
Diploma Project

TERRAFORM PROVIDER FOR CLOUD-

LAB

Panagiotis Grigoriou

Department of Computer Science

May 2025

UNIVERSITY OF CYPRUS

Faculty of Pure and Applied Sciences

Department of Computer Science

May 2025

TERRAFORM PROVIDER FOR CLOUD-

LAB

Panagiotis Grigoriou

Advisor

Haris Volos

i

Acknowledgements

I want to sincerely thank Professor Haris Volos, my supervisor, for his advice and introduction

to the subject of my thesis. Additionally, I am immensely appreciative of my family and friends’

understanding and support during my studies.

ii

ABSTRACT

This thesis presents the design and implementation of a custom Terraform provider for Cloud-
Lab, so enabling Infrastructure-as-Code (IaC) paradigms to manage CloudLab resources.The
widely used IaC tool HashiCorp Terraform lets users repeatedly declaratively define and pro-
vision infrastructure. Developing a CloudLab Terraform provider allows us to bridge the gap
between CloudLab’s traditional experiment workflow, in which users must manually define, in-
stantiate, monitor, and terminate experiments via the web portal or bespoke scripts, and modern
Infrastructure-as-Code tools that support fully declarative, automated provisioning and lifecycle
management. The provider is implemented in Go, and uses the API of the CloudLab portal to
interact with CloudLab’s backend.

Our solution uses Python Flask as an intermediary to invoke current CloudLab portal tools and,
when needed, Selenium browser automation to replicate user actions on the CloudLab web in-
terface since several CloudLab operations lack an official REST interface. We describe the
architecture of this integrated system in detail, including how Terraform requests are translated
into CloudLab experiment lifecycle operations (instantiation, monitoring, termination). The so-
lution is evaluated against the traditional CloudLab web portal usage, demonstrating improved
automation, repeatability, and integration potential. We address constraints including those re-
sulting from Terraform’s plugin model and CloudLab’s design (e.g., experiment elasticity), and
we suggest future improvements. This project shows how feasible it is to treat experimental
cloud environments as code, so improving reproducibility and simplifying the integration of
CloudLab experiments into ongoing development pipelines.

We address constraints including those resulting from Terraform’s plugin model and CloudLab’s
design (e.g., experiment elasticity), and we suggest future directions. This work shows the vi-
ability and advantages of treating experimental cloud environments as code, so improving re-
peatability and simplifying the integration of CloudLab experiments into ongoing development
pipelines.

iii

TABLE OF CONTENTS

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vi

1 Introduction 1
1.1 Motivation and problem description . 2
1.2 Aims and Objectives . 3
1.3 Contributions . 3
1.4 Structure of the Thesis . 5

2 Background 6
2.1 CloudLab Testbed Overview . 6
2.2 Infrastructure as Code and Terraform . 11
2.3 Terraform Providers Concept . 12
2.4 Flask Web Framework . 14
2.5 Selenium for Web Automation . 16
2.6 CloudLab Portal Tools API . 16

3 Usage 17
3.1 Prerequisites and Setup . 17
3.2 Overview of our CloudLab Resources . 23

3.2.1 cloudlab_simple_experiment Resource (cloudlab_vm.go) 24
3.2.2 cloudlab_openstack_experiment Resource (elastic_vm.go) 24
3.2.3 CloudLab Profiles and Resources . 25

3.3 Simpler example of creating multiple similar experiments 28

4 Design and Implementation 29
4.1 System Overview . 29
4.2 Provider and Flask Request Workflow . 30

iv

4.3 Flask API Service for CloudLab Integration 31
4.3.1 Design And Role . 31
4.3.2 Why Implement Flask as a Server Instead of Script Invocation 32
4.3.3 Authentication via User Certificate 33
4.3.4 Flask Integration: Design Decisions 33
4.3.5 Endpoints . 34

4.4 Terraform Provider Plugin Design (Go) . 36
4.4.1 Provider Implementation (provider.go) 39
4.4.2 Client Implementation (client.go) . 41

4.5 Selenium Automation of CloudLab Portal . 42
4.6 Experiment Extension Algorithm . 43

4.6.1 Overview . 43
4.6.2 Data Collection and Expiration Update 43
4.6.3 Parsing Timestamps . 44
4.6.4 Decision Logic . 44
4.6.5 Extension Execution . 45
4.6.6 Integration and Scheduling . 45

4.7 Summary . 46

5 Evaluation 47
5.1 Cloudlab Web vs Terraform Provider . 47
5.2 Experimental Results . 48

5.2.1 Parallel Experiment Provisioning . 49
5.2.2 Sequential Per Experiment Provisioning 49

5.3 Discussion . 50

6 Limitations 51
6.1 CloudLab Platform Limitations . 51
6.2 Go Limitations . 52

7 Conclusions 53
7.1 Conclusion . 53
7.2 Future Work . 54

BIBLIOGRAPHY 55

v

LIST OF FIGURES

2.1 Openstack Profile . 9
2.2 terraform-storage Profile . 9
2.3 Credentials file . 10
2.4 Terraform Cycle . 12
2.5 Terraform Architecture [1] . 14

3.1 Python Environment Setup . 18
3.2 terraform init Command . 19
3.3 terraform plan Run . 21
3.4 terraform apply Run . 22
3.5 cloudlab simple experiment Resource . 23
3.6 cloudlab_openstack_experiment Resource . 23
3.7 Cloudlab Profiles And Resources . 25
3.8 cloudalb_simple_experiment Attributes . 26
3.9 cloudalb_openstack_experiment Attributes . 27

4.1 System Overview . 30

5.1 Time Comparison . 50

vi

1 Introduction

Chapter 1 Page

1.1 Motivation and problem description 2
1.2 Aims and Objectives 3
1.3 Contributions 3
1.4 Structure of the Thesis 5

CloudLab is intended for research and education on cloud architectures [2]. It lets users ac-
cess configurable low-level servers, networking and storage, enabling ground-up experiments to
build whole cloud systems [3]. Beyond what standard public clouds provide, CloudLab stresses
control, visibility, and performance isolation to support completely customized and repeatable
experiments on dedicated hardware.

In CloudLab, users define profiles that describe the desired experiment topology (machines,
network links, disk images, etc.), and an experiment is an instantiation of a profile on avail-
able hardware. When a profile is instantiated, CloudLab allocates the specified resources and
configures them with the requested software, allowing many instances of the same profile to
run concurrently on separate hardware. Standard profiles exist for common cloud stacks (e.g.,
an OpenStack cluster profile), as well as base operating system environments. Users can also
create custom profiles and share them with others to facilitate repeatable research experiments
[2, 3].

Despite CloudLab’s power and flexibility, interacting with it traditionally requires manual or
ad-hoc methods. Researchers typically use the CloudLab web portal to start and manage ex-
periments, or write custom scripts using CloudLab’s libraries (such as the geni-lib Python API)
to describe and instantiate profiles. The Web portal provides a graphical interface for selecting
a profile, configuring parameters, and launching an experiment, but this process means doing
multiple manual steps through a browser. For example, to deploy an experiment, a user must
log into the portal, navigate to the profile, fill out parameters (if any), and click instantiate, then
later terminate the experiment via the User Interface. While effective, this manual approach is
error-prone and not easily repeatable in an automated pipeline.

CloudLab offers a programmatic Portal API that allows experiments to be controlled without the
GUI [3], but using it directly requires writing custom code (for instance, using portal-specific
client libraries) and handling CloudLab’s authentication and experiment state logic. On the
other hand, Infrastructure-as-Code tools let you specify infrastructure in declarative configura-
tion files, enabling automated, repeatable provisioning, and teardown of complex environments.

1

HashiCorp Terraform is one of the leading IaC tools that enable developers to write human-
readable configuration files to provision, update, and destroy infrastructure components across
dozens of cloud services and providers.

Terraform reads infrastructure specifications written in a configuration file and then creates or
adjusts the corresponding cloud resources. Its core benefits include version control (infrastruc-
ture changes tracked along with application code), automation (one-command deployments),
and reproducibility (the same configuration always yields the same environment). Under the
hood, Terraform’s plugin-based architecture uses providers, modules that speak to the APIs
of specific platforms. There are official or community-maintained providers for major clouds
(AWS, Azure, Google Cloud, etc.) and many other services, which together give Terraform a
unified workflow for managing heterogeneous infrastructure.

1.1 Motivation and problem description

CloudLab, despite being cloud-like in providing compute resources on demand, does not have a
Terraform provider or similar IaC integration. This means that researchers could not easily in-
clude CloudLab experiments in automated infrastructure deployments or continuous integration
pipelines using Terraform. Every CloudLab experiment instantiation is a separate process, de-
coupled from the IaC-managed parts of an experiment (for instance, setting up cloud resources
to interact with a CloudLab experiment would require coordinating the two environments man-
ually).

The lack of IaC integration potentially hampers experiment reproducibility and efficiency - for
example, sharing a CloudLab experiment setup currently requires describing the steps or provid-
ing a profile script, rather than sharing a ready-to-run Terraform configuration. By developing
a custom Terraform provider for CloudLab, we aim to enable CloudLab users to define their
experiments in code and deploy or tear them down with simple commands, just as they would
for resources in AWS or other clouds. This integration would allow CloudLab experiments to
be treated as part of a larger infrastructure description, enabling hybrid workflows (e.g., provi-
sioning a CloudLab experiment and cloud VMs together) and embedding experiment setup into
reproducible scripts.

2

1.2 Aims and Objectives

This thesis was built on a previous implementation that could manage simple CloudLab re-
sources. Specifically, the provider should allow users to declaratively specify CloudLab ex-
periments in a Terraform configuration file. Upon running Terraform, the provider will handle
authenticating to CloudLab, instantiating the specified experiment profile, waiting for resources
to become ready, and exposing relevant information back to the user (such as experiment IDs or
node IPs). The provider should also help destroy experiments using Terraform, so closing the
lifetime cycle.

Comparison with the older simple resource

The original Terraform-profile provided in the UCY-COAST project allowed [4] users to
create single node resources (experiments) with a fixed configuration of Ubuntu 18 and on the
Emulab cluster only. In contrast, the provider developed in this thesis offers:

• cloudlab_simple_experiment: Launches multi-node experiments with configurable
node counts and optional blockstore volumes, all in one Terraform resource. It now sup-
ports selecting from multiple Ubuntu images (e.g., 24.04, 22.04, 20.04) and lets users
specify which cluster their experiment should run on.

• cloudlab_openstack_experiment: Deploys a full OpenStack environment (controller
+ compute nodes) plus a persistent 100 GB dataset that survives across runs. This pro-
file also allows the user to define the type of node they want specifically (for example,
c220g5).

1.3 Contributions

This thesis builds on Panis’ implementation [4] of CloudLab infrastructure management with
Terraform and introduces the following key improvements.

1. Unified Code Repository.

We have consolidated the functionality that was previously split between two separate
repositories into a single repository. This simplifies development, testing, and distribu-
tion by ensuring that all provider code and CloudLab profile definitions are maintained
together.

2. Automated Flask API Initialization.

The Flask-based intermediary API service now starts automatically in the background
upon the first invocation of terraform apply, eliminating the manual step required by
the user to start the server separately in another window.

3

3. Selenium-Powered Portal Automation.

Panis’ original prototype required users to manually

(a) visit the CloudLab portal to download the encrypted cloudlab.pem credential,

(b) decrypt it locally with openssl, and

(c) copy the resulting X.509 key into the provider repository and the flask repository.

Because the provider cannot see the web interface, experiments launched outside Ter-
raform would orphan resources and complicate debugging. To eliminate these issues, we
embed a lightweight, headless Selenium WebDriver in a side service that:

• Zero-touch credential managementUpon initialization, the headless browser logs
in, downloads a fresh cloudlab.pem, decrypts it, and hands the short-lived key to
the provider entirely in memory, removing all manual OpenSSL steps.

• Live state synchronizationSelenium periodically scrapes theMyExperiments dash-
board (experiment ID, profile, status, expiry) to get the latest state of experiments.

4. CloudLab VM Resource - Multi-Node Support and Additional Storage.

We upgraded the cloudlab_vm Terraform resource to support:

• deployment of multiple nodes within a single CloudLab experiment, allowing users
to provision small clusters in one step;

• attachment of an additional blockstore volume (e.g. 100 GB) to the experiment, us-
ing an upgraded parameterized profile (https://github.com/pgrigo01/storage-profile).

5. New CloudLab OpenStack Resource with Shared Storage.

We added a cloudlab_openstack_experiment resource that leverages an OpenStack
profile [5]. This resource automatically deploys a multi-node OpenStack cluster and pro-
visions a shared 100 GB persistent dataset that survives across experiment runs.

6. Advanced CloudLab Profile Integration.

The previous implementation supported only single-node experiments on the Emulab
Cluster and parametrization was not really possible. Unlike the basic single-node profile
used before, our solution supports parameterized topologies and persistent storage. By
embedding these rich profiles directly into the provider workflow, users can define com-
plex bare-metal clusters or private OpenStack clouds, complete with persistent volumes-
purely in Terraform.

4

https://github.com/pgrigo01/storage-profile

1.4 Structure of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we cover the background and
methodology, explaining the key technologies and concepts underlying ourwork. Infrastructure-
as-Code and Terraform, the CloudLab platform, Terraform providers, the Flask framework, and
the Selenium automation tool. Chapter 3 presents how the user can setup and use the Terraform
Provider, it also demonstrates how resources need to be defined to create experiments in the
configuration file. Chapter 4 presents the design and implementation of the custom CloudLab
Terraform provider, describing the design components of the system and their interactions. We
include detailed explanations of the provider implementation, the Flask-based API service that
bridges to CloudLab, and how Selenium is utilized. In Chapter 5, we compare and discuss the
Terraform-based approach with the Cloudlab website. Chapter 6 discusses the limitations and
challenges encountered, including limitations inherent in CloudLab, limitations of Terraform’s
plugin mechanism, and issues faced in the Go development process. Finally, Chapter 7 con-
cludes the thesis, summarizing the achievements and suggesting future additions and improve-
ments.

5

2 Background

Chapter 2 Page

2.1 CloudLab Testbed Overview 6
2.2 Infrastructure as Code and Terraform 11
2.3 Terraform Providers Concept 12
2.4 Flask Web Framework 14
2.5 Selenium for Web Automation 16
2.6 CloudLab Portal Tools API 16

In this chapter, we introduce the fundamental ideas and tools that support our work. Our project
spans the domains of cloud infrastructure management and web automation; thus, we cover the
relevant background on Infrastructure as Code (Terraform in particular), the CloudLab testbed’s
operating model, Terraform’s provider plugin system, and the tools (Flask and Selenium) ap-
plied in our implementation. Appreciating the design decisions and contributions of this thesis
depends on the knowledge of these ideas. We also describe howwemerged several technologies
to reach the intended integration.

2.1 CloudLab Testbed Overview

CloudLab is a large-scale federated testbed for cloud computing research. It was launched in
2014 through NSF support, and it operates across multiple sites (University of Utah, University
of Wisconsin, Clemson University, etc.) with over a thousand machines in total. CloudLab’s
mission is to enable researchers to experiment with new cloud architectures by giving them as
much control as possible over the underlying hardware. In CloudLab, users can request bare
metal servers (or virtual machines on those servers) and networking equipment with minimal
interference from the platform, thereby allowing low-level experimentation (for example, cus-
tom virtualization stacks, novel storage systems, or network experiments that are not possible
on public clouds). Over its years of operation, CloudLab has served thousands of users and tens
of thousands of experiments, becoming a key facility for reproducible research in systems and
networking.

CloudLab inherits much of its design from earlier testbeds like Emulab and GENI. The funda-
mental abstraction in CloudLab is the profile (sometimes called an RSpec in GENI terminology).
A profile is essentially a declarative specification of an experiment’s topology: it lists the com-
pute nodes, their hardware types, the disk images or OS to load on them, network link definitions,

6

and any experiment-specific scripts to run on startup. CloudLab profiles can be created through
a graphical profile builder on the web portal, by writing an RSpec XML, or by using a library
like geni-lib (Python) to script the definition. Once a profile is defined, it acts as a template or
blueprint. Launching an experiment in CloudLab means instantiating a profile. As the Cloud-
Lab team describes: “Experiments in CloudLab are instances of profiles. A profile contains a
description of the hardware resources (servers, switches, etc.) that the experiment will run on,
and the software needed to run the experiment. When a profile is instantiated, CloudLab selects
the available hardware that matches the profile specification and provisions that hardware with
the software and configuration described in the profile. Each experiment is isolated on its allo-
cated resources, and multiple experiments (even from the same profile) can run simultaneously
on different hardware slices. Below we can see how an example profile that supports a single
node with the options : This minimal GENI/CloudLab profile lets you pick an aggregate site
and then launches exactly one XenVM running Ubuntu 24.04. It defines two parameters (the
aggregate and the fixed Ubuntu 24.04 image), binds and verifies them, builds the RSpec, creates
a VM named ’node’ on your chosen aggregate, and creates the node.

7

import geni.portal as portal
import geni.rspec.igext as ig
pc = portal.Context()
agglist = [

("urn:publicid:IDN+utah.cloudlab.us+authority+cm","utah.cloudlab.us"),
("urn:publicid:IDN+wisc.cloudlab.us+authority+cm","wisc.cloudlab.us")]

imagelist = [
('urn:publicid:IDN+emulab.net+image+emulab-ops//UBUNTU24-64-STD', 'Ubuntu

24.04'),
]
Define parameters
pc.defineParameter(

"aggregate", "Specific Aggregate",
portal.ParameterType.STRING,
agglist[0][0], agglist)

pc.defineParameter(
"image", "Node Image",
portal.ParameterType.IMAGE,
imagelist[0][0], imagelist,)

Bind & verify
params = pc.bindParameters()
pc.verifyParameters()
Build the RSpec
request = pc.makeRequestRSpec()
Single VM, with chosen image & aggregate
node = ig.XenVM("node")
node.disk_image = params.image
if params.aggregate:

node.component_manager_id = params.aggregate
request.addResource(node)
pc.printRequestRSpec(request)

Listing 2.1: exampleProfile

CloudLab provides a library of standard profiles for common use cases. For example, there is
a standard OpenStack profile that will set up an OpenStack deployment on a handful of nodes
(one controller, several compute nodes) – this helps researchers to quickly get a private cloud
environment for experiments (this is also now implemented. Other standard profiles include
Hadoop/Spark clusters, Kubernetes clusters, bare Ubuntu installations, and more. Users are

8

also free to create their own profiles, which can include custom OS images or startup scripts for
specialized experiments. Profiles can be shared publicly or within a project team, promoting
collaboration and repeatability (these profiles van be defined using a github repository as shown
in the image below). CloudLab also supports versioning of profiles – changes to a profile can be
saved as new versions, and old versions can be instantiated for archival experiments, enhancing
reproducibility of past results. The two supported profiles now for the Terraform provider are
the Openstack profile and the terraform-storage profile.

Figure 2.1: Openstack Profile

Figure 2.2: terraform-storage Profile

A notable design aspect of CloudLab is its focus on complete environments-by which we mean
defining and launching your entire experiment (every node, network link, storage volume, and
configuration) as a single, fixed topology-rather than dynamic scaling of individual resources.
In a public cloud (like AWS), one might start with no servers running, then programmatically
create a VM or scale out additional VMs on demand, and terminate them when done. CloudLab
instead encourages users to define a fixed experiment topology (which could be one node or

9

many) and instantiate it as a whole. Experiments have a maximum duration (by default 16 hours,
but this can be extended), after which resources are freed. Once your experiment is instantiated,
its topology is fixed: if you realize you need more or fewer nodes, you must edit the profile to
add or remove node definitions and then re-provision the experiment-either by terminating and
starting a new run or by using the Portal’s “modify” action, which under the hood tears down and
rebuilds the environment to match the updated profile. This means CloudLab is less elastic in
the cloud sense, but this trade-off exists to describe a complete, repeatable environment, making
it easier to repeat experiments in a consistent setting. As noted by the CloudLab designers, the
emphasis on reproducibility over elasticity can initially confuse new users, but ultimately it
provides an easier way to get a known environment for each experiment run.

Users interact with CloudLab primarily through the CloudLab Portal, a web-based interface.
Through this portal, users can create or join projects, define profiles (via an editor or by up-
loading profile descriptions), and instantiate or terminate experiments. The portal provides sta-
tus information on experiments and offers web-based consoles or SSH key management to log
into nodes. In addition to the GUI, CloudLab experiments can be controlled via command-
line tools or APIs inherited from GENI. For instance, advanced users can use the Portal API
which CloudLab exposes for programmatic experiment management. This API uses a user’s
downloaded certificate (cloudlab.pem that is downloaded from the web interface Figure 2.3)
and allows operations like creating an experiment from a profile, polling its status, and termi-
nating it. However, this API is not widely advertised for everyday users and typically requires
writing custom code (in Python or another language) to use. The portal documentation shows
examples of how to the API with scripting. In summary, before our work, if a researcher wanted
to automate CloudLab experiment deployment as part of a larger workflow, they would need to
manually script against CloudLab’s API or CLI tools, which is a bespoke solution in each case.

Figure 2.3: Credentials file

10

This context sets the stage for why integrating CloudLab with Terraform is beneficial. CloudLab
already embodies the idea of describing infrastructure as code to some extent (through profiles),
but it does not integrate with the broader ecosystem of IaC tools. By bringing CloudLab into
Terraform, we aim to make CloudLab experiments first-class elements of reproducible infras-
tructure pipelines. This would unite CloudLab’s powerful bare-metal provisioning with Ter-
raform’s automation and multi-cloud workflow. In the next sections, we discuss how Terraform
can be extended to new platforms, via providers, and the specific tools we used to implement
the CloudLab provider.

2.2 Infrastructure as Code and Terraform

Infrastructure as Code (IaC)[6] in IT infrastructure management that promotes writing and ex-
ecuting code to define, provision, and configure infrastructure resources(experiments). IaC lets
engineers indicate the desired state of infrastructure in declarative configuration files or scripts
rather than manually clicking through cloud consoles or running imperative commands for ev-
ery change. The IaC tool then either automatically generates or modifies the actual resources
to fit the stated condition. This method brings infrastructure management software engineering
techniques, so enhancing repeatability and lowering human error. Treating infrastructure defi-
nition as code will enable version control, review, and testing of the same nature as application
code. Since the same configuration can be used many times to produce identical results, IaC
generates more consistent and repeatable environments. Building an environment from code
is far faster and less prone to omission than doing the steps manually; hence, it also promotes
faster recovery and scaling.

Among the most widely used IaC applications available is Terraform [7]. Using a high-level,
human-readable configuration language (HCL), Terraform lets users specify both cloud and on-
site resources (servers, networks, DNS records, etc.). Terraform designs are declarative, stating
what infrastructure is intended, rather than how to get it. The Terraform engine takes these con-
figurations and performs a planning phase to calculate the changes needed to reach the desired
state, then executes those changes to provision or modify resources accordingly. Terraform is
an open-source tool that has become a standard for multi-cloud infrastructure automation.

When a user wants to add or remove an experiment, they edit the Terraform configuration file
(e.g., main.tf) and, if it is the first time, run terraform init to download the CloudLab provider.
After each change, they can run ‘terraform plan‘ to preview infrastructure changes and then
terraform apply to create or destroy the specified experiments.

11

Figure 2.4: Terraform Cycle

One of Terraform’s strong points is its capacity to handle complex dependencies among re-
sources. Based on configurable references, the tool automatically determines the proper se-
quence to create or destroy resources. It also keeps a state file to recall which resource it pro-
duced (terraform.tfstate) [8]. Usually housed in source repositories, Terraform configurations
allow teams to develop infrastructure cooperatively and conduct peer reviews of infrastructure
modifications. The result is reliable, traceable infrastructure deployments: teams can recreate
entire environments (for development, testing, production for experiments) with one command
and be confident that each run produces the same outcome. In scientific research, where in-
frastructure variations can influence outcomes, this repeatability is especially important; IaC
guarantees a consistent environment for an experiment every time it is supplied. Note that while
Terraform and similar IaC tools excel at deploying resources, they typically focus on provision-
ing infrastructure rather than managing the software inside those resources. In the context of
CloudLab the distinction is blurred: a CloudLab profile often includes both the hardware speci-
fication and the software environment. Thus, using Terraform for CloudLab means that we treat
an entire experiment (hardware + software configuration) as a single unit of infrastructure to be
provisioned.

2.3 Terraform Providers Concept

Terraform’s core is provider-agnostic: it knows how to orchestrate resource creation andmanage
state, but relies on provider plugins to actually talk to the RESTful or RPC interfaces exposed by
cloud service providers (e.g. AWS, Azure, Google Cloud), SaaS platforms, or other infrastruc-
ture systems. A Terraform provider is a plugin (typically implemented in Go) [8] that informs
Terraform of the resource types and data sources it canmanage, and contains the logic to perform
CRUD (Create, Read, Update, Delete) operations on those resources using the target platform’s
API. In essence, providers are the translation layer between Terraform’s desired state and the
real-world API calls needed to achieve that state. A provider knows how to create each type of
resource by calling the appropriate API endpoints with the correct parameters, how to update or

12

delete those resources, and how to read their current state.

A Terraform provider typically defines one or more resource types. For example, the AWS
provider has resource types like aws_instance[9], aws_s3_bucket [10]. Below is a minimal
Terraform configuration that demonstrates how to declare the AWS provider (with an explicit
profile and region) and then use two common AWS resource types, an EC2 instance and an S3
bucket.

terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 4.16"}}

required_version = ">= 1.2.0"}
provider "aws" {
profile = "default"
region = "us-west-2"

}
resource "aws_instance" "web_server" {
ami = "ami-830c94e3"
instance_type = "t2.micro"
tags = {
Name = "ExampleWebServer"}}

resource "aws_s3_bucket" "storage" {
bucket = "bucket-name"
acl = "private"

}

Listing 2.2: Example Amanzon configuration

Each resource type has a schema (defining what configuration attributes it accepts and what at-
tributes it exports). The user writes Terraform configurations using these resource types. When
terraform apply is run, Terraform will load the provider, and for each resource instance in the
configuration, it will invoke the provider implementation. The provider must implement func-
tions to handle: creating the resource, reading the resource (to refresh Terraform state with the
actual live data, or to validate it exists), updating it (if possible, given differences in config-
uration) and deleting it. In many cases, not all operations are needed if a resource cannot be
updated in place, the provider can document that it forces a new resource (Terraform will then
call create+delete instead of update when configuration changes). The provider can also define
data sources (to fetch data from the API without creating a resource) and provider-level config-

13

uration (like region, credentials, endpoints). The official Terraform documentation outlines best
practices for developing custom providers.

Under the hood, during an apply Terraform Core loads the CloudLab provider plugin (our Go
code) and parses the user’s configuration (including things like the CloudLab certificate file).
Terraform compares the desired state against the current state stored in ‘terraform.tfstate‘, deter-
mines which experiments need to be created, updated, or destroyed, and invokes the matching
provider. We can see below the general architecture of Terraform.

Figure 2.5: Terraform Architecture [1]

2.4 Flask Web Framework

Flask is a lightweight web application framework for Python. It is called a micro-framework
since it offers the foundations for web server capability free from strict project structure re-
quirements or heavy dependencies. Built to grow to complex applications, it starts quickly and
easily. With minimum boilerplate, Flask provides a simple interface for Python handling HTTP
requests and route definition (URL endpoints), so enabling the development of RESTful APIs
or web services. Its minimalist core can be extended with numerous community extensions for
things like authentication, database integration, etc., as needed.

We chose Flask as part of our methodology to serve as an integration layer between Terraform
(which runs our Go provider plugin) and CloudLab’s control interface (which, as discussed,
might involve complex interactions like certificate-based calls or web automation best done in
Python). The idea was to create a small Flask web service that runs locally (on the samemachine
as Terraform) and exposes a few HTTP endpoints corresponding to the operations we need to
perform on CloudLab. For example, an endpoint like /create-experiment could accept details

14

such as the profile ID (or name), project name, and experiment parameters, then perform the
sequence of actions to instantiate that experiment on CloudLab. The Terraform provider, instead
of containing all that logic in Go, could simply make an HTTP request to the Flask service’s
endpoint and get a response indicating success or failure (and any data like the experiment’s
unique identifier).

Python already has tools and libraries (including some CloudLab/GENI client libraries) as well
as portal-tool capability to manage CloudLab interactions. By using Flask, we could write those
interactions in Python and avoid reinventing them in Go. Loading a user’s certificate and key to
authenticate with CloudLab’s XML-RPC API, for example, is not possible with Golang current
libraries like x509 library or other third party ones . All Flask does is act as a wrapper to expose
those Python capabilities across HTTP.

Flask’s simplicity meant we could implement this service quickly. For designing experiments,
monitoring experiment status, deleting experiments, etc., we just needed a few endpoints. Flask
manages all the HTTP server details; hence, our code could concentrate on the logic particular to
CloudLab. This was far faster than, say, building a more heavyweight framework or attempting
to have the Go plugin elegantly manage multi-step processes.

Running a separate Flask service means that the possibly long-running or blocking operations-
like waiting for an experiment to be ready, or Selenium-basedweb browser control-occur outside
the Terraform provider process. Terraform expects providers to run operations and return; thus,
it may be problematic if a provider blocks for too long without providing feedback. Our Go-
based Terraform provider never has to sit and wait by running long-running chores in a different
Flask process. Rather, the provider just tells Flask to start an action and then polls or checks back
later for the outcome-Flask manages the blocking work (akin to waiting for an experiment or
driving Selenium) and notifies when it is done. This decoupling lets us more precisely manage
difficult processes and timeouts and keeps Terraform responsive.

Basically, Flask allows us to use Python’s already existing libraries for all the CloudLab integra-
tion, expose a basic REST interface for our Go plugin, and keep each component concentrated
on its own work between Terraform and CloudLab. The Flask endpoints and their functions in
the chapter on architecture are fully broken out here.

15

2.5 Selenium for Web Automation

Selenium is an open source framework for automating web browsers. It is widely used for
browser-based testing of web applications, allowing scripts to control a web browser program-
matically to simulate user interactions.[11] The Selenium project provides a WebDriver API
that can control popular browsers (Chrome, Firefox, etc.) either on-screen or in headless mode.
While primarily intended for testing, Selenium is also sometimes used for web scraping or au-
tomating routine web tasks, especially when no API is available for a particular web interface.

2.6 CloudLab Portal Tools API

CloudLab provides a Python-based portal-tools suite that wraps its underlying GENI/Emulab
Portal API, giving users a simple command-line and library interface for programmatic experi-
ment management [12]. Maintained in a public GitLab repository, this suite includes functions
for:

• startExperiment: Allocate bare metal or virtual machine resources according to a pro-
file, authenticating with the user’s X.509 certificate.

• experimentStatus: Poll the XML-RPC API for the current state (Pending, Active,
Failed) of one or more experiments.

• terminateExperiment: Cleanly tear down and release all resources associated with an
experiment.

Each of these tools communicates directly with CloudLab’s XML-RPC endpoints over HTTPS,
leveraging the user’s downloaded .pem certificate and private key to perform mutual TLS au-
thentication [13]. By wrapping low-level Portal API calls in well-tested Python scripts, portal-
tools eliminates the need to craft raw RPCmessages or manage certificate handshakes manually
[3].

Our solution embeds these portal-tools commands in a lightweight Flask microservice. When-
ever Terraform needs to create, check, or destroy an experiment, the Go provider issues a local
REST call to the Flask server, which in turn invokes the appropriate portal-tools function and
captures its JSON output. This decoupling keeps the provider code simple-Terraform only deals
with standard HTTP/JSON-while all certificate management, retry logic, and experiment-state
handling remains in Python, reusing CloudLab’s own tooling [14].

16

3 Usage

Chapter 3 Page

3.1 Prerequisites and Setup 17
3.2 Overview of Cloudlab Resources 23
3.3 Simpler example of creating multiple similar experiments 28

In this chapter, we guide the reader through the end-to-end process of installing, configuring, and
using the Terraform CloudLab provider. We begin by describing all prerequisites and running
the automated setup script to retrieve credentials and install dependencies. Next, we demon-
strate how to initialize the Terraform working directory, configure the provider, and execute the
standard Terraform workflow (init, plan, apply) to provision CloudLab experiments. Finally,
we provide examples of defining both simple and more complex resources, illustrating how you
can leverage the HCL iteration features to scale out multiple experiments efficiently.

3.1 Prerequisites and Setup

Environment Requirements:

• Go : Go 1.23+ is required for building the provider

• Python Dependencies: Flask, cryptography, APScheduler, and CloudLab XML-RPC
packages

• A browser: Chrome or Firefox(by default the Chrome is the one that is being installed
through the setup script shown below).

• Terraform

First clone the github repository: git clone https://github.com/pgrigo01/terraform-provider-
cloudlab

1) Credential Retrieval and Installations Needed: In order to get the credentials file (cloud-
lab.pem) the user has to run the provided script setupOnUbuntu.sh that installs go version 1.23,
the latest version of terraform , creates a python virtual environment to install all dependen-
cies needed in order to run the flask server in the background and finally prompts the user to
give their password and username of Cloudlab to download the credentials file from Cloudlab
decrypt it and save it with the name cloudlab-decrypted.pem in our workspace.

2)Run: source ./setupOnUbuntu.sh After the cloudlab-decrypted.pem appears in ourworkspace,
we can go on to the next step needed.

17

3) Run source myenv/bin/activate The next step is to enter the virtual environment that was
created by the setup script mentioned above.If everything goes well, (myenv) must appear in
our terminal as shown below.

Figure 3.1: Python Environment Setup

Also the following files will be created after running the setupOnUbuntu.sh encryption_key.key
and credentials.encrypted that contain the users encrypted credentials that are used when the
flask server starts in the background to poll the current state of our infastructure from Cloud-
lab.This is helpful for the user since he can now view the experiments that were created from
the Cloudlab website, not only the ones that will be created through Terraform.This state will
be stored in this file cloudlab_experiments.csv. This is especially useful if the user wants to
view what experiments are already created in order to avoid re-declaring the resource for those
experiments in the configuration file.Our main.tf file already defines our provider as shown in
Listing 3.4 so we are ready to run the next command.

4) The next step is to configure the CloudLab provider in your Terraform configuration:

terraform {
required_providers {
cloudlab = {
source = "pgrigo01/cloudlab"
version = "1.0.0"

}
}

}
provider "cloudlab" {
project = "UCY-CS499-DC"
credentials_path = "cloudlab-decrypted.pem"
browser = "chrome" # or "firefox"

}

Listing 3.1: Provider Configuration

18

5) The next command to run is terraform init, which performs the following actions:

Initializes the working directory

• Creates a .terraform/ directory to hold local state, plugin binaries, and downloaded
modules.

• Writes a lock file (.terraform.lock.hcl) to pin provider versions.

Configures the backend

• Reads any back-end block in your configuration and sets up where your Terraform state
file will be stored and retrieved.

Downloads provider plugins

• Examines the required_providers in your configuration.

• Fetches thematching provider binaries from the TerraformRegistry (https://registry.terraform.
io) or any other specified source.

Retrieves modules

• Finds all module blocks in your configuration.

• Downloads module source code, whether from the Terraform Registry, a GitHub reposi-
tory, a local path, or other supported destinations, into the .terraform/modules folder.

Figure 3.2: terraform init Command

Note: If for any reason terraform init fails to bring the terraform plugin you can build it locally
by running this script with this command ./build_provider.sh

19

https://registry.terraform.io
https://registry.terraform.io

6) The next step is to define the resource we want to add.

terraform {
required_providers {
cloudlab = {
source = "pgrigo01/cloudlab"
version = "1.0.0"

}
}

}

provider "cloudlab" {
project = "UCY-CS499-DC"
credentials_path = "cloudlab-decrypted.pem"
browser = "chrome"

}

resource "cloudlab_simple_experiment" "experiment1" {
name = "exp1"
routable_ip = true
image = "UBUNTU 22.04"
aggregate = "emulab.net"
node_count = 1 # optional if not defined defaults to 1
#extra_disk_space = 50 #optional if not defined no extra space is allocated

}

#Below is an example of an Openstack resource,since it is commented terraform
#will not consider adding it to our infrastructure as we will see below
#only the exp1 will be added

resource cloudlab_openstack_experiment "experiment2" {
name = "exp2"
release ="zed"
compute_node_count = 1
os_node_type = "c220g1"
ml2plugin = "openvswitch"
}

Listing 3.2: Example Terraform configuration

20

7)After declaring which resources we want to add (in the example above in Listing 3.1 were we
added one resource) the next command to run is terraform plan, which performs the following
actions:

Reads configuration and state

• Firstly it reads the configuration file in your working directory(main.tf).

• Loads the current state from the local terraform.tfstate file.

Refreshes resource state

• Queries each resource from to get the real-world state of existing resources(to see if an
experiment is still running or if it is terminated to restart it).

Determines resource actions

• Compares the desired configuration against the refreshed state.

• Plans which resources will be created, updated, or destroyed to achieve the target config-
uration.

Outputs the execution plan

• Prints a human-readable summary of proposed changes, color-coded for create (+), update
(), and destroy (–).

Figure 3.3: terraform plan Run

21

8) Finally we run terraform apply, which performs the following actions:

Reads configuration and state

Refreshes resource state

Obtains or generates an execution plan

Prompts for approval

• Displays the plan summary (create +, update , destroy –).

• Pauses and waits for you to confirm (type ’yes’).

Executes resource actions

• Creates new resources in your provider.

• Updates existing resources that need modification.

• Destroys resources that were commented out/removed from the .tf file.

Updates state and outputs the results

• Writes the updated state back to terraform.tfstate.

• Shows detailed logs of each step, showing attribute values before/after.

• Prints a final output summary.

Figure 3.4: terraform apply Run

22

3.2 Overview of our CloudLab Resources

Before moving to the last step, we need to explain and show what is currently being offered
resource-wise.

Resource Schemas: We have two main resource types lets deep dive and see what is currently
offered : cloudlab_simple_experiment and cloudlab_openstack_experiment. These
are essentially presets for common profile types. For example, a cloudlab_openstack_experiment
resource internally uses a known OpenStack profile from Cloudlab.

Figure 3.5: cloudlab simple experiment Resource

Figure 3.6: cloudlab_openstack_experiment Resource

23

3.2.1 cloudlab_simple_experiment Resource (cloudlab_vm.go)

• Schema Definition: The resource schema has the following attributes: name, aggregate,
image, routable_ip, and optional fields extra_disk_space, node_count, and nested vlans.

• Configure method During provider configuration, the resource receives a pre-initialized
Client instance, giving access to the credentials path, project ID, and browser selection.
This allows subsequent API calls to be routed through the local Flask service.

• Create method: Reads plan values into a cloudlabvmModel struct. Builds a parame-
ter map, (e.g. UBUNTU 20.04) into URNs using helper functions AddImageParam and
AddAggregateParam. Sends a POST to /experiment via Client.startExperiment. And
when its ready it updates the state.

• Read method: On terraform refresh or during subsequent applies, Read verifies the ex-
periment still exists by name; if missing, it removes the resource from state.

• Delete method: When a resource is commented out or when terraform destroy is run ,
then the Delete method calls Client.terminateExperiment. This resource demonstrates a
complete mapping between Terraform’s declarative configuration and CloudLab’s exper-
iment lifecycle, leveraging the Flask intermediary for all portal interactions.

3.2.2 cloudlab_openstack_experiment Resource (elastic_vm.go)

• Schema Definition: The resource schema has the following attributes, release, com-
pute_node_count, os_node_type, os_link_speed,ml2plugin.

• Configure method: In Configure, the resource marks the shared Client as elastic = true,
causing subsequent calls to select the OpenStack profile UUID rather than the default
simple profile.

• Create method: Reads the plan into an elasticVMModel struct. Constructs a parame-
ter map that matches the OpenStack profile. Sends a POST via Client.startExperiment,
uploading the user’s .pem and parameters as multipart form data.

Polls status via Client.experimentStatus until the experiment appears in CloudLab’s dash-
board,then sets the returned UUID in state.

• Read method: Similar to the simple resource, Read confirms the experiment’s existence
and preserves state if still active; otherwise, it prunes the resource.

• Update method: In-place updates are not supported for this resource; any change forces
recreation, consistent with Terraform’s handling of immutable resources.

• Delete method: The Delete method delegates to Client.terminateExperiment, ensuring
the elastic experiment is torn down and state is cleaned up.

24

https://github.com/pgrigo01/terraform-provider-cloudlab/blob/main/internal/provider/cloudlab_vm.go
https://github.com/pgrigo01/terraform-provider-cloudlab/blob/main/internal/provider/elastic_vm.go

3.2.3 CloudLab Profiles and Resources

A profile in CloudLab includes all the information about a cloud environment, such as the soft-
ware that is needed to run it and a description of the hardware (including the network layout)
that the software stack should run on.

Making a new profile means making a new geni-lib Python script and, most of the time, one
or more disc pictures that go with that script. If someone uses your profile, they will start their
own experiment that uses the resources (virtual or real) that are explained in the profile script.

There are two ways to give CloudLab the geni-lib Python script when you make a new profile.
First, you can upload it as a single file and let CloudLab handle its storage. Then, when you
want to make a new version, you can upload a changed version or edit it in the CloudLab code
editor. Secondly, you can use CloudLab’s repository-based profile tool. To do this, you need
to provide it a git repository URL that has the geni-lib Python script as a profile.py file in the
repository’s root directory. This lets you control versions based on how you use Git and create
new projects from branches.

The easiest way to create a new profile is by copying an existing one and customizing it to your
needs. Your goal should be to choose the profile that is most similar to the one you want to build.
Usually, this will be one of our facility-provided profiles with a generic installation of Linux.

We implemented twomain resource types in Terraform -cloudlab_simple_experiment and cloud-
lab_openstack_experiment - each backed by a different CloudLab profile. These profiles define
the topology and capabilities of the CloudLab experiment that gets created.The figure below
illustrates the relationship between our resources and their profiles.

Figure 3.7: Cloudlab Profiles And Resources

25

cloudlab_simple_experiment Resource and terraform-storage Profile

When a user defines a cloudlab_simple_experiment resource in Terraform with our provider,
they can specify howmany nodes theywant (via a parameter in our configuration named node_count)
and optionally request extra disk space. This profile dynamically generates an RSpec (CloudLab
experiment description) that includes the requested number of nodes (each loaded with a base
OS image) and attaches a blockstore of the given size to the experiment. A blockstore is essen-
tially a chunk of temporary disk provisioned (until the experiment terminates) from CloudLab’s
storage pool, which CloudLab mounts to one of the nodes (the extra storage is a shared volume
mounted on the number of nodes within the same experiment).

The nodes within the experiment are connected on an isolated LAN (so they can communicate).
Terraformwill treat this whole experiment as one resource. Importantly, all the nodes are created
in one go as part of one experiment, which means they can talk to each other with low latency
(same LAN) and the experiment can be managed (started or terminated) as a single unit. In-
stead of manually creating and networking separate single-node cloudlab_vm resources, which
was inefficient and spawned a new experiment for each node. Terraform’s multi-node profile
launches all nodes together in the same experiment, making distributed or master-worker setups
much simpler.All things considered, the cloudlab_simple_experiment with the storage-profile
offers a flexible cluster right out from Terraform.

Figure 3.8: cloudalb_simple_experiment Attributes

26

https://github.com/pgrigo01/storage-profile

cloudlab_openstack_experiment Resource and Openstack Profile

The cloudlab_openstack resource is designed for a higher-level use case: deploying a ready-
to-use OpenStack environment on CloudLab. When this resource is applied, the provider sig-
nals the Flask API to launch an experiment using the OpenStack profile. This profile sets up
a controller node (which runs OpenStack services) and a number of compute nodes, creating
an OpenStack cloud on the allocated hardware. All the nodes are connected via the necessary
networks, typically an OpenStack management network and possibly a data network.

By default, this profile includes 100 GB of persistent shared storage volume. This is imple-
mented using the persistent dataset feature of Cloudlab: the profile requests a dataset of 100
GB that is shared among the nodes. This persistent storage is shared between all experiments
launched with that profile, meaning that if the experiment is terminated, CloudLab preserves the
dataset (it remains in the user’s CloudLab account), and if a new experiment using the same pro-
file is created, it can attach the same dataset with all previously written data. This is extremely
useful for scenarios where a user wants to keep the data between runs. For instance, one could
preload the dataset with VM images or datasets to be used in the OpenStack cluster; each new
instantiation of the experiment can immediately access those without needing to download or
copy them again. CloudLab ensures that local disk data can be persisted and loaded on future
experiment nodes as long as the same profile/dataset is used.

From the user’s perspective, the cloudlab_openstack Terraform resource behaves like any other
Terraform resource: once applied, it will produce outputs so that the user can log into the Open-
Stack or run further automation (like Terraform OpenStack provider to create VMs inside that
OpenStack). This represents a powerful abstraction – with one Terraform configuration, a user
can go from zero to a runningmulti-node OpenStack testbed, including persistent shared storage,
all through infrastructure-as-code.

Figure 3.9: cloudalb_openstack_experiment Attributes

27

https://gitlab.flux.utah.edu/johnsond/openstack-build-ubuntu.git

3.3 Simpler example of creatingmultiple similar experiments

In many research workflows, you often need to spin up a collection of CloudLab experiments
that share the same baseline configuration-differing only in name or minor parameters. Manu-
ally duplicating resource blocks for each experiment quickly becomes tedious and error prone.
By leveraging Terraform’s iteration features (such as ‘for_each‘), you can define a single re-
source template that dynamically generates any number of experiments. Below is an example
showing how to configure three identical experiments with one concise block; simply tweak
the ‘experiment_count‘ or adjust the per-instance attributes in the ‘locals‘ map to scale up or
customize your setup.

terraform {
required_providers {
cloudlab = {
source = "pgrigo01/cloudlab"
version = "1.0.0"

}}}
provider "cloudlab" {
project = "UCY-CS499-DC"
credentials_path = "cloudlab-decrypted.pem"
browser= "chrome"

}
locals {
experiment_count = 3

}
Generate experiments 1 through experiment_count
You can adjust `aggregate`, `image`, `node_count`, etc. in the `for_each`

map below if needed.
resource "cloudlab_simple_experiment" "experiments" {
for_each = { for n in range(1, local.experiment_count + 1) :

"experiment${n}" => n }
name = each.key
routable_ip = true
image = "UBUNTU 24.04"
aggregate = "emulab.net"
node_count = 1

}

Listing 3.3: Example Terraform configuration

28

4 Design and Implementation

4.1 System Overview

Chapter 4 Page

4.1 System Overview 29
4.2 Provider and Flask Request Workflow 30
4.3 Flask API Service for CloudLab Integration 31
4.4 Terraform Provider Plugin Design (Go) 36
4.5 Selenium Automation of CloudLab Portal 42
4.6 Experiment Extension Algorithm 43
4.7 Summary 46

In this chapter, we present the architecture of the custom CloudLab Terraform provider sys-
tem. We describe the system components, their interactions, and the overall flow of control
when a user invokes Terraform to manage CloudLab resources. The architecture integrates the
concepts discussed in the previous chapter: Terraform’s plugin (provider) mechanism, a Flask-
based backend service, and Selenium-driven automation for the CloudLab portal. Figure 4.1
illustrates the high-level architecture, showing how Terraform, the provider plugin, the Flask
service, and CloudLab’s interfaces work together.

The Terraform CLI/Core communicates with the custom CloudLab provider (a Go plugin),
which in turn interacts with the CloudLab portal through a Python Flask API service. The Flask
service invokes CloudLab’s Portal API directly when possible, or uses Selenium to automate
the CloudLab web interface for operations not exposed via the API. CloudLab’s backend then
provisions or tears down the experiment resources accordingly, and status or results are returned
back up the chain.

29

Figure 4.1: System Overview

4.2 Provider and Flask Request Workflow

Rather than embedding CloudLab API logic directly in Go, our provider serializes each cre-
ate/delete call into an HTTP/JSON request and sends it to a local Flask service that will start
automatically when the first terraform apply command is executed. When Flask receives such
a request it dispatches to the correct handler and issues the corresponding CloudLab Portal API
call. For creation, Flask issues a start experiment request, then polls CloudLab’s status endpoint
every few seconds until the experiment reports Active (or an error). Then it returns the experi-
ment’s ID and any other metadata back to the provider, which updates Terraform’s state so that
Terraform only proceeds once provisioning actually succeeded.

When terraform destroy runs, the provider sends an HTTPDELETE to /experiments/id on Flask.
Flask calls CloudLab’s terminate API, polls until all experiments are fully torn down, and returns
success or error. The provider then removes the resources from ‘terraform.tfstate‘. Because
Terraform may operate on many resources in parallel, both the provider and the Flask service
are designed for safe concurrent requests.

Splitting responsibilities in this way keeps our provider plugin lightweight; it simply bridges
Terraform and our execution logic, while the Flask service handles all CloudLab-specific in-
teractions. That separation makes development and debugging much simpler (you can run and
test Flask independently of Terraform) and lets us enhance API calls, retry logic, or automation
strategies by updating only the Flask code. Architecturally, Terraform plus the provider form
the control plane (making high-level decisions), and Flask acts as the execution plane (driving
CloudLab). All communication happens over HTTP/JSON on localhost for maximum simplic-
ity, and performance is never a bottleneck compared to CloudLab’s own provisioning time.

30

4.3 Flask API Service for CloudLab Integration

One of the key architectural components of the system is a custom Flask-based web service that
bridges Terraform to the CloudLab platform. CloudLab does not have a complete public REST
API, thus we created this Flask API tool to serve as a middleman between Terraform provider
(written in Go) and CloudLab’s Portal Tools API to script experiment interactions [12] using
a lightweight Python HTTP layer [14]. The Flask service runs locally (on localhost:8080) and
exposes HTTP endpoints for experiment operations (creation, status query, and termination).By
means of these endpoints, the Terraform provider’s client code (Section 3.2.2) passes the com-
plexity of authentication and web interaction to the Flask layer. In this section, we describe the
design of the Flask API service, its endpoints, and its logic.

4.3.1 Design And Role

The Flask service is a lightweight web server (implemented in Python using the Flask micro
framework) that the provider launches on-demand. [14] When a Terraform operation (apply or
destroy) requires CloudLab interaction, the provider ensures the Flask service is running (using
the ensureFlaskRunning() method) and then issues an HTTP request to the appropriate endpoint.
By decoupling CloudLab-specific logic into this service, we keep the Go provider code simple,
the provider merely sends requests and handles responses, while the Flask service performs the
actual experiment orchestration (including any needed browser automation). This separation
also makes maintenance easier, as CloudLab-specific changes.

31

4.3.2 Why Implement Flask as a Server Instead of Script Invocation

At first glance it might seem simpler for our Go provider to execute:

python myscript.py

on each API call, but this approach runs into several practical limitations when integrated with
Terraform’s plugin architecture:

1. Avoidance of per-call startup costs. Spawning a new Python process on every request
incurs heavy overhead-creating a shell, launching the interpreter, parsing the script and its
dependencies. A long-running Flask server pays that cost only once at startup and then
serves each request almost immediately.

2. Connection setup and certificate caching. Each CloudLab XML-RPC call requires the
loading and parsing of the user’s X.509 certificate, the negotiation of a mutual TLS hand-
shake (including the handling of CloudLab’s non-standard AIA extension), and the con-
struction of a new HTTP client. Forking a Python process per call repeats this full crypto
and handshake cost, slowing down large Terraform plans and preventing any credential
caching. A persistent Flask process can load the certificate once, maintain an authenti-
cated session, and reuse its HTTP/XML-RPC client across dozens of Create/Read/Delete
calls.

3. Managing long-running workflows and retries. Real-world CloudLab operations often
block for tens of seconds (polling until an experiment is Active, retrying transient time-
outs, driving Selenium browser flows). Embedding those waits inside Terraform’s Cre-
ate/Delete handlers risks gRPC timeouts or deadlocks. Offloading blocking work to Flask
lets our Go plugin issue a single ’startExperiment’ HTTP request and either poll lightly
or return immediately, while Flask handles sleep loops, retries, and browser automation
behind the scenes.

4. Stateful coordination across resources. Terraform plans can create, update, and destroy
dozens of experiments in parallel, and workflows like our extension algorithm need global
state (e.g., “what is the latest expiry time across all active experiments?”). A single in-
memory Python process naturally holds shared state, via APScheduler jobs, CSV caches,
or internal maps, whereas isolated script invocations would scatter state on disk or require
complex inter-process communication.

5. Cleaner separation of concerns. Terraform’s Go plugin SDK excels at schema vali-
dation, state management, and resource graph orchestration, but lacks mature XML-RPC
tooling for CloudLab’s quirks (AIA extensions, legacy SHA-1 certs) and browser automa-
tion capabilities. By treating Flask as the “execution engine” (CloudLab logic, Selenium
scrapers, retry loops) and the Go provider as the ’control plane’ (Terraform schema, de-

32

pendency graphs, state reads/writes), each component stays small, focused, and easier to
maintain.

In short, running a dedicated Flask service provides persistent connections and certificate caching,
efficient handling of long-running tasks and retries, a natural home for shared, in-memory state,
and a clear modular separation, without forcing Terraform Core or our Go plugin to repeatedly
spawn heavyweight Python logic.

4.3.3 Authentication via User Certificate

An important job the Flask has to do is to handle CloudLab authentication securely. CloudLab
uses user X.509 certificates for programmatic access (as described in CloudLab’s ’Portal API’
documentation). To do this, the user supplies their CloudLab certificate (PEM file) path in the
Terraform provider configuration (credentials_path). The provider passes this certificate file to
the Flask service on each request . The Flask service then uses the certificate to authenticate
with CloudLab’s backend Portal API. In practice, the Flask code loads the PEM certificate to
establish a client-authenticated connection to CloudLab. This allows the service to invoke any
available CloudLab API endpoints (via an XML-RPC call using Python’s built-in xmlrpc.client
module [15]) on behalf of the user.

4.3.4 Flask Integration: Design Decisions

We opted for Flask to leverage CloudLab’s native Python automation SDK and Portal API di-
rectly avoiding any need to reimplement or wrap their tooling in another language. Because the
entire Portal Tools suite is Python-based, building our integration layer in Flask gave us seam-
less access to its functions. Building a Go HTTP server instead would have forced us to either
reimplement CloudLab’s API in Go or shell out to Python scripts-both of which add complexity
and invite subtle bugs.

In early attempts to eliminate Flask, we experimented with several Go libraries. We tried the
github.com/kolo/xmlrpc client and alternative parsers such as ZMap’s zcrypto/x509 package
[ZCrypto], hoping they would accept CloudLab’s unusual Authority Information Access (AIA)
extension (OID 2.25), which tells clients where to fetch issuer certificates. In every case, how-
ever, Go’s strict x509 parser refused to parse the AIA entry and couldn’t establish an authenti-
cated XML-RPC channel, since the server’s legacy SHA-1 signatures are now considered inse-
cure.

We then extracted the certificate and private key from CloudLab’s PEM bundle and generated
a new self-signed cert with SHA-256. Although this gave us a stronger signature (sha256), it
remained self-signed and therefore failed to connect to Emulab’s real CA. Pointing Go’s TLS

33

client at our modified bundle still broke the handshake, because the server continued to present
its official certificate.

In short, CloudLab’s combination of an unrecognized AIA extension plus a legacy SHA-1 sig-
nature is something Go simply refuses to accept. Python’s OpenSSL bindings, by contrast,
handle these certificates without complaint. By embedding our Terraform provider calls in a
lightweight Flask service, we offload all of the certificate handling, XML-RPC invocation, and
authentication to well-tested Python libraries—avoiding duplication of complex logic and en-
suring rock-solid integration with CloudLab’s standard workflow.

4.3.5 Endpoints

To bridge Terraform with CloudLab’s Portal API, our Flask service exposes three RESTful end-
points POST /experiment, GET /experiment, and DELETE /experiment which correspond
to starting a new experiment, polling its status, and terminating it, respectively. Each endpoint
accepts the user’s uploaded certificate and Terraform parameters, validates the required fields,
and configures an authenticated XML-RPC client against CloudLab’s control interface. It then
invokes the appropriate Portal API call, employs retry logic to mitigate intermittent timeouts,
and returns a clear HTTP response (or JSON payload) that Terraform uses to drive provisioning
decisions. This structure cleanly encapsulates all CloudLab-specific integration logic in Python,
leaving the Terraform provider focused solely on state management and workflow orchestration.

POST /experiment - startExperiment

• Extracts inputs: Reads the user’s uploaded certificate and the Terraform parameters.

• Validates required fields: Ensures both the CloudLab project and profile identifiers are
present; returns an error if either is missing.

• Configures theCloudLab client: Establishes a secure, authenticated connection to Cloud-
Lab’s control interface using the certificate.

• Launches the experiment: Sends the ’start experiment’ request to CloudLab, retrying a
few times to handle issues with timeout that the Portal API has sometimes before giving
a valid answer.

• Captures the experiment ID: Retrieves the new experiment’s unique identifier from the
response or via a quick status call if it’s not immediately available.

• Returns success or failure: Sends back a simple success message (including the exper-
iment’s UUID) or an error, which Terraform uses to determine provisioning outcome.

34

GET /experiment - experimentStatus

• Extracts inputs: Reads the user’s uploaded certificate and the Terraform parameters.

• Validates required fields: Ensures both the CloudLab project and profile identifiers are
present; returns an error if either is missing.

• Configures the CloudLab client: Establishes an EmulabXMLRPC connection using the
provided certificate.

• Retrieves status Calls api.experimentStatus until a valid response is returned.

• Returns status or error: On success, returns the raw ‘response.output‘ string and the
HTTP status mapped from the exit code.

DELETE /experiment - terminateExperiment

• Extracts inputs: Reads the user’s uploaded certificate and Terraform parameters.

• Normalizes experiment identifier: Ensures that the request’s ‘uuid‘ or the ‘project,experiment‘
combination is formatted correctly for the Portal API.

• Validates required fields: Confirms that both ‘proj‘ and either ‘uuid‘ or ‘experiment‘ are
present; returns 400 if missing.

• Configures the CloudLab client: Establishes an ‘EmulabXMLRPC‘ connection using
the provided certificate, with SSL verification disabled.

• Terminates the experiment by calling api.terminateExperiment.

• Returns success or failure: On first zero exit code, returns OK with HTTP 200, if all
retries fail, returns the mapped error message and its HTTP status code.

35

4.4 Terraform Provider Plugin Design (Go)

The CloudLab Terraform provider is implemented in Go with the Terraform Plugin SDK (v2)
from HashiCorp [16]. As a standard Terraform provider plugin, it encapsulates CloudLab’s
data model-projects, profiles, experiments, networks and exposes each as a first class Terraform
resource. This lets Terraform handle lifecycle (create, read, update, delete) and state manage-
ment automatically, just as it does for AWS, GCP, or Azure resources. Once published to the
Terraform Registry, users install it via terraform init and can reference resources like cloud-
lab_project in their plans.We can see the provider publication below:

Under the hood, the provider implements the SDK’s core -interfacesProvider, Resource, and
related ConfigureContextFunc/ValidateConfigFunc callbacks to manage configuration, CRUD
operations, and state file interactions. By conforming to these well defined interfaces, the code
remains modular and reusable: any future CloudLab resource simply needs its own Resource
implementation, and it slots straight into the provider without rewriting the plumbing.

TheCloudLab providermust authenticate to CloudLab on the user’s behalf using a PEM-encoded
client certificate. When users sign up for CloudLab, they download a .pem file that serves as
their identity for API calls. To streamline setup, we provide an install script that installs Go,
Terraform, and any Python/Flask dependencies, downloads the user’s encrypted credentials, de-
crypts them, and places the resulting .pem in your workspace. Our Terraform schema then
exposes this via a credentials_path attribute, so once your .pem is in place the provider knows
exactly where to find it.

Under the hood, when you run terraform apply, the provider will automatically launch its Flask-
based helper server if it isn’t already running, wait for that service to start, and then send all
API requests ,passing the credentials_path so the service can load the PEM and authenticate to
CloudLab. In addition to credentials_path, the schema also includes options for the CloudLab
project ID (project) and the headless browser (browser, either Chrome or Firefox) used to fetch
global state.

36

This is how our provider is defined as shown below:

terraform {
required_providers {
cloudlab = {
source = "pgrigo01/cloudlab"
version = "1.0.0"

}
}

}
provider "cloudlab" {
project = "UCY-CS499-DC"
credentials_path = "cloudlab-decrypted.pem"
browser = "chrome"

}

Listing 4.1: Example Terraform configuration

Under the hood, the provider plugin implementation follows Terraform’s standard CRUDpattern
for resources:

Create: If a user defines a cloudlab_simple_experiment resource, the provider’s Create
function sends a POST /experiment request to start a new experiment to the flask server.Then
it passes the user’s PEM certificate (via the credentials_path) and the parameters from the
Terraform schema. Our Flask endpoint then parses the XML-RPC response to Cloudlabs’ Portal
API, and returns either the newly assigned experiment ID or an error.

Read: The provider defines read (or refresh) logic to query CloudLab for the current state of
an experiment resource. The provider sends a GET /experiment call to fetch the experiment’s
status, so that Terraform can update its state file and remain aware of any out-of-band changes.

Update: True in-place updates in the CloudLab Terraform provider are not currently feasible
because CloudLab’s portal-tools and public API only support starting, querying, and terminat-
ing experiments - there is no updateExperiment endpoint to call. Terraform’s in-place update
lifecycle (the Update RPC) requires a corresponding remote API call, so without it the provider
must treat any changed argument as requiring full resource replacement. In practice, this means
using Terraform’s lifecycle meta-arguments (e.g., create_before_destroy) or to tear down and
recreate the experiment rather than update it in place.

Although CloudLab offers an experimental modifyExperimentAPI, we chose not to invoke it:
under the hood it still tears down and reconstructs most resources (so it is not a true live recon-
figuration), and it is not part of the stable, supported API, making its behavior unpredictable.

37

Instead, our OpenStack-based profile achieves elasticity by setting client.elastic = true
in the provider’s Configure phase. Each new cloudlab_openstack_experiment resource
then:

• Reuses the same pre-provisioned 100GB persistent dataset, and

• Joins the same VLAN on both control and compute networks.

Users scale out simply by addingmore cloudlab_openstack_experiment blocks-each launches
its own experiment, yet all share storage and networking seamlessly, without any in-place mod-
ifications to running experiments.

As a result, true elasticity is realized by provisioning additional experiments on demand rather
than mutating an existing one, preserving the familiar Terraform workflow: edit your HCL file,
run terraform apply, and the cluster grows automatically.

Delete: The provider’s Delete implementation triggers experiment termination on CloudLab (it
sends a DELETE /experiment request). This corresponds to the user terminating an experi-
ment, which the provider accomplishes via the CloudLab API.

38

4.4.1 Provider Implementation (provider.go)

The provider.go module defines the Terraform provider itself, the Go-based plugin that bridges
Terraform’s core engine with CloudLab. In its Provider() function and accompanying Config-
ureContextFunc, it declares the provider schema (project ID, PEM path, chosen browser) and
validates that each required field or environment variable is present. Once configured, it starts
a client that communicates with our Flask for all CloudLab interactions.

During terraform apply, Terraform invokes each resource’s CRUD callbacks as defined by the
Plugin SDK. The provider marshals HCL configuration into JSON requests, forwards them to
the Flask helper for execution (handling authentication, XML-RPC calls, retry loops, and any
browser automation), and then integrates the JSON responses back into Terraform’s state. Be-
cause all platform-specific logic lives in the Flask layer,provider.go remains concise and focused
on high-level orchestration. New CloudLab resource types can be added simply by implement-
ing a Go resource.Resource that plugs into this provider—no changes to the core plumbing are
required.

New() constructor: Returns the plugin version. When Terraform initializes the plugin, it calls
this function to create a provider instance. Capturing version here ensures consistent version
reporting across diagnostic output and registry queries.

func New(version string) func() provider.Provider {
return func() provider.Provider {

return &cloudlabProvider{
version: version,

}}}

Listing 4.2: Provider constructor in Go

Schema definition: We declare three top-level attributes:

• credentials_path (string, required, sensitive): file path to the user’s PEM certificate
for API auth. Marking it sensitive prevents it from leaking in logs.

• project (string, required, sensitive): the CloudLab project UUID under which experi-
ments run.

• browser (string, requiredwith validator): selects the automated browser to launch (Chrome
or Firefox).

39

https://github.com/pgrigo01/terraform-provider-cloudlab/blob/main/internal/provider/provider.go

func (p *cloudlabProvider) Schema(_ context.Context, _ provider.SchemaRequest,
resp *provider.SchemaResponse) {
resp.Schema = schema.Schema{

Attributes: map[string]schema.Attribute{
"credentials_path": schema.StringAttribute{

Required: true,
Sensitive: true,

},
"project": schema.StringAttribute{

Required: true,
Sensitive: true,

},
"browser": schema.StringAttribute{

Required: true,
Sensitive: false,

},},}}

Listing 4.3: Provider schema definition in Go

Configure() method:

First, we read the user’s configuration into a Go struct. Then we validate that required attributes
were not left ’unknown’ .In our case on our provider block we must define the credentials_path,
the browser and the project under which our experiments are running. After validating that none
of these attributes is missing we build and expose our CloudLab Client. Finally we tell terraform
what resources we offer.

40

4.4.2 Client Implementation (client.go)

client.go handles all communication between the Terraform provider and CloudLab.It starts the
flask server (using either Chrome or Firefox for automation), it forms requests with the appropri-
ate authentication, and parses answers. . It implements core operations like starting experiments,
checking their status, and terminating them.

We start by defining the Client struct. This struct holds two mutable runtime flags:

elastic (bool): When true, the client uses CloudLab’s default experiment profile. When false, it
switches to the OpenStack profile.

serverType : Specifies which Flask endpoint the client will communicate with.

func (c *Client) ensureFlaskRunning() Verifies the Flask helper is listening on port 8080; if
not, when terraform apply is run it starts the appropriate Python server script and waits for it to
become available.

func mapToJSON(data interface) () Transforms a Go value (map or struct) into a JSON-
formatted string, returning an error on failure.

func (c *Client) sendRequest() This function ensures Flask is running, constructs a multipart
form with top-level fields and a JSON “bindings” blob, attaches the credentials file, executes
the request, and returns the response body, status code, and any error.

func (c *Client) startExperiment() Wrapper that calls ‘sendRequest‘ with POST to create a
new experiment and returns the raw response or an error.

func (c *Client) terminateExperiment() Wrapper that calls ‘sendRequest‘ with DELETE to
terminate an experiment by its identifier.

func (c *Client) experimentStatus() Wrapper that calls ‘sendRequest‘ with GET to retrieve
experiment status, parses the plaintext response into a key/value map, and maps it to internal
status codes.

41

https://github.com/pgrigo01/terraform-provider-cloudlab/blob/main/internal/provider/client.go

4.5 Selenium Automation of CloudLab Portal

As described in Section 2.5, we leverage Selenium in two specialised ways to bridge gaps in
CloudLab’s Portal API:

We keep these browser-driven tasks strictly isolated in the Flask layer so that all other provision-
ing and lifecycle calls use the more robust CloudLab Portal Tools API. This hybrid approach
ensures that these missing functionalities from the official API are still handled programmati-
cally, without forcing UI-driving into everyday experiment management.

1. Automated Credential Management. Using the user’s portal username and password,
provided once via an environment variable or prompt, a headless browser session logs
into the CloudLab portal on provider initialization navigates to the account settings page
and downloads the X.509 certificate file (cloudlab.pem). The same script calls OpenSSL
to decode this file into cloudlab-decrypted.pem without human intervention, which our
Flask intermediary then uses for all later XML-RPC requests. The load and risk of hand
certificate handling is eliminated by this totally automated credential system.

2. Global State Reading. Periodically loads the dashboard ’My Experiments’ in the head-
less browser, sorts the table of active experiments (fields including Name, Profile, Status,
Created, and Expires), and writes the consolidated data into a local CSV.

We keep a clear separation between browser-driven chores and the main CloudLab automation
logic by restricting Selenium to these two roles-credential management and global state scraping,
and assigning all basic provisioning calls to our Flask API. Without depending on brittle UI-
driving for daily experiment lifecycle operations, this hybrid approach guarantees that every
required portal interaction is handled programmatically.

42

4.6 Experiment Extension Algorithm

To ensure that all active CloudLab experiments remain online for the duration of the longestr-
running experiment in a given project, we developed an Experiment Extension Algorithm. This
algorithm aperiodically checks the expiration times of all experiments, computes the latest ex-
piration timestamp, and automatically extends any experiment whose lifetime would otherwise
expire significantly earlier than that maximum. The following subsections describe its compo-
nents and workflow.

4.6.1 Overview

The goal of the extension algorithm is to reduce manual intervention in maintaining experiment
lifetimes. By aligning all experiments’ expiration times to the latest one, users can avoid unex-
pected terminations of experiments launched at different times. The algorithm operates in four
main phases:

1. Data Collection: Refresh the list of running experiments.

2. Expiration Update: Fetch and parse up-to-date expiration timestamps.

3. Decision Logic: Identify experiments needing extension based on a configurable thresh-
old.

4. Extension Execution: Invoke the CloudLab extension command with retry logic.

4.6.2 Data Collection and Expiration Update

In the first phase, we invoke the chromeExperimentCollector.getExperiments (or its Fire-
fox equivalent) to scrape the current list of experiments via the CloudLab portal. This updates a
local CSV file (cloudlab_experiments.csv) with each experiment’s metadata (project name,
experiment name, etc.).

Next, getCSVExperimentInfo.getCSVExperimentsExpireTimes reads that CSV and pro-
duces experiment_expire_times.csv, which includes a column of human-readable expira-
tion timestamps obtained from the portal API.

43

4.6.3 Parsing Timestamps

Each row of experiment_expire_times.csv contains a timestamp string. We use the helper
function

parse_expire_time(expire_str)

which parses:

• datetime.strptime(expire_str, "%Y-%m-%d %H:%M:%S")

All resulting datetime objects are normalized to UTC to allow correct comparison across time
zones.

4.6.4 Decision Logic

After loading the list of experiments and their parsed expiration times into memory, the algo-
rithm:

1. Computes
Tmax = max

e
{expire_time(e)}

where the maximum is taken over all experiments e.

2. For each experiment e with expiration time Te < Tmax, calculates the difference in hours

∆h =
Tmax − Te

1 hour
.

3. Compares∆h against a user-configurable threshold hthresh (default: 1.0 h). If∆h < hthresh,
the algorithm skips extension to avoid trivial adjustments.

4. Otherwise, computes the extension amount

H = ⌈∆h⌉

(rounding up to the next whole hour) and proceeds to the extension phase.

44

4.6.5 Extension Execution

For each selected experiment, the algorithm calls:

extendExperiment.extend_experiment(
project_and_name = "Project,ExperimentName",
hours_to_extend = H,
message = "Extending to match latest expiration"

)

This function wraps the CloudLab extendExperiment CLI command and implements:

• Retry Logic: Up to MAX_RETRIES (default 5) attempts with a RETRY_DELAY pause, to
handle transient SSL or network errors.

• Empty-Response Handling: Treats an empty stdout response as a successful extension.

• Error Reporting: Logs non-retryable errors and aborts further attempts for that experi-
ment if necessary.

4.6.6 Integration and Scheduling

The entire algorithm is exposed via the Flask intermediary API and invoked automatically by an
APScheduler background job every hour. This scheduler also refreshes experiment data on the
same interval, ensuring that any new experiments are enrolled in the extension process without
manual triggers. Together, these components provide a robust, hands-off solution for keeping
all CloudLab experiments within a project running synchronously until the last one terminates.

By implementing this algorithm, we achieve continuous alignment of experiment lifetimes, min-
imize the risk of premature terminations, and reduce the operational burden on researchers con-
ducting long-running multi-experiment studies.

45

4.7 Summary

To conclude this chapter, our thesis involved integrating several components to realize the cus-
tom CloudLab Terraform provider: Our approach started with a careful study of CloudLab’s
current systems. We looked at the manual portal, the XML-RPC API (portal tools), available
GENI client libraries, and portal-tools to determine which operations could be automated di-
rectly. This enabled us to pinpoint the main chores, experiment development, status monitoring,
renewal, and teardown, that could use the API as well as the edge-case interactions calling for
browser automation.

We then created a Terraform provider skeleton with Terraform’s Go SDK. We described Cloud-
Lab experiments and networks as resource types within the provider plugin, so capturing all
high-level state management and CRUD (Create, Read, Update, Delete) operations. Keeping
this logic in Go helped us to guarantee flawless integration with Terraform’s planning and apply
processes, so laying the foundation for offloading more difficult chores to outside assistants.

To handle certificate-based XML-RPC calls and other multipart operations where Python tool-
ing is more mature, we developed a minimal Flask web service to run alongside the Terraform
provider. This helper service exposes JSON-driven HTTP endpoints-such as /create-experiment
and /renew-that accept the necessary parameters and return the operation status or identifiers.
We use standard requests and XMLrpc modules in addition to already existing Python Cloud-
Lab/GENI client libraries within Flask to avoid having Go reimplementing authentication, disk-
image management, or polling logic. Most importantly, this separate process handles long-
running tasks such as waiting for an experiment to be ready, maintaining the Terraform thread
responsive, and preventing provider timeouts.

For the remaining interactions not covered by any API, specifically credential acquisition and
global state inspection, we integrated Selenium WebDriver into the Flask service. In a headless
browser session, Selenium logs into the CloudLab portal using environment-supplied creden-
tials, navigates to the account settings page, and programmatically downloads and decrypts the
X.509 certificate needed for XML-RPC authentication.Separately, it writes these data to a local
CSV after reading the ”My Experiments” dashboard at regular intervals and extracting experi-
ment metadata (including name, profile, status, creation, and expiration timestamps).

We produced a modular, maintainable design by precisely separating concerns: letting the Ter-
raform provider manage state, the Flask service run direct CloudLab operations in Python, and
Selenium handle some browser operations. This system allows us to keep the Go codebase
lean, prototype quickly, and independently improve every component. In the next chapter we
will show this three-tier architecture and follow a complete Terraform apply, demonstrating how
Terraform, Flask, and Selenium cooperate to control a CloudLab experiment lifecycle.

46

5 Evaluation

Chapter 5 Page

5.1 Cloudlab Web vs Terraform Provider 47
5.2 Experimental Results 48
5.3 Discussion 50

5.1 Cloudlab Web vs Terraform Provider

In this section, we present an evaluation of our Terraform-based CloudLab provider against the
native CloudLab Web interface. We show the trade-offs that accompany each method by look-
ing at how a single Terraform command simplifies deployment and teardown relative to manual
portal interactions, evaluating the learning curve and user guidance given by HCL against the
CloudLab GUI, and measuring consistency and responsiveness under both workflows. Our goal
is to show not only where Terraform offers clear advantages, but also where the CloudLab Web
interface remains more intuitive or flexible in some cases.

From the comparisons below , it is clear that when automation, repeatability, and perfornance
are top concerns, Terraform for CloudLab excels. It drastically reduces repetitive tasks and
possible discrepancies in the execution of tests at the expense of requiring users to implement
an Infrastructure as Code (IaC) approach and set up the necessary tools. The CloudLab portal
remains a handy choice for one-time, brief uses or for using features not yet accessible via the
provider of Terraform. Actually, we see power users using Terraform for the bulk of their work-
flow, particularly with regard to iterative experiments and resource coordination among several
sites, perhaps sometimes using the CloudLab GUI for particular chores (such as debugging or
profile production) as necessary.

47

Table 5.1: Comparison of Terraform and CloudLab Web

Aspect Terraform CloudLab Web

Pros Cons Pros Cons

Automation One-command
deployment
and teardown.

Requires setup
of Terraform and
environment.

No setup needed
beyond a web
browser.

Manual clicks
for each action;
cannot easily

automate sequence.
Ease of Use Once written,

HCL + plan/apply
guides you and
avoids mistakes.

Steeper learning
curve for Terraform
syntax and state.

Intuitive GUI for
those unfamiliar
with IaC tools;
immediate visual
feedback (progress

bars, etc.).

Repetitive for
frequent tasks,

prone to misclicks
(e.g., clicking
wrong profile).

Repeatability Code versioning
and shareable con-
figs yield identical
reprovisions.

State drift if
configs/state not
managed carefully.

Profiles en-
sure consistent
environments.

Each instantiation
is manual; no

bulk-run support.

Performance Faster when
creating multiple
experiments.

Limited live
feedback; must
wait for final
CLI prompt.

Portal interactions
are responsive; user
perceives progress

in real time.

Users often
idle waiting
for provision.

Scalability Code can define
many experiments

or complex
topologies in
one config.

Very large HCL
files can be hard
to maintain.

Supports more pro-
files/topologies to
create experiments.

Scaling multiple
experiments

remains manual and
time-consuming.

5.2 Experimental Results

To evaluate the performance of the Terraform-based CloudLab provider against the traditional
CloudLab web interface, a series of benchmarks were performed that involved multiple ex-
periment deployments. The goal was to assess the system’s behavior both when provisioning
experiments sequentially and in batch mode, simulating realistic user workflows.

48

5.2.1 Parallel Experiment Provisioning

When Terraform provisions experiments in parallel, it issues multiple create requests concur-
rently. This approach significantly reduces the overall time required to bring a batch of exper-
iments online, as the operations proceed independently after an initial setup phase. In contrast,
the CloudLab web interface requires users to submit experiments one at a time. Each submission
must be completed and become fully operational before the next can be started. As a result, the
total time required to create a series of experiments using the UI increases proportionally with
the number of experiments.

The Terraform provider’s ability to manage multiple experiments concurrently results in a no-
ticeable improvement in provisioning efficiency. However, the time at which each individual
experiment completes can vary depending on site load, image availability, and other backend
conditions. This variance is a trade-off for the gain in aggregate throughput.

5.2.2 Sequential Per Experiment Provisioning

To compare the provisioning behavior of one-to-one experiments, both methods were tested un-
der sequential conditions. In this mode, Terraform was configured to handle one experiment
at a time, replicating the same workflow as the UI. Under these circumstances, both provision-
ing methods exhibited comparable completion times. Terraform consistently completed exper-
iments with minimal delay and demonstrated similar or slightly better stability between runs
compared to the UI. This suggests that for users deploying a single experiment, such as for
debugging or small-scale testing, both Terraform and the CloudLab interface offer reliable pro-
visioning performance. Terraform, however, retains the advantage of automation, repeatability,
and integration into Infrastructure As Code workflows.

To further quantify this performance difference, time-based benchmarks were conducted com-
paring the two approaches, from single experiment deployments up to 40 concurrent instances.
The results show that Terraform consistently outperforms the CloudLab web interface, espe-
cially in batch provisioning scenarios. For example, provisioning 40 experiments using Ter-
raform took less than 3 minutes, while the CloudLab website, even with a best-case estimate of
30 seconds per experiment, required around 20 minutes. This highlights Terraform’s significant
time efficiency and scalability benefits, making it the preferred tool for large-scale or automated
experimental workflows.

49

Figure 5.1: Time Comparison

5.3 Discussion

Provisioning Strategy and Performance. Terraform’s parallel provisioning model offers sub-
stantial performance benefits when launching multiple experiments. This approach minimizes
user waiting time and improves system responsiveness, especially for workflows involving mul-
tiple concurrent deployments. However, when provisioning is performed sequentially, both the
UI and Terraform exhibit similar response times, indicating parity in single-instance use cases.

Consistency andVariability. While parallel provisioning with Terraform introduces some vari-
ability in individual experiment completion times, this behavior is expected due to asynchronous
resource allocation and differing backend site conditions. Despite this, the total provisioning du-
ration remains significantly shorter than the sequential alternatives.

Usability and Automation. One of the key benefits of Terraform lies in its automation and re-
producibility. Users can define the infrastructure declaratively and version their configurations,
which is not possible through the manual UI process. This makes Terraform more suitable for
large-scale, repeatable experiments and collaborative environments.

50

6 Limitations

Chapter 6 Page

6.1 CloudLab Platform Limitations 51
6.2 Go Limitations 52

6.1 CloudLab Platform Limitations

Experiment Elasticity andModification: CloudLab’s approach to experiments emphasizes fixed,
repeatable environments over dynamic elasticity. Once an experiment is instantiated, it is not
trivial to change its resource allocation without terminating and re-instantiating. This contrasts
with public clouds where one can often resize or scale resources on the fly. Our Terraform
provider inherits this limitation. For instance, if a user wishes to scale up a CloudLab exper-
iment by adding nodes via Terraform, the provider cannot simply call an API to add a node;
instead, the user must modify the Terraform configuration (e.g., increase a count) which will
cause Terraform to delete and recreate the experiment. This leads to experiment downtime and
is less seamless than scaling a typical cloud deployment. In Terraform, we mark such changes
as requiring replacement rather than in-place update. This behavior is aligned with CloudLab’s
design (complete environment descriptions), but this means that our provider does not support
incremental changes to a running experiment. It is a fundamental limitation rooted in Cloud-
Lab’s less elastic nature.

Authentication and Security Constraints: CloudLab’s authentication via user certificates is pow-
erful but also cumbersome. The need to handle a private key and certificate means that our
provider requires careful Authentication and Security Constraints: CloudLab authenticates API
requests using the X.509 user certificate.

While this is secure, it complicates the usage of our provider. The user must securely provide
their certificate and key, and our system must handle them. Unlike cloud providers where Ter-
raform can use short-lived API tokens or integrate with cloud SSO, CloudLab’s certificate is a
long-lived credential that needs careful handling. Wemitigated this by not embedding the certifi-
cate in Terraform state (we only store its file path), but the approach still requires the certificate
file to be present on disk. This could be a limitation in environments like Terraform Cloud or
remote execution, where providing a file securely is non-trivial. Furthermore, any compromise
of the machine running the Terraform provider (or the Flask service) could potentially expose
the user’s CloudLab credentials. We have not implemented additional security layers (such as
prompting for a password to decrypt the certificate); doing so would break non-interactive au-

51

tomation. Thus, the onus is on the user to protect the certificate file. This limitation inherits
CloudLab’s authentication mechanism and contrasts with many Terraform providers that use
revocable API keys.

6.2 Go Limitations

Terraform providers are compiled Go binaries that Terraform Core loads to manage the in-
frastructure. However, CloudLab’s control API is implemented in Python and communicates
through XML-RPC-sending and receiving XML-formatted function calls over the network. Al-
though Go offers some XML-RPC libraries, none support the features required by CloudLab’s
existing Python client. As a result, a direct Go-to-CloudLab connection would miss important
capabilities, leading to errors or unsupported operations [17, 18].

To bridge this gap, an intermediary service is written in Python. When the Terraform provider
(in Go) needs to perform an action on CloudLab, it sends a simple request- over HTTP to the
Python bridge. This intermediary then translates the request into the precise XML-RPC calls
that CloudLab’s API expects, invoking the necessary Python client functions. Once CloudLab
responds, the bridge converts the XML-RPC reply back into a straightforward format (such as
JSON) and returns it to the Go provider.

By introducing this Python bridge, you get the best of both worlds: the performance, type safety,
and concurrency features of Go for your Terraform provider, and the full, battle-tested capabili-
ties of CloudLab’s Python XML-RPC client. Terraform itself never sees the Python code; it only
interacts with the Go binary, preserving a clean separation of concerns and a standard Terraform
workflow.

In the future, one might develop an XMLRPC library in Go that supports the certificate used
by Cloudlab (which is using an older encryption algorithm) and is not considered safe by Go
libraries. However, now the intermediary Python API offers a maintainable solution to ensure
seamless integration between a Go-based Terraform provider and the Python-based CloudLab
API.

52

7 Conclusions

Chapter 7 Page

7.1 Conclusion 53
7.2 Future Work 54

7.1 Conclusion

In this thesis, we have presented the design and implementation of a fully featured Terraform
provider for CloudLab, moving beyond the simple VM-creation prototype of previous work.
By introducing two core resource types, cloudlab_simple_experiment for arbitrarily-sizedmulti-
node clusters with optional blockstore volumes, and cloudlab_openstack_experiment for turnkey
OpenStack deployments with persistent shared storage, we have enabled researchers to manage
complex bare-metal and virtualized testbeds declaratively.

We use a lightweight Flask-based intermediary to handle authentication, XML-RPC interac-
tions, and browser automation (via Selenium) for credential retrieval and global state scraping.
This decoupling keeps the Go provider lean, while Python handles CloudLab’s legacy certifi-
cate quirks and UI gaps. We have further automated lifecycle management with a background
experiment-extension scheduler that aligns all active experiments’ lifetimes, reducing manual
intervention and preventing premature terminations.

Overall, this work demonstrates that CloudLab experiments can be first-class Terraform resources—
fully automated, version-controlled, and composable with other cloud platforms. Researchers
can now define, provision, and tear down entire experimental environments in a single Ter-
raform workflow, achieving unprecedented reproducibility, scalability, and integration potential
in cloud infrastructure research.

53

7.2 Future Work

• Replacing the Flask server: Replace the Python intermediary with a Go-native XML-
RPC client that supports CloudLab’s AIA extensions and legacy signatures, removing
external dependencies and simplifying deployment. Right nowGo lacks an official library
that fully supports all the functionalities of Python’s XMLRPC. Maybe in the future there
will be better support for the legacy algorithm SHA1 the cloudlab.pem uses.

• Expanded Profile Library: Addmore Terraform resources for additional CloudLab pro-
files (e.g., Kubernetes, Hadoop, GPU-accelerated nodes), enabling richer experimentation
workflows directly from HCL.

• In-placeUpdate Functionality (conditional): Design and implement an updateExperiment
capability in the Terraform provider to allow modifying existing experiments without
recreation. This will require CloudLabs’ Portal Tool API [12] to expose a corresponding
updateExperiment API endpoint-until then, most changes must continue to be handled
via resource replacement.

54

BIBLIOGRAPHY

[1] Spacelift, “Terraform architecture,” https://spacelift.io/blog/terraform-architecture, 2024,
accessed: 2025-05-09.

[2] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller, M. Hibler,
D. Johnson, K.Webb, A. Akella, K.-C.Wang, G. Ricart, L. Landweber, C. Elliott, M. Zink,
E. Cecchet, S. S. Kar, and P. Mishra, “The design and operation of CloudLab,” in Proc.
USENIX Annual Technical Conference (ATC), 2019, pp. 1–14.

[3] CloudLab, “CloudLab user documentation,” [Online]. Available: https://docs.cloudlab.
us/, accessed: May 2025.

[4] G. Panis, “Managing cloudlab infrastructure with terraform,” Bachelor’s thesis, University
of Cyprus, Nicosia, Cyprus, 2024, undergraduate thesis submitted to the Department of
Computer Science, University of Cyprus.

[5] Johnson, D., “openstack-build-ubuntu,” https://gitlab.flux.utah.edu/johnsond/openstack-
build-ubuntu.git, 2025, gitLab repository, accessed 2025-05-13.

[6] Wikipedia contributors, “Infrastructure as Code,” https : / / en . wikipedia . org / wiki /
Infrastructure_as_code, 2025, [Online; accessed 18-May-2025].

[7] HashiCorp, “Terraform official website and documentation,” [Online]. Available: https:
//www.terraform.io, accessed: May 2025.

[8] ——, “Terraform provider development documentation (sdk v2),” [Online]. Available:
https://developer.hashicorp.com/terraform/plugin, 2023, accessed: May 2025.

[9] ——, “aws_instance resource,” https://registry.terraform.io/providers/hashicorp/aws/
latest/docs/resources/instance, 2025, [Online; accessed 18-May-2025].

[10] Amazon Web Services, “Amazon Simple Storage Service (S3),” https://aws.amazon.com/
s3/, 2025, [Online; accessed 18-May-2025].

[11] Selenium Project, “Selenium webdriver documentation,” [Online]. Available: https://
www.selenium.dev/documentation, accessed: May 2025.

[12] L. Stoller, “Portal tools for CloudLab,” GitLab repository. [Online]. Available: https://
gitlab.flux.utah.edu/stoller/portal-tools, 2019, accessed: May 2025.

[13] UserLand Software, “XML-RPC specification,” [Online]. Available: http://xmlrpc.com/
spec.md, 1999, accessed: May 2025.

[14] Pallets Projects, “Flask web framework documentation,” [Online]. Available: https://flask.
palletsprojects.com/, accessed: May 2025.

55

https://spacelift.io/blog/terraform-architecture
https://docs.cloudlab.us/
https://docs.cloudlab.us/
https://gitlab.flux.utah.edu/johnsond/openstack-build-ubuntu.git
https://gitlab.flux.utah.edu/johnsond/openstack-build-ubuntu.git
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://www.terraform.io
https://www.terraform.io
https://developer.hashicorp.com/terraform/plugin
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.selenium.dev/documentation
https://www.selenium.dev/documentation
https://gitlab.flux.utah.edu/stoller/portal-tools
https://gitlab.flux.utah.edu/stoller/portal-tools
http://xmlrpc.com/spec.md
http://xmlrpc.com/spec.md
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/

[15] Python Software Foundation, “The xmlrpc.client module (python 3 documentation),”
[Online]. Available: https://docs.python.org/3/library/xmlrpc.client.html, accessed: May
2025.

[16] HashiCorp, “Terraform plugin sdk v2 guidelines,” [Online]. Available: https://developer.
hashicorp.com/terraform/plugin/sdkv2, 2023, accessed: May 2025.

[17] kolo, “xmlrpc: A Go XML-RPC client library,” https://github.com/kolo/xmlrpc, 2025,
[Online; accessed 18-May-2025].

[18] The Go Authors, “crypto/x509 package,” https://pkg.go.dev/crypto/x509, 2025, [Online;
accessed 18-May-2025].

56

https://docs.python.org/3/library/xmlrpc.client.html
https://developer.hashicorp.com/terraform/plugin/sdkv2
https://developer.hashicorp.com/terraform/plugin/sdkv2
https://github.com/kolo/xmlrpc
https://pkg.go.dev/crypto/x509

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	Introduction
	Motivation and problem description
	Aims and Objectives
	Contributions
	Structure of the Thesis

	Background
	CloudLab Testbed Overview
	Infrastructure as Code and Terraform
	Terraform Providers Concept
	Flask Web Framework
	Selenium for Web Automation
	CloudLab Portal Tools API

	Usage
	Prerequisites and Setup
	Overview of our CloudLab Resources
	cloudlab_simple_experiment Resource (cloudlab_vm.go)
	cloudlab_openstack_experiment Resource (elastic_vm.go)
	CloudLab Profiles and Resources

	Simpler example of creating multiple similar experiments

	Design and Implementation
	System Overview
	Provider and Flask Request Workflow
	Flask API Service for CloudLab Integration
	Design And Role
	Why Implement Flask as a Server Instead of Script Invocation
	Authentication via User Certificate
	Flask Integration: Design Decisions
	Endpoints

	Terraform Provider Plugin Design (Go)
	Provider Implementation (provider.go)
	Client Implementation (client.go)

	Selenium Automation of CloudLab Portal
	Experiment Extension Algorithm
	Overview
	Data Collection and Expiration Update
	Parsing Timestamps
	Decision Logic
	Extension Execution
	Integration and Scheduling

	Summary

	Evaluation
	Cloudlab Web vs Terraform Provider
	Experimental Results
	Parallel Experiment Provisioning
	Sequential Per Experiment Provisioning

	Discussion

	Limitations
	CloudLab Platform Limitations
	Go Limitations

	Conclusions
	Conclusion
	Future Work

	BIBLIOGRAPHY

