
Thesis Dissertation

LANGUAGE-AGNOSTIC FEEDBACK-DRIVEN WEB
FUZZING

Julios Fotiou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2025

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

Language-Agnostic Feedback-Driven Web Fuzzing

Julios Fotiou

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2025

Acknowledgments

I would like to express my appreciation to Dr. Elias Athanasopoulos for his supervi-

sion throughout the course of this dissertation. His guidance and constructive feedback

provided valuable support during the development of this work.

I also wish to thank the faculty members of the University of Cyprus, whose instruc-

tion has significantly contributed to my academic development and deepened my interest

in the field of computer science.

Lastly, I am deeply grateful to my family and friends for their continued encourage-

ment, understanding, and unwavering support throughout this endeavor.

1

Abstract

Modern web applications are increasingly built using diverse technologies, often spanning

multiple programming languages and frameworks. This heterogeneity poses significant

challenges for traditional fuzzing techniques that rely on instrumentation-based code cov-

erage to scale effectively. Such methods can be intrusive, language-specific, and difficult

to maintain across complex systems.

We present a language-agnostic web fuzzing framework that eliminates the need for

instrumentation by leveraging system-level behavioral feedback. Our prototype was de-

veloped by modifying a pre-existing web fuzzer framework (webFuzz), by replacing its

instrumentation-based feedback with system-level behavioral signals, specifically system

calls and database query patterns, as a means of guiding the exploration process in a

language-agnostic manner.

We evaluate our approach by integrating it into the original webFuzz framework and

conducting a comparative analysis against the instrumentation-based version. This eval-

uation, performed on real-world web applications, focuses on code coverage and perfor-

mance characteristics. Based on the results, our prototype demonstrates the feasibility

of using system-level behavioral feedback as a practical and generalizable alternative to

traditional instrumentation techniques in language-diverse web environments.

2

Contents

1 Introduction 7
1.1 Motivation . 7

1.2 Contributions . 9

2 Background 10
2.1 Fuzzing . 10

2.2 Instrumentation . 12

2.3 Coverage-Guided Fuzzing . 13

2.4 Web Application Fuzzing . 14

2.5 WebFuzz Framework Overview . 15

2.6 Edit Distance and Trace Similarity . 15

2.7 Priority Queue . 16

3 Architecture 17
3.1 Overview . 17

3.2 System Design . 18

3.2.1 Input Generation and Mutation 18

3.2.2 Automated Execution . 18

3.2.3 Behavioral Monitoring . 19

3.2.4 Trace Association and Abstraction 19

3.2.5 Trace Comparison . 20

3.2.6 Prioritization and Scheduling . 20

4 Implementation 22
4.1 Overview . 22

4.2 Tracing and Behavioral Monitoring . 22

4.3 Trace Abstraction . 23

4.4 Trace Comparison and Novelty Estimation 25

4.5 Prioritization and Scheduling . 26

4.6 Cyclic Request Scheduling . 27

3

5 Evaluation 29
5.1 Evaluation Setup . 29

5.2 Fuzzer Performance Analysis . 30

5.2.1 Overall Code Coverage . 30

5.2.2 Coverage by Request Type . 31

5.2.3 Code Coverage under Equal Request Counts 33

5.2.4 Request Generation Behavior 36

5.3 Evaluation Summary and Key Findings 39

6 Discussion 41
6.1 Limitations . 41

6.1.1 Overhead from External Tracing Tools 41

6.1.2 Sequential Execution Constraint 41

6.1.3 Trace Alignment Sensitivity . 42

6.1.4 Computational Overhead from Edit Distance Calculations 42

6.2 Future Work . 42

6.2.1 Timestamp-Free Trace Association 42

6.2.2 Low-Overhead Tracing . 43

6.2.3 Parallelization for Scalable Fuzzing 43

6.2.4 Generalization Beyond WebFuzz Components 43

7 Related Work 44
7.1 Instrumentation-Based Web Fuzzers . 44

7.2 Black-Box Web Fuzzers . 45

8 Conclusion 47

4

List of Figures

3.1 Architecture and feedback-driven workflow of the language-agnostic web

fuzzing framework. 21

4.1 Cyclic scheduling logic combining crawler exploration and feedback-guided

mutation. 28

5.1 WordPress: Code coverage by request type. 32

5.2 DVWA: Code coverage by request type. 32

5.3 Joomla: Code coverage by request type. 33

5.4 Mean number of requests issued by each fuzzer under an equal time budget. 34

5.5 Mean request throughput over time for WordPress, based on averaged

values at fixed time checkpoints. 37

5.6 Mean request throughput over time for DVWA, based on averaged values

at fixed time checkpoints. 37

5.7 Mean request throughput over time for Joomla, based on averaged values

at fixed time checkpoints. 38

5.8 Request count over time from Original WebFuzz. 38

5.9 Request count over time from Cyclic WebFuzz. 39

5.10 Request count over time from Trace-based WebFuzz (Ours). 39

5

List of Tables

5.1 Mean code coverage (%) ± standard deviation across runs per web appli-

cation. 31

5.2 Mean mutated code coverage (%) ± standard deviation for each fuzzer

under the same execution time budget. 33

5.3 Mean code coverage (%) ± standard deviation across runs for each fuzzer.

All fuzzers were run with the same number of requests per web application. 35

5.4 Mean code coverage (%) ± standard deviation from mutated requests
only, for each fuzzer. All fuzzers were run with the same number of total

requests per web application. 36

6

Chapter 1

Introduction

1.1 Motivation

In an era where software vulnerabilities continue to pose serious threats to digital infras-

tructure, fuzzing has emerged as one of the most powerful and widely adopted techniques

for automated vulnerability discovery. Its power lies in its simplicity, by automatically

generating and executing large numbers of inputs, fuzzers can trigger unexpected behav-

iors and crash-inducing conditions that developers may never have anticipated. In partic-

ular, coverage-guided fuzzing has demonstrated remarkable success in detecting memory

corruption and logic bugs in native applications by leveraging lightweight feedback mech-

anisms, such as instrumentation-based code coverage [25]. Tools such as AFL [30] and

libFuzzer [21] have significantly advanced the field by applying coverage feedback to

guide fuzzing inputs more intelligently. This strategy has proven to be effective in expos-

ing hidden bugs in complex and widely deployed software systems, including high-profile

targets such as the Linux kernel, OpenSSL, and Mozilla Firefox [8, 29].

Although fuzzing has seen remarkable success in native software, its application to

web systems remains relatively underexplored and limited [11, 23]. This is particularly

concerning given the increasing complexity and critical role of web applications in mod-

ern computing. These applications are responsible for managing sensitive data, enforcing

authentication, and controlling access to critical backend infrastructure. Vulnerabilities in

such systems can have severe consequences, including data breaches, privilege escalation,

and service disruption. As a result, enhancing fuzzing techniques for web applications has

the potential to significantly improve the security posture of millions of real-world deploy-

ments. Several white-box web fuzzing techniques have been proposed, typically relying

on symbolic execution, taint analysis, or static code analysis to reason about execution

paths and generate targeted inputs [1, 4]. Although these approaches offer high preci-

sion, they are often difficult to scale because of the dynamic and framework-heavy nature

7

of real-world web stacks. Many web applications use interpreted languages (e.g. PHP,

JavaScript) and incorporate third-party libraries, making it hard for symbolic analysis to

model runtime behavior accurately.

Consequently, the majority of practical web fuzzers adopt a black-box approach, send-

ing HTTP requests without any visibility into the application’s internal execution or con-

trol flow, and relying solely on externally observable responses, such as status codes or

response content [3]. Although this approach is simple to deploy and effective in some

scenarios, it provides little to no guidance for test case generation. As a result, black-

box fuzzers often fail to reach deeper logic or explore complex state-dependent behavior,

limiting their ability to detect vulnerabilities.

To address these limitations, grey-box web fuzzers have emerged, which incorporate

lightweight runtime feedback, typically in the form of code coverage, to guide fuzzing

more effectively. These tools instrument the application’s source code or runtime envi-

ronment, enabling them to prioritize inputs that explore new execution paths. A notable

example is WebFuzz, which applies Abstract Syntax Tree (AST)-level instrumentation to

PHP applications, to collect code coverage and improve fuzzing precision [23].

While instrumentation has played a crucial role in enhancing test guidance for fuzzing,

it introduces significant practical limitations. Most instrumentation techniques are closely

tied to the implementation language, which restricts the applicability of many fuzzing

frameworks to a narrow range of platforms and technologies. In applications built using

multiple languages or heterogeneous technology stacks, applying instrumentation consis-

tently across all components may require substantial engineering effort.

These limitations underscore the need for a language-agnostic feedback-driven fuzzing

approach that preserves the advantages of grey-box techniques, such as guided input gen-

eration, without relying on language-specific instrumentation. Decoupling the feedback

mechanism from the internal structure of the application enables broader applicability

across diverse web environments, particularly those composed of multiple programming

languages or frameworks.

To address this, this thesis proposes a novel web fuzzing framework, built upon and

extending the original WebFuzz [23] system. The modified framework leverages exter-

nally observable runtime behaviors, specifically system calls and SQL queries, as proxies

for internal execution feedback. By passively collecting and analyzing these side effects

during execution, the system can prioritize inputs that trigger new behaviors, enabling

deeper exploration of application logic in a non-intrusive and scalable manner. This de-

sign maintains the effectiveness of coverage-guided fuzzing while improving its practical-

ity and generalizability in real-world web environments, where traditional instrumentation

poses significant practical challenges.

8

1.2 Contributions

The main contributions of this thesis are:

1. We propose a grey-box fuzzing approach for web applications that replaces tra-

ditional instrumentation-based feedback with system-level behavioral signals. By

extracting system calls and SQL queries during execution, the framework elimi-

nates the need for access to source code or language-specific internals, enabling

input mutation guidance in a language-agnostic and non-intrusive manner.

2. We introduce a novel prioritization strategy based on execution traces, where sys-

tem calls and SQL query keywords are abstracted into lightweight sequences. These

traces are matched to individual HTTP requests using timestamp alignment and

compared using edit distance, allowing the fuzzer to prioritize inputs that exhibit

behavioral novelty.

3. We implement the proposed feedback mechanism as an extension to the WebFuzz

framework [23], replacing its original AST-level PHP instrumentation with passive

system-level monitoring, while preserving the overall architecture of the frame-

work. The modified fuzzer operates sequentially to ensure accurate trace-to-request

associations and enable precise feedback-driven input selection.

4. We evaluate the modified framework on three widely-used web applications, Word-

Press, DVWA, and Joomla, comparing its performance against both the original

WebFuzz and a variation that incorporates periodic mutation from the queue. While

our approach does not use instrumentation for feedback during fuzzing, we retain

WebFuzz’s instrumentation during evaluation solely to measure code coverage, en-

abling a fair and consistent comparison across all configurations.

At its core, our research aims to determine whether system calls and SQL queries can pro-

vide meaningful feedback for guiding the prioritization and mutation of fuzzing requests.

Crucially, our work focuses on evaluating the feasibility of leveraging such traces as an

alternative to traditional instrumentation-based feedback mechanisms.

9

Chapter 2

Background

In this chapter, we present the necessary background to support the design and develop-

ment of our proposed language-agnostic fuzzing framework. We begin with an overview

of fuzzing and its core classifications, black-box, white-box, and gray-box, based on the

level of internal visibility available to the fuzzer. We then introduce coverage-guided

fuzzing, a widely adopted grey-box technique that leverages runtime feedback to guide

input generation. Next, we discuss the unique challenges of applying fuzzing to web ap-

plications and examine the limitations of language-specific instrumentation in real-world

scenarios. We also provide an overview of the WebFuzz [23] framework, which serves as

the foundation for our prototype, and highlight the aspects that are preserved or modified

in our implementation. Finally, we introduce two key concepts that are central to our ap-

proach: edit distance, which we use to measure the similarity between execution traces,

and priority queues, which help determine the scheduling of inputs based on behavioral

novelty.

2.1 Fuzzing

Fuzzing is a software testing technique that involves automatically generating and exe-

cuting large numbers of inputs with the goal of triggering unexpected behaviors such as

crashes, assertion failures, or memory errors [13, 14, 16]. It is especially valuable in the

context of security testing, where such behaviors can reveal vulnerabilities exploitable by

attackers [22]. The simplicity of fuzzing allows it to be integrated into a wide range of

testing pipelines, and its effectiveness has been demonstrated in uncovering both shallow

and deep bugs across many types of applications.

At its core, a fuzzer operates in an iterative loop designed to uncover unexpected or

erroneous behavior in software. This loop typically consists of four key stages: input

generation, execution, monitoring, and feedback [31]. First, the fuzzer generates inputs,

10

either randomly or based on a model or mutation of existing inputs, and feeds them to the

target program. The program is then executed with these inputs, while the fuzzer moni-

tors for abnormal behavior such as crashes, hangs, assertion failures, or memory access

violations. In more advanced fuzzing techniques, this monitoring phase also collects code

coverage or runtime information to guide the input generation process [30]. The results

are then analyzed, and the feedback is used to refine or evolve subsequent inputs in a way

that increases the likelihood of triggering deeper or more subtle bugs. The sophistication

of this loop varies based on the type of fuzzing employed.

Fuzzing techniques are typically categorized into black-box, white-box, and grey-box

approaches, depending on the level of internal information available about the program

under test:

Black-box

Black-box fuzzers treat the application as opaque and generates inputs without any knowl-

edge of the internal code or execution state, relying solely on outputs such as response

codes or error messages [3, 13]. This model is easy to deploy and works well for closed-

source or externally hosted systems, but often suffers from low code coverage and inef-

fective exploration of deep application logic.

White-box

White-box fuzzers have full access to source code and execution semantics, allowing them

to reason about program paths using techniques like symbolic execution, concolic exe-

cution, or constraint solving [12, 32, 33]. While white-box fuzzing enables precise input

generation and high path coverage, it is inherently computationally intensive, presents

scalability challenges in large or complex programs, and requires significant engineering

effort to apply in production environments [6].

Grey-box

Grey-box fuzzers represent a practical compromise between black-box and white-box ap-

proaches, leveraging lightweight runtime instrumentation to collect limited execution

feedback, most commonly in the form of code coverage [30]. Their scalability, sim-

plicity, and demonstrated success in real-world applications have made them a widely

adopted choice in modern fuzz testing [5].

In practical settings, the choice of fuzzing technique is shaped by various factors,

including the characteristics of the target application, available resources, and the con-

straints of the deployment environment. Black-box fuzzing is often favored for web ap-

plications and closed-source software, where internal visibility or access to source code

11

is limited. Grey-box fuzzing, offering a balance between observability and performance,

is widely used across different domains where partial instrumentation is feasible. White-

box fuzzing, although capable of deep and comprehensive analysis, is typically reserved

for research or controlled environments due to its high computational cost and implemen-

tation complexity. As a result, it is less suited for large-scale or time-sensitive testing

scenarios.

2.2 Instrumentation

Instrumentation is a technique used to monitor the runtime behavior of a program by

injecting additional code or hooks into its execution. In the context of fuzzing, instru-

mentation is commonly used to collect feedback, such as code coverage, or branch ex-

ecution, which helps guide input generation toward unexplored or interesting program

paths [2, 30].

There are generally two categories of instrumentation:

Static Instrumentation

Static Instrumentation involves modifying a program’s binary before execution. This

method allows analysts to insert additional code or markers into the binary, facilitating

the observation of specific behaviors or the collection of metrics during runtime. It is

particularly useful for scenarios where source code is unavailable, and modifications need

to be made directly to the binary [2].

Dynamic Instrumentation

Dynamic Instrumentation refers to the analysis of a program during its execution. This

technique enables real-time observation and modification of a program’s behavior without

altering the original binary. Tools like Pin and DynamoRIO are commonly employed for

this purpose, allowing analysts to inject code, monitor execution paths, and gather runtime

information dynamically [2].

While dynamic instrumentation offers flexibility and does not require source code

access, it is less commonly used in practical fuzzing frameworks due to its higher runtime

overhead and complexity. Coverage-guided fuzzers like AFL and libFuzzer rely heavily

on static instrumentation to track edge or block coverage during execution [21, 29, 30].

This feedback is essential for driving the mutation engine, allowing the fuzzer to evolve

inputs that exercise new parts of the codebase. Similarly, in the domain of web fuzzing,

tools like WebFuzz perform instrumentation at the Abstract Syntax Tree (AST) level for

12

interpreted languages like PHP, enabling fine-grained control over which paths have been

explored [23].

Despite its advantages, instrumentation is not always practical or desirable in real-

world deployments. It can introduce significant performance overhead, compatibility is-

sues, or runtime instability, especially when applied to production systems or complex ex-

ecution environments. In some cases, instrumentation relies on language-specific features

or interpreter internals [23], which limits portability and confines fuzzing to a narrow set

of applications. As a result, there is growing interest in developing a language-agnostic

feedback mechanisms that enable effective fuzzing without requiring modifications to the

target application.

2.3 Coverage-Guided Fuzzing

Coverage-guided fuzzing (CGF) is one of the most widely adopted grey-box fuzzing strate-

gies. It uses lightweight instrumentation to gather feedback on which parts of the program

are exercised by each test input. This runtime feedback is then used to guide the gener-

ation of new inputs, helping the fuzzer explore previously unexecuted code paths more

effectively [25, 30]. A typical coverage-guided fuzzing loop includes generating inputs,

executing them, collecting coverage information, and mutating promising inputs to reach

deeper code regions. Inputs that exercise new program behaviors, such as novel control-

flow paths, are prioritized for further mutation [24]. This process, illustrated in Algo-

rithm 1, enables the fuzzer to incrementally expand the program state space it can reach,

improving its ability to discover both shallow and deep bugs.

Algorithm 1: Coverage-Guided Fuzzing Loop, extracted from [24]
Input: Program P, Seed corpus C

Output: Crash-inducing inputs D

1 D← /0 ; ▷ Crash reports

2 while fuzzing not terminated do
3 i← PICKSEED(C) ; ▷ Select input from corpus

4 i′← MUTATE(i) ; ▷ Apply random mutation

5 (outcome,coverage)← RUN(P, i′) ; ▷ Execute and monitor behavior

6 if outcome = crash then
7 D← D∪{i′} ; ▷ Log crash-inducing input

8 if coverage is new then
9 C←C∪{i′} ; ▷ Expand corpus

10 return D

13

Several types of coverage metrics are used in CGF:

• Block coverage: identifies whether specific basic blocks have been executed [30].

• Edge coverage: tracks transitions between basic blocks in the control-flow graph

[30].

• Path coverage: records full execution paths [27].

• Comparison feedback: captures values in branch conditions, helping generate in-

puts that satisfy conditionals [14].

Widely used tools such as AFL and libFuzzer have shown the effectiveness of coverage-

guided fuzzing by discovering thousands of bugs in real-world software [21, 29, 30].

2.4 Web Application Fuzzing

Web application fuzzing is a specialized form of software testing that aims to discover

vulnerabilities in server-side web logic by automatically generating and sending crafted

HTTP requests. It extends the core principles of fuzzing, which involve generating a

large number of inputs and observing system behavior, to the web domain, where the

inputs consist of structured network traffic and the target application is a remote server

handling client requests [11, 23].

A typical web fuzzer operates by constructing HTTP requests that target parameters

such as query strings, form fields, cookies, and headers. These inputs are then sent to

the application, and the responses, such as HTTP status codes, response bodies, and error

messages, are monitored for signs of unexpected behavior. Examples of such behavior

include server crashes, stack traces, anomalous output, or violations of expected logic,

such as authentication bypass or database error leakage. In particular, web fuzzers often

attempt to detect vulnerabilities like Reflected Cross-Site Scripting (XSS) by injecting

JavaScript or HTML payloads into input fields and observing whether they are improperly

reflected in the server’s response. The primary goal is to uncover vulnerabilities such as

reflected cross-site scripting (XSS), SQL injection, file inclusion, broken access control,

and other logic flaws that may compromise application security [15, 23].

Unlike native binaries, web applications are structured as multi-layered systems com-

posed of routing logic, middleware, templating engines, and backends such as databases

or APIs. Additionally, they often require stateful interactions: for example, reaching cer-

tain endpoints may require login credentials, cookies, or a specific sequence of requests.

This makes fuzzing more complex, as it requires not only generating valid individual re-

quests, but often maintaining realistic user workflows and session state to reach deeper

functionality [23].

14

Despite these challenges, web application fuzzing remains a crucial part of modern se-

curity testing. Given the ubiquity of web interfaces and their direct exposure to untrusted

users, any exploitable flaw in a web application can have significant consequences, from

data leaks to full server compromise. As a result, improving the effectiveness and depth

of fuzzing techniques in this domain continues to be a high-impact area of research.

2.5 WebFuzz Framework Overview

WebFuzz [23] is a grey-box fuzzing framework designed to uncover vulnerabilities in web

applications by combining lightweight instrumentation with dynamic analysis. Specifi-

cally targeted at PHP-based environments, WebFuzz instruments the application’s Ab-

stract Syntax Tree (AST) to gather code coverage information during execution. This

feedback is used to guide the mutation and selection of HTTP requests, allowing the

framework to explore deeper execution paths and uncover vulnerabilities such as cross-

site scripting (XSS). The framework includes components for automated crawling, re-

quest mutation, feedback-based scheduling, and vulnerability detection. Inputs are priori-

tized primarily based on their contribution to code coverage, and mutations are generated

accordingly to maximize the likelihood of triggering previously untested behaviors.

In this thesis, the WebFuzz framework serves as the foundation for our prototype.

While we retain its overall structure, we significantly modify its core feedback mecha-

nism by removing the reliance on instrumentation. Instead of using AST-based coverage

signals, our approach adopts a language-agnostic feedback model that leverages exter-

nally observable system-level behaviors.

2.6 Edit Distance and Trace Similarity

In the absence of traditional code coverage metrics, our approach relies on behavioral

traces, such as system calls and SQL queries, to infer application behavior. To effectively

use these traces for feedback, we require a way to measure how similar or different two

execution traces are. For this purpose, we employ edit distance, a well-established metric

used to quantify the difference between two sequences.

Edit Distance

Edit distance, also known as Levenshtein distance, is a metric that quantifies the minimum

number of single-element operations required to transform one sequence into another,

where these operations include insertions, deletions, or substitutions. In our context,

each execution trace is represented as a sequence of abstracted system-level events, such

15

as syscall names or SQL keywords. By calculating the edit distance between a newly

observed trace and those previously encountered, we are able to estimate the behavioral

novelty of new inputs.

Trace Similarity as a Coverage Proxy

This comparison serves as a lightweight and language-independent proxy for code cov-

erage. By measuring how different a newly observed trace is from those seen previously,

the fuzzer can estimate whether a new input triggers novel application behavior. Traces

that differ substantially from prior executions are considered more interesting and are,

in principle, prioritized for further exploration, while those that are very similar may be

deprioritized to avoid redundant effort.

Adopting this trace-based similarity approach enables feedback-driven fuzzing with-

out requiring instrumentation or access to the source code, thereby supporting a language-

agnostic fuzzing strategy.

2.7 Priority Queue

A priority queue is a specialized data structure that organizes and retrieves elements based

on their assigned priority, rather than the order in which they were added. Each element

in the queue is associated with a priority value, and the element with the highest prior-

ity is always selected for processing next. This allows the system to focus on the most

“interesting” or important items at any given time [10].

In the context of fuzzing, the priority queue acts as a scheduler for test cases. Instead

of processing test cases in the order they are generated, the fuzzer uses the priority queue

to always select the test case deemed most promising, according to some criterion, for

the next mutation and execution cycle. This allows the fuzzer to focus computational

resources on inputs that are most likely to yield new or interesting behaviors [23].

In our approach, each test case is assigned a priority based on two main factors: the

behavioral novelty of its execution trace, and the frequency with which it has already been

selected. The priority queue automatically maintains these relationships, ensuring that at

each iteration, the next test case to be fuzzed is one that strikes the best balance between

novelty and diversity. By using a priority queue, the fuzzer can efficiently manage thou-

sands of candidate inputs, rapidly adapt to new discoveries, and avoid wasting resources

on redundant or uninteresting paths.

16

Chapter 3

Architecture

3.1 Overview

The architecture of our prototype is designed to efficiently guide the fuzzer and establish a

language-agnostic feedback mechanism, without relying on language-specific instrumen-

tation. At its core, the system is feedback-driven: it uses externally observable behaviors,

specifically, system calls and SQL queries, as proxies for internal program coverage. This

approach enables the framework to operate across a broad spectrum of web technologies,

such as applications composed of multiple programming languages.

This architecture treats the web application as an opaque system, focusing entirely

on the external effects that each test input produces during execution. When an input,

such as an HTTP request, is sent to the application, the framework passively monitors

the system’s runtime activity. It captures the sequences of system calls that represent all

interactions with the operating system, such as file operations, network communication,

and process management, as well as the SQL queries issued to backend databases. These

observations provide a detailed picture of the application’s real execution paths, without

requiring modification of the application itself.

Each execution is abstracted into a behavioral trace: a simplified sequence of system-

level events and database operations that characterizes how the application responded to

a specific input. By comparing execution traces, the framework identifies whether a test

case exercises previously unexplored code paths or follows paths that have already been

covered.

In summary, the architecture is specifically designed to determine whether a web

fuzzer can be effectively guided without relying on instrumentation, thereby enabling

its use across a diverse range of web applications. By focusing on externally observable

behaviors, such as system calls and SQL queries, our prototype aims to provide a flexible

and language-agnostic feedback mechanism while maintaining minimal intrusion.

17

3.2 System Design

The architecture of our language-agnostic web fuzzing framework is organized into sev-

eral main components, each fulfilling a distinct role within the fuzzing process. Together,

these components form an iterative feedback-driven workflow that enables the efficient

exploration and testing of web application behavior. The overall structure and interac-

tion of the components that make up our fuzzing framework are illustrated in Figure 3.1.

This high-level overview provides a visual summary of the system’s iterative feedback-

driven process, from input generation to behavioral monitoring and prioritization. In the

following subsections, we describe each component in detail.

3.2.1 Input Generation and Mutation

The fuzzing process begins with a collection of valid HTTP requests, each representing a

typical interaction with the target web application. As the automated crawler explores the

application, it continuously discovers new endpoints and user actions, dynamically ex-

panding the pool of candidate requests. In addition to these newly identified requests, the

framework generates further test inputs by systematically mutating requests that have pre-

viously shown promising or interesting results. Mutation strategies include introducing

crafted payloads, recombining elements from different requests, and altering the struc-

ture or content of request parameters. In some cases, certain parameters may be deliber-

ately excluded from mutation to maintain necessary application state. This dual approach,

which combines ongoing crawling with diverse mutation techniques applied to favorable

requests, ensures that the fuzzer explores both new and previously encountered parts of

the application, maximizing the likelihood of uncovering a wide range of potential vul-

nerabilities.

3.2.2 Automated Execution

Each input, whether discovered by the crawler or generated through mutation of favorable

previous requests, is automatically submitted to the target web application in the form of

an HTTP request. This fully automated process enables efficient and repeatable sub-

mission of a large number of test cases, systematically exercising different entry points,

endpoints, and workflows within the application. By automatically exercising both newly

discovered and promising mutated requests, the framework achieves broad and thorough

coverage of the application’s possible behaviors. This high degree of automation enhances

the efficiency, repeatability, and scalability of the testing process, allowing security assess-

ments to proceed with minimal manual effort, even in large or complex web application

environments.

18

3.2.3 Behavioral Monitoring

As each input is processed by the web application, the framework passively monitors the

application’s runtime activity by externally capturing all relevant system calls and SQL

queries generated during the handling of that request. This behavioral monitoring is non-

intrusive and requires no modification of the application’s source code, thereby preserving

normal operations. The resulting traces, which consist of sequences of system calls and

SQL queries, are collected for every test case. By comparing these traces, the frame-

work can identify and retain those inputs that, based on their behavioral differences, are

likely to have exercised previously unexplored execution paths. These prioritized inputs

form the basis for subsequent mutations, allowing the fuzzer to progressively expand its

exploration of the behavior and logic of the application.

3.2.4 Trace Association and Abstraction

To accurately analyze the application’s behavior in response to each test input, our frame-

work first associates system call and SQL query traces with their corresponding HTTP

request. This is achieved by collecting all system-level and database events that occur

within a defined time window spanning the request and its response. By focusing on this

window of activity, the framework ensures that only the behaviors directly triggered by a

specific input are considered for further analysis.

Next, the raw system calls and SQL queries captured during execution are abstracted

into compact behavioral traces. Each trace succinctly summarizes the sequence of system-

level and database operations performed by the application in response to a particular

input, providing a high-level view of its internal processing. This abstraction process in-

volves filtering out unnecessary details and focusing on the essential structural elements,

such as syscall names and key SQL query keywords, thereby reducing the complexity and

size of the traces. By transforming detailed execution logs into concise, comparable rep-

resentations, the framework facilitates efficient analysis and enables the use of sequence

similarity metrics to guide the fuzzing process. This approach not only streamlines trace

comparison but also supports the language-agnostic nature of the framework, as it oper-

ates independently of the application’s implementation language or internal architecture.

Finally, the abstracted syscall and SQL traces are combined into a unified sequence

of tokens for each request. This unified sequence captures the full range of externally

observable behaviors associated with the input and serves as the foundation for trace

comparison, novelty assessment, and input prioritization during fuzzing.

19

3.2.5 Trace Comparison

After abstraction, the trace associated with each new input is compared against traces

generated by previous executions. A similarity metric, such as edit distance, is used to

measure the degree of difference between the new trace and the set of previously observed

traces. If the trace associated with a new input is found to be unique or significantly

different, it suggests that the input has driven the application along a new execution path,

potentially exposing new behaviors, logic, or vulnerabilities.

This process enables the framework to quantitatively assess the novelty of the effect

of each input on the application, guiding the prioritization of test cases for future mu-

tations. By systematically seeking out and favoring inputs that yield novel traces, the

framework continually expands its exploration of the state space of the application. This

feedback-driven approach increases the likelihood of uncovering complex or deep-seated

vulnerabilities that might be missed by approaches relying solely on random input gener-

ation.

3.2.6 Prioritization and Scheduling

All candidate inputs, along with their associated behavioral traces, are managed within

a priority queue. This structure allows the fuzzer to continually assess and reprioritize

test cases, ensuring that the most promising inputs are systematically selected for further

mutation and testing as the fuzzing process progresses. The scheduling mechanism as-

signs higher priority to inputs that have demonstrated behavioral novelty, as determined

by trace comparison, or to those that have been selected less frequently for mutation. This

dual consideration helps ensure a balanced exploration, preventing the framework from

focusing exclusively on a small subset of inputs while neglecting others that might still

lead to interesting discoveries.

By continually updating priorities based on both novelty and selection frequency, the

system adapts in real time to the evolving state of application exploration. Inputs that con-

sistently produce unique or rarely observed traces are favored for subsequent mutation and

testing, thus maximizing the likelihood of uncovering subtle or complex vulnerabilities.

This adaptive scheduling is central to maintaining an effective and efficient fuzzing pro-

cess, enabling the framework to systematically cover a wide spectrum of the application’s

logic while minimizing redundant testing.

20

Crawler

Discovers new

endpoints/requests

Priority Queue

Stores interesting

requests for mutation

Fuzzer Component

• Routes requests:

- New requests

from crawler→ Send

- Requests from

queue→Mutate then send

Web Application

• Processes request

• Generates syscalls

• Executes SQL queries

Behavioral Monitor

• Captures syscalls

• Logs SQL queries

Analysis Component

• Abstracts traces

• Compares to past

• Updates queue with

interesting cases

New requests Selected for mutation

HTTP requests

Passive monitoring

Behavioral traces

Updates queue

Figure 3.1: Architecture and feedback-driven workflow of the language-agnostic web

fuzzing framework.

21

Chapter 4

Implementation

4.1 Overview

This chapter presents the implementation details of our language-agnostic

feedback-driven

web fuzzing framework. The primary goal of the implementation was to evaluate whether

observable behavior at the system level, specifically system calls and SQL queries, can

serve as meaningful feedback signals to guide the fuzzing process. This is done instead

of traditional code coverage, which typically requires instrumentation at the source code

level.

To achieve this, we adapted the existing WebFuzz framework [23] by removing its

dependency on instrumentation-based coverage collection. In its place, we introduced a

new mechanism that collects, abstracts, and analyzes externally observable behavioral

traces generated by the application during its execution. This mechanism operates inde-

pendently of the underlying implementation language, making it suitable for use with a

wide range of real-world web applications.

The resulting prototype enables us to perform a direct comparison against the original

WebFuzz system, which relies on instrumentation-based feedback to guide the fuzzing

process. This side-by-side evaluation enables a systematic assessment of whether trace-

based behavioral signals, derived from system calls and SQL queries, can effectively

substitute for traditional code coverage metrics in practice.

4.2 Tracing and Behavioral Monitoring

A core component of our implementation is the ability to observe the runtime behavior

of the web application in response to each fuzzing input. Rather than relying on internal

instrumentation, we employ an external tracing mechanism that captures two categories

22

of system-level activity: system calls made by the application and SQL queries executed

by its back-end database. This design ensures full language independence for feedback

guiding,enabling the fuzzer to prioritize requests for future mutation without requiring

source code instrumentation.

Tracing is active throughout the entire fuzzing session. From the moment the fuzzer is

launched until it terminates, system activity is continuously recorded in the background.

To correlate this global stream of behavior with specific inputs, we define a bounded time

window around each HTTP request. This window spans from just before a request is

issued to shortly after the corresponding response is received. All system-level activity

observed during this interval is attributed to the handling of that particular input.

System calls are captured using strace, a dynamic tracing tool that intercepts and logs

all interactions between a running process and the operating system kernel. By attaching

strace to the relevant worker processes that serve the web application, we record low-

level operations. This provides a detailed view of how the application interacts with the

underlying system in response to each test input.

In parallel, SQL query monitoring is achieved by enabling query logging at the database

level. All queries issued by the application during the same bounded-time window are

extracted from the logs and associated with the corresponding input. This dual-tracing

approach yields a rich behavioral profile for each request, combining operating system

activity with database interactions. By isolating relevant behavior within this time win-

dow, we obtain a pair of input-specific raw trace that accurately reflect how the application

responded to a given test case.

4.3 Trace Abstraction

Once the system call and SQL query traces are captured for each input, they are processed

to produce an abstract, uniform representation that facilitates behavioral comparison. The

purpose of this abstraction is to reduce trace complexity while preserving the structural

and semantic information relevant to the program behavior.

The abstraction process begins by extracting the relevant syscall and SQL query seg-

ments from the raw trace logs based on the time window associated with each request.

These segments are parsed and transformed individually:

• System calls: From each syscall entry, only the syscall name is retained, discarding

arguments, return values and metadata. This results in a simplified sequence that

reflects the types of system-level operations triggered by the request.

• SQL queries: Each SQL statement is reduced to a sequence of capitalized key-

words. These keywords are then concatenated into a single token per query, effec-

23

tively representing the structural pattern of the SQL operation. Table names, field

names, literals, and values are omitted to ensure generality and reduce variability

from input-dependent data.

After individually abstracting both traces,they are merged into a single unified sequence

of tokens that characterizes the overall behavior of the input. To preserve meaningful

structure, we maintain the original ordering within each trace: system calls are listed in

the order they occurred during execution, and SQL queries follow in the order they were

logged by the database. However, rather than interleaving system calls and SQL queries in

their original chronological order, we concatenate the two sequences by appending the en-

tire list of abstracted system calls first, followed by the corresponding SQL query tokens.

This design choice was made empirically: during testing, we observed that separating the

two trace types in this way led to more stable and consistent similarity measurements.

Specifically, when sending the same HTTP request multiple times, the resulting traces

produced lower edit distances under this ordering scheme, indicating stronger alignment

and reduced noise in the comparison process.

Listings 4.1 through 4.3 illustrate the transformation process applied to raw execution

events. The workflow begins with the full chronological trace Listing 4.1, followed by the

separation of system calls and SQL queries Listing 4.2, and concludes with the abstraction

and final composition of the unified trace used for novelty detection and prioritization

Listing 4.3.

− r e a d (1 1 , "GET / wp−admin / load − s t y l e s . php ? c=" . . . , 8000) = 1101
− f s t a t (1 2 , { st_mode=S_IFREG | 0 6 4 4 , s t _ s i z e =55401 , . . . }) = 0
− SELECT opt ion_name , o p t i o n _ v a l u e FROM wp_op t ions WHERE a u t o l o a d = ’ yes ’
− munmap (0 x79235a600000 , 2097152) = 0
− SELECT * FROM wp_users WHERE u s e r _ l o g i n = ’ username ’ LIMIT 1
− c l o s e (1 1) = 0

Listing 4.1: Raw execution trace in chronological order

System c a l l s :
− r e a d (1 1 , "GET / wp−admin / load − s t y l e s . php ? c=" . . . , 8000) = 1101
− f s t a t (1 2 , { st_mode=S_IFREG | 0 6 4 4 , s t _ s i z e =55401 , . . . }) = 0
− munmap (0 x79235a600000 , 2097152) = 0
− c l o s e (1 1) = 0

SQL q u e r i e s :
− SELECT opt ion_name , o p t i o n _ v a l u e FROM wp_op t ions WHERE a u t o l o a d = ’ yes ’
− SELECT * FROM wp_users WHERE u s e r _ l o g i n = ’ username ’ LIMIT 1

Listing 4.2: Separated system calls and SQL queries

System c a l l s :
− r e a d
− f s t a t
− munmap
− c l o s e

24

SQL q u e r i e s :
− SELECTFROMWHERE
− SELECTFROMWHERELIMIT

F i n a l combined t r a c e :
r e a d f s t a t munmap c l o s e SELECTFROMWHERE SELECTFROMWHERELIMIT

Listing 4.3: Abstracted and combined trace

4.4 Trace Comparison and Novelty Estimation

Once the behavioral trace of a given input is abstracted into a unified sequence of tokens,

the next step involves determining whether this trace exhibits meaningful differences com-

pared to those already observed. To achieve this, our framework performs a systematic

comparison between the new trace and the set of previously stored traces, with the goal

of identifying novel behaviors that may indicate unexplored execution paths.

We measure similarity using the edit distance metric, which quantifies the minimum

number of operations required to transform one sequence into another. These operations

include insertions, deletions, and substitutions. In our implementation, the edit distance

is computed at the token level instead of the character level. This approach aligns with the

structure of our abstracted traces, which are composed of discrete tokens such as syscall

names and SQL keyword sequences, rather than continuous character strings.

For each new trace, we compute its edit distance against all previously recorded traces

in the corpus. Among these, we retain the smallest edit distance, which represents the

closest behavioral match to the new input. A low minimum distance suggests that the

current input has produced a response that closely resembles prior behavior, while a larger

distance implies that the input may have triggered new or distinct behavior within the

application.

This minimum-distance value is used as the novelty score of the input. Inputs with

higher novelty scores are assumed to be more valuable, as they are more likely to explore

code regions that have not yet been exercised. These inputs are then selected for future

mutation and retained in the priority queue.

By leveraging this trace-based comparison strategy, the fuzzer can intelligently and

progressively explore the behavioral space of the application without relying on instru-

mentation. This approach establishes a fully language-agnostic feedback mechanism that

is both generalizable and effective across a wide range of web technologies.

25

4.5 Prioritization and Scheduling

After traces are abstracted and analyzed, the framework must determine which inputs

should be prioritized for mutation and re-execution. This prioritization mechanism is

fundamental to the effectiveness of the fuzzing strategy, as it directs computational re-

sources toward inputs that are more likely to trigger unexplored execution paths.

All candidate inputs are maintained in a dynamic priority queue, implemented us-

ing a min-heap data structure. This structure enables efficient insertion, retrieval, and

reordering of inputs based on their priority scores. In a min-heap, the element with the

lowest score is always located at the root of the heap and is selected first during extraction

operations. Consequently, the input deemed most valuable, based on the prioritization

criteria, is always readily accessible at the top of the queue, enabling the framework to

make prompt and informed scheduling decisions.

Each input is assigned a numerical priority score derived from a combination of two

criteria: behavioral novelty and selection frequency. Behavioral novelty is measured us-

ing the edit distance between the abstracted trace of the current input and the previously

observed traces. A larger edit distance implies that the input has triggered behavior that

deviates significantly from past executions, suggesting the exploration of new code paths.

Conversely, selection frequency tracks how many times a given input has already been

used for mutation. Inputs that have been selected less frequently are slightly favored to

promote diversity and avoid stagnation in local areas of the input space.

To integrate these two metrics into a single comparable value, the system employs a

weighted scoring function. For each component, a weighted difference is computed using

the formula:

WeightedDifference(v1,v2) =
w · (v2− v1)∣∣v1+v2

2

∣∣
where v1 and v2 represent the metric values of two competing nodes, and w is the weight

assigned to the corresponding component. The total priority score is computed by aggre-

gating the results of these individual weighted comparisons.

The comparison logic is implemented directly in the node structure used by the prior-

ity queue. When two nodes are compared, such as during insertion or heap rebalancing,

the system evaluates their respective scores using this function. Inputs that exhibit greater

novelty and lower selection frequency produce lower composite scores and are therefore

favored by the min-heap. This ordering ensures that the input with the most desirable

combination of properties is automatically positioned at the top of the queue and selected

next for mutation and execution.

The weights assigned to novelty and frequency were empirically determined through

experimentation. The system places greater emphasis on behavioral novelty, reflecting the

26

framework’s objective of maximizing behavioral diversity and exploring new execution

paths. Selection frequency is assigned a smaller weight to ensure that promising but

underexplored inputs are not neglected.

As the fuzzing process continues, this adaptive prioritization mechanism enables the

system to dynamically re-rank inputs based on updated trace comparisons and usage

statistics. New inputs are inserted into the heap with scores calculated using the same

criteria, while existing inputs may change in priority as new behavioral insights emerge.

By prioritizing inputs that exhibit the highest novelty and minimal prior usage, the system

effectively enhances both the depth and breadth of application exploration. This approach

increases the likelihood of uncovering rare or complex execution paths.

4.6 Cyclic Request Scheduling

A key objective of this work is to evaluate the effectiveness of a language-agnostic feed-

back mechanism for guiding the fuzzing process. However, the default scheduling be-

havior in the original WebFuzz framework favors exploration by prioritizing newly dis-

covered requests from the crawler. Inputs from the mutation queue, those selected based

on behavioral traces, are only used when the crawler exhausts all available paths. Al-

though effective in maximizing application coverage, this policy limits the influence of

the prioritization mechanism, making it difficult to assess its true value.

To enable a more meaningful evaluation of the feedback mechanism, we modified

the input scheduling policy to introduce a cyclic request selection strategy. Under this

scheme, inputs are selected from the mutation queue at regular intervals, even if new

requests from the crawler are still available. Specifically, after a fixed number of crawler-

generated inputs, a request is deliberately selected from the mutation queue to ensure that

trace-based prioritization actively contributes to the fuzzing process.

This modification was essential to observe the impact of our feedback mechanism.

By ensuring that prioritized inputs are evaluated alongside newly discovered requests, we

are able to monitor their performance, contribution to behavioral coverage, and ability to

uncover unexplored execution paths. Additionally, this scheduling policy retains the orig-

inal system’s fallback behavior. When the crawler discovers no new inputs, the scheduler

automatically shifts to using the mutation queue exclusively. This ensures continuity in

the fuzzing process while maintaining the balance between exploration and exploitation.

To visually summarize the cyclic selection strategy and its decision logic, Figure 4.1

presents the request scheduling workflow. It shows how the framework alternates between

crawler-generated and queue-based requests, and how fallback to the mutation queue oc-

curs when no new crawler inputs are available.

In summary, cyclic request scheduling was introduced not as an optimization, but as

27

a deliberate design choice to support a fair and rigorous evaluation of our proposed trace-

based feedback approach. It allows the system to test the inputs selected by behavioral

prioritization more consistently, providing a stronger foundation for comparing their ef-

fectiveness relative to purely exploratory strategies.

Scheduling cycle

Crawler has

new requests?

Has interval

threshold passed?
Select request

from crawler

Select request

from queue

Select request

from queue

Execute and

trace request

Yes

No

No

Yes

Figure 4.1: Cyclic scheduling logic combining crawler exploration and feedback-guided

mutation.

28

Chapter 5

Evaluation

5.1 Evaluation Setup

All experiments were conducted on a single Ubuntu 24.10 Linux machine equipped with

an 11th Gen Intel® Core™ i7-1165G7 processor running at 2.80 GHz, featuring 4 phys-

ical cores and 8 threads, and supported by 16 GB of RAM. The web server used to host

the applications is Apache 2.4.62 and we used MySQL 8.0.42 for the database back-end.

To evaluate the effectiveness and efficiency of the proposed trace-based feedback

mechanism, we selected three widely used web applications:

• WordPress 6.1.1, a popular content management system (CMS).

• DVWA 2.5 (Damn Vulnerable Web Application), a deliberately insecure web app

for security testing.

• Joomla 5.0.3, another widely deployed and feature-rich CMS.

Each application was deployed in a controlled environment, configured with default set-

tings where applicable, and isolated from external traffic to ensure consistent measure-

ments.

We compare the following fuzzing configurations:

• The original WebFuzz framework, which uses instrumentation-based feedback for

guidance.

• WebFuzz with Cyclic Iteration, which periodically selects inputs from the mutation

queue.

• Our proposed Trace-based Feedback variant, which relies on system-level signals

to guide input selection in a language-agnostic manner.

29

Each experiment was executed for a total duration of 600 minutes to provide sufficient

time for the fuzzers to explore the application and stabilize their performance. All config-

urations were initially evaluated under identical time constraints to ensure fairness when

comparing real-world execution characteristics such as throughput and long-term behav-

ior. In addition, selected experiments were also evaluated under a fixed number of re-

quests, based on the request counts observed in our trace-based method, to allow for a fair

assessment of code coverage across fuzzers independent of execution speed.

We evaluated each fuzzer using the following key metrics:

• Code Coverage: The extent to which the application’s codebase is exercised, mea-

sured using instrumentation. This includes both overall and mutated request cover-

age.

• Feedback Mechanism Effectiveness: The ability of mutated (non-crawler) re-

quests to contribute uniquely to code coverage, demonstrating how well each fuzzer

prioritizes meaningful mutations.

• Request Generation Behavior: This aspect of evaluation captures how efficiently

each fuzzer generates inputs over time. It includes both the throughput (requests

per second) and the request activity observed during specific execution intervals.

Together, these measurements provide insight into execution efficiency, responsive-

ness, and the impact of feedback mechanisms or application complexity on request

generation trends.

5.2 Fuzzer Performance Analysis

5.2.1 Overall Code Coverage

Code coverage is a key metric for evaluating the effectiveness of feedback mechanisms

in guiding exploration during fuzzing. In our experiments, we measured the percentage

of unique code paths exercised by each fuzzing strategy across three widely used web

applications: WordPress, DVWA, and Joomla.

Table 5.1 presents the mean code coverage (%) achieved by each fuzzer across three

real-world web applications over the full duration of the experiment.

The original WebFuzz achieved the highest mean coverage on WordPress (24.5%) and

DVWA (31.0%), with moderately lower performance on Joomla (19.5%). Incorporating

cyclic iteration led to only marginal improvements in WordPress (25.0%) and Joomla

(20.0%), while having no observable impact on DVWA.

In comparison, our trace-based feedback approach yielded slightly lower coverage across

all three applications: 19.0% for WordPress, 29.5% for DVWA, and 17.0% for Joomla.

30

This reduction is expected, given that our method does not rely on instrumentation-based

coverage and instead leverages system-level traces to guide input selection. While this

approach may miss certain code paths captured by traditional instrumentation, it offers a

viable and generalizable alternative that is language-agnostic.

Fuzzer WordPress (%) DVWA (%) Joomla (%)

Original WebFuzz 24.5±0.5 31.0±0.1 19.5±0.5

WebFuzz + Cyclic Iteration 25.0±0.6 31.0±0.2 20.0±1.0

Trace-based Feedback (Ours) 19.0±1.0 29.50±0.2 17.0±1.0

Table 5.1: Mean code coverage (%) ± standard deviation across runs per web application.

5.2.2 Coverage by Request Type

To gain deeper insight into how each fuzzer configuration achieves its overall code cover-

age, we analyze the contributions of two distinct request types: crawler-generated re-

quests, which explore the application through predefined or automatically discovered

paths, and mutated requests, which are generated and prioritized based on feedback mech-

anisms.

Figures 5.1, 5.2, and 5.3 illustrate the code coverage achieved by each request type across

WordPress, DVWA, and Joomla, respectively. In all cases, crawler-generated requests are

responsible for the majority of total coverage. This is expected, as the crawler quickly

discovers and explores accessible endpoints, covering common or shallow application

logic.

However, although smaller in magnitude, the contribution from mutated requests re-

mains important, as these inputs often reach deeper or less accessible code paths that the

crawler alone cannot uncover. These requests reflect the effectiveness of each fuzzer’s

feedback mechanism. As shown in Table 5.2, when comparing mutated coverage un-

der the same execution time, our trace-based feedback method achieves competitive re-

sults. For instance, our approach yields 1.35%± 0.95 mutated coverage on WordPress

and 1.03%± 0.03 on DVWA, which, while slightly lower, remains comparable to Web-

Fuzz with cyclic iteration, achieving 1.95%± 1.15 and 1.58%± 0.40 on the same ap-

plications, respectively. This is particularly noteworthy given that our method operates

under stricter execution constraints. While mutated coverage on Joomla is notably lower

at 0.12%± 0.02, this may be attributed to the complexity of the application and fewer

opportunities for effective mutation.

Although our method does not attain the same level of mutated coverage as instrumentation-

based techniques such as WebFuzz with cyclic iteration, it delivers comparable results

31

and demonstrates the practical viability of a language-agnostic, instrumentation-free ap-

proach. In cases where coverage is lower, this is likely due to factors such as application

complexity and fewer opportunities for effective mutation, suggesting that the effective-

ness of the method may vary with the nature of the target application.

Figure 5.1: WordPress: Code coverage by request type.

Figure 5.2: DVWA: Code coverage by request type.

32

Figure 5.3: Joomla: Code coverage by request type.

Fuzzer WordPress (%) DVWA (%) Joomla (%)

Original WebFuzz 0.93±0.13 0.0±0.0 1.29±0.19

WebFuzz + Cyclic Iteration 1.95±1.15 1.58±0.40 1.64±0.21

Trace-based Feedback (Ours) 1.35±0.95 1.03±0.03 0.12±0.02

Table 5.2: Mean mutated code coverage (%) ± standard deviation for each fuzzer under

the same execution time budget.

5.2.3 Code Coverage under Equal Request Counts

Because each fuzzer variant operates at a different speed, the total number of HTTP re-

quests sent during the same time period varies across configurations. The original Web-

Fuzz being instrumentation-based, achieves high throughput and is capable of sending

hundreds of thousands of requests within the allotted execution time. In contrast, our feed-

back mechanism introduces additional overhead due to its trace-oriented design, resulting

in significantly fewer requests being processed in the same time window, as illustrated in

Figure 5.4. A more detailed analysis of requests over time is provided in Section 5.2.4

This discrepancy in the request volume impacts the fairness of direct coverage com-

parisons. High-throughput fuzzers have more opportunities to explore the application,

which may inflate their overall coverage metrics, not necessarily due to better input qual-

ity, but due to sheer volume. Therefore, comparing coverage results without normalizing

33

the number of requests can misrepresent the effectiveness of different feedback mecha-

nisms.

To address this discrepancy, we present a normalized comparison in Tables 5.3 and

5.4, where all fuzzers are evaluated under the same total number of requests. Table 5.3

shows the overall code coverage, while Table 5.4 isolates the coverage achieved from

mutated requests only. This normalization allows for a fair comparison of each feedback

strategy’s effectiveness without being skewed by differences in request volume.

The fixed number of request for each web application in these tables is determined

by the number of requests our trace-based feedback method was able to send within the

execution time window. As shown in Figure 5.4, this corresponds to 4,500 requests for

WordPress, 18,500 for DVWA, and 1,900 for Joomla. These values serve as the fixed

request count across all fuzzer configurations to ensure fairness. In other words, the

instrumentation-based fuzzers, despite typically operating at higher throughput, were lim-

ited to the same number of requests as our trace-based method for the purpose of these

comparisons. This setup highlights the efficiency of our approach in selecting high-impact

inputs and achieving competitive coverage under identical request constraints.

Figure 5.4: Mean number of requests issued by each fuzzer under an equal time budget.

The results presented in Tables 5.3 and 5.4 highlight the effectiveness of each fuzzer

when constrained to the same number of requests. In terms of total coverage, both Web-

Fuzz with cyclic iteration and our trace-based feedback approach perform similarly across

all three applications. For example, on WordPress and Joomla, our method achieves

19.0%±1.0 and 17.0%±1.0, respectively, only slightly lower than the cyclic variant. On

34

DVWA, the difference is more pronounced, with the cyclic variant reaching 31.0%±0.2

and the trace-based method achieving 29.50%± 0.2, though the gap remains relatively

small.

The mutated request coverage in Table 5.4 offers further insight into how effectively

each approach prioritizes new inputs. The original WebFuzz records 0% mutated cover-

age across all applications. This behavior is expected, as it only begins mutating requests

once all crawling paths have been explored, something that does not occur under the lim-

ited request count used in this comparison. As a result, no mutated requests are sent.

In contrast, WebFuzz with cyclic iteration introduces mutations earlier by alternat-

ing between crawling and mutation phases. It also benefits from instrumentation-based

feedback to prioritize inputs more effectively. As a result, it achieves the highest mu-

tated coverage on WordPress (1.55%± 0.95) and DVWA (1.42%± 0.1). Although our

trace-based method yields lower mutated coverage, it performs comparably on these two

targets, achieving 1.35%± 0.95 and 1.03%± 0.03, respectively. The slightly lower re-

sults are expected, given that our method relies on system-level traces rather than direct

instrumentation, and operates under stricter overhead and throughput limitations. On

Joomla, mutated coverage is generally low across all fuzzers. The cyclic variant reaches

0.14%± 0.04, while our approach achieves 0.12%± 0.02, again showing close perfor-

mance despite the lack of instrumentation.

This suggests that while our method may not reach as many code paths as instrumentation-

based approaches, it remains competitive and demonstrates strong potential for guiding

effective mutations through language-agnostic, trace-based feedback.

Fuzzer WordPress (%) DVWA (%) Joomla (%)

Original WebFuzz 16.65±0.65 31.0±0.1 16.85±1.5

WebFuzz + Cyclic Iteration 19.5±1.5 31.0±0.2 17.5±0.7

Trace-based Feedback (Ours) 19.0±1.0 29.50±0.2 17.0±1.0

Table 5.3: Mean code coverage (%) ± standard deviation across runs for each fuzzer. All

fuzzers were run with the same number of requests per web application.

35

Fuzzer WordPress (%) DVWA (%) Joomla (%)

Original WebFuzz 0.0 0.0 0.0

WebFuzz + Cyclic Iteration 1.55±0.95 1.42±0.1 0.14±0.04

Trace-based Feedback (Ours) 1.35±0.95 1.03±0.03 0.12±0.02

Table 5.4: Mean code coverage (%) ± standard deviation from mutated requests only,

for each fuzzer. All fuzzers were run with the same number of total requests per web

application.

5.2.4 Request Generation Behavior

To assess the execution behavior of each fuzzer throughout the testing period, we ana-

lyze both request throughput and request activity over time. Throughput is defined as

the number of HTTP requests issued per second and reflects how efficiently a fuzzer pro-

cesses inputs and interacts with the target application. In addition to overall throughput,

we examine the number of requests issued within fixed time intervals, offering a more

detailed view of how request generation evolves and fluctuates during the 600-minute

execution window.

At fixed checkpoints during each run, we compute the mean throughput across mul-

tiple independent executions. These results are shown in Figures 5.5, 5.6, and 5.7 for

WordPress, DVWA, and Joomla, respectively. Additionally, Figures 5.8, 5.9 and 5.10

present the number of requests issued within selected time intervals during the execution.

By examining request counts over fixed intervals, we capture how each fuzzer’s activity

changes throughout the execution.

The original WebFuzz and its cyclic variant demonstrate similar performance in terms

of request generation across all applications. Both maintain high throughput throughout

the execution, with only minimal differences between them. Among the tested targets,

DVWA consistently results in the highest number of requests and throughput for both

fuzzers, followed by WordPress and then Joomla. This trend reflects the relative complex-

ity of the target applications: less complex systems like DVWA facilitate faster request

processing, whereas more feature-rich platforms such as Joomla exhibit lower throughput

due to greater processing overhead and more intricate server-side behavior.

In contrast, the trace-based feedback method issues significantly fewer requests and

exhibits a gradual decline in request activity across all applications. This behavior is

primarily attributed to the tracing-driven feedback mechanism, which introduces latency

during input evaluation. A key contributing factor to the decline in request activity over

time is the increasing cost of computing the minimum edit distance between each new

trace and the set of previously collected traces. As the number of traces grows, this

36

operation becomes increasingly computationally expensive, thereby reducing throughput

over time.

Figure 5.5: Mean request throughput over time for WordPress, based on averaged values

at fixed time checkpoints.

Figure 5.6: Mean request throughput over time for DVWA, based on averaged values at

fixed time checkpoints.

37

Figure 5.7: Mean request throughput over time for Joomla, based on averaged values at

fixed time checkpoints.

Figure 5.8: Request count over time from Original WebFuzz.

38

Figure 5.9: Request count over time from Cyclic WebFuzz.

Figure 5.10: Request count over time from Trace-based WebFuzz (Ours).

5.3 Evaluation Summary and Key Findings

The experimental evaluation assessed the effectiveness and efficiency of the proposed

trace-based feedback mechanism in comparison to traditional instrumentation-based fuzzing

configurations. While the trace-based approach did not reach the same level of code

coverage as instrumentation-driven methods when evaluated over equal execution time,

39

it demonstrated competitive performance when normalized by the number of requests.

Notably, it achieved comparable mutated request effectiveness to WebFuzz with cyclic

iteration, without depending on instrumentation-based feedback.

Throughput analysis confirmed the anticipated trade-off between system-level behav-

ioral tracing and execution speed. The trace-based method issued fewer requests due to

the latency introduced by the collection and processing of system-level traces. Neverthe-

less, it consistently generated high-value inputs that exercised deeper and less accessible

parts of the application logic, reinforcing its potential as a practical, language-agnostic

alternative to traditional feedback mechanisms.

The evaluation also highlighted areas for improvement in long-running or large-scale

fuzzing scenarios, where the cost of trace comparisons can gradually impact performance.

Addressing these challenges will be important for ensuring scalability and sustained ef-

fectiveness over time.

40

Chapter 6

Discussion

6.1 Limitations

Despite demonstrating the feasibility of using system-level behavioral signals for feedback-

driven fuzzing, the proposed framework faces several practical limitations that constrain

its scalability and efficiency.

6.1.1 Overhead from External Tracing Tools

The current implementation relies on external tools such as strace to monitor system calls

and parses SQL queries from database log files. While these approaches are effective for

extracting behavioral traces without modifying the application, they introduce non-trivial

runtime overhead. In particular, strace incurs significant performance penalties due to its

syscall-level tracing, and frequent log parsing introduces delays in capturing SQL query

activity. Consequently, the system runs more slowly than the original instrumentation-

based WebFuzz, reducing fuzzing throughput during large-scale or time-sensitive testing.

6.1.2 Sequential Execution Constraint

To ensure accurate association between HTTP requests and their corresponding traces, the

system processes inputs sequentially. This restriction arises from the challenge of match-

ing trace data to specific inputs when multiple requests are in flight concurrently. Run-

ning multiple workers in parallel would introduce ambiguity in trace attribution, making

it difficult to maintain the accuracy of feedback. Consequently, the prototype sacrifices

concurrency for trace precision.

41

6.1.3 Trace Alignment Sensitivity

The framework uses time-based heuristics to associate system-level behaviors with indi-

vidual requests. While effective in controlled conditions, this method may misattribute

behaviors in the presence of background noise or overlapping activity, particularly in

multi-threaded or high-load environments. This can affect the fidelity of feedback and

reduce the effectiveness of input prioritization.

6.1.4 Computational Overhead from Edit Distance Calculations

The trace-based feedback mechanism relies on computing the edit distance between each

new execution trace and all previously collected traces. This comparison is crucial for

assessing behavioral novelty and prioritizing inputs. However, as the number of stored

traces grows, the cumulative cost of these comparisons increases significantly. This leads

to higher latency during input evaluation and, as observed in our evaluation, a gradual

decline in the request generation rate. The unbounded growth in trace comparisons intro-

duces a scalability bottleneck, especially in long-running fuzzing sessions or large-scale

deployments, where performance degradation can undermine the overall effectiveness of

the fuzzing process.

6.2 Future Work

Although the proposed language-agnostic feedback mechanism demonstrates promising

results, several avenues remain open for improvement and further exploration.

6.2.1 Timestamp-Free Trace Association

A key challenge in the current implementation is accurately aligning captured system-

level traces with their corresponding HTTP requests using timestamps. This process can

be imprecise, especially under concurrent or high-throughput conditions. A potential di-

rection for future work is to eliminate reliance on timing-based correlation altogether.

One proposed solution involves introducing a server on/off mechanism that temporar-

ily disables request handling between fuzzing iterations. This would provide the server

sufficient time to flush all traces related to a single request to persistent storage before

accepting a new one, improving the fidelity of trace-to-request association.

42

6.2.2 Low-Overhead Tracing

The current prototype collects system-level traces using external tools such as strace for

system calls and database logs for SQL queries. While effective, both approaches intro-

duce notable overhead and can impact performance during fuzzing.

To reduce this overhead, future work could explore more efficient alternatives. For

system call monitoring, this may involve developing a lightweight custom tracer using

ptrace or kernel-level hooks to capture only essential syscall metadata. Similarly, SQL

query monitoring could be improved by deploying SQL proxy tools that transparently in-

tercept queries between the application and the database. These proxies can intercept and

extract queries in real time, allowing for low overhead and more reliable SQL trace col-

lection. Together, these enhancements would maintain the non-intrusive and language-

agnostic nature of the framework while significantly improving trace collection perfor-

mance and responsiveness.

6.2.3 Parallelization for Scalable Fuzzing

The current implementation enforces a sequential request execution model to ensure ac-

curate association between each HTTP request and its corresponding system-level traces.

While this design guarantees trace integrity, it inherently limits the system’s throughput

and scalability. A promising direction for future work is to explore opportunities for par-

allelizing components of the fuzzing pipeline, notably trace processing and comparison,

without compromising the correctness of trace attribution. Enabling concurrent execution

while preserving one-to-one request-trace mapping could significantly improve fuzzing

efficiency, making the system more suitable for large-scale or time-constrained deploy-

ments.

6.2.4 Generalization Beyond WebFuzz Components

Although the prototype modifies key components of WebFuzz, it still inherits parts of the

original architecture. Future work could involve fully re-implementing or generalizing

those components to eliminate any remaining dependencies on instrumentation-specific

logic. This would result in a truly independent, language-agnostic fuzzing framework

capable of functioning across a broader range of environments and application types.

43

Chapter 7

Related Work

7.1 Instrumentation-Based Web Fuzzers

Instrumentation-based web fuzzers rely on modifying the application or its execution en-

vironment to collect detailed runtime information, most commonly, code coverage. This

feedback is then used to guide input selection and mutation strategies, enabling more

targeted and efficient exploration of the program’s behavior.

One prominent example is WebFuzz [23], a grey-box fuzzing framework designed for

PHP-based web applications. WebFuzz performs instrumentation at the Abstract Syntax

Tree (AST) level, enabling fine-grained tracking of which parts of the PHP code have

been executed. This feedback allows it to prioritize and mutate inputs that are more

likely to exercise unexplored code paths, improving the chances of discovering server-

side vulnerabilities such as reflected cross-site scripting (XSS). WebFuzz also integrates a

crawler, mutator, scheduler, and detector into a unified system, making it a comprehensive

solution for grey-box web fuzzing.

Another instrumentation-based tool is PHP-Fuzzer [20], a lightweight coverage-guided

fuzzer specifically built for PHP applications. PHP-Fuzzer instruments PHP code using

hooks into the interpreter to monitor executed lines or branches during test execution.

Then it uses this information to direct the mutation process. Although limited to PHP

environments, it demonstrates the practical benefits of combining runtime feedback with

input generation, even in interpreted languages.

A more recent advancement is PHUZZ [17], a modular, and open-source coverage-

guided fuzzer specifically designed for PHP web applications. Unlike traditional fuzzing

approaches that often rely on intrusive instrumentation, such as modifying the applica-

tion’s source code or altering the PHP interpreter, PHUZZ employs a lightweight and non-

invasive instrumentation strategy. It utilizes existing PHP extensions, including PCOV

and Xdebug, to gather runtime code coverage information, and UOPZ to dynamically

44

hook into and override security-critical functions, such as those handling authentication.

This design allows PHUZZ to monitor execution paths and explore deeper application

logic without disrupting normal system behavior. While this targeted approach enhances

its effectiveness in identifying vulnerabilities within PHP applications, it inherently ties

the tool to the PHP ecosystem, thereby limiting its applicability to other programming

languages and web application frameworks.

Although instrumentation-based fuzzers are highly effective at guiding input gen-

eration through detailed execution feedback, their applicability is often constrained by

their language-specific design. These tools are typically tailored to a particular language,

limiting their use to a narrow range of web applications built within those ecosystems.

This restricts their utility in heterogeneous environments where applications may span

multiple languages, components or technologies. The approach proposed in this the-

sis addresses these limitations by enabling feedback-driven fuzzing without relying on

language-specific instrumentation, making it applicable across a broader and more di-

verse set of web applications.

7.2 Black-Box Web Fuzzers

Black-box web fuzzers operate without any internal knowledge of the application under

test. They generate HTTP requests and analyze the resulting responses to infer potential

vulnerabilities [3, 13]. Unlike grey-box or white-box fuzzers, they do not rely on instru-

mentation, code access, or execution tracing. As a result, black-box approaches are highly

portable and easy to deploy, but they often suffer from limited visibility into application

behavior, making deep or complex bugs harder to detect.

Traditional black-box fuzzing tools like Wfuzz and OWASP ZAP perform large-scale

request generation by injecting payloads into various components of HTTP requests, in-

cluding query strings, form fields, headers, and cookies. Wfuzz is a command-line utility

optimized for parameter discovery and brute-force fuzzing of web input vectors [9, 26].

It relies primarily on analyzing coarse-grained HTTP response features, such as status

codes and content length, to detect anomalies and potential vulnerabilities. Similarly,

OWASP ZAP offers a comprehensive black-box fuzzing framework with an integrated

proxy, scanner, and fuzzer [18, 19]. It supports both built-in and customizable payload

sets and provides scripting capabilities for tailoring fuzzing campaigns. Despite its flexi-

bility and utility in interactive testing, ZAP also depends on surface-level HTTP response

feedback, lacking the ability to reason about deeper application behavior.

Recent advancements in black-box fuzzing, such as Firefly, improve exploration depth

by introducing more structured and semantically aware feedback mechanisms [7, 28].

Firefly analyzes full HTTP responses, including status codes, headers, body content, and

45

DOM structure, and uses a similarity oracle to compare textual and structural elements

across responses. This helps prioritize inputs that cause observable changes in behavior,

all without requiring instrumentation. Although effective, Firefly’s analysis remains lim-

ited to surface-level output. In contrast, our approach captures system-level traces, such as

system calls and SQL queries, providing deeper insight into the internal execution of the

application. This enables more precise feedback and better generalization across diverse

web technologies.

In summary, black-box fuzzers have made notable strides by incorporating response-

based heuristics and semantic analysis to guide exploration. However, their reliance on

externally visible outputs limits the depth of behavioral insight they can achieve. Using

system-level traces as feedback, our approach bridges the gap between black-box sim-

plicity and grey-box effectiveness. It enables deeper language-agnostic introspection of

application behavior without requiring access to source code or internal instrumentation,

offering a practical alternative for fuzzing in heterogeneous and constrained web environ-

ments.

46

Chapter 8

Conclusion

This thesis explored a language-agnostic approach to grey-box fuzzing by replacing tradi-

tional instrumentation-based feedback with externally observable system-level behaviors,

specifically system calls and SQL queries. The primary motivation was to address the

limitations of instrumentation, which is often tightly coupled to specific programming

languages or runtime environments, making it impractical for use in diverse systems.

To this end, we extended the WebFuzz framework by redesigning its feedback mech-

anism. Rather than relying on internal code coverage, our prototype collects and abstracts

system-level execution traces. These traces are used to guide the fuzzing process by es-

timating behavioral novelty, with input prioritization based on edit distance to previously

observed traces. This strategy favors inputs that are more likely to trigger previously

unexplored behavior.

The evaluation compared the proposed trace-based approach against both the original

instrumentation-based webFuzz and a variant employing cyclic input selection. Experi-

mental results across three real-world web applications, WordPress, DVWA, and Joomla,

demonstrated that although the trace-based method did not achieve the same raw code

coverage within equal execution time, it remained competitive when normalized by the

number of requests issued. These findings indicate that, despite the reduced throughput

introduced by the trace-based feedback mechanism, the core strategy remains effective in

uncovering meaningful behaviors and guiding application exploration.

These findings underscore the potential of system-level behavioral feedback as a prac-

tical alternative to traditional instrumentation-based guidance. By leveraging externally

observable execution signals, the proposed approach provides a generalized input priori-

tization mechanism that is adaptable across a broad spectrum of technologies. Its ability

to effectively select mutated requests based solely on trace analysis further demonstrates

its capacity to support deeper and more meaningful exploration of application behavior in

diverse execution environments.

Overall, the evaluation results demonstrate the feasibility of guiding feedback-driven

47

fuzzing through system-level behavioral traces. Although further work is required to im-

prove scalability and reduce runtime overhead, the findings validate the core concept and

provide a strong foundation for the continued development of lightweight, instrumentation-

free fuzzing frameworks. Future enhancements such as adopting more efficient trac-

ing mechanisms, improving trace-to-request alignment, and fully decoupling the system

from instrumentation-based components could enable broader applicability in real-world,

multi-language web environments. Additionally, addressing the computational overhead

introduced by distance-based trace comparison will be essential for improving scalability

and sustaining performance in long-running fuzzing campaigns.

48

Bibliography

[1] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan. {NAVEX}: Precise

and scalable exploit generation for dynamic web applications. In 27th USENIX

Security Symposium (USENIX Security 18), pages 377–392, 2018.

[2] D. Andriesse. Practical binary analysis: build your own Linux tools for binary

instrumentation, analysis, and disassembly. no starch press, 2018.

[3] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Automated black-

box web application vulnerability testing. In 2010 IEEE symposium on security and

privacy, pages 332–345. IEEE, 2010.

[4] P. Bisht, T. Hinrichs, N. Skrupsky, and V. Venkatakrishnan. Waptec: whitebox anal-

ysis of web applications for parameter tampering exploit construction. In Proceed-

ings of the 18th ACM conference on Computer and communications security, pages

575–586, 2011.

[5] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox fuzzing as

markov chain. In Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, pages 1032–1043, 2016.

[6] E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of constraints:

Whitebox fuzz testing in production. In 2013 35th International Conference on

Software Engineering (ICSE), pages 122–131. IEEE, 2013.

[7] Brum3ns. Firefly - github repository. https://github.com/Brum3ns/firefly.

[8] O. Chang, A. Arya, K. Serebryany, and J. Armour. OSS-Fuzz: Five Months Later,

and Rewarding Projects. Google Open Source Blog, 2017. https://opensource.

googleblog.com/2017/05/oss-fuzz-five-months-later-and.html.

[9] CheckOps. Wfuzz - web application fuzzer. https://www.checkops.com/

wfuzz/.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. The MIT Press, Cambridge, MA, 3rd edition, 2009.

49

https://github.com/Brum3ns/firefly
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://www.checkops.com/wfuzz/
https://www.checkops.com/wfuzz/

[11] I. P. A. Dharmaadi, E. Athanasopoulos, and F. Turkmen. Fuzzing frameworks for

server-side web applications: a survey. International Journal of Information Secu-

rity, 24(2):73, 2025.

[12] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: Whitebox fuzzing for security

testing: Sage has had a remarkable impact at microsoft. Queue, 10(1):20–27, Jan.

2012.

[13] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang. Fuzzing: State of the art. IEEE

Transactions on Reliability, 67(3):1199–1218, 2018.

[14] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo. The

art, science, and engineering of fuzzing: A survey. IEEE Transactions on Software

Engineering, 47(11):2312–2331, 2019.

[15] A. Marchand-Melsom and D. B. Nguyen Mai. Automatic repair of owasp top 10

security vulnerabilities: A survey. In Proceedings of the IEEE/ACM 42nd Interna-

tional Conference on Software Engineering Workshops, pages 23–30, 2020.

[16] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of unix

utilities. Commun. ACM, 33(12):32–44, Dec. 1990.

[17] S. Neef, L. Kleissner, and J.-P. Seifert. What all the phuzz is about: A coverage-

guided fuzzer for finding vulnerabilities in php web applications. In Proceedings of

the 19th ACM Asia Conference on Computer and Communications Security, pages

1523–1538, 2024.

[18] OWASP. Fuzzing overview. https://owasp.org/www-community/Fuzzing.

[19] OWASP. Owasp zap - zed attack proxy. https://www.zaproxy.org/docs/.

[20] N. Popov. PHP Fuzzer. https://github.com/nikic/PHP-Fuzzer.

[21] K. Serebryany. libFuzzer–a library for coverage-guided fuzz testing. LLVM Project,

2015. https://llvm.org/docs/LibFuzzer.html.

[22] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen. Fuzzing for Software Security

Testing and Quality Assurance. Artech House, 2018.

[23] O. van Rooij, M. A. Charalambous, D. Kaizer, M. Papaevripides, and E. Athana-

sopoulos. webfuzz: Grey-box fuzzing for web applications. In Computer Security–

ESORICS 2021: 26th European Symposium on Research in Computer Security,

Darmstadt, Germany, October 4–8, 2021, Proceedings, Part I 26, pages 152–172.

Springer, 2021.

50

https://owasp.org/www-community/Fuzzing
https://www.zaproxy.org/docs/
https://github.com/nikic/PHP-Fuzzer
https://llvm.org/docs/LibFuzzer.html

[24] V. Vikram, I. Laybourn, A. Li, N. Nair, K. OBrien, R. Sanna, and R. Padhye. Guid-

ing greybox fuzzing with mutation testing. In Proceedings of the 32nd ACM SIG-

SOFT International Symposium on Software Testing and Analysis, pages 929–941,

2023.

[25] M. Wang, J. Liang, C. Zhou, Z. Wu, J. Fu, Z. Su, Q. Liao, B. Gu, B. Wu, and

Y. Jiang. Data coverage for guided fuzzing. In 33rd USENIX Security Symposium

(USENIX Security 24), pages 2511–2526, Philadelphia, PA, Aug. 2024. USENIX

Association.

[26] Wfuzz Developers. Wfuzz documentation. https://wfuzz.readthedocs.io/

en/latest/.

[27] S. Yan, C. Wu, H. Li, W. Shao, and C. Jia. Pathafl: Path-coverage assisted fuzzing.

In Proceedings of the 15th ACM Asia Conference on Computer and Communications

Security, pages 598–609, 2020.

[28] YesWeHack. Firefly - a smart black-box fuzzer for web ap-

plications. https://www.yeswehack.com/learn-bug-bounty/

firefly-v1-1-0-a-smart-black-box-fuzzer-for-testing-web-applications.

[29] M. Zalewski. American fuzzy lop trophy case. https://lcamtuf.coredump.cx/

afl/, 2015.

[30] M. Zalewski. More about afl - afl 2.53b documentation. https://afl-1.

readthedocs.io/en/latest/about_afl.html, 2019.

[31] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler. Part ii: Lexical fuzzing.

In The Fuzzing Book. CISPA Helmholtz Center for Information Security, 2023.

https://www.fuzzingbook.org/html/02_Lexical_Fuzzing.html.

[32] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler. Concolic fuzzing. In

The Fuzzing Book. CISPA Helmholtz Center for Information Security, 2024. https:

//www.fuzzingbook.org/html/ConcolicFuzzer.html.

[33] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler. Symbolic fuzzing. In

The Fuzzing Book. CISPA Helmholtz Center for Information Security, 2025. https:

//www.fuzzingbook.org/html/SymbolicFuzzer.html.

51

https://wfuzz.readthedocs.io/en/latest/
https://wfuzz.readthedocs.io/en/latest/
https://www.yeswehack.com/learn-bug-bounty/firefly-v1-1-0-a-smart-black-box-fuzzer-for-testing-web-applications
https://www.yeswehack.com/learn-bug-bounty/firefly-v1-1-0-a-smart-black-box-fuzzer-for-testing-web-applications
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://afl-1.readthedocs.io/en/latest/about_afl.html
https://afl-1.readthedocs.io/en/latest/about_afl.html
https://www.fuzzingbook.org/html/02_Lexical_Fuzzing.html
https://www.fuzzingbook.org/html/ConcolicFuzzer.html
https://www.fuzzingbook.org/html/ConcolicFuzzer.html
https://www.fuzzingbook.org/html/SymbolicFuzzer.html
https://www.fuzzingbook.org/html/SymbolicFuzzer.html

	Introduction
	Motivation
	Contributions

	Background
	Fuzzing
	Instrumentation
	Coverage-Guided Fuzzing
	Web Application Fuzzing
	WebFuzz Framework Overview
	Edit Distance and Trace Similarity
	Priority Queue

	Architecture
	Overview
	System Design
	Input Generation and Mutation
	Automated Execution
	Behavioral Monitoring
	Trace Association and Abstraction
	Trace Comparison
	Prioritization and Scheduling

	Implementation
	Overview
	Tracing and Behavioral Monitoring
	Trace Abstraction
	Trace Comparison and Novelty Estimation
	Prioritization and Scheduling
	Cyclic Request Scheduling

	Evaluation
	Evaluation Setup
	Fuzzer Performance Analysis
	Overall Code Coverage
	Coverage by Request Type
	Code Coverage under Equal Request Counts
	Request Generation Behavior

	Evaluation Summary and Key Findings

	Discussion
	Limitations
	Overhead from External Tracing Tools
	Sequential Execution Constraint
	Trace Alignment Sensitivity
	Computational Overhead from Edit Distance Calculations

	Future Work
	Timestamp-Free Trace Association
	Low-Overhead Tracing
	Parallelization for Scalable Fuzzing
	Generalization Beyond WebFuzz Components

	Related Work
	Instrumentation-Based Web Fuzzers
	Black-Box Web Fuzzers

	Conclusion

