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Abstract 

 

As cloud-native systems increasingly shift toward event-driven architectures, the transition 

from traditional microservices to serverless computing presents a promising path for improving 

scalability, resource efficiency, and operational simplicity. This thesis investigates the process 

of converting microservices into serverless functions using Apache OpenWhisk, with a 

particular focus on enabling this transformation through automation. Using the microservices 

from the DeathStarBench benchmark suite, most notably the Hotel Reservation application, as 

a foundation, we first develop and apply a robust methodology for manually converting 

complex Go-based services into OpenWhisk-compatible actions. This process includes 

restructuring logic for stateless execution, handling data dependencies through external 

systems and adapting service interfaces to OpenWhisk’s input-output conventions.  

 

The methodology is validated through the successful transformation and reintegration of key 

services such as User and Reservation, followed by empirical benchmarking using high-

intensity workloads. These benchmarks reveal that while cold starts pose significant latency 

challenges, warm serverless actions often outperform microservice implementations in high-

percentile response times, indicating their viability in performance-critical systems.  

 

Building on these findings, the thesis presents a CLI-based tool powered by a large language 

model, capable of automating the conversion process. The tool leverages the semantic 

capabilities of generative AI to produce OpenWhisk-compatible actions and deployment 

artifacts. Comparative analysis between AI-generated and manually written versions of the 

makeReservation service demonstrates high structural and functional fidelity, validating the 

feasibility of LLM-assisted automation. The results of this work suggest that with appropriate 

prompt engineering and input structuring, generative AI can meaningfully reduce the manual 

burden of service transformation while preserving correctness and performance, offering a 

scalable path toward hybrid and fully serverless cloud-native architectures. 
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1.1 Background 

 

1.1.1 Current State of Cloud Computing 

The rapid evolution of cloud computing paradigms has transformed the architectural landscape 

of modern applications. From monolithic systems to distributed microservices and, more 

recently, to serverless models, these paradigms reflect a continuous effort to maximize 

flexibility, scalability, and operational efficiency. Each architectural shift has addressed 

particular challenges, but also introduced new complexities and trade-offs. 

 

1.1.2 Microservice Architecture 

Microservices architecture decomposes applications into small, autonomous services, each 

responsible for a distinct piece of business logic. These services communicate over lightweight 
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protocols such as HTTP, gRPC [20], or Thrift and are independently deployable, allowing for 

isolated development, scaling, and failure containment. The microservices model solves 

problems of agility and modularization inherent in monolithic applications, offering teams the 

ability to deploy new features rapidly and scale individual parts of an application selectively. 

 

However, microservices introduce non-trivial operational complexity. Each service must be 

independently managed, requiring substantial effort in infrastructure provisioning, 

orchestration, monitoring, scaling policies, and fault recovery. Systems such as Kubernetes 

emerged precisely to address this complexity, but at the cost of requiring additional layers of 

management expertise. 

 

1.1.3 Serverless Computing 

In contrast, serverless computing (or Function-as-a-Service, FaaS) represents an even further 

abstraction. In serverless architectures, developers deploy discrete functions that are triggered 

by events and automatically scaled by the platform provider. Serverless models eliminate the 

need for server provisioning and management, promoting a pure consumption-based billing 

model. Functions scale to zero when idle and burst massively when necessary, thus offering 

exceptional elasticity. 

 

Despite their promise, serverless platforms also impose constraints: statelessness, execution 

time limits, resource capping, and event-driven invocation are design assumptions that 

developers must embrace. Applications not originally designed with these assumptions must 

be adapted or re-architected. 

 

Serverless architectures typically offer cost advantages over traditional microservice 

deployments due to their pay-per-use billing model and dynamic resource allocation. In 

serverless systems, functions are executed only in response to specific events and are billed 

solely for the compute time consumed during execution. In contrast, microservices often run 

continuously on containers or virtual machines, accumulating costs regardless of utilization. 

Additionally, serverless platforms eliminate the need for maintaining idle resources or over-

provisioning to handle peak loads. These factors collectively reduce infrastructure expenses, 

making serverless a more appealing choice for workloads with variable traffic patterns. 
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1.2  Research Gaps in Microservice to Serverless Conversion 

 

Despite the rapid proliferation of both microservices and serverless computing paradigms in 

recent years, there remains a noticeable lack of systematic research addressing the conversion 

of existing microservices into serverless functions, particularly regarding the automation of 

this transformation. While the independent advantages and challenges of microservices and 

serverless architectures have been extensively studied, little attention has been given to the 

methodologies required to migrate complex, interconnected, and often stateful microservices 

into stateless, event-driven serverless models. Comprehensive frameworks or automated 

toolchains capable of parsing service logic, externalizing state, refactoring communication 

patterns, and deploying serverless-ready artifacts without extensive developer reengineering 

are still largely absent. This gap signifies a critical research opportunity: enabling the practical 

and scalable adoption of serverless benefits for a vast body of existing cloud-native applications 

without necessitating costly and error-prone manual rewrite. 

 

1.3  DeathStarBench Microservice Suite 

 

The DeathStarBench [17] suite represents one of the most comprehensive and widely used 

microservice benchmark collections developed for evaluating the performance, scalability, and 

complexity of modern cloud-native systems. Developed by the Systems and AI Lab (SAIL) at 

Cornell University, DeathStarBench models real-world microservices applications in a way 

that spans the entire system stack, from frontend APIs to backend databases.  

The suite provides end-to-end applications that simulate production-grade workloads and 

service dependencies, thus allowing researchers and practitioners to study microservice 

interactions, communication bottlenecks, scalability patterns, and failure modes under realistic 

conditions.  

 

By offering standardized benchmarks, DeathStarBench bridges the gap between theoretical 

microservices research and practical, reproducible experimentation. The project is actively 

maintained through its core repository on GitHub and continuously receives updates and 

refinements to remain aligned with contemporary technologies and practices. The 

comprehensive structure of the suite which offered proper documentation and active 

maintenance deemed it as an attractive candidate for selecting a testing environment fot the 

project. More specifically, the HotelReservation service was the core microservice 

environment that was studied, analyzed and deconstructed while conducting this research and 



 

 

10 

some of its services were the ones chosen to be converted to serverless functions, creating a 

hybrid environment of the two architectures. 

 

1.4  OpenWhisk Serverless Platform 

 

Apache OpenWhisk is an open-source, distributed serverless computing platform that provides 

a robust Function-as-a-Service (FaaS) environment for building and deploying event-driven 

applications. Designed with extensibility, openness, and modularity at its core, OpenWhisk 

allows developers to deploy functions that are executed dynamically in response to external 

events such as HTTP requests, database updates, or messaging system triggers. 

 

Serverless functions are packaged as entities called “actions” to achieve successful deployment 

to the Apache OpenWhisk platform. An action is a stateless, event-driven function that is 

executed in response to an invocation, triggered by an HTTP request, event source, or internal 

rule. Each action encapsulates a specific computational task and can be implemented in various 

programming languages including Go, Python, JavaScript, and Java, or it can be packaged as 

a Docker container to support arbitrary runtimes. From a serverless perspective, OpenWhisk 

actions align precisely with the Function-as-a-Service (FaaS) model: they are ephemeral, 

executed in isolated containers, and automatically scaled based on demand. 

 

OpenWhisk was selected as the target serverless platform for this work, providing a research-

friendly environment to automate the deployment, execution, and benchmarking of 

microservice-converted functions. A more in-depth technical analysis of OpenWhisk’s 

architecture, operational model, and experimental deployment experiences will be provided in 

later chapters of the thesis. 

 

1.5  Objective 

 

This thesis project is centered around specifying a core methodology for the precise conversion 

of an application component from an architecturally microservice application, to a serverless 

function deployed in a serverless platform and conducting research on the possible automation 

of such process, resulting in the construction of a testbed environment of a hybrid 

implementation of a system with both microservice and serverless entities. 

 

The vision is compelling: if we could automatically migrate microservices to serverless 
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platforms, developers would gain the operational simplicity and cost advantages of serverless 

computing without incurring the expensive and error-prone process of manual re-architecture. 

This motivation stems not only from theoretical interest but from extensive hands-on research 

and experimentation. 

 

1.6  Research Questions 

 

With the background and context established, this thesis will attempt to answer the fol- 

lowing research questions: 

 

1.6.1 Successful Conversion and Performance Overview 

Is it possible to precisely convert specific service components from an already functional 

microservice application, intertwined with other similar services and supporting technologies, 

to fully functional serverless functions that run independently on a separate from the original 

microservice, serverless platform? In the case of a positive answer to the above question, a 

follow up question occurs: In what extend is this hybrid implementation of the previous system 

with the addition of the serverless components, equal in performance and effectiveness to its 

original version? 

 

1.6.2 Methodology Extraction 

Through the process of thorough research and experimentation, could a specific methodology 

of converting a program that is architecturally a microservice application component to a 

serverless function that seamlessly replaces the original microservice in full functionality, be 

formulated? This question will be answered while discovering the needs of this conversion 

process and the steps that were followed in midst of trial and error of manual conversion 

attempts of one architecture to the other. 

 

1.6.3 Automation of Conversion 

Could the process of converting a microservice application component to a serverless function 

of a specific serverless platform, be properly automated? What tools and techniques were 

utilized for the realization of the automation process? The answers to these questions will be 
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acquired after experimentation with automation techniques utilizing the products of the 

conversion process from question 1.6.2 in combination code analyzation and generation tools. 
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2.2 Choice of Serverless Platform: OpenWhisk ........................................................................................... 15 
2.2.1 OpenFaaS .......................................................................................................................................... 16 
2.2.2 Fission ............................................................................................................................................... 16 
2.2.3 Knative .............................................................................................................................................. 17 
2.2.4 Apache OpenWhisk ........................................................................................................................... 17 

 

 

This chapter provides a brief review of the existing literature relevant bridging the gap 

between microservice and serverless architecture and their possible combination. The various 

serverless platforms that were considered for utilization during this research will also be 

explored highlighting the one chosen: OpenWhisk.  

 

2.1 Existing Work for Microservice Serverless Migration 

In this section of the chapter the current state of the field regarding microservice to serverless 

migration will be presented. After conducting deep research around the topic of the relation 

and combination of microservice designed systems with serverless functions, numerous 

attempts at utilizing the benefits of the two architectures together in singular systems were 

made by the academic community, products from which are showcased in the following 

sections. 

2.1.1      Boxer Framework 

Kansal et al. [1] proposed Boxer, an interposition framework that enables unmodified cloud 

applications to transparently benefit from serverless elasticity without needing to be rewritten 

into the traditional event-driven, stateless function model. By intercepting system-level calls 
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and emulating a conventional network-of-hosts abstraction over AWS Lambda, Boxer creates 

an environment familiar to existing distributed systems. This approach allows ephemeral 

elasticity to absorb load spikes and recover from failures with substantially faster reaction times 

compared to virtual machines, offering potential cost and availability improvements. For this 

thesis, Boxer serves as an important inspiration in demonstrating that transparent adaptation 

between microservice models and serverless platforms is achievable. Although Boxer focuses 

more on runtime system adaptation rather than static automated code transformation, which is 

the focus of this project, the later was chosen to avoid the extra processing and performance 

cost that comes with modifying services while they are running, and to produce portable code 

that works directly with serverless platforms. 

  

2.1.2 Boxer Utilization and Extension 

Wawrzoniak et al. [3] build upon the ideas introduced by Boxer by introducing Imaginary 

Machines and extend them into a generalized serverless execution model suitable for legacy 

cloud applications. Without modifying application source code, Imaginary Machines can 

transparently map cloud applications onto elastic serverless infrastructures. This model 

highlights the broader vision of serverless evolution towards general-purpose cloud application 

execution. Although closely aligned in spirit with the goals of this thesis, Imaginary Machines 

prioritizes system-level adaptations rather than code-level transformation and deployment 

automation. 

 

The “Off-the-Shelf Serverless” work by Wawrzoniak et al. [6] extends the principles of Boxer 

to enable unmodified distributed data processing engines, such as Apache Spark and Apache 

Drill, to operate on AWS Lambda. By introducing a transparent interposition layer, it 

demonstrates that complex, stateful, communication-heavy applications can run efficiently on 

serverless platforms, challenging the assumption that serverless is only suited for simple, 

stateless applications.  

2.1.3    SigmaOS 

Similarly, SigmaOS by Szekely et al. [8] aims to unify the capabilities of serverless and 

microservice systems under a single cloud-native operating system, supporting both burst-

parallel lightweight tasks and long-running stateful services. These two approaches underline 

the expanding vision of serverless computing as a viable platform for a broader range of cloud 

workloads. However, both projects primarily operate at the infrastructure abstraction level 



 

 

15 

rather than focusing on automated static code transformation, distinguishing their scope from 

the automation goals pursued in this thesis. 

 

2.1.4    Performance Enhancements in Serverless 

Faa$T [4] and FaasCache [5] propose improvements that target state management and cold 

start mitigation in serverless environments, respectively. Faa$T introduces an auto-scaling 

memory caching system that drastically reduces access latency for stateful serverless 

applications, addressing a common bottleneck for serverless performance. Meanwhile, 

FaasCache reimagines the problem of function keep-alive as a caching challenge, applying 

Greedy-Dual caching policies to optimize resource utilization and cold-start mitigation. While 

neither Faa$T nor FaasCache directly tackles microservice-to-serverless conversion, they both 

address fundamental challenges, specifically state handling and startup efficiency, that 

critically affect the performance of migrated services. 

2.1.5    µ2sls 

Qiu et al. [2] introduced µ2sls a radically different approach to executing microservice 

applications on serverless platforms by offering a formally verified execution model. It enables 

developers to write traditional service logic in Python while providing two additional 

primitives, transactions and asynchronous calls, that the runtime uses to maintain correctness 

in the presence of serverless-specific faults, such as re-executions and partial failures. The 

µ2sls framework guarantees that serverless executions refine the observable behavior of the 

original specification. While µ2sls focuses on ensuring correctness, it assumes developer 

intervention and restructuring, distinguishing itself from the fully automated conversion 

approach targeted in this thesis. 

 

2.2    Choice of Serverless Platform: OpenWhisk 

A suitable serverless platform had to be chosen to support the research and experimentation 

conducted in this project. This platform needed to support true Function-as-a-Service 

capabilities, meaning that the programs it runs must follow strict serverless principles. These 

include: a) scale-to-zero, where functions automatically stop running when not in use b) 

ephemeral execution, where each function runs for a short period and shuts down after 

completing its task c) no server management, meaning the developer does not configure or 

maintain any servers and d) event-driven invocation, where functions are triggered by requests 
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or external events. These criteria ensured that the selected platform aligned with the goals of 

transforming microservices into lightweight serverless actions. 

 

We studied several serverless platforms in the process of defining the most suitable one for the 

needs of this project. In the following subsections, some of the platform candidates will be 

presented and the selection of Apache OpenWhisk will be justified. 

2.2.1    OpenFaaS 

OpenFaaS [9] is a Kubernetes-native serverless platform that emphasizes simplicity, usability, 

and developer-centric design. It abstracts function deployment through Docker containers and 

integrates tightly with Kubernetes via the OpenFaaS Operator or with Docker Swarm for 

lightweight setups. OpenFaaS features native autoscaling, function templates, and a UI/CLI 

interface for function management. Its strengths lie in its ease of deployment and compatibility 

with existing container workflows, making it a strong candidate for early experimentation.  

 

However, several limitations emerged upon deeper exploration. While OpenFaaS presents 

itself as a FaaS system, its architecture fundamentally relies on long-running pods, where 

functions are persistently active containers, rather than true ephemeral executions. This design 

reduces cold-start latency but violates the core serverless principle of scale-to-zero, which was 

essential for this thesis’s benchmarking purposes. Furthermore, OpenFaaS’s eventing model 

and function management are less modular and more tightly coupled to Kubernetes than 

required for our automated transformation toolchain. Its reliance on language-specific 

scaffolding limited its flexibility in supporting arbitrary converted Go [19] microservices. 

These practical constraints, particularly regarding platform behavior, ultimately led to its 

exclusion. 

2.2.2    Fission 

Fission [10] is another Kubernetes-native serverless framework built to offer fast cold-starts, 

language extensibility, and declarative function deployment using Custom Resource 

Definitions (CRDs). It emphasizes low-latency execution through the reuse of function 

containers and supports multiple runtime environments including Python, Go, and Node.js. 

One of its standout features is Fission Workflows, which allows the chaining of functions in a 

control-flow manner. 
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Despite these strengths, Fission’s architecture and development model introduced significant 

challenges for this thesis. Function definition and deployment are tightly integrated into the 

Kubernetes control plane via CRDs, which complicates automation efforts for externally 

transformed code. Fission hides too much of what happens during function execution, which 

made it hard to control important details like how function programs are deployed, how the 

environment is set up, and how the runtime behaves. These controls were important for the 

kind of experiments we needed to run when understanding the conversion of microservices and 

even potentially automating it. Additionally, the documentation and ecosystem support around 

Go-based functions in Fission were relatively sparse compared to other platforms. These issues 

collectively influenced the decision to deprioritize Fission as a deployment platform. 

2.2.3    Knative 

Knative [11], developed by Google, is a powerful serverless framework built atop Kubernetes, 

designed to provide a complete set of fundamental tools for deploying event-driven workloads. 

It introduces key components such as Knative Serving (for autoscaling HTTP workloads), 

Knative Eventing (for building event-driven applications), and a flexible abstraction for 

sources events pools. Its appeal lies in its strong adherence to cloud-native design, native 

Kubernetes integration, and support for complete production deployments in hybrid 

environments.  

 

However, Knative also represents a relatively heavyweight solution, with a steep operational 

learning curve, and complex installation requirements including service dependencies like Istio 

or Kourier. Similarly to the case of OpenFaaS, Knative is also a container-based platform that 

handles container setup to mimic that of traditional serverless platforms and their core features 

although primarily being a container management system. These complexities proved to be 

counterproductive for the goals of this thesis, which required fast iteration cycles, simple 

repeatable setups, and tight control over the function runtime. The lack of minimal 

configurations, combined with its emphasis on full-stack deployment approaches, made 

Knative more suitable for enterprise-scale production environments than research-driven 

experimentation. As a result, Knative was excluded from further consideration in favor of more 

lightweight and transparent alternatives. 

 

2.2.4    Apache OpenWhisk 
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Apache OpenWhisk [12] is an open-source, distributed serverless platform originally 

developed by IBM and now maintained as part of the Apache Software Foundation. It provides 

a modular architecture based on Docker and CouchDB, supports function executions in a wide 

array of languages, and includes a powerful rule-based event triggering system. OpenWhisk is 

distinct among serverless frameworks due to its support for customizable pluggable runtimes, 

custom Docker containers, and action chaining, enabling complex workflows and fine-grained 

control over execution environments. Its CLI tool wsk and RESTful APIs make it highly 

scriptable and offer numerous preconfigured features with interactive platforms applicable 

within terminal environments, which aligned closely with the project’s needs for automating 

deployment of converted services. OpenWhisk supports features like parameter binding and 

named packages, which make it easier to group related actions and reuse them across different 

scenarios. This flexibility was important for setting up and managing the different testing 

environments used in this research. Additionally, OpenWhisk can run locally, allowing for fast 

and easy experimentation without needing a cloud setup during development. These attributes 

made OpenWhisk technically suitable for hosting the converted microservices produced by this 

project’s automated transformation pipeline. 

 

OpenWhisk was ultimately chosen as the serverless execution platform for this thesis due to 

its balance of flexibility, ease of use and deployment and research-aligned features. Unlike 

proprietary platforms such as AWS Lambda or heavyweight frameworks like Knative, 

OpenWhisk enabled full control over deployment mechanics while still adhering to core 

serverless principles such as statelessness, ephemeral execution, and scale-to-zero semantics. 

Its support for custom action containers allowed the project to package microservices with 

complex dependencies, such as MongoDB [18] and Memcached [24] drivers and service 

initialization code, without compromising execution correctness. Furthermore, its transparent 

logging, local deployment, and resource observability provided the visibility required for 

benchmarking converted services against their original microservice implementations. 

Integration with automation scripts and Makefiles facilitated the deployment of actions without 

manual overhead, making OpenWhisk an efficiently scriptable and programmable platform for 

exploring the feasibility of serverless conversion. As such, OpenWhisk was not only a technical 

fit but a strategic enabler of the thesis’s core goal: to explore microservice-to-serverless 

transformation using repeatable easily implemented methodologies. 

 

The reasoning and criteria taken into consideration for ultimately choosing Apache 

OpenWhisk over the rest of the platforms and systems mentioned are more clearly 

demonstrated in the table bellow: 
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Table 2.1: Taxonomy table demonstrating the criteria of choosing a serverless platform 

 
Principle / Feature                            OpenWhisk       OpenFaaS       Fission         Knative         

Scale-to-Zero                                 Yes          No         Yes         Partial      

Ephemeral Execution                           True FaaS    Long-lived 

pods       

Container 

reuse       

Simulated   via 

pods     

No Server Management                          Full       

abstraction    

Requires K8s 

setup 

CRD +      

cluster access 

Full-stack setup 

needed    

Event-Driven 

Invocation                      

Triggers and 

RESTful API 

Basic     

triggers      

Workflows 

and triggers     

Advanced    

eventing 

 Runtime 

Transparency              

 Full         Limited    Hidden      Complex      

 Local Deployment for 

Experimentation         

Lightweight  Docker/K8s 

required      

 No          Complex     

dependencies    

 Go Language Support                          Native Available   Limited     Available    

 Automation-Friendly 

Architecture             

Scriptable CLI 

and APIs     

Template 

driven 

No  Heavy 

Configuration   

 Suitable for Research 

& Prototyping  

Ideal      Limited   Unsuitable  Unsuitable   
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This chapter describes the process of experimenting and finally achieving a stable and 

repeatable deployment of Apache OpenWhisk. Completing this task was essential for our 

research, since we needed a non-trivial way of setting up our testing environment that would 

be consistent and be automatically executed, avoiding constant errors debugging. We aimed 

at configuring a local setup of interacting containers and serverless functions for simpler 

development. After trial and error among attempting deployment on different hardware and 

operating systems, we ultimately choose the route of deploying the platform through 

Kubernetes [25], configuring a cluster dedicated to OpenWhisk. This was necessary for 

creating a shared and homogenous environment for both the serverless platform and the 

microservice application, thus having container-based microservices and converted serverless 

microservices to work and interact on the same cluster. 

 

3.1 OpenWhisk Deployment 

The process of deploying a whole platform as complex as Apache OpenWhisk, from the 

beginning with no preset environment, proved to be a rigorous process despite being chosen 

for its lightweight deployment methods. Despite the theoretical reasons as to why OpenWhisk 

was characterized as the suitable platform adequate for this project, ultimately the choice for 

its actual utilization was governed by its deployability. In the case the platform proved too 

difficult or even impossible to be deployed and successfully configured on the systems that 
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were accessible, another direction would have to be chosen which would potentially mean 

additional hardships and obstacles occurring.  

 

Initially significant attempts were made at successfully deploying Apache OpenWhisk 

serverless platform to personal computer hardware hosting different Operating Systems, to 

more spherically comprehend the ease of both use and configuration of the platform.  

 

3.1.1 OpenWhisk Devtools - MacOS 

 

Specifically, the first attempt at local deployment of OpenWhisk was attempted on Mac 

Operating System using a version of OpenWhisk from a sub directory of the official Apache 

documentation for OpenWhisk named “OpenWhisk-devtools” [13]. The repository provided 

options uniquely developed for local deployment along with other useful tools easing the 

process of action declaration, development and deployment. The platform is deployed using 

docker-compose and offers a solution of automation through an assortment of yaml scripts and 

a core Makefile that simplifies processes in few single commands. It is highlighted that the 

deployment is compatible on MacOS using the Docker for Desktop [14] application for MacOS 

systems of Apple Silicon Architecture. 

 

This attempt deemed to be unsuccessful, halting at the point of inability to resolve an error not 

documented before by the service community of OpenWhisk. The Error occurred in incorrectly 

running the OpenWhisk invoker container leading to its controller api-gateway getting stuck 

on repeatedly attempting to reach the invoker node-container, resulting in the deployment 

halting. Due to not being able to solve the error, another direction had to be taken in the form 

of attempting the same method on a different Operating System. 

 

 
 

Figure 3.1: Command Line output during OpenWhisk-devtools unsuccessful deployment of 

OpenWhisk on MacOS 
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3.1.2 OpenWhisk Devtools – Windows Subsystem for Linux: Ubuntu 

 

Another attempt at this deployment method was executed before following to another 

OpenWhisk version, on a different Operating System: Ubuntu – specifically on the version 

offered by the Windows Subsystem for Linux in a partitioned environment hosted in 

combination with the Windows OS on the same hardware. The OpenWhisk-devtools docker-

compose method of deployment also highlights compatibility with any kind of installation of 

Docker version 1.13 and onward as well as Docker Compose version 1.6 and onward, 

theoretically deeming the environment eligible for success. 

 

The attempt resulted in another error of a different kind. In this case, the system was able to 

complete the fetching process of the container images and their internal set up, however issues 

in regards to container creation rose to the surface while executing the scripted deployment of 

the system as described within the Makefile. An error reported by the Docker daemon indicated 

that it was unable to extract a specific image layer and failed with a NotFound message related 

to the content digest. This pointed to a missing or inaccessible image layer, either due to its 

removal from the remote registry, an internal corruption within the local Docker content store, 

or inconsistencies in nightly build tags for OpenWhisk services.  

 

Several additional steps were subsequently attempted: a full Docker system prune to clear 

cached and dangling layers, manual re-pulling of affected images, and substitution of the 

unstable “:nightly” tag with more stable versioned tags. Despite these efforts, the issue 

persisted, preventing a successful container orchestration and halting the platform 

initialization. The failure highlighted the fragility of relying on nightly image tags and 

underlined the need for controlled Docker environments with maintained version.. 

 

 
 

Figure 3.2: Command Line output during OpenWhisk-devtools unsuccessful deployment of 

OpenWhisk on WSL Ubuntu 

 

 

3.1.3  OpenWhisk Documentation Instructions for Local Deployment - 

MacOS 
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In addition to its containerized deployment options from the previous method, Apache 

OpenWhisk also offers a Java-based standalone deployment mode intended for developers 

seeking a locally hosted runtime environment. Following the official OpenWhisk 

documentation, the apache/OpenWhisk GitHub repository [15] was utilized to clone and 

build the core platform directly from source. This method involves compiling the OpenWhisk 

controller and invoker services using Gradle and launching them as native Java processes. 

Requirements for compatible Docker, Node.js and Java software in specific versions was 

demanded for the process to execute in a successful manner that are stated within the 

repository documentation.  

 

Despite the intended simplicity of the Java-based deployment, initial attempts to build 

OpenWhisk from source encountered a critical failure during the Gradle initialization phase. 

The build process terminated with a semantic error:  

 

Unsupported class file major version 67 

 

indicating that the Groovy/Gradle toolchain embedded in the OpenWhisk build scripts was 

incompatible with the Java bytecode compiled using a more recent JDK version such as Java 

13 or later. Specifically, this exception stemmed from a mismatch between the version of the 

Java Development Kit installed on the host system and the expected JDK compatibility 

defined in OpenWhisk’s build configuration, which targets Java 8 or 11. Multiple mitigation 

attempts were made, including switching the system Java version to Java 11 and ensuring that 

JAVA_HOME was properly configured. However, the error persisted even under the 

downgraded JDK, suggesting deeper issues with Groovy’s bytecode parsing or potential 

corruption within the Gradle daemon cache. As a result, the Java-based build method had to 

be suspended.  
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Figure 3.3: Command Line output during Java-based standalone unsuccessful deployment of 

OpenWhisk on MacOS 

 

 

3.1.4     OpenWhisk Documentation Instructions for Local Deployment – 

WSL Ubuntu 

 

An additional attempt to deploy Apache OpenWhisk via the Java-based standalone build was 

carried out within a WSL-based Ubuntu environment on Windows. While this setup was 

expected to provide a more Linux-native context for running the standalone runtime, it 

encountered a critical networking failure during the early stages of service initialization. 

Specifically, the OpenWhisk controller attempted to bind to http://172.17.0.1:3233, a Docker 

bridge address that is typically accessible in standard Linux environments. However, WSL2 

does not natively expose or preserve this address in the same manner, leading to a 

java.net.BindException: Cannot assign requested address. The error occurred repeatedly as the 

invoker attempted to start prewarm containers for node.js actions, all of which failed due to 

unreachable internal addresses.  

 

Attempts to modify Docker networking or reroute to localhost were unsuccessful due to WSL’s 

namespace handling and its abstraction of the Linux network stack on top of Windows. As a 

result, the WSL-based standalone deployment was categorized as unreliable for OpenWhisk. 
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Figure 3.4: Command Line output during Java-based standalone unsuccessful deployment of 

OpenWhisk on WSL Ubuntu 

 

 

3.1.5     OpenWhisk CloudLab Deployment 

 

The final and successful deployment configuration adopted for the experimental phase of this 

thesis was based on the CloudLab OpenWhisk setup provided by the CU BISON Lab via the 

public repository cloudlab-OpenWhisk [16]. This configuration is built to automate the 

orchestration of an OpenWhisk serverless platform on CloudLab infrastructure, an academic 

cloud research platform. The repository defines a full system topology including controller a 

node, one or more invoker nodes, CouchDB, Kafka, and Zookeeper nodes, which in this 

context are configured as distinct physical machines using CloudLab’s Emulab interface. 

Importantly, the configuration is aligned with the official OpenWhisk architecture and includes 

optimizations for performance benchmarking, such as network tuning and logging support.  

 

This deployment method enabled the execution of serverless actions converted from 

microservices in a reproducible and stable environment. Additionally, CloudLab’s reserved 

and isolated hardware nodes ensured minimal measurement noise, a crucial requirement for the 

benchmarking and evaluation phases of this research. By using this configuration, we were 

able to conduct realistic performance comparisons between serverless actions and their original 

microservice implementations under controlled conditions, fulfilling one of the core objectives 

of the thesis. 
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For this thesis’ experimental setup, an already preconfigured CloudLab profile was utilized 

that incorporates the deployment process described by the repository mentioned, in a 

Kubernetes environment. The profile utilized the Kind tool [17] for containerization of 

Kubernetes – Kubernetes in Docker – to first achieve a functional iteration of a Kubernetes 

Cluster on the reserved family of machine nodes from CloudLab. Executing an OpenWhisk 

deployment on top of the Kube Cluster is an optional functionality of the profile, that if 

configured to do so deploys the version of OpenWhisk from the corresponding CloudLab 

repository, with Helm [18] as a package manager tool. 

 

Helm provided a declarative and reusable mechanism to manage configuration and deployment 

lifecycle. The official OpenWhisk Helm chart abstracts away low-level Kubernetes YAML 

definitions by encapsulating them into modular templates. Helm enhanced the ease of system 

configuration at great scale, with its automated options in partial or whole redeployment of the 

environment in a few easily comprehendible commands, significantly decreasing workflow 

complexity. This allowed for easier provisioning of OpenWhisk in Kubernetes environments 

and made it easier to experiment with scaling, and resource allocation by simply modifying 

Helm value files. Helm’s declarative and repeatable deployment structure, allowed for scalable 

and reproducible experimentation, which was essential for the benchmarking and debugging 

in the iterative refinement phases of this research. 

 

This implementation of the deployment workflow is default to be implemented on three 

nodes/machines rented from CloudLab’s maintained node clusters, for this project’s needs the 

m510 machines were primarily utilized as they are the type of node the profile has been most 

tested on. The topology of the partitioned node cluster is consisted of one controller node and 

two invoker nodes at minimum.  
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Figure 3.5: Topology View of a Deployed CloudLab Experiment using the kubernetes Profile 

 

 
While interacting with the environment prepared by the profile in multiple iterations of its 

execution, occasional inconsistent behaviors were encountered often regarding the 

OpenWhisk’s CLI tool: wsk configuration not functioning as expected as well as issues in 

relation to incorrect declaration of authentication parameters demanded by OpenWhisk such 

as API_HOST and AUTH_KEY. This behavior was avoided by making sure the startup 

processes of all nodes, especially the controller nodes finish executing successfully by 

CloudLab, despite the timely wait times approaching approximately 10 to 12 minutes. 

 

 
 

Figure 3.6: List View of a Deployed CloudLab Experiment using the kubernetes Profile that has 

finished startup process execution 
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Figure 3.7: List View of a Deployed CloudLab Experiment using the kubernetes Profile that is 

currently executing startup processes 

 

 
Ultimately, the configuration hosted on CloudLab proved to be the most fitting for our 

purposes.  Not only did it provide an automated, error-free method of deployment of the 

platform that could be executed remotely as a background process, it fully prepared a 

significantly useful and well-orchestrated Kuberenetes Cluster.  The cluster would serve as an 

overall execution environment for both traditional microservice applications and their 

serverless iterations, in a homogenous setting. 
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4.1 Choice of DeathStarBench Service 

The DeathStarBench Suite of microservice programs offers several fully functional and 

maintained collections of services that truly follow the microservice architecture of distributed 

web applications, assuming them as suitable candidates for understanding the principles of said 

architecture. Each application is designed to reflect real-world service architectures with 

complex internal dependencies, databases, and network communication.  

 

Among its most prominent applications is the Social Network, which emulates a social media 

platform featuring services for user timelines, post composition, media management, and social 

graphs. Additionally, the suite includes the Hotel Reservation system designed to replicate an 

end-to-end hotel booking service, implememting search, reservation, user profile, geo-location, 

and rate management services. Also included are workloads such as an E-Commerce platform 

for simulating online retail, a Media Service representing content delivery and review systems, 

and an Edge Coordination service that manages distributed IoT devices such as drones. 

 

All applications offer an adequate number of features that increase the complexity of the 

interaction environment and propose a stable system of internal services that utilize common 
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supporting technologies found in real-world usage. The two primary candidates that were 

ultimately explored for the main conversion and benchmarking environment demanded for this 

project were the Social Network and Hotel Reservation microservice applications. Other 

DeathStarBench applications, such as the Media Service, E-Commerce, and Drone 

Coordination benchmarks, were excluded due to factors such as higher system complexity, lack 

of clear documentation, or reliance on less-supported technologies and languages, which made 

them less suitable for controlled experimentation and automation within the scope of this thesis. 

The two main services were chosen for the reason being their complementary characteristics 

and relevance to the research objectives.  

 

4.1.1 Social Network Application 

The Social Network application represents a complex polyglot microservice ecosystem, 

consisted of a high number of independent services in comparison to the other optional 

microservice systems, with deep reliance on caching and memory management. Each service 

was coupled with their own personalized supporting service for handling these aspects, which 

presented an opportunity to outsource state related dependencies of standalone microservices 

to those supporting technologies. The utilization of Apache Thrift as the RPC protocol 

streamlines the application’s internal communications and poses as an attractive factor for 

handling the intricacies of also communicating with an external entity such as OpenWhisk.  

 

4.1.2 Hotel Reservation Application 

The Hotel Reservation application offers a clean, modular architecture entirely implemented 

in Go, aligning with one of the languages natively supported by OpenWhisk which was a great 

benefit. Its limited number of services makes it manageable for initial experiments while still 

embodying realistic patterns of service orchestration, database interaction, and RPC-based 

communication. Using the same programming language across all services makes the system 

easier to understand and work with during early research, especially when studying how 

services function and depend on each other. However, this also means that the system uses 

gRPC, a language-specific communication method tied to Go. Replacing gRPC with a method 

compatible with OpenWhisk, like REST APIs, can be challenging because it’s closely built 

into how the services communicate. 
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4.2 Deployment Experimentation 

Similar to the approach followed on finalizing the choice of serverless platform deployment, 

stability and consistency of the process were the core deciding factors for future utilization of 

the service chosen on the research. The applications are not limited to a single deployment 

option, having available alternative approaches at deployment using different tools and 

platforms such as Docker with Docker-Compose, Openshift as well as implementations 

through Kubernetes by using the Helm-Chart package manager. The inclusion of a deployment 

implementation through Helm-Chart enhances the incentive to utilize a shared cluster manager 

between both OpenWhisk and the deployed microservice application in question. This would 

allow the design of a more streamlined environment setup process, easily repeated and 

replicated, while at the same time alleviating the difficulty of managing two independent 

systems hosting OpenWhisk and the application.  

 

Therefore, Helm routed deployments were a priority while tuning the research environment, 

which had to appropriately configured in order to maintain a stable platform for 

experimentation. Despite the benefit of the active maintenance nature of the DeathStarBench 

microservice applications by the development team, the Helm-Chart documentation appeared 

to be lacking in specific areas and the deployment configuration introduced a variety of new 

issues in relation to startup processes of both Social Network and Hotel Reservation 

applications. Resolving these issues was crucial for the continuation of the project as well as 

deciding for the final selection of the microservice application to be studied under this research.  

 

4.2.1 Hotel Reservation Helm-Chart Deployment 

Initial attempts to deploy the Hotel Reservation microservices using the Helm chart provided 

within the DeathStarBench repository revealed multiple misconfigurations that caused 

deployment failures across several components. The current unchanged configuration from the 

repository itself led to CrashLoopBackOff errors in all core services.  
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Figure 3.6: CrashLoopBackOff Errors occurred from out-of -box Helm-Chart deployment of Hotel 

Reservation application 

 

 
 

Figure 3.7: Pod error description logged after the occurrence of CrashLoopBackOff error 

 

 

Moreover, there was a misalignment between the service definitions and their corresponding 

MongoDB instances. These misconfigurations stemmed from the use of outdated environment 

variables and service discovery names inherited from the original Docker Compose 

deployment environment. MongoDB and other service connection strings, for example, were 

fetched from a config.json file that contained a configuration map. The map explicitly instructs 

the system on how to handle the structure and mapping of the service names to align with the 

Kubernetes DNS-based resolution model. The issue was traced to Helm’s values.yaml file 

misconfiguration, unique for each particular service, that failed to set the environment directory 

of execution correctly. More specifically, services were referencing binaries under the default 

path ./<service-name> instead of the expected /go/bin/<service-name>. 
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Figure 3.8: Configuration Map found in config.json file showcasing environment variable mapping to 

Kubernetes-compliant service names 

 

 

Ultimately, the resolution involved rewriting each values.yml file for all services, fixing the 

container command directory of execution from ./<service-name> to /go/bin/<service-name>. 

Additionally, correctly specifying the mount path from which the configuration map is 

referenced had to be corrected, from simply config.json to /workspace/config.json. These 

changes in values.yml file structure correctly set the environment of deployment for all sub-

services of the application and directs them to extract the appropriate names for referencing the 

rest of the services from the configuration map. After this simple but crucial adjustment, the 

service was successfully deployed and fully functional. 

 

 

 

Figure 3.9: Incorrect values.yml file for User            Figure 3.10: Correct values.yml file for User  

   Service      Service 

 

4.2.2 Social Network Helm-Chart Deployment 

The Social Network application, as larger and more complex, also demanded a few critical 

interventions for deployment via Helm. Initial deployment attempts encountered issues 

specifically within the Horizontal Pod Autoscaler (HPA) template files. The service chart 

inherited auto-scaling configurations from a base file named _baseHPA.tpl, which declared 

global-level scaling parameters. These caused Helm to fail due to conflicting or missing 

references within non-global value declarations, particularly when default values were not 

explicitly overridden in the values.yaml file. Resolving the issue required removing HPA 

configurations at the individual service level, ensuring the template logic evaluated valid 
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metrics references. The solution that ultimately allowed the application to execute was 

achieved by adjusting these if condition statements within the _baseHPA.tpl file: 

{{- if or 

$.Values.global.hpa.targetMemoryUtilizationPercentage (and 

.Values.hpa .Values.hpa.targetMemoryUtilizationPercentage) }} 

to 

{{- if or 

$.Values.global.hpa.targetMemoryUtilizationPercentage}} 

, and also 

{{- if or $.Values.global.hpa.targetCPUUtilizationPercentage 

(and .Values.hpa .Values.hpa.targetCPUUtilizationPercentage) 

}} 

to 

{{- if or 

$.Values.global.hpa.targetCPUUtilizationPercentage}}. 

 

4.3 Selected Service: Hotel Reservation 

Although both the Hotel Reservation and Social Network applications from the 

DeathStarBench suite were ultimately deployed successfully within the Kubernetes cluster 

using Helm, the Hotel Reservation application was selected as the primary subject for 

serverless transformation in this thesis due to its greater structural alignment with the 

conversion goals and constraints of the project. Specifically, Hotel Reservation offers a more 

uniformly implemented service architecture, with all microservices written in Go, simplifying 

code analysis and transformation pipeline.  

 

In contrast, the Social Network application’s polyglot architecture, with services written in six 

different languages, introduced enhanced complexity and difficulty in familiarizing with them 

and keeping track if language-specific intricacies. Furthermore, the Social Network’s higher 

inter-service communication density and media processing layers made it a less suitable 

candidate for initial conversion attempts and performance benchmarking. Incidentally, Hotel 

Reservation’s more homogeneous codebase, clearer service boundaries, and manageable 

complexity offered an ideal and approachable development environment. This allowed the 

research to focus on the core challenges of microservice-to-serverless transformation without 

being interrupted by language heterogeneity and complexity. 
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This chapter describes the process of analyzing and comprehending the structure and 

functionality of the Hotel Reservation Microservice Application as well as some of its 

consisting subservices. 

 

5.1 Overview 

The Hotel Reservation application from DeathStarBench is a representative, production-grade 

microservice benchmark that models the backend logic of a hotel booking platform. It is 

designed to test and evaluate modern microservice architectures under realistic workloads and 

demonstrates key patterns of distributed application design. The system is composed of eight 

stateless microservices, each responsible for a distinct part of the booking pipeline, such as user 

authentication, profile management, geo-location resolution, hotel search, rate calculation, 

reservation handling, and recommendation generation. As established, each service is 

implemented in Go, reflecting a uniform language choice that simplifies orchestration and 

tooling.  

 

The application integrates widely used backend technologies including MongoDB for 

persistent storage and Memcached for caching, ensuring high performance and scalability 

under load. These components are containerized and orchestrated in cloud-native environments 



 

 

36 

such as Kubernetes, making the application suitable for studying the deployment, execution, 

and transformation of microservices in realistic settings. 

 

5.1.1 Breakdown of Core Services 

 

Each microservice in the Hotel Reservation system serves an independent purpose and 

communicates with other services to fulfill broader user requests. The Geo Service maps user-

provided addresses or coordinates to internal region identifiers, leveraging static datasets and 

spatial resolution logic. The Search Service uses this information to query nearby hotels based 

on location and availability, pulling a hotel dataset from a MongoDB service. The Rate Service 

retrieves dynamic pricing information for specific hotels and dates, often combining data from 

both databases and in-memory caches like Memcached to reduce latency. The Reservation 

Service is responsible for handling new bookings and cancellations, interfacing with storage 

layers to ensure consistency. The Recommendation Service analyzes user profiles and booking 

histories to suggest hotels tailored to individual preferences. Each of these services can operate 

independently and collaborates through defined interfaces, forming a coordinated. 

 

 

Figure 4.1: Graphical Representation of Hotel Reservation Microservice Application Internal Service 

Communication Structure 

 

 

5.1.2 Communication Protocols and Runtime Behavior 

 

Communication between services in the Hotel Reservation application is implemented using 

gRPC, a high-performance, open-source RPC framework developed by Google. GRPC uses 
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Protocol Buffers, proto3, as its interface definition language, enabling strongly typed inter-

service communication. Each microservice defines its service interface in a .proto file, which 

is compiled into Go bindings using the protoc compiler and associated gRPC plugins. These 

bindings generate both the client and server-side interfaces, simplifying implementation and 

maintaining consistency across the system. Runtime communication occurs over HTTP/2. 

Additionally, the application employs distributed tracing frameworks like Jaeger to monitor 

request propagation across services, using gRPC interceptors to automatically propagate 

tracing metadata with each call. This architecture ensures both low-latency communication and 

observability. 

 

5.1.3 Service Code Structure and Components 

 
The microservices in Hotel Reservation follow a standardized internal code structure that 

emphasizes modularity. Each service contains a main.go file that acts as the entry point, 

initializing configuration, logging, tracing, and service registration before launching the gRPC 

server. Core logic is encapsulated in a server.go file, which implements the generated gRPC 

interface by wiring business logic into the service methods. The Protocol Buffers are defined 

under a proto/ directory and compiled into *_pb.go and *_grpc.pb.go files during the build 

process. Database configuration for each service is found within the db.go file, dedicated to 

initializing and interacting with the MongoDB backend that stores user credential data 

 

MongoDB integration is handled via the official Go driver [21], typically abstracted behind 

internal helper functions for loading and querying data. Memcached clients are initialized in 

services that benefit from fast in-memory caching, such as rate or search-related services. 

Environment variables are used for injecting runtime parameters such as ports, database 

addresses, and external service URLs, through JSON-based config files ensuring consistency 

across deployment environments. 
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Figure 4.2: Tree structure of services                                             Figure 4.3: Tree structure of cmd 

    directory of Hotel Reservation       directory of Hotel Reservation 

    Application             Application 

 

The architecture of the Hotel Reservation application leverages external supporting 

technologies such as MongoDB and Memcached for persistent storage and caching, allowing 

services to offload much of their data handling and memory requirements. Each core service is 

paired with its own dedicated MongoDB instance, used exclusively for storing and retrieving 

its operational data, while Memcached instances provide efficient access to frequently used 

information for some more load-heavy services. This design proves advantageous when 

converting services to serverless functions, as it enables the externalization of state. Even if a 

service contains some internal logic that temporarily maintains state, the presence of these 
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external systems offers a clear path for restructuring such logic into a stateless execution model. 

The serverless functions can interact with these supporting services on demand, maintaining 

the expected behavior while conforming to the stateless nature required by the serverless 

platform. 

 

 

Figure 4.4: MongoDB pod instances for all services  

 

 

5.1.4 Relevance and Observability 

 
The Hotel Reservation application is particularly well-suited for research on microservice 

transformation due to its modularity, language uniformity, and realistic data interactions. Its 

structure mimics common enterprise deployments, where services are decoupled, 

independently deployable, and communicate through well-defined channels. The use of widely 

adopted tools like gRPC, MongoDB, and container-based deployment makes the system 

approachable while still maintaining production-level complexity. These features make Hotel 

Reservation not only a strong benchmark for performance and scalability evaluation, but also 

an ideal candidate for experimental transformation into serverless architectures, where clear 

service boundaries, statelessness, and transparent communication are essential for success. 

 

5.2 User Service Breakdown 

In order to comprehend the requirements of converting a microservice to a serverless function, 

a service had to be chosen from the Hotel Reservation application for deep analyzation of its 

internal structure and functionality. Understanding the core logic and how it is implemented in 

the lower levels of code development as well as using specific technologies such as MongoDB 

and Memecached protocols, was of high significance in discovering a robust conversion 

process and methodology.  
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Therefore, a service that included the base level components used by the majority of the 

services in the application while also maintaining a lower level of logical complexity uniquely 

implemented for its specific functionality had to be selected. This would help identify common 

patterns used throughout the system, while avoiding issues caused by deeply specialized 

functionality. The service that satisfied these demands was the User Service, combining 

simplicity of service-specific logic implementation with a complete model of service 

architecture. 

 

Beyond its structure, the User Service was also a good fit in terms of performance and 

scalability. Since it handles user login and authentication, it is called frequently and must 

respond quickly. Its operations are short and efficient, mostly involving basic input checks 

and database lookups. This means it uses few resources and does not require long processing 

time. The service also experiences sudden increases in traffic, such as when many users log 

in at once, which makes it a good test case for studying how serverless platforms like 

OpenWhisk scale to meet demand. Because of this, converting the User Service gave useful 

results both for testing correctness and for understanding performance under realistic 

workloads. 

 

5.2.1 User Service Structure 

 
As mentioned, each service encapsulates its functionality in a collection of files that serve a 

different purpose adhering to a modular and layered file structure, ultimately combining when 

executed to a complete system. At the entry point lies the main.go file, located in the cmd/user/ 

directory, which calls upon the services provided by the other files implemented in the system. 

This file is responsible for bootstrapping the service: it reads configuration parameters from a 

config.json file: 

 

jsonFile, err := os.Open("config.json") 

 

establishes a MongoDB connection using a custom initializeDatabase function which is 

implemented in the db.go file: 

 

log.Info().Msg("Initializing DB connection...") 
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mongoClient, mongoClose := 

initializeDatabase(result["UserMongoAddress"]) 

defer mongoClose() 

 

utilizing said parameters extracted from the configuration map found in config.json file and 

initializes tracing and service discovery through Jaeger and Consul respectively. It then 

launches the gRPC server via a call to srv.Run(): 

 

srv := &user.Server{ Port: servPort, IpAddr: servIP, Tracer: tracer, 

Registry: registry, MongoClient: mongoClient } 

log.Fatal().Msg(srv.Run().Error()) 

 

The db.go file in the User Service of the Hotel Reservation application is dedicated to 

initializing and interacting with the MongoDB backend that stores user credential data. It 

defines a User struct with BSON field tags to map Go struct fields to MongoDB document 

keys: 

 

type User struct { 

 Username string `bson:"username"` 

 Password string `bson:"password"` 

} 

 

The core function, initializeDatabase, accepts a MongoDB connection string, constructs a URI, 

and creates a new client using the official MongoDB Go driver. It then populates the database 

with synthetic test users by generating 500 usernames and corresponding passwords, each 

hashed using the SHA-256 algorithm for secure storage: 

 

 

sum := sha256.Sum256([]byte(password)) 

newUsers = append(newUsers, User{ 

 fmt.Sprintf("Cornell_%x", suffix), 

 fmt.Sprintf("%x", sum), 

}) 

 

These users are inserted in bulk into the "user" collection within the "user-db" database. After 

the insertion, a cleanup function is returned to disconnect the MongoDB client when the service 

shuts down. 
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Service logic is implemented in the server.go file, located under services/user. Understanding 

the contents of this file was crucial for pinpointing the basic functionality of the service that 

needed to be extracted and fit into the serverless function model. The file implements three 

core methods:  

 

The Run method handles the service’s gRPC configuration which will accept requests from 

other entities by setting up a gRPC server instance and binds it to a TCP port. It also registers 

the service with Consul for dynamic service discovery.  

 

In addition, the loadUsers method is implemented with the purpose of fetching all the user data 

stored inside the corresponding MongoDB database for the User service: mongodb-user, and 

storing them in a map data structure that matches each instance of a username with the 

appropriate password: 

  

collection := client.Database("user-db").Collection("user") 

curr, err := collection.Find(context.TODO(), bson.D{}) 

if err != nil { 

 log.Error().Msgf("Failed get users data: ", err) 

} 

 

var users []User 

curr.All(context.TODO(), &users) 

if err != nil { 

 log.Error().Msgf("Failed get users data: ", err) 

} 

 

The usage of this function adds a level of state to the lifetime environment of the system. As 

the function is called upon in the Run() method mentioned before, as a startup process, the 

entirety of the user information is loaded to the memory allocated to the service while it is alive 

and is kept in an easily accessible data structure for instant reference when user validation 

requirements are demanded from the service from outside entities. The Hotel Reservation 

application in general does not offer a method for users to create new accounts with customized 

user data, therefore the user service is designed to preload the user information to memory and 

use the map data structure to instantly access it in any instance the service is called upon to 

execute user validation. This design is justified since there is no need for the map to be updated 

with new user data introduced to the application environment.  At a microservice level, this 
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choice severely decreases latency levels for the access to user data and nullifies additional 

latencies that occur when that data must be fetched.  

 

This approach introduces state within the main service logic, as the user data remains in 

memory for the lifetime of the service. While this design significantly improves performance 

by eliminating repeated database queries, it conflicts with the stateless model required by 

serverless platforms like OpenWhisk. In a serverless setting, each function invocation must 

operate independently, with no persistent in-memory state between calls. Replacing map with 

a stateless alternative would require each request to fetch user data directly from the database 

or a shared external cache. This can lead to increased latency, especially under heavy load. To 

address these drawbacks, solutions such as FaaS-oriented caching systems for example, 

FaaSCache mentioned before, can be utilized. These systems provide shared and fast-access 

memory across function instances, helping to maintain low-latency access to frequently used 

data. 

 

Lastly, the CheckUser method is implemented, encapsulating the main functionality of the User 

Service as a whole, validating user information after referencing the appropriate preconfigured 

user data. The CheckUser method is the sole gRPC endpoint exposed by the User Service, 

defined in the Protocol Buffers file as: 

 

rpc CheckUser(Request) returns (Result); 

 

When invoked, it receives a Request message containing the username and password fields. 

Inside the method, the server performs a deterministic transformation of the submitted 

password using the SHA-256 cryptographic hash function to ensure secure storage and 

comparison. This is implemented in Go as follows: 

 

sum := sha256.Sum256([]byte(req.Password)) 

pass := fmt.Sprintf("%x", sum) 

 

The hash is converted to a hexadecimal string to match the format stored in the database. The 

service then retrieves the correct hashed password for the requested user from its in-memory 

map that was populated during initialization from MongoDB. If the username is found and 

the hashes match, the Correct field of the response is set to true, otherwise it remains false: 

 

if true_pass, found := s.users[req.Username]; found { 
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    res.Correct = pass == true_pass 

} 

  



 

 

45 

Chapter 6 

6  

OpenWhisk Go Runtime 

 

6.1 OpenWhisk Go Runtime ........................................................................................................................ 45 

6.2 Example of Action provided by OpenWhisk Go Runtime Repository................................................... 47 

 

 

After conducting deeper investigation, it came to our understanding that OpenWhisk does not 

compile nor does it accept programs compiled using the default program compiler commonly 

utilized for regular go applications, but instead performs compilation of the action program by 

parsing it through a customized go runtime specifically designed for OpenWhisk actions. This 

chapter further explains how the runtime functions and its utility in our research. 

 

6.1    OpenWhisk Go Runtime 

 

Τhis customized runtime acts as an invocation driver, using a lightweight controller that 

handles function calls through a standard protocol called ActionLoop. Unlike traditional Go 

execution where the application controls the main event loop and server lifecycle, 

OpenWhisk’s Go runtime shifts this responsibility to the platform’s internal handler, which 

acts as an execution shell that invokes a user-defined function, equivalent to what would be the 

program’s main function, in response to JSON-formatted input events. This ActionLoop 

model, followed by the platform enforces a clear separation of computation and transport: 

OpenWhisk manages invocation routing, environment setup, and container lifecycle, while the 

user’s core function is responsible solely for processing input and returning a structured output. 

 

The user-defined action invoked by the shell must follow a strict signature structure, including 

having a user given name that must start with an uppercase letter and identical input parameter 

and return types in the form of a map[string]interface, for example: 

 

func Main(args map[string]interface{}) map[string]interface{} 

 



 

 

46 

This signature reflects the platform’s expectation of a JSON-in / JSON-out interaction model. 

The parameter args represents the input payload, which is automatically populated by the 

OpenWhisk runtime by parsing the incoming invocation request as a flat JSON object. The 

map[string]interface type in Go allows the function to handle arbitrary key-value pairs, 

supporting a wide variety of payload schemas without requiring a strict predefined structure. 

The return value of the Main function is also a map[string]interface{}, which is serialized to 

JSON and emitted to standard output by the runtime. This response becomes the activation 

result, which is sent back to the caller and stored in the platform’s activation logs. The response 

must be a well-formed JSON otherwise, the platform may consider the invocation failed.  

 

 

Figure 6.1: Figure demonstrating action creation compilation-creation-invocation workflow  

 

The runtime is bundled into a minimal Docker image that serves as the execution context for 

all Go actions. The image containing the runtime can be momentarily deployed as a Docker 

container, for directly handling compilation of the program locally into the proper binary form, 

before into feeding into the platform for invocation which can be executed in a single command 

as so: 

 

docker run -i action-golang-v1.17:nightly -compile Main < user_v1.go 

> exec 

 

The runtime supports two primary modes of action deployment: precompiled binary actions 

and source-based actions. In the first case, the developer compiles their Go function into a 
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binary before deployment using an instance of the runtime container itself locally and packages 

it into a ZIP archive. In the second, the developer provides the Go source code and module 

files, and OpenWhisk compiles the code within the runtime container at execution time. This 

flexibility allows developers to either rely on OpenWhisk’s internal build system or retain full 

control over the build process themselves, depending on their development workflow or the 

specific needs of their application. In both cases, the deployed package must conform to the 

runtime’s structural and naming conventions for successful execution. 

 

In addition, the runtime environment imposes certain expectations during execution. It 

initializes containers using a minimal base image where the compiled binary must exist at the 

container root and is demanded to be statically compiled for Linux amd64. This binary must 

be named exactly “exec”, as this name is hardcoded in the container entrypoint script that the 

ActionLoop wrapper uses to launch the function. Through failures observed during the 

experimentation, it was determined that a failure to name the binary exec or a mismatch in 

architecture leads to silent container crashes or cryptic errors. 

 

6.2  Example of Action provided by OpenWhisk Go Runtime 

Repository 

 
By reviewing the openwhisk-runtime-go repository [22], complete examples of functional and 

more importantly comprehendible action programs were found with additional guidelines to 

their correct deployment to OpenWhisk. Significantly insightful for the user action service was 

the example showcasing the appropriate program structure and deployment method for an 

action program that required external go modules to function called “module-main”. In the 

example, the modules would have to be downloaded and integrated to the compilation process 

by utilizing the go.mod and go.sum files, just as they are used in the default building method 

of a traditional go program and packaged properly when sent to the runtime for compilation. 

 

One of the core lessons derived from the module-main example is the support for zip-based 

action uploads in OpenWhisk, which allows us to submit either compiled executables or raw 

Go source files in a ZIP archive.  Unlike trivial OpenWhisk actions which consist of a single, 

dependency-free source file, the module-main example showcased the end-to-end process of 

bundling and compiling a multi-file Go project with module dependencies and uploading it as 

either source or binary in ZIP format.  
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The example in question, other than the Go module files needed for their inclusion in the 

compilation process, included the main.go file which implemented the main logic of the action 

and a Makefile for automating frequently utilized commands. The main.go file in the module-

main example provides a complete Go action that demonstrates how to implement a modular, 

stateless function suitable for OpenWhisk deployment. Its structure follows the requirements 

imposed by the actionloop protocol. The correctly defined OpenWhisk Go action is structured 

as so: 

 

import ( 

 "github.com/rs/zerolog" 

 "github.com/rs/zerolog/log" 

) 

 

func init() { 

 zerolog.TimeFieldFormat = "" 

} 

 

// Main function for the action 

func Main(obj map[string]interface{}) map[string]interface{} { 

 name, ok := obj["name"].(string) 

 if !ok { 

  name = "world" 

 } 

 log.Debug().Str("name", name).Msg("Hello") 

 msg := make(map[string]interface{}) 

 msg["module-main"] = "Hello, " + name + "!" 

 return msg 

} 

 

This the expected structure of an OpenWhisk Go action, particularly highlighting the role of 

the init() block, the required function signature, and the output format. The init() function is 

used here to configure the behavior of the imported library before any action logic runs. The 

core logic resides in the Main function, which is required to have the specific signature structure 

mentioned before. This structure defines a generic, JSON-compatible interface both for input 

and output, in line with OpenWhisk’s actionloop protocol. The function reads a value from the 

input map, validates its type as a string, and constructs a response stored in a new 

map[string]interface{}. This output map is then returned directly to the invoker, demonstrating 

the required practice of returning results as JSON-encoded key-value pairs 
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The accompanying Makefile in the module-main example played a crucial role in automating 

and simplifying the deployment process of the Go-based OpenWhisk action. It encapsulates a 

complete workflow that includes packaging the source files, compiling the binary using the 

official OpenWhisk Go runtime container, and deploying the resulting action to the platform 

using the wsk CLI tool. By abstracting these steps into a single, repeatable command sequence, 

the Makefile eliminates manual overhead, ensures consistent configuration, and reduces the 

potential for user error during action creation and testing. This automated approach proved 

highly valuable in the development of this thesis, both for deploying converted services and 

for understanding the structural expectations of the runtime environment. 
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This chapter formalizes the practical process developed to convert individual microservices 

within a larger service-oriented application into OpenWhisk-compatible serverless functions. 

The methodology is distilled from iterative experimentation, the successful transformation of 

key services, and lessons learned from debugging, deployment, and integration. It is structured 

to serve as a repeatable guideline for future transformations, ensuring compatibility with 

OpenWhisk’s runtime expectations while preserving the original service logic and external 

dependencies. 

 

7.1     Identifying and Isolating the Target Service Logic 

 

The conversion process begins with identifying the target microservice’s to be converted core 

service logic. This requires a focused analysis of the service’s codebase typically consisting of 

the request processing, business rules, and data interaction components. This logic must be 

isolated from unrelated elements such as long-running server loops, or tightly coupled 

middleware. The goal is to identify the minimum executable subset of code that can process a 

well-defined input and produce a corresponding output, ideally in a stateless manner. This 

extracted logic is then restructured into a standalone function that conforms to OpenWhisk’s 

expectations. 
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Determining this minimum executable subset is often an empirical and iterative process. Apart 

from the code’s structure its runtime behavior requires examination to ensure that all 

dependencies, such as helper functions and external service calls, are correctly recognized. This 

may involve trial-and-error testing, where different combinations of code segments are isolated 

and evaluated for correctness and completeness. The validity of the isolated logic is typically 

confirmed by comparing its output against the original microservice under a variety of input 

scenarios, ensuring functional equivalence. 

 

 

7.2 Ensuring Statelessness 

 

To comply with the serverless execution model required by OpenWhisk, all converted actions 

must operate in a stateless manner. This means that no data, state, or execution context can 

persist between action invocations. During the transformation process, it is essential to identify 

and eliminate any stateful constructs within the original service code, such as in-memory data 

structures or long-lived resource handlers. These patterns must be avoided, as the serverless 

environment instantiates a fresh execution context for each request, with no guarantee of 

continuity. 

 

To maintain functionality without relying on stateful behavior, all data that must persist or be 

shared across invocations should be managed through external systems. Databases and caching 

services should be used to store data and information that would otherwise have been held in 

memory. The action must retrieve all necessary input at the beginning of execution and 

complete its processing using only the data it receives or fetches from persistent sources. By 

designing the action in this way, it remains compatible with the serverless platform’s 

guarantees of stateless behavior. 

 

7.3 Refactoring into the OpenWhisk Runtime Model 

 
Once isolated, the service logic is rewritten to follow the required function signature: 

 

func FunctionName(args map[string]interface{})map[string]interface{} 

 

This form is dictated by OpenWhisk’s Go runtime, which uses the actionloop protocol. The 

logic inside the function must handle all input validation, type assertions, and data 
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transformations inline. External service interactions must also occur within this single function 

call or through reusable global initializations, such as inside init(). Any communication 

mechanisms that rely on tightly coupled RPC protocols must be removed or bypassed, as 

OpenWhisk actions are isolated units that cannot directly participate in non-HTTP 

communication patterns. Instead, all data required by the function should be delivered through 

the input JSON map, which acts as the sole interface between the invoker and the action. The 

function must terminate quickly, avoid background processes, and return all meaningful output 

in a JSON-compatible map to ensure proper execution and integration within the OpenWhisk 

runtime. 

 

7.4 Managing External Dependencies 

 
In cases where the service requires external dependencies or additional modules such as 

caching or database drivers, the action in our case is developed using Go modules through the 

configuration of go.mod and go.sum files. The action’s packaging process must include these 

modules, either through source-based deployment, where OpenWhisk compiles the code inside 

a container or binary deployment, where the action is compiled externally using a Docker 

image and then uploaded. In both methods, the packaging of the module files is executed 

through bundling them into ZIP archive files ensuring that all necessary components are 

transferred together in a format compatible with OpenWhisk’s action creation process. 

 

7.5     Deployment 

 

After packaging the action files appropriately, the final step in the transformation process is 

deployment to the OpenWhisk platform. This involves registering the action with the 

platform’s control interface, specifying the required runtime, and supplying either the compiled 

binary or source archive. Each action is associated with a name and optionally a package and 

must declare the correct entry point corresponding to the function name implemented in the 

source. Once deployed, the action becomes fully accessible within the OpenWhisk 

environment and can be invoked directly through CLI commands, API calls, or as part of a 

larger event-driven workflow defined within the system. The success of this process confirms 

that the action is correctly structured, runtime-compliant, and ready for integration within the 

broader serverless application. 
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Overall, we outline a structured methodology for transforming microservice components into 

OpenWhisk-compatible serverless actions. It covers isolating service logic, establishing 

statelessness by externalizing stateful features, adapting it to the runtime execution model, and 

managing external dependencies in a platform-compliant manner. By emphasizing modularity, 

statelessness, and clear communication through JSON-based input and output, the 

methodology enables reliable deployment of serverless functions that integrate seamlessly into 

distributed application architectures. These principles form the foundation for broader service 

transformation efforts and enable subsequent integration and evaluation within a real-world, 

cloud-native environment. 
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8.1    User Service Conversion Attempt 

 

Following the detailed insights obtained from the module-main example in the official 

openwhisk-runtime-go repository, the conversion of the original User microservice into a fully 

compliant OpenWhisk action was carried out with structural and functional adjustments to 

meet the platform’s runtime expectations. Additionally, as established when analyzing the 

service and indicated by the gRPC protocol buffer method exposure, the only substantial 

functionality that is available to other service entities is implemented in the CheckUser method 

which performs basic user validation. Therefore, the action developed must implement 

functionally equivalent logic to the one present in CheckUser function. The action was 

developed in the following structure: 

import ( 

 "context" 

 "crypto/sha256" 

 "fmt" 

 "log" 

 "time" 

 

 "go.mongodb.org/mongo-driver/bson" 

 "go.mongodb.org/mongo-driver/mongo" 

 "go.mongodb.org/mongo-driver/mongo/options" 

) 
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// MongoDB connection 

var mongoClient *mongo.Client 

 

func init() { 

 // MongoDB URI for connection 

 mongoURI := "mongodb://mongodb-user-

hotelres.ianton04.svc.cluster.local:27023" 

 clientOptions := options.Client().ApplyURI(mongoURI) 

 

 ctx, cancel := context.WithTimeout(context.Background(), 

10*time.Second) 

 defer cancel() 

 

 client, err := mongo.Connect(ctx, clientOptions) 

 if err != nil { 

  log.Fatalf("Failed to connect to MongoDB: %v", err) 

 } 

 mongoClient = client 

 log.Println("Connected to MongoDB") 

} 

 

 

// OpenWhisk entry point 

func User(event map[string]interface{}) map[string]interface{} { 

 // Validate input parameters 

 username, ok := event["username"].(string) 

 if !ok || username == "" { 

  return map[string]interface{}{ 

   "error": "Invalid or missing username", 

  } 

 } 

 

 password, ok := event["password"].(string) 

 if !ok || password == "" { 

  return map[string]interface{}{ 

   "error": "Invalid or missing password", 

  } 

 } 

 

 // Query MongoDB for the user 
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 collection := mongoClient.Database("user-

db").Collection("user") 

 filter := bson.M{"username": username} 

 

 var result struct { 

  Username string `bson:"username"` 

  Password string `bson:"password"` 

 } 

  

 err := collection.FindOne(context.TODO(), 

filter).Decode(&result) 

 

 // Handle user not found 

 if err == mongo.ErrNoDocuments { 

  return map[string]interface{}{ 

   "status":  "success", 

   "message": "User not found", 

   "valid":   false, 

  } 

 } else if err != nil { 

  // Handle other database errors 

  return map[string]interface{}{ 

   "error": fmt.Sprintf("Database error: %v", err), 

  } 

 } 

 

 // Hash the input password using SHA-256 

 hashedInputPassword := sha256.Sum256([]byte(password)) 

 hashedPassword := fmt.Sprintf("%x", hashedInputPassword) 

 

 // Compare hashed passwords 

 passwordIsValid := hashedPassword == result.Password 

 

 return map[string]interface{}{ 

  "status":   "success", 

  "message":  "User validation complete", 

  "username": username, 

  "valid":    passwordIsValid, 

  "hashedPassword": result.Password, 

 } 
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} 

 

 

8.1.1 Core Function Signature 

 

The user.go file was designed around the required functional interface func 

User(map[string]interface{}) map[string]interface{}, replacing the original gRPC-based 

handler models with OpenWhisk’s actionloop-compatible signature. The action receives 

invocation data as a flat JSON object, which is unmarshalled into a map[string]interface{} by 

the runtime and passed to the function. Internally, the function performs type-checking on the 

"username" and "password" parameters and ensures fault-tolerant input parsing by returning 

structured error responses when input validation fails. 

 

8.1.2 Database Logic 

 

The database query logic was retained from the original service but refactored to execute 

entirely within the function scope, using a globally initialized MongoDB client defined in the 

init() function. This approach aligns with OpenWhisk’s container reuse model, allowing the 

database connection to persist across multiple invocations, within the time frame the action 

container is alive before initial invocation, that being about 10-15 minutes. The init() block 

itself was constructed to safely establish a connection to the MongoDB service using a 

Kubernetes service URI mongodb-user-hotelres.ianton04.svc.cluster.local:27023. The 

MongoDB Go driver mongo.Connect is used in conjunction with BSON decoding to retrieve 

user credentials from the "user" collection within the "user-db" database. 

 

Sufficient error handling is conducted regarding the unsuccessful retrieval of user information 

from the database storage, or any other kind of errors produced by the Mongo service. Proper 

message communication from the action is integral for understanding the state of the action at 

any point of interaction to ensure stability. 

 

8.1.3  Authentication Logic 
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Passwords are verified using a SHA-256 hashing function and compared to the stored hash, 

with the result returned in a JSON-encoded response that abides to OpenWhisk’s output model. 

In the response we include primarily status and message keys validating the complete execution 

of user validation task as well as a Boolean key value called “valid” that states the result of 

validation, true for password match and false for mismatch.  

 

Notably, all state transitions, error handling, and logic branching are encapsulated within the 

single User function, respecting OpenWhisk’s strict lifecycle boundaries and stateless 

invocation model. 

 

Accompanying the new refined version of the converted action, we also constructed a Makefile 

coupled with the action program for proper compilation and deployment heavily influenced by 

the structure of the module-main example and adapted accordingly to reflect the new action 

name, package, and compilation needs.  

 

8.1.4   Deployment Attempt  

 

Deploying the converted User action can now be executed through the specialized Makefile 

responsible for handling environment configuration for an automated process. By simply 

running in sequence the appropriate commands for deployment and testing we can easily 

execute a process that is preconfigured to locally compile the user.go program containing the 

action, using the action-golang runtime from a temporary docker container. Afterwards, the 

action in the form of a packaged zip file containing the compiled action binary as well as its 

required modules is deployed to the OpenWhisk platform and then is invoked after proper 

action creation. These tasks implemented in the Makefile are done through the wsk CLI tool 

and are configured to be responsive and streamlined in terms of command feedback and output 

structure.  

 

Initially, running the deployment command returns positive results regarding the creation of 

the service within the OpenWhisk platform environment. As evident in the figure 4.9 the 

expected sequence of tasks outlined by the Makefile rules interchange successfully. Initially 

the appropriate package is created within OpenWhisk to host the upcoming action to be created 

and the files demanded for compilation are packaged in a zip file that is then loaded to the 

activated docker container running the OpenWhisk go runtime. Lastly the zipped output from 
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the runtime containing the successfully compiled binary is used along with its demanded 

modules to create an action named checkUser. 

 

 

Figure 4.9: OpenWhisk output when creating action using Makefile command “make deploy” 

  

These results indicate a smooth execution of the commands outlined in the Makefile ruling as 

well as positive feedback from OpenWhisk relating to successfully creating the action, however 

this output is not sufficient to ensure proper compatibility of the action program with the 

platform’s execution environment. We then run the command for executing an invocation of 

the checkUser action with a predefined test sample of input. By doing so, as showcased in 

figure 4.10 we achieve successful invocation of the action with correctly returned results. The 

action delivers a properly structured message and status value informing us about the 

completion of the user validation process as well as information regarding the actual validity 

of the data provided, evident in the value of the “valid” key.  

 

The “hashedPassword” and “username” keys present were added for debugging purposes after 

encountering an issue with validating expected username and password values stored in the 

mongo database, which was discovered to simply be misconception of the way the username 

and password were paired when uploaded to mongo. 

 

 

Figure 4.10: Successful action invocation result of checkUser action 

 

The successful response confirms that the compiled and deployed Go action not only adheres 

to OpenWhisk’s structural and runtime constraints but also performs the intended application 

logic with precision. These results collectively demonstrate the end-to-end compatibility and 

correctness of the transformed microservice action and validate the underlying architectural 

and implementation decisions that guided its construction. 
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This chapter showcases the process followed to properly integrate the newly created serverless 

function implemented as an OpenWhisk action, to the already functioning environment of the 

Hotel Reservation microservice application. The communication method with OpenWhisk is 

constructed to seamlessly invoke the action at any point demanded by the application. 

Additionally, a new functional image of the application is built for the purpose of integrating 

additions of code responsible for application to action communication.  

 

With the conversion of the individual User Service to a serverless OpenWhisk action complete 

and verified for correctness, the next stage involves integrating this new component into the 

existing HotelReservation application. This process requires carefully refactoring service 

invocations to align with the OpenWhisk model while maintaining full compatibility with the 

frontend and user-facing APIs. 

 

The original structure of the Hotel Reservation application calls upon the CheckUser function 

which was converted into a serverless action to execute user validation, only from within the 

frontend service. The server.go file containing application logic of the Frontend service makes 

the call to the User service in every instance of handler function that is called when specifically 

invoking the usage of one of the services by the applications API. Essentially, at every request 

received by the frontend service, requiring the utilization of another service from the collection 

of business logic services, the appropriate handler function is called upon which that itself 

internally communicates with the User service to perform user validation. 
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9.1     GPRC Invocation of Original User Service 

 

The original CheckUser method is called upon from only one other service from the collection 

of services active when the application is deployed, that being the Frontend service specifically 

present within Frontend’s server.go file. The method call can be traced to all handler functions 

implemented for all the main services in the server file which is done so to always validate the 

user that invokes the functionalities provided by each service. This indicates that the action to 

be developed will have to be invoked equally at the same points the function was called upon, 

thus exposing the route to seamlessly incorporate the serverless function within the already 

existing microservice implementation constructing a hybrid system between the two 

architectures. 

 

The body of the request received by Frontend in every case contains username and password 

values that are properly parsed and extracted from the request payload and fed into a request 

to the User Service. The communication between the services is made possible by the gRPC 

remote procedure call protocol that all services of the application adhere to, to maintain a 

uniform method of exchanging information and utilizing each services functions making them 

available to one-another. An example of this can be seen present in the reviewHandler function 

responsible for handling user review requests in the frontend service and includes a user 

authentication step utilizing gRPC: 

 

username, password := r.URL.Query().Get("username"), 

r.URL.Query().Get("password") 

 if username == "" || password == "" { 

  http.Error(w, "Please specify username and password", 

http.StatusBadRequest) 

  return 

 } 

 

 // Check username and password 

 recResp, err := s.userClient.CheckUser(ctx, &user.Request{ 

  Username: username, 

  Password: password, 

 }) 

if err != nil { 
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  http.Error(w, err.Error(), 

http.StatusInternalServerError) 

  return 

 } 

 

 str := "Logged-in successfully!" 

 if recResp.Correct == false { 

  str = "Failed. Please check your username and password. " 

 } 

 

It begins by parsing the username and password parameters directly from the request URL. 

This direct extraction from the query string ensures that both credentials are available for the 

subsequent verification process. An initial check confirms that neither value is empty and if  

the parameters are valid, the handler proceeds to authenticate the user via a gRPC request, 

invoking the CheckUser method from the user microservice through the pre-initialized 

userClient. 

 

This call encapsulates the provided credentials into a user.Request protobuf message and 

dispatches it using gRPC. The response returned, held in recResp, includes a Correct boolean 

field indicating the result of the authentication. If the credentials are invalid or the gRPC call 

fails, an HTTP error is returned to the client. 

 

9.2   The checkUserHTTP function 

 

The original user service uses gRPC for communication with other services, exposing internal 

methods through protocol buffers. While this architecture simplifies cross-service interaction 

within a microservice ecosystem, it poses compatibility issues when converting services into 

OpenWhisk actions, which are invoked via HTTP-based REST APIs.  To enable integration of 

the OpenWhisk-based checkUser action within the existing application, the gRPC-based 

authentication mechanism was replaced with an HTTP invocation method. This transition 

required decoupling the frontend service from the gRPC interface of the original user 

microservice and introducing a new function, checkUserHTTP, responsible for sending 

requests to the serverless action endpoint as well as parsing the json response sent by the action 

and returning it to the application: 

 

func checkUserHTTP(username, password string) (bool, error) { 
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    url := 

"https://10.10.1.1:31001/api/v1/namespaces/guest/actions/user-

service/checkUser?blocking=true&result=true" 

 

    // Create JSON payload 

    reqBody, _ := json.Marshal(map[string]string{ 

        "username": username, 

        "password": password, // Send as plain string (no local 

hashing) 

    }) 

 

    // Create HTTP request 

    req, _ := http.NewRequest("POST", url, bytes.NewBuffer(reqBody)) 

    req.Header.Set("Content-Type", "application/json") 

    req.SetBasicAuth("23bc46b1-71f6-4ed5-8c54-816aa4f8c502", 

"123zO3xZCLrMN6v2BKK1dXYFpXlPkccOFqm12CdAsMgRU4VrNZ9lyGVCGuMDGIwP") 

// Replace with actual auth 

 

    // Create custom HTTP client to ignore SSL certificate 

verification 

    tr := &http.Transport{ 

        TLSClientConfig: &tlsGo.Config{InsecureSkipVerify: true}, 

    } 

    client := &http.Client{Transport: tr} 

 

    // Send HTTP request 

    resp, err := client.Do(req) 

    if err != nil { 

        return false, err 

    } 

    defer resp.Body.Close() 

 

    // Read the raw response body 

    body, err := io.ReadAll(resp.Body) 

    if err != nil { 

        return false, err 

    } 

 

    //Debug: Print Full JSON Response 

    fmt.Println("Full JSON Response:", string(body)) 
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    // Define a struct to parse the JSON response 

    var jsonResponse struct { 

        HashedPassword string `json:"hashedPassword"` 

        Message        string `json:"message"` 

        Status         string `json:"status"` 

        Username       string `json:"username"` 

        Valid          bool   `json:"valid"` 

    } 

 

    // Parse JSON into the struct 

    err = json.Unmarshal(body, &jsonResponse) 

    if err != nil { 

        return false,  fmt.Errorf("failed to parse JSON response: 

%v", err) 

    } 

 

    // Print extracted values for debugging 

    fmt.Printf("Extracted - Username: %s | Valid: %v | Message: %s | 

Hashed Password: %s\n", 

        jsonResponse.Username, jsonResponse.Valid, 

jsonResponse.Message, jsonResponse.HashedPassword) 

 

    // Return valid status and hashed password 

    return jsonResponse.Valid,  nil 

} 

 

This change enables seamless access to the action from the frontend service, aligning the hybrid 

system with serverless invocation semantics. 

 

The function begins by defining the target URL which includes OpenWhisk’s RESTful API 

gateway path. A JSON request body is constructed using the provided credentials. The request 

body is encoded in JSON and includes the username and password fields, which are marshaled 

into a format expected by the deployed action.  

 

A custom HTTP client is configured to bypass SSL verification and basic authentication 

credentials to specify authentication host and key demanded by the OpenWhisk endpoint are 

added to authorize the call. To accommodate the self-signed certificate used in the local 
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environment, a custom HTTP transport is created with InsecureSkipVerify enabled, and the 

request is executed using a modified HTTP client. Upon receiving the response, the function 

reads the raw response body and unmarshals it into a temporary struct with expected fields 

such as Username, HashedPassword, Status, Message, and Valid: 

 

Finally, the function returns the Valid field to indicate the success or failure of user validation. 

This implementation ensures full compatibility with OpenWhisk’s expected input/output 

model and enables the frontend service to validate credentials through an external serverless 

function without relying on a persistent RPC channel. The integration was completed by 

substituting previous userClient.CheckUser gRPC calls existent in the service handler 

functions with synchronous calls to checkUserHTTP, enabling the frontend to maintain 

identical business logic while shifting its user authentication layer to a serverless environment. 

 

9.3   Building new Image of the Application 

 

Following the integration of the new HTTP-based user authentication logic via the 

checkUserHTTP function, the frontend service required recompilation to include the modified 

server.go implementation. To accomplish this, a new Docker image of the microservice 

application was constructed. The Dockerfile used for this process compiled the Go-based 

application binary with the updated logic and produced a statically linked executable. The 

resulting image was tagged as ianton04/hotel-reservation:latest and pushed to Docker Hub to 

make it available for deployment within the Kubernetes cluster. 
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Figure 6.1: Newly Built Application image uploaded to Dockerhub under the name ianton04/hotel-

reservation with the tag latest 

 

To ensure that the Helm deployment reflected this new version of the application, the 

values.yaml file located in the frontend chart directory of the Helm chart 

(hotelReservation/helm-chart/hotelreservation/charts/frontend/) was modified accordingly. 

Compared to the original version of the file, which referenced the default deathstarbench/hotel-

reservation image, the new configuration specified the updated image registry, tag, and pull 

policy: 

 

image: ianton04/hotel-reservation 

tag: latest 

imagePullPolicy: Always 

 

This ensured that Helm would always pull the most recent image from the Docker registry at 

deployment time. Upon invoking Helm to redeploy the application (helm install or helm 

upgrade depending on the cluster state), Kubernetes fetched and deployed the new image to 

the cluster. The updated frontend pod now included the newly implemented logic that 

redirected user verification requests to the OpenWhisk action endpoint instead of the original 

gRPC user service. 

 

To ensure the correct re-deployment of the application, now containing the logic added to the 

frontend server.go file by fetching the new image we built for this purpose, we query the 

Frontend service using the application api to access the user handler. An HTTP POST request 

is constructed directed to the frontend service pod IP address and the appropriate port allocated 

for it in the application’s architecture. The request also carries username and password values 

to be utilized for validation within the action itself. Here we see a request containing valid and 

invalid user validation data: 

 

 

Figure 6.2: HTTP POST requests to the Frontend Service instructed to communicate with the user 

action through calling the userHandler function with both valid and invalid user data 

 

Using the OpenWhisk command from its CLI tool that logs the action activations in real time: 
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wsk -i activation poll 

 

We can ensure the action is correctly invoked through the microservice application by making 

the post request after seeing the list of action activations being logged live as we send it. 

 

 

Figure 6.3: List of checkUser action activations recorded after making requests to the action through 

the Frontend Service 

 

The integration of the OpenWhisk-based serverless function into the existing microservice 

application demonstrates the viability of combining traditional service architectures with event-

driven execution models. By replacing the gRPC-based user verification flow with an HTTP-

based invocation of a stateless action, the application maintains its functional requirements 

while benefiting from the scalability and modularity of serverless infrastructure. The updated 

deployment workflow, supported through image versioning and Helm chart adjustments, 

ensures seamless incorporation of new logic into the Kubernetes-managed environment.  
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This chapter describes the conversion of another service belonging in the Hotel Reservation 

Suite, the Reservation service. After designing a robust methodology of converting 

microservices to actions and also experimenting in applying through converting the User 

Service, we chose to implement it on a different service with non-trivial service-specific logic. 

The User service, as mentioned, follows a fairly simple implementation executing a trivial task 

which was beneficial for understanding the service and approaching initial steps of the 

conversion process. However, in order to ensure universal application of the conversion 

methods constructed, a more logically intense service was put to test. 

 

10.1     Reservation Service Conversion 

 

Reservation involves multiple database interactions, cache validation and updates, and 

conditional failure paths based on room availability. Due to its transactional nature and role in 

the core functionality of the hotel reservation system, converting it into a serverless-compatible 

function was essential for testing our transformation workflow for applicability and versitality. 

 

The converted action, named makeReservation, follows the same methodology used in 

previous service transformations and is implemented as follows: 

 

func Makereservation(event map[string]interface{}) 

map[string]interface{} { 

    customerName, ok1 := event["customerName"].(string) 

    hotelId, ok2 := event["hotelId"].(string) 

    inDate, ok3 := event["inDate"].(string) 
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    outDate, ok4 := event["outDate"].(string) 

    roomNumber, ok5 := event["roomNumber"].(float64) // JSON numbers 

are float64 

 

    if !ok1 || !ok2 || !ok3 || !ok4 || !ok5 { 

        return map[string]interface{}{ 

            "error": "Invalid or missing parameters", 

        } 

    } 

 

    reservationCollection := mongoClient.Database("reservation-

db").Collection("reservation") 

    numberCollection := mongoClient.Database("reservation-

db").Collection("number") 

 

    // **Convert dates** 

    inDateTime, _ := time.Parse("2006-01-02", inDate) 

    outDateTime, _ := time.Parse("2006-01-02", outDate) 

    indate := inDateTime.Format("2006-01-02") 

 

    memc_date_num_map := make(map[string]int) 

 

    for inDateTime.Before(outDateTime) { 

        count := 0 

        inDateTime = inDateTime.AddDate(0, 0, 1) 

        outdate := inDateTime.Format("2006-01-02") 

 

        // **Memcached Check** 

        memcKey := fmt.Sprintf("%s_%s_%s", hotelId, indate, outdate) 

        item, err := memcClient.Get(memcKey) 

        if err == nil { 

            count, _ = strconv.Atoi(string(item.Value)) 

            memc_date_num_map[memcKey] = count + int(roomNumber) 

        } else if err == memcache.ErrCacheMiss { 

            // **Check MongoDB** 

            filter := bson.M{"hotelId": hotelId, "inDate": indate, 

"outDate": outdate} 

            var reserve []struct { 

                Number int `bson:"number"` 

            } 
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            cur, err := reservationCollection.Find(context.TODO(), 

filter) 

            if err != nil { 

                log.Printf("Failed to get reservation data: %v", 

err) 

                return map[string]interface{}{ 

                    "error": "Database error", 

                } 

            } 

            defer cur.Close(context.TODO()) 

            cur.All(context.TODO(), &reserve) 

 

            for _, r := range reserve { 

                count += r.Number 

            } 

            memc_date_num_map[memcKey] = count + int(roomNumber) 

        } else { 

            return map[string]interface{}{ 

                "error": fmt.Sprintf("Memcached error: %s", err), 

            } 

        } 

 

        // **Check Hotel Capacity** 

        memcCapKey := hotelId + "_cap" 

        item, err = memcClient.Get(memcCapKey) 

        hotelCap := 0 

        if err == nil { 

            hotelCap, _ = strconv.Atoi(string(item.Value)) 

        } else if err == memcache.ErrCacheMiss { 

            var num struct { 

                Number int `bson:"numberOfRoom"` 

            } 

            err = numberCollection.FindOne(context.TODO(), 

bson.M{"hotelId": hotelId}).Decode(&num) 

            if err != nil { 

                return map[string]interface{}{ 

                    "error": fmt.Sprintf("Failed to find hotel 

capacity: %v", err), 

                } 

            } 
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            hotelCap = num.Number 

            memcClient.Set(&memcache.Item{Key: memcCapKey, Value: 

[]byte(strconv.Itoa(hotelCap))}) 

        } 

 

        if count+int(roomNumber) > hotelCap { 

            return map[string]interface{}{ 

                "status":  "failed", 

                "message": "Room unavailable", 

                "reason": count+int(roomNumber), 

                "count": count, 

                "hotelCap": hotelCap, 

                "hotelId": hotelId, 

            } 

        } 

 

        indate = outdate 

    } 

 

    // **Update Memcached** 

    for key, val := range memc_date_num_map { 

        memcClient.Set(&memcache.Item{Key: key, Value: 

[]byte(strconv.Itoa(val))}) 

    } 

 

    // **Insert Reservation into MongoDB** 

    inDateTime, _ = time.Parse("2006-01-02", inDate) 

    indate = inDateTime.Format("2006-01-02") 

 

    for inDateTime.Before(outDateTime) { 

        inDateTime = inDateTime.AddDate(0, 0, 1) 

        outdate := inDateTime.Format("2006-01-02") 

 

        _, err := reservationCollection.InsertOne(context.TODO(), 

bson.M{ 

            "hotelId":      hotelId, 

            "customerName": customerName, 

            "inDate":       indate, 

            "outDate":      outdate, 

            "number":       int(roomNumber), 
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        }) 

        if err != nil { 

            return map[string]interface{}{ 

                "error": fmt.Sprintf("Failed to insert reservation: 

%v", err), 

            } 

        } 

        indate = outdate 

    } 

 

    return map[string]interface{}{ 

        "status":  "success", 

        "message": "Reservation confirmed", 

        "hotelId": hotelId, 

    } 

} 

 

beginning with isolating the core logic responsible for booking validation. The input interface 

is restructured into a map[string]interface{} format to comply with OpenWhisk’s Go runtime 

expectations. To support this format, all incoming parameters such as the hotel identifier, 

check-in and check-out dates, customer name, and number of rooms are dynamically parsed 

from a JSON payload, with appropriate type assertions and validation checks applied to guard 

against malformed or missing data. 

 

Once the inputs are processed, the action executes a loop over the specified date range, 

checking room availability for each consecutive day by querying Memcached for previously 

recorded bookings. If a cache miss occurs, it performs a fallback query to MongoDB to count 

existing reservations from the database and populate the cache accordingly. It then retrieves 

the total room capacity for the target hotel and compared it against the cumulative requested 

bookings to ensure availability. If the request is valid, the action proceeds to update the 

reservation count in Memcached and insert the finalized reservation records into MongoDB. 

To maintain performance and minimize redundant operations, global clients for MongoDB and 

Memcached were initialized within the init() function, following the runtime’s execution model 

for warm container reuse: 

 

func init() { 

    // MongoDB Setup 
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    mongoURI := "mongodb://mongodb-reservation-

hotelres.ianton04.svc.cluster.local:27022" 

    clientOptions := options.Client().ApplyURI(mongoURI) 

    ctx, cancel := context.WithTimeout(context.Background(), 

10*time.Second) 

    defer cancel() 

 

    client, err := mongo.Connect(ctx, clientOptions) 

    if err != nil { 

        log.Fatalf("Failed to connect to MongoDB: %v", err) 

    } 

    mongoClient = client 

    log.Println("Connected to MongoDB") 

 

    // Memcached Setup 

    memcClient = memcache.New("memcached-reserve-1-

hotelres.ianton04.svc.cluster.local:11214") 

    log.Println("Connected to Memcached") 

} 

 

10.2     Reservation Service Integration 

 

To integrate the newly converted makeReservation OpenWhisk action into the existing 

application, modifications were applied to the frontend/server.go file. Following the same 

pattern applied for the User service’s case, a new helper function named 

makeReservationHTTP was defined, encapsulating the logic for invoking the action via a direct 

HTTP request to the OpenWhisk API endpoint. Similarly to the checkUserHTTP method, this 

function serializes the required input parameters into a JSON payload, sends the request using 

a customized HTTP client with basic authentication, and parses the JSON response for further 

handling. In the reservationHandler function, the original gRPC call to the reservation service 

was replaced by a call to makeReservationHTTP. To apply these changes in a deployment 

environment, the container image of the frontend service was rebuilt to include the updated 

codebase. Upon redeployment via Helm, the cluster loaded the new container image, activating 

the modified reservation flow through OpenWhisk. 

 

10.3     Reservation Service Invocation 
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In similar fashion to the process followed for the user service, a Makefile was constructed using 

the one provided by the “module-main” action creation example, as a template and was made 

to fit to the specific attributes of the makeReservation action. Utilizing the Makefile we are 

instantly able to create within OpenWhisk’s environment and invoke to evaluate both 

functionality and accuracy of test results. By running commands “make deploy” which prompts 

action creation and “make test” which prompts action invocation using an input test sample for 

successful reservation: 

 

{  

    "customerName": "JohnDoe", 

    "hotelId": "1", 

    "inDate": "2025-03-10", 

    "outDate": "2025-03-12", 

    "roomNumber": 1  

} 

 

we receive the following result as action return output, which matches the appropriate output 

expected by the system in case of success: 

 

 

Figure 4.10: Successful action invocation result of makeReservation action 
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In this chapter, we examine the feasibility of automating the conversion process of a 

microservice application program to a serverless OpenWhisk action. We demonstrate the 

intricacies of the automation process and our solution: a tool leveraging generative artificial 

intelligence. 

 

11.1     Introduction 

 
As established throughout the course of this research, transforming traditional Go-based 

microservices into serverless functions compatible with Apache OpenWhisk requires an 

adequate amount of manual effort. While a consistent methodology was constructed the 

conversion process remained non-trivial. Each service exhibited subtle semantic differences 

and specific structuring of internal logic. Factors such as these, prompted significant problems 

in the development of a rule-based transformation mechanism that would be able to handle a 

diverse range of services. 

 

11.2   Initial Attempts 
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Initial efforts toward automation leveraged methods such as Abstract Syntax Tree traversal and 

source-to-source transformations. The idea was to analyze and isolate specific areas of code 

that would be either be placed in different function blocks but would primarily remain 

unchanged in form, for example MongoDB and Memcached connection configuration and 

client initialization in the init() function or be removed completely in cases of gRPC 

communication logic. However, these approaches quickly reached their limits. 

 

AST analysis proved useful for syntactic disassembly and for characterizing source code 

structures in preparation for transformation. However, it lacked the semantic understanding 

necessary to fully comprehend service logic and contextual dependencies. In many cases, 

services implemented logic that relied on external helper functions, shared resource access, or 

chained gRPC calls, patterns that may be recognizable at the syntactic level, but difficult to 

reliably reinterpret or transform using rule-based logic alone. Even in the case of simpler 

service functions such as CheckUser, which exhibit relatively straightforward logic and 

minimal internal complexity, static code analysis failed to produce generalizable 

transformation rules. This limitation highlighted the need for a more context-aware and 

adaptable approach to automation. 

 

11.3   Adopting Generative AI for Code Conversion 

 
Given these challenges, the solution space expanded toward generative artificial intelligence, 

specifically large language models (LLMs). The capacity of LLMs to infer context needs, 

refactor code, and generate structured output from descriptive prompts made them a compelling 

candidate for the task. These models offer semantic understanding and flexibility, features 

absent in syntactic approaches, which are essential when dealing with services that do not 

adhere to a uniform template. More importantly, LLMs can use specific context from carefully 

constructed prompts to shape the output so it matches the required structure of OpenWhisk 

actions. 

 

 

11.4   Tool Architecture and Workflow 

 

The tool developed for this purpose is a command-line interface, which accepts as input a 

YAML configuration file describing important information about the context of conversion, 

that is utilized to construct an accurate and clear prompt meant to instruct the model on how to 
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perform the conversion. It also accepts the CheckUser converted action a reference example in 

order to further enable the model to understand the structure we want to achieve. The CLI 

invokes an LLM endpoint, in this case: OpenAI’s gpt-4-turbo-preview model, and submits the 

constructed prompt. 

 

The CLI is implemented in Go and organized into modular components that handle 

configuration parsing, environment variable loading for the API key, prompt construction, 

LLM interaction, and output parsing. Users invoke the CLI using a simple “convert” command 

with two required flags: the path to the config file (--config) and the source code to be converted 

(--input). Internally, the tool reads the YAML configuration which defines critical attributes 

such as: 

• function_to_convert: Name of function to be located and converted from the provided 

input file 

• action_name: name to assign the main action function to be executed by OpenWhisk  

• dependencies: supporting services utilized that need to be handled such as MongoDB 

or Memcached 

• input_parameters: a list of value pairs that specify the name and type input parameters 

to prevent inaccuracies 

• output_keys: an example return structure for the json element to be returned from the 

action 

• reference_function: name of the file that contains the converted action to be used as 

an example 

• notes: natural language giving additional instructions to be applied to the instruction 

prompt 

 

The tool assembles a detailed prompt using this metadata, then sends it as a chat completion 

request to the OpenAI API. The configuration file enables the user to adapt the conversion 

prompt to any chosen service with ease and enables more accurate service-secific configuration 

to avoid leaving too many components of the process for the model to speculate and potentially 

hallucinate on. The LLM response includes the converted action packaged in a go file named 

converted_action.go.  

 

11.5   Tool Architecture and Workflow 

 

To validate the effectiveness of this approach, the MakeReservation microservice was selected 
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as a benchmark case for automated conversion. This service is non-trivial, offering adequate 

complexity to test the model’s ability to adapt to difficult service-specific logic, multiple 

dependencies combining MongoDB interactions and cache updates via Memcached. The 

prompt utilized for this has, apart from additional parameters specified in the configuration file 

has the following structure: 

"You are converting a Go microservice function into an Apache OpenWhisk action. 

The goal is to maintain all core logic (e.g. MongoDB operations, Memcached access, input 

validation, loops, inserts) and ensure the result compiles directly on OpenWhisk with minimal 

manual modification. 

Guidelines: 

- Implement all MongoDB and Memcached calls as shown, if there are any. 

- Handle all necessary input validation and error reporting. 

- DO NOT summarize the code or skip logic steps. 

- Use the reference action below to match structure, naming, and initialization logic." 

 

Additionally, the following notes section was added to the prompt through the configuration 

file, providing further instructions: 

“The output Go action must follow OpenWhisk conventions, using func 

Function(map[string]interface{}) map[string]interface{}, with the name "Function" being a 

placeholder for a function name that its first letter must be Uppercase. 

Do not include a main function as its not needed in OpenWhisk. 

Do not omit error checking, Memcached or MongoDB logic, even if partial or nested. 

You must maintain the same logic and structure as the original function, adjusting it to fit the 

OpenWhisk action format which can be seen from the reference action. 

The function should be able to handle the input parameters and return the output keys as 

specified. 

Do not put placeholders in the code, do not use "..." or "TODO" comments, the code must be 

complete and functional, nothing must be missing. 

Compact all MongoDB and Memcached connection logic into a single function called: init(), 

see example from reference service” 

 

Upon execution, the AI-generated action closely matches the behavior and structure of the 

original logic. All major functional blocks were preserved: cache reads and fallbacks with 

Memcached, room availability calculations, iteration over date ranges, and reservation 

insertions into MongoDB. Moreover, the structure of the result closely followed the reference 

action, including the correct usage of global initializations in the init() function block, the 
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OpenWhisk-compliant function signature, and return payload formatting. Comparisons 

between the manual and AI-generated versions revealed only minor formatting and ordering 

differences, with functional parity preserved. 

 

This successful outcome highlights the utility of LLMs in handling complex transformations 

that exceed the capabilities of static tooling. By inserting context effectively and providing 

structure within the prompt, the tool effectively guided the LLM to produce a usable and overall 

correct output. An even more refined version of the tool could benefit development greatly 

accelerating the conversion process and enabling scalable transformation of more services. 

 

 

11.6   Observations 

 

Through experimenting with different prompt and input structures, it was derived that the tool 

functions the best when provided with smaller token-wise and more accurate inputs. For 

example, inserting the entire server.go file of the reservation service and having it figure out 

the function to convert specifically, just because of the added context with irrelevant 

information, confused the model resulting in incomplete action generations with a lot of 

placeholders. This fact could become an obstacle with more complex services with 

dependencies spread throughout the program file. The overall input that is sent to the model is 

already quite large, including prompt, metadata from the configuration file and additional 

example action program, therefore aiming to be as concise as possible providing only relevant 

information was greatly beneficial. This behavior will also prove to be beneficial in terms of 

cost. Utilizing the OpenAI models through the developer API is not free at any tier, and even 

though the cost is minimal, input token size is always something to consider. 

 

11.7  Closing Remarks 

 

The development and deployment of the tool demonstrate the feasibility and practical benefits 

of incorporating generative AI into the automation of serverless action generation. While not 

yet a fully general-purpose solution for all service types, this approach significantly reduces 

the manual burden and allows developers to scale their conversion efforts with consistency. 

Nonetheless, the tool provides a strong foundation for AI-assisted transformation of 

microservice architectures into function-as-a-service platforms. 
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In this chapter, we describe the process of evaluating the performance of the hybrid 

microservice-serverless system that was created with the converted actions being integrated to 

the rest of the application. The system is evaluated both in terms of effectiveness, producing 

equal results to the original versions of the services as well as in terms of latency especially at 

later percentiles approaching the performance expressed by the unchanged application. 

 

12.1  Benchmarking 

 

To evaluate the performance implications of transforming microservices into serverless 

functions, a structured benchmarking methodology was established using the wrk workload 

generator. The benchmarking targeted three representative workload profiles: one calling the 

user service, one calling the newly constructed reservation service, and a synthetic mixed 

workload which combines calls to multiple services, simulating a more realistic usage pattern 

within the hotel reservation domain. 
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The wrk tool was selected for its flexibility in simulating HTTP workloads and its ability to be 

extended with Lua scripting. For each benchmark scenario, a dedicated Lua script was written 

to define the request format, target endpoint, and method parameters. These scripts were 

orchestrated to execute under three predefined workload intensities: light, medium, and high. 

These load levels were configured as follows: 

 

• Light: 5 concurrent connections at 30 requests per second  

• Medium: 15 concurrent connections at 100 requests per second 

• High: 30 concurrent connections at 250 requests per second 

 

Each test was executed for a fixed duration of 60 seconds, with the number of threads set to 4.  

 

To ensure a fair and meaningful evaluation, the workload levels used in benchmarking were 

carefully adjusted to match the system’s capabilities. A key constraint was the absence of 

horizontal pod autoscaling in the microservice deployment, which meant that pushing the 

system to very high loads would have led to artificial slowdowns unrelated to the architectural 

differences being studied. As a result, the light, medium, and high load levels were selected 

based on manual testing and observation. By steadily increasing testing values, these were 

found to create adequate stress without causing system instability. Additionally, the Hotel 

Reservation application is part of a research-based benchmark suite not intended for 

commercial-scale traffic, which further supports the use of modest, but also representative load 

levels for accurate comparison. 

 

The three tests for each type of load were executed under circumstances reflecting the system’s 

state regarding architecture. Experiments were conducted with the previous scripts having the 

application’s structure maintain its original form as a pure microservice application, as well as 

two other cases: the structure following the hybrid serverless schema, communicating with the 

OpenWhisk actions checkUser and makeReservation, while all action containers are 

uninitialized, and the container environment is cold and another case where action containers 

were prewarmed.  

 

12.2  Evaluation of Operational Integrity 

 

The first step in the testing phase was to assess the operational stability of the serverless 

components and their ability to sustain load when invoked from within the application’s 
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frontend. During these evaluations, however, a critical limitation was encountered. Upon 

executing medium and high-intensity test scripts, the system consistently returned errors 

indicating excessive invocation rates as can be seen in Figure 7.1. 

 

 

 

Figure 7.1: Frontend service’s pod logs showcasing request limitation errors from action outputs 

while conducting benchmarking experiments  

 

These messages, visible in the action responses, originated from OpenWhisk’s internal 

throttling mechanism that enforces per-minute invocation limits as a protective measure. The 

system was registering over 4,000 invocations per minute against a default policy that allowed 

only 60. This bottleneck effectively prevented accurate measurement of the action’s scalability 

and latency under pressure and signaled a misalignment between the platform’s rate-limiting 

configuration and the load characteristics of the benchmark. 

 

To address this issue, the OpenWhisk configuration was modified to lift the restrictive default 

limits. Specifically, the Helm deployment configuration file mycluster.yaml, from the 

OpenWhisk-Cloudlab configuration repository, was edited to increase the allowed number of 

concurrent and per-minute action invocations. The limits.actionsInvokesPerminute parameter 

was raised to 10000, and the limits.actionsInvokesConcurrent was similarly increased to 5000. 

These changes ensured that the serverless platform could support a high-throughput scenario 

without throttling test traffic. Additionally, memory and duration limits for action execution 

were expanded. 
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After updating the configuration file, the OpenWhisk system was redeployed via Helm, 

applying the new resource parameters across the cluster. This process included reinitializing 

the controller and invoker pods and verifying the applied limits through platform introspection 

tools. Once the platform had been restarted and stabilized, benchmarking was resumed under 

identical load conditions. The absence of rate-limit errors in subsequent test runs, which can 

be observed in Figure 7.2, confirmed the effectiveness of the reconfiguration enabling valid 

performance measurements across all load tiers and implementations. 

 

 

Figure 7.2: Frontend service’s pod logs showcasing expected output behavior after conducting 

benchmark experiments 

 

 

12.3  Performance Evaluation 

 

After ensuring a stable environment for benchmarking experimentation that accurately handles 

our chosen workload intensity tiers in comparison to the system’s expected behavior, the next 

step in the testing phase was to assess the performance of the serverless implementation relative 

to the original microservice-based system. This was done by analyzing latency across different 

percentiles under the different load profiles established previously: light, medium, and high. 

The goal was to capture how the system responds not only under normal circumstances but 

also during peak stress, and to observe the implications of cold starts in the serverless context, 

as well as the benefits of warm invocations. These measurements were visualized through 
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percentile-based latency distribution charts, which enabled direct comparison of the three 

deployment modes: traditional microservice, cold-start serverless, and warm-start serverless. 

 

Warming was achieved by applying a short high intensity load on the hybrid system, prompting 

it to create a large amount of action containers. The system was then let to briefly cool down 

for 5 to 10 seconds, enough time for OpenWhisk to execute container termination for initialized 

but unutilized action containers. After that amount of time each load profile described 

previously was executed so the system would maintain only the required amount of containers. 

 

Cold starts were ensured by waiting the predefined amount of time between 10 to 12 minutes 

after each load profile execution. This guaranteed all versions of action containers were 

terminated completely without inherited resources or preserved connections to supporting 

services. The goal was to account for the time demanded to both create the actions container 

for each invoked action and execute the init() function commands, typically establishing 

MongoDB and Memached connections with their appropriate services. As discussed later, 

latency values affected by these factors reached alarmingly high amounts, presenting a serious 

disadvantage for cold exeutions. 

 

12.3.1  Reservation Service  

 
The reservation service revealed greater performance divergence across implementations, 

particularly at higher loads and percentiles. While microservices demonstrated strong 

performance at median and 90th percentile latencies under all loads, they were outpaced by 

warm serverless actions in tail latency behavior. Under medium load, warm executions 

achieved superior performance in the 99.9th and higher percentiles, with latency remaining 

under 184 ms, while microservices rose above 500 ms. Even under high load, warm actions 

sustained lower 99.999th percentile latencies (202 ms) than their microservice counterparts 

(308 ms), suggesting that OpenWhisk’s stateless invocation model can produce more 

consistent high-percentile responses in resource-isolated conditions. Cold-start actions, 

however, incurred substantial delays, consistently exceeding 30 seconds at peak percentiles 

and rendering them impractical for time-sensitive reservation flows.  
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Figure 7.3: Manually Converted Reservation Service Benchmarks Latencies – Light 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 

 

Figure 7.4: Manually Converted Reservation Service Benchmarks Latencies – Medium 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 
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Figure 7.5: Manually Converted Reservation Service Benchmarks Latencies – High 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 

 

In the microservice version, average latency stays very low across all loads, while the 99.999th 

percentile latency peaks at medium load, possibly due to a concurrency bottleneck. In the serverless 

cold setup, both average and high-end latencies rise sharply with load the 99.999th percentile reaches 

over 54 seconds under heavy traffic. This shows that cold starts add a large delay when containers have 

to be created anew. The warm serverless setup performs much better, with both latency values growing 

only slightly as the load increases. This confirms that warm containers can handle traffic more smoothly 

without long delays. 

 

Figure 7.6: Reservation Service Average and High Percentile Latency Comparison – Microservice - 

X-Axis: Latency in ms, Y-Axis: Load Level 
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Figure 7.7: Reservation Service Average and High Percentile Latency Comparison – Serverless Cold 

Start - X-Axis: Latency in ms, Y-Axis: Load Level 

 

 

Figure 7.8: Reservation Service Average and High Percentile Latency Comparison – Serverless Warm 

Start - X-Axis: Latency in ms, Y-Axis: Load Level 

 

12.3.2   User Service  

 

The user service exhibited consistently low latency across all implementations and load tiers, 

with minimal variability at lower percentiles. Under light and medium loads, both the 

microservice and serverless warm implementations delivered near-identical performance, 

maintaining latency well below 30 ms even at the 99.999th percentile. At high load, the warm 

serverless function sustained a stable tail latency profile, peaking at only 40 ms, compared to 

the microservice’s 16.58 ms. However, the warm execution showed better percentile 
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progression, maintaining a smoother rise across percentile boundaries. In contrast, the cold start 

serverless version underperformed significantly, with latency escalating to over 50 seconds 

under high load at the 99.999th percentile.  

 

 

Figure 7.10: User Service Benchmarks Latencies – Light 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 

 

Figure 7.11: User Service Benchmarks Latencies – Medium 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 
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Figure 7.12: User Service Benchmarks Latencies – High 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 

 

Microservices stay consistently fast, and even in the serverless cold case, average latency 

remains manageable. However, under high load, cold serverless latency spikes to over 50 

seconds at the highest percentile, showing how much cold starts can slow things down. Warm 

serverless actions, however, stay close to the microservice results, even under heavy traffic. 

This suggests that small services benefit a lot from being kept “warm” and ready to run, 

avoiding startup delays. 

 

 

Figure 7.13: User Service Average and High Percentile Latency Comparison – Microservice –  

X-Axis: Latency in ms, Y-Axis: Load Level 
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Figure 7.14: User Service Average and High Percentile Latency Comparison – Serverless Cold Start –  

X-Axis: Latency in ms, Y-Axis: Load Level 

 

 

Figure 7.15: User Service Average and High Percentile Latency Comparison – Serverless Warm Start  

X-Axis: Latency in ms, Y-Axis: Load Level 

12.3.3   Mixed Service Workload 

 

The mixed service, representing a complex invocation pattern across several microservices, 

provided insight into end-to-end system behavior under varying load. At light and medium 

load, both microservice and warm serverless implementations performed within acceptable 

latency boundaries, with 99.999th percentiles recorded at 87 ms and 85 ms respectively. Under 

high load, warm serverless actions slightly outperformed microservices in upper percentile 

stability, achieving 87 ms at 99.999% compared to microservice performance peaking around 

251 ms. The cold-start configuration, on the other hand, demonstrated critical latency 
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bottlenecks with values reaching up to 52 seconds, reinforcing the need to avoid cold 

invocations in multi-service coordinated workloads. 

 

Figure 7.16: Mixed Service Workload Benchmarks Latencies – Light 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 

 

 

Figure 7.17: Mixed Service Workload Benchmarks Latencies – Medium 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 
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Figure 7.18: Mixed Service Workload Benchmarks Latencies – High 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 

 

Microservices can handle even high loads fairly well, but the cold serverless results show a rise 

in both average and tail latencies, reaching over 50 seconds at the 99.999th percentile. This is 

because cold starts must happen for multiple actions across services. On the other hand, the 

warm serverless configuration has stable latencies even under load, the highest percentile stays 

below 90 milliseconds. 

 

 

Figure 7.19: Mixed Service Workload Average and High Percentile Latency Comparison – 

Microservice- X-Axis: Latency in ms, Y-Axis: Load Level 
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Figure 7.20: Mixed Service Workload Average and High Percentile Latency Comparison – Serverless 

Cold Start - X-Axis: Latency in ms, Y-Axis: Load Level 

 

 

Figure 7.21: Mixed Service Workload Average and High Percentile Latency Comparison – Serverless 

Warm Start - X-Axis: Latency in ms, Y-Axis: Load Level 

 

12.3.4  Automatically Converted Reservation Service 

The benchmarking results from the automatically converted makeReservation action show that 

the AI tool we constructed for the particular task was successful in producing a version that 

performs almost identically to the manually converted one. When we tested it under the same 

load profiles as the manually converted version, the action displayed very similar latency 

patterns across all percentiles. Specifically, in the warm execution the latency remained low 

and consistent, just like in the manual version. This suggests that the AI-generated function 
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handled input processing, logic maintenance, and supporting service communication in a 

correct and efficient way. 

Even in cold starts, where the serverless platform has to initialize containers from scratch, the 

latency values closely matched those demonstrated by the manual benchmarks. Though cold 

starts are expected to have higher delays, the consistent behavior through the different 

percentiles shows that the tool correctly handled initial startup steps like loading dependencies 

and connecting to databases. The microservice results stayed the same as before, confirming 

the hybrid system worked as expected without being affected by the change in the action’s 

implementation.  

 

Figure 7.22: Automatically Converted Reservation Service Benchmarks Latencies – Light 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 

 

Figure 7.23: Automatically Converted Reservation Service Benchmarks Latencies – Medium 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 
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Figure 7.24: Automatically Converted Reservation Service Benchmarks Latencies – High 

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles 

 

Overall, these results confirm that the AI-based method for converting microservices to 

serverless functions is reliable and accurate. It successfully reproduces the logic and 

performance of the original service, proving that the tool works well and the LLM utilized by 

it can infer and accurately transform the logic we require. Therefore, our method can be trusted 

for future automated transformations. 

 

12.4  Conclusion 

 

The benchmarking evaluation of the transformed serverless architecture versus the original 

microservice-based implementation reveals critical insights into the performance 

characteristics and trade-offs from each approach. Across all tested services user, reservation, 

and mixed it is evident that serverless cold starts present a major latency bottleneck, deeming 

such configurations unsuitable for low-latency workloads. Cold-start executions frequently 

exceeded tens of seconds in response time, especially under medium to high load, which 

severely impacts system responsiveness. 

 

However, the warm serverless configuration consistently demonstrated competitive 

performance, often matching or exceeding the microservice implementation at the upper 

latency percentiles. Particularly in high-stress scenarios, warm actions exhibited greater 
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stability and predictability in tail latencies, suggesting that OpenWhisk’s stateless execution 

model, when optimized for reuse, can yield robust and low-variance responses.  

 

The microservice architecture, while still delivering the most consistent average-case latency, 

showed signs of degradation in extreme percentile cases. This highlights the importance of 

evaluating not just average performance but also latency distribution tails, which have 

significant implications for user-perceived responsiveness.  

 

The automatically converted implementation of the reservation service also demonstrated 

promising results. With corresponding results to its manual counterpart, the automated 

implementation behaved the same at all latency percentiles at each architectural state, 

especially serverless warm and cold. These results validate the choice of LLM utilization in 

our research both in terms of efficiency and effectiveness. 

 

In summary, these results underscore the viability of warm serverless deployments as an 

effective and scalable alternative to traditional microservices provided that cold-start 

penalties are adequately mitigated. The hybrid approach explored in this research illustrates 

how targeted service transformation can preserve system correctness while leveraging the 

benefits of function-as-a-service platforms for elasticity and functional versatility. 
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13.1     Conclusion 

 

This work demonstrates that it is indeed possible to extract and reimplement microservice logic 

as fully functional, independently deployable serverless actions. By converting core 

components of the Hotel Reservation application, such as user authentication and reservation 

management, into stateless OpenWhisk actions, this research proves that serverless platforms 

can accommodate complex service logic originally designed for interconnected microservices. 

The resulting hybrid system, integrating both microservice and serverless elements, was 

deployed and evaluated under realistic workloads. Performance testing showed that warm-start 

serverless functions could not only maintain functional parity with their microservice 

counterparts, but in some cases, deliver superior latency characteristics in higher percentiles, 

validating the feasibility and competitiveness of the hybrid model. 

 

Through repeated application and refinement, a structured methodology emerged for 

transforming Go-based microservices into serverless functions. This methodology emphasized 

the isolation of business logic, elimination of stateful dependencies, reformulation of function 

structure into OpenWhisk-compatible formats, and the externalization of supporting services 

such as databases and caches. By applying this process across distinct services and confirming 

the successful replacement of microservice behavior within the live application, the thesis 

establishes a transferable and repeatable approach. The methodology’s practical value was 

further reinforced by its alignment with the needs of real-world deployment scenarios, where 

maintainability and platform compliance are critical. 
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Building on this foundation, the thesis culminated in the development of a CLI-based 

automation tool leveraging generative AI. This tool demonstrated the capacity to produce valid, 

high-fidelity OpenWhisk actions from annotated microservice source code, using structured 

prompts and reference examples as guidance. The quality of the generated outputs, particularly 

in the reproduction of the complex makeReservation logic, validates the role of LLMs as 

powerful tools in code transformation workflows. The integration of semantic code 

understanding into the automation process overcomes the limitations of static analysis tools, 

opening the door to scalable, intelligent service conversion. In this way, the thesis provides 

both a proven manual methodology and a forward-looking, AI-assisted path for migrating 

microservices to serverless computing, enabling more flexible and efficient application 

architectures. 

 

13.2     Future Work 

 

One promising avenue for future work involves the integration of the conversion automation 

process into the Blueprint [23] framework, an architecture-aware tool for generating modular 

and reconfigurable microservice applications. Blueprint’s compositional design and 

parameterized configuration of services make it a fitting environment for embedding 

conversion logic directly into the service generation pipeline. By leveraging the existing 

Blueprint implementation of the Hotel Reservation application, which includes clean service 

boundaries and explicit service definitions, it becomes feasible to automate not just the 

transformation of isolated services but the end-to-end adaptation of an entire application toward 

a serverless-ready structure. Embedding LLM-powered transformation capabilities into 

Blueprint could streamline the deployment of hybrid systems. 

 

Another area of exploration lies in merging predictive traffic analytics with dynamic serverless 

orchestration strategies. While this thesis established the performance viability of warm 

serverless actions, their benefits are dependent on container availability. Future systems could 

integrate predictive models that analyze historical and real-time traffic patterns to anticipate 

service demand and proactively warm specific actions in advance. These pre-warmed actions 

could be maintained only for the necessary window, shutting down automatically afterward to 

preserve cost-efficiency. Such predictive warm-start scheduling could optimize latency under 

load without incurring the resource overhead of always-on provisioning, bringing serverless 

deployments closer to both performance and economic optimality in production-grade systems. 
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