

Thesis Dissertation

AUTOMATICALLY CONSTRUCTING SERVERLESS

MICROSERVICES

Ioannis Antoniou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2025

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

Automatically Constructing Serverless Microservices

Ioannis Antoniou

Supervisor

Dr. Haris Volos

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2025

1

Acknowledgements

I would like to express my honest gratitude to my supervisor Dr. Haris Volos for his continuous

guidance and mentorship throughout the entirety of this thesis research. Dr. Volos was always

available for the researches’ needs and allocated more than enough time for discussion,

problem solution and insight. Without his support and advice, this work would not have been

possible.

I am equally grateful to my university providing the opportunity to work with CloudLab by

granting me access to its infrastructure. This privilege was significant for providing a stable

and adaptable environment for development and testing contributing to the outcomes of my

research. It also allowed for an error free deployment and interaction with the Apache

OpenWhisk serverless platform, playing an integral role in completing this thesis.

Lastly, I would like to give out my thanks to my family and close friends for their unwavering

support and confidence they had in me throughout this process. Without the unconditional love

and emotional comfort, they provided, especially in the most challenging phases of this work,

I would not be able to have the outcome I achieved.

2

Abstract

As cloud-native systems increasingly shift toward event-driven architectures, the transition

from traditional microservices to serverless computing presents a promising path for improving

scalability, resource efficiency, and operational simplicity. This thesis investigates the process

of converting microservices into serverless functions using Apache OpenWhisk, with a

particular focus on enabling this transformation through automation. Using the microservices

from the DeathStarBench benchmark suite, most notably the Hotel Reservation application, as

a foundation, we first develop and apply a robust methodology for manually converting

complex Go-based services into OpenWhisk-compatible actions. This process includes

restructuring logic for stateless execution, handling data dependencies through external

systems and adapting service interfaces to OpenWhisk’s input-output conventions.

The methodology is validated through the successful transformation and reintegration of key

services such as User and Reservation, followed by empirical benchmarking using high-

intensity workloads. These benchmarks reveal that while cold starts pose significant latency

challenges, warm serverless actions often outperform microservice implementations in high-

percentile response times, indicating their viability in performance-critical systems.

Building on these findings, the thesis presents a CLI-based tool powered by a large language

model, capable of automating the conversion process. The tool leverages the semantic

capabilities of generative AI to produce OpenWhisk-compatible actions and deployment

artifacts. Comparative analysis between AI-generated and manually written versions of the

makeReservation service demonstrates high structural and functional fidelity, validating the

feasibility of LLM-assisted automation. The results of this work suggest that with appropriate

prompt engineering and input structuring, generative AI can meaningfully reduce the manual

burden of service transformation while preserving correctness and performance, offering a

scalable path toward hybrid and fully serverless cloud-native architectures.

3

Contents

INTRODUCTION .. 7

1.1 Background .. 7
1.1.1 Current State of Cloud Computing .. 7
1.1.2 Microservice Architecture ... 7
1.1.3 Serverless Computing .. 8

1.2 Research Gaps in Microservice to Serverless Conversion ... 9

1.3 DeathStarBench Microservice Suite ... 9

1.4 OpenWhisk Serverless Platform... 10

1.5 Objective .. 10

1.6 Research Questions .. 11
1.6.1 Successful Conversion and Performance Overview .. 11
1.6.2 Methodology Extraction .. 11
1.6.3 Automation of Conversion .. 11

RELATED WORK ... 13

2.1 Existing Work for Microservice Serverless Migration ... 13
2.1.1 Boxer Framework .. 13
2.1.2 Boxer Utilization and Extension .. 14
2.1.3 SigmaOS .. 14
2.1.4 Performance Enhancements in Serverless ... 15
2.1.5 µ2sls .. 15

2.2 Choice of Serverless Platform: OpenWhisk ... 15
2.2.1 OpenFaaS .. 16
2.2.2 Fission ... 16
2.2.3 Knative .. 17
2.2.4 Apache OpenWhisk ... 17

OPENWHISK DEPLOYMENT .. 20

3.1 OpenWhisk Deployment .. 20
3.1.1 OpenWhisk Devtools - MacOS ... 21
3.1.2 OpenWhisk Devtools – Windows Subsystem for Linux: Ubuntu ... 22
3.1.3 OpenWhisk Documentation Instructions for Local Deployment - MacOS 22

4

3.1.4 OpenWhisk Documentation Instructions for Local Deployment – WSL Ubuntu 24
3.1.5 OpenWhisk CloudLab Deployment .. 25

DEATHSTARBENCH MICROSERVICE DEPLOYMENT ... 29

4.1 Choice of DeathStarBench Service .. 29
4.1.1 Social Network Application .. 30
4.1.2 Hotel Reservation Application .. 30

4.2 Deployment Experimentation ... 31
4.2.1 Hotel Reservation Helm-Chart Deployment .. 31
4.2.2 Social Network Helm-Chart Deployment.. 33

4.3 Selected Service: Hotel Reservation .. 34

HOTEL RESERVATION MICROSERVICE APPLICATION OVERVIEW ... 35

5.1 Overview .. 35
5.1.1 Breakdown of Core Services ... 36
5.1.2 Communication Protocols and Runtime Behavior .. 36
5.1.3 Service Code Structure and Components .. 37
5.1.4 Relevance and Observability ... 39

5.2 User Service Breakdown .. 39
5.2.1 User Service Structure ... 40

OPENWHISK GO RUNTIME .. 45

6.1 OpenWhisk Go Runtime .. 45

6.2 Example of Action provided by OpenWhisk Go Runtime Repository... 47

METHODOLOGY OF CONVERSION ... 50

7.1 Identifying and Isolating the Target Service Logic .. 50

7.2 Ensuring Statelessness .. 51

7.3 Refactoring into the OpenWhisk Runtime Model .. 51

7.4 Managing External Dependencies .. 52

7.5 Deployment .. 52

CONVERSION OF USER SERVICE .. 54

5

8.1 User Service Conversion Attempt .. 54
8.1.1 Core Function Signature .. 57
8.1.2 Database Logic .. 57
8.1.3 Authentication Logic ... 57
8.1.4 Deployment Attempt ... 58

INTEGRATION OF ACTION WITH MICROSERVICE APPLICATION .. 60

9.1 GPRC Invocation of Original User Service ... 61

9.2 The checkUserHTTP function .. 62

9.3 Building new Image of the Application ... 65

CONVERSION OF RESERVATION SERVICE .. 68

10.1 Reservation Service Conversion... 68

10.2 Reservation Service Integration ... 73

10.3 Reservation Service Invocation .. 73

AUTOMATION OF CONVERSION PROCESS .. 75

11.1 Introduction .. 75

11.2 Initial Attempts ... 75

11.3 Adopting Generative AI for Code Conversion ... 76

11.4 Tool Architecture and Workflow ... 76

11.5 Tool Architecture and Workflow ... 77

11.6 Observations ... 79

11.7 Closing Remarks .. 79

OPERATIONAL INTEGRITY AND PERFORMANCE EVALUATIONS ... 80

12.1 Benchmarking .. 80

12.2 Evaluation of Operational Integrity .. 81

12.3 Performance Evaluation ... 83
12.3.1 Reservation Service .. 84
12.3.2 User Service .. 87

6

12.3.3 Mixed Service Workload .. 90
12.3.4 Automatically Converted Reservation Service ... 93

12.4 Conclusion .. 95

CONCLUSIONS ... 97

13.1 Conclusion .. 97

13.2 Future Work ... 98

7

Chapter 1

Introduction

1.1 Background .. 7
1.1.1 Current State of Cloud Computing .. 7
1.1.2 Microservice Architecture ... 7
1.1.3 Serverless Computing .. 8

1.2 Research Gaps in Microservice to Serverless Conversion ... 9

1.3 DeathStarBench Microservice Suite ... 9

1.4 OpenWhisk Serverless Platform... 10

1.5 Objective .. 10

1.6 Research Questions .. 11
1.6.1 Successful Conversion and Performance Overview .. 11
1.6.2 Methodology Extraction .. 11
1.6.3 Automation of Conversion .. 11

1.1 Background

1.1.1 Current State of Cloud Computing

The rapid evolution of cloud computing paradigms has transformed the architectural landscape

of modern applications. From monolithic systems to distributed microservices and, more

recently, to serverless models, these paradigms reflect a continuous effort to maximize

flexibility, scalability, and operational efficiency. Each architectural shift has addressed

particular challenges, but also introduced new complexities and trade-offs.

1.1.2 Microservice Architecture

Microservices architecture decomposes applications into small, autonomous services, each

responsible for a distinct piece of business logic. These services communicate over lightweight

8

protocols such as HTTP, gRPC [20], or Thrift and are independently deployable, allowing for

isolated development, scaling, and failure containment. The microservices model solves

problems of agility and modularization inherent in monolithic applications, offering teams the

ability to deploy new features rapidly and scale individual parts of an application selectively.

However, microservices introduce non-trivial operational complexity. Each service must be

independently managed, requiring substantial effort in infrastructure provisioning,

orchestration, monitoring, scaling policies, and fault recovery. Systems such as Kubernetes

emerged precisely to address this complexity, but at the cost of requiring additional layers of

management expertise.

1.1.3 Serverless Computing

In contrast, serverless computing (or Function-as-a-Service, FaaS) represents an even further

abstraction. In serverless architectures, developers deploy discrete functions that are triggered

by events and automatically scaled by the platform provider. Serverless models eliminate the

need for server provisioning and management, promoting a pure consumption-based billing

model. Functions scale to zero when idle and burst massively when necessary, thus offering

exceptional elasticity.

Despite their promise, serverless platforms also impose constraints: statelessness, execution

time limits, resource capping, and event-driven invocation are design assumptions that

developers must embrace. Applications not originally designed with these assumptions must

be adapted or re-architected.

Serverless architectures typically offer cost advantages over traditional microservice

deployments due to their pay-per-use billing model and dynamic resource allocation. In

serverless systems, functions are executed only in response to specific events and are billed

solely for the compute time consumed during execution. In contrast, microservices often run

continuously on containers or virtual machines, accumulating costs regardless of utilization.

Additionally, serverless platforms eliminate the need for maintaining idle resources or over-

provisioning to handle peak loads. These factors collectively reduce infrastructure expenses,

making serverless a more appealing choice for workloads with variable traffic patterns.

9

1.2 Research Gaps in Microservice to Serverless Conversion

Despite the rapid proliferation of both microservices and serverless computing paradigms in

recent years, there remains a noticeable lack of systematic research addressing the conversion

of existing microservices into serverless functions, particularly regarding the automation of

this transformation. While the independent advantages and challenges of microservices and

serverless architectures have been extensively studied, little attention has been given to the

methodologies required to migrate complex, interconnected, and often stateful microservices

into stateless, event-driven serverless models. Comprehensive frameworks or automated

toolchains capable of parsing service logic, externalizing state, refactoring communication

patterns, and deploying serverless-ready artifacts without extensive developer reengineering

are still largely absent. This gap signifies a critical research opportunity: enabling the practical

and scalable adoption of serverless benefits for a vast body of existing cloud-native applications

without necessitating costly and error-prone manual rewrite.

1.3 DeathStarBench Microservice Suite

The DeathStarBench [17] suite represents one of the most comprehensive and widely used

microservice benchmark collections developed for evaluating the performance, scalability, and

complexity of modern cloud-native systems. Developed by the Systems and AI Lab (SAIL) at

Cornell University, DeathStarBench models real-world microservices applications in a way

that spans the entire system stack, from frontend APIs to backend databases.

The suite provides end-to-end applications that simulate production-grade workloads and

service dependencies, thus allowing researchers and practitioners to study microservice

interactions, communication bottlenecks, scalability patterns, and failure modes under realistic

conditions.

By offering standardized benchmarks, DeathStarBench bridges the gap between theoretical

microservices research and practical, reproducible experimentation. The project is actively

maintained through its core repository on GitHub and continuously receives updates and

refinements to remain aligned with contemporary technologies and practices. The

comprehensive structure of the suite which offered proper documentation and active

maintenance deemed it as an attractive candidate for selecting a testing environment fot the

project. More specifically, the HotelReservation service was the core microservice

environment that was studied, analyzed and deconstructed while conducting this research and

10

some of its services were the ones chosen to be converted to serverless functions, creating a

hybrid environment of the two architectures.

1.4 OpenWhisk Serverless Platform

Apache OpenWhisk is an open-source, distributed serverless computing platform that provides

a robust Function-as-a-Service (FaaS) environment for building and deploying event-driven

applications. Designed with extensibility, openness, and modularity at its core, OpenWhisk

allows developers to deploy functions that are executed dynamically in response to external

events such as HTTP requests, database updates, or messaging system triggers.

Serverless functions are packaged as entities called “actions” to achieve successful deployment

to the Apache OpenWhisk platform. An action is a stateless, event-driven function that is

executed in response to an invocation, triggered by an HTTP request, event source, or internal

rule. Each action encapsulates a specific computational task and can be implemented in various

programming languages including Go, Python, JavaScript, and Java, or it can be packaged as

a Docker container to support arbitrary runtimes. From a serverless perspective, OpenWhisk

actions align precisely with the Function-as-a-Service (FaaS) model: they are ephemeral,

executed in isolated containers, and automatically scaled based on demand.

OpenWhisk was selected as the target serverless platform for this work, providing a research-

friendly environment to automate the deployment, execution, and benchmarking of

microservice-converted functions. A more in-depth technical analysis of OpenWhisk’s

architecture, operational model, and experimental deployment experiences will be provided in

later chapters of the thesis.

1.5 Objective

This thesis project is centered around specifying a core methodology for the precise conversion

of an application component from an architecturally microservice application, to a serverless

function deployed in a serverless platform and conducting research on the possible automation

of such process, resulting in the construction of a testbed environment of a hybrid

implementation of a system with both microservice and serverless entities.

The vision is compelling: if we could automatically migrate microservices to serverless

11

platforms, developers would gain the operational simplicity and cost advantages of serverless

computing without incurring the expensive and error-prone process of manual re-architecture.

This motivation stems not only from theoretical interest but from extensive hands-on research

and experimentation.

1.6 Research Questions

With the background and context established, this thesis will attempt to answer the fol-

lowing research questions:

1.6.1 Successful Conversion and Performance Overview

Is it possible to precisely convert specific service components from an already functional

microservice application, intertwined with other similar services and supporting technologies,

to fully functional serverless functions that run independently on a separate from the original

microservice, serverless platform? In the case of a positive answer to the above question, a

follow up question occurs: In what extend is this hybrid implementation of the previous system

with the addition of the serverless components, equal in performance and effectiveness to its

original version?

1.6.2 Methodology Extraction

Through the process of thorough research and experimentation, could a specific methodology

of converting a program that is architecturally a microservice application component to a

serverless function that seamlessly replaces the original microservice in full functionality, be

formulated? This question will be answered while discovering the needs of this conversion

process and the steps that were followed in midst of trial and error of manual conversion

attempts of one architecture to the other.

1.6.3 Automation of Conversion

Could the process of converting a microservice application component to a serverless function

of a specific serverless platform, be properly automated? What tools and techniques were

utilized for the realization of the automation process? The answers to these questions will be

12

acquired after experimentation with automation techniques utilizing the products of the

conversion process from question 1.6.2 in combination code analyzation and generation tools.

13

Chapter 2

Related Work

2.1 Existing Work for Microservice Serverless Migration ... 13
2.1.1 Boxer Framework .. 13
2.1.2 Boxer Utilization and Extension .. 14
2.1.3 SigmaOS .. 14
2.1.4 Performance Enhancements in Serverless ... 15
2.1.5 µ2sls .. 15

2.2 Choice of Serverless Platform: OpenWhisk ... 15
2.2.1 OpenFaaS .. 16
2.2.2 Fission ... 16
2.2.3 Knative .. 17
2.2.4 Apache OpenWhisk ... 17

This chapter provides a brief review of the existing literature relevant bridging the gap

between microservice and serverless architecture and their possible combination. The various

serverless platforms that were considered for utilization during this research will also be

explored highlighting the one chosen: OpenWhisk.

2.1 Existing Work for Microservice Serverless Migration

In this section of the chapter the current state of the field regarding microservice to serverless

migration will be presented. After conducting deep research around the topic of the relation

and combination of microservice designed systems with serverless functions, numerous

attempts at utilizing the benefits of the two architectures together in singular systems were

made by the academic community, products from which are showcased in the following

sections.

2.1.1 Boxer Framework

Kansal et al. [1] proposed Boxer, an interposition framework that enables unmodified cloud

applications to transparently benefit from serverless elasticity without needing to be rewritten

into the traditional event-driven, stateless function model. By intercepting system-level calls

14

and emulating a conventional network-of-hosts abstraction over AWS Lambda, Boxer creates

an environment familiar to existing distributed systems. This approach allows ephemeral

elasticity to absorb load spikes and recover from failures with substantially faster reaction times

compared to virtual machines, offering potential cost and availability improvements. For this

thesis, Boxer serves as an important inspiration in demonstrating that transparent adaptation

between microservice models and serverless platforms is achievable. Although Boxer focuses

more on runtime system adaptation rather than static automated code transformation, which is

the focus of this project, the later was chosen to avoid the extra processing and performance

cost that comes with modifying services while they are running, and to produce portable code

that works directly with serverless platforms.

2.1.2 Boxer Utilization and Extension

Wawrzoniak et al. [3] build upon the ideas introduced by Boxer by introducing Imaginary

Machines and extend them into a generalized serverless execution model suitable for legacy

cloud applications. Without modifying application source code, Imaginary Machines can

transparently map cloud applications onto elastic serverless infrastructures. This model

highlights the broader vision of serverless evolution towards general-purpose cloud application

execution. Although closely aligned in spirit with the goals of this thesis, Imaginary Machines

prioritizes system-level adaptations rather than code-level transformation and deployment

automation.

The “Off-the-Shelf Serverless” work by Wawrzoniak et al. [6] extends the principles of Boxer

to enable unmodified distributed data processing engines, such as Apache Spark and Apache

Drill, to operate on AWS Lambda. By introducing a transparent interposition layer, it

demonstrates that complex, stateful, communication-heavy applications can run efficiently on

serverless platforms, challenging the assumption that serverless is only suited for simple,

stateless applications.

2.1.3 SigmaOS

Similarly, SigmaOS by Szekely et al. [8] aims to unify the capabilities of serverless and

microservice systems under a single cloud-native operating system, supporting both burst-

parallel lightweight tasks and long-running stateful services. These two approaches underline

the expanding vision of serverless computing as a viable platform for a broader range of cloud

workloads. However, both projects primarily operate at the infrastructure abstraction level

15

rather than focusing on automated static code transformation, distinguishing their scope from

the automation goals pursued in this thesis.

2.1.4 Performance Enhancements in Serverless

Faa$T [4] and FaasCache [5] propose improvements that target state management and cold

start mitigation in serverless environments, respectively. Faa$T introduces an auto-scaling

memory caching system that drastically reduces access latency for stateful serverless

applications, addressing a common bottleneck for serverless performance. Meanwhile,

FaasCache reimagines the problem of function keep-alive as a caching challenge, applying

Greedy-Dual caching policies to optimize resource utilization and cold-start mitigation. While

neither Faa$T nor FaasCache directly tackles microservice-to-serverless conversion, they both

address fundamental challenges, specifically state handling and startup efficiency, that

critically affect the performance of migrated services.

2.1.5 µ2sls

Qiu et al. [2] introduced µ2sls a radically different approach to executing microservice

applications on serverless platforms by offering a formally verified execution model. It enables

developers to write traditional service logic in Python while providing two additional

primitives, transactions and asynchronous calls, that the runtime uses to maintain correctness

in the presence of serverless-specific faults, such as re-executions and partial failures. The

µ2sls framework guarantees that serverless executions refine the observable behavior of the

original specification. While µ2sls focuses on ensuring correctness, it assumes developer

intervention and restructuring, distinguishing itself from the fully automated conversion

approach targeted in this thesis.

2.2 Choice of Serverless Platform: OpenWhisk

A suitable serverless platform had to be chosen to support the research and experimentation

conducted in this project. This platform needed to support true Function-as-a-Service

capabilities, meaning that the programs it runs must follow strict serverless principles. These

include: a) scale-to-zero, where functions automatically stop running when not in use b)

ephemeral execution, where each function runs for a short period and shuts down after

completing its task c) no server management, meaning the developer does not configure or

maintain any servers and d) event-driven invocation, where functions are triggered by requests

16

or external events. These criteria ensured that the selected platform aligned with the goals of

transforming microservices into lightweight serverless actions.

We studied several serverless platforms in the process of defining the most suitable one for the

needs of this project. In the following subsections, some of the platform candidates will be

presented and the selection of Apache OpenWhisk will be justified.

2.2.1 OpenFaaS

OpenFaaS [9] is a Kubernetes-native serverless platform that emphasizes simplicity, usability,

and developer-centric design. It abstracts function deployment through Docker containers and

integrates tightly with Kubernetes via the OpenFaaS Operator or with Docker Swarm for

lightweight setups. OpenFaaS features native autoscaling, function templates, and a UI/CLI

interface for function management. Its strengths lie in its ease of deployment and compatibility

with existing container workflows, making it a strong candidate for early experimentation.

However, several limitations emerged upon deeper exploration. While OpenFaaS presents

itself as a FaaS system, its architecture fundamentally relies on long-running pods, where

functions are persistently active containers, rather than true ephemeral executions. This design

reduces cold-start latency but violates the core serverless principle of scale-to-zero, which was

essential for this thesis’s benchmarking purposes. Furthermore, OpenFaaS’s eventing model

and function management are less modular and more tightly coupled to Kubernetes than

required for our automated transformation toolchain. Its reliance on language-specific

scaffolding limited its flexibility in supporting arbitrary converted Go [19] microservices.

These practical constraints, particularly regarding platform behavior, ultimately led to its

exclusion.

2.2.2 Fission

Fission [10] is another Kubernetes-native serverless framework built to offer fast cold-starts,

language extensibility, and declarative function deployment using Custom Resource

Definitions (CRDs). It emphasizes low-latency execution through the reuse of function

containers and supports multiple runtime environments including Python, Go, and Node.js.

One of its standout features is Fission Workflows, which allows the chaining of functions in a

control-flow manner.

17

Despite these strengths, Fission’s architecture and development model introduced significant

challenges for this thesis. Function definition and deployment are tightly integrated into the

Kubernetes control plane via CRDs, which complicates automation efforts for externally

transformed code. Fission hides too much of what happens during function execution, which

made it hard to control important details like how function programs are deployed, how the

environment is set up, and how the runtime behaves. These controls were important for the

kind of experiments we needed to run when understanding the conversion of microservices and

even potentially automating it. Additionally, the documentation and ecosystem support around

Go-based functions in Fission were relatively sparse compared to other platforms. These issues

collectively influenced the decision to deprioritize Fission as a deployment platform.

2.2.3 Knative

Knative [11], developed by Google, is a powerful serverless framework built atop Kubernetes,

designed to provide a complete set of fundamental tools for deploying event-driven workloads.

It introduces key components such as Knative Serving (for autoscaling HTTP workloads),

Knative Eventing (for building event-driven applications), and a flexible abstraction for

sources events pools. Its appeal lies in its strong adherence to cloud-native design, native

Kubernetes integration, and support for complete production deployments in hybrid

environments.

However, Knative also represents a relatively heavyweight solution, with a steep operational

learning curve, and complex installation requirements including service dependencies like Istio

or Kourier. Similarly to the case of OpenFaaS, Knative is also a container-based platform that

handles container setup to mimic that of traditional serverless platforms and their core features

although primarily being a container management system. These complexities proved to be

counterproductive for the goals of this thesis, which required fast iteration cycles, simple

repeatable setups, and tight control over the function runtime. The lack of minimal

configurations, combined with its emphasis on full-stack deployment approaches, made

Knative more suitable for enterprise-scale production environments than research-driven

experimentation. As a result, Knative was excluded from further consideration in favor of more

lightweight and transparent alternatives.

2.2.4 Apache OpenWhisk

18

Apache OpenWhisk [12] is an open-source, distributed serverless platform originally

developed by IBM and now maintained as part of the Apache Software Foundation. It provides

a modular architecture based on Docker and CouchDB, supports function executions in a wide

array of languages, and includes a powerful rule-based event triggering system. OpenWhisk is

distinct among serverless frameworks due to its support for customizable pluggable runtimes,

custom Docker containers, and action chaining, enabling complex workflows and fine-grained

control over execution environments. Its CLI tool wsk and RESTful APIs make it highly

scriptable and offer numerous preconfigured features with interactive platforms applicable

within terminal environments, which aligned closely with the project’s needs for automating

deployment of converted services. OpenWhisk supports features like parameter binding and

named packages, which make it easier to group related actions and reuse them across different

scenarios. This flexibility was important for setting up and managing the different testing

environments used in this research. Additionally, OpenWhisk can run locally, allowing for fast

and easy experimentation without needing a cloud setup during development. These attributes

made OpenWhisk technically suitable for hosting the converted microservices produced by this

project’s automated transformation pipeline.

OpenWhisk was ultimately chosen as the serverless execution platform for this thesis due to

its balance of flexibility, ease of use and deployment and research-aligned features. Unlike

proprietary platforms such as AWS Lambda or heavyweight frameworks like Knative,

OpenWhisk enabled full control over deployment mechanics while still adhering to core

serverless principles such as statelessness, ephemeral execution, and scale-to-zero semantics.

Its support for custom action containers allowed the project to package microservices with

complex dependencies, such as MongoDB [18] and Memcached [24] drivers and service

initialization code, without compromising execution correctness. Furthermore, its transparent

logging, local deployment, and resource observability provided the visibility required for

benchmarking converted services against their original microservice implementations.

Integration with automation scripts and Makefiles facilitated the deployment of actions without

manual overhead, making OpenWhisk an efficiently scriptable and programmable platform for

exploring the feasibility of serverless conversion. As such, OpenWhisk was not only a technical

fit but a strategic enabler of the thesis’s core goal: to explore microservice-to-serverless

transformation using repeatable easily implemented methodologies.

The reasoning and criteria taken into consideration for ultimately choosing Apache

OpenWhisk over the rest of the platforms and systems mentioned are more clearly

demonstrated in the table bellow:

19

Table 2.1: Taxonomy table demonstrating the criteria of choosing a serverless platform

Principle / Feature OpenWhisk OpenFaaS Fission Knative

Scale-to-Zero Yes No Yes Partial

Ephemeral Execution True FaaS Long-lived

pods

Container

reuse

Simulated via

pods

No Server Management Full

abstraction

Requires K8s

setup

CRD +

cluster access

Full-stack setup

needed

Event-Driven

Invocation

Triggers and

RESTful API

Basic

triggers

Workflows

and triggers

Advanced

eventing

 Runtime

Transparency

 Full Limited Hidden Complex

 Local Deployment for

Experimentation

Lightweight Docker/K8s

required

 No Complex

dependencies

 Go Language Support Native Available Limited Available

 Automation-Friendly

Architecture

Scriptable CLI

and APIs

Template

driven

No Heavy

Configuration

 Suitable for Research

& Prototyping

Ideal Limited Unsuitable Unsuitable

20

Chapter 3

3

OpenWhisk Deployment

3.1 OpenWhisk Deployment .. 20
3.1.1 OpenWhisk Devtools - MacOS ... 21
3.1.2 OpenWhisk Devtools – Windows Subsystem for Linux: Ubuntu ... 22
3.1.3 OpenWhisk Documentation Instructions for Local Deployment - MacOS 22
3.1.4 OpenWhisk Documentation Instructions for Local Deployment – WSL Ubuntu 24
3.1.5 OpenWhisk CloudLab Deployment .. 25

This chapter describes the process of experimenting and finally achieving a stable and

repeatable deployment of Apache OpenWhisk. Completing this task was essential for our

research, since we needed a non-trivial way of setting up our testing environment that would

be consistent and be automatically executed, avoiding constant errors debugging. We aimed

at configuring a local setup of interacting containers and serverless functions for simpler

development. After trial and error among attempting deployment on different hardware and

operating systems, we ultimately choose the route of deploying the platform through

Kubernetes [25], configuring a cluster dedicated to OpenWhisk. This was necessary for

creating a shared and homogenous environment for both the serverless platform and the

microservice application, thus having container-based microservices and converted serverless

microservices to work and interact on the same cluster.

3.1 OpenWhisk Deployment

The process of deploying a whole platform as complex as Apache OpenWhisk, from the

beginning with no preset environment, proved to be a rigorous process despite being chosen

for its lightweight deployment methods. Despite the theoretical reasons as to why OpenWhisk

was characterized as the suitable platform adequate for this project, ultimately the choice for

its actual utilization was governed by its deployability. In the case the platform proved too

difficult or even impossible to be deployed and successfully configured on the systems that

21

were accessible, another direction would have to be chosen which would potentially mean

additional hardships and obstacles occurring.

Initially significant attempts were made at successfully deploying Apache OpenWhisk

serverless platform to personal computer hardware hosting different Operating Systems, to

more spherically comprehend the ease of both use and configuration of the platform.

3.1.1 OpenWhisk Devtools - MacOS

Specifically, the first attempt at local deployment of OpenWhisk was attempted on Mac

Operating System using a version of OpenWhisk from a sub directory of the official Apache

documentation for OpenWhisk named “OpenWhisk-devtools” [13]. The repository provided

options uniquely developed for local deployment along with other useful tools easing the

process of action declaration, development and deployment. The platform is deployed using

docker-compose and offers a solution of automation through an assortment of yaml scripts and

a core Makefile that simplifies processes in few single commands. It is highlighted that the

deployment is compatible on MacOS using the Docker for Desktop [14] application for MacOS

systems of Apple Silicon Architecture.

This attempt deemed to be unsuccessful, halting at the point of inability to resolve an error not

documented before by the service community of OpenWhisk. The Error occurred in incorrectly

running the OpenWhisk invoker container leading to its controller api-gateway getting stuck

on repeatedly attempting to reach the invoker node-container, resulting in the deployment

halting. Due to not being able to solve the error, another direction had to be taken in the form

of attempting the same method on a different Operating System.

Figure 3.1: Command Line output during OpenWhisk-devtools unsuccessful deployment of

OpenWhisk on MacOS

22

3.1.2 OpenWhisk Devtools – Windows Subsystem for Linux: Ubuntu

Another attempt at this deployment method was executed before following to another

OpenWhisk version, on a different Operating System: Ubuntu – specifically on the version

offered by the Windows Subsystem for Linux in a partitioned environment hosted in

combination with the Windows OS on the same hardware. The OpenWhisk-devtools docker-

compose method of deployment also highlights compatibility with any kind of installation of

Docker version 1.13 and onward as well as Docker Compose version 1.6 and onward,

theoretically deeming the environment eligible for success.

The attempt resulted in another error of a different kind. In this case, the system was able to

complete the fetching process of the container images and their internal set up, however issues

in regards to container creation rose to the surface while executing the scripted deployment of

the system as described within the Makefile. An error reported by the Docker daemon indicated

that it was unable to extract a specific image layer and failed with a NotFound message related

to the content digest. This pointed to a missing or inaccessible image layer, either due to its

removal from the remote registry, an internal corruption within the local Docker content store,

or inconsistencies in nightly build tags for OpenWhisk services.

Several additional steps were subsequently attempted: a full Docker system prune to clear

cached and dangling layers, manual re-pulling of affected images, and substitution of the

unstable “:nightly” tag with more stable versioned tags. Despite these efforts, the issue

persisted, preventing a successful container orchestration and halting the platform

initialization. The failure highlighted the fragility of relying on nightly image tags and

underlined the need for controlled Docker environments with maintained version..

Figure 3.2: Command Line output during OpenWhisk-devtools unsuccessful deployment of

OpenWhisk on WSL Ubuntu

3.1.3 OpenWhisk Documentation Instructions for Local Deployment -

MacOS

23

In addition to its containerized deployment options from the previous method, Apache

OpenWhisk also offers a Java-based standalone deployment mode intended for developers

seeking a locally hosted runtime environment. Following the official OpenWhisk

documentation, the apache/OpenWhisk GitHub repository [15] was utilized to clone and

build the core platform directly from source. This method involves compiling the OpenWhisk

controller and invoker services using Gradle and launching them as native Java processes.

Requirements for compatible Docker, Node.js and Java software in specific versions was

demanded for the process to execute in a successful manner that are stated within the

repository documentation.

Despite the intended simplicity of the Java-based deployment, initial attempts to build

OpenWhisk from source encountered a critical failure during the Gradle initialization phase.

The build process terminated with a semantic error:

Unsupported class file major version 67

indicating that the Groovy/Gradle toolchain embedded in the OpenWhisk build scripts was

incompatible with the Java bytecode compiled using a more recent JDK version such as Java

13 or later. Specifically, this exception stemmed from a mismatch between the version of the

Java Development Kit installed on the host system and the expected JDK compatibility

defined in OpenWhisk’s build configuration, which targets Java 8 or 11. Multiple mitigation

attempts were made, including switching the system Java version to Java 11 and ensuring that

JAVA_HOME was properly configured. However, the error persisted even under the

downgraded JDK, suggesting deeper issues with Groovy’s bytecode parsing or potential

corruption within the Gradle daemon cache. As a result, the Java-based build method had to

be suspended.

24

Figure 3.3: Command Line output during Java-based standalone unsuccessful deployment of

OpenWhisk on MacOS

3.1.4 OpenWhisk Documentation Instructions for Local Deployment –

WSL Ubuntu

An additional attempt to deploy Apache OpenWhisk via the Java-based standalone build was

carried out within a WSL-based Ubuntu environment on Windows. While this setup was

expected to provide a more Linux-native context for running the standalone runtime, it

encountered a critical networking failure during the early stages of service initialization.

Specifically, the OpenWhisk controller attempted to bind to http://172.17.0.1:3233, a Docker

bridge address that is typically accessible in standard Linux environments. However, WSL2

does not natively expose or preserve this address in the same manner, leading to a

java.net.BindException: Cannot assign requested address. The error occurred repeatedly as the

invoker attempted to start prewarm containers for node.js actions, all of which failed due to

unreachable internal addresses.

Attempts to modify Docker networking or reroute to localhost were unsuccessful due to WSL’s

namespace handling and its abstraction of the Linux network stack on top of Windows. As a

result, the WSL-based standalone deployment was categorized as unreliable for OpenWhisk.

25

Figure 3.4: Command Line output during Java-based standalone unsuccessful deployment of

OpenWhisk on WSL Ubuntu

3.1.5 OpenWhisk CloudLab Deployment

The final and successful deployment configuration adopted for the experimental phase of this

thesis was based on the CloudLab OpenWhisk setup provided by the CU BISON Lab via the

public repository cloudlab-OpenWhisk [16]. This configuration is built to automate the

orchestration of an OpenWhisk serverless platform on CloudLab infrastructure, an academic

cloud research platform. The repository defines a full system topology including controller a

node, one or more invoker nodes, CouchDB, Kafka, and Zookeeper nodes, which in this

context are configured as distinct physical machines using CloudLab’s Emulab interface.

Importantly, the configuration is aligned with the official OpenWhisk architecture and includes

optimizations for performance benchmarking, such as network tuning and logging support.

This deployment method enabled the execution of serverless actions converted from

microservices in a reproducible and stable environment. Additionally, CloudLab’s reserved

and isolated hardware nodes ensured minimal measurement noise, a crucial requirement for the

benchmarking and evaluation phases of this research. By using this configuration, we were

able to conduct realistic performance comparisons between serverless actions and their original

microservice implementations under controlled conditions, fulfilling one of the core objectives

of the thesis.

26

For this thesis’ experimental setup, an already preconfigured CloudLab profile was utilized

that incorporates the deployment process described by the repository mentioned, in a

Kubernetes environment. The profile utilized the Kind tool [17] for containerization of

Kubernetes – Kubernetes in Docker – to first achieve a functional iteration of a Kubernetes

Cluster on the reserved family of machine nodes from CloudLab. Executing an OpenWhisk

deployment on top of the Kube Cluster is an optional functionality of the profile, that if

configured to do so deploys the version of OpenWhisk from the corresponding CloudLab

repository, with Helm [18] as a package manager tool.

Helm provided a declarative and reusable mechanism to manage configuration and deployment

lifecycle. The official OpenWhisk Helm chart abstracts away low-level Kubernetes YAML

definitions by encapsulating them into modular templates. Helm enhanced the ease of system

configuration at great scale, with its automated options in partial or whole redeployment of the

environment in a few easily comprehendible commands, significantly decreasing workflow

complexity. This allowed for easier provisioning of OpenWhisk in Kubernetes environments

and made it easier to experiment with scaling, and resource allocation by simply modifying

Helm value files. Helm’s declarative and repeatable deployment structure, allowed for scalable

and reproducible experimentation, which was essential for the benchmarking and debugging

in the iterative refinement phases of this research.

This implementation of the deployment workflow is default to be implemented on three

nodes/machines rented from CloudLab’s maintained node clusters, for this project’s needs the

m510 machines were primarily utilized as they are the type of node the profile has been most

tested on. The topology of the partitioned node cluster is consisted of one controller node and

two invoker nodes at minimum.

27

Figure 3.5: Topology View of a Deployed CloudLab Experiment using the kubernetes Profile

While interacting with the environment prepared by the profile in multiple iterations of its

execution, occasional inconsistent behaviors were encountered often regarding the

OpenWhisk’s CLI tool: wsk configuration not functioning as expected as well as issues in

relation to incorrect declaration of authentication parameters demanded by OpenWhisk such

as API_HOST and AUTH_KEY. This behavior was avoided by making sure the startup

processes of all nodes, especially the controller nodes finish executing successfully by

CloudLab, despite the timely wait times approaching approximately 10 to 12 minutes.

Figure 3.6: List View of a Deployed CloudLab Experiment using the kubernetes Profile that has

finished startup process execution

28

Figure 3.7: List View of a Deployed CloudLab Experiment using the kubernetes Profile that is

currently executing startup processes

Ultimately, the configuration hosted on CloudLab proved to be the most fitting for our

purposes. Not only did it provide an automated, error-free method of deployment of the

platform that could be executed remotely as a background process, it fully prepared a

significantly useful and well-orchestrated Kuberenetes Cluster. The cluster would serve as an

overall execution environment for both traditional microservice applications and their

serverless iterations, in a homogenous setting.

29

Chapter 4

4

DeathStarBench Microservice Deployment

4.1 Choice of DeathStarBench Service .. 29
4.1.1 Social Network Application .. 30
4.1.2 Hotel Reservation Application .. 30

4.2 Deployment Experimentation ... 31
4.2.1 Hotel Reservation Helm-Chart Deployment .. 31
4.2.2 Social Network Helm-Chart Deployment.. 33

4.3 Selected Service: Hotel Reservation .. 34

4.1 Choice of DeathStarBench Service

The DeathStarBench Suite of microservice programs offers several fully functional and

maintained collections of services that truly follow the microservice architecture of distributed

web applications, assuming them as suitable candidates for understanding the principles of said

architecture. Each application is designed to reflect real-world service architectures with

complex internal dependencies, databases, and network communication.

Among its most prominent applications is the Social Network, which emulates a social media

platform featuring services for user timelines, post composition, media management, and social

graphs. Additionally, the suite includes the Hotel Reservation system designed to replicate an

end-to-end hotel booking service, implememting search, reservation, user profile, geo-location,

and rate management services. Also included are workloads such as an E-Commerce platform

for simulating online retail, a Media Service representing content delivery and review systems,

and an Edge Coordination service that manages distributed IoT devices such as drones.

All applications offer an adequate number of features that increase the complexity of the

interaction environment and propose a stable system of internal services that utilize common

30

supporting technologies found in real-world usage. The two primary candidates that were

ultimately explored for the main conversion and benchmarking environment demanded for this

project were the Social Network and Hotel Reservation microservice applications. Other

DeathStarBench applications, such as the Media Service, E-Commerce, and Drone

Coordination benchmarks, were excluded due to factors such as higher system complexity, lack

of clear documentation, or reliance on less-supported technologies and languages, which made

them less suitable for controlled experimentation and automation within the scope of this thesis.

The two main services were chosen for the reason being their complementary characteristics

and relevance to the research objectives.

4.1.1 Social Network Application

The Social Network application represents a complex polyglot microservice ecosystem,

consisted of a high number of independent services in comparison to the other optional

microservice systems, with deep reliance on caching and memory management. Each service

was coupled with their own personalized supporting service for handling these aspects, which

presented an opportunity to outsource state related dependencies of standalone microservices

to those supporting technologies. The utilization of Apache Thrift as the RPC protocol

streamlines the application’s internal communications and poses as an attractive factor for

handling the intricacies of also communicating with an external entity such as OpenWhisk.

4.1.2 Hotel Reservation Application

The Hotel Reservation application offers a clean, modular architecture entirely implemented

in Go, aligning with one of the languages natively supported by OpenWhisk which was a great

benefit. Its limited number of services makes it manageable for initial experiments while still

embodying realistic patterns of service orchestration, database interaction, and RPC-based

communication. Using the same programming language across all services makes the system

easier to understand and work with during early research, especially when studying how

services function and depend on each other. However, this also means that the system uses

gRPC, a language-specific communication method tied to Go. Replacing gRPC with a method

compatible with OpenWhisk, like REST APIs, can be challenging because it’s closely built

into how the services communicate.

31

4.2 Deployment Experimentation

Similar to the approach followed on finalizing the choice of serverless platform deployment,

stability and consistency of the process were the core deciding factors for future utilization of

the service chosen on the research. The applications are not limited to a single deployment

option, having available alternative approaches at deployment using different tools and

platforms such as Docker with Docker-Compose, Openshift as well as implementations

through Kubernetes by using the Helm-Chart package manager. The inclusion of a deployment

implementation through Helm-Chart enhances the incentive to utilize a shared cluster manager

between both OpenWhisk and the deployed microservice application in question. This would

allow the design of a more streamlined environment setup process, easily repeated and

replicated, while at the same time alleviating the difficulty of managing two independent

systems hosting OpenWhisk and the application.

Therefore, Helm routed deployments were a priority while tuning the research environment,

which had to appropriately configured in order to maintain a stable platform for

experimentation. Despite the benefit of the active maintenance nature of the DeathStarBench

microservice applications by the development team, the Helm-Chart documentation appeared

to be lacking in specific areas and the deployment configuration introduced a variety of new

issues in relation to startup processes of both Social Network and Hotel Reservation

applications. Resolving these issues was crucial for the continuation of the project as well as

deciding for the final selection of the microservice application to be studied under this research.

4.2.1 Hotel Reservation Helm-Chart Deployment

Initial attempts to deploy the Hotel Reservation microservices using the Helm chart provided

within the DeathStarBench repository revealed multiple misconfigurations that caused

deployment failures across several components. The current unchanged configuration from the

repository itself led to CrashLoopBackOff errors in all core services.

32

Figure 3.6: CrashLoopBackOff Errors occurred from out-of -box Helm-Chart deployment of Hotel

Reservation application

Figure 3.7: Pod error description logged after the occurrence of CrashLoopBackOff error

Moreover, there was a misalignment between the service definitions and their corresponding

MongoDB instances. These misconfigurations stemmed from the use of outdated environment

variables and service discovery names inherited from the original Docker Compose

deployment environment. MongoDB and other service connection strings, for example, were

fetched from a config.json file that contained a configuration map. The map explicitly instructs

the system on how to handle the structure and mapping of the service names to align with the

Kubernetes DNS-based resolution model. The issue was traced to Helm’s values.yaml file

misconfiguration, unique for each particular service, that failed to set the environment directory

of execution correctly. More specifically, services were referencing binaries under the default

path ./<service-name> instead of the expected /go/bin/<service-name>.

33

Figure 3.8: Configuration Map found in config.json file showcasing environment variable mapping to

Kubernetes-compliant service names

Ultimately, the resolution involved rewriting each values.yml file for all services, fixing the

container command directory of execution from ./<service-name> to /go/bin/<service-name>.

Additionally, correctly specifying the mount path from which the configuration map is

referenced had to be corrected, from simply config.json to /workspace/config.json. These

changes in values.yml file structure correctly set the environment of deployment for all sub-

services of the application and directs them to extract the appropriate names for referencing the

rest of the services from the configuration map. After this simple but crucial adjustment, the

service was successfully deployed and fully functional.

Figure 3.9: Incorrect values.yml file for User Figure 3.10: Correct values.yml file for User

 Service Service

4.2.2 Social Network Helm-Chart Deployment

The Social Network application, as larger and more complex, also demanded a few critical

interventions for deployment via Helm. Initial deployment attempts encountered issues

specifically within the Horizontal Pod Autoscaler (HPA) template files. The service chart

inherited auto-scaling configurations from a base file named _baseHPA.tpl, which declared

global-level scaling parameters. These caused Helm to fail due to conflicting or missing

references within non-global value declarations, particularly when default values were not

explicitly overridden in the values.yaml file. Resolving the issue required removing HPA

configurations at the individual service level, ensuring the template logic evaluated valid

34

metrics references. The solution that ultimately allowed the application to execute was

achieved by adjusting these if condition statements within the _baseHPA.tpl file:

{{- if or

$.Values.global.hpa.targetMemoryUtilizationPercentage (and

.Values.hpa .Values.hpa.targetMemoryUtilizationPercentage) }}

to

{{- if or

$.Values.global.hpa.targetMemoryUtilizationPercentage}}

, and also

{{- if or $.Values.global.hpa.targetCPUUtilizationPercentage

(and .Values.hpa .Values.hpa.targetCPUUtilizationPercentage)

}}

to

{{- if or

$.Values.global.hpa.targetCPUUtilizationPercentage}}.

4.3 Selected Service: Hotel Reservation

Although both the Hotel Reservation and Social Network applications from the

DeathStarBench suite were ultimately deployed successfully within the Kubernetes cluster

using Helm, the Hotel Reservation application was selected as the primary subject for

serverless transformation in this thesis due to its greater structural alignment with the

conversion goals and constraints of the project. Specifically, Hotel Reservation offers a more

uniformly implemented service architecture, with all microservices written in Go, simplifying

code analysis and transformation pipeline.

In contrast, the Social Network application’s polyglot architecture, with services written in six

different languages, introduced enhanced complexity and difficulty in familiarizing with them

and keeping track if language-specific intricacies. Furthermore, the Social Network’s higher

inter-service communication density and media processing layers made it a less suitable

candidate for initial conversion attempts and performance benchmarking. Incidentally, Hotel

Reservation’s more homogeneous codebase, clearer service boundaries, and manageable

complexity offered an ideal and approachable development environment. This allowed the

research to focus on the core challenges of microservice-to-serverless transformation without

being interrupted by language heterogeneity and complexity.

35

Chapter 5

5

Hotel Reservation Microservice Application

Overview

5.1 Overview .. 35
5.1.1 Breakdown of Core Services ... 36
5.1.2 Communication Protocols and Runtime Behavior .. 36
5.1.3 Service Code Structure and Components .. 37
5.1.4 Relevance and Observability ... 39

5.2 User Service Breakdown .. 39
5.2.1 User Service Structure ... 40

This chapter describes the process of analyzing and comprehending the structure and

functionality of the Hotel Reservation Microservice Application as well as some of its

consisting subservices.

5.1 Overview

The Hotel Reservation application from DeathStarBench is a representative, production-grade

microservice benchmark that models the backend logic of a hotel booking platform. It is

designed to test and evaluate modern microservice architectures under realistic workloads and

demonstrates key patterns of distributed application design. The system is composed of eight

stateless microservices, each responsible for a distinct part of the booking pipeline, such as user

authentication, profile management, geo-location resolution, hotel search, rate calculation,

reservation handling, and recommendation generation. As established, each service is

implemented in Go, reflecting a uniform language choice that simplifies orchestration and

tooling.

The application integrates widely used backend technologies including MongoDB for

persistent storage and Memcached for caching, ensuring high performance and scalability

under load. These components are containerized and orchestrated in cloud-native environments

36

such as Kubernetes, making the application suitable for studying the deployment, execution,

and transformation of microservices in realistic settings.

5.1.1 Breakdown of Core Services

Each microservice in the Hotel Reservation system serves an independent purpose and

communicates with other services to fulfill broader user requests. The Geo Service maps user-

provided addresses or coordinates to internal region identifiers, leveraging static datasets and

spatial resolution logic. The Search Service uses this information to query nearby hotels based

on location and availability, pulling a hotel dataset from a MongoDB service. The Rate Service

retrieves dynamic pricing information for specific hotels and dates, often combining data from

both databases and in-memory caches like Memcached to reduce latency. The Reservation

Service is responsible for handling new bookings and cancellations, interfacing with storage

layers to ensure consistency. The Recommendation Service analyzes user profiles and booking

histories to suggest hotels tailored to individual preferences. Each of these services can operate

independently and collaborates through defined interfaces, forming a coordinated.

Figure 4.1: Graphical Representation of Hotel Reservation Microservice Application Internal Service

Communication Structure

5.1.2 Communication Protocols and Runtime Behavior

Communication between services in the Hotel Reservation application is implemented using

gRPC, a high-performance, open-source RPC framework developed by Google. GRPC uses

37

Protocol Buffers, proto3, as its interface definition language, enabling strongly typed inter-

service communication. Each microservice defines its service interface in a .proto file, which

is compiled into Go bindings using the protoc compiler and associated gRPC plugins. These

bindings generate both the client and server-side interfaces, simplifying implementation and

maintaining consistency across the system. Runtime communication occurs over HTTP/2.

Additionally, the application employs distributed tracing frameworks like Jaeger to monitor

request propagation across services, using gRPC interceptors to automatically propagate

tracing metadata with each call. This architecture ensures both low-latency communication and

observability.

5.1.3 Service Code Structure and Components

The microservices in Hotel Reservation follow a standardized internal code structure that

emphasizes modularity. Each service contains a main.go file that acts as the entry point,

initializing configuration, logging, tracing, and service registration before launching the gRPC

server. Core logic is encapsulated in a server.go file, which implements the generated gRPC

interface by wiring business logic into the service methods. The Protocol Buffers are defined

under a proto/ directory and compiled into *_pb.go and *_grpc.pb.go files during the build

process. Database configuration for each service is found within the db.go file, dedicated to

initializing and interacting with the MongoDB backend that stores user credential data

MongoDB integration is handled via the official Go driver [21], typically abstracted behind

internal helper functions for loading and querying data. Memcached clients are initialized in

services that benefit from fast in-memory caching, such as rate or search-related services.

Environment variables are used for injecting runtime parameters such as ports, database

addresses, and external service URLs, through JSON-based config files ensuring consistency

across deployment environments.

38

Figure 4.2: Tree structure of services Figure 4.3: Tree structure of cmd

 directory of Hotel Reservation directory of Hotel Reservation

 Application Application

The architecture of the Hotel Reservation application leverages external supporting

technologies such as MongoDB and Memcached for persistent storage and caching, allowing

services to offload much of their data handling and memory requirements. Each core service is

paired with its own dedicated MongoDB instance, used exclusively for storing and retrieving

its operational data, while Memcached instances provide efficient access to frequently used

information for some more load-heavy services. This design proves advantageous when

converting services to serverless functions, as it enables the externalization of state. Even if a

service contains some internal logic that temporarily maintains state, the presence of these

39

external systems offers a clear path for restructuring such logic into a stateless execution model.

The serverless functions can interact with these supporting services on demand, maintaining

the expected behavior while conforming to the stateless nature required by the serverless

platform.

Figure 4.4: MongoDB pod instances for all services

5.1.4 Relevance and Observability

The Hotel Reservation application is particularly well-suited for research on microservice

transformation due to its modularity, language uniformity, and realistic data interactions. Its

structure mimics common enterprise deployments, where services are decoupled,

independently deployable, and communicate through well-defined channels. The use of widely

adopted tools like gRPC, MongoDB, and container-based deployment makes the system

approachable while still maintaining production-level complexity. These features make Hotel

Reservation not only a strong benchmark for performance and scalability evaluation, but also

an ideal candidate for experimental transformation into serverless architectures, where clear

service boundaries, statelessness, and transparent communication are essential for success.

5.2 User Service Breakdown

In order to comprehend the requirements of converting a microservice to a serverless function,

a service had to be chosen from the Hotel Reservation application for deep analyzation of its

internal structure and functionality. Understanding the core logic and how it is implemented in

the lower levels of code development as well as using specific technologies such as MongoDB

and Memecached protocols, was of high significance in discovering a robust conversion

process and methodology.

40

Therefore, a service that included the base level components used by the majority of the

services in the application while also maintaining a lower level of logical complexity uniquely

implemented for its specific functionality had to be selected. This would help identify common

patterns used throughout the system, while avoiding issues caused by deeply specialized

functionality. The service that satisfied these demands was the User Service, combining

simplicity of service-specific logic implementation with a complete model of service

architecture.

Beyond its structure, the User Service was also a good fit in terms of performance and

scalability. Since it handles user login and authentication, it is called frequently and must

respond quickly. Its operations are short and efficient, mostly involving basic input checks

and database lookups. This means it uses few resources and does not require long processing

time. The service also experiences sudden increases in traffic, such as when many users log

in at once, which makes it a good test case for studying how serverless platforms like

OpenWhisk scale to meet demand. Because of this, converting the User Service gave useful

results both for testing correctness and for understanding performance under realistic

workloads.

5.2.1 User Service Structure

As mentioned, each service encapsulates its functionality in a collection of files that serve a

different purpose adhering to a modular and layered file structure, ultimately combining when

executed to a complete system. At the entry point lies the main.go file, located in the cmd/user/

directory, which calls upon the services provided by the other files implemented in the system.

This file is responsible for bootstrapping the service: it reads configuration parameters from a

config.json file:

jsonFile, err := os.Open("config.json")

establishes a MongoDB connection using a custom initializeDatabase function which is

implemented in the db.go file:

log.Info().Msg("Initializing DB connection...")

41

mongoClient, mongoClose :=

initializeDatabase(result["UserMongoAddress"])

defer mongoClose()

utilizing said parameters extracted from the configuration map found in config.json file and

initializes tracing and service discovery through Jaeger and Consul respectively. It then

launches the gRPC server via a call to srv.Run():

srv := &user.Server{ Port: servPort, IpAddr: servIP, Tracer: tracer,

Registry: registry, MongoClient: mongoClient }

log.Fatal().Msg(srv.Run().Error())

The db.go file in the User Service of the Hotel Reservation application is dedicated to

initializing and interacting with the MongoDB backend that stores user credential data. It

defines a User struct with BSON field tags to map Go struct fields to MongoDB document

keys:

type User struct {

 Username string `bson:"username"`

 Password string `bson:"password"`

}

The core function, initializeDatabase, accepts a MongoDB connection string, constructs a URI,

and creates a new client using the official MongoDB Go driver. It then populates the database

with synthetic test users by generating 500 usernames and corresponding passwords, each

hashed using the SHA-256 algorithm for secure storage:

sum := sha256.Sum256([]byte(password))

newUsers = append(newUsers, User{

 fmt.Sprintf("Cornell_%x", suffix),

 fmt.Sprintf("%x", sum),

})

These users are inserted in bulk into the "user" collection within the "user-db" database. After

the insertion, a cleanup function is returned to disconnect the MongoDB client when the service

shuts down.

42

Service logic is implemented in the server.go file, located under services/user. Understanding

the contents of this file was crucial for pinpointing the basic functionality of the service that

needed to be extracted and fit into the serverless function model. The file implements three

core methods:

The Run method handles the service’s gRPC configuration which will accept requests from

other entities by setting up a gRPC server instance and binds it to a TCP port. It also registers

the service with Consul for dynamic service discovery.

In addition, the loadUsers method is implemented with the purpose of fetching all the user data

stored inside the corresponding MongoDB database for the User service: mongodb-user, and

storing them in a map data structure that matches each instance of a username with the

appropriate password:

collection := client.Database("user-db").Collection("user")

curr, err := collection.Find(context.TODO(), bson.D{})

if err != nil {

 log.Error().Msgf("Failed get users data: ", err)

}

var users []User

curr.All(context.TODO(), &users)

if err != nil {

 log.Error().Msgf("Failed get users data: ", err)

}

The usage of this function adds a level of state to the lifetime environment of the system. As

the function is called upon in the Run() method mentioned before, as a startup process, the

entirety of the user information is loaded to the memory allocated to the service while it is alive

and is kept in an easily accessible data structure for instant reference when user validation

requirements are demanded from the service from outside entities. The Hotel Reservation

application in general does not offer a method for users to create new accounts with customized

user data, therefore the user service is designed to preload the user information to memory and

use the map data structure to instantly access it in any instance the service is called upon to

execute user validation. This design is justified since there is no need for the map to be updated

with new user data introduced to the application environment. At a microservice level, this

43

choice severely decreases latency levels for the access to user data and nullifies additional

latencies that occur when that data must be fetched.

This approach introduces state within the main service logic, as the user data remains in

memory for the lifetime of the service. While this design significantly improves performance

by eliminating repeated database queries, it conflicts with the stateless model required by

serverless platforms like OpenWhisk. In a serverless setting, each function invocation must

operate independently, with no persistent in-memory state between calls. Replacing map with

a stateless alternative would require each request to fetch user data directly from the database

or a shared external cache. This can lead to increased latency, especially under heavy load. To

address these drawbacks, solutions such as FaaS-oriented caching systems for example,

FaaSCache mentioned before, can be utilized. These systems provide shared and fast-access

memory across function instances, helping to maintain low-latency access to frequently used

data.

Lastly, the CheckUser method is implemented, encapsulating the main functionality of the User

Service as a whole, validating user information after referencing the appropriate preconfigured

user data. The CheckUser method is the sole gRPC endpoint exposed by the User Service,

defined in the Protocol Buffers file as:

rpc CheckUser(Request) returns (Result);

When invoked, it receives a Request message containing the username and password fields.

Inside the method, the server performs a deterministic transformation of the submitted

password using the SHA-256 cryptographic hash function to ensure secure storage and

comparison. This is implemented in Go as follows:

sum := sha256.Sum256([]byte(req.Password))

pass := fmt.Sprintf("%x", sum)

The hash is converted to a hexadecimal string to match the format stored in the database. The

service then retrieves the correct hashed password for the requested user from its in-memory

map that was populated during initialization from MongoDB. If the username is found and

the hashes match, the Correct field of the response is set to true, otherwise it remains false:

if true_pass, found := s.users[req.Username]; found {

44

 res.Correct = pass == true_pass

}

45

Chapter 6

6

OpenWhisk Go Runtime

6.1 OpenWhisk Go Runtime .. 45

6.2 Example of Action provided by OpenWhisk Go Runtime Repository... 47

After conducting deeper investigation, it came to our understanding that OpenWhisk does not

compile nor does it accept programs compiled using the default program compiler commonly

utilized for regular go applications, but instead performs compilation of the action program by

parsing it through a customized go runtime specifically designed for OpenWhisk actions. This

chapter further explains how the runtime functions and its utility in our research.

6.1 OpenWhisk Go Runtime

Τhis customized runtime acts as an invocation driver, using a lightweight controller that

handles function calls through a standard protocol called ActionLoop. Unlike traditional Go

execution where the application controls the main event loop and server lifecycle,

OpenWhisk’s Go runtime shifts this responsibility to the platform’s internal handler, which

acts as an execution shell that invokes a user-defined function, equivalent to what would be the

program’s main function, in response to JSON-formatted input events. This ActionLoop

model, followed by the platform enforces a clear separation of computation and transport:

OpenWhisk manages invocation routing, environment setup, and container lifecycle, while the

user’s core function is responsible solely for processing input and returning a structured output.

The user-defined action invoked by the shell must follow a strict signature structure, including

having a user given name that must start with an uppercase letter and identical input parameter

and return types in the form of a map[string]interface, for example:

func Main(args map[string]interface{}) map[string]interface{}

46

This signature reflects the platform’s expectation of a JSON-in / JSON-out interaction model.

The parameter args represents the input payload, which is automatically populated by the

OpenWhisk runtime by parsing the incoming invocation request as a flat JSON object. The

map[string]interface type in Go allows the function to handle arbitrary key-value pairs,

supporting a wide variety of payload schemas without requiring a strict predefined structure.

The return value of the Main function is also a map[string]interface{}, which is serialized to

JSON and emitted to standard output by the runtime. This response becomes the activation

result, which is sent back to the caller and stored in the platform’s activation logs. The response

must be a well-formed JSON otherwise, the platform may consider the invocation failed.

Figure 6.1: Figure demonstrating action creation compilation-creation-invocation workflow

The runtime is bundled into a minimal Docker image that serves as the execution context for

all Go actions. The image containing the runtime can be momentarily deployed as a Docker

container, for directly handling compilation of the program locally into the proper binary form,

before into feeding into the platform for invocation which can be executed in a single command

as so:

docker run -i action-golang-v1.17:nightly -compile Main < user_v1.go

> exec

The runtime supports two primary modes of action deployment: precompiled binary actions

and source-based actions. In the first case, the developer compiles their Go function into a

47

binary before deployment using an instance of the runtime container itself locally and packages

it into a ZIP archive. In the second, the developer provides the Go source code and module

files, and OpenWhisk compiles the code within the runtime container at execution time. This

flexibility allows developers to either rely on OpenWhisk’s internal build system or retain full

control over the build process themselves, depending on their development workflow or the

specific needs of their application. In both cases, the deployed package must conform to the

runtime’s structural and naming conventions for successful execution.

In addition, the runtime environment imposes certain expectations during execution. It

initializes containers using a minimal base image where the compiled binary must exist at the

container root and is demanded to be statically compiled for Linux amd64. This binary must

be named exactly “exec”, as this name is hardcoded in the container entrypoint script that the

ActionLoop wrapper uses to launch the function. Through failures observed during the

experimentation, it was determined that a failure to name the binary exec or a mismatch in

architecture leads to silent container crashes or cryptic errors.

6.2 Example of Action provided by OpenWhisk Go Runtime

Repository

By reviewing the openwhisk-runtime-go repository [22], complete examples of functional and

more importantly comprehendible action programs were found with additional guidelines to

their correct deployment to OpenWhisk. Significantly insightful for the user action service was

the example showcasing the appropriate program structure and deployment method for an

action program that required external go modules to function called “module-main”. In the

example, the modules would have to be downloaded and integrated to the compilation process

by utilizing the go.mod and go.sum files, just as they are used in the default building method

of a traditional go program and packaged properly when sent to the runtime for compilation.

One of the core lessons derived from the module-main example is the support for zip-based

action uploads in OpenWhisk, which allows us to submit either compiled executables or raw

Go source files in a ZIP archive. Unlike trivial OpenWhisk actions which consist of a single,

dependency-free source file, the module-main example showcased the end-to-end process of

bundling and compiling a multi-file Go project with module dependencies and uploading it as

either source or binary in ZIP format.

48

The example in question, other than the Go module files needed for their inclusion in the

compilation process, included the main.go file which implemented the main logic of the action

and a Makefile for automating frequently utilized commands. The main.go file in the module-

main example provides a complete Go action that demonstrates how to implement a modular,

stateless function suitable for OpenWhisk deployment. Its structure follows the requirements

imposed by the actionloop protocol. The correctly defined OpenWhisk Go action is structured

as so:

import (

 "github.com/rs/zerolog"

 "github.com/rs/zerolog/log"

)

func init() {

 zerolog.TimeFieldFormat = ""

}

// Main function for the action

func Main(obj map[string]interface{}) map[string]interface{} {

 name, ok := obj["name"].(string)

 if !ok {

 name = "world"

 }

 log.Debug().Str("name", name).Msg("Hello")

 msg := make(map[string]interface{})

 msg["module-main"] = "Hello, " + name + "!"

 return msg

}

This the expected structure of an OpenWhisk Go action, particularly highlighting the role of

the init() block, the required function signature, and the output format. The init() function is

used here to configure the behavior of the imported library before any action logic runs. The

core logic resides in the Main function, which is required to have the specific signature structure

mentioned before. This structure defines a generic, JSON-compatible interface both for input

and output, in line with OpenWhisk’s actionloop protocol. The function reads a value from the

input map, validates its type as a string, and constructs a response stored in a new

map[string]interface{}. This output map is then returned directly to the invoker, demonstrating

the required practice of returning results as JSON-encoded key-value pairs

49

The accompanying Makefile in the module-main example played a crucial role in automating

and simplifying the deployment process of the Go-based OpenWhisk action. It encapsulates a

complete workflow that includes packaging the source files, compiling the binary using the

official OpenWhisk Go runtime container, and deploying the resulting action to the platform

using the wsk CLI tool. By abstracting these steps into a single, repeatable command sequence,

the Makefile eliminates manual overhead, ensures consistent configuration, and reduces the

potential for user error during action creation and testing. This automated approach proved

highly valuable in the development of this thesis, both for deploying converted services and

for understanding the structural expectations of the runtime environment.

50

Chapter 7

7

Methodology of Conversion

7.1 Identifying and Isolating the Target Service Logic .. 50

7.2 Ensuring Statelessness .. 51

7.3 Refactoring into the OpenWhisk Runtime Model .. 51

7.4 Managing External Dependencies .. 52

7.5 Deployment .. 52

This chapter formalizes the practical process developed to convert individual microservices

within a larger service-oriented application into OpenWhisk-compatible serverless functions.

The methodology is distilled from iterative experimentation, the successful transformation of

key services, and lessons learned from debugging, deployment, and integration. It is structured

to serve as a repeatable guideline for future transformations, ensuring compatibility with

OpenWhisk’s runtime expectations while preserving the original service logic and external

dependencies.

7.1 Identifying and Isolating the Target Service Logic

The conversion process begins with identifying the target microservice’s to be converted core

service logic. This requires a focused analysis of the service’s codebase typically consisting of

the request processing, business rules, and data interaction components. This logic must be

isolated from unrelated elements such as long-running server loops, or tightly coupled

middleware. The goal is to identify the minimum executable subset of code that can process a

well-defined input and produce a corresponding output, ideally in a stateless manner. This

extracted logic is then restructured into a standalone function that conforms to OpenWhisk’s

expectations.

51

Determining this minimum executable subset is often an empirical and iterative process. Apart

from the code’s structure its runtime behavior requires examination to ensure that all

dependencies, such as helper functions and external service calls, are correctly recognized. This

may involve trial-and-error testing, where different combinations of code segments are isolated

and evaluated for correctness and completeness. The validity of the isolated logic is typically

confirmed by comparing its output against the original microservice under a variety of input

scenarios, ensuring functional equivalence.

7.2 Ensuring Statelessness

To comply with the serverless execution model required by OpenWhisk, all converted actions

must operate in a stateless manner. This means that no data, state, or execution context can

persist between action invocations. During the transformation process, it is essential to identify

and eliminate any stateful constructs within the original service code, such as in-memory data

structures or long-lived resource handlers. These patterns must be avoided, as the serverless

environment instantiates a fresh execution context for each request, with no guarantee of

continuity.

To maintain functionality without relying on stateful behavior, all data that must persist or be

shared across invocations should be managed through external systems. Databases and caching

services should be used to store data and information that would otherwise have been held in

memory. The action must retrieve all necessary input at the beginning of execution and

complete its processing using only the data it receives or fetches from persistent sources. By

designing the action in this way, it remains compatible with the serverless platform’s

guarantees of stateless behavior.

7.3 Refactoring into the OpenWhisk Runtime Model

Once isolated, the service logic is rewritten to follow the required function signature:

func FunctionName(args map[string]interface{})map[string]interface{}

This form is dictated by OpenWhisk’s Go runtime, which uses the actionloop protocol. The

logic inside the function must handle all input validation, type assertions, and data

52

transformations inline. External service interactions must also occur within this single function

call or through reusable global initializations, such as inside init(). Any communication

mechanisms that rely on tightly coupled RPC protocols must be removed or bypassed, as

OpenWhisk actions are isolated units that cannot directly participate in non-HTTP

communication patterns. Instead, all data required by the function should be delivered through

the input JSON map, which acts as the sole interface between the invoker and the action. The

function must terminate quickly, avoid background processes, and return all meaningful output

in a JSON-compatible map to ensure proper execution and integration within the OpenWhisk

runtime.

7.4 Managing External Dependencies

In cases where the service requires external dependencies or additional modules such as

caching or database drivers, the action in our case is developed using Go modules through the

configuration of go.mod and go.sum files. The action’s packaging process must include these

modules, either through source-based deployment, where OpenWhisk compiles the code inside

a container or binary deployment, where the action is compiled externally using a Docker

image and then uploaded. In both methods, the packaging of the module files is executed

through bundling them into ZIP archive files ensuring that all necessary components are

transferred together in a format compatible with OpenWhisk’s action creation process.

7.5 Deployment

After packaging the action files appropriately, the final step in the transformation process is

deployment to the OpenWhisk platform. This involves registering the action with the

platform’s control interface, specifying the required runtime, and supplying either the compiled

binary or source archive. Each action is associated with a name and optionally a package and

must declare the correct entry point corresponding to the function name implemented in the

source. Once deployed, the action becomes fully accessible within the OpenWhisk

environment and can be invoked directly through CLI commands, API calls, or as part of a

larger event-driven workflow defined within the system. The success of this process confirms

that the action is correctly structured, runtime-compliant, and ready for integration within the

broader serverless application.

53

Overall, we outline a structured methodology for transforming microservice components into

OpenWhisk-compatible serverless actions. It covers isolating service logic, establishing

statelessness by externalizing stateful features, adapting it to the runtime execution model, and

managing external dependencies in a platform-compliant manner. By emphasizing modularity,

statelessness, and clear communication through JSON-based input and output, the

methodology enables reliable deployment of serverless functions that integrate seamlessly into

distributed application architectures. These principles form the foundation for broader service

transformation efforts and enable subsequent integration and evaluation within a real-world,

cloud-native environment.

54

Chapter 8

8

Conversion of User Service

8.1 User Service Conversion Attempt .. 54
8.1.1 Core Function Signature .. 57
8.1.2 Database Logic .. 57
8.1.3 Authentication Logic ... 57
8.1.4 Deployment Attempt ... 58

8.1 User Service Conversion Attempt

Following the detailed insights obtained from the module-main example in the official

openwhisk-runtime-go repository, the conversion of the original User microservice into a fully

compliant OpenWhisk action was carried out with structural and functional adjustments to

meet the platform’s runtime expectations. Additionally, as established when analyzing the

service and indicated by the gRPC protocol buffer method exposure, the only substantial

functionality that is available to other service entities is implemented in the CheckUser method

which performs basic user validation. Therefore, the action developed must implement

functionally equivalent logic to the one present in CheckUser function. The action was

developed in the following structure:

import (

 "context"

 "crypto/sha256"

 "fmt"

 "log"

 "time"

 "go.mongodb.org/mongo-driver/bson"

 "go.mongodb.org/mongo-driver/mongo"

 "go.mongodb.org/mongo-driver/mongo/options"

)

55

// MongoDB connection

var mongoClient *mongo.Client

func init() {

 // MongoDB URI for connection

 mongoURI := "mongodb://mongodb-user-

hotelres.ianton04.svc.cluster.local:27023"

 clientOptions := options.Client().ApplyURI(mongoURI)

 ctx, cancel := context.WithTimeout(context.Background(),

10*time.Second)

 defer cancel()

 client, err := mongo.Connect(ctx, clientOptions)

 if err != nil {

 log.Fatalf("Failed to connect to MongoDB: %v", err)

 }

 mongoClient = client

 log.Println("Connected to MongoDB")

}

// OpenWhisk entry point

func User(event map[string]interface{}) map[string]interface{} {

 // Validate input parameters

 username, ok := event["username"].(string)

 if !ok || username == "" {

 return map[string]interface{}{

 "error": "Invalid or missing username",

 }

 }

 password, ok := event["password"].(string)

 if !ok || password == "" {

 return map[string]interface{}{

 "error": "Invalid or missing password",

 }

 }

 // Query MongoDB for the user

56

 collection := mongoClient.Database("user-

db").Collection("user")

 filter := bson.M{"username": username}

 var result struct {

 Username string `bson:"username"`

 Password string `bson:"password"`

 }

 err := collection.FindOne(context.TODO(),

filter).Decode(&result)

 // Handle user not found

 if err == mongo.ErrNoDocuments {

 return map[string]interface{}{

 "status": "success",

 "message": "User not found",

 "valid": false,

 }

 } else if err != nil {

 // Handle other database errors

 return map[string]interface{}{

 "error": fmt.Sprintf("Database error: %v", err),

 }

 }

 // Hash the input password using SHA-256

 hashedInputPassword := sha256.Sum256([]byte(password))

 hashedPassword := fmt.Sprintf("%x", hashedInputPassword)

 // Compare hashed passwords

 passwordIsValid := hashedPassword == result.Password

 return map[string]interface{}{

 "status": "success",

 "message": "User validation complete",

 "username": username,

 "valid": passwordIsValid,

 "hashedPassword": result.Password,

 }

57

}

8.1.1 Core Function Signature

The user.go file was designed around the required functional interface func

User(map[string]interface{}) map[string]interface{}, replacing the original gRPC-based

handler models with OpenWhisk’s actionloop-compatible signature. The action receives

invocation data as a flat JSON object, which is unmarshalled into a map[string]interface{} by

the runtime and passed to the function. Internally, the function performs type-checking on the

"username" and "password" parameters and ensures fault-tolerant input parsing by returning

structured error responses when input validation fails.

8.1.2 Database Logic

The database query logic was retained from the original service but refactored to execute

entirely within the function scope, using a globally initialized MongoDB client defined in the

init() function. This approach aligns with OpenWhisk’s container reuse model, allowing the

database connection to persist across multiple invocations, within the time frame the action

container is alive before initial invocation, that being about 10-15 minutes. The init() block

itself was constructed to safely establish a connection to the MongoDB service using a

Kubernetes service URI mongodb-user-hotelres.ianton04.svc.cluster.local:27023. The

MongoDB Go driver mongo.Connect is used in conjunction with BSON decoding to retrieve

user credentials from the "user" collection within the "user-db" database.

Sufficient error handling is conducted regarding the unsuccessful retrieval of user information

from the database storage, or any other kind of errors produced by the Mongo service. Proper

message communication from the action is integral for understanding the state of the action at

any point of interaction to ensure stability.

8.1.3 Authentication Logic

58

Passwords are verified using a SHA-256 hashing function and compared to the stored hash,

with the result returned in a JSON-encoded response that abides to OpenWhisk’s output model.

In the response we include primarily status and message keys validating the complete execution

of user validation task as well as a Boolean key value called “valid” that states the result of

validation, true for password match and false for mismatch.

Notably, all state transitions, error handling, and logic branching are encapsulated within the

single User function, respecting OpenWhisk’s strict lifecycle boundaries and stateless

invocation model.

Accompanying the new refined version of the converted action, we also constructed a Makefile

coupled with the action program for proper compilation and deployment heavily influenced by

the structure of the module-main example and adapted accordingly to reflect the new action

name, package, and compilation needs.

8.1.4 Deployment Attempt

Deploying the converted User action can now be executed through the specialized Makefile

responsible for handling environment configuration for an automated process. By simply

running in sequence the appropriate commands for deployment and testing we can easily

execute a process that is preconfigured to locally compile the user.go program containing the

action, using the action-golang runtime from a temporary docker container. Afterwards, the

action in the form of a packaged zip file containing the compiled action binary as well as its

required modules is deployed to the OpenWhisk platform and then is invoked after proper

action creation. These tasks implemented in the Makefile are done through the wsk CLI tool

and are configured to be responsive and streamlined in terms of command feedback and output

structure.

Initially, running the deployment command returns positive results regarding the creation of

the service within the OpenWhisk platform environment. As evident in the figure 4.9 the

expected sequence of tasks outlined by the Makefile rules interchange successfully. Initially

the appropriate package is created within OpenWhisk to host the upcoming action to be created

and the files demanded for compilation are packaged in a zip file that is then loaded to the

activated docker container running the OpenWhisk go runtime. Lastly the zipped output from

59

the runtime containing the successfully compiled binary is used along with its demanded

modules to create an action named checkUser.

Figure 4.9: OpenWhisk output when creating action using Makefile command “make deploy”

These results indicate a smooth execution of the commands outlined in the Makefile ruling as

well as positive feedback from OpenWhisk relating to successfully creating the action, however

this output is not sufficient to ensure proper compatibility of the action program with the

platform’s execution environment. We then run the command for executing an invocation of

the checkUser action with a predefined test sample of input. By doing so, as showcased in

figure 4.10 we achieve successful invocation of the action with correctly returned results. The

action delivers a properly structured message and status value informing us about the

completion of the user validation process as well as information regarding the actual validity

of the data provided, evident in the value of the “valid” key.

The “hashedPassword” and “username” keys present were added for debugging purposes after

encountering an issue with validating expected username and password values stored in the

mongo database, which was discovered to simply be misconception of the way the username

and password were paired when uploaded to mongo.

Figure 4.10: Successful action invocation result of checkUser action

The successful response confirms that the compiled and deployed Go action not only adheres

to OpenWhisk’s structural and runtime constraints but also performs the intended application

logic with precision. These results collectively demonstrate the end-to-end compatibility and

correctness of the transformed microservice action and validate the underlying architectural

and implementation decisions that guided its construction.

60

Chapter 9
9

Integration of Action with Microservice Application

9.1 GPRC Invocation of Original User Service ... 61

9.2 The checkUserHTTP function .. 62

9.3 Building new Image of the Application ... 65

This chapter showcases the process followed to properly integrate the newly created serverless

function implemented as an OpenWhisk action, to the already functioning environment of the

Hotel Reservation microservice application. The communication method with OpenWhisk is

constructed to seamlessly invoke the action at any point demanded by the application.

Additionally, a new functional image of the application is built for the purpose of integrating

additions of code responsible for application to action communication.

With the conversion of the individual User Service to a serverless OpenWhisk action complete

and verified for correctness, the next stage involves integrating this new component into the

existing HotelReservation application. This process requires carefully refactoring service

invocations to align with the OpenWhisk model while maintaining full compatibility with the

frontend and user-facing APIs.

The original structure of the Hotel Reservation application calls upon the CheckUser function

which was converted into a serverless action to execute user validation, only from within the

frontend service. The server.go file containing application logic of the Frontend service makes

the call to the User service in every instance of handler function that is called when specifically

invoking the usage of one of the services by the applications API. Essentially, at every request

received by the frontend service, requiring the utilization of another service from the collection

of business logic services, the appropriate handler function is called upon which that itself

internally communicates with the User service to perform user validation.

61

9.1 GPRC Invocation of Original User Service

The original CheckUser method is called upon from only one other service from the collection

of services active when the application is deployed, that being the Frontend service specifically

present within Frontend’s server.go file. The method call can be traced to all handler functions

implemented for all the main services in the server file which is done so to always validate the

user that invokes the functionalities provided by each service. This indicates that the action to

be developed will have to be invoked equally at the same points the function was called upon,

thus exposing the route to seamlessly incorporate the serverless function within the already

existing microservice implementation constructing a hybrid system between the two

architectures.

The body of the request received by Frontend in every case contains username and password

values that are properly parsed and extracted from the request payload and fed into a request

to the User Service. The communication between the services is made possible by the gRPC

remote procedure call protocol that all services of the application adhere to, to maintain a

uniform method of exchanging information and utilizing each services functions making them

available to one-another. An example of this can be seen present in the reviewHandler function

responsible for handling user review requests in the frontend service and includes a user

authentication step utilizing gRPC:

username, password := r.URL.Query().Get("username"),

r.URL.Query().Get("password")

 if username == "" || password == "" {

 http.Error(w, "Please specify username and password",

http.StatusBadRequest)

 return

 }

 // Check username and password

 recResp, err := s.userClient.CheckUser(ctx, &user.Request{

 Username: username,

 Password: password,

 })

if err != nil {

62

 http.Error(w, err.Error(),

http.StatusInternalServerError)

 return

 }

 str := "Logged-in successfully!"

 if recResp.Correct == false {

 str = "Failed. Please check your username and password. "

 }

It begins by parsing the username and password parameters directly from the request URL.

This direct extraction from the query string ensures that both credentials are available for the

subsequent verification process. An initial check confirms that neither value is empty and if

the parameters are valid, the handler proceeds to authenticate the user via a gRPC request,

invoking the CheckUser method from the user microservice through the pre-initialized

userClient.

This call encapsulates the provided credentials into a user.Request protobuf message and

dispatches it using gRPC. The response returned, held in recResp, includes a Correct boolean

field indicating the result of the authentication. If the credentials are invalid or the gRPC call

fails, an HTTP error is returned to the client.

9.2 The checkUserHTTP function

The original user service uses gRPC for communication with other services, exposing internal

methods through protocol buffers. While this architecture simplifies cross-service interaction

within a microservice ecosystem, it poses compatibility issues when converting services into

OpenWhisk actions, which are invoked via HTTP-based REST APIs. To enable integration of

the OpenWhisk-based checkUser action within the existing application, the gRPC-based

authentication mechanism was replaced with an HTTP invocation method. This transition

required decoupling the frontend service from the gRPC interface of the original user

microservice and introducing a new function, checkUserHTTP, responsible for sending

requests to the serverless action endpoint as well as parsing the json response sent by the action

and returning it to the application:

func checkUserHTTP(username, password string) (bool, error) {

63

 url :=

"https://10.10.1.1:31001/api/v1/namespaces/guest/actions/user-

service/checkUser?blocking=true&result=true"

 // Create JSON payload

 reqBody, _ := json.Marshal(map[string]string{

 "username": username,

 "password": password, // Send as plain string (no local

hashing)

 })

 // Create HTTP request

 req, _ := http.NewRequest("POST", url, bytes.NewBuffer(reqBody))

 req.Header.Set("Content-Type", "application/json")

 req.SetBasicAuth("23bc46b1-71f6-4ed5-8c54-816aa4f8c502",

"123zO3xZCLrMN6v2BKK1dXYFpXlPkccOFqm12CdAsMgRU4VrNZ9lyGVCGuMDGIwP")

// Replace with actual auth

 // Create custom HTTP client to ignore SSL certificate

verification

 tr := &http.Transport{

 TLSClientConfig: &tlsGo.Config{InsecureSkipVerify: true},

 }

 client := &http.Client{Transport: tr}

 // Send HTTP request

 resp, err := client.Do(req)

 if err != nil {

 return false, err

 }

 defer resp.Body.Close()

 // Read the raw response body

 body, err := io.ReadAll(resp.Body)

 if err != nil {

 return false, err

 }

 //Debug: Print Full JSON Response

 fmt.Println("Full JSON Response:", string(body))

64

 // Define a struct to parse the JSON response

 var jsonResponse struct {

 HashedPassword string `json:"hashedPassword"`

 Message string `json:"message"`

 Status string `json:"status"`

 Username string `json:"username"`

 Valid bool `json:"valid"`

 }

 // Parse JSON into the struct

 err = json.Unmarshal(body, &jsonResponse)

 if err != nil {

 return false, fmt.Errorf("failed to parse JSON response:

%v", err)

 }

 // Print extracted values for debugging

 fmt.Printf("Extracted - Username: %s | Valid: %v | Message: %s |

Hashed Password: %s\n",

 jsonResponse.Username, jsonResponse.Valid,

jsonResponse.Message, jsonResponse.HashedPassword)

 // Return valid status and hashed password

 return jsonResponse.Valid, nil

}

This change enables seamless access to the action from the frontend service, aligning the hybrid

system with serverless invocation semantics.

The function begins by defining the target URL which includes OpenWhisk’s RESTful API

gateway path. A JSON request body is constructed using the provided credentials. The request

body is encoded in JSON and includes the username and password fields, which are marshaled

into a format expected by the deployed action.

A custom HTTP client is configured to bypass SSL verification and basic authentication

credentials to specify authentication host and key demanded by the OpenWhisk endpoint are

added to authorize the call. To accommodate the self-signed certificate used in the local

65

environment, a custom HTTP transport is created with InsecureSkipVerify enabled, and the

request is executed using a modified HTTP client. Upon receiving the response, the function

reads the raw response body and unmarshals it into a temporary struct with expected fields

such as Username, HashedPassword, Status, Message, and Valid:

Finally, the function returns the Valid field to indicate the success or failure of user validation.

This implementation ensures full compatibility with OpenWhisk’s expected input/output

model and enables the frontend service to validate credentials through an external serverless

function without relying on a persistent RPC channel. The integration was completed by

substituting previous userClient.CheckUser gRPC calls existent in the service handler

functions with synchronous calls to checkUserHTTP, enabling the frontend to maintain

identical business logic while shifting its user authentication layer to a serverless environment.

9.3 Building new Image of the Application

Following the integration of the new HTTP-based user authentication logic via the

checkUserHTTP function, the frontend service required recompilation to include the modified

server.go implementation. To accomplish this, a new Docker image of the microservice

application was constructed. The Dockerfile used for this process compiled the Go-based

application binary with the updated logic and produced a statically linked executable. The

resulting image was tagged as ianton04/hotel-reservation:latest and pushed to Docker Hub to

make it available for deployment within the Kubernetes cluster.

66

Figure 6.1: Newly Built Application image uploaded to Dockerhub under the name ianton04/hotel-

reservation with the tag latest

To ensure that the Helm deployment reflected this new version of the application, the

values.yaml file located in the frontend chart directory of the Helm chart

(hotelReservation/helm-chart/hotelreservation/charts/frontend/) was modified accordingly.

Compared to the original version of the file, which referenced the default deathstarbench/hotel-

reservation image, the new configuration specified the updated image registry, tag, and pull

policy:

image: ianton04/hotel-reservation

tag: latest

imagePullPolicy: Always

This ensured that Helm would always pull the most recent image from the Docker registry at

deployment time. Upon invoking Helm to redeploy the application (helm install or helm

upgrade depending on the cluster state), Kubernetes fetched and deployed the new image to

the cluster. The updated frontend pod now included the newly implemented logic that

redirected user verification requests to the OpenWhisk action endpoint instead of the original

gRPC user service.

To ensure the correct re-deployment of the application, now containing the logic added to the

frontend server.go file by fetching the new image we built for this purpose, we query the

Frontend service using the application api to access the user handler. An HTTP POST request

is constructed directed to the frontend service pod IP address and the appropriate port allocated

for it in the application’s architecture. The request also carries username and password values

to be utilized for validation within the action itself. Here we see a request containing valid and

invalid user validation data:

Figure 6.2: HTTP POST requests to the Frontend Service instructed to communicate with the user

action through calling the userHandler function with both valid and invalid user data

Using the OpenWhisk command from its CLI tool that logs the action activations in real time:

67

wsk -i activation poll

We can ensure the action is correctly invoked through the microservice application by making

the post request after seeing the list of action activations being logged live as we send it.

Figure 6.3: List of checkUser action activations recorded after making requests to the action through

the Frontend Service

The integration of the OpenWhisk-based serverless function into the existing microservice

application demonstrates the viability of combining traditional service architectures with event-

driven execution models. By replacing the gRPC-based user verification flow with an HTTP-

based invocation of a stateless action, the application maintains its functional requirements

while benefiting from the scalability and modularity of serverless infrastructure. The updated

deployment workflow, supported through image versioning and Helm chart adjustments,

ensures seamless incorporation of new logic into the Kubernetes-managed environment.

68

Chapter 10

10

Conversion of Reservation Service

10.1 Reservation Service Conversion... 68

10.2 Reservation Service Integration ... 73

10.3 Reservation Service Invocation .. 73

This chapter describes the conversion of another service belonging in the Hotel Reservation

Suite, the Reservation service. After designing a robust methodology of converting

microservices to actions and also experimenting in applying through converting the User

Service, we chose to implement it on a different service with non-trivial service-specific logic.

The User service, as mentioned, follows a fairly simple implementation executing a trivial task

which was beneficial for understanding the service and approaching initial steps of the

conversion process. However, in order to ensure universal application of the conversion

methods constructed, a more logically intense service was put to test.

10.1 Reservation Service Conversion

Reservation involves multiple database interactions, cache validation and updates, and

conditional failure paths based on room availability. Due to its transactional nature and role in

the core functionality of the hotel reservation system, converting it into a serverless-compatible

function was essential for testing our transformation workflow for applicability and versitality.

The converted action, named makeReservation, follows the same methodology used in

previous service transformations and is implemented as follows:

func Makereservation(event map[string]interface{})

map[string]interface{} {

 customerName, ok1 := event["customerName"].(string)

 hotelId, ok2 := event["hotelId"].(string)

 inDate, ok3 := event["inDate"].(string)

69

 outDate, ok4 := event["outDate"].(string)

 roomNumber, ok5 := event["roomNumber"].(float64) // JSON numbers

are float64

 if !ok1 || !ok2 || !ok3 || !ok4 || !ok5 {

 return map[string]interface{}{

 "error": "Invalid or missing parameters",

 }

 }

 reservationCollection := mongoClient.Database("reservation-

db").Collection("reservation")

 numberCollection := mongoClient.Database("reservation-

db").Collection("number")

 // **Convert dates**

 inDateTime, _ := time.Parse("2006-01-02", inDate)

 outDateTime, _ := time.Parse("2006-01-02", outDate)

 indate := inDateTime.Format("2006-01-02")

 memc_date_num_map := make(map[string]int)

 for inDateTime.Before(outDateTime) {

 count := 0

 inDateTime = inDateTime.AddDate(0, 0, 1)

 outdate := inDateTime.Format("2006-01-02")

 // **Memcached Check**

 memcKey := fmt.Sprintf("%s_%s_%s", hotelId, indate, outdate)

 item, err := memcClient.Get(memcKey)

 if err == nil {

 count, _ = strconv.Atoi(string(item.Value))

 memc_date_num_map[memcKey] = count + int(roomNumber)

 } else if err == memcache.ErrCacheMiss {

 // **Check MongoDB**

 filter := bson.M{"hotelId": hotelId, "inDate": indate,

"outDate": outdate}

 var reserve []struct {

 Number int `bson:"number"`

 }

70

 cur, err := reservationCollection.Find(context.TODO(),

filter)

 if err != nil {

 log.Printf("Failed to get reservation data: %v",

err)

 return map[string]interface{}{

 "error": "Database error",

 }

 }

 defer cur.Close(context.TODO())

 cur.All(context.TODO(), &reserve)

 for _, r := range reserve {

 count += r.Number

 }

 memc_date_num_map[memcKey] = count + int(roomNumber)

 } else {

 return map[string]interface{}{

 "error": fmt.Sprintf("Memcached error: %s", err),

 }

 }

 // **Check Hotel Capacity**

 memcCapKey := hotelId + "_cap"

 item, err = memcClient.Get(memcCapKey)

 hotelCap := 0

 if err == nil {

 hotelCap, _ = strconv.Atoi(string(item.Value))

 } else if err == memcache.ErrCacheMiss {

 var num struct {

 Number int `bson:"numberOfRoom"`

 }

 err = numberCollection.FindOne(context.TODO(),

bson.M{"hotelId": hotelId}).Decode(&num)

 if err != nil {

 return map[string]interface{}{

 "error": fmt.Sprintf("Failed to find hotel

capacity: %v", err),

 }

 }

71

 hotelCap = num.Number

 memcClient.Set(&memcache.Item{Key: memcCapKey, Value:

[]byte(strconv.Itoa(hotelCap))})

 }

 if count+int(roomNumber) > hotelCap {

 return map[string]interface{}{

 "status": "failed",

 "message": "Room unavailable",

 "reason": count+int(roomNumber),

 "count": count,

 "hotelCap": hotelCap,

 "hotelId": hotelId,

 }

 }

 indate = outdate

 }

 // **Update Memcached**

 for key, val := range memc_date_num_map {

 memcClient.Set(&memcache.Item{Key: key, Value:

[]byte(strconv.Itoa(val))})

 }

 // **Insert Reservation into MongoDB**

 inDateTime, _ = time.Parse("2006-01-02", inDate)

 indate = inDateTime.Format("2006-01-02")

 for inDateTime.Before(outDateTime) {

 inDateTime = inDateTime.AddDate(0, 0, 1)

 outdate := inDateTime.Format("2006-01-02")

 _, err := reservationCollection.InsertOne(context.TODO(),

bson.M{

 "hotelId": hotelId,

 "customerName": customerName,

 "inDate": indate,

 "outDate": outdate,

 "number": int(roomNumber),

72

 })

 if err != nil {

 return map[string]interface{}{

 "error": fmt.Sprintf("Failed to insert reservation:

%v", err),

 }

 }

 indate = outdate

 }

 return map[string]interface{}{

 "status": "success",

 "message": "Reservation confirmed",

 "hotelId": hotelId,

 }

}

beginning with isolating the core logic responsible for booking validation. The input interface

is restructured into a map[string]interface{} format to comply with OpenWhisk’s Go runtime

expectations. To support this format, all incoming parameters such as the hotel identifier,

check-in and check-out dates, customer name, and number of rooms are dynamically parsed

from a JSON payload, with appropriate type assertions and validation checks applied to guard

against malformed or missing data.

Once the inputs are processed, the action executes a loop over the specified date range,

checking room availability for each consecutive day by querying Memcached for previously

recorded bookings. If a cache miss occurs, it performs a fallback query to MongoDB to count

existing reservations from the database and populate the cache accordingly. It then retrieves

the total room capacity for the target hotel and compared it against the cumulative requested

bookings to ensure availability. If the request is valid, the action proceeds to update the

reservation count in Memcached and insert the finalized reservation records into MongoDB.

To maintain performance and minimize redundant operations, global clients for MongoDB and

Memcached were initialized within the init() function, following the runtime’s execution model

for warm container reuse:

func init() {

 // MongoDB Setup

73

 mongoURI := "mongodb://mongodb-reservation-

hotelres.ianton04.svc.cluster.local:27022"

 clientOptions := options.Client().ApplyURI(mongoURI)

 ctx, cancel := context.WithTimeout(context.Background(),

10*time.Second)

 defer cancel()

 client, err := mongo.Connect(ctx, clientOptions)

 if err != nil {

 log.Fatalf("Failed to connect to MongoDB: %v", err)

 }

 mongoClient = client

 log.Println("Connected to MongoDB")

 // Memcached Setup

 memcClient = memcache.New("memcached-reserve-1-

hotelres.ianton04.svc.cluster.local:11214")

 log.Println("Connected to Memcached")

}

10.2 Reservation Service Integration

To integrate the newly converted makeReservation OpenWhisk action into the existing

application, modifications were applied to the frontend/server.go file. Following the same

pattern applied for the User service’s case, a new helper function named

makeReservationHTTP was defined, encapsulating the logic for invoking the action via a direct

HTTP request to the OpenWhisk API endpoint. Similarly to the checkUserHTTP method, this

function serializes the required input parameters into a JSON payload, sends the request using

a customized HTTP client with basic authentication, and parses the JSON response for further

handling. In the reservationHandler function, the original gRPC call to the reservation service

was replaced by a call to makeReservationHTTP. To apply these changes in a deployment

environment, the container image of the frontend service was rebuilt to include the updated

codebase. Upon redeployment via Helm, the cluster loaded the new container image, activating

the modified reservation flow through OpenWhisk.

10.3 Reservation Service Invocation

74

In similar fashion to the process followed for the user service, a Makefile was constructed using

the one provided by the “module-main” action creation example, as a template and was made

to fit to the specific attributes of the makeReservation action. Utilizing the Makefile we are

instantly able to create within OpenWhisk’s environment and invoke to evaluate both

functionality and accuracy of test results. By running commands “make deploy” which prompts

action creation and “make test” which prompts action invocation using an input test sample for

successful reservation:

{

 "customerName": "JohnDoe",

 "hotelId": "1",

 "inDate": "2025-03-10",

 "outDate": "2025-03-12",

 "roomNumber": 1

}

we receive the following result as action return output, which matches the appropriate output

expected by the system in case of success:

Figure 4.10: Successful action invocation result of makeReservation action

75

Chapter 11

11

Automation of Conversion Process

11.1 Introduction .. 75

11.2 Initial Attempts ... 75

11.3 Adopting Generative AI for Code Conversion ... 76

11.4 Tool Architecture and Workflow ... 76

11.5 Tool Architecture and Workflow ... 77

11.6 Observations ... 79

11.7 Closing Remarks .. 79

In this chapter, we examine the feasibility of automating the conversion process of a

microservice application program to a serverless OpenWhisk action. We demonstrate the

intricacies of the automation process and our solution: a tool leveraging generative artificial

intelligence.

11.1 Introduction

As established throughout the course of this research, transforming traditional Go-based

microservices into serverless functions compatible with Apache OpenWhisk requires an

adequate amount of manual effort. While a consistent methodology was constructed the

conversion process remained non-trivial. Each service exhibited subtle semantic differences

and specific structuring of internal logic. Factors such as these, prompted significant problems

in the development of a rule-based transformation mechanism that would be able to handle a

diverse range of services.

11.2 Initial Attempts

76

Initial efforts toward automation leveraged methods such as Abstract Syntax Tree traversal and

source-to-source transformations. The idea was to analyze and isolate specific areas of code

that would be either be placed in different function blocks but would primarily remain

unchanged in form, for example MongoDB and Memcached connection configuration and

client initialization in the init() function or be removed completely in cases of gRPC

communication logic. However, these approaches quickly reached their limits.

AST analysis proved useful for syntactic disassembly and for characterizing source code

structures in preparation for transformation. However, it lacked the semantic understanding

necessary to fully comprehend service logic and contextual dependencies. In many cases,

services implemented logic that relied on external helper functions, shared resource access, or

chained gRPC calls, patterns that may be recognizable at the syntactic level, but difficult to

reliably reinterpret or transform using rule-based logic alone. Even in the case of simpler

service functions such as CheckUser, which exhibit relatively straightforward logic and

minimal internal complexity, static code analysis failed to produce generalizable

transformation rules. This limitation highlighted the need for a more context-aware and

adaptable approach to automation.

11.3 Adopting Generative AI for Code Conversion

Given these challenges, the solution space expanded toward generative artificial intelligence,

specifically large language models (LLMs). The capacity of LLMs to infer context needs,

refactor code, and generate structured output from descriptive prompts made them a compelling

candidate for the task. These models offer semantic understanding and flexibility, features

absent in syntactic approaches, which are essential when dealing with services that do not

adhere to a uniform template. More importantly, LLMs can use specific context from carefully

constructed prompts to shape the output so it matches the required structure of OpenWhisk

actions.

11.4 Tool Architecture and Workflow

The tool developed for this purpose is a command-line interface, which accepts as input a

YAML configuration file describing important information about the context of conversion,

that is utilized to construct an accurate and clear prompt meant to instruct the model on how to

77

perform the conversion. It also accepts the CheckUser converted action a reference example in

order to further enable the model to understand the structure we want to achieve. The CLI

invokes an LLM endpoint, in this case: OpenAI’s gpt-4-turbo-preview model, and submits the

constructed prompt.

The CLI is implemented in Go and organized into modular components that handle

configuration parsing, environment variable loading for the API key, prompt construction,

LLM interaction, and output parsing. Users invoke the CLI using a simple “convert” command

with two required flags: the path to the config file (--config) and the source code to be converted

(--input). Internally, the tool reads the YAML configuration which defines critical attributes

such as:

• function_to_convert: Name of function to be located and converted from the provided

input file

• action_name: name to assign the main action function to be executed by OpenWhisk

• dependencies: supporting services utilized that need to be handled such as MongoDB

or Memcached

• input_parameters: a list of value pairs that specify the name and type input parameters

to prevent inaccuracies

• output_keys: an example return structure for the json element to be returned from the

action

• reference_function: name of the file that contains the converted action to be used as

an example

• notes: natural language giving additional instructions to be applied to the instruction

prompt

The tool assembles a detailed prompt using this metadata, then sends it as a chat completion

request to the OpenAI API. The configuration file enables the user to adapt the conversion

prompt to any chosen service with ease and enables more accurate service-secific configuration

to avoid leaving too many components of the process for the model to speculate and potentially

hallucinate on. The LLM response includes the converted action packaged in a go file named

converted_action.go.

11.5 Tool Architecture and Workflow

To validate the effectiveness of this approach, the MakeReservation microservice was selected

78

as a benchmark case for automated conversion. This service is non-trivial, offering adequate

complexity to test the model’s ability to adapt to difficult service-specific logic, multiple

dependencies combining MongoDB interactions and cache updates via Memcached. The

prompt utilized for this has, apart from additional parameters specified in the configuration file

has the following structure:

"You are converting a Go microservice function into an Apache OpenWhisk action.

The goal is to maintain all core logic (e.g. MongoDB operations, Memcached access, input

validation, loops, inserts) and ensure the result compiles directly on OpenWhisk with minimal

manual modification.

Guidelines:

- Implement all MongoDB and Memcached calls as shown, if there are any.

- Handle all necessary input validation and error reporting.

- DO NOT summarize the code or skip logic steps.

- Use the reference action below to match structure, naming, and initialization logic."

Additionally, the following notes section was added to the prompt through the configuration

file, providing further instructions:

“The output Go action must follow OpenWhisk conventions, using func

Function(map[string]interface{}) map[string]interface{}, with the name "Function" being a

placeholder for a function name that its first letter must be Uppercase.

Do not include a main function as its not needed in OpenWhisk.

Do not omit error checking, Memcached or MongoDB logic, even if partial or nested.

You must maintain the same logic and structure as the original function, adjusting it to fit the

OpenWhisk action format which can be seen from the reference action.

The function should be able to handle the input parameters and return the output keys as

specified.

Do not put placeholders in the code, do not use "..." or "TODO" comments, the code must be

complete and functional, nothing must be missing.

Compact all MongoDB and Memcached connection logic into a single function called: init(),

see example from reference service”

Upon execution, the AI-generated action closely matches the behavior and structure of the

original logic. All major functional blocks were preserved: cache reads and fallbacks with

Memcached, room availability calculations, iteration over date ranges, and reservation

insertions into MongoDB. Moreover, the structure of the result closely followed the reference

action, including the correct usage of global initializations in the init() function block, the

79

OpenWhisk-compliant function signature, and return payload formatting. Comparisons

between the manual and AI-generated versions revealed only minor formatting and ordering

differences, with functional parity preserved.

This successful outcome highlights the utility of LLMs in handling complex transformations

that exceed the capabilities of static tooling. By inserting context effectively and providing

structure within the prompt, the tool effectively guided the LLM to produce a usable and overall

correct output. An even more refined version of the tool could benefit development greatly

accelerating the conversion process and enabling scalable transformation of more services.

11.6 Observations

Through experimenting with different prompt and input structures, it was derived that the tool

functions the best when provided with smaller token-wise and more accurate inputs. For

example, inserting the entire server.go file of the reservation service and having it figure out

the function to convert specifically, just because of the added context with irrelevant

information, confused the model resulting in incomplete action generations with a lot of

placeholders. This fact could become an obstacle with more complex services with

dependencies spread throughout the program file. The overall input that is sent to the model is

already quite large, including prompt, metadata from the configuration file and additional

example action program, therefore aiming to be as concise as possible providing only relevant

information was greatly beneficial. This behavior will also prove to be beneficial in terms of

cost. Utilizing the OpenAI models through the developer API is not free at any tier, and even

though the cost is minimal, input token size is always something to consider.

11.7 Closing Remarks

The development and deployment of the tool demonstrate the feasibility and practical benefits

of incorporating generative AI into the automation of serverless action generation. While not

yet a fully general-purpose solution for all service types, this approach significantly reduces

the manual burden and allows developers to scale their conversion efforts with consistency.

Nonetheless, the tool provides a strong foundation for AI-assisted transformation of

microservice architectures into function-as-a-service platforms.

80

Chapter 12

12

Operational Integrity and Performance Evaluations

12.1 Benchmarking .. 80

12.2 Evaluation of Operational Integrity .. 81

12.3 Performance Evaluation ... 83
12.3.1 Reservation Service .. 84
12.3.2 User Service .. 87
12.3.3 Mixed Service Workload .. 90
12.3.4 Automatically Converted Reservation Service ... 93

12.4 Conclusion .. 95

In this chapter, we describe the process of evaluating the performance of the hybrid

microservice-serverless system that was created with the converted actions being integrated to

the rest of the application. The system is evaluated both in terms of effectiveness, producing

equal results to the original versions of the services as well as in terms of latency especially at

later percentiles approaching the performance expressed by the unchanged application.

12.1 Benchmarking

To evaluate the performance implications of transforming microservices into serverless

functions, a structured benchmarking methodology was established using the wrk workload

generator. The benchmarking targeted three representative workload profiles: one calling the

user service, one calling the newly constructed reservation service, and a synthetic mixed

workload which combines calls to multiple services, simulating a more realistic usage pattern

within the hotel reservation domain.

81

The wrk tool was selected for its flexibility in simulating HTTP workloads and its ability to be

extended with Lua scripting. For each benchmark scenario, a dedicated Lua script was written

to define the request format, target endpoint, and method parameters. These scripts were

orchestrated to execute under three predefined workload intensities: light, medium, and high.

These load levels were configured as follows:

• Light: 5 concurrent connections at 30 requests per second

• Medium: 15 concurrent connections at 100 requests per second

• High: 30 concurrent connections at 250 requests per second

Each test was executed for a fixed duration of 60 seconds, with the number of threads set to 4.

To ensure a fair and meaningful evaluation, the workload levels used in benchmarking were

carefully adjusted to match the system’s capabilities. A key constraint was the absence of

horizontal pod autoscaling in the microservice deployment, which meant that pushing the

system to very high loads would have led to artificial slowdowns unrelated to the architectural

differences being studied. As a result, the light, medium, and high load levels were selected

based on manual testing and observation. By steadily increasing testing values, these were

found to create adequate stress without causing system instability. Additionally, the Hotel

Reservation application is part of a research-based benchmark suite not intended for

commercial-scale traffic, which further supports the use of modest, but also representative load

levels for accurate comparison.

The three tests for each type of load were executed under circumstances reflecting the system’s

state regarding architecture. Experiments were conducted with the previous scripts having the

application’s structure maintain its original form as a pure microservice application, as well as

two other cases: the structure following the hybrid serverless schema, communicating with the

OpenWhisk actions checkUser and makeReservation, while all action containers are

uninitialized, and the container environment is cold and another case where action containers

were prewarmed.

12.2 Evaluation of Operational Integrity

The first step in the testing phase was to assess the operational stability of the serverless

components and their ability to sustain load when invoked from within the application’s

82

frontend. During these evaluations, however, a critical limitation was encountered. Upon

executing medium and high-intensity test scripts, the system consistently returned errors

indicating excessive invocation rates as can be seen in Figure 7.1.

Figure 7.1: Frontend service’s pod logs showcasing request limitation errors from action outputs

while conducting benchmarking experiments

These messages, visible in the action responses, originated from OpenWhisk’s internal

throttling mechanism that enforces per-minute invocation limits as a protective measure. The

system was registering over 4,000 invocations per minute against a default policy that allowed

only 60. This bottleneck effectively prevented accurate measurement of the action’s scalability

and latency under pressure and signaled a misalignment between the platform’s rate-limiting

configuration and the load characteristics of the benchmark.

To address this issue, the OpenWhisk configuration was modified to lift the restrictive default

limits. Specifically, the Helm deployment configuration file mycluster.yaml, from the

OpenWhisk-Cloudlab configuration repository, was edited to increase the allowed number of

concurrent and per-minute action invocations. The limits.actionsInvokesPerminute parameter

was raised to 10000, and the limits.actionsInvokesConcurrent was similarly increased to 5000.

These changes ensured that the serverless platform could support a high-throughput scenario

without throttling test traffic. Additionally, memory and duration limits for action execution

were expanded.

83

After updating the configuration file, the OpenWhisk system was redeployed via Helm,

applying the new resource parameters across the cluster. This process included reinitializing

the controller and invoker pods and verifying the applied limits through platform introspection

tools. Once the platform had been restarted and stabilized, benchmarking was resumed under

identical load conditions. The absence of rate-limit errors in subsequent test runs, which can

be observed in Figure 7.2, confirmed the effectiveness of the reconfiguration enabling valid

performance measurements across all load tiers and implementations.

Figure 7.2: Frontend service’s pod logs showcasing expected output behavior after conducting

benchmark experiments

12.3 Performance Evaluation

After ensuring a stable environment for benchmarking experimentation that accurately handles

our chosen workload intensity tiers in comparison to the system’s expected behavior, the next

step in the testing phase was to assess the performance of the serverless implementation relative

to the original microservice-based system. This was done by analyzing latency across different

percentiles under the different load profiles established previously: light, medium, and high.

The goal was to capture how the system responds not only under normal circumstances but

also during peak stress, and to observe the implications of cold starts in the serverless context,

as well as the benefits of warm invocations. These measurements were visualized through

84

percentile-based latency distribution charts, which enabled direct comparison of the three

deployment modes: traditional microservice, cold-start serverless, and warm-start serverless.

Warming was achieved by applying a short high intensity load on the hybrid system, prompting

it to create a large amount of action containers. The system was then let to briefly cool down

for 5 to 10 seconds, enough time for OpenWhisk to execute container termination for initialized

but unutilized action containers. After that amount of time each load profile described

previously was executed so the system would maintain only the required amount of containers.

Cold starts were ensured by waiting the predefined amount of time between 10 to 12 minutes

after each load profile execution. This guaranteed all versions of action containers were

terminated completely without inherited resources or preserved connections to supporting

services. The goal was to account for the time demanded to both create the actions container

for each invoked action and execute the init() function commands, typically establishing

MongoDB and Memached connections with their appropriate services. As discussed later,

latency values affected by these factors reached alarmingly high amounts, presenting a serious

disadvantage for cold exeutions.

12.3.1 Reservation Service

The reservation service revealed greater performance divergence across implementations,

particularly at higher loads and percentiles. While microservices demonstrated strong

performance at median and 90th percentile latencies under all loads, they were outpaced by

warm serverless actions in tail latency behavior. Under medium load, warm executions

achieved superior performance in the 99.9th and higher percentiles, with latency remaining

under 184 ms, while microservices rose above 500 ms. Even under high load, warm actions

sustained lower 99.999th percentile latencies (202 ms) than their microservice counterparts

(308 ms), suggesting that OpenWhisk’s stateless invocation model can produce more

consistent high-percentile responses in resource-isolated conditions. Cold-start actions,

however, incurred substantial delays, consistently exceeding 30 seconds at peak percentiles

and rendering them impractical for time-sensitive reservation flows.

85

Figure 7.3: Manually Converted Reservation Service Benchmarks Latencies – Light

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

Figure 7.4: Manually Converted Reservation Service Benchmarks Latencies – Medium

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

86

Figure 7.5: Manually Converted Reservation Service Benchmarks Latencies – High

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

In the microservice version, average latency stays very low across all loads, while the 99.999th

percentile latency peaks at medium load, possibly due to a concurrency bottleneck. In the serverless

cold setup, both average and high-end latencies rise sharply with load the 99.999th percentile reaches

over 54 seconds under heavy traffic. This shows that cold starts add a large delay when containers have

to be created anew. The warm serverless setup performs much better, with both latency values growing

only slightly as the load increases. This confirms that warm containers can handle traffic more smoothly

without long delays.

Figure 7.6: Reservation Service Average and High Percentile Latency Comparison – Microservice -

X-Axis: Latency in ms, Y-Axis: Load Level

87

Figure 7.7: Reservation Service Average and High Percentile Latency Comparison – Serverless Cold

Start - X-Axis: Latency in ms, Y-Axis: Load Level

Figure 7.8: Reservation Service Average and High Percentile Latency Comparison – Serverless Warm

Start - X-Axis: Latency in ms, Y-Axis: Load Level

12.3.2 User Service

The user service exhibited consistently low latency across all implementations and load tiers,

with minimal variability at lower percentiles. Under light and medium loads, both the

microservice and serverless warm implementations delivered near-identical performance,

maintaining latency well below 30 ms even at the 99.999th percentile. At high load, the warm

serverless function sustained a stable tail latency profile, peaking at only 40 ms, compared to

the microservice’s 16.58 ms. However, the warm execution showed better percentile

88

progression, maintaining a smoother rise across percentile boundaries. In contrast, the cold start

serverless version underperformed significantly, with latency escalating to over 50 seconds

under high load at the 99.999th percentile.

Figure 7.10: User Service Benchmarks Latencies – Light

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

Figure 7.11: User Service Benchmarks Latencies – Medium

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

89

Figure 7.12: User Service Benchmarks Latencies – High

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

Microservices stay consistently fast, and even in the serverless cold case, average latency

remains manageable. However, under high load, cold serverless latency spikes to over 50

seconds at the highest percentile, showing how much cold starts can slow things down. Warm

serverless actions, however, stay close to the microservice results, even under heavy traffic.

This suggests that small services benefit a lot from being kept “warm” and ready to run,

avoiding startup delays.

Figure 7.13: User Service Average and High Percentile Latency Comparison – Microservice –

X-Axis: Latency in ms, Y-Axis: Load Level

90

Figure 7.14: User Service Average and High Percentile Latency Comparison – Serverless Cold Start –

X-Axis: Latency in ms, Y-Axis: Load Level

Figure 7.15: User Service Average and High Percentile Latency Comparison – Serverless Warm Start

X-Axis: Latency in ms, Y-Axis: Load Level

12.3.3 Mixed Service Workload

The mixed service, representing a complex invocation pattern across several microservices,

provided insight into end-to-end system behavior under varying load. At light and medium

load, both microservice and warm serverless implementations performed within acceptable

latency boundaries, with 99.999th percentiles recorded at 87 ms and 85 ms respectively. Under

high load, warm serverless actions slightly outperformed microservices in upper percentile

stability, achieving 87 ms at 99.999% compared to microservice performance peaking around

251 ms. The cold-start configuration, on the other hand, demonstrated critical latency

91

bottlenecks with values reaching up to 52 seconds, reinforcing the need to avoid cold

invocations in multi-service coordinated workloads.

Figure 7.16: Mixed Service Workload Benchmarks Latencies – Light

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

Figure 7.17: Mixed Service Workload Benchmarks Latencies – Medium

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

92

Figure 7.18: Mixed Service Workload Benchmarks Latencies – High

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

Microservices can handle even high loads fairly well, but the cold serverless results show a rise

in both average and tail latencies, reaching over 50 seconds at the 99.999th percentile. This is

because cold starts must happen for multiple actions across services. On the other hand, the

warm serverless configuration has stable latencies even under load, the highest percentile stays

below 90 milliseconds.

Figure 7.19: Mixed Service Workload Average and High Percentile Latency Comparison –

Microservice- X-Axis: Latency in ms, Y-Axis: Load Level

93

Figure 7.20: Mixed Service Workload Average and High Percentile Latency Comparison – Serverless

Cold Start - X-Axis: Latency in ms, Y-Axis: Load Level

Figure 7.21: Mixed Service Workload Average and High Percentile Latency Comparison – Serverless

Warm Start - X-Axis: Latency in ms, Y-Axis: Load Level

12.3.4 Automatically Converted Reservation Service

The benchmarking results from the automatically converted makeReservation action show that

the AI tool we constructed for the particular task was successful in producing a version that

performs almost identically to the manually converted one. When we tested it under the same

load profiles as the manually converted version, the action displayed very similar latency

patterns across all percentiles. Specifically, in the warm execution the latency remained low

and consistent, just like in the manual version. This suggests that the AI-generated function

94

handled input processing, logic maintenance, and supporting service communication in a

correct and efficient way.

Even in cold starts, where the serverless platform has to initialize containers from scratch, the

latency values closely matched those demonstrated by the manual benchmarks. Though cold

starts are expected to have higher delays, the consistent behavior through the different

percentiles shows that the tool correctly handled initial startup steps like loading dependencies

and connecting to databases. The microservice results stayed the same as before, confirming

the hybrid system worked as expected without being affected by the change in the action’s

implementation.

Figure 7.22: Automatically Converted Reservation Service Benchmarks Latencies – Light

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

Figure 7.23: Automatically Converted Reservation Service Benchmarks Latencies – Medium

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

95

Figure 7.24: Automatically Converted Reservation Service Benchmarks Latencies – High

X-Axis: Logarithmic Latency in ms, Y-Axis: Latency Percentiles

Overall, these results confirm that the AI-based method for converting microservices to

serverless functions is reliable and accurate. It successfully reproduces the logic and

performance of the original service, proving that the tool works well and the LLM utilized by

it can infer and accurately transform the logic we require. Therefore, our method can be trusted

for future automated transformations.

12.4 Conclusion

The benchmarking evaluation of the transformed serverless architecture versus the original

microservice-based implementation reveals critical insights into the performance

characteristics and trade-offs from each approach. Across all tested services user, reservation,

and mixed it is evident that serverless cold starts present a major latency bottleneck, deeming

such configurations unsuitable for low-latency workloads. Cold-start executions frequently

exceeded tens of seconds in response time, especially under medium to high load, which

severely impacts system responsiveness.

However, the warm serverless configuration consistently demonstrated competitive

performance, often matching or exceeding the microservice implementation at the upper

latency percentiles. Particularly in high-stress scenarios, warm actions exhibited greater

96

stability and predictability in tail latencies, suggesting that OpenWhisk’s stateless execution

model, when optimized for reuse, can yield robust and low-variance responses.

The microservice architecture, while still delivering the most consistent average-case latency,

showed signs of degradation in extreme percentile cases. This highlights the importance of

evaluating not just average performance but also latency distribution tails, which have

significant implications for user-perceived responsiveness.

The automatically converted implementation of the reservation service also demonstrated

promising results. With corresponding results to its manual counterpart, the automated

implementation behaved the same at all latency percentiles at each architectural state,

especially serverless warm and cold. These results validate the choice of LLM utilization in

our research both in terms of efficiency and effectiveness.

In summary, these results underscore the viability of warm serverless deployments as an

effective and scalable alternative to traditional microservices provided that cold-start

penalties are adequately mitigated. The hybrid approach explored in this research illustrates

how targeted service transformation can preserve system correctness while leveraging the

benefits of function-as-a-service platforms for elasticity and functional versatility.

97

Chapter 13

13

Conclusions

13.1 Conclusion .. 97

13.2 Future Work ... 98

13.1 Conclusion

This work demonstrates that it is indeed possible to extract and reimplement microservice logic

as fully functional, independently deployable serverless actions. By converting core

components of the Hotel Reservation application, such as user authentication and reservation

management, into stateless OpenWhisk actions, this research proves that serverless platforms

can accommodate complex service logic originally designed for interconnected microservices.

The resulting hybrid system, integrating both microservice and serverless elements, was

deployed and evaluated under realistic workloads. Performance testing showed that warm-start

serverless functions could not only maintain functional parity with their microservice

counterparts, but in some cases, deliver superior latency characteristics in higher percentiles,

validating the feasibility and competitiveness of the hybrid model.

Through repeated application and refinement, a structured methodology emerged for

transforming Go-based microservices into serverless functions. This methodology emphasized

the isolation of business logic, elimination of stateful dependencies, reformulation of function

structure into OpenWhisk-compatible formats, and the externalization of supporting services

such as databases and caches. By applying this process across distinct services and confirming

the successful replacement of microservice behavior within the live application, the thesis

establishes a transferable and repeatable approach. The methodology’s practical value was

further reinforced by its alignment with the needs of real-world deployment scenarios, where

maintainability and platform compliance are critical.

98

Building on this foundation, the thesis culminated in the development of a CLI-based

automation tool leveraging generative AI. This tool demonstrated the capacity to produce valid,

high-fidelity OpenWhisk actions from annotated microservice source code, using structured

prompts and reference examples as guidance. The quality of the generated outputs, particularly

in the reproduction of the complex makeReservation logic, validates the role of LLMs as

powerful tools in code transformation workflows. The integration of semantic code

understanding into the automation process overcomes the limitations of static analysis tools,

opening the door to scalable, intelligent service conversion. In this way, the thesis provides

both a proven manual methodology and a forward-looking, AI-assisted path for migrating

microservices to serverless computing, enabling more flexible and efficient application

architectures.

13.2 Future Work

One promising avenue for future work involves the integration of the conversion automation

process into the Blueprint [23] framework, an architecture-aware tool for generating modular

and reconfigurable microservice applications. Blueprint’s compositional design and

parameterized configuration of services make it a fitting environment for embedding

conversion logic directly into the service generation pipeline. By leveraging the existing

Blueprint implementation of the Hotel Reservation application, which includes clean service

boundaries and explicit service definitions, it becomes feasible to automate not just the

transformation of isolated services but the end-to-end adaptation of an entire application toward

a serverless-ready structure. Embedding LLM-powered transformation capabilities into

Blueprint could streamline the deployment of hybrid systems.

Another area of exploration lies in merging predictive traffic analytics with dynamic serverless

orchestration strategies. While this thesis established the performance viability of warm

serverless actions, their benefits are dependent on container availability. Future systems could

integrate predictive models that analyze historical and real-time traffic patterns to anticipate

service demand and proactively warm specific actions in advance. These pre-warmed actions

could be maintained only for the necessary window, shutting down automatically afterward to

preserve cost-efficiency. Such predictive warm-start scheduling could optimize latency under

load without incurring the resource overhead of always-on provisioning, bringing serverless

deployments closer to both performance and economic optimality in production-grade systems.

99

References

[1] A. Kansal, A. Wolman, J. Nelson, S. Ghanbari, and E. de Lara, “Boxer: Interposition for

Transparent Cloud Elasticity,” in Proc. 2020 USENIX Annual Technical Conference

(USENIX ATC ’20), pp. 763–776, 2020.

[2] H. Qiu, Y. Mao, Z. Qian, and M. Qiu, “Executing Microservice Applications on Serverless

Correctly,” in Proc. 1st Workshop on Serverless Computing (WoSC ’17), 2017.

[3] M. Wawrzoniak, R. Bruno, A. Klimovic, and G. Alonso, “Imaginary Machines: A

Serverless Model for Cloud Applications,” in Proc. 2nd Workshop on Serverless Systems,

Applications and Methodologies (SESAME ’24), ACM, 2024.

[4] F. Romero, G. I. Chaudhry, Í. Goiri, P. Gopa, P. Batum, N. J. Yadwadkar, R. Fonseca, C.

Kozyrakis, and R. Bianchini, “Faa$T: A Transparent Auto-Scaling Cache for Serverless

Applications,” in Proc. ACM Symposium on Cloud Computing (SoCC ’21), pp. 1–16, 2021.

[5] A. Fuerst and P. Sharma, “FaasCache: Keeping Serverless Computing Alive with Greedy-

Dual Caching,” in Proc. 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’21), pp. 1–15, 2021.

[6] M. Wawrzoniak, G. Moro, R. Bruno, A. Klimovic, and G. Alonso, “Off-the-shelf Data

Analytics on Serverless,” in Proc. 14th Conference on Innovative Data Systems Research

(CIDR ’24), 2024.

[7] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless Computing:

An Investigation of Factors Influencing Microservice Performance,” in Proc. IEEE

International Conference on Cloud Engineering (IC2E ’18), pp. 159–169, 2018.

[8] A. Szekely, A. Belay, R. Morris, and M. F. Kaashoek, “Unifying Serverless and

Microservice Tasks with SigmaOS,” in Proc. 29th ACM Symposium on Operating Systems

Principles (SOSP ’24), pp. 1–15, 2024.

[9] OpenFaaS, “OpenFaaS Documentation,” [Online]. Available: https://docs.openfaas.com.

[Accessed: Apr., 2025].

100

[10] Fission, “Fission Documentation,” [Online]. Available: https://docs.fission.io. [Accessed:

Apr., 2025].

[11] Knative, “Knative Documentation,” [Online]. Available: https://knative.dev/docs/.

[Accessed: Apr., 2025].

[12] Apache Software Foundation, “Apache OpenWhisk Documentation,” [Online]. Available:

https://OpenWhisk.apache.org/documentation.html. [Accessed: Apr, 2025].

[13] OpenWhisk-Devtools https://github.com/apache/OpenWhisk-devtools

[14] Docker for Desktop https://www.docker.com/products/docker-desktop

[15] Apache OpenWhisk https://github.com/apache/OpenWhisk

[16] CloudLab profile for deploying OpenWhisk via Kubernetes - cloudlab-OpenWhisk

https://github.com/CU-BISON-LAB/cloudlab-OpenWhisk

[17] K. Sriraman, A. Austruy, J. Shun, and C. Delimitrou, “DeathStarBench: A Benchmark

Suite for Cloud Microservices,” in Proc. 2020 IEEE International Symposium on Workload

Characterization (IISWC), pp. 1–12, 2020. [Online]. Available:

https://github.com/delimitrou/DeathStarBench

[18] MongoDB Inc., “MongoDB: The Developer Data Platform,” [Online]. Available:

https://www.mongodb.com. [Accessed: May, 2025].

[19] The Go Authors, “The Go Programming Language,” [Online]. Available:

https://golang.org. [Accessed: May, 2025].

[20] Google, “gRPC: A High-Performance, Open-Source Universal RPC Framework,”

[Online]. Available: https://grpc.io. [Accessed: May, 2025].

[21] MongoDB Inc., “The Official MongoDB Go Driver,” [Online]. Available:

https://pkg.go.dev/go.mongodb.org/mongo-driver. [Accessed: May, 2025].

https://github.com/apache/OpenWhisk-devtools
https://www.docker.com/products/docker-desktop
https://github.com/apache/openwhisk
https://github.com/CU-BISON-LAB/cloudlab-openwhisk

101

[22] Apache Software Foundation, “openwhisk-runtime-go: Go Runtime for Apache

OpenWhisk,” GitHub, 2024. [Online]. Available: https://github.com/apache/openwhisk-

runtime-go.

[23] V. Anand, D. Garg, A. Kaufmann, and J. Mace, “Blueprint: A Toolchain for Highly-

Reconfigurable Microservices,” in Proceedings of the 28th ACM Symposium on Operating

Systems Principles (SOSP), 2021, pp. 973–987.

[24] B. Fitzpatrick, gomemcache: Go Memcached client library, GitHub repository,

https://github.com/bradfitz/gomemcache, Accessed: May, 2025.

[25] Kubernetes Authors, Kubernetes: Production-Grade Container Orchestration, GitHub

repository and documentation, https://kubernetes.io/, Accessed: May, 2025.

https://github.com/apache/openwhisk-runtime-go
https://github.com/apache/openwhisk-runtime-go

