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ABSTRACT 

Motion capture (MoCap) is a widely used technique for capturing and analysing human 

movement in applications such as animation, gaming, and biomechanics. However, raw 

motion capture data often contains noise, marker occlusions, and inconsistencies—issues that 

are especially pronounced in expressive, high-energy movements such as dance. This thesis 

focuses on reconstructing and cleaning dance motion sequences from the DanceDB dataset 

using the MoCap-Solver, a deep learning-based motion reconstruction framework. 

 

While the initial objective was to clean the dance data using the MoCap-Solver, the scope of 

the project expanded to develop a complete pipeline for processing and visualizing motion 

data. The final system includes: generating SMPL models from raw C3D files using 

MoSh++, converting SMPL sequences to BVH format, and visualizing the cleaned and 

reconstructed motions in Blender using three different methods—marker-based views, BVH 

skeleton animations, and SMPL mesh representations. 

 

The results demonstrate that the MoCap-Solver significantly improves motion quality by 

reducing noise and enhancing joint stability. However, some limitations such as global body 

trembling and minor instability in hand motion were observed. Despite these issues, the 

toolbox developed in this thesis provides a functional and flexible workflow for cleaning and 

visualizing complex dance motions, and can serve as a foundation for future motion capture 

research and applications. 
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Chapter 1 

 

Introduction 

 

 

1.1 Background and Motivation         7 

1.2 Thesis Objective            8 

1.3 Significance of the Work          9 

 

 

 

1.1 Background and motivation 

 

Motion capture (MoCap) is a widely-used technique in fields such as computer animation, 

game development, and biomechanics. By recording the movement of human performers 

using specialized tracking systems, MoCap provides detailed motion data that can be applied 

to digital characters or analysed for research purposes. However, raw motion capture data—

particularly from optical systems using physical markers—is often noisy, incomplete, or 

imprecise. These issues are especially pronounced in fast, expressive movements such as 

dance, where occlusions, marker swaps, and sudden accelerations can lead to data artifacts. 

Dance data, in particular, presents unique challenges. Unlike controlled or repetitive actions, 

dance involves dynamic full-body motions, rapid transitions, and a high degree of 

expressiveness. These characteristics make it more prone to capture errors and harder to clean 

using traditional methods. High-quality, realistic dance animations require smooth, 

anatomically consistent motion data, which is often not achievable directly from raw capture 

sessions. 

 

To address this, recent research has proposed neural motion reconstruction tools such as the 

MoCap-Solver, a deep learning-based system developed by NetEase Games and Tsinghua 

University. This tool is designed to reconstruct clean motion from noisy input markers by 

learning spatial and temporal motion patterns. It uses inverse kinematics and data-driven 

priors to generate high-quality skeletal motion sequences that align closely with realistic 

human movement.  
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The original motivation for this thesis was to use the MoCap-Solver to reconstruct and clean 

dance motion sequences from the DanceDB dataset collection of captured dance 

performances. However, as the project progressed, it became evident that a more complete 

motion processing pipeline was needed to handle the various steps involved in data cleaning, 

SMPL model creation, format conversion, and visualization. As a result, the scope of the 

thesis evolved into developing a toolbox of capabilities for handling motion capture data—

from raw marker input to clean, visualized human motion. 

 

1.2 Thesis Objective 

 

The initial objective of this thesis was to reconstruct and clean dance motion sequences from 

the DanceDB dataset using the MoCap-Solver. DanceDB contains complex and expressive 

full-body motions that are particularly susceptible to common motion capture issues such as 

jitter, marker occlusion, and inconsistency in joint trajectories. By applying the MoCap-

Solver to these sequences, the goal was to enhance the realism and smoothness of the 

captured motions, making them suitable for use in animation and other motion-driven 

applications. 

 

As the work progressed, the scope of the thesis naturally expanded. Beyond cleaning motion 

sequences, there was a clear need to create a functional and modular pipeline for working 

with motion capture data in various forms. This led to the development of a broader toolbox 

that integrates several critical components for motion processing, transformation, and 

visualization. 

 

The final objectives of the thesis can be summarized as follows: 

 

• Apply the MoCap-Solver to noisy dance sequences from DanceDB in order to 

reconstruct clean skeletal motion. 

 

• Generate SMPL models from raw C3D motion capture files using the MoSh++ fitting 

tool. 

 

• Convert SMPL sequences to BVH format for compatibility with standard animation 

tools. 
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• Visualize the motion data using three methods in Blender: marker and joint 

visualization, BVH-based skeleton animation, and SMPL mesh animation. 

 

• Evaluate and compare the outputs at each stage to assess motion quality, consistency, 

and visual realism. 

 

In doing so, this thesis not only addresses the problem of cleaning complex dance motion but 

also establishes a reusable pipeline for future motion capture projects involving SMPL 

modelling and visualization. 
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Figure1: Overview of the full motion processing pipeline developed in this thesis. 

Each module is annotated with the corresponding chapter or subchapter number. The pipeline starts from raw 

C3D motion capture files (DanceDB) and proceeds through labelling, SMPL model fitting, motion 

reconstruction with the MoCap-Solver, and finally visualization in Blender through three different formats 

(markers, BVH, SMPL). 

 

 

1.3 Significance of the Work 

 

This thesis contributes both a targeted application and a broader practical framework for 

working with motion capture data, particularly in the context of expressive dance motion. 

While the original focus was on using the MoCap-Solver to clean noisy motion sequences, 

the work evolved into building a modular and extensible pipeline that integrates motion 

reconstruction, SMPL model generation, format conversion, and visualization. 

 

One of the key contributions of this thesis is the demonstration of how existing tools—such 

as the MoCap-Solver, MoSh++, and Blender visualization add-ons—can be combined into a 

functional workflow for motion clean-up and analysis. This is especially relevant for datasets 

like DanceDB, where the complexity of the motion introduces significant challenges that 

cannot be addressed by a single tool in isolation. 

 

By validating the reconstruction of motion through both numerical evaluation and visual 

inspection, the thesis shows not only that the data can be cleaned, but that the cleaned results 

are meaningful, realistic, and suitable for reuse in animation or further analysis. The 

comparisons between raw and cleaned data, as well as between SMPL sequences generated 

using MoSh++ and those in the AMASS dataset, provide practical insight into the quality and 

reliability of these tools. 

 

Furthermore, the ability to visualize the motion using multiple approaches—including 

marker-based views, skeletal BVH animations, and fully rendered SMPL meshes—offers 

flexibility for different end-user needs. This toolbox can serve as a foundation for future 

research or production environments that require robust motion capture pre-processing and 

visualization, especially for motion types that are non-repetitive and detail-sensitive, such as 

dance. 
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Chapter 2 

 

Mosh++ 

 

 

2.1 Mosh++            11 

 3.1.1 Mosh          11 

2.2 SOMA            11 

 2.2.1 SOMA for unlabeled mocap point cloud     12 

2.3 SMPL           12 

2.4 C3D TO SMPL          13 

 2.4.1 DanceDB C3D         13 

 2.4.2 MoCap-Solver Results C3D       14 

 

 

 

2.1  Mosh++ 

 

Mosh++ is powerful tool for taking a c3d file (a file that contains that contain all the 

information needed to read, display, and analyze 3D motion data) and turning it into an 

SMPL model. This tool is useful for our work because the MoCap-Solver works only with 

SMPL models and the animation sessions that DanceDB is doing are stored in c3d files. This 

tool is an upgrade of the mosh. 

 

2.1.1  Mosh 

 

Mosh stands for Motion and Shape Capture from Sparse Markers and automatically extracts 

this detail from mocap data. Mosh estimates body shape and pose together using sparse 

marker data by exploiting a parametric model of the human body.  

 

 2.2 SOMA 

 

For MoSh++ to operate correctly, it requires close integration with the SOMA (Solving 

Optical MoCap Automatically) tool. SOMA is a neural network-based model designed to 

process raw motion capture point cloud data (typically in .c3d or .pkl format), even when the 
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number of markers varies. It assigns marker labels at scale, without the need for calibration 

data or prior knowledge of the capture system. This independence from specific mocap 

hardware and the minimal human intervention it requires make SOMA a powerful pre-

processing step for converting raw data into structured motion formats. 

 

2.2.1 SOMA for unlabeled mocap point cloud 

 

In many cases, motion capture point clouds either lack marker labels entirely or use naming 

conventions that differ from those expected by SOMA and MoSh++. Fortunately, this does 

not present a major obstacle. The developers of SOMA trained their model on a superset of 

89 commonly used marker positions, covering a wide range of marker configurations found 

in commercial and research-grade mocap setups. As a result, SOMA is capable of assigning 

correct semantic labels to markers in unlabeled or unfamiliar layouts, automatically matching 

them to their anatomically correct positions. Once the point cloud is labeled, it can also be 

used to fine-tune or train a new SOMA model, which can then label future motion capture 

sessions recorded with the same marker layout — requiring only a small amount of additional 

time and effort. Importantly, the labeled point cloud produced by SOMA can be used directly 

as input to MoSh++, allowing the marker data to be fit to an SMPL model and exported in a 

consistent mesh format for further use. 

 

2.3 SMPL 

 

An SMPL, a Skinned Multi-Person Linear model, is a realistic 3D model that is based on 

blend shapes and skinning of the human body. It’s created from thousands of 3D body scans. 

Since each marker can represent a location on the mesh surface of the body, an SMPL can 

help obtain information such as pose and shape from Motion Capture markers. The downside 

of this, is that it’s prone to noise and error. Since the body shapes of the human are usually 

different, or the fact that MoCap suits have different placement for markers, there is an 

unreliable factor when trying to map the two together. 
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Figure 2: SMPL model. (a) Template mesh with blend weights indicated by color and joints 

shown in white. (b) With identity-driven blend shape contribution only; vertex and joint 

locations are linear in shape vector . (c) With the addition of pose blend shapes in preparation 

for the split pose; note the expansion of the hips. (d) Deformed vertices reposed by dual 

quaternion skinning for the split pose. 

 

 

2.4 C3D TO SMPL 

 

As mentioned earlier, the DanceDB dataset stores its motion capture sessions in the C3D 

format, and one of the goals of this thesis is to convert these sessions into SMPL models 

using MoSh++. However, this is not the only reason for using MoSh++ in this project. We 

also use it to convert the outputs of the MoCap-Solver back into SMPL format, allowing us to 

visually compare the cleaned results side by side with the original SMPL models—before the 

motion reconstruction process was applied. 

 

2.4.1 DanceDB C3D 

 

The marker labels used in the DanceDB dataset differ significantly from those expected by 

SOMA and MoSh++. For example, DanceDB uses generic labels such as Marker1, Marker2, 

etc., which are not standard anatomical labels and do not indicate the specific body part to 

which each marker belongs. As a result, these labels are not immediately compatible with 

MoSh++ or SOMA. 

 

To address this, we used the pretrained SOMA model, which is based on a superset of 89 

common marker positions, to automatically relabel the markers in DanceDB files. This 

process allows us to identify and assign appropriate anatomical labels to each marker. Once 

relabelled, the new C3D files can either be: 
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• used directly with MoSh++ to generate SMPL models, or 

 

• used to train a custom SOMA model that matches the DanceDB marker layout, 

enabling fast, automatic labelling of all future sessions with minimal effort. 

 

This pre-processing step is essential to ensure compatibility with the SMPL fitting pipeline 

and to maintain consistency across sessions. 

 

2.4.2 MoCap-Solver Results C3D 

 

In this section, we describe how the output of the MoCap-Solver was converted into SMPL 

models. The solver produces predicted marker positions, which were first saved into a text 

file. A simple script was then used to convert these coordinates into C3D format, enabling 

further processing. 

 

Fortunately, the marker labels used by the MoCap-Solver were mostly standard and already 

recognized by SOMA and MoSh++, requiring little to no additional relabelling. With the 

labelled C3D file prepared, we proceeded to run it through MoSh++ to generate the 

corresponding SMPL sequence. 

 

However, one limitation encountered was that MoSh++ currently runs only on the CPU, 

which made the fitting process relatively slow. As a result, we did not process the full-length 

dance sequences but selected shorter segments to evaluate the results. Despite the limited 

scope, the generated SMPL models were visually accurate and well-formed, although a few 

minor flaws were observed, which will be discussed in the following chapters. 
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MoCap-Solver 

 

3.1 MoCap-Solver          15 

3.2 Data Generation          16 

 3.2.1 Real-time Data         16 

 3.2.2 Synthetic Data         17 

3.3 Training           18 

3.3.1 Training Time         18 

3.3.2 Training Dataset         18 

3.4 Evaluation           19 

 3.4.1 CMU Evaluation        20 

 3.4.2 DanceDB Evaluation        20 

 

 

3.1 MoCap-Solver 

MoCap-Solver is a deep learning-based tool developed through a collaboration between 

NetEase Games and Tsinghua University. Its primary function is to process raw motion 

capture data—often noisy or incomplete due to marker occlusion or tracking inaccuracies—

and convert it into high-quality, clean skeletal animations. By leveraging neural networks and 

principles such as inverse kinematics and temporal smoothing, the solver reconstructs 

plausible human motion that aligns closely with realistic movement patterns. One of the core 

motivations behind MoCap-Solver is to provide an automated, data-driven solution to a task 

that traditionally requires significant manual effort and domain expertise. The algorithm 

operates by mapping noisy marker positions to clean skeletal joint trajectories, producing 

animations that are not only visually coherent but also physically plausible. MoCap-Solver 

supports different skeletal models and can be adapted to datasets with varying marker 

configurations. This works in our favour because we have 38 markers, in contrast with the 

number of the markers they used for their paper which was 41. The performance of the solver 

is evaluated both on synthetic and real-world motion capture sequences to demonstrate its 

generalization capabilities. 
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3.2 Data Generation 

 

In order to train and evaluate the MoCap-Solver effectively, it is essential to prepare the input 

data in a consistent and well-structured format. The MoCap-Solver can operate on two main 

types of data: real-time data and synthetic data. Real-time data refers to motion capture 

sequences acquired directly from optical motion capture systems during live recording 

sessions. In contrast, synthetic data is generated by simulating marker positions based on 

clean motion sequences from existing datasets. For the purposes of this thesis, the focus is 

placed on the use of synthetic data. This approach offers a controlled training environment, 

allowing the model to learn the mapping between noisy and clean motion in a more 

structured way, without the unpredictable characteristics often present in real-world 

recordings. 

 

3.2.1 Real-time Data 

 

To train the MoCap-Solver with real-time data, each motion capture sequence must be 

structured into the following three components: 

• Raw Data: The unprocessed marker animations captured directly by the optical 

motion capture system. 

• Clean Data: The corresponding ground-truth skinned mesh animation, which 

includes clean markers and consistent skeleton animation. All skeletons across 

sequences must be homogeneous, meaning they should have the same number of 

joints and identical hierarchical structures. Clean markers must be properly skinned to 

the skeletons, and the skinning weights should remain consistent across all sequences. 

• Bind Pose: A reference pose that defines the initial (rest) position of the skeleton and 

its associated markers before any animation is applied. 
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3.2.2 Synthetic Data 

 

The developers of the MoCap-Solver provided a script that generates synthetic datasets from 

motion sequences in the AMASS database. This script prepares the data required for training, 

evaluation, and testing. The AMASS datasets are provided in SMPL format and contain 

several key parameters: 

• trans: the global translation of the body, 

• gender: the body model used (male, female, or neutral), 

• mocap framerate: the frame rate of the recording, 

• betas: body shape parameters, 

• dmpls: parameters controlling soft tissue motion, 

• poses: the root orientation and joint rotations per frame. 

The script processes this SMPL data and produces a synthetic dataset containing 56 markers 

and 24 joints, structured into the same three components as the real-time data: raw data, clean 

data, and bind pose. Additionally, the script introduces artificial noise into the marker data 

using a fixed random seed. This allows the solver to be trained on corrupted input and 

evaluated on its ability to recover the original, clean motion. This synthetic noise serves as a 

controlled benchmark for assessing the solver’s denoising and reconstruction capabilities. 

 

 

(a) 56 Markers of the MoCap-Solver in T-Pose represented in a 

3-D environment 

( b) The 38 Markers captured in DanceDB  
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Figure 3: Similarities between the 56 markers of the MoCap-Solver and the 38 Markers from 

the 

DanceDB Motion Captures 

 

3.3 Training 

 

MoCap-Solver employs neural networks to train models capable of cleaning and 

reconstructing motion capture data. The first step in the training process is to train the MoCap 

Encoders, which are neural modules designed to learn three key intrinsic components of 

motion: the template skeleton, the marker configuration, and the motion itself. The objective 

is to map the input raw markers to corresponding latent codes representing these intrinsic 

components. These latent codes are then decoded to compute clean marker positions using a 

linear blend skinning (LBS) function. One of the core strengths of this approach is its ability 

to capture and predict the spatio-temporal information embedded in the motion latent code, 

enabling the reconstruction of clean, plausible motion trajectories from noisy input. 

 

3.3.1 Training Time 

 

According to the original MoCap-Solver paper, the training process for both the encoders and 

the solver took approximately 50 hours. However, in this thesis, the training was conducted 

using the publicly available implementation provided on GitHub, which includes a higher 

number of full dataset passes (epochs). As a result, the overall training time increased 

significantly, taking approximately two full weeks to complete. It is suspected that memory 

limitations on the GPU led to overflow into system RAM, which severely impacted 

performance and contributed to the extended training duration. 

 

3.3.2 Training Dataset 

 

For training, the CMU dataset was used, accessed through the AMASS database. This dataset 

is the same one used by the original MoCap-Solver researchers in their experiments. The 

CMU dataset offers a rich and diverse set of human motion sequences, making it well-suited 

for training models that need to generalize across a wide range of movements. Its variety and 
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detail help the solver learn to reconstruct realistic and anatomically coherent motion across 

different body types and actions. 

 

3.4 Evaluation 

 

In this section, we evaluate the performance of the model trained using the CMU dataset. The 

goal is to determine how closely the results of our trained model align with those reported by 

the original developers of MoCap-Solver. In addition to evaluating the model on the CMU 

dataset, we also test it on a portion of the DanceDB dataset to observe how the model 

performs on previously unseen motion data. Since the solver was not trained on DanceDB 

and this dataset contains various noise and errors, we expect the error values to be higher. 

The evaluation of MoCap-Solver is based on three key metrics: 

• Marker Position Error (MPE) 

• Joint Orientation Error (JOE) 

• Joint Position Error (JPE) 

These metrics allow us to assess both spatial accuracy and orientation consistency across the 

reconstructed motion. 

 

Testing Dataset MPE JOE JPE 

Paper Results for 

CMU 

14.57mm 4.75mm 13.15mm 

CMU using the 

GitHub version of 

the Solver 

17.04mm 6.34mm 15.04mm 

DanceDB 26.98mm 12.01mm 24.03mm 

Table 1 Evaluation results(MPE: Marker Position Error, JOE: Joint Orientation Error, JPE: Joint Position Error) 
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3.4.1 CMU Evaluation 

 

In this section, we evaluate the performance of our trained model using the CMU dataset as 

both training and testing data. As mentioned earlier, this is the same dataset used by the 

original authors of MoCap-Solver in their experiments. As shown in Table 1, our results 

differ slightly from those reported in the original paper. This difference was expected, as the 

authors used a normalized bone length approach in their evaluation, which alters the joint 

positions. However, such normalization is not feasible in real-time applications where the 

ground-truth skeleton structure is unknown. This explains the small discrepancy in error 

values between our results and those from the original paper. 

 

3.4.2 DanceDB Evaluation 

 

Following the CMU evaluation, we tested our trained model on a subset of the DanceDB 

dataset to assess its performance on data outside the training distribution. As anticipated, the 

model exhibited higher error values compared to the CMU evaluation, as shown in Table 1. 

This can be attributed to two main factors. First, the solver was trained exclusively on the 

CMU dataset, and many of the dance movements in DanceDB were unfamiliar to the model. 

Second, the DanceDB dataset contains a number of noisy or corrupted sequences, which the 

solver attempted to correct. While the solver was able to fix many of these errors, the 

evaluation metrics naturally reflected the increased difficulty and variability in the test data. 
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4.1 Introduction 

 

Visualization plays a crucial role in evaluating the performance of the MoCap-Solver, as it 

provides an intuitive and immediate way to assess the quality of the cleaned motion capture 

data. In this chapter, various methods are presented for visualizing the solver’s outputs, 

focusing on the clarity, accuracy, and realism of the resulting motions. Three primary 

visualization approaches were employed. First, a marker- and joint-based representation was 

created using Blender, allowing for a direct comparison between raw, noisy inputs and the 

solver’s cleaned outputs. Second, the solver’s results were exported to the widely-used BVH 

(Bio Vision Hierarchy) format and subsequently imported into Blender for animation 

playback and analysis. Finally, the SMPL (Skinned Multi-Person Linear) model was utilized 

to render the motions on a realistic human mesh, providing a more complete and visually 

coherent evaluation. Each of these visualization methods offers distinct advantages and 

insights, which are detailed in the following sections. 

 

4.1.1 Blender 

 

Blender is a 3D graphics software that allows users to create high-quality 3D content for a 

variety of purposes. Blender has a comprehensive set of tools for creating and editing 3D 

models, including primitive shapes, deformers, and sculpting tools. It also has a robust set of 
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animation tools that allow users to create keyframe-based animations, rig characters, and 

create non-linear animations. Blender has advanced rendering capabilities that support ray 

tracing, global illumination, and physically-based rendering, and it includes a built-in game 

engine for creating interactive 3D applications and games. Blender has a set of sculpting tools 

that allow users to create detailed 3D models, and it has a range of compositing and post-

processing effects that allow users to enhance the look and feel of their 3D graphics and 

animations. Blender is used by professionals in various industries and is also popular among 

hobbyists and 3D enthusiasts. Blender has the ability to use custom scripts in Python to 

generate objects, add animations to them and many more. 

 

4.2 Marker and Joint Visualization 

 

The first visualization technique I used was the Marker and Joint Visualization script created 

by Dr. Andreas Aristeidou. This script is creating a humanoid skeleton by taking the positions 

of the markers and the joints of the human body and connect the joints with bones and the 

markers with the joints with thin lines. However, this script was originally designed for an 

older version of Blender, which led to several compatibility issues when attempting to use it 

in a newer version. These issues included deprecated APIs, changes in Blender’s data 

structure, and differences in the way animations and object hierarchies are handled. As a 

result, several modifications had to be made to the script to ensure it functioned correctly 

with the updated Blender environment. Once adapted, the script successfully displayed both 

raw and cleaned marker and joint positions, allowing for direct visual comparison between 

noisy input data and the solver’s output. 
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Figure 4: Marker and Joint Visualisation with two actors. Red are the raw markers and blue are the predicted 

markers 

 

4.2.1 Data Input 

 

Firstly, we needed to bring the data we got from the solver to the appropriate form so the 

blender script can display the results we wanted. So, we saved the predicted and raw markers 

and joints from the solver and we saved them in NumPy files. But the blender script needs 

text files in a specific format to work. Thus, we created a script that takes the NumPy files 

and creates a text file for each one the markers and joints for all the time of the animation. 

 

 4.2.2 Actors 

 

We created two versions of the blender script, the one script represents one actor and the 

second represent two actors. First, we created the one actor scripts to check if the script works 

fine and shows markers and the joints in the right order. We encounter some problems with 

the right order of the joints which created a body that did not represented a human, so we had 

to make the order right and connect the joints again so we could see the human figure. The 

second version of the script we created was the two-actor representation. The two actors were 

the ground truth of the markers and joints and the second one was the predicted one that was 

created by the solver. We changed the colors of the markers and joints to sperate the two 

actors visually and placed the one actor on top of the other to see the real time differences. 

 

4.3 BVH 

 

The Biovision Hierarchy (BVH) format is a widely-used file format in the motion capture and 

animation industry. It was originally developed by Biovision for storing motion data and has 

since become a standard for representing skeletal animations. A BVH file contains two main 

components: a hierarchical definition of a skeleton (including joint names, parent-child 

relationships, and initial positions) and a motion section that describes the position and 

rotation of each joint over time, typically across a sequence of frames. BVH files are 

particularly useful for visualization because they are supported by many 3D animation tools, 

including Blender. By making the MoCap-Solver's results to BVH, it becomes possible to 

easily import and animate the reconstructed skeleton in Blender. This allows for a frame-by-

frame inspection of the generated motion and enables visual comparison between the solver’s 
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output and the original noisy input, especially in terms of joint stability and trajectory 

smoothness. 

 

4.3.1 SMPL TO BVH 

 

Before we import the results of the solver to the blender, we first need to make them into 

BVH. As we mentioned in the third chapter, we take the results of the MoCap-Solver and we 

made them into SMPL. So now the only step that is left is to make them into BVH. For that 

purpose, we used the character animation tools by Kosuke Fukazawa in GitHub which 

worked perfectly and got the expected results. This tool provides functionality for retargeting 

SMPL motion data to a skeleton hierarchy compatible with BVH, effectively bridging the gap 

between statistical human body models and standard animation pipelines. It processes the 

SMPL pose and shape parameters and reconstructs a skeletal animation, which is then 

exported into BVH format while preserving the joint hierarchy and motion fidelity. This 

conversion enables SMPL-based motion data to be visualized and analysed within animation 

tools like Blender, which natively support BVH files. 

 

4.3.2 BVH to Blender 

 

For visualizing the BVH animations in Blender, the Deep Motion Editing tool developed by 

Peizhuo Li. This tool provides a convenient Blender interface for importing BVH files and 

assigning them to a pre-rigged character model. It streamlines the process of loading, 

retargeting, and visualizing skeletal animations, making it easier to analyse motion sequences 

frame by frame. Using this tool, the motions generated by the MoCap-Solver—after being 

converted to BVH—could be effectively rendered on a human-like figure within Blender, 

allowing for a more intuitive assessment of motion quality and realism. 
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Figure 5: BVH file rendered in the Blender app. 

 

4.4 SMPL to Blender 

 

To visualize SMPL-based outputs directly in Blender, the SMPL-X Blender Add-on was 

used. Developed by Pavlakos et al. as part of the official SMPL-X project, this tool provides 

functionality for importing and animating SMPL, SMPL+H, and SMPL-X mesh sequences 

using corresponding pose, shape, and translation parameters. The add-on loads model files 

and parameter sequences, generating realistic animated human meshes directly in Blender’s 

3D environment. This enabled the high-quality visualization of the MoCap-Solver’s results in 

human form, offering a more natural and complete understanding of motion quality compared 

to skeletal or marker-only representations. 
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Figure 6: SMPL Visualization in blender of a male model 
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5.1 Overview 

 

While previous chapters presented the numerical results of the MoCap-Solver, such as 

reconstruction error and evaluation metrics, this chapter focuses on the visual assessment of 

its performance. Visual analysis offers an intuitive understanding of how effectively the 

solver improves motion quality by reducing noise, correcting marker inconsistencies, and 

producing smoother skeletal trajectories. Two primary visualization methods are used to 

compare the results of the solver with the original raw data: marker and joint-based 

visualization and SMPL-based mesh visualization. Each method provides unique insights into 

motion quality and realism. Marker-based views allow direct comparison of positional data 

and motion continuity, while SMPL-based visualizations show how the motion would appear 

on a full human body mesh, enabling a more holistic evaluation. Additionally, this chapter 

compares the SMPL sequences generated using MoSh++ with the SMPL models provided in 

the AMASS dataset. This comparison highlights the differences in mesh fitting quality and 

consistency, offering further insight into the pre-processing steps involved in generating 

synthetic training data for the solver. 

 

5.2 Visual Comparison of MoCap-Solver Output 

 

To better understand the effectiveness of the MoCap-Solver beyond numerical metrics, this 

section presents a visual comparison between the solver's output and the original raw motion 

capture data. The comparison is being done with two methods: a marker and joint-based 

visualization, which directly reflects the raw and cleaned positional data, and an SMPL-based 
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visualization, which shows how the same motion is expressed on a full human body mesh. 

Both visualization methods provide complementary perspectives. The marker-based view 

highlights positional noise and structural consistency, while the SMPL-based rendering 

emphasizes the overall realism and continuity of the full-body motion. Together, they offer a 

comprehensive evaluation of the solver’s performance in reconstructing plausible human 

motion. 

 

5.2.1 Marker-Joint Visualization 

 

The marker and joint-based visualization provide a direct representation of the raw and 

cleaned motion capture data. This method focuses on displaying individual markers and their 

associated skeletal joints in Blender, allowing for a frame-by-frame comparison of how the 

MoCap-Solver processes and improves noisy motion sequences. In the raw data, common 

issues such as jitter and abrupt position changes. These artifacts appeared both during fast 

and slow motions. By contrast, the cleaned data produced by the MoCap-Solver exhibits 

much smoother trajectories, with reduced noise and more natural movement patterns. Joints 

maintain consistent spacing, and limb motion appears more continuous and physically 

plausible. This visualization also highlights how the solver corrects structural distortions, 

such as misaligned limbs or unstable joint orientations. In several test sequences, the solver 

effectively restored the underlying skeleton structure, resulting in a visually coherent 

animation that preserved the intent of the original motion. By comparing the raw and cleaned 

sequences side by side, it becomes evident that the MoCap-Solver solves the abrupt position 

changes of some of the markers and joints. However, we came across an unexpected problem 

that made the whole body of the cleaned actor to tremble a lot which is making the dance less 

pleasant to watch and not completing the purpose of using the solver to reconstruct the 

motion capture data. 

 

5.2.2 SMPL-Based Visualization 

 

The SMPL-based visualization offers a high-level, intuitive view of the motion by rendering 

the movement on full 3D human meshes. This method allows for a direct side-by-side 

comparison between the original (noisy) and the cleaned (solver-processed) motion 

sequences, showing how a realistic human body would perform the actions before and after 

reconstruction. By visualizing both motions on structured SMPL body models, it becomes 

easier to assess the impact of the solver on the overall motion quality. This representation 

helps bridge the gap between abstract joint trajectories and real-world motion, making the 
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evaluation more relatable and visually grounded. We can see that the MoCap-Solver made 

improvements in the posture alignment and made smoothest transitions. But, still we can 

witness the same trembling effect in the cleaned motion of the actor that makes the whole 

structure of the body.  

 

 

Figure 7: Comparison between AMASS DanceDB model and after the MoCap-Solver Prediction. Left: 

AMASS, Right: MoCap-Solver prediction 

 

5.3 Comparison Between MoSh++ and AMASS SMPL Models 

 

To ensure the correctness of the SMPL models generated during this project, a comparison 

was conducted between the outputs of MoSh++ and the corresponding SMPL models 

provided in the AMASS dataset. The goal of this comparison was to verify whether the 

models produced by running MoSh++ on raw marker data are consistent with the high-

quality reference models already available in AMASS. This validation step is important for 

two main reasons. First, it confirms that the process of generating SMPL sequences using 

MoSh++ is functioning as expected. Second, it builds confidence in using MoSh++ to create 

new SMPL models from future motion capture sessions, particularly in cases where AMASS-

style data is not already available. Visually, the SMPL meshes generated by MoSh++ closely 

matched those from AMASS in terms of body shape and joint articulation, but when the 

animations start the Mosh++ version begins to show some problems. The whole body is 

moving as expected but the hands are behaving inconsistently with erratic or unnatural 

movement. This may be due to the fact that we did not mange to create the perfect marker 

layout for our motion capture session to use as reference for the Mosh++ model.     
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5.4 Discussion 

 

The visual comparison methods presented in this chapter provided valuable insights into the 

performance and limitations of the MoCap-Solver when applied specifically to dance motion 

capture data. Since dance movements are typically expressive, complex, and dynamic, they 

present a unique challenge for motion reconstruction algorithms. Both the marker-based and 

SMPL-based visualizations revealed clear improvements in motion smoothness, joint 

stability, and anatomical coherence in the solver’s output compared to the original raw dance 

sequences. However, in many cases, the solver introduced a trembling effect that affected the 

entire body, particularly during sequences with fast or continuous movement. This 

unintended shaking diminished the overall visual quality of the motion and undermined the 

expressive clarity that is essential in dance, ultimately compromising the intended outcome of 

producing smooth and realistic reconstructed performances. 
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6.1 Summary of Objectives 

 

This thesis set out to clean and reconstruct complex dance motion data from the DanceDB 

dataset using the MoCap-Solver. The initial aim was to improve motion quality by removing 

noise, inconsistencies, and structural errors commonly found in raw motion capture data. As 

the work progressed, the thesis expanded into developing a practical toolbox for handling and 

visualizing SMPL-based motion data, offering a broader contribution to motion capture 

processing workflows. 

 

6.2 Achievements 

 

Over the course of this thesis, several key components were successfully developed and 

integrated into a coherent motion processing pipeline. The MoCap-Solver was applied to 

noisy dance sequences from the DanceDB dataset, resulting in visibly cleaner and more 

stable motion. A reliable method for generating SMPL models from raw C3D files was 

implemented using MoSh++, enabling the transformation of marker-based data into skinned 

human body models. Additionally, SMPL sequences were successfully converted into the 

BVH format, allowing for compatibility with standard animation tools. The project also 

introduced three distinct visualization methods within Blender: marker and joint 

visualization, BVH-based skeleton animation, and full-body SMPL mesh animation. These 

tools made it possible to compare raw and cleaned motion side-by-side, facilitating a more 

intuitive evaluation of motion quality. Finally, by comparing the generated SMPL sequences 
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with those provided in the AMASS dataset, the reliability of the MoSh++ fitting process was 

validated, confirming its suitability for future motion capture applications. 

 

6.3 Observations and Insights 

 

The visual evaluation of the reconstructed dance motions offered valuable insights into the 

performance and limitations of the overall pipeline. The MoCap-Solver proved highly 

effective in reducing local marker noise and improving joint consistency, particularly in the 

torso, legs, and arms. The cleaned motions appeared more anatomically correct and visually 

stable compared to the raw input. However, a recurring issue observed to all the sequences 

was a subtle trembling or jitter affecting the entire body. This instability disrupted the natural 

flow of the dance and indicated a need for improved global motion consistency in the solver. 

Additionally, while the SMPL models generated using MoSh++ were largely consistent with 

those in the AMASS dataset, the hand movements occasionally appeared erratic or unnatural. 

These irregularities were minor but noticeable, highlighting the importance of detailed fitting 

in motion reconstruction. Overall, the combination of marker-based and SMPL-based 

visualizations was essential in uncovering these issues—insights that would have been 

difficult to obtain through numerical metrics alone. 

 

6.4 Limitations 

 

While the developed pipeline achieved its core goals, several limitations were encountered 

throughout the project. A key issue was the subtle trembling effect in some of the cleaned 

dance sequences produced by the MoCap-Solver, which affected the perceived naturalness of 

the motion. This indicated a lack of global temporal stability in certain high-energy or 

expressive motions, such as those common in dance. Additionally, the hand and finger 

articulation in the SMPL models generated via MoSh++ was occasionally unstable or 

unnatural, which could impact applications that require detailed upper-body or gestural 

accuracy. Another practical limitation was the significant time required to train the MoCap-

Solver. Due to the model's complexity and the volume of data, training took approximately 

two weeks to complete, which presents a barrier to iteration and experimentation, especially 

on systems with limited hardware resources. Finally, some of the scripts used for 

visualization—particularly those developed for older versions of Blender—had to be 

manually updated to function correctly in modern software environments, adding to the 

technical workload. 
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6.5 Future Work 

 

Several directions can be explored to further improve and expand the work presented in this 

thesis. First, addressing the global motion stability of the MoCap-Solver output should be a 

priority, particularly for complex and expressive motion types like dance. Enhancing the 

solver’s temporal smoothing or integrating additional constraints may help reduce the 

trembling effect observed in the cleaned sequences. Improving hand and finger articulation in 

SMPL model generation is another important step, especially for applications that rely on 

accurate upper-body motion or gesture recognition. In addition, the training time of the 

MoCap-Solver, which took approximately two weeks in this project, poses a significant 

barrier to scalability. Future work should investigate methods to reduce training duration, 

such as model optimization, data sampling strategies, or leveraging more powerful hardware 

or cloud-based GPU solutions. Lastly, the current pipeline, while functional, could benefit 

from further automation and user-friendly integration to support real-time or batch processing 

of new motion capture data with minimal manual effort. 

 

6.6 Conclusion 

 

In summary, this thesis began with the goal of cleaning dance motion data using the MoCap-

Solver and evolved into a comprehensive exploration of motion reconstruction, SMPL model 

generation, and visualization. Through the development of a flexible and modular toolbox, 

the project not only improved the quality of dance motion data but also provided a foundation 

for future work in motion capture processing. While challenges such as trembling effects, 

hand instability, and long training times remain, the insights and tools produced through this 

work offer a practical starting point for researchers and developers aiming to enhance the 

realism and usability of complex motion sequences. 
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