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Abstract 
 
 

This thesis investigates the application of Transformer-based architectures to financial 

portfolio optimization. Motivated by the unique challenges of high volatility, complex 

temporal dependencies, and non-stationary behavior in financial time series, the study 

explores how recent advances in deep learning, specifically Transformers, can improve 

decision-making in trading environments. Several Transformer architectures including 

encoder-decoder models, encoder-only variants, Generative Pretrained Transformers 

(GPT), and a Vision Transformer (ViT) adapted for time series, are implemented and 

evaluated for their ability to extract meaningful, high-level representations from historical 

market data. Each model is designed to capture complex temporal dependencies and 

latent structures inherent in financial time series. These extracted features are then fed 

into a Deep Q-Network (DQN) agent, which utilizes them to learn an effective trading 

policy aimed at maximizing long-term cumulative rewards. To rigorously evaluate the 

benefit of Transformer-enhanced feature extraction, a baseline DQN model is also trained 

directly on raw historical data without any pre-processing by Transformer models. 

Comparing the performance of both approaches highlights the added value of 

Transformer-based representations in guiding more strategic and profitable trading 

decisions. Additionally, the thesis considers advanced Transformer architectures such as 

the Temporal Fusion Transformer (TFT) and Informer, which demonstrate strong 

potential for time-series modeling. Although implementation of these models was limited 

by resource and reproducibility constraints, their capabilities and future applicability are 

discussed. Overall, the thesis contributes a systematic analysis of Transformer-based 

feature extraction for deep reinforcement learning in finance, offering insights into model 

design, training methodology, and the practical impact of architectural choices on 

portfolio performance. 

 
 
 
 
 

 
 
 



 
 

Table of Contents  

Chapter 1  Introduction…….…….…….…….…….…….…….…….……...…1 

1.1 Motivation…….…….…….…….…….…….…….…….…….…….1 

1.2  Goal of the Study…….…….…….…….…….…….…….…….…….……….1 

1.3  Methodology…….…….…….…….…….…….…….…….…….…….………2 

1.4  Thesis Organization…….…….…….…….…….…….…….…….…….…….3 

Chapter 2 Background Knowledge…….…….…….…….…….…….……….5 
2.1  Digital Asset Markets…….…….…….…….…….…….…….……...6 

2.1.1  Introduction to Digital Assets and Market Evolution……...6 

2.1.2  Types of Digital Assets…….…….…….…….…….………6 

2.1.3  Risks and Challenges in Digital Asset Investments……….6 

2.2. Portfolio Optimization…….…….…….…….…….…….…….…….7 

2.2.1  Introduction to Portfolio Optimization…….…….…….…..7 

2.2.2  Key Learning Points in Portfolio Optimization…….……...7 

2.2.3  Advantages and Disadvantages of Portfolio Optimization...8 

2.2.4  Advancing Portfolio Optimization: The Role of Digital 

Assets…….…….…….…….…….…….…….…….…….………9 

2.3  Transformers…….…….…….…….…….…….…….…….………...9 

2.3.1  Transformers: Revolutionizing NLP Applications…….….9 

2.3.2  The Need for Transformers: Overcoming the Limitations of 

Previous Architectures…….…….…….…….…….…….…….....9 

2.3.3  Understanding Transformers: Overcoming the Limitations 

of Previous Architectures…….…….…….…….…….…….…..12 

2.3.4  Transformers for Portfolio Optimization in Financial 

Markets…….…….…….…….…….…….…….…….…….…...15 

2.3.5  The Role of Transformers in Financial Modeling…….….16 

2.3.6  Challenges in Cryptocurrency Portfolio Optimization…...16 

2.4  Deep Reinforcement Learning…….…….…….…….…….………..17 

2.4.1  Introduction to Deep Reinforcement Learning…….……..17 



 
 

2.4.2  Fundamentals…….…….…….…….…….…….…….…..18 

2.4.2.1  Reinforcement Learning…….…….…….……..18 

2.4.2.2  Deep Learning…….…….…….…….…….…....18 

2.4.3  Key Algorithms…….…….…….…….…….…….………18 

2.4.3.1  Model-Free Methods…….…….…….…….…...18 

2.4.3.2  Model-Based Methods…….…….…….…….…20 

2.4.4  Deep Reinforcement Learning in Finance…….…….……20 

2.4.4.1  Portfolio Optimization…….…….…….………..20 

2.4.4.2  Algorithmic Trading…….…….…….…….……20 

2.4.5  Challenges in Financial Applications…….…….…….…..21 

Chapter 3 Simple Transformer-Based Architectures for Portfolio 

Optimization…….…….…….…….…….…….…….…….…….…….…….………..22 

3.1  Building Simple Transformer Architectures for Feature Extraction.22 

3.2  Hyperparameters in Transformer Models: What Can We Adjust and 

Why? …….…….…….…….…….…….…….…….…….…….……….23 

3.3  Examples of Transformer Architectures for Feature Extraction in 

Portfolio Optimization and Financial Forecasting…….…….…….……24 

3.4  How can we adapt financial sequences for Transformers? Are there 

different methods for doing so?…….…….…….…….…….…….……..26 

Chapter 4 Implementation of Transformer Architectures…….…….……28 

4.1  Encoding Numerical Data for Transformer Models in Financial 

Applications…….…….…….…….…….…….…….…….…….………29 

4.2  Transformer Architectures Used in This Study…….…….…….…..31 

4.3  Dataset Used in This Study…….…….…….…….…….…….……..34 

4.4  Vanilla Transformer: Full Encoder-Decoder for Financial Forecasting 

………………………………………………………………………….35 

4.4.1  Model Architecture…….…….…….…….…….…….…..35 

4.4.2  Hyperparameters and Configuration…….…….…….…...37 

4.4.3  Training Setup…….…….…….…….…….…….…….….38 

4.4.4  Evaluation Metrics…….…….…….…….…….…….…...40 

4.4.5  Graphical Analysis of Model Performance…….…….…..40 



 
 

4.5  Encoder-Only Transformer: Contextual Representations Without 

Generation…….…….…….…….…….…….…….…….…….……..…42 

4.5.1  Introduction…….…….…….…….…….…….…….…….42 

4.5.2  Modification of the Transformer for Regression Tasks…..43 
4.5.3  Advantages of Using Encoder-Only Transformer for 

Regression…….…….…….…….…….…….…….…….……...43 

4.5.4  Graphical Analysis of Model Performance…….………..43 

4.5.5  Training and Validation Performance: Original vs Encoder-

Only Transformer…….…….…….…….…….…….…….…….46 

4.6  GPT Transformer: Autoregressive Modeling with Causal Masking.47 

4.6.1  Introduction…….…….…….…….…….…….…….…….47 

4.6.2  Model Architecture…….…….…….…….…….…….…...47 

4.6.3  Training Strategy…….…….…….…….…….…….……..48 

4.6.4  Hyperparameters and Their Justification…….…….……..49 

4.6.5  Model Evaluation Metrics…….…….…….…….…….….50 

4.6.6  Graphical Analysis of Model Performance…….…….…...51 

4.7  Vision Transformer (ViT): Adapting Image Models to Time Series 

Data…….…….…….…….…….…….…….…….…….…….…….…...53 

4.7.1  Introduction…….…….…….…….…….…….…….…….53 

4.7.2  Model Architecture…….…….…….…….…….…….…...53 

4.7.3  Hyperparameter Details…….…….…….…….…….…….54 

4.7.4  Training and Evaluation Procedure…….…….…….…….56 

4.7.5  Graphical Analysis of Model Performance…….…….…...56 

4.8  Analysis and Comparison of Transformer-Based Models…….……59 

4.8.1  Training Loss Analysis…….…….…….…….…….……..59 

4.8.2  Validation Loss Analysis…….…….…….…….…….…...60 

4.8.3  Validation RMSE Analysis…….…….…….…….………61 

4.8.4  Model Checkpoints and Early Stopping…….…….……...61 

4.8.5  Conclusion…….…….…….…….…….…….…….……..62 

Chapter 5 Implementation of Transformer Architectures…….…….…...64 

5.1  Introduction…….…….…….…….…….……....….…….…….…..64 

5.2  GPT and DQN: Leveraging Generative Pretrained Transformers...65 



 
 

5.2.1  Purpose of GPT and DQN Integration…….….…...….…65 

5.2.2  How It Was Done: GPT and DQN Implementation…......65 

5.2.3  StockMarketEnv: Custom Financial Environment………66 

5.2.4  Additional Design Choices…….…….…….…………….67 

5.2.5  Evaluation and Performance Metrics…….…….………..67 

5.2.6  Visual Results: GPT and DQN…….………….…….…...68 

5.2.7  Analysis of Experimental Results………...……………...71 

5.3  Original DQN…….…….…….…….…….…….…….…….……...72 

5.3.1  How It Was Done: DQN Implementation…….…….…...72 

5.3.2  Visual Results: DQN…….…….…….…….…….………76 

5.3.3  Analysis of Experimental Results…….…….……………79 

5.4  Comparative Performance Analysis: GPT and DQN vs. Raw DQN 

on Financial Data…….…….…….…….…….…….…….…….……….80 

Chapter 6  Summary and Future Work……….…….………….…….……..83 

6.1  Summary of Findings and Contributions…………………………..83 

6.2  Future Directions…………………………………………………...84 

6.2.1  Overview of Transformer Architectures for Financial 

Portfolio Optimization….…….…….…….…….…….…….…..84 

6.2.2  Optimal Transformer Architectures for Portfolio 

Optimization……………………………………………………85 

6.2.3  Challenges in Implementing Transformer Architectures for 

Financial Applications…….…….…….…….…….…….…...…86 

Bibliography…….…….…….…….…….…….…….…….…….…….………87 

 

 

 

 

 

 



 

 
 

1 

Chapter 1 
Introduction 

 
1.1 Motivation 

1.2  Goal of the Study 

1.3  Methodology 

1.4  Thesis Organization 

 

1.1 Motivation 

The motivation behind this study is to explore the untapped potential of Transformer 

based architectures [47] in financial portfolio optimization [6], with a particular focus on 

the rapidly evolving cryptocurrency markets. Transformers have revolutionized deep 

learning by overcoming key limitations of traditional sequential models such as RNNs 

and LSTM networks, which often suffer from vanishing gradients and restricted memory 

capabilities. Unlike these models, Transformers employ self-attention mechanisms that 

enable the parallel processing of entire sequences, allowing them to efficiently learn 

complex relationships between financial variables, detect emerging trends, and adapt to 

volatile market conditions. This architectural advantage has led to remarkable success in 

natural language processing and has shown promising results in financial tasks [49] such 

as stock price forecasting, risk assessment, and asset allocation [48]. However, their 

application in portfolio optimization remains largely unexplored. Given the growing need 

for adaptive, data driven strategies in navigating the non linear dynamics of modern 

financial systems, this study aims to investigate how Transformers can be leveraged to 

enhance portfolio performance and robustness, particularly in challenging market 

environments. 

 

1.2 Goal of the Study 

This thesis aims to bridge the gap between transformer based deep learning models and 

financial portfolio optimization. By integrating transformers into an existing portfolio 

optimization project, this study will evaluate their effectiveness in improving asset 

allocation strategies, enhancing risk-adjusted returns, and adapting to market fluctuations. 

The study will involve empirical testing and comparative analysis against other deep 
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learning based approaches. Ultimately, this study seeks to demonstrate that transformer 

models, with their ability to process and analyze large volumes of financial data, can offer 

a novel and effective approach to portfolio optimization. By leveraging their advanced 

pattern recognition and predictive capabilities, investors and financial institutions may be 

able to construct more resilient and adaptive portfolios, particularly in volatile markets 

like cryptocurrencies. 

 

1.3 Methodology 

The methodology followed in this study began with an initial meeting involving my 

academic supervisor and a doctoral candidate whose ongoing PhD research serves as the 

foundation for this thesis. During this meeting, we clarified the scope and requirements 

of the dissertation and outlined a preliminary timeline to guide the research process. 

Given my limited prior exposure to the subject matter, I commenced by developing a 

solid understanding of general machine learning concepts, gradually narrowing my focus 

to Transformer architectures and their potential applications in financial portfolio 

optimization. My initial research concentrated on two advanced Transformer based 

models, Temporal Fusion Transformer [43] and Informer [45], which appeared 

particularly promising for time-series forecasting tasks. However, due to the scarcity of 

reliable documentation and open-source implementations, I was ultimately unable to 

successfully deploy these models and extract meaningful results. As a result, I selected 

four alternative Transformer models that embody different architectural paradigms: the 

original Transformer (vanilla) [19], an encoder-only Transformer [37][38], Vision 

Transformer [40], and Generative Pre-Trained Transformer (GPT) [38][39]. These 

models represent the three main Transformer configurations: encoder-decoder, encoder-

only, and decoder-only. Given that Transformers are typically designed to process 

tokenized sequence data, a key part of the implementation involved adapting the input 

pipeline to handle numerical financial data. This required preprocessing the dataset to a 

format compatible with each model’s architecture, including appropriate embedding and 

normalization techniques. After successfully executing all four models, I extracted output 

data from each and conducted a performance comparison to evaluate their effectiveness. 

Following this comparison, I selected the two highest-performing Transformer models to 

support the next phase of the thesis: integrating Deep Reinforcement Learning (DRL) for 

portfolio optimization. Specifically, these selected models were repurposed as feature 
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extractors, generating informative representations of the financial data to be used as 

inputs to a DRL algorithm, in this case, a Deep Q-Network (DQN) [28]. The integrated 

approach was tested by comparing the portfolios generated under each Transformer-

enhanced method, allowing for an assessment of the value added by Transformer-based 

feature extraction in a reinforcement learning framework. 

 

1.4 Thesis Organization 

The rest of this thesis is split into six chapters. Table 1.1 reports the content of each 

chapter. 

Chapter Description   

2 This chapter describes the background knowledge for this thesis. 

Specifically, it provides an overview of the Transformer architecture, 

its evolution from earlier sequential models, and its growing 

application in financial modeling. It also explores the challenges of 

portfolio optimization in cryptocurrency markets and highlights the 

motivation behind using Transformer-based models for this purpose. 

3 This chapter focuses on the use of transformer models for portfolio 

optimization. It covers the construction of simple transformer 

architectures for feature extraction, key hyperparameter adjustments, 

examples of their application in finance, and methods for adapting 

financial data sequences to enhance model performance. 

4 This chapter presents the practical implementation of various 

transformer-based architectures tailored for financial forecasting. It 

begins by detailing the encoding of numerical data for transformer 

models and introduces the specific architectures employed in the 

study, including the vanilla encoder-decoder transformer, encoder-

only transformer, GPT transformer, and a Vision Transformer 

adapted for time series. For each model, architectural design, training 

procedures, hyperparameters, and performance metrics are 

thoroughly discussed, accompanied by visual performance analysis.  

5 Chapter 5 outlines key design decisions that facilitate the agent’s 

ability to optimize its portfolio using deep reinforcement learning 
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(DRL). Central to this approach is the use of transformer-based 

models, specifically the Generative Pretrained Transformer (GPT), 

for feature extraction from financial time series data. These model 

are employed to capture complex temporal dependencies and 

intricate patterns within the market. The extracted features are then 

fed into the Deep Q-Network (DQN), which leverages them for 

portfolio optimization, enabling the agent to make informed trading 

decisions. In addition to this integrated approach, the DQN model is 

also run independently without transformer-based feature extraction 

to establish a performance baseline. This allows for a direct 

comparison of results, highlighting the impact of transformer- 

enhanced features on trading performance. This combination of 

transformer architectures for feature extraction and DRL for 

decision-making forms the core of the agent's ability to maximize 

long-term returns in a dynamic financial environment.  

6 This concluding chapter synthesizes the exploration of Transformer-

based architectures for financial portfolio optimization, highlighting 

both practical experimentation and future potential. It reviews the 

successful application of GPT as a feature extractor in combination 

with a Deep Q-Network, emphasizing its performance advantages 

and suitability for modeling volatile financial time series. 

Simultaneously, the chapter examines the promise of advanced 

architectures like the Temporal Fusion Transformer (TFT) and 

Informer, which offer capabilities for capturing complex temporal 

dynamics and long-term dependencies. However, due to resource 

constraints and the lack of accessible, validated implementations, 

their integration remained beyond the scope of this work. The chapter 

reflects on key findings, outlines limitations, and suggests future 

research directions aimed at advancing the practical use of 

Transformers in financial decision-making. 

 

Table 1.1: Chapter Descriptions 
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Chapter 2 
Background Knowledge 
 
2.1  Digital Asset Markets 

2.1.1  Introduction to Digital Assets and Market Evolution 
2.1.2  Types of Digital Assets 

2.1.3  Risks and Challenges in Digital Asset Investments 

2.2.  Portfolio Optimization 
2.2.1  Introduction to Portfolio Optimization 
2.2.2  Key Learning Points in Portfolio Optimization 

2.2.3  Advantages and Disadvantages of Portfolio Optimization 

2.2.4  Advancing Portfolio Optimization: The Role of Digital Assets 

2.3  Transformer 

2.3.1  Transformers: Revolutionizing NLP Applications 

2.3.2  The Need for Transformers: Overcoming the Limitations of Previous 

Architectures 

2.3.3  Understanding Transformers: Overcoming the Limitations of Previous 

Architectures 

2.3.4  Transformers for Portfolio Optimization in Financial Markets 

2.3.5  The Role of Transformers in Financial Modeling 

2.3.6  Challenges in Cryptocurrency Portfolio Optimization 

2.4  Deep Reinforcement Learning 

2.4.1  Introduction to Deep Reinforcement Learning 

2.4.2  Fundamentals 

2.4.2.1  Reinforcement Learning 

2.4.2.2  Deep Learning 

2.4.3  Key Algorithms 

2.4.3.1  Model-Free Methods 

2.4.3.2  Model-Based Methods 

2.4.4  Deep Reinforcement Learning in Finance 

2.4.4.1  Portfolio Optimization 

2.4.4.2  Algorithmic Trading 

2.4.5  Challenges in Financial Applications 
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2.1  Digital Asset Markets 

2.1.1  Introduction to Digital Assets and Market Evolution 

The digital asset market [1] has evolved rapidly since its inception, with the rise of 

cryptocurrencies like Bitcoin marking the beginning of a transformative shift in the global 

financial landscape. Initially perceived as speculative and niche, digital assets have 

gained substantial traction as both an alternative and complementary investment class. 

The market has expanded to encompass a variety of digital assets, including 

cryptocurrencies, stablecoins, security tokens, and tokenized real-world assets. Central to 

this transformation has been the underlying blockchain technology, which provides 

decentralization, transparency, and security. The increasing institutional adoption of 

digital assets, driven by products such as digital asset ETFs and growing regulatory 

clarity, has further cemented their position as a legitimate asset class. As the market 

matures, it presents both unique opportunities for diversification and challenges related 

to volatility and security risks. 

 

2.1.2  Types of Digital Assets 

Digital assets are broadly classified into several types, each offering distinct investment 

opportunities. The most known category is cryptocurrencies, which include assets like 

Bitcoin and Ether. These are digital currencies [2] designed to function as a medium of 

exchange, relying on blockchain technology for decentralization. Another prominent type 

is stablecoins [2], which are pegged to traditional currencies such as the U.S. Dollar, 

providing stability amidst the inherent volatility of other digital assets. Security tokens [2] 

represent a tokenized version of real-world assets, offering fractional ownership of equity 

or debt in real world entities. Additionally, indirect exposure to digital assets can be 

gained through products like exchange traded funds and exchange traded products, which 

aggregate a variety of digital assets into a single investment vehicle. Venture capital 

investments also play a significant role in the digital asset ecosystem, particularly in 

funding early stage blockchain startups and crypto native companies. 

 

2.1.3  Risks and Challenges in Digital Asset Investments 

While digital assets offer substantial investment potential, they also come with a unique 

set of risks and challenges [1][3]. The most significant risk is volatility, as digital asset 

prices can experience dramatic fluctuations, often influenced by market sentiment, 
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regulatory developments, and technological advancements. Although volatility has 

decreased somewhat in recent months, digital assets remain prone to significant price 

swings, which can lead to substantial gains or losses. Liquidity is another concern, as 

while major cryptocurrencies like Bitcoin and Ether are relatively liquid, smaller or lesser 

known digital assets may be harder to trade, particularly during market downturns. 

Cybersecurity threats, including hacking, fraud, and market manipulation, pose additional 

risks, making it essential for investors to use reputable exchanges and secure their 

holdings. Finally, the complexities of digital asset technologies mean that investors must 

conduct thorough due diligence, understanding the underlying blockchain protocols, the 

teams behind digital assets, and the legal and regulatory landscape to avoid potential 

pitfalls. 

 

2.2.  Portfolio Optimization 

2.2.1  Introduction to Portfolio Optimization 

Portfolio optimization [6] is a fundamental process in finance aimed at determining the 

optimal combination of assets within an investment portfolio to achieve the highest return 

for a given level of risk. This process involves the use of mathematical models and 

quantitative techniques to balance risk and return by analyzing various asset combinations 

under different market scenarios. The goal is to construct an "efficient" portfolio that 

maximizes expected returns while minimizing risk, ensuring it aligns with an investor’s 

specific risk tolerance and investment objectives. A portfolio is considered efficient if it 

lies on the "efficient frontier" [7], which represents the set of portfolios that offer the best 

risk adjusted return, meaning no other portfolio provides a higher expected return for the 

same level of risk. 

 

2.2.2  Key Learning Points in Portfolio Optimization 

Portfolio optimization relies on quantitative methods to balance assets with the goal of 

maximizing risk adjusted returns. Key learning points include the understanding that 

portfolio optimization is not only about selecting the best assets but also about 

diversifying the portfolio to reduce risk. Popular portfolio optimization methods [8] 

include Modern Portfolio Theory, the Black-Litterman Model, and Monte Carlo 

Simulation. Each method has its own strengths and limitations depending on the 

characteristics of the investment strategy, such as the investor's risk tolerance, return 
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expectations, and available data. Portfolio optimization requires a clear definition of 

investment objectives, risk profile, and time horizon, alongside access to reliable data 

sources. Although an optimized portfolio typically leads to superior risk adjusted returns, 

the complexity of the process often necessitates expert knowledge and advanced tools for 

accurate implementation. 

 

2.2.3  Advantages and Disadvantages of Portfolio Optimization 

Portfolio optimization offers several advantages that can significantly enhance the 

performance and risk management of an investment portfolio. However, it also comes 

with certain limitations and challenges. 

• Advantages: 

o Maximized Risk-Adjusted Returns [13]: Optimization helps investors build 

portfolios that maximize expected returns for a given level of risk, which 

can lead to improved long-term financial performance. 

o Risk Management [14][15]: By diversifying assets across various classes 

and sectors, portfolio optimization reduces overall portfolio risk and helps 

investors stay within their risk tolerance levels. 

o Enhanced Decision-Making [15]: Portfolio optimization enables investors 

to systematically assess asset combinations, uncovering potentially 

lucrative opportunities that may not be apparent through simple analysis. 

• Disadvantages: 

o Dependence on Historical Data [16]: Many portfolio optimization 

models, such as MVO, rely on historical data, which may not always 

reflect future market conditions, leading to estimation errors or suboptimal 

outcomes. 

o Model Assumptions [13]: Certain models assume that asset returns follow 

a normal distribution, which may ignore the impact of extreme market 

events, thus limiting their accuracy. 

o Complexity and Expertise [13]: Implementing optimization models can be 

resource-intensive and require advanced knowledge, especially when 

handling large datasets or using complex techniques like Monte Carlo 

Simulation. 
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2.2.4  Advancing Portfolio Optimization: The Role of Digital Assets 

As digital assets like cryptocurrencies have become a more prominent part of investment 

portfolios, traditional portfolio optimization methods have faced challenges. Digital 

assets exhibit high volatility, low correlation with traditional assets, and often lack 

sufficient historical data, making portfolio optimization more complex. However, 

advanced techniques such as machine learning, deep learning, and reinforcement learning 

have emerged as potential solutions. These methods allow for the development of 

adaptive portfolio optimization strategies that can adjust in real-time based on evolving 

market conditions and investor preferences. Furthermore, the use of on-chain data [17], 

which refers to information that is publicly available and recorded directly on blockchain 

networks [50], such as transaction volumes, wallet activity, smart contract interactions, 

and token flows, provides more granular insights into market behavior, enhancing the 

accuracy and effectiveness of portfolio optimization models. As the digital asset market 

continues to grow, integrating these advanced techniques will be critical in refining 

portfolio optimization strategies for this new asset class. 

 

2.3  Transformers 

2.3.1  Transformers: Revolutionizing NLP Applications 

Transformers are an architecture that has significantly transformed the field of Natural 

Language Processing (NLP) [51]. Many of the most powerful and effective NLP 

algorithms today are based on the transformer architecture. These models have been 

successfully applied in a wide range of applications, including machine translation, 

conversational chatbots, and other NLP tasks such as text summarization, sentiment 

analysis, and question answering. 

 

2.3.2  The Need for Transformers: Overcoming the Limitations of Previous 

Architectures 

Starting with Recurrent Neural Networks (RNNs) [52], there are issues with vanishing 

gradients that make it difficult to capture long-range dependencies in sequences. To 

address these problems [18], we introduced Gated Recurrent Units (GRUs) [53] and then 

Long Short-Term Memory (LSTMs) [54], which use gates to control the flow of 

information. While these units improved control, they also added computational 

complexity. All of these models are sequential, meaning they process the input sentence 
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one word or token at a time. As a result, each unit creates a bottleneck in the flow of 

information, as the output of unit N can only be computed after processing all preceding 

units.  

 

Figure 2.1 illustrates the basic architecture of a Recurrent Neural Network (RNN. In this 

unrolled form, the RNN is shown as a series of repeating modules (denoted as "A") that 

share the same parameters across each time step. Each module takes as input the current 

element of the input sequence xtxt and the hidden state from the previous time 

step h(t−1), and produces the current hidden state htht. This recurrent connection allows 

the RNN to maintain a form of memory across the sequence, enabling it to capture 

temporal dependencies. The diagram highlights how the hidden state evolves as new 

inputs are processed in sequence. 

 

 

 
 

Figure 2.1 Unrolled RNN Depicting Its Sequential Form 

 

Figure 2.2 depicts the internal architecture of a Long Short-Term Memory (LSTM) unit, 

a specialized type of Recurrent Neural Network (RNN) designed to address the 

limitations of standard RNNs in learning long-term dependencies. Each LSTM cell 

consists of three key gates: the forget gate, input gate, and output gate, which regulate the 

flow of information using the sigmoid (σ) and tanh activation functions. The sigmoid 

function outputs values between 0 and 1 and is used in all three gates to control how much 

information should be passed through—0 means "ignore" and 1 means "keep." The tanh 

function outputs values between -1 and 1 and is used to scale and shape the new candidate 

values being added to the cell state. The forget gate determines what portion of the 

previous cell state should be discarded, the input gate decides what new information to 

store, and the output gate controls what part of the cell state contributes to the hidden state 
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output. This structure allows LSTMs to maintain and update information over long 

sequences. 

 

 
Figure 2.2 Unrolled LSTM Depicting Its Sequential Form 

 

The Transformer architecture, however, allows for parallel processing of an entire 

sequence, enabling the model to ingest an entire sentence at once rather than processing 

it one word at a time from left to right. The Transformer network was introduced in the 

seminal paper "Attention Is All You Need" (2017) [19] by Ashish Vaswani, Noam Shazeer, 

Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia 

Polosukhin. This paper introduced the self-attention mechanism, which became the 

foundation for many modern deep learning models, including Bidirectional Encoder 

Representations from Transformers (BERT) [55] and GPT. The major innovation of the 

Transformer architecture lies in its combination of attention-based representations and a 

Convolutional Neural Network (CNN) [56] processing style. To understand Transformers, 

it is essential to understand how the attention mechanism works. As a model generates 

text word by word, it can reference and attend to words that are relevant to the current 

word being generated. This attention is learned during training through backpropagation. 

The key strength of the attention mechanism is that it does not suffer from the short-term 

memory limitations of RNNs, which are constrained by a limited window of reference. 

Although GRUs and LSTMs offer improved memory capabilities and larger reference 

windows, they still do not provide the infinite reference window that Transformers do. 
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Table 2.1 compares the performance and computational efficiency of various neural 

machine translation models using the BiLingual Evaluation Understudy (BLEU) [57] 

score metric across English-German (EN-DE) and English-French (EN-FR) translation 

tasks, along with their corresponding training costs measured in floating point operations 

(FLOPs). Traditional RNN-based and convolutional models such as GNMT and RL, 

ConvS2S, and Deep-Att and PosUnk are listed alongside more advanced models like the 

Transformer. The results highlight that the Transformer model, particularly in its 'big' 

configuration, achieves the highest BLEU scores (28.4 for EN-DE and 41.8 for EN-FR), 

indicating superior translation quality. Moreover, the base Transformer significantly 

outperforms other models in terms of training efficiency, achieving competitive accuracy 

with much lower computational cost (3.3 × 10¹⁸ FLOPs for EN-DE). This demonstrates 

the Transformer’s architectural advantage over traditional RNN-based models by 

enabling parallelization and more efficient training, while also achieving state-of-the-art 

translation performance. 

 

 
Table 2.1  The Transformer achieves better BLEU scores than previous state-of-the-art 

models on the English-to-German and English-to-French newstest2014 tests at a 

fraction of the training cost [19]. 

 

2.3.3  Understanding Transformers: The Architecture Behind Modern NLP 

Introduction to Transformers and Encoder-Decoder Overview 

Transformers [20] are an attention-based encoder-decoder architecture that has 

revolutionized natural language processing. At a high level, the encoder maps an input 

sequence into a continuous representation, capturing all its learned information, while 
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the decoder takes this representation and generates an output sequence step by step until 

an <end> token is produced. The process begins with the Input Embedding layer, which 

converts words into continuous-value vectors, allowing neural networks to process them 

effectively. Since transformers lack recurrence, a Positional Encoding step is necessary 

to retain word order information. This is achieved using sine and cosine functions, which 

provide unique positional information for each word in the sequence.  

 

The Encoder Structure and Self-Attention Mechanism 

The Encoder Layer is responsible for transforming input sequences into abstract 

representations. It consists of two key submodules: multi-headed self-attention and 

a feed-forward network, both of which are followed by residual connections and layer 

normalization to stabilize the network. The self-attention mechanism allows the model to 

relate each word to every other word in the input, ensuring that important contextual 

relationships are captured. To achieve this, the model generates query, key, and value 

vectors for each word, similar to a search system where a query is matched against keys 

to retrieve relevant values.  

 

Attention Scores, Multi-Headed Attention, and Feed-Forward Network 

The queries and keys undergo dot product multiplication, producing a score matrix that 

determines how much focus each word should place on other words in the sequence. 

These scores are then scaled down to prevent large gradient updates, passed through 

a Softmax function to normalize them into probability values, and multiplied by the 

corresponding value vectors to adjust their importance. The multi-headed 

attention mechanism enhances the model’s ability to capture diverse relationships by 

splitting the attention process into multiple independent "heads," each focusing on 

different aspects of the input. The attention outputs are then concatenated and passed 

through a linear layer for further processing. This is followed by residual connections, 

which add the original input back to the processed attention output, allowing gradients to 

flow more effectively. The result is then normalized and sent through a point-wise feed-

forward network, which applies additional transformations to refine the learned 

representation.  
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The Decoder and Autoregressive Generation 

The encoder’s primary role is to encode the input into a continuous representation, 

enriched with attention-based contextual information that will be useful for the decoder. 

The decoder is responsible for generating the output sequence and follows a similar 

structure to the encoder but with key differences. It includes two multi-headed attention 

layers, a feed-forward network, and residual connections with layer normalization after 

each submodule. The first multi-headed attention layer processes the decoder’s input 

while ensuring autoregressive generation, meaning it does not have access to future words 

in the sequence. To achieve this, a look-ahead mask is applied, preventing the model from 

attending to future tokens by replacing those values with negative infinities before 

applying the Softmax function. This ensures that each word is generated sequentially 

without "cheating" by looking ahead. The second multi-headed attention layer plays a 

crucial role in aligning the encoder’s output with the decoder’s input. Instead of 

computing self-attention, it takes the encoder’s output as the query and key, while the 

decoder’s processed inputs act as the values. This mechanism helps the decoder determine 

which parts of the encoder's representation should be attended to for generating the next 

word in the sequence. The output is then passed through a feed-forward networkfor 

further transformation before being processed by a final linear layer, which acts as a 

classifier. The classifier's output is sent to a Softmax layer, which assigns probability 

values to each possible word. The word with the highest probability is selected as the next 

output word. The decoder repeats this process iteratively, taking the previously generated 

words as input and continuing until it predicts an <end> token, signaling the completion 

of the sequence. By stacking multiple layers of encoders and decoders, transformers can 

learn increasingly complex attention patterns, allowing them to capture intricate 

relationships within the data and significantly enhance predictive performance. 
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The concepts described above are depicted schematically in Figure 2.3 

 

 
Figure 2.3  Transformer model architecture 

 

2.3.4  Transformers for Portfolio Optimization in Financial Markets 

The increasing complexity and dynamism of financial markets have fueled the need for 

more sophisticated portfolio optimization techniques. Traditional financial models, such 

as Mean-Variance Optimization and risk-based strategies, have long been used to balance 

risk and return. However, these approaches often fail to fully capture the non-linearity, 

high volatility, and rapidly evolving nature of modern financial assets, particularly 

cryptocurrencies. The emergence of machine learning and deep learning techniques has 

introduced a new paradigm in portfolio management, allowing for more adaptive and 

data-driven decision-making. Among these, transformer-based models initially developed 

for natural language processing have demonstrated remarkable success in various 

domains, including time-series forecasting and financial prediction [58]. Their ability to 

model long-range dependencies and capture intricate patterns in sequential data makes 
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them particularly promising for financial applications, where understanding trends and 

market dynamics is crucial for effective investment strategies. 

 

2.3.5  The Role of Transformers in Financial Modeling 

Transformers have revolutionized deep learning by overcoming the limitations of 

recurrent neural networks and long short-term memory models. Unlike traditional 

sequential models that suffer from vanishing gradient problems and limited memory, 

transformers leverage self-attention mechanisms to process entire sequences of data 

simultaneously [59]. This ability allows them to efficiently learn complex relationships 

between financial variables, detect emerging trends, and adapt to volatile market 

conditions. While transformers have been widely applied in natural language processing, 

their recent adoption in financial modeling has shown promising results in stock price 

forecasting, risk assessment, and asset allocation. However, their potential in portfolio 

optimization remains largely unexplored, especially in the context of cryptocurrency 

markets [21], where traditional models struggle to cope with extreme fluctuations and 

unpredictable market behavior. 

 

2.3.6  Challenges in Cryptocurrency Portfolio Optimization 

Cryptocurrency markets present unique challenges for portfolio optimization. Unlike 

traditional financial assets, cryptocurrencies exhibit higher volatility, fragmented 

liquidity, and less established regulatory frameworks. Their prices are often driven by 

speculative trading, market sentiment, and macroeconomic factors that are difficult to 

quantify using conventional methods. Existing portfolio optimization techniques, such as 

Markowitz’s mean-variance framework, struggle to adapt to these dynamic conditions, 

leading to suboptimal asset allocation and risk management. While machine learning and 

deep learning methods, including reinforcement learning and evolutionary algorithms, 

have been explored for cryptocurrency portfolio construction, there remains a gap in the 

literature regarding the application of transformer-based architectures in this domain. The 

ability of transformers to analyze large-scale financial data and uncover intricate patterns 

makes them a compelling candidate for optimizing cryptocurrency portfolios. 
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2.4  Reinforcement Learning 

2.4.1  Introduction to Deep Reinforcement Learning 

Deep reinforcement learning (DRL) [22] is a branch of machine learning that combines 

two major areas: reinforcement learning (RL) and deep learning. Reinforcement learning 

[23] focuses on training an agent to make decisions by interacting with an environment, 

usually through a process of trial and error. Deep learning [24], on the other hand, 

involves training deep neural networks to process and learn from complex, high-

dimensional data such as images or sound. 

When these two approaches are combined, the resulting DRL methods are capable of 

learning effective decision-making strategies directly from raw sensory input, without 

needing manually designed features. This has enabled significant progress in areas like 

robotics, game-playing, and autonomous control systems. Notably, DRL systems have 

achieved impressive results in tasks that were previously considered too complex. 

 

Figure 2.4 illustrates the fundamental workflow of a Deep Reinforcement Learning 

(DRL) system, which involves the interaction between an RL-agent and an RL-

environment. The RL-agent, typically implemented as a deep neural network, 

receives observations from the environment and uses them to make actions that affect the 

environment. Based on these actions, the environment responds with new observations 

and provides rewards that indicate the success or failure of the agent’s behavior. These 

rewards are used by the agent to learn and adjust its decision-making policy over time. 

This closed feedback loop enables the agent to optimize its actions through trial and error, 

aiming to maximize cumulative rewards. The diagram captures the essential dynamics of 

reinforcement learning, where learning is driven by interaction rather than supervised 

data. 

 

 
Figure 2.4 The Workflow of DRL 
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2.4.2  Fundamentals 

2.4.2.1  Reinforcement Learning 

In Reinforcement Learning, the core idea is that an agent learns to make decisions by 

receiving feedback from its environment. The agent is placed in a setting where it can 

observe a state, choose an action, and receive a reward based on the outcome. Over time, 

it learns to choose actions that maximize the total reward it receives. This learning setup 

is commonly modeled using a Markov Decision Process (MDP) [25], which defines: 

• The possible states the agent can be in, 

• The actions it can take, 

• The probabilities of transitioning between states, 

• And the rewards it gets for those transitions. 

The agent’s goal is to learn a policy [26], essentially a strategy for choosing actions, that 

maximizes the expected cumulative reward. 

 

2.4.2.2  Deep Learning 

Deep learning uses neural networks with multiple layers to learn patterns in data. These 

networks are particularly good at handling raw input like images, audio, or text because 

they can learn useful feature representations automatically, without needing to be 

explicitly told what to look for. 

In the context of DRL, neural networks are used to approximate different functions, such 

as: 

• The policy itself (mapping from state to action), 

• Value functions (how good it is to be in a certain state), 

• Or Q-functions (how good it is to take a certain action in a state). 

This enables RL to scale to problems with very large or continuous state spaces that 

traditional methods would struggle with. 

 

2.4.3  Key Algorithms 

There are two broad categories of DRL algorithms: model-free and model-based. 

2.4.3.1  Model-Free Methods 

Model-free methods [27] do not attempt to learn a model of the environment. Instead, 

they focus on learning the policy or value functions directly through interactions with the 

environment. These approaches are often easier to implement and more flexible in 
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complex, high-dimensional domains where modeling the environment explicitly can be 

challenging. 

• DQN (Deep Q-Network) [28]  

One of the earliest and most influential deep RL algorithms, DQN was introduced 

by DeepMind to play Atari games using only raw pixels as input. It combines Q-

learning with deep convolutional neural networks to approximate the Q-function, 

which estimates the expected return for taking an action in a given state. 

• Policy Gradient Methods [29] 

These methods directly optimize the policy by estimating gradients of expected 

rewards with respect to the policy parameters. They are particularly useful in 

environments with continuous or high-dimensional action spaces, where value-

based methods may struggle. 

• Deep Policy Networks [30] 

A deep policy network is a neural network that directly maps input states to 

actions by parameterizing the policy itself.  

Unlike value-based methods, which estimate the expected future return of states 

or state-action pairs, policy-based methods learn the optimal behavior directly 

through the policy function π(a∣s;θ), where a is the action, s is the state, 

and θ represents the parameters (weights and biases) of the neural network. This 

function outputs the probability of selecting action a given the state s. 

The policy is typically trained using gradient ascent on the expected cumulative 

reward, which adjusts the parameters θ to improve the network's performance 

over time. Deep policy networks are especially useful in environments with high-

dimensional or continuous action spaces, where traditional value-function-based 

methods become impractical.  

These networks can also represent stochastic policies, making them particularly 

suited for tasks requiring complex, flexible decision-making strategies. 

• Actor-Critic Methods [31]  

These combine the strengths of both policy gradient and value-based methods. 

The "actor" network is responsible for selecting actions (the policy), while the 

"critic" network evaluates how good those actions are (the value function). This 

structure helps reduce the high variance often encountered in pure policy gradient 

methods and leads to more stable and sample-efficient learning. 
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2.4.3.2  Model-Based Methods 

Model-based methods [32] try to learn a model of how the environment works (i.e., how 

states transition based on actions). This model can then be used to simulate outcomes and 

plan future actions more efficiently. Although potentially more sample-efficient, model-

based methods can suffer if the learned model is inaccurate. 

Model-based RL is a growing area of interest, particularly in robotics, where real-world 

data collection is expensive and slow. 

 

2.4.4  Deep Reinforcement Learning in Finance 

Deep reinforcement learning has gained increasing attention in the field of finance [33] 

due to its ability to learn complex sequential decision-making strategies in dynamic and 

uncertain environments. Financial markets are inherently stochastic, high-dimensional, 

and noisy, making them a challenging setting for traditional rule-based or supervised 

learning approaches. Deep RL offers a flexible framework for developing adaptive 

strategies that can optimize long-term objectives based on observed market data. 

 

2.4.4.1  Portfolio Optimization 

One of the most common applications of deep RL in finance is portfolio management. 

The goal in this setting is to allocate capital among a set of financial assets in a way that 

maximizes return while managing risk. Deep RL models can treat this as a sequential 

decision-making problem where the agent observes current market indicators and decides 

how to rebalance the portfolio. Algorithms such as Deep Q-Networks (DQN), Proximal 

Policy Optimization (PPO), and Deep Deterministic Policy Gradient (DDPG) have been 

used to learn allocation strategies that adapt to changing market conditions. 

 

2.4.4.2  Algorithmic Trading 

Another major area of application is algorithmic or high-frequency trading [34]. Here, an 

agent must decide when to buy or sell assets based on real-time market data such as price, 

volume, and time information. The objective is to maximize profits while minimizing 

transaction costs and market impact. Since financial rewards in trading are sparse and 

delayed, reinforcement learning is well-suited to model and optimize such long-term, 
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sequential decision-making processes. DRL agents can be trained to detect short-term 

patterns and execute trades that exploit these patterns profitably. 

 

2.4.5  Challenges in Financial Applications 

Despite its potential, deploying deep RL in financial markets comes with several 

challenges [35]: 

• Data efficiency: Financial data is expensive and limited, especially in high-

frequency settings. Most RL algorithms require large amounts of data, which can 

lead to overfitting or unrealistic backtesting results. 

• Non-stationarity: Market dynamics evolve over time, meaning that a policy 

trained on historical data may not generalize to future scenarios. 

• Evaluation difficulty: Unlike simulated environments like games or robotics, it 

is hard to validate RL strategies in finance without real-world deployment, and 

backtesting can be misleading. 

• Regulatory and ethical concerns: RL agents that trade autonomously raise 

questions about compliance, fairness, and transparency, particularly in highly 

regulated financial environments. 
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Chapter 3 
Simple Transformer-Based Architectures for Portfolio Optimization 

 
3.1  Building Simple Transformer Architectures for Feature Extraction 

3.2  Hyperparameters in Transformer Models: What Can We Adjust and Why? 

3.3  Examples of Transformer Architectures for Feature Extraction in Portfolio 

Optimization and Financial Forecasting 

3.4  How can we adapt financial sequences for Transformers? Are there different 

methods for doing so? 

 
 
3.1  Building Simple Transformer Architectures for Feature Extraction 

Introduction and Architecture Overview 

To construct a simple transformer architecture for feature extraction using PyTorch [36], 

we leverage the torch.nn module, which provides essential components for building 

neural networks. The torch.nn.Transformer class serves as a fundamental building block 

for implementing transformer-based models. A basic transformer for feature extraction 

consists of an embedding layer, which projects input features into the desired model 

dimension, followed by a transformer encoder composed of multiple layers with multi-

head self-attention mechanisms. This architecture can be implemented by defining a 

custom PyTorch module that initializes an embedding layer and a transformer encoder, 

built using transformer encoder layers. The number of layers and attention heads can be 

adjusted based on the complexity of the task.  

 

Feature Extraction and Positional Encoding 

Once the model is defined, input data is passed through it, and the extracted features are 

obtained from the transformer encoder’s output. To enhance the model’s performance for 

sequence-based tasks, positional encodings can be incorporated, as transformers 

inherently lack a sense of order. These encodings provide the model with information 

about the position of elements in a sequence, which is critical for capturing temporal or 

spatial patterns. 
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Implementation Steps in PyTorch 

The implementation involves several key steps. First, we import the necessary PyTorch 

modules. Next, we define the transformer model by creating a subclass of the neural 

network module and initializing the transformer encoder. Once the model is instantiated 

with specified parameters, we prepare the input data, ensuring it is tokenized and 

converted to tensor format. If necessary, we define source and target masks to handle 

padding and prevent the model from attending to future tokens during training.  

 

Training the Model 

The forward pass involves feeding the input sequences through the model to obtain 

feature representations. Finally, during training, we implement a loop that defines the loss 

function, such as cross-entropy loss, and selects an optimizer like Adam, which is well-

suited for handling sparse gradients and large datasets. By iterating over the dataset, 

performing forward and backward passes, and updating the model parameters, we refine 

the transformer-based feature extractor for optimal performance in various applications. 

 

3.2  Hyperparameters in Transformer Models: What Can We Adjust and Why? 

Core Model Architecture Parameters 

Transformer models have several key hyperparameters that can be adjusted to optimize 

performance for different tasks. The model dimension (d_model) determines the size of 

input and output vectors at each layer, influencing the model's capacity to learn complex 

features while increasing computational costs. The number of attention heads (nhead) 

controls how many separate self-attention mechanisms run in parallel, allowing the model 

to capture various relationships in the data but also increasing processing requirements. 

The number of encoder (num_encoder_layers) and decoder layers (num_decoder_layers) 

dictate the depth of the model, with more layers improving its ability to learn complex 

patterns while increasing training time.  

 

Feedforward, Dropout, and Activation Settings 

The feedforward dimension (dim_feedforward) affects the size of the hidden layers in the 

feedforward network, where a larger dimension improves representational power but 

demands more memory and computation. Dropout (dropout rate) is a regularization 

technique that prevents overfitting by randomly zeroing out some units during training, 
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striking a balance between generalization and learning efficiency. The activation function 

(commonly ReLU or GELU) determines how information is processed in the feedforward 

layers, with GELU often yielding better performance in NLP tasks.  

 

Data Formatting and Normalization Options 

The batch_first parameter defines the ordering of batch and sequence dimensions in input 

tensors, which is crucial for compatibility with PyTorch models. Additional parameters, 

such as norm_first and pre_norm, control whether layer normalization is applied before 

or after the attention and feedforward layers, affecting stability and learning behavior. 

The encoders and decoders define the structure of the transformer blocks, where 

increasing their numbers enhances learning capacity at the cost of greater computational 

expense.  

 

Customization, Masking, and Padding 

Customization options, such as custom_encoder and custom_decoder, allow 

modifications to the default transformer architecture for specialized tasks. The masking 

mechanism ensures that the model focuses on relevant tokens by preventing attention to 

padding or future tokens in sequence generation. Lastly, the pad_token_id helps the 

model distinguish between meaningful tokens and padding, ensuring padding is ignored 

during attention calculations. Adjusting these hyperparameters allows for fine-tuning 

transformers based on specific use cases, balancing performance, efficiency, and 

computational requirements. 

 

3.3  Examples of Transformer Architectures for Feature Extraction in Portfolio 

Optimization and Financial Forecasting 

Introduction to Transformers in Finance 

Transformers have become increasingly popular in feature extraction, portfolio 

optimization, and financial forecasting due to their ability to model long-range 

dependencies in time-series data. Originally designed for natural language processing, 

researchers have successfully adapted transformers for financial applications. Various 

transformer architectures have been explored in literature to improve forecasting accuracy 

and portfolio allocation strategies.  
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Transformers for Financial Forecasting 

For instance, Time-Series Transformers have been applied in financial forecasting, 

leveraging self-attention mechanisms to capture temporal dependencies across stock 

prices, volatility indices, and macroeconomic indicators. Encoder-decoder architectures 

in these models extract critical features that enhance prediction accuracy.  

 

Applications in Portfolio Optimization 

In portfolio optimization, transformer models like Attention-Based Deep Portfolio 

Optimization utilize self-attention to identify patterns in financial time series, optimizing 

asset allocation to maximize returns while managing risk. Similarly, multivariate time-

series forecasting transformers analyze multiple financial indicators, using self-attention 

layers to capture dependencies between variables such as stock prices, interest rates, and 

trading volumes.  

 

Hybrid Models and Long-Term Prediction 

Stock price prediction models employing transformer encoder-decoder architectures 

process historical stock prices and technical indicators, leveraging attention mechanisms 

to extract trends and volatility patterns. Some studies combine transformer-based models 

with traditional techniques like ARIMA or GARCH to enhance financial time-series 

forecasting accuracy. For long-term stock market predictions, transformer architectures 

utilize temporal attention to focus on significant historical events that influence extended 

forecasts.  

 

Transformer Variants and Future Directions 

Several specialized transformer variants have also been explored, including Vanilla 

Transformers, encoder-only models like BERT, decoder-only transformers, and temporal 

fusion transformers that integrate temporal attention. Additionally, cross-attention-based 

models like Dual-Stage Attention and advanced architectures like Informer further 

enhance forecasting efficiency by handling long-range dependencies more effectively. 

These transformer models continue to evolve, offering powerful tools for financial 

modeling and decision-making. 
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3.4  How can we adapt financial sequences for Transformers? Are there different 

methods for doing so? 

Overview and Time-Series Data Adaptation 

Adapting financial sequences for transformers involves multiple strategies designed to 

accommodate the unique characteristics of financial data, including time-series and 

textual information. For time-series data transformation, the windowed sequence 

approach is used, where long financial sequences are divided into smaller, manageable 

windows. This method helps to break down the data into chunks of a fixed length, which 

can be fed into the transformer. Additionally, positional encoding is essential as 

transformers do not inherently handle the sequential nature of data. Positional encodings 

are added to the input to maintain the temporal relationships between data points.  

 

Textual Data Transformation 

For textual data transformation, tokenization is commonly applied to convert financial 

news, reports, or sentiment-rich data into tokens. These tokens are then processed by pre-

trained models like BERT. Sentiment scores, another method for transforming textual 

data, involve analyzing the sentiment of financial reports or news articles and converting 

them into numerical values that can be used alongside time-series data.  

 

Combining Time-Series and Textual Data 

Combining time-series and textual data can be done in two main ways: concatenation and 

multi-modal transformers. In the concatenation approach, textual features are combined 

with numerical time-series data to form a unified input that is passed through a 

transformer model. Alternatively, multi-modal transformer architectures can handle 

multiple types of data streams, such as numerical and textual data, simultaneously, 

enabling more comprehensive feature extraction.  

 

Importance of Preprocessing and Integration 

These models can integrate numerical time-series data with positional encoding and 

textual features derived from pre-trained transformers. By using these strategies, financial 

sequences can be effectively adapted for transformer models, enabling them to perform 

complex tasks like portfolio optimization, sentiment analysis, and financial forecasting. 

The key to success in this adaptation process is careful data preprocessing, feature 
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engineering, and combining different data types in a way that maximizes the model's 

ability to capture and process intricate financial patterns. 
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Chapter 4 
Implementation of Transformer Architectures 

 
4.1  Encoding Numerical Data for Transformer Models in Financial Applications 
4.2  Transformer Architectures Used in This Study 

4.3  Dataset Used in This Study 

4.4  Vanilla Transformer: Full Encoder-Decoder for Financial Forecasting 

4.4.1  Model Architecture 

4.4.2  Hyperparameters and Configuration 

4.4.3  Training Setup 

4.4.4  Evaluation Metrics 

4.4.5  Graphical Analysis of Model Performance 

4.5  Encoder-Only Transformer: Contextual Representations Without Generation 

4.5.1  Introduction 

4.5.2  Modification of the Transformer for Regression Tasks 
4.5.3  Advantages of Using Encoder-Only Transformer for Regression 

4.5.4  Graphical Analysis of Model Performance 

4.5.5  Training and Validation Performance: Original vs Encoder-Only 

Transformer 

4.6  GPT Transformer: Autoregressive Modeling with Causal Masking 

4.6.1  Introduction 

4.6.2  Model Architecture 

4.6.3  Training Strategy 

4.6.4  Hyperparameters and Their Justification 

4.6.5  Model Evaluation Metrics 

4.6.6  Graphical Analysis of Model Performance 

4.7  Vision Transformer (ViT): Adapting Image Models to Time Series Data 

4.7.1  Introduction 

4.7.2  Model Architecture 

4.7.3  Hyperparameter Details 

4.7.4  Training and Evaluation Procedure 

4.7.5  Graphical Analysis of Model Performance 

4.8  Analysis and Comparison of Transformer-Based Models 
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4.8.1  Training Loss Analysis 

4.8.2  Validation Loss Analysis 

4.8.3  Validation RMSE Analysis 

4.8.4  Model Checkpoints and Early Stopping 

4.8.5  Conclusion 

 

4.1  Encoding Numerical Data for Transformer Models in Financial Applications 

We now explore the preprocessing steps involved in preparing numerical data for 

transformer models in financial applications, specifically focusing on encoding data for 

stock and cryptocurrency prediction tasks. The dataset consists of time-series data for 

individual stocks or cryptocurrencies, with each file representing the historical prices over 

a period. Initially, this data is stored in CSV format, and the features of interest are 

extracted from these files. 
A crucial step in preparing the data for machine learning models is normalization. Since 

the features in financial datasets often operate on different scales (e.g., the “volume” 

feature can range from 1,000 to 10,000, while the “close” price might fluctuate between 

$10 and $500), normalization ensures that each feature contributes equally to the model's 

training process. The dataset is normalized by subtracting the mean and dividing by the 

standard deviation for each feature across the entire dataset. This standardization brings 

all features to a similar scale, with a mean of 0 and a standard deviation of 1. Such scaling 

helps improve training efficiency and model performance, preventing the model from 

giving undue importance to certain features just due to their larger numeric range. 

To ensure consistent scale across features and to stabilize training, each feature is z-score 

normalized. The process for that is outlined below: 

o First, the mean and standard deviation for each feature are computed. 

 

The formula of Mean is: 

  ,  
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where: 

§ xi: Is the value of a specific feature (like closing price, volume, etc.) at time 

step i. For example, if you're normalizing the "close" price feature, then xi 

would be the closing price on day i 

§ n: Is the total number of data points for that specific feature across the time 

series 

§ ∑ⁿᵢ₌₁ xᵢ: Is the sum of all values of the feature across all time steps. This gives 

the total value before averaging 

§ 1/n(∑ⁿᵢ₌₁ xᵢ): Is the mean value of the feature across all time steps 

The formula of Standard Deviation is: 

 

 ,  

 

where: 

§ X: Is the value of a specific feature (like closing price, volume, etc.) at time 

step i 

§ Μ (the mean): Is the average of all values x1,x2,...,xn for that feature. This is 

what we previously calculated 

§ n: Is the total number of data points for that specific feature across the time 

series 

 

o Then, normalization for each data point of each feature is computed. 

 

The formula of Z-Score Normalization is: 

 

 ,  



 

 
 

31 

where: 

§ X: Is the original value of a specific financial feature at time step i. 

Example: the closing price of Bitcoin on day i. 

§ μ (the mean): Is the average value of that feature over the entire dataset. 

Example: the average closing price of Bitcoin over the dataset period. 

§ X − μ: Is the deviation of the current value from the mean — shows how much 

the current data point differs from the average. 

§ σ (the standard deviation): A measure of the volatility of the feature’s values 

across the dataset. It tells how much the values tend to deviate from the mean. 

Following normalization, the data is structured into sequences of a specified length, 

typically set to 30 time steps (denoted as seq_length). Each sequence represents a window 

of stock or cryptocurrency prices used to predict the next day's closing price. The target 

value for each sequence is the closing price, which serves as the predictive target for the 

transformer model. 

To facilitate model training, the dataset is split into training and validation sets. This is 

done using the random_split function, which allocates a portion of the data for training 

and another for validation. In this implementation, 80% of the data is used for training, 

and 20% is reserved for validation. The DataLoader objects, train_loader and val_loader, 

are employed to efficiently batch the data during training and evaluation. The training 

DataLoader shuffles the data to prevent overfitting, while the validation DataLoader does 

not shuffle the data, ensuring that validation metrics are computed on a fixed set of data 

points. 

This preprocessing and splitting strategy ensures that the transformer models receive 

properly scaled data for effective learning and evaluation, thus enhancing the overall 

performance of financial forecasting tasks. 

 

4.2  Transformer Architectures Used in This Study 

In this study, four distinct transformer based architectures were trained and evaluated for 

the task of financial time series forecasting: the original Transformer (vanilla), the 

encoder-only Transformer [37][38], the GPT Transformer [38][39], and the Vision 

Transformer [40]. The vanilla Transformer employs a full encoder-decoder architecture, 

originally designed for sequence-to-sequence tasks in NLP, and here adapted for 
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regression by predicting the closing price based on past data. The encoder-only 

Transformer, inspired by models like BERT, focuses solely on learning contextual 

representations from input sequences without a generative decoder, making it more 

efficient for scenarios where future context isn’t required for prediction. The GPT 

Transformer, based on the Generative Pretrained Transformer framework, uses a decoder-

only architecture with causal masking, ensuring that predictions for the next time step are 

made using only past data, ideal for autoregressive financial forecasting. Lastly, the 

Vision Transformer, though originally developed for image classification, was adapted 

for this project by treating sequences of numerical data as 1D patches, allowing the model 

to learn temporal dependencies in a novel way. Each model was trained using the same 

dataset and optimization strategy, enabling a direct comparison of their ability to learn 

from and generalize across financial time series data. 

 

Figure 4.1 illustrates the architecture of ViT. 

On the left side, an input image is divided into fixed-size patches, each of which is 

flattened and linearly projected into a vector. These patch embeddings are combined with 

positional embeddings to retain spatial information and are then fed into the Transformer 

Encoder. An additional learnable “[class] token” is prepended to the sequence, which 

ultimately accumulates information from all patches and is used by the Multi-Layer 

Perceptron (MLP) Head for final classification into predefined categories (e.g., bird, ball, 

car). 

The right side of the image details the internal structure of the Transformer Encoder. Each 

encoder block consists of a multi-head self-attention mechanism followed by a feed-

forward neural network (MLP), with layer normalizationand residual connections applied 

at each step. This design enables ViTs to model long-range dependencies across image 

patches effectively, unlike traditional convolutional networks which rely on local 

receptive fields. 
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Figure 4.1 Architecture of ViT Transformer 

 

Figure 4.2 illustrates the architecture of the Generative Pretrained Transformer (GPT), a 

decoder-only Transformer model designed for autoregressive language modeling. GPT 

processes an input sequence by first converting each token into an embedding, which is 

then combined with positional encodings to retain the order of tokens. These 

representations are passed through a stack of Transformer blocks, each comprising 

masked multi-head self-attention mechanisms and feed-forward neural networks. The 

masking ensures that the model can only attend to previous tokens, preserving the 

autoregressive property essential for generative tasks. Each attention head performs 

scaled dot-product attention, and their outputs are concatenated and linearly transformed. 

Residual connections, followed by layer normalization and dropout, are applied 

throughout to stabilize training and enhance generalization. At the top of the network, a 

linear layer followed by a softmax function produces the probability distribution over the 

vocabulary for the next token prediction. 
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Figure 4.2 Architercture of GPT Transformer 

 

 

4.3  Dataset Used in This Study 

To ensure a consistent basis for comparison across all transformer-based architectures 

explored in this research, the same standardized dataset was employed for training NS 

validation purposes. The dataset, referred to as hourly_data, is organized as a folder 

containing multiple CSV files, each representing hourly time-series data for individual 

financial instruments such as cryptocurrencies or stocks. These files serve as the 

foundational input for all forecasting models developed and evaluated in this study. 

 

Each CSV file within the hourly_data directory follows a structured schema, where each 

row corresponds to one hour of trading data. The dataset contains the following columns: 

o open: The opening price of the asset at the beginning of the hour. 

o high: The highest price recorded during the hour. 

o low: The lowest price recorded during the hour. 

o close: The closing price of the asset at the end of the hour. 
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By maintaining a consistent dataset across all models, this study ensures that any 

differences in performance can be attributed to architectural and training variations, rather 

than inconsistencies in the underlying data. The use of granular hourly financial data 

provides a rich and dynamic input space that challenges the models to learn complex 

temporal patterns, ultimately testing their effectiveness in real-world financial forecasting 

scenarios. 

 

4.4  Vanilla Transformer: Full Encoder-Decoder for Financial Forecasting 

4.4.1  Model Architecture 

Input Embeddings 

Since the input consists of continuous financial features rather than discrete tokens, a 

linear projection layer is utilized to map the raw inputs into the model’s hidden dimension 

space, replacing the standard token embedding approach used in NLP. 

 
self.linear = nn.Linear(4, d_model) 

o Projects 4-dimensional input vectors to d_model = 512-dimensional space. 

o Embedding is scaled by d_model to stabilize variance during training. 

 

Positional Encoding 

o Restores order information: Since the attention mechanism looks at all tokens at 

once without knowing their original order, positional encoding adds information 

about the position of each token in the sequence. 

o Uses sine and cosine patterns: It generates position information by applying sine 

and cosine functions at different frequencies, creating unique patterns for each 

position. 

o Added to both encoder and decoder inputs: Positional encoding is applied to the 

inputs of both the encoder and decoder to make sure both sides know the order of 

the tokens. 

 

Multi-Head Attention 

o Attention mechanism splits the d_model vector into NUM_HEADS = 8 attention 

heads. 

o Each head captures different relationships in the input sequence. 
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o First, scaled dot-product attention is calculated separately in each attention head. 

Then, the outputs from all heads are concatenated together into a single large 

tensor. Finally, this combined output is passed through a linear layer to mix 

information from different heads and produce the final attention result. 

 

Feed Forward Block 

After the attention mechanism, each token in the sequence is processed independently 

through a small neural network (a two-layer MLP). This block works as follows: 

• First, the input (of size d_model) is passed through a linear layer that expands its 

size to d_ff = 2048. 

• Second, a ReLU activation adds non-linearity, allowing the model to better 

capture complex patterns. 

• Third, dropout is applied to prevent overfitting during training. 

• Finally, a second linear layer compresses the representation back to the 

original d_model size. 

This feed-forward step allows the model to transform and refine the representation of 

each token individually, adding depth and expressiveness beyond what self-attention 

alone can provide. 

 

Residual Connections and Layer Normalization 
In the Transformer architecture, each sublayer is wrapped in a residual connection, 

followed by layer normalization. This structure can be mathematically expressed as: 

Output=LayerNorm(x+Dropout(Sublayer(x))), 

where x is the input to the sublayer. 

The process operates as follows: the input x is first passed through the sublayer. The result 

is then processed by a dropout layer, which randomly zeroes some elements during 

training to prevent overfitting. A residual connection is subsequently applied by adding 

the original input x back to the sublayer output. Finally, layer normalization is performed 

to stabilize the activations and ensure that the distribution of the outputs remains 

consistent throughout training. 

This combination of residual connections and normalization serves two critical purposes. 

First, residual connections mitigate the vanishing gradient problem by allowing gradients 

to flow more easily through the network, thereby improving training of very deep models. 
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Second, layer normalization accelerates convergence and enhances model stability by 

maintaining a standardized output distribution at each layer. 

In summary, rather than forcing each layer to learn a completely new transformation from 

scratch, the model learns adjustments relative to the input, while normalization ensures 

that training remains stable and efficient. 

Encoder and Decoder 

• Encoder: Stack of NUM_LAYERS = 6 blocks with self-attention and 

feedforward layers. 

• Decoder: Stack of 6 blocks that include: 

o Masked self-attention 

o Cross-attention with encoder output 

o Feedforward layers 

 

Projection Layer 

Final decoder output is projected to a single scalar value for regression. 

4.4.2  Hyperparameters and Configuration 

Table 4.1 presents the parameters used in the vanilla Transformer model, along with a 

description of their respective roles 

 

Hyperparameter Value Description 

SEQ_LENGTH 30 Number of past time steps used as input 

D_MODEL 512 Dimensionality of embeddings and hidden layers 

NUM_HEADS 8 Number of attention heads in multi-head attention 

D_FF 2048 Dimensionality of the intermediate feedforward layer 

DROPOUT 0.1 Dropout rate to prevent overfitting 

NUM_LAYERS 6 Number of layers in encoder and decoder stacks 

BATCH_SIZE 64 Number of samples per training batch 

EPOCHS 50 Maximum number of training epochs 

LR (Learning Rate) 1e-4 Learning rate for the Adam optimizer 

 

Table 4.1 Hyperparameters of Vanilla Transformer and their Roles 
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4.4.3  Training Setup 

Loss Function 

• During training, the model minimizes the Mean Squared Error between the 

predicted outputs and the ground truth values. MSE is chosen because it heavily 

penalizes larger errors, leading to more accurate predictions. 

o The formula of MSE is: 

 ,  

Where: 

§ y_i: Is the true value of the financial target at time i. 

§ ŷ_i: Is the model’s predicted value at time i. 

§ n: Is the number of samples 

 

• Additionally, for better interpretability during evaluation, the Root Mean Squared 

Error (RMSE) is computed. 

 

o The formula of RMSE is: 

 

 ,  

Where: 

§ y_i: Is the true value of the financial target at time i. 

§ ŷ_i: Is the model’s predicted value at time i. 

§ n: Is the number of samples 

§ (ŷ_i − y_i)^2: Is the squared error which measures how far off the 

prediction is from the actual value for that time step. Squaring emphasizes 

larger errors 
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Optimization 

• Adaptive Moment Estimation (Adam) optimizer [41] is used with a fixed learning 

rate of 0.0001. 

 

How Does Adam Work? 

The Adam optimizer is a widely used optimization algorithm in deep learning, 

particularly effective for training complex models such as transformers in 

financial forecasting. Adam combines the benefits of two foundational 

techniques: Momentum [60] and Root Mean Square Propagation (RMSprop) [60]. 

Momentum helps accelerate gradient descent by maintaining an exponentially 

weighted average of past gradients, smoothing the update trajectory and reducing 

oscillations. Simultaneously, RMSprop adapts the learning rate for each 

parameter by keeping an exponentially decaying average of past squared 

gradients, which stabilizes the learning process and prevents the learning rate from 

diminishing too quickly. Adam further refines these ideas by computing both the 

first moment (mean) and second moment (uncentered variance) of the gradients. 

To address initialization bias, Adam applies bias correction to both estimates. The 

final parameter update is based on these corrected values, allowing each weight 

to be updated with its own adaptive learning rate. This combination leads to faster 

convergence, greater stability, and reduced need for manual tuning, making Adam 

especially suitable for financial time-series models that require efficient learning 

over noisy and volatile data. 

 

• All model parameters with more than 1 dimension are initialized using Xavier 

uniform initialization. 

 

Early Stopping 

• Training stops if no validation improvement is observed for patience = 

5 consecutive epochs. 

• The best model is saved based on validation loss. 

 

Checkpointing and Logging 

• Best model weights are saved to disk. 
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• Metrics such as training/validation loss, RMSE, and learning rate are logged and 

visualized. 

 

4.4.4  Evaluation Metrics 

After training, the model is evaluated using two main metrics: 

• Loss (MSE): Lower values of MSE indicate a better fit of the model to the data. 

• Root Mean Squared Error: RMSE provides a scale-consistent evaluation metric, 

allowing for a direct understanding of the magnitude of errors in the same unit as 

the target variable. 

Tracking both MSE and RMSE throughout training and validation provides a 

comprehensive understanding of how well the model generalizes to unseen data. 

 

4.4.5  Graphical Analysis of Model Performance 

Figure 4.3 illustrates the training and validation performance of the original transformer 

model 

 

 
Figure 4.3 Training and Validation Performance of the Original Transformer Model 

 

The model was initially configured to train for a maximum of 50 epochs. However, 

an early stopping mechanism with a patience of 5 epochs was applied to prevent 
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overfitting and unnecessary computation. Throughout the training process, the model 

exhibited strong convergence behavior: 

• During the first epochs (1–5), there was a rapid decrease in both the training and 

validation loss, indicating that the model was quickly learning meaningful 

representations from the data. 

• After epoch 5, the validation loss began to plateau, with occasional minor 

improvements. While the training loss continued to decrease steadily, the 

validation metrics showed signs of overfitting beginning to emerge. 

 

Key Observations: 

• The lowest validation RMSE was recorded at epoch 10, reaching 0.0106, which 

indicates a very low prediction error relative to the scale of the target values. 

• Up to epoch 5, each epoch resulted in a newly improved model, reflected by 

consistent "Best model saved" events. 

• Between epochs 6 and 15, no substantial improvements were observed. Minor 

fluctuations in validation RMSE suggested the model was nearing its optimal 

generalization performance. 

• After epoch 15, early stopping was triggered, finalizing the training process at a 

much earlier point than the maximum allowed 50 epochs, thus promoting a more 

generalizable final model without overfitting the training data. 

 

Quantitative Results: 

• Initial Train Loss (Epoch 1): 0.0200 

• Final Train Loss (Epoch 15): 0.0004 

• Initial Validation Loss (Epoch 1): 0.0023 

• Best Validation Loss (Epoch 10): 0.0001 

• Best Validation RMSE (Epoch 10): 0.0106 

These results confirm that the model is capable of fitting the training data effectively 

while maintaining strong performance on unseen validation data. The very low RMSE 

indicates that the prediction errors are minimal, and the smooth convergence behavior 

implies that the model training was stable and effective. 
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My Perspective on Model Effectiveness and Training Dynamics 

Αpplying the vanilla Transformer architecture to this financial dataset, I was pleasantly 

surprised by how effectively the model learned meaningful patterns in such a noisy and 

non-stationary domain. Given the complexity and volatility inherent in financial time 

series, I initially expected the model to struggle with overfitting or unstable convergence. 

However, the early training stages showed a sharp and consistent drop in both training 

and validation losses, which suggested the model was successfully capturing temporal 

dependencies. The architecture's attention mechanism may have played a crucial role 

here, allowing the model to focus on relevant price and volume dynamics across time 

steps. The early stopping at epoch 15 was particularly insightful. It reinforced that despite 

the model’s high capacity, it converged efficiently and avoided excessive fitting. 

Achieving a validation RMSE as low as 0.0106 was beyond my original expectations, 

especially considering the simplicity of the input features and the use of raw historical 

price data without external indicators. I believe this success is attributable to the 

Transformer’s ability to model long-range dependencies and to its inherent flexibility in 

learning contextual relationships across the sequence. Still, the slight stagnation in 

validation improvement after epoch 10 suggests that the model may have extracted most 

of the predictive patterns available in the current data representation, indicating a 

potential ceiling in performance under the existing setup. Overall, I found the vanilla 

Transformer to be a strong baseline and a compelling choice for sequence modeling in 

financial prediction tasks. 

 

4.5  Encoder-Only Transformer: Contextual Representations Without Generation 

4.5.1  Introduction 

The Transformer architecture, first introduced by Vaswani et al. (2017), revolutionized 

sequence modeling through its encoder-decoder structure built upon self-attention 

mechanisms. However, in many tasks, particularly in regression and representation 

learning, the decoder component becomes redundant. This chapter explores the 

adaptation of the original Transformer into an encoder-only Transformer, focusing on 

their structural differences, functional roles, and the motivation for this transition in the 

context of regression tasks. 
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4.5.2  Modification of the Transformer for Regression Tasks 
For regression tasks, the goal is not to generate a sequence, but to predict a single 

continuous output from an entire input sequence. This majorly alters the architecture: 

1. The decoder component becomes unnecessary, since there is no need to generate 

outputs step by step. 

2. The encoder alone suffices to extract meaningful representations from the input. 

3. A pooling operation (e.g., taking the final hidden state or an average) summarizes 

the sequence representation into a fixed-size vector. 

4. A final dense (fully connected) layer maps this vector to a scalar output. 

Thus, the modified Transformer for regression consists of: 

• Only the encoder blocks. 

• A regression head appended on top of the encoder outputs. 

 

4.5.3  Advantages of Using Encoder-Only Transformer for Regression 

The benefits of adopting an encoder-only architecture for regression tasks include: 

• Simplicity: No need for complex decoding logic or masking. 

• Efficiency: Reduced computational overhead and memory footprint. 

• Training Stability: Fewer sources of gradient noise (no decoding dependency). 

• Alignment with Objective: Encoders directly produce a meaningful embedding 

that can be optimized for scalar prediction. 

 

4.5.4  Graphical Analysis of Model Performance 

Figure 4.4 illustrates the training and validation performance of the encoder-only 

transformer model 
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Figure 4.4 Training and Validation Performance of the Encoder-Only Transformer 

Model 

 

The model was originally set to train for up to 50 epochs. However, early stopping with 

a patience of 5 epochs was employed to terminate training once validation performance 

plateaued. As shown in the training curves, the model experienced a sharp decline in both 

training and validation loss during the initial epochs (1–3), indicating rapid learning of 

useful representations. 

After epoch 3, although training loss continued to decrease gradually, validation loss and 

RMSE began fluctuating rather than improving steadily. The best validation RMSE was 

achieved at epoch 6 (approximately 0.0150), but subsequent epochs did not produce 

significant gains. This is also reflected in the checkpointing behavior where new best 

models were consistently saved only during the first few epochs, after which performance 

gains diminished. 

 

Key Observations: 

• The lowest validation RMSE was recorded at epoch 6, reaching 0.0150, which 

indicates a very low prediction error relative to the scale of the target values. 

• Up to epoch 3, each epoch resulted in a newly improved model, reflected by 

consistent "Best model saved" events. 
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• Between epochs 4 and 11, no substantial improvements were observed. Minor 

fluctuations in validation RMSE and loss suggested that the model was nearing 

its performance ceiling.  

• After epoch 11, early stopping was triggered, finalizing the training process 

significantly earlier than the maximum allowed 50 epochs. This behavior 

contributed to preserving the model’s generalization capacity while avoiding 

overfitting. 

 

Quantitative Results: 

• Initial Train Loss (Epoch 1): 0.0101 

• Final Train Loss (Epoch 11): 0.0005 

• Initial Validation Loss (Epoch 1): 0.0012 

• Best Validation Loss (Epoch 6): 0.0002566 

• Best Validation RMSE (Epoch 6): 0.0150 

While the training process was stable, the validation RMSE graph suggests that the 

model’s generalization was not improving past epoch 6, and even showed volatility. The 

learning rate remained constant, which may have limited the model's ability to fine-tune 

more delicately in later epochs. Nonetheless, the early convergence and low error values 

indicate strong training efficiency and relatively good generalization. 

 

My Perspective on Model Effectiveness and Training Dynamics 

In my opinion, the encoder-only Transformer architecture exhibited promising early 

training dynamics but revealed its limitations in generalization as training progressed. 

The rapid drop in training and validation loss within the first few epochs highlighted the 

model's ability to quickly capture temporal dependencies in the financial data. This was 

likely due to the model's high capacity and the strong sequential patterns present in the 

normalized price and volume inputs. However, I noticed that beyond epoch 6, 

improvements plateaued, and the validation RMSE began fluctuating. I believe this was 

partly due to the model’s lack of decoder-side complexity, which in a full Transformer 

setup can help with autoregressive sequence understanding and error correction. 

Additionally, the fixed learning rate may have constrained the model's ability to refine its 

weights delicately in later stages of training. While I expected the encoder-only approach 

to perform competitively due to its architectural simplicity and efficiency, I was surprised 
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by how quickly it converged without sustained improvement. This suggests a mismatch 

between model capacity and the subtle patterns in the validation data that might benefit 

from deeper contextual processing. Overall, the results reinforced my expectation that 

encoder-only models are suitable for capturing short-term dependencies effectively. 

 

4.5.5  Training and Validation Performance: Original vs Encoder-Only 

Transformer 

Figure 4.5 illustrates the comparison of validation loss and RMSE between original and 

encoder-only transformer models 

 
Figure 4.5 Comparison of Validation Loss and RMSE Between Original and Encoder-

Only Transformer Models 

 

The comparison between the original Transformer and the encoder-only Transformer 

revealed distinct differences in training efficiency and generalization performance. The 

encoder-only model demonstrated faster convergence during training, achieving lower 

training loss in fewer epochs. However, this rapid learning did not translate to better 

validation performance. In contrast, the original Transformer consistently achieved lower 

and more stable validation loss and RMSE across epochs. The encoder-only model 

exhibited significant fluctuations in both validation loss and RMSE, suggesting potential 

overfitting or instability when generalizing to unseen data. Notably, the original 

Transformer attained its best validation RMSE and loss values with smoother trends and 

fewer oscillations, indicating stronger generalization capability. Therefore, while the 

encoder-only Transformer was more efficient in fitting the training data, the original 
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Transformer proved to be the more robust and reliable architecture for this regression 

task. 

 

4.6  GPT Transformer: Autoregressive Modeling with Causal Masking 

4.6.1  Introduction 

The Generative Pre-trained Transformer architecture represents a major advancement in 

the field of deep learning and artificial intelligence. First introduced by OpenAI, GPT 

models are based on the Transformer architecture and are designed to perform 

autoregressive sequence modeling using self-attention mechanisms. 

GPT models are characterized by two main stages: a pre-training phase, where the model 

learns general representations from large unlabeled datasets through language modeling 

objectives, and a fine-tuning phase, where the model is adapted to specific tasks. A 

distinctive feature of GPT is its decoder-only architecture, where causal masking is 

applied to ensure that each position can only attend to previous positions, preserving the 

autoregressive property. 

The success of GPT models is attributed to their scalability, attention-based 

representation learning, and capacity for generalization across tasks without requiring 

significant architectural modifications. While originally developed for natural language 

processing, the principles of GPT architectures have been extended to other domains, 

demonstrating the flexibility and power of self-attention mechanisms in modeling 

sequential data. 

 

4.6.2  Model Architecture 

Architectural Details 

The model is implemented in the GPT class and is composed of the following core 

components: 

 

• Input Embedding Layer: 

• Input Dimension: 4 (corresponding to features such as open, high, low and close). 

• Embedding Dimension: 64. 

• Projects the raw input features at each time step into a higher-dimensional 

representation suitable for attention mechanisms. 

• Positional Encoding: 
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• A learnable positional embedding of shape (1, sequence_length, embed_dim) is 

added to the input embeddings to inject temporal order information into the 

model, which is essential for Transformers that lack recurrence. 

• Transformer Decoder: 

• Type: nn.TransformerDecoder from PyTorch. 

• Decoder Layers: 4. 

• Heads per Layer: 4 (multi-head self-attention). 

• Each layer includes: 

o Multi-head self-attention with causal masking, preventing attention to 

future time steps. 

o Feed-forward layers. 

o Layer normalization and residual connections (internally handled by 

PyTorch). 

• Memory Input: A dummy zero tensor is used as the memory input to enable the 

decoder-only behavior. 

• Output Projection Layer: 

• A fully connected layer that maps the 256-dimensional output of the final 

Transformer time step to a single prediction (e.g., the next close price). 

Forward Pass 

During the forward pass: 

1. The input sequence is projected into the embedding space using a linear layer. 

2. Positional embeddings are added to retain sequence order. 

3. A causal attention mask is generated to enforce autoregressive behavior 

(preventing leakage of future data). 

4. The Transformer decoder processes the sequence, attending only to current and 

past time steps. 

5. The output corresponding to the final time step is extracted. 

6. This vector is passed through the output layer to produce the prediction. 

 

4.6.3  Training Strategy 

Loss Function 

• Mean Squared Error (MSE) Loss is used as the loss criterion. 
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• MSE is particularly appropriate for regression tasks as it penalizes larger errors 

more heavily. 

 

Optimizer 

AdamW Optimizer is utilized, a variant of Adam with decoupled weight decay, helping 

to improve generalization. 

 

Learning Rate Scheduler 

ReduceLROnPlateau scheduler is employed: 

• Reduces the learning rate when the validation loss plateaus. 

• Patience: 2 epochs (the learning rate is halved if no improvement is seen for 2 

consecutive validation checks). 

 

Mixed Precision Training 

• Mixed precision is enabled using PyTorch's GradScaler and autocast. 

• This accelerates training and reduces memory usage without significant loss in 

model performance. 

 

Gradient Accumulation 

• Accumulation Steps: 4 

• Gradients are accumulated over 4 batches before an optimizer step is performed. 

• This technique effectively simulates a larger batch size without exceeding 

memory limits. 

 

Early Stopping 

• Patience: 5 epochs 

• If validation loss does not improve for 5 consecutive epochs, training is halted 

early to prevent overfitting. 

 

4.6.4  Hyperparameters and Their Justification 

Table 4.2 presents the parameters used in the Encoder-Only Transformer model, along 

with a description of their respective roles. 
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Hyperparameter Value Purpose Justification 

block_size 30 
Length of 

historical sequence 

30 time steps (hours) are considered 

sufficient to capture short-term trends. 

input_dim 4 Input features 
Directly corresponds to selected 

features: open, high, low, close. 

embed_dim 64 Embedding 
dimension 

 

Transforms raw input into a richer, 
higher-dimensional representation for 
attention processing. 

 

output_dim 1 Output value Predicts only the next close price. 

num_layers 4 Transformer 
decoder layers 

 

Stacking layers improves 
representational capacity and model 
depth. 

 

num_heads 4 Number of 
attention heads 

 

Allows the model to attend to different 
subspaces of the input in parallel. 

 

dropout 0.2 Dropout 
regularization 

 

Helps prevent overfitting during 
training. 

 

batch_size 64 Batch size Balances efficiency and stability 
during training. 

 

learning_rate 1e-4 
Initial learning 

rate 

A small learning rate ensures stable 

convergence in financial data. 

patience 5 
Early stopping 

criterion 

Prevents overfitting while allowing 

enough time for recovery. 

accumulation_steps 4 
Gradient 

accumulation 

Simulates a larger batch size to stabilize 

training on limited hardware. 

 

Table 4.2 Hyperparameters of GPT Transformer and their Roles 

 

4.6.5  Model Evaluation Metrics 

Loss and RMSE 

During and after training: 

• Training Loss and Validation Loss are monitored. 

• Validation RMSE (Root Mean Squared Error) is also computed after every epoch. 
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o RMSE is used to interpret model performance in the same units as the 

target variable. 

 

Learning Rate Tracking 

The evolution of the learning rate is recorded and plotted to illustrate dynamic 

adjustments made by the scheduler. 

 

Model Checkpoints 

The model state is saved whenever a new lowest validation loss is achieved, ensuring that 

the best performing model is preserved. 

 

4.6.6  Graphical Analysis of Model Performance 

Figure 4.6 illustrates the training and validation performance of the GPT transformer 

model 

 

 
Figure 4.6 Training and Validation Performance of the GPT Transformer Model 

 

The model was initially configured to train for a maximum of 50 epochs. However, an 

early stopping mechanism with a patience of 5 epochs was applied to prevent overfitting 
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and to reduce unnecessary computational costs. Throughout the training process, the 

model demonstrated strong convergence behavior: 

• Early Epochs (1–3): A rapid decrease in both the training and validation losses 

was observed, indicating that the model quickly learned meaningful 

representations from the historical financial data. 

• Subsequent Epochs (4–6): The validation loss and validation RMSE continued 

to improve slightly, although the magnitude of improvements decreased. Training 

loss also continued to decline steadily, showing that the model was still fitting the 

training data progressively. 

• After Epoch 6: No further substantial improvement was observed. As a result, 

early stopping was triggered after reaching the patience threshold of 5 epochs 

without significant validation loss improvement. 

 

Key Observations: 

• Lowest Validation RMSE was recorded at epoch 6, reaching approximately 

0.0054, indicating extremely low prediction error relative to the normalized scale 

of the target values. 

• Best model saving: The model checkpoint was saved at epoch 1, reflecting the 

initial significant improvement. 

• Gradual improvements were seen across epochs, but after epoch 6, the 

validation performance plateaued. 

• Early stopping was triggered after epoch 6, finalizing the training process well 

before reaching the maximum 50 epochs. This behavior helped preserve the 

model’s generalization capability and avoided overfitting. 

 

Quantitative Results: 

Metric Epoch 1 Epoch 6 (Best) 

Train Loss 0.00206 0.00006 

Validation Loss 0.00008 0.00003 

Validation RMSE 0.0083 0.0054 

 

Table 4.3 Metrics of GPT Transformer 
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These results confirm that the GPT model is capable of effectively learning patterns from 

the financial time series data, achieving very low validation error and 

demonstrating smooth convergence throughout training. The use of early stopping 

ensured efficient training and strong generalization, while the small final RMSE value 

highlights the model’s ability to make accurate predictions on unseen validation samples. 

 

My Perspective on Model Effectiveness and Training Dynamics 

From my perspective, the results achieved by the GPT-based model aligned closely with 

my expectations, particularly given the architecture’s ability to capture complex temporal 

dependencies through self-attention. I anticipated strong early convergence due to the 

model's depth, multi-head attention, and the effective use of positional embeddings, and 

this was confirmed by the rapid drop in both training and validation loss during the initial 

epochs. I believe the combination of gradient accumulation, mixed precision training, and 

well-chosen hyperparameters contributed significantly to the model’s stability and 

efficiency during training. The early stopping mechanism triggering after epoch 6, 

although slightly earlier than expected, made sense in retrospect. It suggests the model 

reached optimal generalization quickly, likely because financial time series often contain 

short-term patterns that the Transformer can effectively exploit. The low validation 

RMSE further indicates that the model was genuinely learning predictive relationships 

rather than overfitting. Overall, I was impressed with how well the GPT architecture, 

originally developed for language tasks, adapted to structured time series forecasting. 

 

4.7  Vision Transformer (ViT): Adapting Image Models to Time Series Data 

4.7.1  Introduction 

Transformer architectures, originally proposed for natural language processing tasks, 

have shown remarkable flexibility when adapted to other modalities, notably through 

Vision Transformers (ViTs) for image classification. In this work, we adapt the Vision 

Transformer concept to financial time series data. Instead of processing images, the model 

learns from sequences of historical market indicators. 

 

4.7.2  Model Architecture 

The model follows the original Vision Transformer architecture concept but is adapted to 

1D financial sequences instead of 2D images. Its structure consists of: 
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Patch Embedding Layer 

Instead of 2D patches for images, the input 1D sequence is divided into patches of 5 

timesteps (patch_size = 5). Each patch is projected into a higher-dimensional embedding 

space (hidden_size = 128) using a 1D convolutional layer. 

Additionally, a learnable positional embedding is added to each patch to retain 

information about the temporal order of patches. 

Transformer Encoder 

The core of the model consists of stacked Transformer Encoder layers: 

• Self-Attention Mechanism: Multi-head attention with num_attention_heads = 

4 parallel heads. 

• Feedforward Layer (MLP Block): Each hidden representation is passed through a 

two-layer feedforward network (intermediate_size = 256). 

• Normalization and Residuals: Each block uses Layer Normalization 

(layer_norm_eps = 1e-6) and residual connections, promoting better gradient flow 

and convergence. 

The architecture includes 4 encoder layers (num_hidden_layers = 4) sequentially stacked. 

 

Regression Head 

After the Transformer encoders: 

• The outputs across all patches are averaged (mean(dim=1)) to form a single vector 

representing the sequence. 

• A final linear layer projects this representation to a single scalar prediction, 

intended to forecast the closing price at the next hour. 

 

4.7.3  Hyperparameter Details 

Table 4.4 presents the key hyperparameters used, along with explanations of their role 

and the rationale behind the specific values chosen: 

 

Hyperparameter Value Description 

num_channels 5 
Number of features per timestep (open, high, low, 

close, volume). 

sequence_length 30 Length of input sequences (30 hours). 
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Hyperparameter Value Description 

patch_size 5 Number of timesteps grouped together into one patch. 

hidden_size 128 Dimensionality of embeddings and hidden states. 

num_attention_heads 4 

Number of heads for multi-head attention; allows the 

model to attend to different parts of the sequence 

simultaneously. 

attention_dropout 0.1 
Dropout applied inside attention layers to prevent 

overfitting. 

intermediate_size 256 
Size of the hidden layer inside the feedforward (MLP) 

block. 

num_hidden_layers 4 Number of transformer encoder layers. 

layer_norm_eps 1e-6 
Small epsilon added for numerical stability in 

LayerNorm. 

learning_rate 1e-4 Initial learning rate for AdamW optimizer. 

batch_size 32 Number of sequences processed together in each batch. 

epochs 50 
Maximum number of training iterations over the full 

dataset. 

validation_split 0.1 Fraction of data reserved for validation. 

test_split 0.1 Fraction of data reserved for final testing. 

early_stopping_patience 5 
Number of epochs to wait for validation loss 

improvement before stopping training early. 

 

Table 4.4 Hyperparameters of  ViT Transformer and their Roles 

 

Additional Comments on Hyperparameters 

• Patch Size (5): Choosing a patch size of 5 means that each patch covers 

approximately 5 hours. This setting strikes a balance between local and global 

pattern capture: patches are small enough to not miss short-term patterns but large 

enough to abstract away noise. 
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• Hidden Size (128): This embedding size provides sufficient capacity to encode 

complex features while keeping the computational cost manageable. 

• Learning Rate (1e-4): A conservative learning rate is chosen to ensure smooth 

convergence, particularly important given the small size and complexity of 

financial data. 

 

4.7.4  Training and Evaluation Procedure 

Optimization 

The model is trained using the AdamW optimizer, which combines Adam's adaptive 

learning rates with decoupled weight decay, a regularization technique that helps improve 

generalization. 

The loss function used is Mean Squared Error (MSE), appropriate for regression tasks. 

 

Early Stopping 

To avoid overfitting, an early stopping mechanism is employed. If the validation loss does 

not improve for 5 consecutive epochs, training is halted and the best model (with the 

lowest validation loss) is saved. 

 

Evaluation Metrics 

Performance is assessed using: 

• Validation RMSE: Root Mean Squared Error calculated after each epoch on the 

validation set. 

• Test RMSE: Final performance is evaluated on the unseen test set after loading 

the best saved model. 

 

4.7.5  Graphical Analysis of Model Performance 

Figure 4.4 illustrates the training and validation performance of the ViT transformer 

model 
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Figure 4.7 Training and Validation Performance of the ViT Model 

 

The Time Series Vision Transformer (TimeSeriesViT) model was initially configured to 

train for a maximum of 50 epochs. However, an early stopping mechanism with a patience 

of 5 epochs was implemented to prevent overfitting and to reduce unnecessary 

computation. 

Throughout the training process, the model demonstrated strong convergence behavior: 

• Rapid Initial Convergence: During the first three epochs (1–3), there was a 

significant reduction in both training and validation loss. This suggests that the 

model quickly learned meaningful representations from the financial data 

sequences. 

• Plateau Phase: After epoch 3, validation loss exhibited minor fluctuations around 

a low value, indicating that the model had already captured the core patterns in 

the data. Although training loss continued to decrease gradually, validation 

performance stabilized, which is typical when a model approaches its 

generalization limit. 

Key Observations: 

• Best Performance Achieved: The lowest validation RMSE was recorded 

at epoch 9, reaching approximately 0.0103, indicating a very low prediction error 

relative to the scale of financial target values. 
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• Frequent Model Improvements Early On: Between epochs 1 and 3, and again 

at epochs 5, 7, 8, and 9, the model achieved successively better validation losses, 

resulting in multiple "Best model saved" events. 

• Performance Stabilization: After epoch 9, the model exhibited only marginal 

improvements, and minor increases in validation loss were observed. These 

fluctuations suggested that the model had already captured most of the useful 

information from the data, and further training yielded diminishing returns. 

• Early Stopping Triggered: By epoch 14, the early stopping criterion was met, as 

the validation loss had not improved over five consecutive epochs. Consequently, 

training was halted well before the maximum 50 epochs, preserving the model’s 

generalization capability while avoiding overfitting. 

 

Quantitative Results: 

 

Metric Value 

Initial Train Loss (Epoch 1) 0.0054 

Final Train Loss (Epoch 14) 0.0001 

Initial Validation Loss (Epoch 1) 0.0008 

Best Validation Loss (Epoch 9) 0.0001 

Best Validation RMSE (Epoch 9) 0.0103 

 

Table 4.5 Metrcis of ViT Transformer 

 

These results confirm that the encoder-only Vision Transformer, adapted for financial 

time series, was able to effectively fit the training data while maintaining excellent 

predictive performance on unseen validation samples. The very low RMSE values 

observed demonstrate that the model achieved high accuracy in forecasting the closing 

price component of the financial time series, while the smooth training curves and 

convergence behavior underline the stability and efficiency of the training process. 
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My Perspective on Model Effectiveness and Training Dynamics 

Given that ViTs are traditionally used for image data, I was initially curious and 

somewhat uncertain about how well the patching mechanism and attention layers would 

adapt to 1D sequential financial data. However, the early convergence and low RMSE 

indicate that the model effectively extracted relevant temporal features and dependencies. 

I believe this positive outcome is primarily due to a combination of factors: the consistent 

structure and high temporal resolution of the dataset, the careful normalization of input 

features, and the suitability of the ViT architecture for capturing long-range dependencies 

through self-attention. The financial time series exhibited patterns that were stable enough 

for the model to generalize across different segments, and the patch-based representation 

may have helped reduce noise by summarizing local movements. Additionally, the use of 

early stopping and well-chosen hyperparameters ensured that the model trained 

efficiently without overfitting. The rapid improvement within the first few epochs and the 

plateau thereafter suggest that the core patterns in the data were relatively learnable, and 

that the model was well-tuned to capture them. This reinforces the viability of transformer 

architectures for sequence modeling tasks beyond NLP and vision. Overall, I was pleased 

to see that the transformer not only performed well but did so consistently and stably. 

This result signals that it is a strong candidate for more advanced time series forecasting 

in finance. 

 

4.8  Analysis and Comparison of Transformer-Based Models 
4.8.1  Training Loss Analysis 

Training loss provides insights into how effectively each model fits the training data over 

time. 

• Vanilla Transformer showed a rapid decrease in training loss during the first few 

epochs, reaching very low values (below 0.0005) by epoch 10. This indicates 

strong fitting ability but also raises a potential risk of overfitting. 

• Vision Transformer (ViT) demonstrated a more stable and consistent decrease in 

training loss. Despite the architectural complexity of ViT, it reached minimal 

training loss (0.0001) by epoch 14. 

• Encoder-Only Transformer exhibited a slightly slower but smooth reduction in 

training loss, maintaining values between 0.0005 and 0.001 across the observed 
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epochs. This suggests that the simpler encoder-only structure may have a slower 

convergence. 

• GPT Transformer, interestingly, achieved a sharp decline in training loss within 

the first six epochs, reaching as low as 0.00006. Its rapid convergence is indicative 

of an effective learning process, aided by autoregressive modeling and likely 

benefiting from a small learning rate and early stopping mechanism. 

 

Summary: 

The GPT Transformer had the fastest convergence in terms of training loss, followed by 

the Vanilla Transformer. ViTachieved the lowest ultimate training loss, suggesting 

excellent fitting, albeit over a slightly longer training window. 

 

4.8.2  Validation Loss Analysis 

Validation loss is crucial to assess a model's generalization to unseen data. 

• Vanilla Transformer initially showed high validation loss but improved 

significantly by epoch 5 and beyond. A few fluctuations around epoch 7 and 13 

indicate possible overfitting or instability. 

• ViT Transformer demonstrated consistently low validation loss across epochs, 

maintaining excellent generalization performance and suggesting robustness 

against overfitting. 

• Encoder-Only Transformer showed more irregular behavior, with spikes in 

validation loss (notably at epoch 4 and 10), suggesting that it may not generalize 

as reliably as the full transformer variants. 

• GPT Transformer exhibited very low validation loss from the very first epoch, 

achieving a minimum validation loss of 0.00003 at epoch 6, just before early 

stopping was triggered. This early convergence indicates excellent generalization 

with minimal risk of overfitting. 

 

Summary: 

Both GPT and ViT Transformers demonstrated superior validation loss curves, 

with GPT slightly outperforming others in terms of achieving minimal validation error in 

fewer epochs. 
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4.8.3  Validation RMSE Analysis 

Validation RMSE directly relates to the model's prediction accuracy on unseen data. 

• Vanilla Transformer gradually reduced its RMSE to around 0.0159 by epoch 15 

but exhibited fluctuations that reflect instability during training. 

• ViT Transformer achieved the lowest RMSE among all models (approximately 

0.0103–0.0113 around epochs 8–13), suggesting it had the best predictive 

performance on the validation set. 

• Encoder-Only Transformer had a significantly higher RMSE compared to the 

others, confirming that simplifying the architecture resulted in a trade-off in 

prediction quality. 

• GPT Transformer started with a very low RMSE (0.0083 at epoch 1) and 

improved further to approximately 0.0054 by epoch 6. Despite fewer epochs, it 

reached an RMSE close to that of the ViT, highlighting the model's efficiency. 

 

Summary: 

ViT had the overall lowest RMSE values across a longer training span, whereas GPT 

achieved competitive RMSE in a much shorter time frame, suggesting a balance of 

accuracy and efficiency. 

 

4.8.4  Model Checkpoints and Early Stopping 

Model checkpoints were placed strategically at specific epochs to capture and potentially 

save the best-performing weights. 

• Vanilla Transformer, ViT Transformer, and Encoder-Only Transformer were 

checkpointed at epochs 5 and 10, allowing ample time for observation of their 

learning trajectories. 

• GPT Transformer reached optimal performance within the first six epochs, 

leading to early stopping based on a patience threshold. This saved training time 

and computational resources, and suggests that GPT is highly efficient for this 

task. 

Early stopping was triggered appropriately for the GPT model without significant 

performance loss, a positive sign of correct hyperparameter tuning. 
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4.8.5  Conclusion 

Figure 4.4 illustrates the comparison of performance across all models 

 

 
Figure 4.8 Comparison of Performance Across All Models 

 

Among the four architectures compared, the GPT Transformer displayed the best balance 

between training speed, validation performance, and computational efficiency, achieving 

low RMSE in fewer epochs and avoiding overfitting. 

However, in terms of absolute minimum RMSE over a longer training period, the Vision 

Transformer slightly outperformed other models, making it an excellent choice when 

training time and computational resources are less constrained. 

Thus, the choice between GPT and ViT models would ultimately depend on the specific 

requirements of the task: efficiency versus ultimate accuracy. 

Overview of Transformer Model Behavior and Effectiveness 

 

Model 
Convergence 

Speed 

Generalization 

(Validation 

Loss) 

Final 

RMSE 

Training 

Stability 
Remarks 

Vanilla 

Transformer 
Fast 

Good but slightly 

unstable 
Moderate Fluctuations 

Potential 

Overfitting 
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Model 
Convergence 

Speed 

Generalization 

(Validation 

Loss) 

Final 

RMSE 

Training 

Stability 
Remarks 

Vision 

Transformer 

(ViT) 

Moderate Very Good Best Very Stable 
Best Overall 

Accuracy 

Encoder-Only 

Transformer 
Slow 

Moderate with 

spikes 
High Instability 

Simpler but 

Less 

Accurate 

GPT 

Transformer 
Very Fast Excellent 

Very 

Good 
Very Stable 

Best 

Efficiency 

 

Table 4.6 Overview of Transformer Model Behavior and Effectiveness 
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Chapter 5 
Feature Extraction with Transformers and Deep  

Reinforcement Learning for Portfolio Optimization 

 

 
5.1 Introduction 

5.2 GPT and DQN: Leveraging Generative Pretrained Transformers  

5.2.1 Purpose of GPT and DQN Integration 

5.2.2 How It Was Done: GPT and DQN Implementation  

5.2.3 StockMarketEnv: Custom Financial Environment  

5.2.4 Additional Design Choices 

5.2.5 Evaluation and Performance Metrics 

5.2.6 Visual Results: GPT and DQN  

5.2.7 Analysis of Experimental Results  

5.3 Original DQN 

5.3.1 How It Was Done: DQN Implementation  

5.3.2 Visual Results: DQN 

5.3.3 Analysis of Experimental Results  

5.4 Comparative Performance Analysis: GPT and DQN vs. Raw DQN on Financial Data  
 
 

5.1  Introduction 

The core objective of this thesis is to implement an intelligent trading agent capable of 

making profitable decisions in the financial market using deep reinforcement learning 

(DRL). Specifically, the agent is trained using a Deep Q-Network (DQN) framework to 

interact with historical market data and autonomously learn when to buy, sell, or hold in 

order to maximize long-term returns.  

To support this learning process, the agent is equipped with transformer-based 

architectures that extract rich feature representations from the financial time series data. 

Among several architectures evaluated during preliminary experimentation, the 

Generative Pretrained Transformer (GPT) was selected for integration into the final 

system. The model was chosen due to their ability to effectively model temporal 

dependencies and capture complex patterns in market behavior.  
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The GPT model processes sequential financial data in an autoregressive manner, making 

it well-suited for predicting future trends based on past observations. This transformer 

architecture provide complementary perspectives that enhance the agent’s ability to make 

informed trading decisions within the DRL framework.  

 

5.2  GPT and DQN: Leveraging Generative Pretrained Transformers 

5.2.1  Purpose of GPT and DQN Integration 

The second key approach in this thesis combines Generative Pretrained Transformers 

(GPT) with DQN to further improve the model's ability to predict stock market trends. 

GPT’s transformer architecture, known for its effectiveness in handling long-range 

dependencies in sequential data, is adapted to capture intricate patterns in financial data. 

By combining GPT with DQN, the agent learns to make informed trading decisions by 

using the powerful sequential learning capability of GPT for feature extraction, followed 

by DQN for decision-making.  

 

5.2.2  How It Was Done: GPT and DQN Implementation GPT Model for Financial 

Data 

The GPT model used here is adapted to handle stock market data. The architecture 

includes:  

• Embedding Layer: The raw market data is passed through a linear embedding 

layer to map the data to a higher-dimensional space.  

• Positional Encoding: Positional embeddings are added to ensure the model 

understands the temporal order of the stock data.  

• Transformer Decoder: The core of GPT is the transformer decoder, which learns 

relationships between different parts of the sequence using self-attention 

mechanisms.  
 

Deep Q-Network (DQN) for Decision Making  

DQN is responsible for decision-making based on the features extracted by GPT:  

• State Representation: The state input to the DQN is the output from the GPT  

model.  

• Hidden Layers: The DQN uses fully connected layers with ReLU activation to  

process the extracted features.  
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• Output Layer: The DQN outputs three Q-values corresponding to the actions: 

buy, sell, and hold. The agent selects the action with the highest Q-value.  

 

Reinforcement Learning Loop  

The agent interacts with the StockMarketEnv environment, where it takes actions (buy, 

sell, or hold) based on the current market state. The environment provides feedback 

through rewards, which are calculated as follows:  

• Buy Action: No immediate reward, but potential future reward if the stock price 

rises.  

• Sell Action: Realized reward based on the difference between the buying and 

selling price.  

The agent aims to maximize cumulative rewards through exploration (random actions) 

and exploitation (selecting the best action based on Q-values). The experience replay 

buffer is used to store past experiences, allowing the agent to learn from randomly 

sampled batches.  
 

Training and Optimization  

The agent is trained using the epsilon-greedy exploration strategy [42], where it starts by 

exploring the action space randomly and gradually shifts toward exploitation as it 

becomes more confident in its actions. The DQN model is optimized using the Adam 

optimizer and the Mean Squared Error (MSE) loss function, minimizing the difference 

between predicted and target Q-values derived from the Bellman equation.  
 

Combined GPT and DQN for Stock Market Trading  

By using GPT to model long-range dependencies and DQN to make the final trading 

decision, this approach aims to capture both short-term and long-term market trends, 

enabling the agent to make well-informed decisions in the stock market.  
 

5.2.3 StockMarketEnv: Custom Financial Environment  

The custom reinforcement learning environment,StockMarketEnv, is crucial for 

simulating the stock market and enabling the agent to interact with market data. Key 

components include:  
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• Cash Management: The agent starts with an initial cash balance, and its ability 

to buy or sell is constrained by this balance.  

• Reward Mechanism: Rewards are given when the agent sells stocks at a profit, 

reflecting the importance of making profitable trades.  

• Maximum Steps: Each episode is limited by a max_steps parameter, ensuring 

that the agent must make decisions within a fixed time horizon.  
 

5.2.4 Additional Design Choices 

Experience Replay Buffer 

The experience replay buffer is used to store past experiences and sample them randomly 

during training, which helps break temporal correlations and stabilizes the learning 

process.  
 

Epsilon-Greedy Exploration Strategy  

The epsilon-greedy exploration strategy allows the agent to balance exploration and 

exploitation, ensuring that it explores the action space sufficiently before settling on a 

learned policy.  
 

Loss Function and Optimization  

The Mean Squared Error (MSE) loss function is used to minimize the difference between 

predicted and target Q-values. The Adam optimizer is chosen for its ability to adapt 

learning rates, ensuring efficient training.  
 

5.2.5 Evaluation and Performance Metrics  

Throughout training, key performance metrics are tracked:  

• Total Reward: The cumulative reward earned by the agent during each episode.  

• Loss: The average loss during training, indicating how well the model is  

converging.  

• Action Distribution: A pie chart shows the frequency of each action taken by the 

agent, offering insights into the agent's decision-making behavior.  
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5.2.6  Visual Results: GPT and DQN 

 

Figure 5.1 shows that the reward curve illustrates the exploratory learning process of the 

GPT and DQN agent, marked by a large number of low-reward episodes and intermittent 

spikes of high reward. These spikes demonstrate the model’s capacity to identify 

profitable trading opportunities, even in a complex and noisy environment. The 

integration of GPT enables the agent to capture long-range dependencies in financial data, 

while DQN handles action selection. Although the overall learning progression is non-

linear and exhibits high variance, this is expected given the delayed and sparse reward 

structure inherent in the stock trading task. The model shows clear signs of learning, and 

with further tuning its performance can be improved and stabilized. 

 
Figure 5.1 Reward Over Episodes Plot for GPT and DQN 

 

Figure 5.2 shows that the loss curve over episodes exhibits generally low and stable 

values, with a few isolated spikes, most notably a significant outlier around episode 320. 

These occasional spikes are typical in reinforcement learning scenarios, especially in 

complex environments like financial trading where the agent may encounter rare or 

extreme market states. The sharp peak suggests a sudden large discrepancy between 

predicted and target Q-values, possibly due to a rare market pattern or a batch of highly 

varied experiences during replay. Importantly, the model quickly recovers, returning to 

low-loss levels in subsequent episodes, which indicates robust learning dynamics and the 
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effectiveness of the optimization strategy. Overall, the consistent downward trend and 

low average loss values demonstrate that the GPT+DQN agent is successfully minimizing 

prediction errors during training, enhancing its decision-making capabilities over time. 

 
Figure 5.2 Loss Over Episodes Plot for GPT and DQN 

 

Figure 5.3 illustrates the epsilon decay behavior over episodes for the GPT and DQN 

integrated model. The plot shows a nearly linear decline in epsilon from its initial value 

of 1.0 to a value close to zero, reflecting the transition from exploration to exploitation 

throughout the training process. At the beginning of training, the agent selects actions 

almost entirely at random to explore the environment thoroughly. As training progresses, 

epsilon gradually decreases, encouraging the agent to rely more on its learned policy 

derived from the Q-values. The smooth and consistent decay indicates that the exploration 

strategy was successfully implemented, enabling the agent to balance learning from new 

experiences while progressively favoring optimal actions based on prior learning. 
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Figure 5.3 Epsilon Decay Plot for GPT and DQN 

 

Figure 5.4 presents the action distribution of the GPT and DQN integrated agent over the 

course of training. The plot reveals a near-uniform distribution across the three available 

actions: buy (33.7%), hold (34.5%), and sell (31.8%). This balanced spread suggests that 

the agent does not overly favor any particular action and is exploring a diverse set of 

trading strategies. The slight preference for the hold action may indicate a cautious 

approach, where the agent chooses to wait for stronger signals before committing to buy 

or sell decisions. Overall, the distribution reflects a healthy level of exploration and 

suggests that the agent has learned to consider a variety of market scenarios rather than 

overfitting to a single trading behavior. 

 
Figure 5.4 Action Distribution Plot for GPT and DQN 
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5.2.7 Analysis of Experimental Results  

Action Distribution 

The GPT and DQN model shows:  

• Hold: 34.5%  

• Buy: 33.7%  

• Sell: 31.8% 

This indicates a slight bias toward 'hold', which is consistent with GPT’s autoregressive, 

context-preserving structure. GPT tends to favor inaction unless it identifies a strong 

indication of a developing trend, reflecting behavior consistent with risk-averse financial 

strategies.  

Reward Over Episodes  

• Generally low rewards, mostly under 1000  

• Some clear peaks  

• A visible increasing trend in reward frequency and magnitude  

This shows GPT and DQN has stable learning, producing more consistent, albeit modest, 

gains.  

Loss Over Episodes  

• Mostly low loss values, with a few sharp outliers (e.g., spike around episode 300)  

• This reflects strong convergence with occasional instability  

Epsilon Decay  

• Slow decay, ε remains around 0.74 by episode 600  

• The agent continues to explore for longer, which might explain the conservative 

nature of the policy  

5.3  Original DQN 

5.3.1  How It Was Done: DQN Implementation 

Financial Dataset and Preprocessing 
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The financial data consists of hourly historical records including open, high, low, close, 

and volume features. Multiple CSV files are loaded, concatenated, and sorted 

chronologically to form a continuous time series. Each state input to the model is created 

using a fixed-size sliding window of 10 time steps, resulting in a state vector of 50 features 

(10 time steps × 5 features per step). 

 

Hyperparameter Details 

Below are the key hyperparameters used, along with explanations of their role and the 

rationale behind the specific values chosen: 

 

Hyperparameter Value Description 

 

 

WINDOW_SIZE 

 

 

10 

The number of time steps 

the model looks back to 

predict the next action 

(history length) 

 

 

NUM_EPISODES 

 

 

200 

Total number of episodes 

the model will train for. 

Each episode is a complete 

interaction with the 

environment 

 

 

BATCH_SIZE 

 

 

64 

The number of 

experiences sampled from 

memory for each training 

update. Larger batch sizes 

improve stability 

 

GAMMA 

 

0.99 

The discount factor. It 

determines how much 

future rewards are 

considered in the current 

decision-making 

 

 

 

 

The learning rate for the 

Adam optimizer, 
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LR (Learning Rate) 0.001 controlling how much the 

weights are adjusted after 

each gradient step 

 

 

EPSILON_START 

 

 

1.0 

The initial value of epsilon 

for the epsilon-greedy 

policy, determining the 

exploration-exploitation 

tradeoff 

 

EPSILON_END 

 

0.01 

The final value of epsilon, 

at which point the agent 

will rely solely on the 

learned policy 

 

 

EPSILON_DECAY 

 

 

0.995 

The decay factor that 

gradually reduces epsilon 

over episodes, allowing 

the agent to shift from 

exploration to exploitation 

 

 

TARGET_UPDATE 

 

 

10 

The interval (in episodes) 

at which the target 

network's weights are 

updated with the policy 

network's weights to 

stabilize learning 

 

 

MEMORY_SIZE 

 

 

10000 

The capacity of the 

experience replay 

memory, where past 

experiences are stored for 

training. Larger sizes 

allow the model to store 

more experiences 

 

Table 5.1 Hyperparameters of  DQN model and their Roles 
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Environment Simulation 

A custom TradingEnv environment simulates trading interactions. The agent observes a 

sequence of market states and can perform one of three discrete actions: 

• Buy (go long). 

• Sell (go short). 

• Hold (no position change). 

The agent in this trading environment can choose one of three actions at each time 

step: Buy, Sell, or Hold. These actions determine the agent’s position in the market: 

• Buy means the agent opens a long position, expecting that the asset's price will go 

up. 

• Sell means the agent opens a short position, expecting the asset's price to go down. 

• Hold means the agent does nothing and keeps its current position (or stays without 

a position if it hasn't taken one yet). 

The agent can only have one position at a time (either long, short, or none), and rewards 

are only given when a position is closed. For example: 

• If the agent buys (opens a long position) and later sells, the reward is the 

difference between the selling price and the buying price. A higher selling price 

results in a positive reward (profit), and a lower price results in a negative reward 

(loss). 

Reward = selling price - buying price, 

where: 

o Buying Price = the price you paid to enter the trade 

o Selling Price = the price you got to exit the trade 

• If the agent sells (opens a short position) and later buys, the reward is the 

difference between the selling price and the later buying price. If the price has 

decreased, the agent earns a profit and receives a positive reward. 

Reward = short entry price - buying price, 

where: 

o Selling Price = the price you got when you entered the trade. 

o Buying Price = the price you paid to exit the trade. 
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If the agent chooses to hold, it does not open or close any positions, and no reward is 

given for that step. The episode ends when the agent reaches the end of the dataset, at 

which point no more trading decisions can be made. 

 

Deep Q-Network Architecture 

The DQN model is implemented using PyTorch and features a fully connected feed-

forward neural network with the following structure: 

• Input Layer: Receives the flattened windowed state vector of size 50. 

• Hidden Layers: Two hidden layers with 64 neurons each and ReLU activations. 

• Output Layer: Outputs Q-values for each of the three possible actions (buy, sell, 

hold). 

 

Reinforcement Learning Loop 

The agent follows an epsilon-greedy policy for balancing exploration and exploitation: 

• Initially, the agent explores actions randomly (ε = 1.0). 

• Over time, ε decays exponentially to a minimum threshold (ε = 0.01) to favor 

learned actions. 

The agent interacts with the environment over 200 episodes. Transitions are stored in a 

replay memory buffer, allowing the agent to train on random batches to break correlation 

between consecutive experiences. 

 

 

Training and Optimization 

At each step, when sufficient samples are available in memory, the agent samples a 

minibatch and computes the loss between predicted Q-values and target Q-values. Target 

values are calculated using the Bellman equation with a separate target network that is 

periodically updated. Training is performed using the Adam optimizer with Mean 

Squared Error (MSE) loss.  

 

5.3.2  Visual Results: DQN 

Figure 5.5 illustrates the reward trajectory over 200 episodes which displays high 

variance, with substantial fluctuations both above and below zero. This pattern is 

expected in a financial trading environment, where market dynamics are inherently 
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volatile and rewards depend heavily on the timing and success of trade decisions. The 

presence of large positive rewards indicates that the agent occasionally learns highly 

profitable strategies. However, the consistent swings into negative rewards suggest 

instability in policy learning or an incomplete exploitation of learned patterns. Given the 

epsilon-greedy exploration strategy and the agent’s gradual shift from exploration to 

exploitation, this variability may reflect the agent testing different strategies throughout 

training. Overall, while the model demonstrates potential to capture profitable trades, 

further training could help reduce reward volatility and stabilize policy performance. 

 
Figure 5.5 Reward Over Episodes Plot for DQN 

 

Figure 5.6 illustrates the loss curve over training episodes which reflects the learning 

dynamics of the DQN model. Initially, the average loss increases as the agent begins to 

explore the environment and updates its Q-values based on relatively untrained 

predictions. This early rise is expected, as the model undergoes frequent updates with 

limited experience. However, around episode 80, the loss begins to decrease steadily and 

eventually stabilizes at really low values. This trend suggests that the model is 

successfully learning to approximate the Q-values and is minimizing prediction error over 

time. The reduction in loss indicates convergence toward a stable policy, where the 

predicted action values align closely with the target values derived from the Bellman 

equation. This behavior confirms that the DQN agent is effectively learning from 

experience and gradually improving its decision-making in the trading environment. 
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Figure 5.6 Loss Over Episodes Plot for DQN 

 

Figure 5.7 shows the epsilon decay plot which illustrates how the exploration rate (ε) 

decreases over the course of training. Starting at 1.0, epsilon gradually decays towards a 

near-zero value, reflecting the agent’s shift from exploration to exploitation. The curve is 

not a perfect straight line but instead follows an exponential decay pattern, resulting in a 

smooth, slightly curved trajectory. This behavior is a result of the epsilon-greedy strategy 

with a decay factor of 0.995, where the agent initially selects actions mostly at random to 

explore the environment, and then progressively relies more on its learned Q-values as 

training advances. The consistent and controlled decay of epsilon ensures that the agent 

explores adequately in early episodes and exploits its knowledge effectively in later 

stages, striking a critical balance between discovering profitable actions and reinforcing 

learned behavior. 
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Figure 5.7 Epsilon Decay Plot for DQN 

 

Figure 5.8 illustrates the action distribution for the Original DQN agent which 

demonstrates a remarkably balanced decision-making pattern across the three available 

actions: Hold (33.3%), Buy (33.5%), and Sell (33.2%). This near-uniform distribution 

indicates that the agent does not exhibit any significant bias toward a specific trading 

behavior. Instead, it explores and utilizes all available actions relatively equally, which 

can be attributed to the epsilon-greedy exploration strategy employed during training. 

Such a balanced action profile suggests that the agent is capable of adapting its policy 

based on market conditions rather than defaulting to a single dominant strategy, reflecting 

healthy exploration dynamics and robust policy learning. 
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Figure 5.8 Action Distribution Plot for DQN 

 

5.3.3 Analysis of Experimental Results 

Action Distribution 

The pie chart shows an almost perfectly balanced distribution across all three actions:  

• Buy: 33.5%  

• Sell: 33.2%  

• Hold: 33.3%  

This implies that the model is not biased towards any single action, suggesting that the 

DQN learn nuanced, situation-specific strategies instead of relying on a default behavior 

(like always holding or buying).  
 

Reward Over Episodes  

The reward plot reveals:  

• Extremely high reward spikes  

• Large variance, with some episodes producing substantial losses  

• No clear upward trend, but there are frequent profitable episodes  

This pattern indicates a high-risk, high-reward policy: the model is capable of identifying 

lucrative trading opportunities, but may also make incorrect aggressive moves.  
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Loss Over Episodes  

• The loss starts extremely high (~1e13) and drops drastically around episode 100.  

• Afterwards, the loss becomes more stable, indicating the model is gradually 

converging. 

These early spikes could be due to:  

• Poor Q-value estimates in the early phase  

• Large reward targets that increase gradient magnitudes  

Epsilon Decay  

• A gradual decay from ε = 1.0 to about ε = 0.35 over 200 episodes  

• Reflects a well-designed balance of exploration vs exploitation  

5.4 Comparative Performance Analysis: GPT and DQN vs. Raw DQN on Financial 

Data  

Table 5.2 compares the performance and behavioral characteristics of the GPT and DQN 

hybrid model versus the standard DQN across multiple dimensions, highlighting 

differences in action distribution, reward trends, loss dynamics, exploration strategy, 

policy behavior, and overall learning stability. 

 

Aspect GPT and DQN DQN 

Action Distribution 

Hold: 34.5%, Buy: 33.7%, Sell: 

31.8 — slight bias toward 

"hold" 

Buy: 33.5%, Sell: 33.2%, Hold: 

33.3 — nearly perfectly 

balanced  

Reward Over Episodes 
Low but increasing rewards, 

visible trend toward stability  

High variance, extreme reward 

spikes, no clear upward trend  

Loss Over Episodes 

Low with few sharp outliers 

(e.g., episode 300), mostly 

stable  

Extremely high early loss 

(~1e13), stabilizes after 

~episode 100  

Epsilon Decay 
Slow decay; ε ≈ 0.74 at episode 

600 (extended exploration)  

Faster decay; ε ≈ 0.35 at episode 

200 (balanced exploration)  
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Policy Behavior 

Conservative, trend-

confirmation driven, risk- 

averse  

Opportunistic, high-risk high-

reward, aggressive  

Learning Stability 
Stable with modest but growing 

rewards  

Initially unstable, becomes 

consistent with volatile 

performance  

Table 5.2 Performance of Each Model 

The GPT and DQN model is better suited for scenarios requiring stable, low-risk decision 

making. By leveraging a GPT-based transformer for feature extraction, it effectively 

captures temporal dependencies and contextual relationships within financial data. This 

deeper understanding enables the agent to develop conservative policies that prioritize 

trend confirmation and risk mitigation over impulsive action. The resulting behavior, 

slightly biased toward holding, is consistent with prudent investment strategies where 

preservation of capital and long-term growth take precedence over short-term 

fluctuations.  

The model’s reward progression shows steady, modest improvement, suggesting a 

learning process that values consistency and sustainability over volatility. Additionally, 

its slower epsilon decay allows for prolonged exploration, which, while conservative, 

helps avoid premature convergence to suboptimal policies.  

In contrast, the DQN trained directly on raw financial data exhibits a high-risk, high- 

reward profile. Its nearly balanced action distribution suggests that decisions are made 

more reactively, without the benefit of deeper contextual awareness. While this allows 

the model to capitalize on certain lucrative opportunities, it also introduces a higher 

degree of performance variability and less reliable learning stability. The sharp early 

reward spikes and high initial loss further point to aggressive behavior that may yield 

impressive gains in favorable conditions but at the cost of increased risk.  

Additionally, something that arises from the Loss Over Episodes plots is that the GPT 

and DQN model demonstrates significantly lower loss from the outset of training, 

suggesting a more stable and efficient learning process. This behavior can be attributed 

to the GPT's powerful feature extraction capabilities, which transform raw financial data 

into high-quality, temporally-aware representations. These enriched inputs allow the 
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DQN to make better-informed decisions early in training, reducing the need for extensive 

trial-and-error learning. In contrast, the original DQN model trained directly on raw data 

exhibits a rising loss in the initial episodes, indicating that the agent initially struggles to 

interpret and learn from the unprocessed input. It is only around episode 100 that the loss 

begins to decline and stabilize, reflecting delayed convergence. This contrast highlights 

the advantage of using GPT to preprocess and structure sequential data, enabling faster 

convergence and more reliable policy learning in complex financial 

environments.Therefore, GPT and DQN emerges as the superior choice for long-term, 

risk-aware financial strategies, particularly in environments where predictability, 

interpretability, and capital protectionare paramount. Conversely, theraw-data DQN may 

be more appropriate for high-frequency trading contexts or speculative markets, where 

the primary objective is short-term profit maximization, even at the expense of higher 

volatility and occasional large losses.  
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Chapter 6 

Summary and Future Work 

 

 
6.1  Summary of Findings and Contributions 

6.2  Future Directions 

6.2.1  Overview of Transformer Architectures for Financial Portfolio 

Optimization  
6.2.2  Optimal Transformer Architectures for Portfolio Optimization  

6.2.3  Challenges in Implementing Transformer Architectures for Financial 

Applications  

 
 

6.1  Summary of Findings and Contributions 

This thesis set out to explore the integration of Transformer-based architectures, 

specifically the Generative Pretrained Transformer (GPT), into financial portfolio 

optimization, an area where their potential remains largely untapped. Motivated by the 

increasing complexity and volatility of financial markets, particularly in the 

cryptocurrency domain, the study aimed to evaluate whether the deep contextual learning 

capabilities of Transformers could offer a meaningful advantage in extracting features 

from financial time series and guiding strategic asset allocation. Following a systematic 

investigation of various Transformer models, GPT was selected as the most effective 

feature extractor and was subsequently integrated with a Deep Q-Network (DQN) to form 

a hybrid decision-making system.  

The empirical results demonstrate that the GPT and DQN model consistently outperforms 

a baseline DQN trained on raw financial data, particularly in terms of learning stability, 

reward consistency, and risk-sensitive behavior. The Transformer’s self-attention 

mechanism enables the model to capture intricate temporal dependencies and evolving 

market patterns, leading to a more conservative, trend-confirming policy that emphasizes 

long-term portfolio growth and capital preservation. While the raw-data DQN shows 

sporadic high-reward spikes and aggressive trading behavior, its volatility and lack of 
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consistent performance highlight the limitations of shallow representations in complex 

market environments.  

By successfully adapting a sequence-based Transformer architecture to process numerical 

financial inputs, this research not only validates the applicability of Transformers in 

portfolio optimization but also underscores their value as feature extraction tools within 

reinforcement learning frameworks. The findings support the hypothesis that 

Transformer-enhanced models can enable more robust, interpretable, and adaptive 

financial strategies, particularly important in markets where noise, non-linearity, and 

uncertainty are prevalent.  

In conclusion, this study contributes to the growing body of research at the intersection 

of deep learning and finance by demonstrating that Transformer-based architectures, 

when properly adapted, offer a powerful foundation for intelligent portfolio management. 

While challenges remain, particularly in deploying more advanced models such as the 

Temporal Fusion Transformer or Informer, this thesis lays the groundwork for future 

exploration into scalable, Transformer-driven financial systems that can learn, adapt, and 

thrive in dynamic, data-rich environments.  

6.2  Future Directions 

6.2.1  Overview of Transformer Architectures for Financial Portfolio Optimization 
The Transformer with Temporal Attention, or Temporal Fusion Transformer [43], is 

specifically designed for time-series forecasting and incorporates temporal attention 

mechanisms to handle time-dependent data effectively. This architecture is highly 

suitable for financial data, as it captures temporal dynamics and relationships. A study 

titled "Dynamic ETF Portfolio Optimization Using Enhanced Transformer Models" [44] 

explores the use of transformer-based models, including TFT, for predicting covariance 

and semi-covariance matrices in ETF portfolio optimization, showing that these models 

can effectively capture the dynamic and non-linear nature of market fluctuations, 

improving portfolio performance. Informer is another transformer architecture optimized 

for long-sequence time-series forecasting, utilizing sparse attention mechanisms to handle 

long-term dependencies efficiently. It is suitable for financial data with long historical 

records, offering efficient processing and forecasting. The same study on ETF portfolio 

optimization also discusses the application of Informer models [45], highlighting their 
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effectiveness in capturing dynamic market behaviors. Transformer with Cross-Attention, 

or Dual-Stage Attention, incorporates cross-attention mechanisms, allowing the model to 

focus on different parts of the input data simultaneously, making it useful in scenarios 

where multiple data sources or features need to be integrated. A study titled "Portfolio 

Transformer for Attention-Based Asset Allocation" [46] demonstrates that this 

architecture, using specialized gating mechanisms to determine the ideal level of non-

linearity when optimizing portfolios, outperforms several methodologies, including 

classical optimization methods and LSTM-based models, across various datasets. 

 

6.2.2  Optimal Transformer Architectures for Portfolio Optimization 

Based on the available studies, transformer architectures specifically designed for time-

series data, such as the Temporal Fusion Transformer and Informer, have demonstrated 

promising results in financial portfolio optimization. These models are particularly adept 

at capturing the temporal dynamics that are inherent in financial markets, where past 

trends and events can significantly influence future performance. The Temporal Fusion 

Transformer incorporates specialized mechanisms, such as temporal attention layers, that 

allow it to effectively model time-dependent data. This capability makes it highly suitable 

for forecasting and portfolio optimization tasks, as it can learn complex patterns and 

relationships within financial time-series data. Similarly, the Informer model is optimized 

for handling long-sequence time-series forecasting by utilizing sparse attention 

mechanisms. This feature helps Informer manage long-term dependencies in financial 

data, which is essential when working with datasets that span many years or contain high-

frequency data points. Both models, by incorporating these advanced features, are capable 

of handling the inherent complexity and volatility of financial markets. Studies have 

shown that these transformer models, when applied to financial portfolio optimization, 

are able to outperform traditional models, including classical statistical approaches and 

machine learning methods like LSTMs, in terms of prediction accuracy and portfolio 

performance. As financial markets continue to evolve, transformer models like TFT and 

Informer are poised to play an increasingly important role in optimizing investment 

strategies and improving decision-making in finance. 
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6.2.3  Challenges in Implementing Transformer Architectures for Financial 

Applications 

Despite the promising potential of transformer-based architectures like Temporal Fusion 

Transformer and Informer in financial portfolio optimization, there remain significant 

challenges in their practical implementation. One major obstacle is the limited availability 

of validated implementations and comprehensive resources beyond the original research 

papers. Given that these architectures are relatively new in the field, there is a scarcity of 

open-source codes and fully documented frameworks that could facilitate their adoption. 

This poses a challenge for researchers and practitioners attempting to integrate them into 

real-world financial applications. Future research should focus on developing more 

accessible and optimized implementations of these architectures, along with standardized 

benchmarks to evaluate their performance against existing financial models. Furthermore, 

industry collaborations and open-source contributions could help bridge the gap between 

theoretical advancements and practical applications, ensuring that these advanced 

transformer models can be effectively utilized for financial decision-making and portfolio 

optimization. 
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