Bachelor Thesis

A Platform for Querying Multiple LLM Models Simultaneously

Konstantin Krasovitskiy

University of Cyprus

Department of Computer Science

May 2025

University of Cyprus

Department of Computer Science

A platform for querying multiple LLM models simultaneously

Konstantin Krasovitskiy

Supervisor

Prof. Demetris Zeinalipour

The Individual Thesis was submitted in partial fulfillment of the requirements for the
Degree of Computer Science of the Department of Computer Science of the University

of Cyprus.

May 2025

il

Acknowledgments

I would like to express my deepest gratitude to my thesis supervisor, Prof. Demetris
Zeinalipour, for his unwavering support, invaluable guidance, and insightful feedback
throughout the completion of this work. His expertise, patience, and dedication were
instrumental in shaping this thesis, and I am truly grateful for his mentorship. I would
also like to thank Demetra Paphitou from the DMSL lab for her generous assistance and
thoughtful insights, and Stelios Christou for his valuable help and support throughout this
project. I also extend my sincere appreciation to my family and friends for their constant
encouragement, understanding, and support during this journey. Their belief in me kept

me motivated even during the most challenging moments.

il

Credits

This thesis is based on knowledge gained in the context of the following scientific work,

which is currently being published, co-authored with Stelios Christou and Prof. Demetris

Zeinalipour:

* ’LLM-MS: A Multi-Model LLM Search Engine”, Konstantin Krasovitskiy, Stelios
Christou, and Demetrios Zeinalipour-Yazti, First Intl. Workshop on Coupling of
Large Language Models with Vector Data Management (LLM+Vector Data) (LLMVDB’25),
collocated with the 40th IEEE International Conference on Data Engineering (IEEE

ICDE’25), IEEE Computer Society, pp. 8 pages, Hong Kong SAR, China | May 19
— 23,2025, DOI: , 2025. (accepted)

v

Abstract

Large Language Models (LLMs) are evolving at an unprecedented pace, with new vari-
ants and capabilities released regularly. While this proliferation has expanded the possi-
bilities for deploying specialized models in diverse tasks such as open-domain question
answering, code synthesis, mathematics, summarization, translation, and beyond, it has
also introduced substantial complexity for users and developers. In particular, choosing
the most suitable LLM for a given query has become more difficult due to differences in
model size, training data, and alignment characteristics. Traditional single-model deploy-
ments often result in suboptimal trade-offs between accuracy, cost. In this work a platform
is presented for orchestration of multiple open-source LLMs. The platform invokes can-
didate models in parallel to produce partial outputs, continuously evaluates these outputs
for semantic relevance and inter-model agreement, and reallocates token budgets dynami-
cally by pruning low-performing models and concentrating resources on the most promis-
ing ones. The architecture supports plug-and-play integration of heterogeneous models,
which is demonstrated by combining LLaMA, Mistral, and Qwen under a unified inter-
face. To guide model selection under strict token budgets two algorithms were explored:
1) the Overperformers Underperformers Algorithm (OUA), which assigns each model a
combined reward score equal to a times the semantic similarity to the user prompt plus 8
times the agreement score with other models, i) Multi-Armed Bandit (MAB), which treats
LLMs as an arm with an unknown reward distribution, where each round the algorithm
allocates the next token chunk to the model with the highest upper confidence bound, and
adjusts an exploration parameter y that decays as the token budget is consumed. The plat-
form was implemented end to end, from distributed token dispatching through centralized
scoring and final aggregation. Evaluated performance on the TruthfulQA benchmarks us-
ing two metrics: F1l-score and accuracy per token usage. Our results show that intelligent
multi-model orchestration can yield improvement in F1-score and accuracy compared to
static single-model baselines. These findings demonstrate the practical viability of our

approach for delivering accuracy/cost effective LLM services.

Contents

1 Introduction
1.1 The Growing Ecosystem of Large Language Models
1.2 Challenges in Managing and Accessing Multiple LLMs
1.3 Motivation for a Unified Multi-LLM Querying Platform
1.4 Overview of the Multi-LLM Querying Platform

1.5 Contributions e

2 Background and Related Work
2.1 Overview of Large Language Models
2.1.1 Transformer Foundations
2.1.2 Pretraining Objectives and Fine-Tuning Paradigms
2.1.3 Scaling Laws and Emergent Behaviors
2.1.4 Taxonomy of Model Variants
2.1.5 Training Strategies and Optimization
2.1.6 Capabilities, Limitations, and Ethical Considerations
2.1.7 Emerging Trends and Future Directions
2.1.8 Summary
2.2 Diversity in Models: Capabilities and Limitations
2.3 Multi-Model and Ensemble Approaches
2.4 Vector Databases and Retrieval-Augmented Generation (RAG)
2.5 System-Level Considerations for LLM Platforms

3 Platform Architecture
3.1 DesignPrinciples
3.2 HardwareLayer

vi

10
11
12
13
14
15
16
17
17
18
19

5

3.3 Storage Layer
34 Computation Layer,
3.5 ApplicationLayer

3.6 Extensibility and Integration

Computation Layer

4.1 OVervIew e

4.2 LLM-MS OUA (Overperformers—Underperformers Algorithm)
4.2.1 Algorithm Description
422 Pseudocode

4.3 LLM-MS MAB (Multi-Armed Bandit Algorithm)
4.3.1 Algorithm Description
432 Pseudocode

Application Layer

5.1 Landing Page and Main Query Interface
5.2 Session Management
5.3 Algorithm Selection and Settings
5.4 Model Selection and Chat Interface

5.5 Contextual Memory and Mobile Layout

Platform Querying Process

6.1 QueryLifecycle
6.2 Preprocessing and Embedding Generation
6.3 Dynamic Model Selection and Token Allocation.
6.4 Response Aggregation and Delivery
6.5 Context and Session Management

6.6 User Interface Overview o i e e

Implementation Details
7.1 Technologies Used
7.2 Data Flow and Interaction Between Components

7.3 User Interface Features

vii

23
23
24
24
25
25
26
26

27
27
27
28
29
29

33
33
34
34
35
36
36

8 Experimental Evaluation 41

8.1 Experimental Setup 41
8.2 Metrics e 44
83 Results. 46
83.1 Average RewardperModel 46

8.3.2 Average F1 ScoreperModel 46

8.3.3 Average Reward to Tokens Ratioper Model 46

84 Analysis e 47
9 Conclusion 51
9.1 Summary 51
9.2 Experimental Insights L oL 52
9.3 Benefits of a Platform Approach 52
9.4 Challenges and Limitations 53
9.5 Future Extensions 53
9.6 FinalRemarks 55

viii

Chapter 1

Introduction

1.1 The Growing Ecosystem of Large Language Models
1.2 Challenges in Managing and Accessing Multiple LLMs
1.3 Motivation for a Unified Multi-LLM Querying Platform
1.4 Overview of the Multi-LLM Querying Platform

N A W N -

1.5 Contributions @ @ i i i i it it e e e e e e e e e

1.1 The Growing Ecosystem of Large Language Models

Large Language Models (LLMs) have become foundational to modern natural language
processing (NLP), demonstrating strong capabilities in understanding and generating human-
like text [1]. In recent years, a wide range of LLMs have been released by organizations
such as OpenAl (e.g., GPT-2, GPT-3 [2, 3]), Anthropic (Claude [4]), and Meta (LLaMA
series [5]), among others. These models vary significantly in architecture, scale and train-
ing methodology, creating a rapidly expanding ecosystem of tools suitable for diverse
applications.

While some models are trained to perform well across general-purpose tasks, many are
fine-tuned for specific domains such as code generation, legal reasoning, or biomedi-
cal information extraction. Architecturally, they include both decoder-only models opti-

mized for auto regressive tasks and encoder-decoder models better suited for sequence-to-

sequence applications. Some recent efforts also explore sparse expert models and hybrid
routing techniques, introducing even more architectural variation [6].

This growing diversity, while promising, poses a significant challenge: different mod-
els often behave inconsistently across tasks and input types due to differences in training
data, alignment objectives, and inference dynamics. For practitioners, selecting the most
appropriate model for a given query often requires trial-and-error or specialized knowl-
edge. This highlights the need for more systematic approaches to LLM selection and
orchestration, particularly in settings where accuracy, efficiency, and domain alignment

are critical.

1.2 Challenges in Managing and Accessing Multiple LLMs

As the ecosystem of Large Language Models (LLMs) continues to grow, integrating and
managing multiple models within a single system introduces both architectural and oper-
ational challenges. Each model is typically developed with a different training dataset,
tokenization strategy, and alignment objective, making them non-interoperable by default.
This heterogeneity, while enabling specialization, increases complexity when attempting
to unify their usage in real-world applications.

Most LLMs are accessible via diverse interfaces-ranging from proprietary APIs (e.g., Ope-
nAl, Anthropic) to open-source tool chains-which require model-specific configurations,
prompting schemes, and I/O formats. As aresult, developers are often forced to implement
custom logic to support multiple backends, which leads to duplicated effort, inconsistent
behavior, and technical debt. These issues are compounded when attempting to evaluate
models side-by-side or compose them in an ensemble.

In addition to software-level complexity, computational resource constraints are a major
limiting factor. Running several large-scale models concurrently places a significant bur-
den on available GPU memory and compute capacity. This problem is particularly acute
in real-time applications, where token usage directly affect both cost and user experience.
For example, invoking multiple models for every query without coordination can lead to
substantial inefficiencies, as token limits and rate constraints vary across providers.
Furthermore, without a unifying control mechanism, selecting the most suitable model for

a specific query becomes a manual and heuristic-driven process. Users must either rely

on subjective comparison across outputs or use rigid fallback logic that fails to exploit the
nuanced strengths of different models. This lack of orchestration undermines the benefits
of model diversity and impedes scalable adoption.

These observations underscore the need for a platform-level approach to LLM integration-
one that abstracts model-specific behavior, supports dynamic selection, and manages re-

sources in a unified, efficient manner.

1.3 Motivation for a Unified Multi-LLM Querying Platform

The rapid diversification of large language models (LLMs) has created a compelling op-
portunity, and corresponding necessity, for unified systems that can manage and coordi-
nate access to multiple models. While many LLMs demonstrate strong performance on
specialized tasks, no single model offers consistent superiority across all domains, query
types, or prompt styles. As such, relying exclusively on one model is both computationally
inefficient and strategically limiting, particularly in dynamic application settings.

This motivates the development of systems capable of orchestrating multiple LLMs under
a single querying framework. Rather than treating LLMs as static tools, such systems
can treat them as dynamically interchangeable components, selected based on their task
relevance, prior performance, and resource constraints. This reflects a broader shift toward
adaptive, modular architectures in software systems, where runtime decisions optimize for
context and efficiency.

Moreover, many real-world use cases involve input that extends beyond a standalone nat-
ural language query-such as user-provided documents, embedded context, or prior con-
versational turns. Integrating retrieval-augmented generation (RAG) pipelines enables a
more grounded response, leveraging vector similarity to extract relevant information from
document stores and embed it into the prompt space. This is particularly valuable for ap-
plications in law, education, and enterprise workflows, where context-aware answers are
essential.

The motivation of this work, therefore, is to close the gap between the growing availability
of task-specific LLMs and the lack of infrastructure for their coordinated use. By introduc-
ing intelligent selection strategies, dynamic token allocation, and retrieval-driven context

enhancement, the proposed system enables scalable and efficient multi-model querying,

while abstracting away the operational burden typically required to work with LLMs indi-

vidually.

1.4 Overview of the Multi-LLM Querying Platform

The proposed system is a web-based platform designed to facilitate interactive, multi-
model generation. It is based a layered architecture that separates concerns across four
domains: user interaction, orchestration logic, model execution, and context management.
Users submit queries through a browser interface, optionally accompanied by supplemen-
tal documents or files. The system processes the input, generates embeddings, and then dy-
namically determines the most relevant models to invoke. Tokens are allocated among se-
lected models via Overperformers—Underperformers Algorithm (OUA) and Multi-Armed
Bandit (MAB) strategies. Responses are generated with real-time feedback.

The architecture is organized into the following layers:

* Hardware Layer
Manages inference hardware resources, abstracting device specific details and opti-

mizing resource utilization for concurrent model execution.

» Storage Layer
Hosts local model files and manages temporary in-memory storage of session em-
beddings. Uses ChromaDB for embedding indexing and similarity based retrieval

of relevant document segments.

* Computation Layer
Executes models through an engine that supports parallel inference and manages
the orchestration logic. It streams model outputs and supports partial generation,
enabling responsive query processing and dynamic allocation of tokens across mul-

tiple LLMs.

* Application Layer
Provides the user interface and handles interaction with the end user. It coordinates
query input, displays streaming responses, and offers controls for switching models

or tuning parameters via a Flask-based web frontend.

Key capabilities of the platform include:

* Adaptive Model Selection
Employs intelligent strategies based on similarity and inter-model agreement to dy-

namically select models and allocate tokens efficiently.

* Contextual Query Enhancement
Utilizes vector embeddings of uploaded files and session context to augment queries,

enabling more informed and contextually relevant responses.

* Session Continuity
Maintains conversational context via hierarchical summarization and temporary em-

bedding storage in memory during the session, respecting input limits.

* User-Friendly Interface
Provides a simple, responsive web application through Flask, allowing users to in-

teract seamlessly without technical expertise.

This modular design promotes extensibility, enabling future integration of new models or

algorithms without substantial changes to user experience or core orchestration logic.

1.5 Contributions

This thesis presents the design and implementation of a comprehensive platform for or-
chestrating multiple large language models in response to user queries. The main contri-

butions of this work are summarized as follows:

+ System Architecture: A modular, multi-layered platform was developed that cleanly
separates hardware management, storage, computation, and user interaction. This
architecture facilitates seamless integration of models and data pipelines while sup-

porting real-time querying.

* Dynamic Query-Orchestration Algorithms: Two token allocation and model se-

lection strategies were designed and integrated:

— An Overperformers—Underperformers Algorithm (OUA) that evaluates partial
outputs from models and dynamically reallocates token budgets to the most

relevant responses in real time.

— A Multi-Armed Bandit (MAB) strategy based on the UCB1 algorithm, which
balances exploration of different models with exploitation of promising ones

during response generation.

* Retrieval-Augmented Generation Integration: The platform embeds user-supplied
documents using a vector encoder and stores them in a vector database. At query
time, relevant document fragments are retrieved and incorporated into model prompts,

enabling informed, document-specific answers.

+ Efficient Resource Usage: Through selective token allocation and early pruning of
underperforming models, the platform reduces wasted compute cycles and avoids
unnecessary token generation, resulting in lower latency and improved response

quality per token.

* Practical Implementation: A full-stack web application was implemented using
Flask, Ollama, and ChromaDB, supporting concurrent multi-model inference, file
uploads, context summarization, and interactive user sessions via a responsive real-

time interface.

* Experimental Evaluation: The system was evaluated on benchmark datasets, demon-
strating enhanced response accuracy and computational efficiency compared to static
single-model baselines. Results confirm that intelligent multi-model orchestration

yields superior practical outcomes.

Collectively, these contributions provide a practical framework for improving accessibility
and efficiency of large language models in real-world querying scenarios by shifting the

paradigm from isolated models to intelligent orchestration within a unified platform.

Chapter 2

Background and Related Work

2.1 Overview of Large Language Models 7
2.1.1 Transformer Foundations 8
2.1.2 Pretraining Objectives and Fine-Tuning Paradigms 10
2.1.3 Scaling Laws and Emergent Behaviors 11
2.14 Taxonomy of Model Variants 12
2.1.5 Training Strategies and Optimization 13
2.1.6 Capabilities, Limitations, and Ethical Considerations 14
2.1.7 Emerging Trends and Future Directions 15
2.1.8 Summary 16
2.2 Diversity in Models: Capabilities and Limitations 17
2.3 Multi-Model and Ensemble Approaches 17

2.4 Vector Databases and Retrieval-Augmented Generation (RAG). . 18
2.5 System-Level Considerations for LLM Platforms. 19

2.1 Overview of Large Language Models

Large Language Models (LLMs) are deep neural networks trained to predict the next token
in a sequence over massive text corpora [7]. Three factors have really driven their meteoric
rise. First, the Transformer architecture allows highly parallelized attention computations-

no more cumbersome recurrent models. Second, sheer scale (both in parameters and

training data) consistently boosts capabilities. Third, clever pretraining objectives and
post-training refinements (think domain-specific fine-tuning or instruction tuning) help
these models adapt to real-world use cases. In the pages that follow, the architectural
foundations, training paradigms, scaling behaviors, and practical considerations behind

today’s LLMs are unpacked.

2.1.1 Transformer Foundations

To see why Transformers became so popular, let’s dig into their core building blocks.
Unlike earlier RNN or CNN-based sequence models, a Transformer relies entirely on self-
attention and feed-forward layers, organized into stacked “encoder” and “decoder” blocks
or as decoder-only stacks. In other words, the model learns contextual relationships be-

tween tokens without processing them sequentially.

* Multi-Head Self-Attention: Each Transformer block computes a set of attention
heads. For each head h, the input token embeddings X € R™*¢ (with n tokens and
dimension d) are linearly projected into queries (), keys K}, and values V},. The

attention output is

T

K
Attentiony, (Qp, Kp, V}) = softmax (Q\}}d_h > Vi,
k

where dy, 1s the per-head key dimension. Multiple heads are concatenated and lin-

early projected to form the block’s attention output [8,9]. In practice, this mecha-

nism lets the model focus on different parts of the sequence simultaneously.

* Positional Encoding: Because self-attention is permutation-invariant, positional
encodings are added to the raw token embeddings to inject a notion of token order.
Typical choices include sinusoidal encodings [8] or learned positional embeddings,
both of which allow the model to discern relative and absolute positions in the se-

quence.

* Layer Normalization and Residual Connections: Each sublayer (multi-head at-
tention or feed-forward network) is wrapped with a residual (skip) connection and
layer normalization. Let Sublayer(-) denote either the attention or feed-forward

computation. Then a Transformer block applies
Y = LayerNorm (X + Sublayer(X)).

8

This design stabilizes training at large depths by preventing vanishing or exploding

gradients [8].

* Feed-Forward Networks: Following the attention sublayer, each block applies a

position-wise feed-forward network of the form
FFN(X) = GELU(XW; + by) Wy + b,

which projects the attention outputs to a higher hidden dimension before projecting
back down to the model dimension d [8]. In practice, this expands the representa-

tional capacity of each token’s contextual embedding.

Figure 2.1 shows a schematic of the encoder-decoder Transformer. In decoder-only LLM
variants (e.g., GPT-3 [10], GPT-4 [11]), only the decoder side is employed, using masked
self-attention to ensure autoregressive generation (i.e., each token attends only to preced-
ing tokens). Decoder-only models tend to be more efficient for purely generative tasks,
whereas encoder-decoder (seq2seq) models (e.g., TS5 [12]) excel in tasks requiring condi-

tional generation given a source input.

Output probabilities

Decoder

~

Add & Norm

Add & Norm
Encoder Multi-h'ead
Attention
3 Add & Norm
Multi-head
Attention Masked Multi-head
Y Attention
. J A
Positional i ~ -
9 Positional encoding 9
A
Embeddings Embeddings
Input sequence Target sequence

Figure 2.1: Detailed view of the Transformer encoder—decoder architecture.

Source: https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.7648

https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.7648

2.1.2 Pretraining Objectives and Fine-Tuning Paradigms

Having outlined how attention and feed-forward layers fit together inside a Transformer,
let us now explore how these models are actually taught to “speak” and “reason.”
Unsupervised pretraining is typically the first stage. A massive corpus-often including
web text, books, code, and other documents-is used to optimize the model parameters
f by minimizing a language modeling loss. For a decoder-only architecture, this means
maximizing the likelihood of each token given all previous tokens:

T
Lin(0) = —E(,....or)~D Zlog Py ($t ‘ $<t)-

t=1
Here, D denotes the distribution over sequences in the pretraining corpus. In encoder-
decoder models (e.g., BERT or T5 variants), masked language modeling (MLM) or de-
noising objectives are used instead: a fraction of input tokens are masked, and the model
learns to reconstruct the original tokens [12, 13]. These unsupervised objectives let the
model discover syntactic and semantic patterns at scale. In practice, datasets often exceed
hundreds of billions of tokens, and model sizes can span from a few hundred million to
hundreds of billions of parameters [14—-16].

Once pretrained, models undergo post-training refinements to become more aligned with
human instructions. Instruction tuning involves fine-tuning on curated (instruction, re-
sponse) pairs so that the model learns to follow natural language prompts more reliably.
For instance, FLAN-TS5 [17] and Stanford Alpaca [18] illustrate how a relatively small
fine-tuning dataset can drastically improve instruction-following behavior. We often find
that instruction-tuned models handle open-ended user queries more gracefully and pro-
duce fewer nonsensical outputs.

A further step is Reinforcement Learning from Human Feedback (RLHF). In RLHF, hu-
man annotators rank multiple candidate outputs, and these rankings train a reward model.
Then, algorithms such as Proximal Policy Optimization (PPO) adjust the LLM’s parame-
ters to maximize expected human satisfaction [19-21]. OpenAI’s GPT-3.5 and GPT-4, as
well as Anthropic’s Claude 2, have all used RLHF extensively to reduce harmful content,
improve factual accuracy, and align with human values [11, 15]. In practice, this yields a

model that feels more cooperative and safer to deploy.

10

2.1.3 Scaling Laws and Emergent Behaviors

At small parameter counts, a vanilla Transformer can already produce coherent text. But
what really sets today’s LLMs apart is extreme scaling. Empirical studies show that in-
creasing the number of parameters (/V), the size of the training dataset (D)), and the com-
pute budget (C') leads to predictable improvements in performance across a wide array of
language tasks [22,23]. Specifically, loss metrics follow approximate power-law relation-
ships:

Loss(N,D)~a N "+ D" +~,

where «, 5,7, n, pu are constants that depend on the model architecture and data distribu-
tion. In practice, scaling to hundreds of billions-or even trillions-of parameters has become
the default way to push benchmark performance.

Beyond just “bigger is better,” very large models exhibit emergent behaviors [24] that

simply don’t appear at smaller scales. For example:

* In-Context Learning: As demonstrated by GPT-3 (175B)[10], the model can learn
to perform a novel task from just a handful of examples provided in the prompt-
no gradient updates needed. This few-shot ability emerges only beyond a certain

parameter threshold.

* Chain-of-Thought Reasoning: Large models such as PaLM (540B) [25] can gener-
ate intermediate reasoning steps that help solve multi-step problems (e.g., arithmetic

or logical puzzles), significantly improving accuracy.

* Cross-Lingual Transfer: Massive multilingual LLMs (e.g., XLM-R [26], BLOOM
[27]) show strong zero-shot performance on languages that they rarely or never saw
during fine-tuning. This happens because large, shared parameter spaces allow the

model to generalize linguistic patterns across languages.

That said, these gains have trade-offs. Larger models demand exponentially more compute
during both training and inference, require massive memory footprints, and incur higher
latency in real-time applications. This motivates research into more efficient variants-
Mixture-of-Experts (MoE) architectures [28, 29], sparse attention mechanisms, quantiza-

tion methods such as LlamaQuant [30], and distillation techniques like DistilBERT [31]-

11

all of which aim to preserve most performance while reducing resource costs, or low-

latency acceleration (LLMA) [32].

2.1.4 Taxonomy of Model Variants

With an understanding of how LLMs are built and trained, the next question is: Which
specific architectures and design choices have practitioners actually built? Contemporary

surveys categorize models along several key axes [6,33,34]:

1. Autoregressive vs. Autoencoding. Autoregressive (decoder-only) models, such
as the GPT family [10, 11], generate tokens left-to-right and excel in text synthesis.
Autoencoding (encoder-decoder) models, like BART [35] and TS5 [12], are trained
to reconstruct masked or corrupted inputs, making them powerful for sequence-to-

sequence tasks (translation, summarization).

2. Dense vs. Sparse (Mixture-of-Experts). Dense Transformers allocate all param-
eters to each input. In contrast, Mixture-of-Experts (MoE) models-such as MoMQ
[36], GLaM [37] and Switch Transformer [28]-route each token through only a sub-
set of “expert” feed-forward sublayers. This lets MoE models reach trillions of

parameters while keeping inference costs moderate.

3. Monolingual vs. Multilingual vs. Multimodal. Monolingual LLMs (e.g., LLaMA
[5,14], Mistral [16,38]) are optimized for English or one specific language. Multi-
lingual LLMs (e.g., XLM-R [26], mT5 [39]) are trained on mixed-language corpora.
Multimodal models (e.g., Flamingo [40], GPT-4 with vision [11]) accept image or

audio inputs alongside text.

4. Open-Source vs. Proprietary. Open-source ecosystems-Hugging Face Transform-
ers [41,42], Meta’s LLaMA [14], MosaicML’s MPT [43]-foster community-driven
innovation. Proprietary APIs (OpenAl [11], Anthropic [15], Google PaLM2 [25]),
Google Vertex-Al [44], Gemini [45], Gemini Flash [46] often provide larger, more
heavily aligned models behind paywalls.

Table 2.1 summarizes representative models across these categories. By placing each
model within this framework, we can better compare capabilities, licensing constraints,

and typical use cases.

12

Table 2.1: Representative LLMs: Key architecture, data, and usage characteristics.

Model (Year) Size Type Training Data Highlights

GPT-2 [47] (2019) 1.5B Dec-Only WebText (40 GB) First open large decoder, good zero-shot
performance

GPT-3 [10] (2020) 175B Dec-Only CCrawl, Books, Wiki Enabled few-shot learning via prompts

PalLM [25] (2022) 540B Dec-Only Multilingual mix Strong chain-of-thought reasoning

BERT [13] (2018) 340M Enc-Only Books, Wiki Bidirectional masked LM, widely used

TS [12] (2020) 11B Enc-Dec C4 Corpus Treats all NLP tasks as text generation

LLaMA [14] (2023-25) 7-70B Dec-Only Filtered CCrawl Open models for fine-tuning and research

Mistral [16] (2023) 7B Dec-Only Web, Code Small, fast, competitive on benchmarks

Qwen 2.5 [48] (2025) 7B Dec-Only Internal, Code Multilingual support, strong in coding
tasks

Claude 2 [15] (2023) ~100B Dec-Only Anthropic corpora Focused on alignment via Constitutional
Al

GLaM [37] (2022) 1.2T Sparse MoE Web, Books Trillion-param MoE with efficient infer-
ence

Flamingo [40] (2022) 80B Multimodal Text, Images Zero-shot visual question answering

2.1.5 Training Strategies and Optimization

With the taxonomy in mind, the next question is: how do we train these massive models ef-
ficiently? In practice, training LLMs requires careful orchestration of hardware, software,

and optimization techniques:

* Mixed-Precision and Distributed Training. Most modern LLMs use mixed-precision
(FP16 or bfloat16) to reduce memory usage and increase throughput [49]. Data par-
allelism (e.g., AllReduce) and pipeline model parallelism (e.g., Megatron-LM [50])

distribute parameters and activations across multiple GPUs or nodes.

* Learning Rate Schedules and Warm-Up. A linear or cosine learning rate warm-
up followed by decay helps prevent early training instability [8]. In practice, sched-

ulers often ramp up over several thousand steps before decaying.

* Gradient Checkpointing. To reduce memory footprint, intermediate activations
are not stored for all layers. Instead, selective recomputation is used during back-

propagation [51], allowing models to trade extra compute for lower memory usage.

* Tokenization and Vocabulary. Subword tokenizers like Byte Pair Encoding (BPE)

or SentencePiece enable variable-length text encoding while capping vocabulary

13

size (e.g., SOK—100K tokens) [52]. In practice, a well-designed tokenizer can dra-

matically reduce out-of-vocabulary errors and improve downstream performance.

2.1.6 Capabilities, Limitations, and Ethical Considerations

From a user’s perspective, LLMs can feel almost magical-but these capabilities come with

trade-offs.

» Zero-Shot and Few-Shot Learning. By providing natural language instructions
or a few examples within a prompt, LLMs can generalize to novel tasks without ad-
ditional gradient updates [10]. In practice, this means you often get useful answers

from an LLM-even if you haven’t fine-tuned it for your specific domain.

* Multi-Tasking. A single pretrained LLM can handle translation, summarization,
question answering, and code generation simply by adjusting the prompt and de-

coding constraints.

* Long-Range Coherence. Models with extended context windows (e.g., 32K tokens
or more in GPT-4, PaLM 2) maintain coherence across multi-paragraph or multi-

page document generation [11].

* Emergent Reasoning. As discussed earlier, phenomena such as chain-of-thought

prompting and symbolic manipulation emerge only at very large scales [53].

Limitations and Risks.

* Hallucinations. LLMs sometimes generate plausible but incorrect or nonsensical
statements, especially when producing factual content without grounding [54]. In
practice, users must verify critical outputs against reliable sources. Holistic evalua-
tion benchmarks (e.g., HELM) have been proposed to more comprehensively mea-
sure such risks [55], and recent benchmarks such as Truthful QA [56] specifically

measure the “truthfulness” of generated text.

» Bias and Toxicity. Pretraining data often contain societal biases, stereotypes, and
offensive language. Even aligned models can reflect these biases unless explicitly

mitigated [57].

14

* Resource Intensity. Training and serving large models demand substantial compu-
tational power, making them inaccessible to smaller organizations and increasing

environmental impact [58,59].

* Security and Misuse. LLMs can be repurposed to generate disinformation, spam,

or targeted harassment at scale if not properly safeguarded [60].

* Lack of True Understanding. Although LLMs can mimic reasoning through pat-
tern recognition, they do not possess genuine comprehension or grounded knowl-
edge. They can fail on tasks that require real-world common sense or precise sym-

bolic logic [61].

These challenges have spurred extensive research on alignment, robustness, and ethical
guardrails for LLM deployment [62, 63]. In practice, deploying an LLM responsibly
means combining technical mitigations (e.g., data filtering, fine-tuning on safe corpora)

with human-in-the-loop processes.

Ethical and Privacy Considerations.

+ Data Privacy. Models trained on public text may inadvertently memorize personal
data (e.g., names, addresses). Careful scrubbing, differential privacy techniques, or

on-device inference can mitigate this risk [64].

* Accountability and Transparency. It is crucial to provide explanations or prove-
nance for model outputs, especially in high-stakes domains such as healthcare or

law [65].
* Regulatory Compliance. Emerging EU AI Act guidelines and other privacy/data
protection regulations require auditability and fairness assessments [66].

2.1.7 Emerging Trends and Future Directions

With the basics covered, it is worth looking ahead at where LLM research is headed. The

rapid evolution suggests several promising avenues:

* Memory and Retrieval Integration. Combining parametric knowledge (model

weights) with nonparametric retrieval (RAG [67]) can reduce hallucinations and

15

keep models up-to-date [68]. In practice, systems like Retrieval-Augmented Gener-
ation embed documents into a vector database and fetch relevant context at inference

time.

* Continual Learning and Adaptation. Letting LLMs learn from user interactions
over time-while avoiding catastrophic forgetting-remains an open challenge [69].
In production, continually fine-tuning or calibrating models could help them adapt

to evolving user needs.

+ Efficient and Sparse Architectures. Research on Mixture-of-Experts, streamlined
attention (e.g., FlashAttention [70]), and quantization & pruning methods aims to

democratize LLM inference on commodity hardware [32].

* Multimodal and Situated Al. Integrating vision, audio, and real-world grounding
(e.g., robotics, sensor data) will broaden LLM applicability beyond text [71]. In
practice, this means building agents that can see, hear, and act-much like humans

do.

* Regulated, Explainable AI. As LLMs become more pervasive, frameworks for
interpretability, fairness, and safety-supported by transparent partnerships between

academia, industry, and regulatory bodies-will be essential [72].

2.1.8 Summary

In this chapter, the key ingredients that make modern LLMs work have been covered :
Transformer architectures built on self-attention, large-scale pretraining combined with
instruction tuning and RLHF, and the empirical scaling laws that have driven models to
hundreds of billions of parameters. Popular models also classified along axes such as au-
toregressive vs. autoencoding, dense vs. sparse (MoE), and monolingual vs. multilingual
vs. multimodal. Finally, practical training strategies, capabilities, limitations, and ethical
considerations, and sketched emerging trends-especially memory integration, continual
learning, efficient architectures, and multimodal Al were discussed.

Together, these insights set the stage for Chapter 3, introducing multi-model orchestration
platform. By treating each LLM as a modular component and combining them with vector-

based retrieval and dynamic routing, aimed to build a system that leverages the best of each

16

model while managing cost, latency, and user experience in interactive applications.

2.2 Diversity in Models: Capabilities and Limitations

No two large language models are identical. Variations in architecture, training corpora,
tokenization methods, and alignment techniques result in significant differences in model
performance across diverse tasks. Some models are specialized for coding applications
(e.g., CodeLLaMA [73] or GPT-Neo [74]) and excel in syntax-sensitive environments,
whereas others are optimized for open-domain dialogue, question answering, or multilin-
gual reasoning. For example, Qwen-2 is noted for its strong performance on reasoning-
intensive and factual queries, while LLaMA-3 demonstrates fluent and polite conversa-
tional abilities, likely influenced by alignment and post-training methods.

System-level differences are also critical. Inference speed, maximum context window size,
memory usage, and support for streaming outputs vary notably between models. These
factors impact both computational efficiency and suitability for real-time interactive ap-
plications. Moreover, alignment strategies such as supervised fine-tuning or preference
modeling further shape model responses, particularly for ambiguous, multi-step, or user-
directed prompts.

This heterogeneity presents both opportunities and challenges. While specialization en-
ables optimized performance for specific tasks, it complicates the selection of the most

suitable model for a given query without explicit evaluation or dynamic orchestration.

2.3 Multi-Model and Ensemble Approaches

There is growing research interest in leveraging the complementary strengths of multiple
large language models. Early approaches primarily focused on response fusion, where out-
puts from multiple models are generated and then either selected or combined to form a fi-
nal answer [75]. For example, systems that rank responses from a pool of models and fuse
the most relevant ones have been proposed. Other frameworks like LLM-Blender [76])
introduce model selection mechanisms driven by cost optimization, aiming to minimize
inference overhead while maintaining answer quality.

Early response fusion frameworks ZOOTER [77] and benchmarking-driven routing [78]

have shifted towards dynamic model selection and routing, seeking to identify in real

17

time which model or subset of models should process a given query. Some ensemble
systems employ pre-trained classifiers or reward-based scoring to select among models,
while others utilize reinforcement learning to optimize long-term utility.Recent work such
as MetaLLM proposes a dynamic wrapper around multiple LLMs, enabling on the fly
routing and cost-based invocation of different models [79].

However, many existing ensemble strategies operate primarily in batch settings or rely on
large token budgets, limiting their suitability for live, interactive applications. Moreover,
most lack fine-grained control over partial generation, real-time feedback, or token-aware
pruning during inference. These limitations underscore the need for interactive platforms
capable of efficiently orchestrating multiple models dynamically, rather than depending

solely on static ensembles or post-hoc ranking methods.

2.4 Vector Databases and Retrieval-Augmented Generation (RAG)

Large language models are typically trained on static corpora, which can lead to outdated
or limited knowledge. Retrieval-Augmented Generation (RAG) addresses this limitation
by injecting external, dynamic context into the model’s prompt at inference time, so LLMs
can optimize query rewrite or diagnostics [80]. This is achieved by embedding relevant
documents or user-provided files into high-dimensional vectors, which are then stored in
a vector database.

Upon receiving a user query, the system embeds the query and performs a similarity search
to identify the most relevant document fragments. These fragments are retrieved from the
vector database and incorporated into the prompt given to the language model, enabling
responses that are contextually grounded and relevant. This technique is especially valu-
able in scenarios involving private, domain-specific, or time-sensitive information, such
as real-time analysis of uploaded documents or PDFs.

Vector databases like ChromaDB [81] (and more VDBMS techniques [82]) are optimized
for low-latency similarity search and integrate seamlessly with Python-based backends.
They constitute a critical infrastructure component for scalable RAG implementations,
which require efficient cloud-edge collaboration like VELO [83] and lightweight VDBMS
design like Bhakti [84] and are essential in multi-model platforms where consistent re-

trieval context must be shared across multiple language models.

18

2.5 System-Level Considerations for LLM Platforms

Designing a real-world system capable of coordinating multiple large language models in-
troduces architectural and operational challenges that extend beyond the scope of a single

model or static ensemble. These challenges include:

* Hardware Limitations: Running multiple large models concurrently requires sub-

stantial memory and computational resources, particularly on GPU-based systems.

* Latency and Cost Management: Efficient token utilization and adaptive token
budgeting are essential when managing inference costs, quotas, or latency require-

ments.

* Model Routing and Orchestration: A control layer must dynamically decide
which models to invoke, determine token allocations, and decide when to stop or

switch models based on real-time response feedback.

* Session and Context Management: In multi-turn interactions, long conversation
histories must be intelligently compressed or summarized to retain relevance while

adhering to model input length constraints.

* Modular Integration: A scalable system should enable plug-and-play integration
of new models, vector databases, and orchestration algorithms with minimal friction

and disruption.

Few existing solutions provide comprehensive end-to-end orchestration. Platforms such
as OpenAl Playground or Hugging Face Transformers simplify the use of models, but they
do not address multi-model coordination or cost-aware token management. These consid-
erations show the necessity for platforms that treat models as modular services within a
coordinated system, while search engine approaches like LLM-MS [85] attempts at multi-

model orchestration

19

Chapter 3

Platform Architecture

3.1
3.2
33
34
35
3.6

Design Principles, 20
HardwareLayer, 21
StorageLayer ittt it ittt 21
Computation Layer 22
ApplicationLayer 22
Extensibility and Integration 22

3.1 Design Principles

The architecture of the platform was guided by several principles aimed at ensuring scal-
ability, modularity, and efficiency. First, the system uses a layered structure that clearly
separates responsibilities among hardware management, data storage, computation, and

application logic. This modularity facilitates plug-and-play integration of open source

models [86], without requiring major refactoring.

Second, the platform emphasizes multi LLM orchestration over static LLM. Rather than

routing all queries through a fixed LLM, the system adapts in real time based on query

domain, and feedback from model responses.

Resource efficiency is a critical objective and by implementing selective token allocation

and pruning mechanisms,it minimizes unnecessary inference overhead.

20

Robustness and fault tolerance are ensured through session state persistence and embed-
ding normalization techniques.
Finally, user experience is prioritized by designing for low-latency responses and support-

ing long-session interactions via summarization and contextual awareness.

3.2 Hardware Layer

The hardware layer forms the foundation of the platform’s performance, managing com-
putational resources across GPUs and CPUs. Large language model inference, especially
when running multiple models concurrently, requires high memory bandwidth and par-
allel processing capabilities. The platform utilizes a heterogeneous hardware stack, em-
ploying NVIDIA GPUs to enable concurrent execution of models. In scenarios where
GPU resources are unavailable, the system falls back to CPU-based inference, ensuring
uninterrupted service availability.

To facilitate effective resource management, NVIDIA’s System Management Interface
(SMI) is employed to monitor GPU utilization and temperature. This information enables
intelligent load balancing and helps prevent resource over-utilization.

The hardware layer is fully abstracted from the upper architectural layers, such that ap-
plication logic does not directly handle low-level device configurations. This abstraction
enhances portability, allowing deployment across diverse environments including cloud

infrastructure and on-premise servers.

3.3 Storage Layer

The storage layer manages the system’s persistent components, including local language
model files, session metadata, and vectorized document embeddings. Supported models
are stored on disk within an ext4-formatted filesystem and managed by Ollama’s model
server.

A key feature of this layer is the integration of a vector database. Specifically, Chro-
maDB enables Retrieval-Augmented Generation (RAG) capabilities. Uploaded user files
are preprocessed into high-dimensional embeddings using vector encoders, which are then

indexed in ChromaDB to facilitate efficient similarity-based retrieval.

21

At query time, relevant document fragments are retrieved via cosine similarity search and
incorporated into the prompts provided to the language models. An embedding normal-
ization process ensures consistency across all vector representations, enhancing interoper-
ability among different models.

Session persistence is also supported within this layer. Local storage is used to maintain
session histories and hierarchical summarizations, enabling sustained multi-turn interac-

tions without exceeding memory limits and preserving conversational continuity.

3.4 Computation Layer

The computation layer is responsible for orchestrating inference across the various large
language models. This functionality is implemented through the Ollama daemon (version
0.4.5) [14], which serves as the backend model runtime. The layer receives constructed
prompts, executes the selected models, and streams token-by-token outputs back to the
application layer. This layer hosts the primary orchestration algorithms, specifically the
Overperformer—Underperformer Allocation (OUA) and the Multi-Armed Bandit (MAB)

strategies.

3.5 Application Layer

The application layer serves as the system’s coordination hub and user-facing endpoint. It
is implemented as a Flask web application running on an Apache server, facilitating query

intake, file uploads, and real-time streaming of outputs.

3.6 Extensibility and Integration

A key strength of the platform by using its modular architecture, new models can be in-
corporated by updating the Ollama model registry and registering corresponding API end-
points. Similarly, the vector database schema is designed to be flexible, enabling support
for additional embedding formats or metadata as needed.

The system provides standardized interfaces for integrating alternative orchestration algo-
rithms, embedding pipelines. This design aims future-proofing and facilitates experimen-

tation with emerging components as the landscape of large language models evolves.

22

Chapter 4

Computation Layer

41 Overviewo ittt ittt e e e e 23
4.2 LLM-MS OUA (Overperformers—Underperformers Algorithm) . 24

4.2.1 Algorithm Description 24
422 Pseudocode oo 25
4.3 LLM-MS MAB (Multi-Armed Bandit Algorithm) 25
4.3.1 Algorithm Description 26
432 Pseudocode 26

4.1 Overview

The computation layer orchestrates the execution of multiple large language models (LLMs)
through the Ollama daemon (version 0.4.5) [14] within the platform. It manages dynamic
model selection, token allocation, and streaming inference, aiming to optimize both re-
sponse quality and computational efficiency.

This layer operates on heterogeneous hardware, leveraging GPUs and CPUs for parallel
model execution. It abstracts hardware details and exposes APIs to upper layers and by

using the OUA and MAB algortihms enables flexible and efficient multi-model querying.

23

4.2 LLM-MS OUA (Overperformers—Underperformers Algorithm)

4.2.1 Algorithm Description

Initially, a fixed token budget \.x 1s divided evenly among N models, with each model
receiving at maximum)\,,, = ’\% Models generate tokens in a round-robin fashion, pro-

ducing partial outputs.

Each partial response is vectorized, and similarity scores are computed combining:

* Cosine similarity with the user query embedding in order to determine the alignment

of the model response with the question

* Inter-model similarity to other candidate responses in order to enforce a consensus

Models with scores significantly lower than others are pruned to conserve tokens and
allocate them to rest beyond each models maximum allowance. The algorithm terminates
early if a model’s response surpasses others by a defined margin and completes generation,

or is the one last standing producing the best answer.

24

4.2.2 Pseudocode

Algorithm 1 Overperformers—Underperformers Algorithm (OUA)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

A A A

Input: Set of LLMs {LLMy, LLM,, ..., LLMy}, User Prompt p, Max Tokens Amax
Output: Best Response 7,
ca+0.7,68+0.3
A Amax/N
Initialize: responses < {}, embeddings < {}, scores < {}, doneReasons < {},
activeModels + all LLMs

while |activeModels| > 0 do

for each LLM; € activeModels do
(response;, doneReason;) < getChunk(LLM;, p, \)
responses|LLM;] + response;
doneReasons|LLM;] < doneReason;

end for

for each LLM; € activeModels do
embedding; < vectorize(response;)
qScore + cosineSimilarity(embedding;, vectorize(p))
inter Score < Inter Model Similarity(embedding;, embeddings)
scores|[LLM;] < « - gScore 4+ (3 - interScore

end for

best M odel < argmax(scores)

if scores[bestModel] > secondBest + 0.5 and done Reasons|best M odel] == “stop” then
return responses[best Model]

end if

worstModel «+ argmin(scores)

if secondWorstScore — scores[worstModel] > 0.5 then
Remove worstModel from activeM odels

end if

24: end while

25: return responses|argmaz(scores))

4.3 LLM-MS MAB (Multi-Armed Bandit Algorithm)

The Multi-Armed Bandit (MAB) approach treats each model as an arm of a bandit problem,

pulling tokens by balancing exploration and exploitation.

25

4.3.1 Algorithm Description

Tokens are not pre-allocated but pulled one at a time to models selected by the UCBI1
policy. The reward for each token allocation is computed based on semantic similarity
with the query and consensus among models.

The exploration coefficient v decreases as tokens are consumed, shifting priority towards
exploitation of well-performing models. Models with persistently low rewards naturally

receive fewer tokens and are phased out.

4.3.2 Pseudocode

Algorithm 2 Multi-Armed Bandit Algorithm (MAB) with UCB1
Input: Set of LLMs, Query ¢, Token Budget A

Output: Best Model Response

—_

Initialize: rewards; = 0, pulls; = 0 for each model

2: for each round do
3: for each model ¢ do
4 UCB; = reusrdes y oy [2inltotelPulls)
5: end for
6: Choose model i with maximum UCB;
7: Generate next token, update response
8: Compute reward:
9: r = « - sim(query,response) + 3 - avg _inter_model_similarity
10: Update rewards;, pulls;
11 7:0.3-(1—%)
12: if termination condition met then
13: break
14: end if
15: end for

16: return response from model with highest reward

26

Chapter 5

Application Layer

5.1 Landing Page and Main Query Interface 27
5.2 Session Management0 0t 27
5.3 Algorithm Selection and Settings 28
5.4 Model Selection and Chat Interface 29
5.5 Contextual Memory and Mobile Layout 29

5.1 Landing Page and Main Query Interface

The platform presents users with a clean and intuitive landing page that serves as the pri-
mary gateway for submitting queries. Here, users can effortlessly input their questions and
select from available model orchestration strategies, streamlining the interaction process.
The interface emphasizes usability and accessibility, guiding users through query submis-
sion while providing clear options for configuring inference behavior. This is exemplified

in Figure 5.1, which depicts the landing page and query input interface.

5.2 Session Management

To support continuous and organized user interactions, the platform incorporates a com-
prehensive session management sidebar. This feature allows users to maintain, revisit,

and manage ongoing and historical chat sessions efficiently. Users are empowered to ini-

27

P]

[Lmmsoua~ \g\ o \um:‘Z °
Figure 5.1: Landing page of the platform
SESSIONS 5 -
" su
Al
el
Al
Al
Al
70
Al
Al
Al
Al
Al
Al
crsessen s

Figure 5.2: The sessions sidebar panel

tiate new conversations or clear prior sessions, facilitating structured multi-turn dialogues
and enhancing the overall user experience through persistent conversational context. The

sessions sidebar is illustrated in Figure 5.2.

5.3 Algorithm Selection and Settings

A dedicated settings panel empowers users to tailor the platform’s inference behavior to
their specific requirements. Within this panel, users can select between the two principal
orchestration algorithms, the Overperformers—Underperformers Algorithm (OUA) and
the Multi-Armed Bandit (MAB), each offering strategies for dynamic model selection
and token allocation. Additionally, users can parameters such as token budgets, similarity
weighting, and enable or disable individual models, thereby enhancing customization of

the multi-model inference process. This settings interface is shown in Figure 5.3.

28

LLM-MS SETTINGS

BASE OPTIONS TUNING PARAMETERS

nomic-embed-text

Figure 5.3: Settings panel

5.4 Model Selection and Chat Interface

The platform supports flexible querying modalities, allowing users to interact either with
single models directly or through the advanced multi-model orchestration framework.
The chat interface is designed to provide real-time, token-by-token streaming of model-
generated responses, offering a highly interactive experience. Integration with retrieval-
augmented generation (RAQ) further enriches response relevance by grounding answers
in user-provided documents, thereby improving contextual accuracy and informativeness.
Figure 5.4 shows the model selection dropdown with multi-model search disabled, high-
lighting available individual models. The chat interface for a single model conversation
is demonstrated in Figure 5.5, while Figure 5.6 illustrates multi-model sequential partici-
pation within the same session. Retrieval-Augmented Generation in action is depicted in

Figure 5.7, and the multi-model response comparison interface is presented in Figure 5.8.

5.5 Contextual Memory and Mobile Layout

To preserve conversational coherence, the platform maintains session context through hier-
archical summarization. This enables models to generate contextually relevant responses
that reflect the dialogue history. Moreover, the design adapts to varying screen sizes,
providing the user experience on both desktop and mobile devices. Figure 5.9 illustrates

contextual memory retention, and Figures 5.10 demonstrate the responsive mobile layout.

29

Lama 32~ J @) e umms

Figure 5.4: Model selection dropdown with the multi-model search (LLM-MS) disabled,

showing available individual models.

Helo | How are you 7

) Lamas.2istest
I'm ust a language model. so | don't have emotions or feelings like humans do, but I'm functioning properly and ready to assist you with any questions or tasks you may have! It's great to chat with you. How about you? How's your day going so far?

(Lamasz~ ‘@\ LIS

Figure 5.5: Sample chat interface displaying a conversation with a single model (Llama
3.2).

WS your day going so far?

Figure 5.6: Sample chat interface where different models participate sequentially within

the same session.

30

Ah pd

v e O

A
P

17 Quenz.siatest
Vourthesis s ot u i

by locally processing and storing data, using vector embeddings for d abstracting model complexity

Type your message here.

| awen2s~ @\ LLMMS [= Seting:

B thesispat X °

Figure 5.7: Example RAG

What s a subpoena?

MODEL RESPONSES.

mixtral @ nemasa @D deepseekrt aD mistral qwen2.s 0.23 flama3.2

competant authorty, which oders porson othe competent auhorty, equiing an individul 1o
appear incourt provide 2 witen satement (2
deposiion), procice documens, o pefo some other

inssses are avaiabiefor & case t b iy cecided
bytho court

BESTMODEL: MISTRAL (SCORE: 0.981)

cout, Y speciic act

Type your message here.

LLMAMS (OUA)~ e |

Figure 5.8: Interface showing parallel responses

1am studying Computer Science

£ Lismss zistst
nars grear vt

Tanguages, agoris, daa structures, Sofware engineering, atfcal nfeigence. of Something efse?

2 vou

When was Universty of Cyprus bult ?

£ Uamas 2iatest
Asudden change o tpic

1289,
education nstutons in Cyprus.

What am i stugying 2

£ Liamss 2istest
vour curenty stuying Computer Scencel

Remember Iryoua get feelree 10ask

o your message here.

Uama32- || @ MM

Figure 5.9: Sample chat

31

LLM-MS-QUA ~

b

o= @

r

SESSIONS

New Session 33 ra |
Watermelon Seed Safety ra |
New Session 32 |
New Session 31 |
New Session 30 ra |
New Session 29 e |
New Session 28 ra |
New Session 27 ra |
Web-Based Querying Platform |
Chat with Al Assistant |
New Session 26 |
AVillage Life Unfolds ral |
Computer Program Basics ra |
Python Syntax Error ra |
Computer Program Functioning & &

4+ New Chat

Ml Clear All Sessions

LLM-MS-(

Figure 5.10: Mobile layout

32

Chapter 6

Platform Querying Process

6.1
6.2
6.3
6.4
6.5
6.6

Query Lifecyele ittt it 33
Preprocessing and Embedding Generation 34
Dynamic Model Selection and Token Allocation 34
Response Aggregation and Delivery 35
Context and Session Management 36
User Interface Overview 36

6.1 Query Lifecycle

A typical query within the platform undergoes a structured multi-stage lifecycle designed
to ensure efficiency, adaptability, and modularity. The lifecycle begins at the user inter-
face, where a query, optionally accompanied by file uploads, is submitted via a web client.
The backend pipeline then orchestrates this input through several sequential stages: prepro-
cessing, context enhancement via retrieval, dynamic model selection and token allocation,
partial and complete response generation, aggregation, and session-level summarization.

This process emphasizes iterative refinement. Rather than forwarding queries to a single
model, the system evaluates them within a pool of available language models, each with
distinct capabilities. By treating query handling as a multi-step interaction instead of a sin-

gle static pass, the platform flexibly allocates computational resources and token budgets

33

while optimizing for answer quality. This architectural choice is particularly important
when working with models that exhibit different alignment behaviors, inference costs, or
prompt sensitivities.

Furthermore, by leveraging both semantic embeddings and historical interaction patterns,
the system constructs highly contextualized prompts and prioritizes continuity across con-
versation turns. This lifecycle supports not only high-quality single-turn responses but

also rich, coherent multi-turn user experiences.

6.2 Preprocessing and Embedding Generation

Upon query submission, the initial step is preprocessing. When users upload external files-
such as PDFs, DOCs, or images containing embedded text-these documents are parsed
using Python libraries (e.g., PyMuPDF, pdfminer, pytesseract). The extracted text is then
segmented into semantically coherent chunks.

Both these text segments and the user query are encoded into fixed-size vector representa-
tions using a pre-trained embedding model, such as mxbai-embed-large [87] or a variant
of SentenceTransformers such as Sentence-BERT [88]. The resulting embeddings are
stored or queried within a vector database, specifically ChromaDB [81] which leverages
FAISS [89], which facilitates efficient similarity search.

During the retrieval phase, the system employs cosine similarity to identify the top-k doc-
ument chunks most relevant to the query. These retrieved chunks are incorporated into
the prompt, either prepended or appended, during model inference to enable Retrieval-
Augmented Generation (RAG) [90]. This hybrid approach ensures that generated re-
sponses are informed by both the static knowledge of the language models and the dy-

namic, user-specific document context.

6.3 Dynamic Model Selection and Token Allocation

Unlike conventional systems that route queries to a fixed model, the platform employs in-
telligent selection through two primary strategies: the Overperformers—Underperformers
Algorithm (OUA) and the Multi-Armed Bandit (MAB) approach building on recent sur-
veys [75]. Both methods are designed for real-time, incremental evaluation and resource

allocation.

34

The OUA algorithm initially distributes a fraction of the total token budget (e.g., 2048
tokens) equally among all candidate models. Each model generates partial responses in a
round-robin fashion. These outputs are embedded and scored by computing cosine similar-
ity against the original query. Models that consistently underperform-due to incoherence
or divergence-are pruned from further consideration. Conversely, top-performing models
receive additional tokens in subsequent rounds. The process terminates when a model
exceeds a predefined similarity threshold or when the token budget is exhausted.

In contrast, the MAB algorithm models each candidate model as an arm of a multi-armed
bandit. Using the Upper Confidence Bound (UCBI1) [91] policy, it balances exploration
(sampling less-tested models) with exploitation (prioritizing promising ones). Token al-
locations are dynamically adjusted based on accumulated reward, defined as a weighted

sum of similarity to the query and agreement with other models:

reward = « - sim(query, response) + 3 - average inter-model similarity (6.1)

This approach enables the system to efficiently converge on the optimal model while min-

imizing token wastage.

6.4 Response Aggregation and Delivery

After candidate responses are generated, the platform aggregates them based on similarity
scores and generation quality. When multiple high-performing models produce outputs,
the responses are re-ranked and either the top-ranked answer is selected.

The platform supports real-time streaming of partial outputs, allowing users to observe
responses as they are progressively generated. This functionality is implemented through
asynchronous API communication between the backend, running the Ollama daemon, and
the web interface, built with Flask and mod__ wsgi. This design enhances transparency and
user interactivity.

Furthermore, token consumption and inference latency are logged for traceability, facili-

tating subsequent analysis and optimization of system performance in future sessions.

35

6.5 Context and Session Management

Modern large language model applications increasingly require continuity, especially in
chat-based interfaces. This platform includes a session management module that tracks
historical exchanges to maintain conversational coherence. To prevent context overflow
during extended interactions, the system employs hierarchical summarization techniques
that condense earlier messages into concise semantic summaries while preserving essential
meaning.

User privacy is a central design principle. All conversation history and session metadata
are stored locally on the client using browser-based session storage. No raw user inputs,
file contents, or generated messages are retained on the server after the processing.

To support contextual enhancements such as Retrieval-Augmented Generation (RAG), all
uploaded documents and conversation summaries are converted into vector embeddings
on the server side. These embeddings are stored temporarily in a vector database instance
(ChromaDB) running within an isolated read-only Docker container. The embeddings
exist solely for the duration of the query-response cycle and are discarded immediately
after response delivery or session expiration. No long-term persistence of user-derived
data is maintained.

This architecture balances rich functionality with strong privacy guarantees. It enables
document-grounded querying, follow-up referencing, and contextual personalization while
ensuring that user-specific data remains confined within the secure scope of the active con-

tainerized environment.

6.6 User Interface Overview

The platform features a clean, intuitive user interface designed to facilitate seamless in-
teraction with the multi-model querying system. The UI is structured around several key
components that correspond closely with the platform’s querying and orchestration work-

flow:

* Landing Page and Query Input: Users begin at the landing page (see Figure 5.1),
where queries are entered into a text input area. This panel includes controls for

selecting orchestration algorithms, toggling the multi-model search (LLM-MS), and

36

uploading supporting files.

+ Session Management: A sidebar lists saved chat sessions, allowing users to create
new sessions, edit existing ones, or clear history (see Figure 5.2). This facilitates

organized, multi-turn interactions over time.

* Model Selection and Settings: The platform offers flexible model selection via
a dropdown menu that supports individual models or multi-model orchestration
(LLM-MS). Users can configure model orchestration strategies and tune parame-

ters in the settings panel (see Figures 5.4 and 5.3).

* Chat Interface and Response Streaming: Conversations occur in a chat-style in-
terface where users input queries and receive real-time streamed responses from
models. The Ul supports single-model chats (see Figure 5.5) as well as multi-model

sequential responses within a shared session (see Figure 5.6).

* Retrieval-Augmented Generation (RAG): Users can upload documents to sup-
plement queries. The system retrieves relevant content dynamically to inform re-

sponses (see Figure 5.7).

* Multi-Model Response Comparison: When enabled, the interface displays paral-
lel responses from multiple models with quality scores, highlighting the best answer

selected by the orchestration algorithm (see Figure 5.8).

* Contextual Memory and Continuity: The Ul maintains conversational context
across turns, enabling models to remember prior inputs and provide coherent an-

swers throughout the session (see Figure 5.9).

* Mobile Responsiveness: The platform adapts gracefully to smaller screens, of-
fering a mobile-optimized layout for querying and session management (see Fig-

ure 5.10).

Together, these elements create a user-friendly, feature-rich interface that abstracts the
complexity of multi-model orchestration, supports rich user interactions, and enhances

the overall usability and accessibility of the platform.

37

Chapter 7

Implementation Details

7.1 TechnologiesUsed00 it eueeeenonn 38
7.2 Data Flow and Interaction Between Components 39
7.3 User Interface Features 40

7.1 Technologies Used

Building on a layered, full-stack design, our prototype uses the following concrete com-

ponents:

* Flask (v2) for the REST API that receives user queries and orchestrates downstream
processing. All endpoints-including query intake, file ingestion, and health checks-

are defined as modular Blueprints.

* Ollama Daemon (v0.4.5) as the local LLM runtime. Ollama exposes a streaming
REST interface: each model request returns Server-Sent Events (SSE), so we can

forward token batches to the client immediately upon generation.

* ChromaDB to store and index 1536-dimensional text embeddings. Cosine simi-
larity with an HNSW index is used to retrieve the top-k document chunks in sub-

millisecond time, powering our RAG pipeline [81].

38

* Apache + mod_wsgi for production hosting, fronting the Flask application to lever-

age mature process management and zero-downtime restarts.

* Docker containers-one per component (Flask, Ollama, ChromaDB)-to guarantee

environment parity, simplify deployment, and isolate dependencies.

* NVIDIA SMI for real-time GPU monitoring, allowing us to track VRAM usage

during concurrent inference and ensure smooth operation under load.

7.2 Data Flow and Interaction Between Components
Figure 7.1 depicts our elements that are involed in the data flow:

1. Query Submission: The web client issues a POST to api endpoint. Any attached

files are sent in parallel to our ingestion endpoint.

2. Parsing & Embedding: Uploaded documents are parsed (PDF, TXT, DOCX) into
text chunks. Each chunk is embedded and upserted into ChromaDB.

3. Context Retrieval: Upon completing the query embedding, we issue a vector search

to ChromaDB, retrieving the top-k semantically relevant chunks.

4. Prompt Construction: The system builds an enhanced prompt by combining the

user’s query with retrieved context.

5. Orchestration Decision: The orchestration engine (using either LLM-MS OUA or
LLM-MS MAB) evaluates partial outputs, allocates token budgets, and determines

which models Ollama should invoke.

6. Inference via Ollama: The selected models are invoked in parallel through the Ol-

lama daemon. Token budgets are enforced, and partial responses are streamed back.

7. Streaming to Client & Caching: As SSE batches arrive from Ollama, the Flask layer
forwards them over a StreamingObject to the browser. Token usage, model scores,

and session state are cached locally for continuity and analysis.

39

LLM-MS Architecture

Webserver So0 —s
Ollama 0.4.5 Daemon Daemon (Apache) :80
111434 (GO) © O
Flask Logs, prortnp;/; E
mod_wsaqi) | |Config, contex

responses User

u HiSfOI’]// Privacy

x

LLM Filesystem (ext4)
NVIDIA SMI

. LLM-MS Search
Algorithm Library

GPUs (Graphical Processing Units)

Vector Database / RAG
(ChromaDB)

Figure 7.1: System architecture and data flow overview.

7.3 User Interface Features
Our front-end abstracts complexity behind a clean, responsive chat interface:

* Real-Time Streaming: Token-by-token display via SSE, giving users the feeling

of an unfolding conversation.

* Upload Panel: Support for PDFs, text, and DOCX; client-side parsing ensures the

main thread remains responsive.

* Model Routing Transparency: An optional overlay shows which models were se-
lected, their similarity scores, and token allocations-empowering power users with-

out cluttering the main view.

* Session History & Summarization: Conversation turns are stored in browser local-
Storage. After every five messages, earlier context is replaced by an Al-generated

summary to keep performance optimal.

* Mobile Optimization & Accessibility: Fully responsive layout, with ARIA roles
and keyboard navigation. The Ul adapts gracefully to small screens, ensuring con-

sistency across devices.

40

Chapter 8

Experimental Evaluation

8.1 ExperimentalSetup 0.0 41
82 Metrics v i i it e e e e e e e e e e 44
83 Results it e e e 46
8.3.1 Average RewardperModel 46
8.3.2 Average Fl ScoreperModel 46
8.3.3 Average Reward to Tokens Ratio per Model 46
84 Analysis o i i it e e e e e e e e 47

8.1 Experimental Setup

The evaluation of the multi-model querying platform focused on verifying the function-
ality and comparative efficiency of the implemented orchestration strategies-OUA and
MAB-against a fixed single-model baseline. The emphasis was on measuring answer
quality, token efficiency, and system responsiveness in a realistic but controlled setting

using locally deployed language models.

Hardware Environment

All tests were conducted on a virtual server hosted by the Data Management Systems Labo-

ratory (DMSL) at the University of Cyprus. The virtualized environment runs on VMware

41

with an allocated Intel Xeon Gold 6230 CPU featuring 40 virtual cores at 2.10 GHz. The
server is provisioned with 98 GB of RAM to support large-scale model inference and data
processing tasks.

A dedicated NVIDIA Tesla V100 GPU with 32 GB of VRAM is attached to the virtual ma-
chine via PCI passthrough, providing hardware acceleration for deep learning workloads.
The GPU operates under NVIDIA driver version 560.35.03 with CUDA 12.6 support.
Storage resources include a 1 TB NVMe SSD mounted at /media/nvmelTB and a 1 TB
primary SSD for OS and applications, delivering fast I/O performance necessary for the
platform’s retrieval and caching mechanisms.

The server runs on Ubuntu 24.04.2 LTS (Noble) Linux, with all necessary CUDA and
PyTorch dependencies installed. The multi-model inference platform uses Ollama 0.4.5
for dynamic loading and execution of quantized models, enabling efficient GPU-based
inference and token streaming over a REST API.

This virtual server setup offers a scalable and flexible testbed for executing and evaluating

multi-LLM orchestration strategies in a controlled environment.

Software Stack

e Ollama: Used as the LLM backend, serving quantized GGUF models, and ex-
clusively for embedding generation using models such as nomic-embed-text and

mxbai to create vector representations of queries and documents.

* ChromaDB: Serves as the vector database for semantic retrieval during Retrieval-

Augmented Generation (RAG), enabling fast similarity search over embeddings.
* Flask: Implements the backend web server logic, deployed under Apache HTTP
Server with mod_ wsgi for reliable production use.
Models Evaluated

The evaluation utilized three prominent open-source large language models, selected based
on their demonstrated performance across various NLP benchmarks, compatibility with
local GPU inference, and representativeness of different model architectures and capabil-

ities:

42

* LLaMA 3 8B: A state-of-the-art transformer-based model developed by Meta, known
for its balanced trade-off between performance and computational efficiency. The
8-billion parameter variant provides high-quality natural language understanding

and generation while being manageable on a single GPU.

* Mistral 7B: A competitive 7-billion parameter model designed for efficiency and
robustness in diverse language tasks. Its smaller size compared to LLaMA allows
faster inference, making it suitable for resource-constrained environments without

significantly sacrificing accuracy.

* Qwen-2 7B: Developed by Alibaba DAMO Academy, Qwen-2 is optimized for
multilingual reasoning and knowledge-intensive tasks. The 7-billion parameter ver-
sion balances multilingual capabilities and inference speed, offering complementary

strengths to the other evaluated models.

All models were loaded and managed via the Ollama daemon, which supports quantized
GGUF model formats optimized for fast local inference. The models shared access to the
server’s NVIDIA Tesla V100 GPU, enabling parallel execution and dynamic orchestra-
tion during multi-model querying. This setup ensured efficient resource utilization while

maintaining low latency in real-time interaction scenarios.

Query Types

The evaluation was performed solely using the TruthfulQA dataset, a benchmark de-
signed to assess the truthfulness and accuracy of language model responses. This dataset
includes a diverse set of challenging questions aimed at exposing false or misleading an-

swers, focusing primarily on factual recall and reasoning.

Execution Modes Compared

Each query from the Truthful QA dataset was tested under the following inference strate-

gies:

1. Single-model baseline — Each query was answered by one model without orches-

tration.

43

2. OUA (Overperformers—Underperformers Algorithm) — Models were initially
allocated equal token budgets; underperforming models were pruned dynamically

based on semantic similarity scores.

3. MAB (Multi-Armed Bandit Algorithm) — Token allocation among models was ad-
justed dynamically using a UCB1-based bandit policy guided by a reward function

incorporating query relevance and inter-model agreement.

Data Collected

For the evaluation of LLM-MS, data collection focused exclusively on metrics directly
relevant to model performance and computational efficiency. The primary data recorded

for each experiment included:

» Total tokens used: For every query, the number of tokens generated by all partici-
pating models was recorded. This metric captures the computational cost required

to arrive at a final answer

* Qualitative accuracy: Manual evaluation was performed by comparing generated
responses against the ground truth and correct answers from the Truthful QA bench-
mark. This assessment allowed us to gauge whether the answers produced were
not only computationally efficient but also aligned with factual correctness as estab-

lished by the dataset.

All experiments were performed using the Truthful QA benchmark on a fixed laboratory
testbed, and every metric was calculated according to the definitions and procedures out-

lined in our methodology section .

8.2 Metrics

The efficiency and effectiveness of LLM-MS were evaluated using a concise set of metrics
grounded directly in our experimental design. These metrics reflect both resource usage

and answer quality, and their definitions and roles in our evaluation are as follows:

44

1. Token Usage

Token usage was measured as the number of tokens generated in the final answer for each
query. This value represents the computational cost for producing the system’s output and

was used as a basic metric for comparing efficiency between different model strategies.

2. Answer Quality

The quality of generated answers was evaluated using reward scoring and the F1 metric.
For each query, the system generated response was compared against the reference an-
swers provided in the Truthful QA dataset. Evaluation did not rely on human or manual

review, instead, it used a formalized computational approach:

* Reward Formula: The reward for each response was computed using a weighted
cosine similarity, considering three factors: similarity with the golden answer, sim-
ilarity with all correct answers, and dissimilarity with known incorrect answers.

Specifically, the reward is calculated as the 8.1 formula below is stated

* F1 Score: To further quantify answer accuracy, the F1 score was used to measure the
overlap between generated responses and the correct answers. This metric accounts
for both precision and recall, providing a standard measure of response quality based

on the dataset’s ground truth.

All answer quality metrics are computed automatically without subjective intervention,
ensuring that the evaluation remains objective and reproducible, and strictly grounded in

the annotated labels and scoring mechanisms present in the TruthfulQA benchmark

3. Reward Score

The reward score was defined as follows:

Reward = w; sim(response, golden) +ws sim(response, correct) —ws sim(response, incorrect)

(8.1)
where w; = 1, wy = 0.5, w3 = 0.5, and sim(-, -) represents the cosine similarity between

embedding vectors.

45

4. F1 Score

The F1 score was used to further evaluate the quality of generated responses, measuring
the overlap between each model’s answer and the correct answers in the dataset. This

provided a well-established metric for assessing precision and recall.

In summary, our evaluation of LLM-MS focused on the following set of metrics: total
tokens used, qualitative accuracy (F1), reward score. All results are strictly based on

these definitions, reflecting only what is reported and validated in our experiments

8.3 Results

The platform was evaluated on the Truthful QA dataset to assess answer quality and token
efficiency. The evaluation compared single-model baselines with the two multi-model or-
chestration strategies: OUA and MAB. This section presents the quantitative outcomes of
our evaluation, comparing single-model baselines with the proposed multi-model orches-

tration strategies-OUA and MAB-on the Truthful QA benchmark.

8.3.1 Average Reward per Model

As shown in Figure 8.1, the LLM-MS MAB orchestration strategy achieves the highest
average reward over the Truthful QA dataset. This indicates that MAB effectively allocates
tokens to models generating semantically relevant answers, maximizing response quality

through dynamic exploration and exploitation.

8.3.2 Average F1 Score per Model

Figure 8.2 illustrates the average F1 scores for each evaluated model and orchestration
strategy. The OUA (LLM-MS OUA) algorithm achieves the highest average F1, reflecting
its ability to consistently select models producing accurate and coherent responses.

8.3.3 Average Reward to Tokens Ratio per Model

Figure 8.3 shows the average ratio of reward to tokens consumed, highlighting the ef-

ficiency of each model and orchestration approach. The OUA algorithm demonstrates

46

Average Reward per Model

0.77 4

0.76

Average Reward
o
e
5

0.74 - N s

N &

0.73

~) >
& (:.(:L‘ '\"é’a e’o\';b
& & <& <&
&
Model

Figure 8.1: Average reward per model over the Truthful QA dataset

the best trade-off between token usage and answer quality, confirming its efficient use of

computational resources.

8.4 Analysis

The experimental results confirm that dynamic multi-model orchestration offers signifi-
cant benefits over single-model querying in terms of quality. The two implemented strate-
gies, OUA and MAB, exhibited distinct operational behaviors, strengths, and trade-offs,

which is analyzed below.

OUA vs. MAB Performance

The Overperformers—Underperformers Algorithm (OUA) performed well in scenarios where
one model demonstrated a clear semantic advantage early in the generation process. By
distributing tokens evenly at the outset and pruning low-similarity outputs quickly, OUA
conserved computational resources. This made it particularly effective in short factual
queries, where one model typically dominates in relevance.

In contrast, the Multi-Armed Bandit (MAB) approach was more exploratory. It incremen-

tally adjusted token allocation based on observed rewards, defined as a weighted combi-

47

Average F1 Score per Model

0.16 KKK

Average F1 Score

0.13 A \§ .:“

0.11 W, A‘ , & , ,' .

~ “ ™
& & & &
& o & &
«
Model

Figure 8.2: Average F1 score per model

nation of query similarity and inter-model agreement. This led to a more balanced use
of tokens in ambiguous queries where multiple models provided partial value. Although
slightly more computationally intensive due to finer granularity, MAB delivered better

consistency in queries requiring broader coverage or complex reasoning.

Impact of Embedding-Based Scoring

Both algorithms relied heavily on embedding-based similarity scores for reward calcula-
tion and pruning. This approach performed well for retrieval-based and factual queries,
where semantic proximity correlated with answer quality. However, it was less reliable
for open-ended or creative prompts, where response quality is more subjective and less

aligned with vector similarity metrics.

Trade-Offs in Orchestration

The primary trade-off observed was between early pruning (OUA) and adaptive allocation
(MAB). OUA was more efficient in straightforward cases, while MAB was more robust
to uncertainty and noise. A hybrid approach could potentially leverage the advantages of

both methods.

48

Average Reward/Tokens Ratio per Model

0.023 - 2
l.l % l.
—_— X
w
=
Jul]
S 0.022 -
= <5
B 5%
e R
&
= 0.021
3 :
© K
g 3
I K
0.020
7
/ I:I
"
>

& & & &

Figure 8.3: Average reward-to-tokens ratio per model

System-Level Implications

From a system perspective, orchestration contributed two key improvements:
* Better resource utilization: Token and GPU usage were significantly conserved.

* Improved user experience: Streaming partial answers from the selected model led

to faster perceived response times and higher-quality interactions.

However, orchestration also introduces overhead in session state management, token track-
ing, and embedding computation. The evaluation indicated these costs were manageable
within the constraints of a single-node deployment using an NVIDIA Tesla V100 GPU.
Scaling beyond this setup would require optimization or distributed inference strategies.

Limitations and Edge Cases

The system showed reduced benefits in scenarios where:
» All models failed due to lack of knowledge or misalignment.

* The best model required many tokens before generating a high-quality answer, mak-

ing early pruning disadvantageous.

49

* The similarity metric could not distinguish between superficially similar but seman-

tically incorrect answers.

Despite these limitations, the combined results strongly support the conclusion that multi-
model orchestration, guided by real-time feedback, can produce better and more efficient

answers across a wide range of query types.

50

Chapter 9

Conclusion
0.1 SUMMAKY .+ v v v v vttt ot e e e e ettt e e e e e 51
9.2 Experimentallnsights 52
9.3 Benefits of a Platform Approach 52
9.4 Challenges and Limitations 53
9.5 FutureExtensions0.00cieeu... 53
9.6 FimalRemarks00, 55

9.1 Summary

This thesis presented the design, implementation, and evaluation of a modular, dynamic
platform for querying multiple large language models (LLMs). The system provides a
unified interface through which user queries, optionally accompanied by documents, are

processed, routed, and answered via real-time orchestration across a pool of specialized

LLMs.

Unlike single-model systems, the platform employs intelligent strategies (Overperformers—
Underperformers Algorithm and Multi-Armed Bandit) for model selection and token allo-
cation. It also integrates retrieval-augmented generation (RAG) through a vector database
to incorporate context from user-uploaded content. The layered architecture ensures clear

separation of concerns, while the front-end offers an intuitive, chat-like interface with

51

streaming response capabilities.

Experimental evaluation, conducted with open-source models on a local NVIDIA Tesla
V100 setup, demonstrated significant improvements in response quality, token efficiency,
and system flexibility. Across a diverse set of queries, the platform consistently yielded

better or more efficient results than any individual model alone.

9.2 Experimental Insights

Analysis of the orchestration algorithms revealed strengths. The Overperformers—Underperformers
Algorithm (OUA) is efficient for factual queries and enables early pruning of underper-
forming models, minimizing token waste. The Multi-Armed Bandit (MAB) approach is
more robust to uncertainty and adapts incrementally using a reward function based on both
query similarity and inter-model agreement.

Embedding-based similarity metrics performed well in practical scenarios but exhibit lim-
itations when applied to subjective or creative tasks. The streaming interface, combined
with the asynchronous system architecture, enabled partial responses to be delivered in
real time, enhancing user experience without significantly increasing latency.

This platform demonstrates how large language models can be treated not as static end-
points but as dynamic components within a larger intelligent orchestration system. This
“orchestrator-first” approach represents a paradigm shift in the deployment and evaluation

of LLMs in real-world applications.

9.3 Benefits of a Platform Approach

* Modularity: New models and retrieval methods can be integrated into the system

without major reconfiguration.

* Efficiency: Dynamic resource allocation reduces computational waste and opti-

mizes performance and cost.

» Usability: Users are abstracted from model internals, as the system manages selec-

tion and integration transparently.

* Flexibility: Support for document uploads, context management, and session-based

52

querying enables richer and more personalized interactions.

These benefits underscore the value of platform-centric approaches in the large language
model ecosystem: intelligent orchestration can outperform traditional model-centric de-

signs.

9.4 Challenges and Limitations
Despite its strengths, the system faces several practical and architectural challenges:

* GPU and Memory Constraints: Even on a Tesla V100, concurrent execution of

multiple models can be resource-limited.

* Token Cost Management: Although optimized, high token consumption remains

a concern for scalability.

* Scoring Function Generality: Cosine similarity may not adequately capture an-

swer quality for creative or subjective queries.

* Real-Time Complexity: Multi-model orchestration introduces overhead that must

be carefully balanced against response latency.

+ Storage Lifecycle Management: Temporary embedding storage in Docker con-

tainers requires careful lifecycle and resource management.

These challenges highlight directions for future work focusing on scalability, precision,

and robustness improvements.

9.5 Future Extensions

The platform establishes a strong architectural baseline that can be extended with a number
of advanced features aimed at making multi-LLM systems more intelligent, adaptive, and

user-aligned:

* Self-Improving Orchestration: Introduce reinforcement learning or feedback-driven
refinement, enabling the orchestration to learn from user feedback so it gradually

favors models that give better answers.

53

* Federated and Secure Model Integration: Allow queries to models hosted in
secure, decentralized environments, such as on-premise servers or isolated cloud

endpoints, so sensitive models can stay local while still being part of the system [92].

* Natural Language Configuration Interface: Provide a user-friendly text box where

99 <6

anyone can type clear instructions, “avoid using slow models,” “prioritize our legal
model,” or “keep responses under 200 words”, and the platform automatically inter-

prets these rules, filters out unwanted models, and adjusts output style.

* Cognitive Routing with Semantic Task Indexing: Add a simple intent detector
(like tagging a request as ‘summarize’ versus ‘fact lookup’) and keep a small index
of which models are best at each task. When a new question comes in, look up its

intent and send it only to the model that’s known to handle that kind of job. [93].

* Multi-Agent Collaboration Framework: Break complex questions into smaller
tasks handled by different workers, for example, one module gathers background
info, another figures out how to piece an answer together, and a third double-checks
for errors. They can work in sequence or side by side, so even multi-step queries
become easier to manage. This approach is similar to what AutoGen [94] and Lang-

Graph [95] use.

* Game-Theoretic Model Coordination: Treat each model as a “player” that earns
points based on answer quality-track simple metrics (e.g., confidence or correctness)

and let models compete or collaborate to pick the best response.

* Contextual Memory Graphs: Rather than just storing chat logs in order, build a
small in-memory graph that links similar questions and answers. Over time, you
can pull in past relevant conversations to help the LLM give a more personalized,

consistent reply.

* Transparent Orchestration Logs: Show users a simple log: *We asked Model A
first, it got 60% confidence; then we asked Model B, it got 75% and won.” Having
that level of transparency is especially important if you’re using this in law, banking,

or medical settings

54

These extensions would evolve the platform from a modular querying tool into a compre-
hensive orchestration intelligence layer, capable of mediating between user needs, LLM

capabilities, and dynamic data sources in real time.

9.6 Final Remarks

The landscape of large language models is evolving rapidly, and static deployment of sin-
gle models cannot keep pace with the diversity of tasks and user expectations. This thesis
contributes a working prototype and conceptual framework for a multi-model orchestra-
tion platform that is responsive, efficient, and extensible.

By bridging the gap between model diversity and usability, the platform demonstrates
that intelligent systems can emerge not only from improved models, but also from better
architectural design. As the field progresses, orchestration and integration will become as

critical as the models themselves.

55

Bibliography

[1] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang,
Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang,
Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen, “A survey of large language models,” 2024.
[Online]. Available: https://arxiv.org/abs/2303.18223

[2] OpenAl, “Chatgpt,” 2023. [Online]. Available: https://chat.openai.com

[3] ——, “Gpt-2,” 2019. [Online]. Available: https://openai.com/research/gpt-2
[4] Anthropic, “Claude,” 2023. [Online]. Available: https://claude.ai

[5] MetaAl “Llama,” 2023. [Online]. Available: https://www.llama.com/

[6] R. AI, “A taxonomy of llm architectures,” 2024. [Online]. Available: https:

//re-cing.com/blog/lIm-architectures

[7] D. Myers, R. Mohawesh, V. I. Chellaboina, A. L. Sathvik, P. Venkatesh, Y.-H. Ho,
H. Henshaw, M. Alhawawreh, D. Berdik, and Y. Jararweh, “Foundation and large
language models: fundamentals, challenges, opportunities, and social impacts,”
Cluster Computing, vol. 27, no. 1, p. 1-26, Nov. 2023. [Online]. Available:
https://doi.org/10.1007/s10586-023-04203-7

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems 30 (NIPS 2017), 2017, pp. 6000—
6010. [Online]. Available: https://papers.nips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa- Abstract.html

[9] Z. Fu, W. Lam, Q. Yu, A. M. C. So, S. Hu, Z. Liu, and N. Collier,

“Decoder-only or encoder-decoder? interpreting language model as a regularized

56

https://arxiv.org/abs/2303.18223
https://chat.openai.com
https://openai.com/research/gpt-2
https://claude.ai
https://www.llama.com/
https://re-cinq.com/blog/llm-architectures
https://re-cinq.com/blog/llm-architectures
https://doi.org/10.1007/s10586-023-04203-7
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[10]

[11]

[12]

[13]

[14]

[15]

[16]

encoder-decoder,” arXiv preprint arXiv:2304.04052, 2023. [Online]. Available:
https://arxiv.org/abs/2304.04052

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot
learners,” in Advances in Neural Information Processing Systems 33 (NeurIPS 2020),
VIRTUAL, 2020, pp. 1877-1901.

OpenAl, “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” Journal of Machine Learning Research, vol. 21, no. 140, pp. 1-67,

2020.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume [(Long
Papers), Minneapolis, Minnesota, USA, 2019, pp. 4171-4186. [Online]. Available:
https://aclanthology.org/N19-1423

H. Touvron, T. Lavril, G. Izacard, X. Martinet, and M.-A. t. Lachaux, “Llama:
Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971,
2023. [Online]. Available: https://arxiv.org/abs/2302.13971

Anthropic, “Claude 2 model card and evaluations,” 2023. [Online]. Available:
https://cdn.anthropic.com/100/Claude-2-Model-Card.pdf

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas,
F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux,
P. Stock, T. Le Scao, T. Lavril, T. Wang, T. Lacroix, and W. El Sayed, “Mistral 7B:
A 7-billion-parameter language model,” arXiv preprint arXiv:2310.06825, 2023.

57

https://arxiv.org/abs/2304.04052
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2302.13971
https://cdn.anthropic.com/100/Claude-2-Model-Card.pdf

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. Wei, M. Bosma, V. Zhao, K. Guu, A. Yu, B. Lester, N. Du, W. Dakka, Q. Yu,
and Q. V. Le, “Finetuned language models are zero-shot learners,” arXiv preprint

arXiv:2109.01652, 2021, available at https://arxiv.org/abs/2109.01652.

R. K. Taori, M. Mitchell, E. Lee, J. Miller, S. Gururangan, S. Singh, and S. R. Bow-
man, “Stanford alpaca: An instruction-following model and dataset,” Stanford Uni-
versity, Tech. Rep., 2023, available at https://crfm.stanford.edu/2023/03/13/alpaca.
html.

N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, A. Radford,
D. Amodei, and P. F. Christiano, “Learning to summarize with human feedback,”
in Advances in Neural Information Processing Systems 33 (NeurIPS 2020), Virtual,
2020, pp. 3008-3021.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, R. Kelcey, B. Miller,
E. Simens, A. Askell, P. Yorum, G. Krueger, J. So, R. McElreath, J. Thomason,
J. Glaese, W. Weng, T. Kinney, N. de Freitas, J. Leike, and P. Christiano, “Train-
ing language models to follow instructions with human feedback,” arXiv preprint

arXiv:2203.02155, 2022, available at https://arxiv.org/abs/2203.02155.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller,
M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe, “Train-
ing language models to follow instructions with human feedback,” arXiv preprint

arXiv:2203.02155, 2022.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,” arXiv

preprint arXiv:2001.08361, 2020, available at https://arxiv.org/abs/2001.08361.

J. Hoffmann, S. Borgeaud, A. Mensch, S. Bond-Taylor, E. Hasler, E. Castillo,
J. Eckle-Kohler, B. McGraw, J. Clark, J. Ring, A. Carson, R. Leblond, N. Elhage,
O. Hubbard, B. McGrew, K. Millican, A. Ramesh, J. Sanchez, J. Zhang, J. Schnei-
der, G. Krueger, L. Engstrom, R. Munos, Y. Shen, L. Scholz, B. Yetman, A. Azaria,

58

https://arxiv.org/abs/2109.01652
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2001.08361

[24]

[25]

[26]

[27]

[28]

S. Murphy, A. Lewkowycz, M. Rohrbach, J. Nauta, S. van Steenkiste, P. Hashemi,
T. White, T. Clarke, A. Alama, S. Otterbacher, A. Koul, S. Hadfield, M. Martens,

and D. Amodei, “Training compute-optimal large language models,” arXiv preprint

arXiv:2203.15556, 2022, available at https://arxiv.org/abs/2203.15556.

S. Bird, R. Bommasani, T. B. Brown, O. Levy, D. Ruggero, H. L. Saxena, Y. Feng,
V. Ng, D. Selsam, and M. Chang, “Emergent behaviors in large language models: A
survey,” Transactions of the Association for Computational Linguistics, vol. 10, pp.

889-921, 2022.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, M. Phillips, J. Romano, R. Robinson,
K. Vanommeslaeghe, F. Syed, B. Luke, R. Koncel-Kedziorski, A. Raichuk, P. von
Platen, C. Lara, D. Bhatt, P. Liu, Z. Lu, U. Arooj, A. Kamath, H. B. McMa-
han, L. Zettlemoyer, and J. Dean, “Palm: Scaling language modeling with path-
ways,” arXiv preprint arXiv:2204.02311, 2022, available at https://arxiv.org/abs/
2204.02311.

A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzman,
E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsupervised cross-lingual
representation learning at scale,” Proceedings of the 58th Annual Meeting of the As-

sociation for Computational Linguistics (ACL 2020), pp. 84408451, 2020.

BigScience Collaboration, T. L. Scao, C. Raffel, A. Roberts, H. Larochelle, A. Lyu-
betskaya, M. Ott, Z. J. Zhang, Kell, P. Kim, N. Goyal, S. Kim, Ring, Tejas, P. Xie,
C. Raffel, A. Roberts, L. Pawlicki, A. Saxena, M. U. Gutmann, X. Zhao, A. Con-
neau, B. Roziére, D. Britz, Y. Chen, Y. Xue, S. Liu, G. Wenzek, S. Ostadhossieni,
F. Guzman, A. Joulin, and E. Grave, “BLOOM: A 176b-parameter open-access
multilingual language model,” arXiv preprint arXiv:2211.05100, 2022, available at
https://arxiv.org/abs/2211.05100.

W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to trillion param-
eter models with simple and efficient sparsity,” arXiv preprint arXiv:2101.03961,
2021, available at https://arxiv.org/abs/2101.03961.

59

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2101.03961

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

——, “Switch transformers: Scaling to trillion parameter models with simple and

efficient sparsity,” 2022. [Online]. Available: https://arxiv.org/abs/2101.03961

T. Dettmers and L. Zettlemoyer, “Llamaquant: 4-bit consistent quantization of large
language models,” arXiv preprint arXiv:2305.14314, 2023, available at https://arxiv.
org/abs/2305.14314.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter,” in Proceedings of the 5th Workshop on Energy
Efficient Machine Learning and Cognitive Computing (EMNLP Workshop) 2020,
Online, 2020, pp. 1-6.

T. Dettmers, E. Le, and L. Zettlemoyer, “Llma: Low latency model acceleration
for large language models,” arXiv preprint arXiv:2304.07121, 2023, available at
https://arxiv.org/abs/2304.07121.

W. X. Zhao, K. Zhou, J. Li, T. Tang, and X. t. Wang, “A survey of large language
models,” arXiv preprint arXiv:2303.18223, 2023.

S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Amatriain, and

J. Gao, “Large language models: A survey,” arXiv preprint arXiv:2402.06196, 2024.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov,
and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume [(Long
Papers), Minneapolis, Minnesota, USA, 2019, pp. 787-804. [Online]. Available:
https://aclanthology.org/N19-1423

Z. Lin, Y. Liu, Z. Luo, J. Gao, and Y. Li, “Momq: Mixture-of-experts enhances
multi-dialect query generation across relational and non-relational databases,” 2024.

[Online]. Available: https://arxiv.org/abs/2410.18406

N. Du, Y. Huang, A. M. Dai, S. Tong, and D. t. Lepikhin, “Glam: Efficient scaling of
language models with mixture-of-experts,” in Proceedings of the 39th International

Conference on Machine Learning (ICML), 2022.

60

https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2304.07121
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2410.18406

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Mistral Al, “Mistral ai,” 2023. [Online]. Available: https://mistral.ai/

L. Xue, N. Constant, A. Roberts, J. Choi, C. Hawthorne, X. Song, Q. V. Le, and
C. Raffel, “mt5: A massively multilingual pre-trained text-to-text transformer,”
arXiv preprint arXiv:2010.11934, 2021, available at https://arxiv.org/abs/2010.
11934,

J.-B. Alayrac, A. Verzuh, J. Donahue, X. Chen, M. Smith, Z. Akata, C. Feichtenhofer,
A. Kirillov, G. Ostrouchov, A. Pundir, E. Tzeng, A. Steiner, E. Hafen, R. Han,
Y. Li, G. Cardoso, B. Vincent, M. Simon, Y. Lin, Y. Zhang, A. Gilberti,
A. Angelova, L. Fei-Fei, T. Sainath, A. Torralba, and P. Hasler, “Flamingo: a
visual language model for few-shot learning,” in Advances in Neural Information
Processing Systems 35 (NeurIlPS 2022), New Orleans, Louisiana, USA, 2022, pp.
24 008-24 023. [Online]. Available: https://arxiv.org/abs/2204.14198

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, J. Brew, H. Plu, C. Ma, M. Xu, Q. Lhoest,
and A. M. Rush, “Transformers: State-of-the-art natural language processing,”
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 3845, 2020. [Online]. Available:
https://www.aclweb.org/anthology/2020.emnlp-demos.6

H. Face, “Hugging face,” 2023. [Online]. Available: https://huggingface.co

MosaicML Research, “Mpt-7b: A reference implementation of a gpt-style founda-

tion model,” 2023, available at https://www.mosaicml.com/blog/mpt-7b.

Google, “Vertex-ai,” 2025. [Online]. Available: https://cloud.google.com/vertex-ai/

docs

G. Al “Gemini,” 2023. [Online]. Available: https://ai.google.dev/gemini-api/docs/

models/gemini

Google, “Gemini 2.0 flash,” 2025. [Online]. Available: https://deepmind.google/

technologies/gemini/flash/

61

https://mistral.ai/
https://arxiv.org/abs/2010.11934
https://arxiv.org/abs/2010.11934
https://arxiv.org/abs/2204.14198
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://huggingface.co
https://www.mosaicml.com/blog/mpt-7b
https://cloud.google.com/vertex-ai/docs
https://cloud.google.com/vertex-ai/docs
https://ai.google.dev/gemini-api/docs/models/gemini
https://ai.google.dev/gemini-api/docs/models/gemini
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/

[47]

[48]

[49]

[50]

[51]

[52]

[53]

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” OpenAl Blog, vol. 1, no. 8, pp.
1-24, 2019. [Online]. Available: https://cdn.openai.com/better-language-models/

language models are unsupervised multitask learners.pdf

A. D. Academy, “Qwen 2.5 7b,” 2025. [Online]. Available: https://qwenlm.github.
io/blog/qwen2.5/

P. Micikevicius, S. Narang, G. Alben, G. Diamos, E. Elsen, D. Garcia, G. Ginsburg,
M. Houston, O. Kuchaiev, K. Venkatesh, and H. Wu, “Mixed precision training,”
International Conference on Learning Representations (ICLR) Workshop Track,
2018. [Online]. Available: https://arxiv.org/abs/1710.03740

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-lm: Training multi-billion parameter language models using model
parallelism,” in Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2019), Washington, D.C., USA,
2019, pp. 1-12. [Online]. Available: https://dl.acm.org/doi/10.1145/3293883.
3295713

T. Chen, B. Xu, S. Singh, G. Dudek, O. Polozov, S. Chu, P. Khaitan, and P. Malkin,
“Training deep nets with sublinear memory cost,” arXiv preprint arXiv:1604.06174,
2016, available at https://arxiv.org/abs/1604.06174.

T. Kudo and J. Richardson, “Sentencepiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing,” Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 66—71, 2018. [Online]. Available: https://aclanthology.org/
D18-2025

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Le, E. Zhou, R. Pascanu,
H. Michalewski, and T. Rocktéschel, “Chain of thought prompting elicits reason-
ing in large language models,” arXiv preprint arXiv:2201.11903, 2022, available at
https://arxiv.org/abs/2201.11903.

62

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/1710.03740
https://dl.acm.org/doi/10.1145/3293883.3295713
https://dl.acm.org/doi/10.1145/3293883.3295713
https://arxiv.org/abs/1604.06174
https://aclanthology.org/D18-2025
https://aclanthology.org/D18-2025
https://arxiv.org/abs/2201.11903

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Z. Ji, W. Lee, R. Frieske, A. Yu, Y. Su, T. Xu, D. Ishani, A. King,
D. Sahrawat, L. Higgins, M. Reid, M. Wang, J. Devlin, K. Gopalakrishnan,
J. Maynez, and E. Pavlick, “Survey of hallucination in natural language generation,”
ACM Computing Surveys, vol. 56, no. 1, pp. 1-35, 2023. [Online]. Available:

https://dl.acm.org/doi/10.1145/3565815

P. Liang, R. Bommasani, T. Lee, and D. t. Tsipras, “Holistic evaluation of language

models,” arXiv preprint arXiv:2211.09110, 2022.

T. Authors, “Truthfulga: A dataset for evaluating ai’s truthfulness,” 2025. [Online].

Available: https://huggingface.co/datasets/truthfulga/truthful qa/tree/main

E. Sheng, K.-W. Chang, P. Natarajan, and N. Peng, “The woman worked
as a babysitter: On biases in language generation,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021,
pp. 3409-3436. [Online]. Available: https://aclanthology.org/2021.emnlp-main.267

E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations
for deep learning in nlp,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (ACL 2019), 2019, pp. 3645-3650.
[Online]. Available: https://aclanthology.org/P19-1355

S. Samsi, D. Zhao, J. McDonald, B. Li, A. Michaleas, M. Jones, W. Bergeron,
J. Kepner, D. Tiwari, and V. Gadepally, “From words to watts: Benchmarking the
energy costs of large language model inference,” in 2023 IEEE High Performance
Extreme Computing Conference (HPEC), 2023, pp. 1-9. [Online]. Available:

https://ieeexplore.ieee.org/document/10363447

I. Solaiman, M. Brundage, J. Clark, A. Askell, A. Herbert-Voss, J. Wu, A. Radford,
G. Krueger, L. McGuffey, T. Schick, H. Lee, J. Schulman, D. M. Ziegler, S. Jain,
A. Shaw, J. Ludwig, and L. Wang, “Release strategies and the social impacts
of language models,” in Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI 2019), 2019, pp. 7839-7846. [Online]. Available:
https://www.ijcai.org/proceedings/2019/1091.pdf

63

https://dl.acm.org/doi/10.1145/3565815
https://huggingface.co/datasets/truthfulqa/truthful_qa/tree/main
https://aclanthology.org/2021.emnlp-main.267
https://aclanthology.org/P19-1355
https://ieeexplore.ieee.org/document/10363447
https://www.ijcai.org/proceedings/2019/1091.pdf

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

G. Marcus and E. Davis, Rebooting Al: Building Artificial Intelligence We Can Trust.
New York, NY, USA: Vintage, 2022.

E. M. Bender, T. Gebru, A. McMillan-Major, and M. Shmitchell, “On the dangers
of stochastic parrots: Can language models be too big?”’ in Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency (FAccT '21),2021,
pp. 610—623. [Online]. Available: https://doi.org/10.1145/3442188.3445922

N. Bostrom, Superintelligence: Paths, Dangers, Strategies. ~Oxford, UK: Oxford
University Press, 2014.

N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts,
T. B. Brown, D. Song, [. Erlingsson, A. Oprea, and C. Raffel, “Extracting training
data from large language models,” in Proceedings of the 30th USENIX Security
Symposium (USENIX Security 2021), 2021, pp. 2633-2650. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity2 1/presentation/carlini

C. Rudin, “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead,” Nature Machine Intelligence, vol. 1,
no. 5, pp. 206-215, 2019. [Online]. Available: https://www.nature.com/articles/
s42256-019-0048-x

L. Floridi, J. Cowls, M. Beltrametti, R. Chatila, P. Chazerand, V. Dignum, C. Luetge,
R. Madelin, U. Pagallo, F. Rossi, B. Schafer, P. Valcke, and E. Vayena, “Translat-
ing principles into practices: A data ethics framework,” Philosophy & Technology,
vol. 33, no. 4, pp. 659—695, 2020.

Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, Q. Guo,
M. Wang, and H. Wang, “Retrieval-augmented generation for large language
models: A survey,” ArXiv, vol. abs/2312.10997, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:266359151

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kiittler,
M. Lewis, T. Yeh, W.-t. Yih, T. Rocktéschel, S. Riedel, and D. Kiela, “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” in Advances in Neural

Information Processing Systems 33 (NeurIPS 2020), Virtual, 2020, pp. 9459-9474.

64

https://doi.org/10.1145/3442188.3445922
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini
https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x
https://api.semanticscholar.org/CorpusID:266359151

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

C. Liu, J. W. Rae, S. Jayakumar, Z. Li, J. Raiman, A. Cassirer, J. Rae, and C. Re,
“Compressive transformers for efficient long-range sequence modeling,” arXiv

preprint arXiv:2202.06972, 2022, available at https://arxiv.org/abs/2202.06972.

T. Dao, T. Tang, Q. V. Le, P. Vu, H. Pham, T. Tran, and T. Pham, “Flashatten-
tion: Fast and memory-efficient exact attention with io-awareness,” arXiv preprint

arXiv:2205.14135, 2022, available at https://arxiv.org/abs/2205.14135.

A. Birhane, V. U. Prabhu, D. Frost, S. Sen, A. Duval, M. Cisse, and T. Gebru, “Multi-
modal machine learning: An ethical and practical survey,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 36, no. 11, pp. 11 842—11 851, 2022.

F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine
learning,” arXiv preprint arXiv:1702.08608, 2017, available at https://arxiv.org/abs/
1702.08608.

M. Al “Code Illama,” 2023. [Online]. Available: https://github.com/

facebookresearch/codellama

EleutherAl, “Gpt-neo,” 2021. [Online]. Available: https://www.eleuther.ai/artifacts/

gpt-neo

Z. Chen, J. Li, P. Chen, Z. Li, K. Sun, Y. Luo, Q. Mao, D. Yang, H. Sun, and P. S.
Yu, “Harnessing multiple large language models: A survey on llm ensemble,” arXiv

preprint arXiv:2502.18036, 2025.

D. Jiang, X. Ren, and B. Y. Lin, “LLM-blender: Ensembling large language models
with pairwise ranking and generative fusion,” in Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds. Toronto, Canada: Association
for Computational Linguistics, Jul. 2023, pp. 14 165-14 178. [Online]. Available:
https://aclanthology.org/2023.acl-long.792/

K. Lu, H. Yuan, R. Lin, J. Lin, Z. Yuan, C. Zhou, and J. Zhou, “Routing to the expert:
Efficient reward-guided ensemble of large language models,” in Proceedings of

the 2024 Conference of the North American Chapter of the Association for

65

https://arxiv.org/abs/2202.06972
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://github.com/facebookresearch/codellama
https://github.com/facebookresearch/codellama
https://www.eleuther.ai/artifacts/gpt-neo
https://www.eleuther.ai/artifacts/gpt-neo
https://aclanthology.org/2023.acl-long.792/

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), K. Duh, H. Gomez, and S. Bethard, Eds. Mexico City, Mexico:
Association for Computational Linguistics, Jun. 2024, pp. 1964—1974. [Online].
Available: https://aclanthology.org/2024.naacl-long.109/

T. Shnitzer, A. Ou, M. Silva, K. Soule, Y. Sun, J. Solomon, N. Thompson, and
M. Yurochkin, “Large language model routing with benchmark datasets,” 2024.
[Online]. Available: https://openreview.net/forum?id=LyNsMNNL;Y

Q. Nguyen, D. Hoang, J. Decugis, S. Manchanda, N. Chawla, and K. Doan, “Met-
allm: A high-performant and cost-efficient dynamic framework for wrapping llms,”

07 2024.

G. Li, X. Zhou, and X. Zhao, “Llm for data management,” Proc. VLDB
Endow., vol. 17, no. 12, p. 4213-4216, Aug. 2024. [Online]. Available:
https://doi.org/10.14778/3685800.3685838

Chroma, “Chroma: The ai-native vector database,” 2023. [Online]. Available:

https://www.trychroma.com

J. J. Pan, J. Wang, and G. Li, “Survey of vector database management systems,”
The VLDB Journal, vol. 33, no. 5, p. 1591-1615, Jul. 2024. [Online]. Available:
https://doi.org/10.1007/s00778-024-00864-x

Z.Yao, Z. Tang, J. Lou, P. Shen, and W. Jia, “Velo: A vector database-assisted cloud-
edge collaborative llm qos optimization framework,” in 2024 IEEE International
Conference on Web Services (ICWS), 2024, pp. 865-876. [Online]. Available:
https://ieeexplore.ieee.org/document/10493277

Z. Wu, “Bhakti: A lightweight vector database management system for endowing
large language models with semantic search capabilities and memory,” 2025.

[Online]. Available: https://arxiv.org/abs/2504.01553

K. Krasovitskiy, S. Christou, and D. Zeinalipour-Yazti, “LIm-ms: A multi-model
llm search engine,” in /st International Workshop on Coupling of Large Language

Models with Vector Data Management (LLM+Vector Data), collocated with the

66

https://aclanthology.org/2024.naacl-long.109/
https://openreview.net/forum?id=LyNsMNNLjY
https://doi.org/10.14778/3685800.3685838
https://www.trychroma.com
https://doi.org/10.1007/s00778-024-00864-x
https://ieeexplore.ieee.org/document/10493277
https://arxiv.org/abs/2504.01553

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

40th IEEE International Conference on Data Engineering, ser. LLMVDB‘25, Hong
Kong SAR, China | May 19 — 23, 2025, May 2025, conference, p. 8 pages. [Online].
Available: https://chatucy.cs.ucy.ac.cy/

T. Wolf, L. Debut, V. Sanh, J. Chaumond, and C. t. Delangue, “Transformers: State-
of-the-art natural language processing,” in Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: System Demonstrations, 2020,
pp. 38-45.

MXBAI, “mxbai-embed-large,” 2024. [Online]. Available: https://ollama.com/
library/mxbai-embed-large

N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using siamese
BERT-networks,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2019, pp. 3980-3990.

J. Johnson, M. Douze, and H. Jégou, “Faiss: A library for efficient similarity search

and clustering of dense vectors,” arXiv preprint arXiv:1702.08734, 2017.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kiittler,
M. Lewis, W.-t. Yih, T. Rocktdschel, S. Riedel, and D. Kiela, “Retrieval-augmented

generation for knowledge-intensive NLP tasks,” in Advances in Neural Information

Processing Systems (NeurIPS), vol. 33, 2020, pp. 9459-9474.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Machine Learning, vol. 47, no. 2-3, pp. 235-256, 2002. [Online].
Available: https://doi.org/10.1023/A:1013689704352

E. Song and G. Zhao, “Privacy-preserving large language models: Mechanisms, ap-

plications, and future directions,” arXiv preprint arXiv:2412.06113, 2024.

C. Varangot-Reille, C. Bouvard, A. Gourru, M. Ciancone, M. Schaeffer, and
F. Jacquenet, “Doing more with less — implementing routing strategies in llm-based

systems: An extended survey,” arXiv preprint arXiv:2502.00409, 2024.

Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang, S. Zhang,
J. Liu, A. H. Awadallah, R. W. White, D. Burger, and C. Wang, “Autogen: En-

67

https://chatucy.cs.ucy.ac.cy/
https://ollama.com/library/mxbai-embed-large
https://ollama.com/library/mxbai-embed-large
https://doi.org/10.1023/A:1013689704352

abling next-gen llm applications via multi-agent conversation,” arXiv preprint

arXiv:2308.08155, 2023.

[95] LangChain Inc., “Langgraph: A controllable framework for agen-
tic applications,” 2024. [Online]. Available: https://blog.langchain.dev/
langgraph-studio-the-first-agent-ide/

68

https://blog.langchain.dev/langgraph-studio-the-first-agent-ide/
https://blog.langchain.dev/langgraph-studio-the-first-agent-ide/

69

	Introduction
	The Growing Ecosystem of Large Language Models
	Challenges in Managing and Accessing Multiple LLMs
	Motivation for a Unified Multi-LLM Querying Platform
	Overview of the Multi-LLM Querying Platform
	Contributions

	Background and Related Work
	Overview of Large Language Models
	Transformer Foundations
	Pretraining Objectives and Fine-Tuning Paradigms
	Scaling Laws and Emergent Behaviors
	Taxonomy of Model Variants
	Training Strategies and Optimization
	Capabilities, Limitations, and Ethical Considerations
	Emerging Trends and Future Directions
	Summary

	Diversity in Models: Capabilities and Limitations
	Multi-Model and Ensemble Approaches
	Vector Databases and Retrieval-Augmented Generation (RAG)
	System-Level Considerations for LLM Platforms

	Platform Architecture
	Design Principles
	Hardware Layer
	Storage Layer
	Computation Layer
	Application Layer
	Extensibility and Integration

	Computation Layer
	Overview
	LLM-MS OUA (Overperformers–Underperformers Algorithm)
	Algorithm Description
	Pseudocode

	LLM-MS MAB (Multi-Armed Bandit Algorithm)
	Algorithm Description
	Pseudocode

	Application Layer
	Landing Page and Main Query Interface
	Session Management
	Algorithm Selection and Settings
	Model Selection and Chat Interface
	Contextual Memory and Mobile Layout

	Platform Querying Process
	Query Lifecycle
	Preprocessing and Embedding Generation
	Dynamic Model Selection and Token Allocation
	Response Aggregation and Delivery
	Context and Session Management
	User Interface Overview

	Implementation Details
	Technologies Used
	Data Flow and Interaction Between Components
	User Interface Features

	Experimental Evaluation
	Experimental Setup
	Metrics
	Results
	Average Reward per Model
	Average F1 Score per Model
	Average Reward to Tokens Ratio per Model

	Analysis

	Conclusion
	Summary
	Experimental Insights
	Benefits of a Platform Approach
	Challenges and Limitations
	Future Extensions
	Final Remarks

