wb such that the com-

bined probability of either a successful breach or a false-positive alarm across nd accounts

in a depth-first attack remains below α:

Pbreach(λd,nd) + Pfp(λd,nd) ≤ α.

This ensures that, with probability at least 1−α , an attacker cannot trigger either event

on any of the nd targeted accounts.

We repeat the same hypergeometric analysis for breadth-first attackers, who make

λb = 104 guesses on each of nb = 103 accounts. Having computed the minimal wd for

depth-first attacks and wb for breadth-first attacks, we set

w = max
(
wd, wb

)
,

ensuring that HONEYTRAPS meets the security requirement against both types of online

adversaries. The smallest possible tokenspace is selected to increase the collisions of

strings. We choose the minimal token-space space w that satisfies our security require-

ments in order to maximize collisions among password strings. Unlike conventional cryp-

tographic hash functions—where collisions are exceedingly rare—HONEYTRAPS delib-

erately induces collisions so that multiple, human-chosen passwords map to the same

honeytoken. This design ensures that each CT corresponds to a diverse set of plausible

passwords, making it significantly more difficult for an adversary to pinpoint the true

credential token.

Therefore, HONEYTRAPS must navigate a critical trade-off: on one hand, it must

limit the probability that an online adversary either successfully breaches an account or

triggers a false alarm to the bounds established in prior work [13,35]; on the other hand, it

must maximize the number of collisions—i.e. the number of distinct, plausible passwords

33

mapping to each CT—to impede offline attackers from isolating the true credential. This

approach departs from the original honeywords scheme, where each decoy is a single

decoy password, and from Bernoulli Honeywords [35], which deliberately keep the false-

positive rate extremely low.

4.1.3 Setting the number of honeytokens

By combining Eqs. (4.2) and (4.1), we compute the smallest token-space size w that sat-

isfies the online and offline security constraints from Section 3.3 for any given number

of CTs per user. Choosing the CT count entails balancing greater cross-server overlap

against increased collisions with human-chosen passwords and additional storage. To ex-

plore this trade-off, we simulated sweetlists containing 40, 80, and 120 CTs—each with

its own w tuned to our security bounds—and measured the probability that two inde-

pendent servers share at least one CT. We carried out a second large-scale Monte-Carlo

experiment, this time fixing the number of servers and the Bernoulli parameter (s = 2 and

p = 0.1) so as to isolate the influence of the sweet-list size m on cross-server intersection.

Following the same protocol described in Chapter 4.1.1, we executed N = 106 indepen-

dent trials for each candidate value of m. As Figure 4.2 illustrates, the likelihood of

common tokens rises steadily with the number of CTs per user. To balance the aforemen-

tioned trade-offs, we set |Hi|= 120 and by extension using the reasoning in Chapter 4.1.2

we set w = 11.3×109.

Figure 4.2: Probability of having at least n common CTs (1≤ n≤ 120) in the intersection

of two sweet-CT lists, each containing x ∈ {40,80,120} CTs per account.

34

Notably, |Hi|= 120 is only a recommendation, as this parameter is tunable within the

HONEYTRAPS framework based on the defined security requirements. If more collisions

are needed and less storage is available, the number of CTs can be adjusted to fit any use

case. Consequently, when setting w = 11.3× 109 and |Hi| = 120, experimental results

show that, on average, 1,189 tokens lie between the leftmost and rightmost honeytokens.

This observation aligns with theoretical expectations, as the probability of selecting a

honeytoken is approximately 120
1189 ≈ 0.1, which matches the value of p.

4.2 Rules of Thumb for Selecting Hyperparameters

The following step-by-step procedure helps system operators choose HONEYTRAPS’s

core parameters—success probability p, number of CTs per user |Hi|, and token-space

size w—in accordance with their unique security requirements:

1. Define Security Requirements: Establish security goals and constraints, as out-

lined in Sec. 3.3, for online/offline attackers. While this paper follows Florêncio

et al. [13] guidelines, Eqs. 3.4 & 3.5 can be adjusted to accommodate specific use

cases or security requirements.

2. Set Success Probability (p): Adjust p to balance the trade-off between maximizing

intersections and minimizing false alarms. Increase p for more intersections, or

decrease it to reduce false alarms.

3. Set Number of Honeytokens Per User (|Hi|): Optimize |Hi| to balance intersec-

tions and storage overhead, while increasing collisions per CT. Decrease |Hi| to

increase collisions and reduce storage, or increase it for more intersections and

higher security guarantees against intersection/credential stuffing attacks. Note that

changing |Hi| requires adjusting the range w.

4. Configure CT Value Range (w): Set w using Eqs. 4.2 and 4.1 to meet security

requirements. The value of w depends on the security goals from Step (1) and the

number of tokens per user (|Hi|).

These rules of thumb provide a practical framework for customizing HONEYTRAPS’s

hyperparameters to match diverse threat models and resource constraints.

4.3 Detecting FP+ via System Threshold

An online adversary who has not breached the credential database but aims to trigger a

false alarm can adopt two specific strategies. The first involves submitting random strings

35

in an attempt to hit a honeytoken, without considering the position of the valid CT. This

naive approach has a negligible success probability:

|Hi|−1
w

=
119

11.3×109 ,

A more sophisticated strategy leverages the position of the valid CT to exploit HON-

EYTRAPS’s probabilistic design. This adversary, referred to as FP+, knows the real pass-

word and, by extension, the position of the valid CT. Thus, FP+ can submit strings that

map to tokens near the valid CT, hoping that some were selected as honeytokens(Chapter 3.4).

Even with this optimal strategy, FP+ can be easily identified due to the ratio of trap

activations compared to honeytokens. To illustrate this, we simulated an FP+ attack by

creating 1 million accounts and recording the total number of trap and honeytoken triggers

at each step. Each account was limited to a single login attempt, since triggering a trap

exempts that account from raising a breach alarm in subsequent attempts (Chapter 3.6.1).

We repeat this experiment ten times and report the average no. of trap and honeytoken

activations in Fig. 4.3. A more formal definition of FP+’s optimality, capabilities and

attack stardegy is defined in Chapter 4.5.1.

Figure 4.3: Ratio gap between trap & honeytoken triggers during an FP+ attack.

As shown, the ratio of honeytoken to trap triggers differs significantly. Importantly,

an attack by FP+ cannot deviate from this pattern, as the attacker relies solely on the

probability that tokens adjacent to the valid CT were selected as honeytokens. Any devi-

ation from this ratio would allow the operator to confidently conclude that the credential

database has been breached. Conversely, if the honeytoken-to-trap trigger ratio adheres

36

to the expected pattern, the system disregards the possibility of a breach. Specifically, the

system-wide threshold for triggering a breach alarm is defined as:

Number of Honeytoken Activations
Number of Trap Activations

> p ·α (4.3)

Here, p represents the probability with which a CT is selected as a honeytoken during the

registration phase as descirbed in Chapter. 3.5, while α is a damping factor introduced to

mitigate the cold start problem, as discussed in Chapter. 5.1.

One might argue that an offline adversary who has breached the credential database

could attempt to evade detection by masquerading as an FP+, deliberately triggering traps

to avoid suspicion. However, this strategy is highly impractical: approximately 90% of

affected accounts would be notified to reset their passwords (see Chapter 3.6.1), leav-

ing the attacker with access to only about 10%—and that is assuming they successfully

distinguish the valid CT from the honeytokens on the second attempt. For each subse-

quent attempt, the attacker would sacrifice an additional 90% of the remaining accounts

per round to stay undetected. Consider a service with 10 million registered users. If the

attacker triggers a honeytoken for 10% (1M) of accounts, they must forfeit access to the

remaining 90% (9M) to avoid detection. If they fail to correctly guess the valid CT on the

second attempt, another 90% (900K) of the remaining accounts would be lost. With each

iteration, the pool of unnotified accounts shrinks significantly, rendering the breach effort

increasingly unproductive. Simply put, to remain undetected, the attacker would not only

cut off an arm, but nearly sacrifice the entire body.

Additionally, false-positive adversaries typically control only a fixed percentage of ac-

counts—for example, 20% of Twitter accounts were reported as spam or fake [27]. Thus,

if a significant number of trap activations occur (e.g., 9M in the previous example during

the first round), it is reasonable to conclude that the credential database has been com-

promised and that an offline attacker is attempting to obscure their actions by deliberately

triggering traps. We formalize this threat as the hidden-offline attacker—describing their

capabilities and tactics—in Chapter 4.5.3.

4.4 Django-Honeytraps

In this section we describe the key implementation details of HoneyTraps, our Django-

based honeyword authentication framework. We cover the custom user model, the honey-

token statistics, the honeychecker service, the migration strategy (including legacy-user

support), and finally packaging for reuse.

37

4.4.1 Custom User Model

We extend Django’s built-in AbstractUser to replace the standard password field with a

JSON field of 120 integers (i.e. the users sweetlist). We additionally include a Honeyto-

kenStats class to keep track of significant events that are used globaly within the system to

detected a breach. Moreover we override the set_password and check_password to imple-

ment the custom logic of HONEYTRAPS. The model lives in honeytraps/models.py:

1 from d j an go . db import models
2 from d j an go . con f import s e t t i n g s
3 from d j an go . c o n t r i b . a u t h . models import A b s t r a c t U s e r
4
5 w = g e t a t t r (s e t t i n g s , "HONEYTRAPS_W" , i n t (1 1 . 3 * pow (1 0 , 9)))
6 t o t a l _ c t s = g e t a t t r (s e t t i n g s , "HONEYTRAPS_TOTAL_CTS" , i n t (1 1 . 3 * pow (1 0 , 9)))
7 window_size = g e t a t t r (s e t t i n g s , "HONEYTRAPS_WINDOW_SIZE" , 120)
8 s u c c e s s _ p r o b = g e t a t t r (s e t t i n g s , "HONEYTRAPS_SUCCESS_PROB" , 0 . 0 9)
9 i g n o r e = g e t a t t r (s e t t i n g s , "HONEYTRAPS_IGNORE" , 10)

10
11 DECAY_FACTOR = g e t a t t r (s e t t i n g s , "HONEYTRAPS_DECAY_FACTOR" , 0 . 9 9)
12 p = g e t a t t r (s e t t i n g s , "HONEYTRAPS_P" , s u c c e s s _ p r o b)
13
14 c l a s s H o n e y t o k e n S t a t s (models . Model) :
15 """
16 Stats of system used to determine breach
17 """
18 g l o b a l _ c o u n t _ h t = models . P o s i t i v e I n t e g e r F i e l d (d e f a u l t =0)
19 g l o b a l _ c o u n t _ t r a p s = models . P o s i t i v e I n t e g e r F i e l d (d e f a u l t = i g n o r e)
20 a l p h a = models . F l o a t F i e l d (d e f a u l t =round (1 / s u c c e s s _ p r o b , 2))
21
22 c l a s s CustomUser (A b s t r a c t U s e r) :
23 """
24 Custom user model that replaces the traditional password field with a field
25 with 120 stored integers
26 """
27 password = None
28 p a s s w o r d _ t o k e n s = models . JSONField (d e f a u l t = l i s t , b l a n k =True)
29 v a l i d _ a c c o u n t = models . B o o l e a n F i e l d (d e f a u l t =True)
30 h o n e y w o r d _ a t t e m p t s = models . P o s i t i v e I n t e g e r F i e l d (d e f a u l t =0)
31
32 def s e t _ p a s s w o r d (s e l f , raw_password) :
33 . . .
34 def check_password (s e l f , raw_password) :
35 . . .

Listing 4.1: CustomUser and HoneytokenStats models

4.4.2 Honeychecker Service

HONEYTRAPS does not require the always-trusted honeychecker component to operate as

it can be seamlessly paired with AMNESIA [34] and Lethe [9]. However in this prototype

we utilize this always trused component for demonstaration. The honeychecker is a sep-

arate HTTP service (in honeytraps/honeychecker_server.py) with two endpoints:

38

• /honeychecker/store - stores the valid token index for each user

• /honeychecker/check - validates a presented token index

It can be launched via the management command:

1 $ py thon manage . py r u n _ h o n e y t r a p s

The honeychecker is invoked only when a CT maps to one of the elements in the

user’s sweetlist. It then checks if the submitted token is in fact the valid credential. In

production, the service is typically run behind an HTTPS reverse proxy (e.g., Nginx).

4.4.3 Migration Strategy

Initial Schema The first migration (0001_initial.py) creates the tables for CustomUser

and HoneytokenStats. It depends on Django’s latest auth migration to ensure compati-

bility.

Legacy-User Data Migration For projects upgrading from the default auth.User, we

include a data migration (0004_migrate_existing_users.py) that: (a) Checks if any

auth.User records exist. If none, aborts immediately (no action on new projects). (b)

For each legacy user, copies username, email, etc. into the new CustomUser table. (c)

Converts the old password hash to an integer via:

hash_int = int(hex_digest, 16), valid_token = hash_int mod w.

Generates 120 tokens with calc_lists_of_tokens and populates password_tokens.

1 def m i g r a t e _ e x i s t i n g _ u s e r s (apps , s c h e m a _ e d i t o r) :
2 OldUser = apps . ge t_mode l (’ a u t h ’ , ’ User ’)
3 NewUser = apps . ge t_mode l (’ h o n e y t r a p s ’ , ’ CustomUser ’)
4
5 i f OldUser . o b j e c t s . c o u n t () == 0 :
6 re turn # No legacy data skip
7
8 from d j an go . con f import s e t t i n g s
9 w = s e t t i n g s .HONEYTRAPS_W

10 window_size = s e t t i n g s . HONEYTRAPS_WINDOW_SIZE
11 t o t a l _ c t s = s e t t i n g s . HONEYTRAPS_TOTAL_CTS
12 prob = s e t t i n g s . HONEYTRAPS_SUCCESS_PROB
13
14 from h o n e y t r a p s . u t i l s import c a l c _ l i s t s _ o f _ t o k e n s
15
16 f o r o l d in OldUser . o b j e c t s . a l l () :
17 new = NewUser (
18 id = o l d . id , username= o l d . username , e m a i l = o l d . emai l ,
19 i s _ a c t i v e = o l d . i s _ a c t i v e , d a t e _ j o i n e d = o l d . d a t e _ j o i n e d
20)
21 # derive valid_token from old.password...
22 h a s h _ i n t = h a s h _ t o _ i n t (o l d . password)

39

23 v a l i d = h a s h _ i n t % w
24 t o k e n s = c a l c _ l i s t s _ o f _ t o k e n s (v a l i d , window_size , t o t a l _ c t s , p rob) [0]
25 new . p a s s w o r d _ t o k e n s = t o k e n s
26 new . save ()

Listing 4.2: Key part of data migration

4.4.4 Packaging and Distribution

To simplify deployment and encourage reuse, we publish django-honeytraps on PyPI.

The project layout includes:

• setup.py: Define package metadata (name, version, author), dependencies, and

build requirements.

• MANIFEST.in: Ensures that database migrations, templates, and utility scripts are

included in source distributions.

Installation: Install the HONEYTRAPS pip module:
1 $ p i p i n s t a l l d jango−h o n e y t r a p s

Configuration: Add the app and custom user model to your Django settings:
1 INSTALLED_APPS = [
2 # ... other apps ...
3 ’ h o n e y t r a p s ’ ,
4]
5
6 AUTH_USER_MODEL = ’ h o n e y t r a p s . CustomUser ’

Initialization: Run the migrations to create the necessary tables:
1 $ py thon manage . py m i g r a t e

This process yields a plug-and-play honeyword framework ready for immediate use

in any Django project.

4.5 Modeling Attackers

In this section, we formally define the adversaries that a system deploying HONEYTRAPS

may encounter. We model each attacker as an n-shot game to reflect the strategic na-

ture of their behavior. This approach helps us reason about their capabilities and con-

straints, and also enables formal analysis of attack optimality—such as proving the effec-

tiveness of FP+. Modeling adversaries in this way is common in attacker-defender lit-

erature [11, 21, 28], as it provides a principled framework for analyzing decision-making

40

under uncertainty. After presenting each attacker model, we evaluate their effectiveness

against a simulated HONEYTRAPS-enabled system in Chapter 5.1.

4.5.1 FP+

We now formalize the capabilities, objectives, and constraints of the FP+ adversary, who

seeks to trigger a false breach alarm in the HONEYTRAPS framework.

Knowledge. FP+ has full knowledge of the HONEYTRAPS parameters—namely, each

user’s sweetlist size |Hi|, the token-space size w, and the honeytoken selection probabil-

ity p. We assume these hyperparameters are publicly documented or otherwise leaked.

Moreover, FP+ controls n user accounts and thus knows each account’s password (e.g.

obtained via phishing or self-registration for fake accounts).

Goal. The adversary’s objective is to induce a system-wide breach alarm. Concretely,

they must cause enough honeytoken activations—across the n accounts they control—to

exceed the system’s global alarm threshold defined in Chapter 4.3.

Strategy. Because HONEYTRAPS applies its Bernoulli selection first to the CT values

immediately adjacent to the true credential c, these neighbors have the highest probability

of being chosen as honeytokens. With that in mind FP+ computes submits that single

guess g in an attempt to trigger a false breach alarm.

Limitations. Each account allows only a single effective guess: if the submitted CT is

not in the sweetlist, it must lie in the trap region Wi \Hi, triggering the trap-activation

routine (Chapter 3.6.1) disabling any further attempts on that account. Likewise, even a

honeytoken hit consumes the one allowed guess (Chapter 3.6.2). Thus, FP+ can make at

most one informed guess per account.

Two-Party n-Shot Game for FP+

To better understand the attack stradegy of this adversary we define a game between the

System and the Challenger, who acts as the FP+ adversary:

System Setup: The System initializes public parameters (w,m, p) and damping factor α;

where w is the token-space, m is the number of hoenytokens and p is the probability

used for selecting a honeytokens as described in Chapter 3.5. For each of the n

accounts controlled by the Challenger, it computes

ci = SHA3-256(pwi) mod w, Hi = {ci}∪{hi,1, . . . ,hi,m−1} ⊆ Zw.

41

It keeps each Hi and ci secret and initializes counters HT = TR = 0.

Challenger’s Guess Phase: The Challenger, knowing {pwi} and (w,m, p,α) but not {hi, j},
submits one guess gi ∈ Zw, gi 6= ci, for each account i, over time or all at once.

Specifically, we define the neighbor-offset set S = {±1,±2}, the adversary samples

uniformly si ∼ Uniform(S) and selects a string such that it maps to gi = (ci + si).

No intermediate feedback is given between each submision.

System Resolution: Upon each submision (g1, . . . ,gn), for each i the System computes

Xi =

1, gi ∈ Hi \{ci} (honeytoken hit),

0, otherwise,
Yi = 1−Xi (trap activation).

and updates HT += Xi, TR + Yi. In case Xi = 0 a damping factor,namely α , is

updated lowering the threshold. The rational behind α is established during the

evaluation of the system in Chapter 5.1. After each evaluation, it raises a breach

alarm if and only if
HT
TR

> p ·α.

It returns a single bit Win= 1 if an alarm was raised, else Win= 0.

Challenger’s Success: The Challenger "wins" exactly when Win = 1; They "lose" if

none of the n guesses return Win= 1.

Optimality of FP+’s Attack Strategy

Under the constraints that FP+ may submit exactly one guess gi per account i and receives

no intermediate feedback, the adversary’s success probability on account i is

Pr
[
gi ∈ Hi \{ci}

]
= Pi, j,

where gi = ni, j is the jth neighbor of ci in the Bernoulli-scan order. Recall from Chap-

ter 3.5 that honeytokens are chosen by performing independent Bernoulli trials on the

nearest CT values: first ci +1, then ci−1, then ci +2, and so on, but the process halts as

soon as rwin honeytokens have been selected to the right of ci (similarly lwin to the left).

Because at least rwin trials will always be conducted on right-side neighbors, the inclusion

probability is the same for the first rwin positions:

Pi,1 = Pi,2 = · · ·= Pi,rwin.

However, the (rwin + 1)-th neighbor is only tested if fewer than rwin successes occurred

among the first rwin trials, making its inclusion probability strictly lower:

Pi,1 > Pi,rwin+1 > Pi,rwin+2 > · · ·

42

An analogous argument applies to the left-side neighbors and `win. Consequently, the

single-guess strategy

g∗i = argmax
ni, j

Pi, j = ni,1 = ci +1

(or symmetrically ci− 1) maximizes the per-account honeytoken-hit probability. No al-

ternative choice gi 6= g∗i can yield a higher Pr[gi ∈ Hi], proving that FP+ is optimal under

a one-guess constraint. If the adversary has control over n accounts they will by extension

perform n optimal one-guess attempts.

This maximizes the adversary’s overall chance of triggering the system-wide breach

alarm. Hence, the FP+ strategy of guessing the immediate neighbor of the true credential

token on each account is provably optimal in the n-shot game.

4.5.2 Baseline-Offline Adversary

Knowledge. The offline adversary has leaked the credential database. Therefore, has

obtained sweetlist Hi of each useri. Moreover, they have full knowledge of the HONEY-

TRAPS parameters—namely, each user’s sweetlist size |Hi|, the token-space size w, and

the honeytoken selection probability p.

Goal. Their objective is to identify the genuine credential token ci for each user without

ever triggering a breach alarm.

Strategy. They must submit a string that maps to one of the credential in Hi for each

user. Each element in Hi maps to multiple strings; unlike cryptographic hash functions.

Hence, the attacker faces multiple probable passwords and resorts to selecting one of the

elements by sampling uniformly at random from Hi.

Limitations. Each account allows only a single effective guess: if the submitted CT is

not the true credential token of the user ci then it is a decoy causing the system to per-

form the hoenytoken-activation routine (Chapter 3.6.2) notifying the user to change their

password. Thus, the baseline-offline adversary can make at most one informed guess per

account. The adversary could potentialy gain access before the user resets their password,

however the access granted would be short-lived. The user can even lock their account

once notified allowing them to even more swiftly block the malicious actor.

Two-Party n-Shot Game for the Baseline-Offline Adversary

System Setup: Public parameters (w,m, p) are fixed. For each of the n accounts the

System chooses

ci = SHA3-256(pwi) mod w, Hi = {ci}∪{hi,1, . . . ,hi,m−1} ⊆ Zw,

43

and discloses the entire set Hi to the Challenger while keeping the index of ci secret.

Additionally initializes counters HT = TR = 0.

Challenger’s Guess Phase: Knowing {Hi}n
i=1 but not the locations of the ci, the Chal-

lenger submits a single guess

gi ∈ Hi

for each account i, with feedback between guesses.

System Resolution: For every account the System computes

Xi =

1, gi = ci (correct, no alarm),

0, gi 6= ci (honeytoken, notify user).

and updates HT += Xi. In case Xi = 0 a damping factor,namely α , is updated

lowering the threshold. The rational behind α is established during the evaluation

of the system in Chapter 5.1. After each evaluation, it raises a breach alarm if and

only if
HT
TR

> p ·α.

It returns a single bit after each guess Win= 0 if an alarm was raised, else Win= 1.

Challenger’s Success: The Challenger "wins" if the system does not return Win= 0 after

a target of n accounts have been breached; They "lose" if any of the n guesses return

Win= 0.

Challenger’s Incentive for Selecting a Large n

The offline attacker is not merely interested in staying undetected; their real payoff comes

from the number of accounts they successfully compromise. With less attempts it is less

likely that the adversary triggers enough honeytokens to surpass the threshold and raise a

breach alarm. However with fewer attempts the Challenger also receives fewer Win = 1

outcomes and by extension less accounts are potentialy breached. Therefore there exists

an incentive for selecting a large n. Even though remaining undetected is key the payoff

of exfiltrating the credential database lies within the aspect of compromising as many

accounts as possible.

4.5.3 Hidden-Offline adversary

As noted in Chapter 4.3, the use of a system-wide alarm threshold opens the door to a

subtler adversary. Such an attacker has already exfiltrated the credential database yet tries

to masquerade as a false-positive actor. Concretely, they breach accounts by guessing real

44

tokens but, whenever they accidentally hit a honeytoken, they deliberately trigger traps

on other accounts to keep the honeytoken-to-trap ratio below the alarm threshold, thereby

hiding their activity.

Although we argue that this "hidden-offline" strategy squanders most of the attacker’s

effort, we nevertheless formalise the model and evaluate it against HONEYTRAPS to con-

firm that the defence remains effective.

Knowledge. The hidden offline adversary has leaked the credential database. There-

fore, has obtained sweetlist Hi of each useri. Moreover, they have full knowledge of the

HONEYTRAPS parameters—namely, each user’s sweetlist size |Hi|, the token-space size

w, and the honeytoken selection probability p.

Goal. Their objective is to identify the genuine credential token ci for each user without

ever triggering a breach alarm.

Strategy. For every user i the adversary must supply a string whose credential token

lies in the leaked set Hi. Because each token in Hi has many pre-images (unlike a cryp-

tographic hash, which is designed to be pre-image resistant), the attacker has several

plausible strings to choose from. Lacking any distinguisher, they pick a token uniformly

at random from Hi and craft a password that maps to it.

If a submitted token turns out to be a honeytoken, the attacker deliberately "sacrifices"

other controlled accounts by submitting strings that fall into their trap regions Wj \H j.

These extra trap activations enlarge the global denominator, keeping the honeytoken-to-

trap ratio below the alarm threshold and allowing the adversary to continue probing the

remaining accounts.

Limitations. Each account allows only a single effective guess (honeytoken or trap):

hitting a trap or hoenytoken causes the system to to perform the trap and hoenytoken-

activation routines in Chapters 3.6.1 and 3.6.2 respectively.

Two-Party n-Shot Game for the Hidden-Offline Adversary

We model the interaction between the System (which enforces HONEYTRAPS) and the

Challenger (the hidden-offline attacker) as an n-shot game.

System Setup: Public parameters (w,m, p,α) are fixed. For each of the n leaked ac-

counts, the System already stores

ci = SHA3-256(pwi) mod w, Hi = {ci}∪{hi,1, . . . ,hi,m−1} ⊆ Zw.

45

It reveals the entire set Hi of each useri to the Challenger, but keeps the index of ci

secret. Global counters are initialised to HT = 0 (honeytoken hits) and TR = 0 (trap

hits).

Challenger’s Move: Let A = {1, . . . ,n} be the set of all compromised accounts, each

equally valuable to the Challenger. While A 6= /0:

1. Randomly select and remove one index i ∈ A. Submit a token gi ∈ Hi (chosen

uniformly) for that account.

2. If the System replies Xi = 1 (login succeeds), proceed to the next iteration.

3. If the System replies Xi = 0 (honeytoken hit), choose j additional indices

uniformly from the remaining A, submit trap tokens for each, and remove

them. The attacker selects j to be only as large as necessary for the System

to be able to absorb one additional honeytoken activation without crossing the

breach-alarm threshold, thereby avoiding the unnecessary "sacrifice" of extra

accounts. This keeps HT/TR≤ p ·α so that the attacker can continue probing

the rest of the accounts without triggering an alarm.

System Resolution: For every account the System evaluates

Xi =

1, gi = ci (correct login),

0, gi 6= ci (honeytoken hit),
Yi =

1, gi ∈Wi \Hi (trap),

0, otherwise.

It updates the global counters HT += Xi, TR + Yi. In case Xi = 0 a damping

factor,namely α , is updated lowering the threshold. The rational behind α is estab-

lished during the evaluation of the system in Chapter 5.1. After each evaluation, it

raises a breach alarm if and only if

HT
TR

> p ·α.

It returns a single bit Win= 1 if an alarm was raised, else Win= 0.

Challenger’s Success: The Challenger always remains undetected since they always make

sure that the System returns by "sacrificing" accounts Win= 0. However, the Chal-

lenger considers the campaign successful only if this undetected run also produces

a non-trivial payoff —namely, a sufficiently large number of breached accounts. If

too few accounts are compromised (because many must be "sacrificed" as traps to

stay below the threshold), the attacker regards the effort as a loss despite remaining

unnoticed.

46

4.5.4 Enhancing Offline Avdversaries with Intersection Capabilities

Often users reuse the same password on different sites [8, 24, 32]. This enables offline

adversaries to use the information gained from different breaches to narrow down their

search. All honeyword schemas suffer from intersection attacks however HONEYTRAPS

enhances the probability of matching honeywords to appear on different servers where a

user reuses the same password; besides the true CT.

Intersection attacks can be used to enhance both hidden and baseline offline attackers.

In both cases the n-shot game remains the same, however by intersecting the two or more

sweetlists of each user were they reuse the same password they have less option to choose

from allwoing them to make a more educated guess. Specifically we modify the chal-

lenger’s guess phase to include the following in both hidden and basline games to reflect

this additional information.

Challenger’s Guess Phase: Suppose the adversary has recovered k≥2 independent

databases that each contain the same n user accounts. For every user i the Challenger first

computes the intersection set

Ii =
k⋂

s=1

H(s)
i , 1 ≤ |Ii| ≤ |H(s)

i |,

which is guaranteed to contain the genuine token ci. Having no additional distinguisher,

the Challenger selects one token

gi
$←− Ii

and submits it, receiving the System’s immediate feedback Xi ∈ {0,1} before proceeding

to the next account.

47

Chapter 5

Evaluation

5.1 Security Analysis

To analyse HONEYTRAPS under conditions that resemble production use, we constructed

a comprehensive testbed in which the system is attacked by the different types of adver-

saries mentioned in Chapter 4.5, each instantiated multiple times based on a predefined

probability. This setup allows us to assess whether HONEYTRAPS can reliably distin-

guish actual database breaches from false-positive events under conditions that reflect

real-world usage. Furthermore, we introduced typo events where a user mistakenly in-

puts a wrong password to test whether benign anomalies could inadvertently trigger false

breach alarms.

In the testbed, the system progresses in epochs; one epoch corresponds to a single day,

so 1095 epochs model a continuous three-year deployment. During each epoch we draw

one security event at random from the following pool, all of which were implemented as

descirbed in Chapter 4.5:

1. Baseline-offline attacker — already in possession of the target site’s credential

database, the adversary tries to single out the genuine CT within each sweetlist

(§4.5.2).

2. FP+ attacker — knowing the users’ passwords, the adversary submits neighbour

tokens in order to force a false breach alarm (§4.5.1).

3. Hidden-offline attacker — also holding the leaked database, but now blending

true-token guesses with deliberate trap activations to stay below the global threshold

while compromising accounts (§4.5.3).

4. Intersection-enhanced offline attacker — possesses a second HONEYTRAPS database

from another service and, assuming worst-case password reuse, intersects the two

48

Table 5.1: Accounts compromised after a three-year test-bed (1,095 epochs). All scenar-

ios yielded zero false breach alarms.

Adversary Scenario Compromised (%)

Adv. 1 Baseline offline 0.0067

Adv. 1? Offline + intersection (2 sweetlists) 0.18

Adv. 2 Hidden offline 0.095

Adv. 2? Hidden offline + intersection (2 sweetlists) 2.109

sweetlists to shrink the candidate set before launching either the baseline or hidden-

offline attack on the target site.

By replaying 1,095 such epochs we observe how HONEYTRAPS copes with a sta-

tistically representative mix of real breaches, false-positive attacks, and password-reuse

exploits over a multi-year horizon.

During the initial epochs of the simulation we observed a pronounced cold-start phe-

nomenon. With only a handful of trap and honeytoken activations recorded, the em-

pirical ratio in Eq. (4.3) was highly volatile and—despite its analytically low probabil-

ity—occasionally exceeded the alarm threshold, producing false positives.

This behaviour is purely statistical. The global test in Eq. (4.3) assumes that the un-

derlying trap and honeytoken frequencies are estimated from a sufficiently large sample.

When the observation set is still small, sampling noise dominates, allowing the measured

ratio to deviate sharply from its expected value. As the deployment accumulates more

events, these frequencies converge, the ratio stabilises, and the false-alarm rate falls back

to the theoretical bound.

To address this issue, we introduced a damping factor, α , to dynamically adjust the

breach alarm threshold (p ·α , Eq. 4.3). Each time a honeytoken is triggered, the value of

α is updated, lowering the threshold for raising a breach alarm. Initially, α is set such

that the threshold is close to 1, but it decreases rapidly after a few honeytoken activations.

This adjustment helps reduce the likelihood of false breach alarms during the early stages

of system operation. The damping factor is updated according to:

α ←max(d ·α,αmin) , (5.1)

where d is a decay factor that controls the rate at which α is reduced. The lower bound

αmin is defined to ensure that p ·α does not fall below p+C, where C is a small con-

stant used to tolerate minor deviations due to noise (e.g., a typo inadvertently triggering a

honeytoken).

Table 5.1 shows that HONEYTRAPS remained effective under every attack we sim-

ulated. The baseline-offline adversary (Adv. 1) was detected after compromising only

49

0.0067% of accounts. When we enhanced the same attacker with an intersection of two

leaked sweetlists per user (Adv. 1?), the breach rate rose to just 0.18%; by comparison,

a conventional honeyword scheme that lacks traps and a global threshold would leave all

reused-password accounts exposed. Throughout the three-year run the FP+ adversary

failed to trigger even a single false breach alarm, confirming that HONEYTRAPS’s thresh-

old mechanism does not penalise benign traffic. The hidden-offline attacker (Adv. 2)

managed to log in to only 0.095% of targets while sacrificing the remaining 99.905%

of its accounts as deliberate trap hits to stay below the alarm threshold. Even when this

attacker combined its trap tactic with an intersection strategy across two sweetlists—our

worst-case assumption that all users reused the same password—the breach rate increased

only to 2.109%, well short of a catastrophic compromise.

Since HONEYTRAPS produced zero false positives in every scenario, administrators

can treat any breach alarm as a genuine incident—an essential property, given the high

operational cost of incident response and the tendency to ignore alerts when they occur too

often [18, 35]. Among the parameter settings mandated by Chapter 3.3, the combination

p = 0.10, decay factor d = 0.99, and minimum damping constant C = 0.02 yielded the

best trade-off: no spurious alarms and timely detection of every simulated credential-

database breach.

5.1.1 Relaxing the Per-User Flase-Positive Bound

Chapter 4.1.1 adopted a conservative per-user bound p = 0.1 for the FP+ adversary, in

line with the requirement of Eq. (3.4). Under HONEYTRAPS, however, a honeytoken

hit does not immediately raise an alarm; an alert is generated only when the system-

wide honeytoken-to-trap ratio in Eq. (4.3) exceeds the threshold. Because this ratio is

evaluated globally, the constraint on any single user can be relaxed without loosening

overall security.

The threshold in Eq. (4.3), derived from empirical FP+ behaviour (Fig. 4.3) and val-

idated in our test-bed (Section 5.1), produced zero false breach alarms throughout the

three-year simulation. This observation suggests that HONEYTRAPS can safely tolerate a

higher per-user false-positive probability under the same system-level monitoring.

Raising p enlarges the expected intersection of credential tokens across servers where

users reuse the same password. Figure 5.1 plots the probability of observing at least n

common CTs (1≤ n≤ 120) across x ∈ {2,3,4,5} breached servers with p = 0.3. While,

Figure 5.2 plots the probability of observing at least n common CTs (1≤ n≤ 120) across

x ∈ {2,3,4,5} breached servers with p = 0.1. For two servers the chance of finding at

least 5, 10, and 20 common CTs is 0.98, 0.93, and 0.71, respectively—improvements of

0.12, 0.51, and 0.71 over the same experiment with p = 0.1.

50

1 3 5 7 10 15 20 25 30 35 40 45

No. of common CTs

0.2

0.4

0.8
0.850.85

0.6

0.06

0.66

0.98
0.93

P
ro

b
a
b
il
it

y

2-servers

3-servers

4-servers

5-servers

Figure 5.1: Intersection for p = 0.3

1 3 5 7 8 10 15

No. of common CTs

0.12
0.07

0.2

0.3

0.42

0.5

0.6

0.7

0.8

1.0

0.86

0.95

0.005

P
ro

b
a
b
il
it

y

2-servers

3-servers

4-servers

5-servers

Figure 5.2: Intersection for p = 0.1

Figure 5.3: Probability of having at least n common CTs (1≤ n≤ 120) in the intersection

of sweet-CT lists from x different servers (2≤ x≤ 5), for p = 0.3 and p = 0.1

However, a higher p gives an offline attacker more room to mimic an FP+ by trig-

gering traps, yet the economic trade-off is still crippling. With p = 0.3 an attacker must

forfeit roughly 70% of accounts on every round to keep the ratio below the threshold,

retaining only 30% after the first round and 9% after the second. On a platform with

ten million users, the first honeytoken wave forces password resets for seven million ac-

counts—hardly an undetected breach.

Testbed results at p = 0.3. Re-running the full three-year test-bed with the relaxed

parameter p = 0.3 (and d = 0.9999, C = 0.13) showed that HONEYTRAPS remains re-

silient. As Table 5.2 shows, the baseline offline adversary (Adv. 1) compromised only

0.0139% of accounts before the system reacted, while augmenting that attacker with a

two-sweet-list intersection (Adv. 1?) raised the breach rate to just 0.044%. The hidden-

offline adversary (Adv. 2) succeeded on 0.77% of accounts, and even when it combined

its trap-masking tactic with intersection (Adv. 2?) the breach rate rose to only 3.82%.

Crucially, every scenario again produced zero false breach alarms, demonstrating that the

higher p markedly improves cross-server intersection without sacrificing the reliability of

HONEYTRAPS’s global alarm mechanism.

Thus increasing p to 0.3 substantially improves intersection- based detection of pass-

word reuse and credential-stuffing attacks while maintaining a zero false-positive rate and

limiting attacker pay-off.

51

Table 5.2: Accounts compromised after a three-year test-bed (1,095 epochs). All scenar-

ios yielded zero false breach alarms.

Adversary Scenario Compromised (%)

Adv. 1 Baseline offline 0.0139

Adv. 1? Offline + intersection (2 sweetlists) 0.044

Adv. 2 Hidden offline 0.77

Adv. 2? Hidden offline + intersection (2 sweetlists) 3.818

5.2 Storage Requirements

In HONEYTRAPS, we need to store 120 integers (CTs), each requiring 5 bytes since they

are in the range [0,11.3× 109), resulting in a total of 600 bytes per user. In general,

storage costs increase linearly with the number of users and are minimal compared to the

data users host on services like Facebook and Instagram.

Bernoulli Honeywords require a 128-bit vector (BF), which equates to 16 bytes per

user. Even for 10 million users, Bernoulli Honeywords and HONEYTRAPS require only

160MB and 6GB, respectively, which is negligibly low given today’s storage costs. In

fact, even the classic honeywords schema (20 digests/user) requires 12.8GB for the same

number of users.

However, HONEYTRAPS’s storage footprint can be significantly reduced using Run-

Length Encoding (RLE). Specifically, we represent the selected honeytokens for each

user as a bit-stream of size 11.3× 109. Honeytokens are marked with 1, while the rest

are marked with 0. Given that each user has 120 honeytokens ≈ 99.99999% of the bits

marked with 0, the majority of which are successive. RLE is chosen due to its efficiency

with datasets containing long sequences of repeated values, as it compresses these se-

quences into a value and count. The use of RLE enables a logarithmic reduction in the

size of a bitstream, with the compression efficiency increasing as the length of the bit-

stream grows. To illustrate, consider a bitstream composed entirely of zeros, with a total

length equal to the size of the token space, (i.e 11.3× 109). Applying RLE to this se-

quence reduces the representation to a single value corresponding to the length of the run.

The number of bits required to encode this value is determined by dlog2(11.3× 109)e,
thus 34 bits are required to store the length of the sequence. Now, consider a case where

the sequence of zeros is interrupted by a single 1 at the midpoint, effectively splitting

the sequence into two halves. Following the same method it is determined that each half

requires 33 bits (66 bits in total). If the sequence is interrupted at any other point the re-

quired bits needed to store the length of both halves will be less. This example highlights

how introducing breaks midpoint in the sequence reduces compression efficiency because

52

of the logarithmic nature of RLE. Let us now estimate the compression efficiency of RLE

in the worst-case scenario. First, we consider the size of the window containing all honey-

tokens (and traps), which is 1189. In the worst case, this window is placed at the midpoint

of the sequence of zeros. This configuration divides the sequence into three distinct seg-

ments: X , Y , and Z. Specifically X and Z represent the sequences of zeros to the left

and right of the honeytoken window, respectively. Y represents the honeytoken window

itself. The bits required to represent of both X and Z are dlog2((11.3×109−1189)/2)e
= 33 each. To estimate Y we again consider the worst case scenario were all 120 ones are

spread evenly across the 1189 possible positions. Hence, dlog2((1189−120)/120)e = 4

are needed for each sequence of zeros. The positions of the ones will be inferred from the

run length of zeros and thus will not be exclusively stored. In total, approximatley 542

bits (33 + 33 + 4 x 119) are requried for each user which equates to ≈ 68 bytes per user.

Thus, for 10 million users 680MB are needed.

5.3 Efficiency

The computational cost of HONEYTRAPS is modest. Both registration and authentication

require only a single evaluation of SHA3-256 and one modulo operation per password,

whereas Bernoulli Honeywords invoke twenty independent hash functions for each event;

HONEYTRAPS therefore incurs roughly 1/20th of the hashing overhead.

Compression with run-length encoding adds no runtime penalty. Because each run

encodes only its length, the index of every credential token (and every trap position) can be

reconstructed on-the-fly—no decompression step is needed during login or registration.

5.4 Deployment Effort

A major benefit of HONEYTRAPS is its drop-in compatibility with existing authentication

infrastructures. Because honeytokens are generated independently of the user’s plaintext

password, the scheme never needs the original secret during enrolment or migration. Op-

erators can therefore retrofit HONEYTRAPS without asking users to re-enter credentials.

Migrating an existing password file is uncomplicated. Production systems already

keep password digests produced by a cryptographically strong KDF—typically PBKDF2,

bcrypt, SHA-2, or SHA-3. For each stored digest the operator simply reduces the digest

as an integer modulo w to derive the account’s genuine credential token c. Once c is

known, the normal HONEYTRAPS procedure— randomly positioning honeytokens and

traps around c (Chapter 3.4)—is applied.

No user re-enrolment is necessary. During authentication the server continues to hash

53

the submitted password with the same legacy KDF already in place; it then performs the

same modulo-w reduction to check whether the resulting token matches the account’s

stored c or one of its honeytokens. Thus the only code change is the extra modulo oper-

ation, leaving the original hash/KDF pipeline—and therefore the site’s security assump-

tions—intact.

This one-pass transformation makes HONEYTRAPS deployable even in production

systems with millions of legacy accounts, avoiding the massive user re-enrolment that

password-dependent honeyword generators require [16, 20, 23, 36].

54

Chapter 6

Discussion

6.1 Limitations & Future Work

Personally Identifiable Information (PII). Password guessing, where no honeywords

are involved, can be augmented using leaked personally identifiable information (PII)

such as birthdates, phone numbers, or addresses. These PII-enriched passwords can be

hashed and compared against stored digests, leveraging the deterministic nature of crypto-

graphic hash functions as one-to-one oracles. This issue is similarly present in Bernoulli

Honeywords, where the probability of a collision (false positive) is negligible and even if

a collision occurs, the result is unlikely to resemble a plausible password.

In contrast, HONEYTRAPS behaves as a many-to-one oracle, permitting multiple

human-chosen inputs to map to the same credential tokens (CTs). This property makes

it harder for an adversary to distinguish the correct input using PII. In classic honey-

word systems [20], the attacker can evaluate each potential password against a fixed set of

sweetwords, allowing PII to help distinguish the real password from decoys. However, in

HONEYTRAPS, collisions in the CT space result in a vastly expanded honeyword space.

This reduces the utility of PII in targeted guessing attacks, as many distinct strings may

map to the same CT. Furthermore, while HONEYTRAPS does not guarantee that colli-

sions will map to strings containing a user’s personally identifiable information (PII), the

scheme can be extended to better mitigate PII-enhanced attacks. One possible approach

is to generate multiple clusters of honeytokens, each incorporating at least one slightly

modified version of the real password enriched with PII. This diversification would make

it more difficult for adversaries to identify the true credential based solely on PII cues.

In contrast, Bernoulli Honeywords is not easily extendable in this manner. Due to the

nature of the Bloom filter (BF) employed, explicitly storing additional PII-derived strings

would rapidly saturate the filter, as discussed in Chapter 3.1.2, thereby suffering from

false-alarms.

55

Strong Passwords. In traditional single-password authentication, an account’s sus-

ceptibility to online guessing attacks is directly tied to the strength of the user’s chosen

password. In contrast, HONEYTRAPS equalizes this vulnerability: all accounts, regard-

less of password complexity, are equally susceptible to online guessing. Specifically, an

attacker only needs to guess a string that maps to the same credential token (CT) as the

user’s strong password to breach the account.

Modern honeyword schemes, including Bernoulli Honeywords, operate under the as-

sumption that user passwords are weak and thus easily guessable [20]. As a result, all

passwords—strong or weak—are incorporated into the schema. To protect weak pass-

words effectively, some strong passwords may be inadvertently rendered vulnerable, re-

ducing their security in practice. This generalization is an inherent limitation across cur-

rent honeyword-based designs. On the other hand, slightly weakening password strength

may be a worthwhile trade-off if it enables faster detection of database breaches. An

interesting research direction is to explore honeyword schemes that apply only to weak

passwords. This is challenging since signalling which passwords are weak or strong dur-

ing a data breach is also problematic.

56

Chapter 7

Related Work

Intersection attacks

Guo et al. [15] introduced Superword, a honeyword-based mechanism designed to miti-

gate intersection attacks. Rather than storing sweetword hashes on the main server, Su-

perword stores an index that references a corresponding record maintained by a separate

honeychecker, which holds the actual password hash. However, this design introduces a

critical weakness: because the honeychecker stores both real and decoy credentials, com-

promising it would render Superword insecure. By contrast, HONEYTRAPS integrates di-

rectly with systems like Amnesia and Lethe, avoiding any dependence on a permanently

trusted external component.

Password Reuse Mitigation.

Addressing password reuse is a fundamentally different challenge from the focus of this

work. Here, we aim to defend against intersection (and credential stuffing attacks) un-

der the realistic assumption that users commonly reuse passwords across different web-

sites—we do not attempt to prevent or interfere with that behavior.

Wang et al. [33] proposed a system in which websites collaboratively discourage pass-

word reuse. In their approach, when a user selects a password on one site (the requester),

that site can query other participating sites (the responders) to check whether the same or

a similar password has already been registered elsewhere. If so, the requester may reject

the password and prompt the user to choose a different one. While effective in theory, this

model raises serious usability concerns, as it disrupts the very convenience that motivates

password reuse in the first place.

57

Chapter 8

Conclusion

HoneyTraps offers a practical, deployable framework that strengthens the detection of

credential breaches while addressing the limitations of traditional honeyword systems.

By probabilistically distributing decoys and incorporating trap tokens, HoneyTraps re-

sists intersection (and credential stuffing attacks), even when adversaries possess knowl-

edge of HONEYTRAPS’s functionality. Its compatibility with legacy systems, low storage

overhead, and strong false-positive resilience make it a robust defense for modern authen-

tication infrastructures.

58

Bibliography

[1] M. Aldwairi and L. Tawalbeh. Security techniques for intelligent spam sensing and

anomaly detection in online social platforms. In IJECE, volume 10, page 275, 2020.

[2] Z. Alom, B. Carminati, and E. Ferrari. Detecting spam accounts on twitter. In

ASONAM, pages 1191–1198, 2018.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.

ACM, 13(7):422–426, July 1970.

[4] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. The quest to replace pass-

words: A framework for comparative evaluation of web authentication schemes. In

2012 IEEE Symposium on Security and Privacy, pages 553–567, 2012.

[5] W. J. Burns. Rockyou password leak, Jan 2019.

https://www.kaggle.com/wjburns/common-password-list-rockyoutxt.

[6] J. Canny. Secure Hash Algorithms. https://people.eecs.berkeley.edu/

~jfc/cs174/lecs/lec22/lec22.pdf. [Accessed 05-07-2024].

[7] P. Cao and Z. Wang. Bloom filters - the math. https://pages.cs.wisc.edu/

~cao/papers/summary-cache/node8.html. Accessed: 2024-06-25.

[8] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang. The tangled web of

password reuse. In NDSS, pages 23–26, 2014.

[9] A. Dionysiou and E. Athanasopoulos. Lethe: Practical data breach detection with

zero persistent secret state. In EuroS&P, pages 223–235, 2022.

[10] A. Dionysiou, V. Vassiliades, and E. Athanasopoulos. Honeygen: generating hon-

eywords using representation learning. In AsiaCCS, pages 265–279, 2021.

[11] C. T. Do, N. H. Tran, C. Hong, C. A. Kamhoua, K. A. Kwiat, E. Blasch, S. Ren,

N. Pissinou, and S. S. Iyengar. Game theory for cyber security and privacy. ACM

Comput. Surv., 50(2), May 2017.

59

https://people.eecs.berkeley.edu/~jfc/cs174/lecs/lec22/lec22.pdf
https://people.eecs.berkeley.edu/~jfc/cs174/lecs/lec22/lec22.pdf
https://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html
https://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html

[12] D. Florencio and C. Herley. A large-scale study of web password habits. In Pro-

ceedings of the 16th International Conference on World Wide Web, WWW ’07, page

657–666, New York, NY, USA, 2007. Association for Computing Machinery.

[13] D. Florêncio, C. Herley, and P. C. Van Oorschot. An administrator’s guide to internet

password research. In LISA, pages 44–61, 2014.

[14] S. Gheewala and R. Patel. Machine learning based twitter spam account detection:

a review. In ICCMC, pages 79–84, 2018.

[15] Y. Guo, Z. Zhang, and Y. Guo. Superword: A honeyword system for achieving

higher security goals. Computers & Security, 103:101689, 2021.

[16] X. He, H. Cheng, J. Xie, P. Wang, and K. Liang. Passtrans: An improved password

reuse model based on transformer. In ICASSP, pages 3044–3048. IEEE, 2022.

[17] Z. Huang, L. Bauer, and M. K. Reiter. The impact of exposed passwords on honey-

word efficacy. In USENIX Security, page To appear., 2024.

[18] IBM. Cost of a data breach report 2023. https://www.ibm.com/reports/data-breach.

[19] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text

classification, 2016.

[20] A. Juels and R. L. Rivest. Honeywords: Making password-cracking detectable. In

CCS, pages 145–160, 2013.

[21] M. Mavronicolas, V. Papadopoulou, A. Philippou, and P. Spirakis. A network game

with attackers and a defender. Algorithmica, 51:315–341, 2008.

[22] M. Mitzenmacher and E. Upfal. Probability and computing: Randomization and

probabilistic techniques in algorithms and data analysis. Cambridge university

press, 2017.

[23] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart. Beyond credential stuffing: Pass-

word similarity models using neural networks. In SP, pages 417–434, 2019.

[24] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin, L. F. Cranor,

S. Egelman, and A. Forget. Let’s go in for a closer look: Observing passwords in

their natural habitat. In CCS, pages 295–310, 2017.

[25] I. Security. Cost of a data breach report 2022. https://www.ibm.com/security/

data-breach, 2022.

60

https://www.ibm.com/security/data-breach
https://www.ibm.com/security/data-breach

[26] S. Security. 2018 credential spill report. https://info.shapesecurity.com/rs/

935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf, 2018.

[27] S. Shead. Elon Musk says Twitter deal ’cannot move forward’ until he has clar-

ity on fake account numbers — cnbc.com. https://www.cnbc.com/2022/05/17/

elon-musk-says-twitter-deal-cannot-move-forward-until-he-has-clarity-on-bot-numbers.

html. [Accessed 01-01-2025].

[28] S. Shiva, S. Roy, and D. Dasgupta. Game theory for cyber security. In Proceed-

ings of the Sixth Annual Workshop on Cyber Security and Information Intelligence

Research, CSIIRW ’10, New York, NY, USA, 2010. Association for Computing

Machinery.

[29] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Invernizzi, Y. Markov, O. Co-

manescu, V. Eranti, A. Moscicki, et al. Data breaches, phishing, or malware? Un-

derstanding the risks of stolen credentials. In CCS, pages 1421–1434, 2017.

[30] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Invernizzi, Y. Markov, O. Co-

manescu, V. Eranti, A. Moscicki, D. Margolis, V. Paxson, and E. Bursztein. Data

breaches, phishing, or malware? understanding the risks of stolen credentials. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS ’17, page 1421–1434, New York, NY, USA, 2017. Association

for Computing Machinery.

[31] A. Vigderman. Password manager annual report 2022, Jan.

2023. Available at https://www.security.org/digital-safety/

password-manager-annual-report/.

[32] C. Wang, S. T. Jan, H. Hu, D. Bossart, and G. Wang. The next domino to fall:

Empirical analysis of user passwords across online services. In CODASPY, pages

196–203, 2018.

[33] K. C. Wang and M. K. Reiter. How to end password reuse on the web. In NDSS,

2019.

[34] K. C. Wang and M. K. Reiter. Using amnesia to detect credential database breaches.

In USENIX Security, pages 839–855, 2021.

[35] K. C. Wang and M. K. Reiter. Bernoulli honeywords. In NDSS, 2024.

[36] F. Yu and M. V. Martin. Honey, i chunked the passwords: Generating semantic hon-

eywords resistant to targeted attacks using pre-trained language models. In DIMVA,

page 89–108, 2023.

61

https://info.shapesecurity.com/rs/935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf
https://info.shapesecurity.com/rs/935-ZAM-778/images/Shape_Credential_Spill_Report_2018.pdf
https://www.cnbc.com/2022/05/17/elon-musk-says-twitter-deal-cannot-move-forward-until-he-has-clarity-on-bot-numbers.html
https://www.cnbc.com/2022/05/17/elon-musk-says-twitter-deal-cannot-move-forward-until-he-has-clarity-on-bot-numbers.html
https://www.cnbc.com/2022/05/17/elon-musk-says-twitter-deal-cannot-move-forward-until-he-has-clarity-on-bot-numbers.html
https://www.security.org/digital-safety/password-manager-annual-report/
https://www.security.org/digital-safety/password-manager-annual-report/

[37] D. Yuan, Y. Miao, N. Z. Gong, Z. Yang, Q. Li, D. Song, Q. Wang, and X. Liang.

Detecting fake accounts in online social networks at the time of registrations. In

Proceedings of the 2019 ACM SIGSAC conference on computer and communica-

tions security, pages 1423–1438, 2019.

62

	Introduction
	Background
	Bloom Filters
	Honeywords
	Honeychecker
	Honeyword Generation Requirements
	Machine-Learning Support for Honeyword Generation

	Architecture
	Limitations of existing HGTs
	HoneyGen
	Bernoulli Honeywords

	Threat Model
	Online Adversaries
	Offline Adversaries

	Security Requirements
	Online Guessing Resistance
	Offline Distinguishability

	HoneyTraps Overiew & Core Concepts
	HoneyTraps Formal Definition
	Honeytoken & Trap Functionalities
	Actions Upon Trap Activation
	Actions Upon Honeytoken Activation

	Implementation
	Hyperparameter Tuning
	Setting the Success Probability p
	Setting the token space w
	Setting the number of honeytokens

	Rules of Thumb for Selecting Hyperparameters
	Detecting FP+ via System Threshold
	Django-Honeytraps
	Custom User Model
	Honeychecker Service
	Migration Strategy
	Packaging and Distribution

	Modeling Attackers
	FP+
	Baseline-Offline Adversary
	Hidden-Offline adversary
	Enhancing Offline Avdversaries with Intersection Capabilities

	Evaluation
	Security Analysis
	Relaxing the Per-User Flase-Positive Bound

	Storage Requirements
	Efficiency
	Deployment Effort

	Discussion
	Limitations & Future Work

	Related Work
	Conclusion

