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1 Abstract

This thesis develops and evaluates a decentralized Al driven system for real-time health
monitoring using the ActivityPub protocol. Public posts from federated platforms like
Mastodon, PeerTube, Lemmy, and Misskey are collected and processed through a Django
+ Celery pipeline. Latent Dirichlet Allocation uncovers key health topics, while a LLaMA
based model classifies relevance and sentiment. Grafana dashboards display live trends.

Our analysis reveals that shifts in public emotion and urgency often precede official out-
break reports. Topic modeling uncovers emerging concerns around symptoms and pre-
ventive measures. Geomapped data pinpoints new hotspots before case counts rise. User
engagement metrics — replies, boosts and favourites, highlight how communities spread
and endorse health advice.

These findings demonstrate that federated social networks can yield timely, actionable
insights for public health. By combining open, distributed data sources with machine
learning and real-time visualization, our system augments traditional surveillance. Future
work should expand platform coverage, enhance model accuracy, and explore privacy
preserving analytics.



2 Introduction

Social media has changed how we talk about health. It has also changed how we track it.
Every day, people share symptoms, health concerns, and local events online. These posts
can signal larger patterns, such as flu outbreaks, new variants of COVID, or mental health
trends. But until recently, most of this data remained inaccessible inside the platforms
that owned it.

That is starting to shift. Federated networks like Mastodon, PeerTube, Lemmy, and
Misskey offer a new model. They use the ActivityPub protocol to connect independent
servers. No single company controls the data. This makes it possible to collect information
in a more open and decentralized manner, shifting away from reliance on centralized social
media APIs. However, it does not necessarily simplify the process of data collection.
Instead, it enables access to communities that are part of the federated network and have
opted into data sharing. In essence, ActivityPub changes not just where the data comes
from, but who you can reach and what you can build from those connections.

This thesis explores how federated networks and artificial intelligence can work together
for public health. It focuses on building a system that collects health-related posts in
real time, analyzes them using natural language processing (NLP) and machine learning
(ML), and turns them into useful insights. These insights help spot early warning signs of
outbreaks and changes in peoples sentiment. Everything is visualized through Grafana,
giving health professionals a clear view of whats happening, where, and when.

The research concentrates on one core idea: public health data does not have to come
from official reports alone. It can come from everyday conversations too; especially when
we have the tools to find meaning in the noise. This system aims to be that tool.

2.1 Objectives & Contributions

Objectives

o Federated Data Integration: Develop a Django application that fetches public
health posts from Mastodon, PeerTube, Lemmy, and Misskey, overcoming hetero-
geneous APIs and rate limits.

o Automated Health Analysis: Implement LLaMA based NLP alongside LDA topic
modeling and sentiment analysis to classify content and surface emerging themes.

o RealTime Visualization: Create Grafana dashboards that update live, revealing
outbreak signals, sentiment shifts, and geospatial hotspots.

e Scalable Architecture: Orchestrate data fetching and processing with Celery and
Redis under Docker, ensuring fault tolerant, autonomous operation.



Contributions

1.

End to End Federated Pipeline: Unifies data collection, Al-based content process-
ing, and interactive dashboards.

. Hybrid ML Framework: Blends transformer inference (LLaMA) with classical topic

models for nuanced health-content tagging.

. Live Dashboards: Offers public health professionals immediate visibility into user

sentiment, symptom spikes, and location-based alerts.

. Robust Deployment: A containerized setup that scales seamlessly across instances

and recovers automatically from failures.

Critical Decentralization Analysis: Examines privacy, interoperability, and scala-
bility challenges within the ActivityPub ecosystem.

2.2 Research Questions

This study is driven by four central questions:

1.

In what ways can the ActivityPub protocol support the collection of decentralized
public health data as it emerges in real time?

. Which machine learning methods can be used effectively for identifying and classi-

fying health-related content from federated social media networks?

How can live visualizations make public health data more useful and accessible to
policymakers and public health professionals?

What technical obstacles and ethical concerns arise when collecting and analyzing
federated health data?



3 Literature Review

3.1 ActivityPub Protocol Overview

ActivityPub is a decentralized social networking protocol standardized by the World Wide
Web Consortium (W3C) in January 2018. Building upon the ActivityStreams 2.0 data
format, it facilitates both client-to-server and server-to-server interactions, enabling the
creation, updating, and deletion of content, as well as the delivery of notifications and
content across federated networks. This protocol underpins various platforms within the
"Fediverse," such as Mastodon, PeerTube, and Lemmy, promoting interoperability and
user autonomy across diverse social applications [1].

3.2 Geolocalized Emotion and Public Health

This study by Feng and Kirkley (2021)[2] investigates how emotions expressed online, par-
ticularly on Twitter, relate to local policies and offline mobility during the early months of
the COVID-19 pandemic in the United States. Using around 13 million geotagged tweets
across 49 major U.S. cities, the authors constructed a measure called online geolocalized
emotion (OGE), which quantifies daily sentiment around COVID-19-related topics like
distancing, masking, economy, China, and the Trump administration.

The study finds strong consistency in emotional trends across cities, especially in response
to national events. However, the emotional reaction to policies especially local ones ,varies
significantly between cities. This variation, not the overall trend, reveals deeper regional
differences in how populations emotionally responded to policy decisions.

Interestingly, online emotional responses are found to correlate strongly with physical
mobility (driving and walking levels), but weakly with case and death counts. Using
time series and Granger causality analysis, the authors show that sentiment changes can
predict shifts in mobility up to two weeks in advance. Cities with more engagement online
also tended to show stronger feedback between sentiment and movement.

The study makes clear that federal policies like Trump’s national emergency declara-
tion had some emotional effect, but local measures (e.g., shelter-in-place orders) sparked
stronger emotional responses. This supports the idea that people respond more emotion-
ally to policies that directly affect their daily life. It also suggests that policy communi-
cation strategies might benefit from paying closer attention to local sentiment, especially
when aiming for behavioral compliance.

Despite strong overall trends in negative sentiment, the subtopics reveal more nuance. For
example, "distancing" saw an increase in positivity over time, possibly indicating growing
acceptance. The study also highlights how sentiment around Trump and China became
more negative in response to federal action, reinforcing the role of political framing in
emotional response.

The authors argue that integrating social media sentiment with mobility data offers a way
to inform and possibly predict public behavior during crises. Still, they caution against



assuming that online emotions reflect the scientific reality of the pandemic, noting a weak
link between emotion and actual infection data. Ethical concerns, such as user privacy
and digital bias, are also raised.

In summary, the study reveals a feedback loop: policy influences emotion, which influences
behavior. That loop, if properly understood, could be used to design more effective,
spatially targeted interventions in future crises.

3.3 Social Media and Public Attitudes toward Vaccination

The Chandrasekaran et al. (2022)[3] study captures public attitudes toward COVID-19
vaccination by analyzing 2.94 million tweets from individuals between January and April
2021. Using CorEx topic modeling and VADER sentiment analysis, the authors identi-
fied 16 distinct topics grouped into six themes: vaccination experiences, pharmaceutical
industry, policy debates, rollout logistics, attitudes toward vaccination, and expressions
of gratitude to healthcare workers.

The most discussed issue by far was vaccine regulation, especially around mandates versus
personal choice. Tweets reflected sharp divisions. Some called for mandatory vaccines in
workplaces and schools, while others warned of overreach and loss of bodily autonomy.
Sentiment was mixed but trended slightly positive overall on this topic.

The second most discussed issue was vaccine hesitancy where the sentiment was clearly
negative. Concerns ranged from the speed of development, potential side effects, and
mistrust in institutions, to fears about long-term consequences. These worries were per-
sistent, and despite targeted campaigns, they remained largely unresolved during the
study period.

Interestingly, tweets discussing post-vaccination experiences, especially side effects, were
also mostly negative in sentiment but this negativity was nuanced. Many posts balanced
personal discomfort with a sense of collective responsibility, often ending with affirmations
about safety or community protection.

Other topics, such as vaccine efficacy, trial approvals, appointment logistics, and public
endorsements, trended positively throughout. This suggests that while skepticism re-
mained high in pockets, there was broader trust in the science and process at least among
the Twitter-using public.

This work contributes to ongoing public health infoveillance by offering fine-grained tem-
poral tracking of sentiment across multiple facets of vaccination discourse. Its use of user-
only tweet data (excluding media outlets) strengthens its ability to reflect actual public
emotion, not just media framing.These approaches underscore the need for real-time,
topic-specific emotional monitoring at scale. Federated systems that support multilin-
gual, community-driven, and privacy-respecting data collection would be well positioned
to replicate this kind of insight, especially when integrated into public health dashboards
or decision-making workflows.



3.4 Social Media’s Role During the COVID-19 Pandemic

This scoping review[4] analyzes 81 peer-reviewed empirical studies on the role of social
media during the first wave of the COVID-19 pandemic (Nov 2019-Nov 2020). The studies
were grouped into six public health themes: infodemics, public attitudes, mental health,
detection or prediction of cases, government responses, and quality of health information
in videos. The dominant platform studied was Twitter, followed by China’s Sina Weibo.
Most studies relied on content and sentiment analysis, with relatively few employing
machine learning.

A major focus across studies was the spread of misinformation termed 'infodemics" by
the WHO. Roughly one-fourth of analyzed tweets contained false or unverifiable content.
While false posts were more frequent, posts based on scientific information had higher
engagement and trust. WhatsApp and Facebook were also identified as major hubs for
misinformation, with WhatsApp showing the highest prevalence of false content among
all platforms examined. Interestingly, many conspiracy theories were found to originate
from regular users, not bots or influencers, though bots often amplified hate speech or
polarization.

Sentiment analysis revealed sharp public mood swings though the descriptive analyses
do not formally test or explicitly state the causal reasons underlying these shifts. Most
people started with fear, then moved to anger, fatigue, or even humor. Many tweets
expressed frustration toward government policies or praised healthcare workers. Some
studies noted a gendered dimension to social media expression, with women tweeting
more about caregiving and health safety, while men focused more on policy or sports
cancellations.

Several studies confirmed that search engine queries and social media mentions of symp-
toms like dry cough or fever predicted case spikes up to 812 days in advance. Social
media, therefore, held real predictive power for health surveillance but was largely under-
used in real-time applications. Only six studies addressed outbreak prediction, and none
developed sustained surveillance infrastructure.

On mental health, few studies tackled the issue rigorously. Those that did found a strong
correlation between heavy social media use and anxiety, depression, or social risk sensi-
tivity. This reinforces the concern that public health crises magnify psychological strain
via the same platforms used for information access.

One key gap identified was the limited application of machine learning and natural lan-
guage processing for real-time decision-making. While studies deployed tools like LDA,
BERT, or random forests for post-hoc analysis, there was almost no work on integrating
these methods into live policy systems.

Although the Review does not explicitly propose alternative platform architectures, its
finding that Twitter was the leading social media sourcefollowed closely by Sina Weibo
underscores the empirical rationale for exploring federated, privacy-respecting, open alter-
natives . An ActivityPub-based approach if paired with machine-learning pipelinescould
help build a real-time, distributed public-health observatory capable of tracking sentiment
shifts, detecting early outbreaks, and flagging misinformation without relying on central-
ized social-media monopolies. The work surveyed here thus provides a strong empirical
foundation for why such alternatives merit development. 4]



3.5 The Use of Social Networking Sites in Public Health
Practice

This systematic review Capurro et al. (2014)[5] analyzes how social networking sites
(SNSs) have been used in public health practice and research. Covering 73 peer-reviewed
articles published up to early 2012, the review maps trends, identifies gaps, and evaluates
how SNSs like Facebook, Twitter, and MySpace have supported surveillance, engagement,
communication, and research. Most of these studies were recent: over two-thirds were
published in the final two years of the review period reflecting the rapid rise of SNSs.

The majority of studies were observational and descriptive while few of them used ex-
perimental methods. Only five randomized controlled trials were found. This shows that
while SNSs were being widely explored for data collection or monitoring, they had not
yet been fully tapped for testing interventions or two-way communication. Most studies
(86%) simply described user behavior or platform usage. Only 3% used SNSs for interac-
tive communication or engagement. This underuse of SNS’s core strength-multidirectional
interaction is a missed opportunity.

Despite this, SNSs proved valuable for reaching populations traditionally considered hard
to reach, such as adolescents, LGBTQ+ communities, or people at risk of STDs and
substance abuse. In fact, nearly 60% of the reviewed studies targeted such groups. This
shows the potential of SNSs for health outreach, particularly when anonymity and ease
of access are critical.

A few articles stood out for their innovation. For example, the platform "PatientsLikeMe"
allowed researchers to gather patient-reported outcomes on off-label drug use. Other stud-
ies used SNSs for recruitment into longitudinal or behavioral health studies, maintaining
contact with participants, and promoting testing for HIV.

Only one study was conducted in a low-income country. This highlights a serious equity
gap, especially as mobile-first SNS access is growing in many such regions. For future
global public health frameworks especially decentralized onesthis gap matters. Federated
platforms like those using the ActivityPub protocol could bridge these gaps, especially
when they empower local ownership, anonymity, and ethical participation in data ex-
change.

The review ends with a call for more active and interactive uses of SNSs in public health,
including experimentation, longitudinal tracking, and full use of platform features. It
also notes the importance of keeping pace with the fast-changing SNS landscape, as older
platforms like MySpace quickly became obsolete.

For projects building decentralized systems to monitor health sentiment or outbreak in-
dicators such as those implementing ActivityPub this study offers essential insight. It
shows where current SNS-based approaches fall short and points to a future where open,
federated, real-time systems could carry forward the work more ethically, equitably, and
sustainably.



3.6 Digital Coping with Malady

Stephen A. Rains’ Cope with Malady Digitally (2018) [6] examines how communicating
technologies, including social mass media, blogs, and online communities, have changed
the way individuals deal with malady. The book synthesizes a broad range of empirical
research to illustrate how these technologies ease health information acquisition, enable
patients to share experiences, and provide platforms for seeking and offering social sup-
port. Rains highlights that communicating technologies play a relevant role in reducing
isolation, nurturing public engagement, and normalizing the experiences of illness. The
book introduces the concept of digital coping by categorizing the affordances of commu-
nicating technologies such as visibility, accessibility, and control. These affordances allow
users to make their experiences visible to others, connect across physical and temporal
boundaries, and maintain control over the sharing of sensitive health-related information.

Rains discusses how patients employ digital tools like online communities and blogs to
share updates or seek advice without the constraints of real-time interactions. The author
also highlights the mental and social dimensions of malady, arguing that communicating
technologies help patients navigate their experiences and relationships. By enabling inter-
actions with others who have similar conditions, these platforms offer empathy, practical
advice, and validation. Notwithstanding, Rains acknowledges potential challenges such
as overexposure, negative interactions, anxiety triggered by others’ struggles, and the risk
of dysfunctional coping behaviors. In exploring patient-to-patient interactions, the book
discusses the evolving nature of patient-provider relationships in the digital age, accenting
the potential for these technologies to empower patients and facilitate a dynamic approach
to health management.

3.7 Preventing the Next Pandemic

Mark Smolinski’s article "Preventing the Next Pandemic" (2022) [7] examines why novel
pathogens will continue to emerge and what strategies can halt them early. He argues that
speed of detection is critical and that social innovation underpins effective surveillance.

Smolinski outlines five priority actions. First, engaging the public through participatory
surveillance systems such as Flu Near You and Outbreaks Near Meenables communities
to report symptoms in real time. This approach can reveal clusters before patients even
seek clinical care. Second, a One Health framework integrates human, animal, and envi-
ronmental data. Thailand’s PODD system, for example, uses veterinary reports to spot
livestock outbreaks and has prevented costly animal-to-human spillovers. Third, expand-
ing epidemic intelligence via tools like EIOS and crowdsourced networks such as EpiCore
accelerates early warning and verification of outbreak signals. Fourth, regional collabo-
ration embodied by networks like CORDS builds trust across borders and allows shared
resources to contain threats swiftly. Finally, standardized timeliness metrics (time to
detect, verify, respond) help countries benchmark their readiness and identify persistent
gaps.

Together, these measures form a cohesive model for pandemic prevention. Speed, commu-

nity involvement, cross-sector collaboration, and measurable benchmarks work in concert
to keep outbreaks local and avoid global spread.



3.8 Detecting Natural Disasters Using Social Media

Agata Lapedriza and colleagues (2023) designed a deep-learning computer vision system
that automatically detects natural disasters from images shared on social media platforms
[3].

They constructed INCIDENTS1IM, a dataset of 1,787,154 photographs labeled across 43
incident categories (e.g., avalanches, floods, earthquakes) and 49 place categories.Out
of these, 977,088 images carried at least one positive incident label and 810,066 were
negative; for place labels, 764,124 were positive and 1,023,030 were negative.

Using a multi-task learning paradigm with a convolutional neural network, the model
learned to avoid false positives for example, distinguishing a benign fireplace from an
active blaze. Evaluation on real-world social media streams (Flickr, Twitter) confirmed
its ability to identify documented events such as the 2015 Nepal earthquake and Chilean
tremors.

This tool offers humanitarian agencies a low-latency data source to understand disaster
progression and aftermath. Future work could focus on quantifying incident severity
over time and combining image analysis with accompanying text to improve classification
accuracy.

3.9 Related Work

The integration of artificial intelligence (Al) in public health data analysis has garnered
significant attention in recent years. This section reviews existing research and applica-
tions pertinent to this domain while highlighting the novelty of our approach.

3.9.1 Federated Learning in Healthcare

Federated Learning (FL) enables collaborative model training across decentralized data
sources, preserving data privacya critical aspect in healthcare. Dayan et al. demonstrated
the application of FL in predicting clinical outcomes for COVID-19 patients across mul-
tiple institutions, highlighting its effectiveness in sensitive data environments [9].

3.9.2 AlI-Driven Public Health Monitoring

Al has been instrumental in enhancing public health monitoring. Yang et al. explored
the role of Al in improving public health through predictive analytics and personalized
interventions [10]. While their work emphasizes predictive models trained on historical
healthcare data, our approach leverages real-time data streams from diverse social media
platforms to capture evolving health discussions. This allows for immediate identifica-
tion of public concerns, misinformation trends, and emerging outbreaks before they are
reflected in official reports.



3.9.3 Social Network Analysis in Epidemiology

Analyzing social networks provides insights into disease transmission dynamics. Chris-
takis and Fowler examined how social networks influence health behaviors and the spread
of infectious diseases, suggesting that network analysis can inform public health interven-
tions [11]. Unlike traditional approaches that analyze static datasets, our system processes
dynamically changing user-generated content, continuously updating risk assessments and
public health metrics. This real-time adaptability offers a more responsive and proactive
approach to health monitoring.

3.9.4 BlueDot

BlueDot is a Toronto based infectious disease intelligence provider that uses Al, natural
language processing, and epidemiological modelling to detect, monitor, and forecast out-
breaks in near real time [12,13]. Founded in 2008 and commercialized in 2013, its Insights
platform serves publichealth agencies, enterprises, and travel stakeholders worldwide.

Data Acquisition BlueDot aggregates signals from a rich ecosystem of open-source and
proprietary feeds, including:

o Official public health bulletins & reports: WHO Disease Outbreak News, CDC
MMWR, ECDC rapidrisk feeds, PHAC bulletins, OIE WAHIS notifications.

o Expert moderated forums & syndromic trackers: ProMED-mail RSS, HealthMap
API, FluTrackers discussion forums.

» Global news media: Custom scrapers ingesting ~300000 articles/day from 35000+
outlets (Reuters, AFP, BBC, Xinhua, local dailies) across 65 languages.

o Peer reviewed literature & preprints: PubMed RSS for emerging pathogen papers;
medRxiv/bioRxiv preprints.

« Airtravel network data: TATA/OAG ticket itinerary feeds for > 4000 airports,
driving importation/exportation risk scores .

« Environmental & vectorsuitability models: Climate metrics (NOAA/NASA), re-
motesensing of vector habitats.

o Demographic & mobility proxies: WorldPop population grids; aggregated, anonymized
mobilephone mobility traces.

Analytical Framework The analytical framework employed involves sophisticated NLP
pipelines that process ingested text from extensive open-source intelligence (OSINT) and
traditional sources. These pipelines systematically identify critical event metadata, in-
cluding pathogen type, specific geographic locations, and relevant dates. This structured
identification is pivotal for creating high-resolution epidemiological datasets that include
both traditional disease data-such as case numbers and hospitalization rates and sup-
plementary data on environmental conditions, historical prevalence, and socio-economic
factors that influence disease spread.

Machine learning classifiers then apply rigorous signal-to-noise separation techniques, en-
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hancing the accuracy of outbreak detection by filtering out irrelevant or misleading data.
This stage leverages predictive analytics, integrating supplementary information such as
international travel patterns, local demographic details, and climate variability, which
significantly enhances the precision of outbreak forecasting.

Subsequent to Al-driven alert generation, expert epidemiologists perform an essential vali-
dation role, meticulously assessing each alert against biological plausibility and contextual
coherence. This dual-layer validation ensures that only alerts meeting stringent criteria of
accuracy and reliability are escalated, thereby minimizing false positives and enhancing
actionable intelligence for public health response and pharmaceutical strategic planning.

Client Access & Outputs Subscribers access BlueDots intelligence via:

o The Insights web portal-with interactive dashboards, personalized briefs, and Year-
in-Review reports [14].

o Data-as-a-Service REST APIs exposing alerts, time-series, and probabilistic fore-
casts for direct programmatic integration [15].

o Configurable email alerts, webhooks, and BI connectors for real-time integration
into enterprise workflows [15,16].

Real World Use Cases BlueDots platform anticipated the Zika spread six months in
advance and issued one of the first alerts for COVID-19 on December 31, 2019 nine days
before the WHO notice [12,16]. Its Al-powered biothreat intelligence has also guided
supply-chain resilience planning and pharma R&D site selection [15,16].

Relation to This Research This work parallels BlueDots approach by combining auto-
mated signal ingestion with Al-driven analysis and human validation. However, instead of
proprietary feeds, it leverages decentralized ActivityPub networks to source community-
generated health signals. A hybrid pipeline of topic modeling and transformer-based
classification is used to surface emerging trends, which are then visualized in real-time
dashboards under an open, reproducible framework. Beyond text posts, the system also
processes extended media sources such as transcribed PeerTube videos, enriching the sig-
nal pool with diverse forms of user-generated content. By tapping into federated social
platforms such as Mastodon, PeerTube, and Lemmy, this system broadens the scope of
early detection to include grassroots-level reports that may be overlooked by central-
ized systems. The emphasis on transparency, modularity, and interoperability not only
enhances trust but also facilitates independent verification and community-driven im-
provements.

3.9.5 Novelty of Our Approach

While previous studies have explored federated learning in institutional healthcare set-
tings, Al in predictive public health, and traditional social network epidemiology, our
work introduces a novel integration of these domains with a focus on real-time adaptabil-
ity. By continuously analyzing user-generated unfiltered conversations, first hand reports
and multimedia contributions as they happen from decentralized platforms, our system
captures emerging health concerns. This contrasts with existing models that rely on static
or retrospective data, making our approach uniquely suited for real-time crisis response

and public health intelligence.
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4 Research Methodology

This research adopts a design-oriented approach, focusing on the development and im-
plementation of an ActivityPub-based web application to enhance public health data
management. The primary objective is to explore how the integration of federated net-
works, machine learning models, and data visualization tools can improve the real-time
collection, analysis, and presentation of statistical insights that support public health
decision-making. The Web application, developed using Python and the Django frame-
work, leverages ActivityPub APIs to collect posts and media data from decentralized
platforms such as Mastodon, PeerTube, Lemmy, and Misskey. To supplement the data
and test the processing pipeline, posts are also fetched from Bluesky, a non-federated
platform that provides access to larger volumes of data. The project incorporates a ro-
bust data processing pipeline designed to efficiently manage posts and employ machine
learning models to extract health-related insights. Furthermore, Grafana is integrated to
visualize these insights in real time, offering a concise and dynamic platform for tracking
and analyzing public health data as it evolves.

4.1 Materials and Tools

This research utilized a variety of programming languages, frameworks, libraries, and
tools to design, implement, and analyze the web application and its functionality. Below
is a categorized breakdown of these materials and tools:

4.1.1 Programming Languages

o Python 3.12.5: Used for web application development, data processing, and machine
learning pipelines. [17]

4.1.2 Frameworks

e Django: The primary web framework for server-side logic, database interaction, and
API communication. [18]

o Celery: Used for task parallelization and asynchronous job execution. [19]

e Django-cron: Employed for scheduling periodic data-fetching and processing tasks.
[20]

o Redis: Used as a message broker for Celery, enabling efficient task queue manage-
ment and caching. [21]

12



4.1.3 Libraries and Tools

4.1.3.1 Machine Learning and NLP

Transformers: A library from Hugging Face, used for machine learning tasks such
as text classification and summarization.[22]

Llama Model: Specifically, the Llama 3.2 3B and 1B instruct model for health-
related data analysis. [23]

Whisper: Used for transcribing audio content from PeerTube videos to text for
analysis. [24]

NLTK (Natural Language Toolkit): Utilized for text preprocessing, including stop-
word removal, tokenization, and lemmatization. [25]

spaCy: Used for natural language processing tasks, such as named entity recognition
(NER). [26]

Gensim: Used for LDA (Latent Dirichlet Allocation) topic modeling and Phrases
for n-gram generation. [27]

4.1.3.2 Data Collection and Processing

BeautifulSoup: Used for web scraping and HTML content parsing. [28§]

Geopy: Integrated for geolocation services to extract locations from text and assign
coordinates. [29]

YouTube-DL: Utilized for downloading video content from PeerTube for transcrip-
tion and analysis. [30]

4.1.3.3 Database and Storage

PostgreSQL: A relational database system for storing and managing all collected
data and results. [31]

Django ORM: Used for interacting with the PostgreSQL database. [18]

4.1.3.4 Visualization

Grafana: Integrated as the visualization platform for real-time dashboards display-
ing health-related insights and trends. [32]

4.1.3.5 Task and Dependency Management

Docker: Used for containerizing the web application and its services, ensuring con-
sistent development and deployment environments. [33]

Hugging Face Hub: Accessed for downloading pre-trained models and caching de-
pendencies. [34]
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4.1.3.6 Other Utilities

o SSL: Managed secure HTTP requests when interacting with APIs.

o Logging: Integrated for error tracking and debugging during development and de-
ployment.

o Unicodedata: Used for normalizing text data.

o Subprocess: Utilized for handling system-level operations like video format conver-
sions.

o shutil: Employed for file operations, such as moving or deleting files.

e Counter: Used for counting and analyzing word frequencies in textual data.

4.2 Data Collection

The data collection process involved fetching posts and media data from multiple plat-
forms to ensure comprehensive coverage of public health discussions. The platforms in-
cluded both federated and non-federated systems:

4.2.1 Federated Platforms (ActivityPub-based)

e Mastodon: Posts were retrieved using hashtags and keywords relevant to health
topics.

o PeerTube: Videos were downloaded and transcribed for text analysis, focusing on
health-related discussions and trends.

e Lemmy: Posts and comments were fetched to gather broader community discussions
on health issues.

o Misskey: Content was collected to provide additional insights from users in the
federated network.

4.2.2 Non-Federated Platform

o Bluesky: Bluesky does not follow the ActivityPub protocol but was included in the
data collection process to test the processing pipeline and supplement the dataset
with a higher volume of posts. This platform provided additional insights into public
health-related conversations outside the federated ecosystem.

4.2.3 Supplementary Dataset from IEEE DataPort

e GeoCoV19 Dataset: To further evaluate and test the data processing pipeline, the
GeoCoV19 dataset [35] was used. This dataset contains hundreds of millions of mul-
tilingual COVID-19-related uploads, many of which include location information.
It aggregates content from various platforms, including federated sources such as
blogs and Facebook posts. Since real-time data collection from ActivityPub-based
platforms is limited in volume and scope, this external dataset served as a valuable
supplement for training, testing, and benchmarking the system.
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4.2.4 Challenges Addressed in Data Collection

The collection process addressed several challenges:

1.

10.

11.

12.

13.

API Limitations and Rate Limits: Platforms impose restrictions on the number
of API calls within a specific timeframe. To address this, efficient rate-limiting
strategies, such as batching requests and implementing retry mechanisms, were
applied.

. Authentication and Access Restrictions: Some platforms required OAuth authen-

tication or API keys for accessing data. This included handling private instances of
federated networks where additional permissions or credentials were necessary.

. Data Duplication Across Instances: In federated platforms like Mastodon, posts of-

ten appear across multiple instances. A deduplication mechanism was implemented
using unique post IDs or hashes to avoid redundant data storage.

. Inconsistent APIs Across Platforms: Different platforms exposed varying API

structures and data formats, requiring custom parsers and adapters for consistent
data ingestion into the system.

. Handling Non-Standard Data (Bluesky): Since Bluesky does not follow the Activ-

ityPub protocol, additional effort was required to create separate logic for fetching
and processing its data, ensuring compatibility with the existing pipeline.

. Language and Text Variability: Posts were often written in multiple languages or

included informal text with abbreviations, slang, and emojis. Natural language pro-
cessing (NLP) techniques were employed to normalize and process this variability.

Geotagging and Location Extraction: Many posts lacked explicit geotags, requiring
text-based location extraction using geolocation tools such as Geopy to associate
content with geographic regions.

. Incomplete or Noisy Data: Posts frequently contained incomplete information,

spam, or irrelevant content. Preprocessing steps were applied to filter and clean the
data for meaningful analysis.

. Video and Media Content: Platforms like PeerTube hosted video content requiring

transcription (using Whisper) before analysis. The process included handling video
downloads, format conversions, and transcription errors.

Health-Related Relevance Filtering: A filtering mechanism was applied to identify
posts containing health-related keywords, hashtags, or context. Machine learning
models, including Llama, were used to determine relevance.

Time Zone and Timestamp Normalization: Posts collected from different platforms
used varied timestamp formats and time zones. A normalization process ensured
consistency for time-based analyses.

Ethical Considerations: To ensure compliance with ethical guidelines, sensitive
or personal information was anonymized or excluded from the dataset during the
collection process.

Scalability: The system needed to handle increasing amounts of data as more in-
stances and platforms were added. Efficient database storage and caching strategies
were implemented to manage scalability.
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14. Real-Time Data Retrieval: For platforms requiring real-time updates, such as
Mastodon and Misskey, a streaming-like approach was incorporated to fetch data
continuously while balancing system performance.

4.3 Data Analysis

The data analysis pipeline was designed to process, analyze, and extract actionable in-
sights from the collected data. The pipeline consisted of the following steps:

4.3.1 Natural Language Processing (NLP)

Textual data underwent pre—processing using tools such as NLTK and spaCy to ensure
it was prepared for analysis. The pre—processing steps included:

» Removing stopwords: To focus on meaningful words.

o Tokenization, lemmatization, and stemming: To normalize text and prepare it for
analysis.

e Cleaning data: To remove noise, such as punctuation, HTML tags, and emojis.

These preprocessing steps ensured a clean and consistent dataset for subsequent machine
learning tasks.

4.3.2 Machine Learning Analysis

Relevance Assessment with the Llama Model was central to the data analysis process.
It was employed to:

o Assess the relevance of posts for health-related analysis by identifying key terms,
context, and overall alignment with public health themes.

e Summarize posts to extract concise and actionable information, particularly for
long-form content or transcriptions from PeerTube videos.

o Extract specific details such as health symptoms, locations, and sentiment, enabling
further categorization and contextual understanding.

o Validate outputs from other analysis methods, such as LDA, ensuring high accuracy
and consistency.

Health Topic Classification

« LDA (Latent Dirichlet Allocation): Topic modeling was used to classify posts into
general health-related themes based on word distributions and patterns. LDA pro-
vided insights into broader categorization, such as mental health discussions, disease
outbreaks, or lifestyle-related advice.

Sentiment Analysis The sentiment of posts was analyzed using the Llama model to
identify emotional tones, such as anxiety, positivity, or negativity, related to health topics.
This helped gauge public perception and sentiment trends over time.
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4.3.3 Visualization

The processed data was visualized using Grafana, which was configured to connect with
the PostgreSQL database. The following features were implemented:

e Dynamic Dashboards: Real-time dashboards allowed public health officials to dy-
namically track trends, including health topic spikes, symptom frequency, and po-
tential hot spots.

o Health Insights: Key metrics, such as the most mentioned symptoms, geographic
patterns, and sentiment trends, were visualized to aid in quick decision-making.

o Trend Monitoring: Data was aggregated and displayed over specific time frames,
enabling the identification of emerging trends, such as sudden increases in discus-
sions around specific diseases or health concerns.
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5 System Overview and Architecture

This chapter provides a comprehensive overview of the system designed and implemented
for discovering, analyzing, and summarizing health-related content across multiple feder-
ated platforms, including Mastodon, Lemmy, Misskey, PeerTube, and Bluesky. We lever-
age a combination of Docker Compose for containerization, Django for the web framework,
Celery for task scheduling and background processing, Redis as a message broker, and
PostgreSQL for data storage. Additionally, we integrate a local LLaMA model running
locally on GPU for advanced text classification and analysis.

5.1 Data Flow

At a high level, the system aims to:

1. Fetch data from a variety of federated platforms (Mastodon, Lemmy, Misskey, Peer-
Tube, Bluesky) using platform-specific APIs or public endpoints.

2. Store both raw and partially processed content in a PostgreSQL database via Djan-
gos ORM.
3. Process content in background tasks, including;:
o Summarizing lengthy text.
» Validating whether the post is relevant and suitable for further analysis based
on content quality and health-related context.
« Running classification or advanced analysis on the text (e.g., health categories,
sentiment, etc.).
« Extracting additional metadata such as locations, topics, or LDA-based key-
words.

4. Visualize final results in a Grafana dashboard that pulls data directly from the
database.

Federated Platforms Data Fetching Flow

Because we ingest content from multiple platforms, each with its own API or endpoint,
we implement a specialized Fetching Flow. Figure 5.1 shows how the system collects data
from Mastodon, Lemmy, Misskey, PeerTube, and Bluesky, stores preliminary results, and
performs basic filtering:
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Figure 5.1: Federated Platforms Data Fetching Flow.

Data from the above flow is then inserted into the database, at which point further
processing tasks can be triggered. This approach ensures each platform is treated as a

black box whose data ends up uniformly in the system.
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5.2 Docker-Based Deployment

To ensure a consistent and maintainable environment, we containerize all services with
Docker Compose. Listing 5.1 shows an excerpt of the docker-compose.yaml configura-
tion that defines the following services:

o db (PostgreSQL): Holds schema, tables, and indexes for all data.

» web (Django): Runs the main application logic, including endpoints for admin and
Celery configuration.

e redis: In-memory data store for queuing tasks and caching results.

o celery and celery-beat: Worker for tasks and a scheduler for periodic tasks,
respectively.

o grafana: Visualization layer, pointed to the same db for data queries.

Listing 5.1: Excerpt from the Docker Compose File

services :
db:
image: postgres: 17
# ...
web:
build: .
# ...
redis :
image: redis:7.2.5—alpine3.19
# ...
celery :
build: .
celery —beat:
build: .
i®o
grafana:
image: grafana/grafana:latest

4L

volumes:
postgres__data:
grafana_ data:
llama—model:
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Figure 5.2 visually explains how these containers interact internally via the Docker net-
work. The 11lama-model volume is particularly important if you mount your local LLaMA
model files for the GPU-enabled container.

5.3 Celery Architecture and Task Flow

In this architecture, Celery orchestrates a wide array of tasks related to:

o Fetching content: from Mastodon, Lemmy, Misskey, PeerTube, and Bluesky.

o Scheduling: controlled by celery-beat, which uses django-celery-beat for read-
ing from the database.
A user or admin can either:

o Trigger a job manually: e.g., Fetch from Mastodon now.

e Rely on periodic tasks: e.g., Every 6 hours, fetch from Lemmy.

All tasks are queued in redis (the broker). Celery workers pick them up, interact with
external APIs, and then write or update records in PostgreSQL.

Figure 5.3 outlines how Celery workers collaborate with Redis and Django to schedule or
execute tasks. This makes the system scalable and fault-tolerant.

5.4 LLaMA Pipeline and Processing Diagram

5.4.1 Overview

One of the critical aspects of our system is the ability to perform advanced text analysis,
classification, and summarization using a local LLaMA model on GPU. This allows deeper
health-related extraction: disease categories, user sentiment, potential misinformation
indicators, or outbreak detection signals.

5.4.2 Processing Diagram

After data is fetched, a separate Processing pipeline refines and enriches the posts or
video transcriptions. Figure 5.4 demonstrates how tasks flow, from pre-processing or
summarization decisions to LLaMA-based classification and advanced NLP steps like
location extraction and LDA topic modeling.

The main steps are:
1. Preprocess Text. The Celery worker cleans the raw text (HTML removal, tokeniza-
tion).
2. Decision: Summarize? If the text exceeds a certain length or meets specific condi-
tions, it is routed to a summarizer service or library.

3. Call LLaMA. Summarized or raw text is sent to the GPU container that runs the
LLaMA model, returning classification JSON with health categories, sentiments, or
specialized tags (e.g., flu outbreak, mentalhealth, etc.).
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Figure 5.4: Data Processing Diagram Featuring LLaMA Integration and NLP Steps.

4. Additional NLP. Additional steps like location extraction or LDA-based topic mod-
eling further enrich the data.

5. Store in DB. The final annotated or classified record is persisted in the PostgreSQL
database.

5.5 Workflow: End-to-End Overview

To consolidate all phases (fetching, processing, storing, and final dashboard reporting),
we present an Workflow Diagram in Figure 5.5. This single view demonstrates how user
triggers or scheduled tasks lead to data ingestion, advanced text analysis, and ultimately
feed the Grafana dashboards:

Users can see real-time or historical statistics via Grafana, accessing the same PostgreSQL
database where the Celery tasks have stored or updated records with classification results,
summaries, and location details.

5.6 Grafana Visualization

Grafana is configured to connect directly to the PostgreSQL instance, enabling real-time
and historical analysis of health-related content. The dashboards built in Grafana aggre-
gate and visualize a wide range of metrics, including:

1. Urgency Tracking for Health Emergencies: Tracks the number of urgent posts
over time, segmented by location. This visualization helps identify areas with high
volumes of urgent health-related posts, thereby guiding emergency response efforts
and resource allocation.

2. Lifestyle Impact Analysis: Displays the reported impacts on lifestyle due to health
issues over time. This chart provides insights into how health incidents affect daily
life by tracking mentions of lifestyle changes or disruptions.

3. Preventative Measures and Health Advice Impact: Analyzes the frequency of posts
sharing preventative measures or health advice (e.g., vaccinations, hygiene practices,
social distancing). This dashboard helps assess the effectiveness and reach of public
health advisories.
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10.

Symptom Frequency and Outbreak Detection: Monitors the occurrence of specific
health symptoms, segmented by time and location. This visualization acts as an
early warning system by highlighting trends that may indicate potential outbreaks.

. Health Sentiment Tracking: Captures daily sentiment metrics from health-related

posts. The dashboard categorizes sentiments (positive, neutral, negative, hopeful,
anxious) to provide an overall gauge of public mood towards health issues.

Covid Hashtag Spikes: Shows daily counts of posts tagged with #covid, indicating
spikes in COVID-19-related discussions. This visualization reflects changes in public
concern and awareness over time.

LDA Topics with Location: Maps topics generated from LDA (Latent Dirichlet Al-
location) based on post locations. This dashboard helps identify geographic trends
in health discussions by topic.

Top Hashtags: Displays the most frequently used hashtags across posts, capturing
trending health topics and keywords in real-time.

. Interaction with Health Posts: Summarizes engagement metrics (replies, reblogs,

favorites) for health-related posts. This visualization measures the level of public
interaction and interest in various health topics.

Topics and Post Counts (LDA): Visualizes the distribution of posts by topics gener-
ated through LDA, aiding in the analysis of which health topics are most frequently
discussed.

Since Grafana queries the database directly, it minimizes additional overhead on the
Django application. Users can log into the Grafana UI (exposed by the grafana container)
to interact with these dashboards, customize visualizations, and gain actionable insights
into public health trends.
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5.7 Code Snippets

This section presents key code snippets used in the implementation of the system. These
code snippets illustrate various functionalities such as data fetching, processing, classifi-
cation, and visualization.

5.7.1 Fetching Data from Mastodon

Mastodon posts are fetched using its public API. The following code snippet demonstrates
how data is collected from multiple Mastodon instances and stored in the database:

Listing 5.2: Fetching posts from Mastodon using API

import requests
from core.models import MastodonPost

MASTODON_INSTANCES = [

]

def fetch_mastodon_posts(instance_url, hashtag, access_token):
headers = { . f }
params = { 1 40}
url = f

response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
posts = response.json()
for post in posts:
MastodonPost.objects.create(
post_id=post[ 1,
content=post [ 1,
published=post[ 1,
account_username=post [ 1L 1,
url=post [ ]

5.7.2 Transcribing PeerTube Videos

PeerTube videos are processed using Whisper Al for transcription. The following code
snippet demonstrates how videos are downloaded and transcribed:

Listing 5.3: Transcribing PeerTube videos with Whisper Al

import youtube_dl
import whisper
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def transcribe_video(video_url):
options = { : , : }
with youtube_dl.YoutubeDL(options) as ydl:
ydl.download([video_url])

model = whisper.load_model( )
transcript = model.transcribe( )
return transcriptl[ ]

5.7.3 Validating Posts Using AI

To determine whether a post contains relevant health information, a LLaMA model is

used for classification:

Listing 5.4: Validating posts for health-related content

import torch
from transformers import pipeline

def validate_post_content (post_content):

model_id =

device = if torch.cuda.is_available() else

generator = pipeline( , model=model_id, device=device)
prompt = f

response = generator (prompt) [0] [ ]

return response.lower().strip() ==

5.7.4 LDA-Based Topic Modeling

To classify posts into various health-related topics, Latent Dirichlet Allocation (LDA) is

applied:

Listing 5.5: LDA topic modeling for health-related posts

from gensim import corpora, models

def train_lda(posts):
processed_posts = [post.content.split() for post in posts]
dictionary = corpora.Dictionary(processed_posts)
corpus = [dictionary.doc2bow(text) for text in processed_posts]

lda_model = models.LdaModel(corpus, num_topics=10, id2word=dictiomnary,

passes=15)
return lda_model
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5.7.5 Detailed Timeseries Panel Configuration

The following JSON excerpt defines the Health Sentiment Tracking panel, which visualizes

weekly counts of positive, neutral, and negative posts.

Listing 5.6: Grafana panel JSON for Health Sentiment Tracking

nidn: 8,
"type": "timeseries",
"title": "Health Sentiment Tracking",
"gridPos": {"h": 8,"w": 12,"x": 0,"y": 40},
"fieldConfig": {

"defaults": {

3,

"color": {"mode": "palette-classic" 1},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "Number of Posts",
"axisPlacement": "auto",
"drawStyle": "line",
"fillOpacity": 62,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"thresholdsStyle": {"mode": "area" }
1,
"thresholds": {
"mode": "absolute",
"steps": [
{ "color": "green", '"value": null },
{ "color": "dark-red", "value": 5000}
]
}

"overrides": []

I

"options": {

"legend": { "showLegend":

true, "placement':

"bottom" },

"tooltip": {"mode": "single", "sort": "none" }

s

"targets": [

{

"datasource": {"type": "grafana-postgresql-datasource", "uid":

"edzvx3q2em9kwa" },
"format": "table",
"rawQuery": true,
"rawSql": "SELECT\n"

" DATE_TRUNC(’week’, published) AS week,\n"
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" COUNT(*) FILTER (WHERE sentiment ILIKE ’Positive’) AS
positive,\n"

" COUNT(*) FILTER (WHERE sentiment ILIKE ’Neutral’) AS
neutral,\n"

" COUNT(*) FILTER (WHERE sentiment ILIKE ’Negative’) AS
negative\n"

"FROM (\n"

" SELECT sentiment, published FROM core_mastodonpost\n"

" UNION ALL SELECT sentiment, published FROM core_blueskypost\n"

" UNION ALL SELECT sentiment, published FROM
core_peertubevideo\n"

" UNION ALL SELECT sentiment, published FROM core_misskeypost\n"

" UNION ALL SELECT sentiment, published FROM core_lemmypost\n"

" UNION ALL SELECT sentiment, published FROM
core_external_blogs\n"

") AS combined_posts\n"

"WHERE sentiment IS NOT NULL\n"

"GROUP BY week\n"

"ORDER BY week;\n",

"refId": "A"

These code snippets represent essential components of the system, ensuring efficient data
fetching, processing, and classification while integrating machine learning models for en-
hanced analysis.

5.8 Conclusion

In this chapter, we presented the complete System Overview and Architecture, outlining:

1.

Federated Platforms Data Fetching flow (Figure 5.1), showing how different APIs
funnel content into our system.

. Docker Compose setup (Figure 5.2) that coordinates PostgreSQL, Redis, Django,

Celery workers, and Grafana.

Celery-based approach (Figure 5.3) for scheduling and executing tasks in the back-
ground.

. A dedicated Processing Diagram featuring LLaMA (Figure 5.4), illustrating text

classification, summarization, location extraction, and more.

. The Workflow (Figure 5.5) tying everything together, from ingestion to final visu-

alization.

These design choices aim to ensure scalability (through Docker and Celery workers),
reproducibility (Docker images and pinned requirements), and powerful analysis (local
GPU-based LLaMA). The next chapter will present experimental results, benchmarks for
the LLaMA inference performance, and a qualitative discussion of the systems real-world
feasibility.
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6 Results

This chapter presents the analytical findings derived from the federated public health mon-
itoring system. Using data collected from various ActivityPub-based platforms (Mastodon,
PeerTube, Lemmy, and Misskey) and Dataset from IEEE Dataport including external
platforms

6.1 Topic Modeling with LDA

Figure 6.1 shows the top LDA topics identified in the dataset, with the most dominant
topic containing keywords like virus, outbreak, epidemic, infection, disease occurring over
29,000 times.

TOPICS AND POST COUNTS LDA

virus, outbreak, epidemic, infecti

Figure 6.1: Topics and Post Counts Using LDA Topic Modeling
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6.2 Emotion Distribution

Figure 6.2 summarizes emotion categories from user posts. Anxious and hopeful dominate
the distribution, showing contrasting public sentiments during health crises.
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Figure 6.2: Emotion Chart Categorized by Post Count

6.3 Urgency Tracking

Urgency trends over time, depicted in Figure 6.3, indicate a spike in urgent health-related
posts between late January and early February.
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Figure 6.3: Urgency Tracking for Health Emergencies Over Time
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6.4 Lifestyle Impact

The lifestyle disruptions caused by health events are visualized in Figure 6.4, where dis-
ruption emerges as the most affected category.

Lifestyle Impact Analysis

Figure 6.4: Lifestyle Impact Analysis

6.5 Preventative Measures and Health Advice

Figure 6.5 displays the volume of posts advocating various preventative actions, with
vaccination and masking dominating the discourse.

Preventative Measures and Health Advice Impact(numbered)

Figure 6.5: Preventative Measures and Health Advice Impact

33



6.6 Symptom Frequency and Outbreak Detection

As shown in Figure 6.6, symptom reporting experienced a sharp increase during late
January, surpassing the outbreak detection threshold.
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Figure 6.6: Symptom Frequency and Outbreak Detection

6.7 Health Sentiment Tracking

Health-related sentiment trends (positive, neutral, negative) over time are shown in Fig-
ure 6.7, reflecting heightened public response in late January.
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Figure 6.7: Health Sentiment Tracking
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6.8 COVID-Related Hashtag Spikes

A separate spike in COVID-tagged content is visible during late 2022 and early 2023, as
shown in Figure 6.8.

Covid hashtags spikes
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Figure 6.8: COVID-Related Hashtag Spikes)

6.9 Topic Distribution by Location

Figure 6.9 links LDA topics with geographic locations, identifying hotspots of topic en-
gagement and post volume per region.

LDA TOPIC PER WITH LOCATION
latitude longitude topic_name post_count ¥
105 virus, outbreak, epidemic, infection, disease 4736
114 virus, outbreak, epidemic, infection, disease 2186
105 health, disease, fever, outbreak, weliness 2155
114 health, disease, fever, outbreak, wellness 952
105 quarantine, vaccine, flu, pandemic, disease

105 hospital, health, infection, community, doctor

-100 virus, outbreak, epidemic, infection, disease

16 virus, outbreak, epidemic, infection, disease
105 group, help, support, friend, epidemic
105 medical, hospital, doctor, fever, disease

114 virus, outbreak, epidemic, infection, disease

114 quarantine, vaccine, flu, pandemic, disease

Figure 6.9: LDA Topics and Post Count by Location
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6.10 Top Health Hashtags

As visualized in Figure 6.10, the most frequently used hashtags in health-related posts
include #health, #mentalhealth, and #healthcare. These reflect major areas of public
concern and discourse.

Top hashtags
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Figure 6.10: Top Health-Related Hashtags by Post Volume

6.11 Location-Based Content Distribution

Figure 6.11 displays the geographic spread of posts based on their content. North America
and Europe dominate the activity, with scattered contributions from Asia and Africa.

LOCATION BASED ON CONTENT

|

Figure 6.11: Global Heatmap of Health-Related Posts
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6.12 Interaction with Health Posts - Replies

Figure 6.12 presents the volume of replies to health-related posts. Peak interaction periods
coincide with spikes in urgency and symptom trends.
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Figure 6.12: Volume of Replies to Health-Related Posts

6.13 Interaction with Health Posts - Boosts

Boosts (analogous to retweets or shares) offer insight into content amplification. Fig-
ure 6.13 shows a strong amplification pattern in late January and early February.
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Figure 6.13: Boosts of Health-Related Posts Over Time
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6.14 Interaction with Health Posts - Favourites

Favourites reflect positive user endorsement of health content. As seen in Figure 6.14, the
engagement trend follows similar temporal patterns as replies and boosts.
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7 Discussion

This chapter revisits our four research questions (Section 2.2) and explains how the sys-
tems design-grounded in ActivityPub, machine learning, and realtime visualization fulfills
each one.

7.1 RQ1: ActivityPub for Decentralized Data Collection

By leveraging the ActivityPub protocol, our application seamlessly integrates multiple
independent servers without a single point of control. This architecture allows the system
to gather posts from diverse communities and platforms in a uniform way. The federated
model not only scales naturally as new instances join but also preserves local autonomy,
ensuring broad coverage without sacrificing resilience.

7.2 RQ2: Effectiveness of Machine Learning Methods

Our hybrid ML pipeline combines topic modeling with transformer based classification to
identify and tag health related content on the fly. Latent Dirichlet Allocation uncovers
thematic clusters, while the LLaMA model refines relevance and sentiment judgments.
Together, these methods provide a reliable, automated mechanism for filtering noise and
surfacing meaningful patterns in unstructured social media text.

7.3 RQ3: Utility of RealTime Visualization

Connecting live data streams to Grafana transforms raw posts into interactive dashboards
that update continuously. Public health users can monitor emerging discussions, senti-
ment shifts, and geographic patterns as they occur, rather than waiting for batch reports.
This immediacy supports faster situational awareness, enabling stakeholders to respond
proactively to rising concerns.

7.4 RQ4: Technical and Ethical Challenges

Implementing a federated, Al driven system introduces several challenges:

o API Diversity: Each platform exposes unique interfaces and usage limits. We
addressed this with modular adapters and adaptive rate control, ensuring uninter-
rupted ingestion.

e Model Generalization: Generic transformer models may misclassify domain specific
jargon. Prompt design and lightweight finetuning help mitigate these gaps, though
specialized training remains a future enhancement.
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» Privacy and Bias: Aggregating public posts risks exposing sensitive context and am-
plifying existing biases. We enforce anonymization, ethical data handling practices,
and transparent model auditing to uphold user privacy and fairness.

7.5 Summary

In sum, our federated dashboard demonstrates that:

o ActivityPub enables robust, distributed data collection across heterogeneous servers.

e A combined LDA and LLaMA approach effectively identifies and categorizes health
content in real time.

o Live Grafana visualizations turn continuous data flows into actionable insights.

o Careful engineering and ethical safeguards are essential to manage technical hetero-
geneity, model limitations, and privacy concerns.

Together, these elements validate the viability of a decentralized, Al powered platform
for realtime public health monitoring and lay the groundwork for future enhancements in
scalability, accuracy, and privacy preservation.
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8 Evaluation of Alternative Approaches

In this section, we discuss the alternative model implementations we tested for classifying
posts as Sickness Report or not. Specifically, we experimented with a fine-tuned Flan-T5
model and a pre-trained BERT model. The subsections that follow describe the challenges
and limitations we encountered with each approach.

8.0.1 Flan-T5 Model for Sickness Report Classification

The Flan-T5 model, a T5-based text-to-text model fine-tuned for better instruction-
following, was utilized to classify posts by framing the task as a question-answering prob-
lem (e.g., “Is this a sickness report?”). However, several issues were observed:

1. Not Trained Specifically for Classification Tasks: Flan-T5 is designed for general
instruction-following, resulting in diverse, free-form responses that are less consis-
tent for classification.

2. Ambiguity in Responses: The model can generate varied answers such as "I think
so", "Yes, it might be", or "Maybe", making it challenging to definitively categorize
a post.

3. Generative Nature of the Model: Instead of producing discrete labels, the model
outputs full sentences, complicating the mapping to clear "yes" or "no" responses.

4. Lack of Fine-Tuning on the Specific Task: The small variant (“google/flan-t5-
small”) was not fine-tuned on sickness-related data, limiting its ability to accurately
classify health-related posts.

5. Limited Input Context: The simple prompt used might not provide sufficient con-
text for the model to make accurate judgments.

8.0.2 BERT Model for Sickness Report Classification

A pre-trained BERT model was also employed for this task. This approach involved
loading a pre-trained model and tokenizer, pre—processing the input text, and making
predictions using PyTorch. The following challenges were identified:

1. Insufficient or Poor Quality Training Data: The model was not fine-tuned on
a sufficient quantity of high-quality, labeled data specifically for sickness reports,
hindering its generalization.

2. Data Mismatch: The characteristics of the inference data (e.g., language style, top-
ics) differed significantly from the training data, leading to decreased performance.

3. Class Imbalance: An imbalance in the training dataset with many more examples
of 'Not a Sickness Report’ than ’Sickness Report’ biased the model toward the
dominant class.

4. Limited Fine-Tuning Epochs: The model may have been underfitted if trained for
too few epochs or overfitted if trained for too many, compromising its ability to
generalize.
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5. Model Complexity: The high number of parameters in BERT makes it sensitive to
overfitting, particularly when fine-tuned on a small or non-diverse dataset.

6. Domain-Specific Challenges: The use of colloquial language, slang, and ambiguous
expressions in posts presents difficulties for a general-purpose BERT model not
adapted to medical or health-related content.

7. Training on General BERT without Adaptation: Without sufficient domain-specific
fine-tuning, the model lacks the specialized knowledge necessary to effectively clas-
sify health-related content.

This evaluation of alternative approaches highlights the limitations encountered with both
models, reinforcing the need for domain-specific fine-tuning and a tailored model archi-
tecture for reliable sickness report classification.
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9 Limitations

This chapter discusses the challenges encountered during the development and evaluation
of the federated web application for public health data management using the ActivityPub
protocol. While the system has demonstrated promising capabilities in aggregating diverse
data sources and generating actionable insights, several limitations stemming from both
inherent architectural factors and practical constraints remain. These limitations are
discussed in the sections below.

9.1 Data Collection and API Integration

The federated nature of the ActivityPub ecosystem means that each platform (e.g.,
Mastodon, PeerTube, Lemmy, Misskey) operates with its own API structure, data for-
mat, and access policy. In practice, many instances are configured with restrictive privacy
settings or adopt walled garden approaches that hinder comprehensive data access. As
a result, only partial data may be retrievable from platforms that deliberately limit full
fetching. The variability in API designs and rate-limiting strategies across instances ne-
cessitates ongoing adjustments in the data retrieval workflow, making it challenging to
ensure consistency and completeness across the diverse federated landscape.

9.2 Machine Learning Analysis

The project integrates the LLaMA model (in both 3B and 1B parameter configurations)
to extract health-related insights from unstructured social media content. Although we in-
vested significant effort into smart prompt engineering refining the input prompts through
extensive trial and error to optimize the model’s performancethe limitations encountered
are inherent to the models themselves. In particular, the relatively low parameter counts
and the fact that these models were not specifically trained on health-related data con-
strain their ability to capture the full complexity and nuance of domain-specific language.
Thus, even with careful and creative prompt engineering, the overall accuracy and depth
of the extracted insights remain limited by the inherent characteristics of the models
employed.

9.3 Decentralized Nature of ActivityPub

A core strength of ActivityPub is its federated design, which empowers independent
servers to operate under their own policies and share data without a central author-
ity. However, this decentralization also introduces intrinsic limitations. The absence of
standardized API behavior and uniform data retention policies results in fragmented data
availability, as each instance enforces its own rules regarding content sharing and privacy.
Such fragmentation not only makes real-time aggregation and uniform processing chal-
lenging but also requires developers to continuously adapt their systems to accommodate
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heterogeneous implementations. This limitation is not due to shortcomings in the imple-
mentation but is an inherent consequence of the decentralized modela trade-off between
local autonomy and the ease of centralized data aggregation.

9.4 Local Hardware Constraints

The performance of the machine learning analysis is heavily influenced by local hardware
capabilities. During development, the system was run on an RTX 3070 with 8 GB of mem-
ory a configuration that proved marginal for processing the large volumes of federated data
required by the LLaMA model. Although software optimizations and containerization
strategies have been applied, the relatively modest GPU capacity has resulted in slower
inference times and limited scalability. This constraint affects not only the throughput
of data analysis but also the overall responsiveness of the system. Future iterations of
the project would benefit from upgrading to more robust hardware solutions, such as
GPUs with higher memory and processing power, to better support real-time analytics
and scalable data processing.

In summary, while the developed system successfully demonstrates the integration of fed-
erated health data and advanced machine learning analysis, the limitations highlighted
in data collection, model capabilities, decentralized variability, and local hardware con-
straints point to key areas for future improvement. Addressing these challenges will be
crucial for enhancing the system’s robustness, scalability, and overall performance.
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10 Future Work

This chapter offers a forward-looking perspective on how the insights from this thesis can
be extended and refined. Rather than revisiting identified issues, the focus here is on
strategies, enhancements, and new research directions that can further strengthen decen-
tralized social networks built on ActivityPub. The following sections discuss these con-
siderations in terms of protocol extensibility, user-centric security and privacy, scalability,
user experience, advanced processing methods, long-term viability, and interdisciplinary
collaboration.

10.1 Protocol Extensibility

A promising avenue for future work lies in extending the core ActivityPub protocol to
accommodate more diverse and sophisticated forms of interaction. Although the existing
specification supports a range of content types, integrating richer media such as voice,
video, and real-time streams can broaden the networks overall utility. These enhancements
might be introduced through well-defined extensions rather than altering the foundational
protocol, allowing developers to adopt new features in a modular fashion. Additionally,
bridging ActivityPub with other decentralized protocols such as Matrix, XMPP, or dis-
tributed storage solutions like IPFS can foster a more interconnected ecosystem. By
focusing on standardized frameworks for adding or modifying features, researchers and
implementers can experiment with novel ideas while minimizing fragmentation.

10.2 User-Centric Security and Privacy

Maintaining robust security and privacy remains a central objective for decentralized net-
works. Future endeavors could build on end-to-end encryption methods to make private
communications both secure and user-friendly. Integrating emerging decentralized iden-
tity (DID) standards and verifiable credentials may also help users establish portable
profiles, which would simplify moving between instances and bolster trust across the net-
work. Another point of focus could be designing more granular access controls that give
individuals greater flexibility in determining which audiences can view specific content. By
enabling users to customize their online presence, decentralized platforms can encourage
nuanced social interactions while ensuring personal data remains under user control.

10.3 Scalability and Performance

As decentralized networks grow, exploring techniques for managing high volumes of traffic
and data will be critical. Load-balanced federation architectures, potentially supported by
container orchestration tools like Kubernetes, can spread activity across multiple servers,
thereby maintaining performance during peak usage. Adaptive rate control mechanisms,
which adjust data flow according to real-time network conditions, can further optimize
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resource allocation. In tandem with these approaches, developers can refine data storage
strategies perhaps through advanced caching systems, graph databases, or distributed file
solutions to suit the dynamic demands of social media environments. By cataloging best
practices for scalability, researchers can pave the way for smoother adoption of decentral-
ized platforms at large scale.

10.4 User Experience and Adoption

Decentralized platforms must also remain accessible to both newcomers and experienced
users alike. Future research can investigate streamlined processes for onboarding, ensur-
ing that account creation and instance selection pose minimal barriers to entry. More
effective, privacy-centric discovery mechanisms could make it easier for individuals to lo-
cate relevant communities, topics, and people across disparate servers. Equally significant
is the continuous refinement of user interfaces to accommodate linguistic diversity and
accessibility considerations. By emphasizing inclusive design and iterative user research,
the Fediverse can appeal to broader demographics and sustain growth over time.

10.5 Advanced Processing Methods

As the volume and complexity of content grow, so too does the need for more sophis-
ticated data processing, moderation, and analysis. New machine learning models and
frameworks, such as DeepSeek, have emerged since the inception of this thesis and offer
promising capabilities for tasks like content classification, spam detection, and sentiment
analysis. Future work could incorporate fine-tuned models building on large-language-
model paradigms or specialized neural architectures to automatically detect and filter
inappropriate or harmful content. These advances may also help reduce moderation bur-
den on instance operators by providing assistive tools that flag anomalies or potential
policy violations. Integrating such technologies, however, demands careful consideration
of bias, transparency, and privacy. Designing model interpretability mechanisms and clear
user notification systems will help ensure that Al-driven moderation aligns with the ethos
of user autonomy that underpins decentralized networks.

10.6 Automated Graph Creation via Conversational Inter-
faces

A promising direction for future work is the integration of chat-based interfaces that allow
users to request dynamic graph creation through natural language prompts. For example,
a user could ask, "Show the monthly trend of COVID-related posts in Europe," and the
system would automatically generate the corresponding Grafana visualization without
manual setup.

This capability would lower barriers for non-technical users, streamline data exploration,
and make decentralized monitoring platforms more interactive. While initially focused on
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health data, the approach could extend to other fields such as environmental monitoring,
education, or public infrastructure analytics, broadening the systems impact.

Implementing this feature would involve combining large language models with secure
query templates, enabling safe translation of user intent into internal code. Future re-
search could refine parsing methods, ensure responsible query execution, and develop
intuitive feedback loops, making decentralized data analysis more accessible and adapt-
able across domains.

10.7 Long-Term Studies and Real-World Deployments

To gain deeper insight into how ActivityPub-based ecosystems evolve over time, it is im-
portant to conduct ongoing observations and targeted case studies. Multi-year research
could shed light on patterns of governance, content diversity, and community resilience,
capturing how federation practices adapt as user communities expand. Investigations into
real-world deployments whether in educational settings, advocacy groups, or public service
contextswould help document the unique hurdles and successes encountered when imple-
menting decentralized social platforms. In gathering this empirical data, researchers can
provide tangible guidance for future adopters while contributing to broader conversations
on the impact of decentralized systems at societal, organizational, and policy levels.

10.8 Interdisciplinary Collaboration and Funding Models

There remains considerable scope for interdisciplinary collaboration that goes beyond
purely technical considerations. Scholars in fields like sociology, law, design, or economics
can offer fresh perspectives on the social structures and ethical dimensions of decentralized
platforms, informing more holistic development strategies and governance models. These
collaborations may reveal frameworks for content moderation that align with democratic
values, highlight regulatory implications of cross-border federations, or propose novel
approaches to interface design grounded in user psychology. In parallel, open-source
communities can serve as innovation hubs for testing new ideas and sharing best practices.
Finally, exploring sustainable funding mechanisms such as cooperatives, crowdfunding, or
subscription models can ensure that smaller instance operators have the resources they
need to remain online, moderate content, and foster community growth.

10.9 Conclusion

Taken together, these directions reveal a rich landscape for future work that goes beyond
the initial scope of this thesis. Focusing on protocol extensibility and scalable architec-
tures will ensure that the system can grow with user needs, while user-centric security
measures and advanced processing methods will strengthen trust and functionality. Inclu-
sive design practices and longitudinal studies can help us understand and accommodate
diverse communities over time, and interdisciplinary cooperation will bridge technical, so-
cial, and policy perspectives. By pursuing these avenues, developers and researchers can
help ActivityPub-based platforms fulfill their promise of enhanced user agency, democratic
governance, and truly global, inclusive communication.
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