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Abstract  

In recent years, the integration of Artificial Intelligence (AI) and wearable devices has 

led to significant progress in healthcare, including Acceptance and Commitment Therapy 

(ACT), a psychotherapy approach that helps individuals accept difficult emotions and act 

in line with their values. This thesis explores whether wearable devices can reliably detect 

functional and dysfunctional pain coping strategies, both in laboratory settings and in 

real-life situations. 

Unlike previous studies focused on university students and conditions such as anxiety and 

eating disorders, this research involves two experiments conducted on cancer patients 

undergoing treatment. The first experiment, was an emotional imagery task conducted by 

the Department of Psychology at the University of Cyprus, required participants to 

complete six guided imagery trials following a five-minute heart rate variability (HRV) 

assessment. Psychophysiological data were collected using Shimmer wearable sensors, 

along with responses to psychological questionnaires. Focus was placed on the DASS-S 

(stress level) and AAQ-II (psychological flexibility) scores, which were used for labeling 

participants based on literature-recommended and median thresholds, resulting in four 

scenarios. 

For the second experiment, participants wore Empatica E4 wristbands and answered 

ecological momentary assessment (EMA) questions through a mobile app regarding their 

emotional state, pain, and social context. Both experiments recorded 

Photoplethysmography (PPG) and Electrodermal Activity (EDA) signals, while the 

second also included accelerometer (ACC) and temperature (TEMP) data. 

After signal extraction, relevant features were derived and filtered using three established 

feature selection methods. Four supervised machine-learning models, Adaptive Boosting, 

Gradient Boosting, Random Forest, and Extra Trees were trained on the selected features. 

Oversampling techniques were applied to address class imbalance where necessary. 

The results showed that in the emotional imagery experiment, the Extra Trees algorithm 

performed best in most scenarios, while Bagging Decision Tree led in one. Random 

Oversampler consistently proved to be the most effective oversampling method. In the 

EMA experiment, the combination of  Extra Trees and Random Oversampler achieved 

the highest classification performance, demonstrating the potential of AI and wearable 

technology to support psychological interventions for cancer patients. 

The study confirmed that psychophysiological signals from wearable devices can reliably 

classify coping strategies, with model accuracy exceeding 80% in several cases. These 

findings support the integration of AI into ACT-based interventions and highlight the 

importance of selecting relevant features and interpreting signals based on context, 

reinforcing the value of personalized, real-time monitoring in clinical decision-making. 
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Chapter 1 - Introduction 

1.1 Motivation ................................................................................................................... 1 

1.2 Goals of the Study ....................................................................................................... 1 

1.3 Methodology ................................................................................................................ 2 

1.4 Document Organization ............................................................................................... 4 

1.1 Motivation 

In recent years, wearable technologies like smartwatches and fitness bands have seen 

widespread adoption. These devices are capable of tracking various psychophysiological 

signals, including heart rate and skin conductance. Notable examples include 

Electrocardiogram (ECG) [1], Electrodermal Activity (EDA) [2], and facial 

electromyography (fEMG) [3]. 

Several studies have explored the analysis of such signals (e.g., [4],[5],[6],[7],[8]) with 

most relying on data collected from non-portable, stationary equipment. Only a few, such 

as [6] and [8], have utilized data from wearable devices. Additionally, previous research 

has primarily focused on heart rate variability (HRV) time-domain features derived from 

ECG signals [9]. This study seeks to expand on that by incorporating features extracted 

from EDA and Photoplethysmography (PPG) signals, using data obtained from existing 

patients rather than university students, as was common in earlier work. The results of 

this research may offer valuable insights for healthcare applications and contribute to 

improving patient care and intervention strategies. 

1.2 Goals of Study 

This thesis utilizes data collected from two experiments on pain management techniques, 

conducted by the Department of Psychology at the University of Cyprus. The primary 

objective of this study is to contribute to the integration of Acceptance and Commitment 

Therapy (ACT) [51] into the daily lives of real cancer patients. ACT is a psychotherapy 

approach that encourages individuals to engage with their thoughts and emotions rather 

than avoiding or suppressing them. It has been shown to be effective in treating conditions 

such as obsessive-compulsive disorder (OCD), anxiety, and depression. 

Within the framework of ACT, individuals are categorized into two groups based on their 

reactions to emotional experiences: the functional group, comprising individuals who 

accept their internal experiences and cope with them effectively, characterized by low 

stress and high psychological flexibility and the dysfunctional group, consisting of 
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individuals who engage in avoidance strategies, leading to high stress and low 

psychological flexibility. It is important to note that a person's classification can vary 

depending on their environment and circumstances. 

The primary goal of this thesis is to develop machine-learning models capable of 

accurately classifying individuals into functional or dysfunctional categories based on 

their pain coping strategies. In the emotional imagery experiment, the functional group 

includes patients with low stress or high psychological flexibility, while the dysfunctional  

group includes those with high stress or low psychological flexibility. In the EMA 

experiment, classification is based on whether the patient belongs to the "acceptance" 

(functional) or "avoidance" (dysfunctional) group. 

A key focus of this research is to investigate whether psychophysiological signals 

recorded from wearable devices are sufficient for training effective machine learning 

algorithms. Additionally, the study examines feature selection techniques from three 

major categories, aiming to compare their performance and identify the most informative 

subset of features. 

Ultimately, both experiments seek to accurately distinguish between functional and 

dysfunctional coping strategies related to pain and emotional distress. By combining these 

analyses, this thesis aspires to enhance the understanding of psychophysiological 

correlations of psychological flexibility, providing valuable insights for improving 

patient care and therapeutic interventions. 

1.3 Methodology 

The outline of the methodology used is shown in Figure 1.1. 

Figure 1.1: An outline of the methodology used 
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We began this thesis by reviewing past implementations of machine learning applied to 

psychophysiological data collected from wearable devices such as the Empatica E4 and 

BIOPAC, commonly used in the related studies [8],[10],[11] and [12].  

Subsequently, the Department of Psychology at the University of Cyprus conducted two 

experiments using Shimmer [31] and Empatica E4 [32] devices to collect physiological 

signals. The emotional imagery experiment was conducted in a controlled laboratory 

setting, whereas the EMA study collected data in real-life conditions. In both cases, 

Photoplethysmography (PPG) and Electrodermal Activity (EDA) signals were obtained. 

The EMA experiment further included accelerometer (ACC) and temperature (TEMP) 

data, offering a broader scope of physiological monitoring. 

In addition to signal data, each participant completed self-report psychological 

questionnaires. For the emotional imagery experiment, the Depression Anxiety Stress 

Scale – Stress subscale (DASS-S) and the Acceptance and Action Questionnaire-II 

(AAQ-II) were used to assess perceived stress and psychological flexibility, respectively. 

For the EMA dataset, binary labels representing acceptance or avoidance were generated 

based on participants’ responses to a specific self-report item. Prior to model training, 

standard preprocessing and signal-cleaning techniques were applied using Python [13], 

followed by extraction of relevant time-domain and statistical features. 

To reduce feature dimensionality and enhance learning performance, four feature 

selection techniques were used: Random Forest feature importance, SelectKBest, 

Gradient Boosting Decision Tree, and Extra Trees [13]. The classification process was 

structured around five scenarios—four from the emotional imagery experiment and one 

from the EMA phase, each reflecting different thresholds or scoring interpretations: 

 Scenario 1: DASS stress score, threshold = 7 (literature-based) 

 Scenario 2: DASS stress score, threshold = median 

 Scenario 3: AAQ-II psychological flexibility score, threshold = 24 (literature-based) 

 Scenario 4: AAQ-II psychological flexibility score, threshold = median 

 Scenario 5: EMA-based classification into acceptance or avoidance, threshold = 4 

(median) 

Each scenario was evaluated using five supervised binary classification algorithms: 

Adaptive Boosting, Gradient Boosting Decision Tree, Bagging Decision Tree, Random 
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Forest, and Extra Trees [13].  Following the initial evaluation, oversampling methods 

were applied to manage class imbalance and further assess classification performance 

under more balanced data distributions. 

1.4 Document Organization  

The rest of this thesis is split into six chapters. Table 1.1 reports the content of each 

chapter. 

Chapter 

Number 
Chapter’s short description 

2 

Provides an overview of the background knowledge upon which 

this thesis is based. It first explains the psychophysiological signals 

recorded in the Psychology lab, followed by an analysis of the 

machine learning algorithms, methodologies, and evaluation 

metrics used. Finally, it briefly describes the devices employed 

throughout the experiments. 

3 
Overviews the four previous experiments and presents a detailed 

explanation of the current experimental work. 

4 

Describes the complete process for obtaining the features used to 

train the algorithms, starting from the raw signal recordings. It 

outlines the methodology applied to extract samples from patients 

for each experiment and details the features that were subsequently 

extracted. 

5 
Analyzes the feature selection methods applied and presents the 

final subset of selected features for each dataset. 

6 
Presents both the original classification results and the improved 

results obtained after applying oversampling techniques. 

7 
Summarizes the overall work conducted in this thesis and proposes 

directions for future research and improvements. 

Table 1.1 Document organization  
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Chapter 2 - Background Knowledge 

2.1 Phychophysiological Signals 5 

2.1.1 Electrocardiogram (ECG) .............................................................................. 5 

2.1.2 Photoplethysmography (PPG) ........................................................................ 6 

2.1.3 Electrodermal Activity (EDA) ....................................................................... 7 

2.1.4 Inter-Beat Interval (IBI)  ................................................................................ 7 

2.1.5 Blood Volume Pulse (BVP)  .......................................................................... 8 

2.1.6 Acceleration (ACC)  ...................................................................................... 8 

2.1.7 Temperature (TEMP)  .................................................................................... 8 

2.2 Machine Learning Algorithms 8 

2.2.1 Adaptive Boosting Decision Tree .................................................................. 9 

2.2.2 Gradient Boosting Decision Tree ................................................................... 9 

2.2.3 Bagging Decision Tree.................................................................................10 

2.2.4 Random Forest .............................................................................................10 

2.2.5 Extra Trees  ..................................................................................................10 

2.3 Model Evaluation 10 

2.3.1  Evaluation Methodology ................................................................................10 

2.3.2 Performance Metrics ......................................................................................11 

2.4 Monitoring Devices  14 

2.4.1 Monitoring Device – Shimmer Sensors .........................................................14 

2.4.2 Monitoring Device – Empatica E4 .................................................................15 

2.1 Psychophysiological Signals 

The Department of Psychology at the University of Cyprus conducted a series of five 

experiments, mentioned in Chapter 3. During the experiment under investigation, the 

psychophysiological signals discussed in this section were collected. 

2.1.1 Electrocardiogram (ECG) 

ECG is a method used to detect the heart’s electrical behavior without penetrating the 

body [14]. It records waveforms from the skin’s surface, showing common elements 

known as P, QRS, and T waves [15] (see Figure 2.1). Signals gathered through ECG 

allow the study of several types of features, including time-related, frequency-related, and 
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spectral ones. This work prioritizes time-based analysis, which has shown to be more 

aligned with our aims, supported by earlier publications [16]. Time-based data often 

centers around Heart Rate Variability (HRV), which tracks how the timing between 

heartbeats changes. This is typically measured through RR intervals, the span between 

two R points in the signal, with the R wave located within the QRS region. 

Figure 2.1: Graphical representation of the ECG signal 

2.1.2 Photoplethysmography (PPG) 

Photoplethysmography (PPG) is a widely used, non-invasive technique that detects 

volumetric changes in blood circulation within the peripheral microvasculature by means 

of light-based sensing methods [1]. Typically, a PPG sensor consists of an LED that emits 

light—commonly green or infrared—and a photodetector that captures the reflected or 

transmitted light through the skin. These light fluctuations arise due to variations in blood 

volume occurring with each heartbeat[1][2] as seen in Figure 2.2. By analyzing the 

resulting optical signal, researchers can derive important cardiovascular indicators, such 

as heart rate and heart rate variability (HRV). Specifically, HRV is determined from the 

intervals between consecutive peaks in the PPG waveform, which correspond to the time 

difference between successive heartbeats and are analogous to the RR intervals identified 

in electrocardiogram (ECG) analysis [2]. Section 4.2.1 provides an in-depth description 

of the features that can be derived from heart rate variability. 
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Figure 2.2: Graphical Representation of PPG Signal 

2.1.3 Electrodermal Activity (EDA) 

Electrodermal Activity (EDA), also referred to as Galvanic Skin Response (GSR) [17] or 

Skin Conductance (SC), describes variations in the skin’s electrical properties resulting 

from sweat gland activity. These changes are closely associated with a person’s emotional 

state or level of physiological arousal. EDA can be measured by applying a small 

electrical potential between two points on the skin and recording the resulting current 

flow. This signal provides valuable insights, particularly in the assessment of pain, and 

has a wide range of applications in clinical and psychological contexts. For a more 

comprehensive explanation of EDA signal formation and the features that can be 

extracted from it, see Section 4.2.2. 

2.1.4 Inter-Beat Interval (IBI) 

The Inter-Beat Interval (IBI) [18], illustrated in Figure 2.3, represents the time interval 

between two consecutive heartbeats. This metric serves as the basis for calculating the 

instantaneous heart rate. 

             Figure 2.3: Inter-Beat Interval 
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2.1.5 Blood Volume Pulse (BVP) 

The Photoplethysmography (PPG) sensor primarily outputs the Blood Volume Pulse 

(BVP) signal, which serves as a key indicator of cardiovascular activity [19]. This signal 

is computed using a proprietary method that integrates the optical data collected under 

green and red LED illumination, as depicted in Figure 2.2. The resulting BVP waveform 

is recorded at a uniform sampling frequency of 64 Hz, corresponding to 64 data points 

per second. 

2.1.6 Acceleration (ACC) 

The 3-axis accelerometer is an advanced motion-sensing component capable of detecting 

acceleration forces independently along the X, Y, and Z directions. By capturing 

variations in acceleration, it provides valuable data related to body posture, movement 

patterns, and exertion levels. This information is instrumental in recognizing and 

classifying different types of physical behavior, such as dynamic and static activities, 

including walking and running.  

2.1.7 Temperature (TEMP) 

The Infrared Thermopile sensor is responsible for capturing peripheral skin temperature, 

which reflects the thermal state at the skin's outer surface rather than the body’s core 

temperature [20]. This measurement is generally more sensitive to external influences 

and shows greater fluctuations. Typical values range from 25°C to 35°C and are affected 

by variables such as surrounding temperature, the efficiency of local blood circulation, 

and the person's current physical exertion level. 

2.2 Machine Learning Algorithms 

Machine learning techniques are typically divided into three primary types: supervised 

learning, unsupervised learning, and reinforcement learning [21]. In the supervised 

paradigm, each input is matched with a known output label, allowing the model to learn 

predictive relationships and apply them to unfamiliar data. This method is often described 

as learning with explicit instruction or guidance. In contrast, unsupervised learning is 

applied to datasets without labeled outcomes, aiming to discover intrinsic data patterns 

such as groupings or correlations. Reinforcement learning differs by involving an agent 

interacting with an environment, receiving evaluative feedback in the form of rewards or 

penalties based on its performance, and gradually refining its decision-making strategy. 

In the context of this thesis, all algorithms explored fall within the supervised learning 

framework, as a psychologist has manually assigned labels to every data entry. The study 
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emphasizes decision tree-based models due to their proven reliability in similar 

classification tasks reported in prior literature [16],[22]. Decision trees offer a transparent 

and structured approach to classification, where nodes reflect decision criteria based on 

features, branches depict decision outcomes, and leaves represent final predicted outputs. 

This section outlines the specific algorithms applied to perform classification tasks in the 

study. 

2.2.1 Adaptive Boosting Decision Algorithm 

The AdaBoost algorithm [23], also referred to as Adaptive Boosting Decision Tree , is an 

ensemble learning technique designed to enhance the performance of weak classifiers by 

combining them into a single, robust model. The process begins with a given dataset in 

which each instance is initially assigned an equal weight of 1/N, where N represents the 

total number of training samples. 

A weak classifier is trained on this weighted dataset, and its classification error is 

subsequently computed. Based on this error rate, a corresponding weight is assigned to 

the classifier, reflecting its contribution to the final model. The instance weights are then 

updated: weights of misclassified samples are increased, thereby directing greater 

attention to them in subsequent iterations. Following this, the instance weights are 

normalized to ensure they sum to one. 

This iterative process continues for a predefined number of rounds or until a specified 

stopping criterion is satisfied. In the final stage, all trained weak classifiers are aggregated 

using a weighted majority voting scheme, where each classifier's influence is proportional 

to its accuracy. The resulting strong classifier is then evaluated on a separate test set to 

assess its predictive performance. 

2.2.2 Gradient Boosting Decision Tree 

Gradient Boosting Decision Tree (GBDT) [24],[25] is an ensemble learning method that 

incrementally builds a strong predictive model by sequentially training multiple shallow 

decision trees. At each iteration, the algorithm applies gradient descent to minimize a 

specified loss function by fitting new trees to the residual errors of the previously 

constructed ensemble. This iterative refinement process allows the model to progressively 

correct its mistakes and improve performance. The final output is a weighted sum of all 

the individual trees, resulting in significantly enhanced accuracy compared to any single 

decision tree. 
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2.2.3 Bagging Decision Tree 

The Bagging Decision Tree algorithm [26] belongs to the family of ensemble methods 

and works by generating several decision trees, each trained on a randomly resampled 

(bootstrapped) portion of the original dataset. Once trained, the individual models 

contribute to the final output through a voting or averaging mechanism, which enhances 

predictive performance. This approach helps to minimize model variance and reduces the 

risk of overfitting by leveraging the diversity of the tree ensemble. 

2.2.4 Random Forest 

Random Forest [27] is a robust ensemble technique that enhances predictive accuracy by 

generating a collection of decision trees, each trained independently. It extends the 

standard Bagging Decision Tree approach by introducing stochastic elements not only in 

data selection, through bootstrapped sampling, but also during the node-splitting process, 

where a random subset of features is evaluated for optimal splits. This intentional 

randomness fosters greater model diversity, helping to reduce overfitting and variance, 

ultimately yielding a more stable and generalizable predictive model. 

2.2.5 Extra Trees 

Extra Trees [28] is an ensemble learning technique that constructs multiple decision trees 

to produce a more accurate and stable model. It enhances the randomness introduced in 

the Random Forest algorithm by adding further variation during tree construction. Each 

tree is trained on a bootstrapped subset of the data and considers a random subset of 

features at each node. Unlike Random Forest, however, Extra Trees selects split points at 

random rather than searching for the optimal ones. This increased randomness helps to 

lower the risk of overfitting and promotes greater diversity among the trees, ultimately 

reducing variance and improving the ensemble’s overall performance. 

2.3 Model Evaluation 

To determine the most effective classification algorithm for the purpose of this thesis, it 

is essential to select a suitable evaluation methodology and relevant performance metrics 

for comparing the candidate algorithms. 

2.3.1 Evaluation Methodology 

The evaluation methodology applied to compare the performance of the Machine 

Learning algorithms is Stratified k-fold cross-validation [29], a technique commonly 
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employed in previous studies[4],[5],[6],[7] and [8]. This method ensures that each fold 

maintains the same class distribution as the original dataset, allowing for balanced 

representation across all folds. The dataset is split into k equal-sized subsets, each 

preserving the proportion of class labels. Over k iterations, each subset is used once as a 

validation set while the remaining k-1 subsets form the training set. In each round, the 

model is trained on the training folds and evaluated on the validation fold, generating 

performance metrics such as accuracy, precision, and recall. The final performance is 

derived by averaging these metrics across all k folds, providing a thorough and reliable 

assessment of the model’s effectiveness. 

2.3.2 Performance Metrics 

To calculate the performance metrics [30], four key components are required: true 

positives, false positives, true negatives, and false negatives, defined as follows:  

 True Positives (TP): The number of samples correctly classified as positive. 

 False Positives (FP): The number of samples incorrectly classified as positive. 

 True Negatives (TN): The number of samples correctly classified as negative. 

 False Negatives (FN): The number of samples incorrectly classified as negative 

In this thesis, within the emotional imagery experiment, specifically in the first two 

scenarios discussed in Section 1.3, a positive classification refers to patients categorized 

as having high levels of stress, whereas a negative classification indicates patients 

experiencing low levels of stress. In contrast, for the last two scenarios, which are 

discussed in Section 1.3, a positive classification corresponds to patients with low levels 

of psychological flexibility, while a negative classification refers to those with high 

psychological flexibility. 

For the EMA experiment, by positive it is meant that the participant is in the category of 

avoidance or dysfunctional, while negative means that the participant is considered as 

acceptance or functional.  Additionally, false negatives are more vital, in the context of 

this thesis, than false positives.  

For the emotional imagery experiment, minimizing false negatives is of greater 

importance than minimizing false positives, particularly due to the sensitive nature of the 

domain, which involves the early detection of psychological distress using physiological 

features. A false negative, where a subject experiencing high levels of stress or low 

psychological flexibility is incorrectly classified as not being at risk, may result in the 
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individual not receiving necessary psychological support or intervention. This poses 

ethical concerns, as undetected distress can escalate and potentially lead to more severe 

mental health outcomes. On the other hand, false positives, while not ideal, results in 

additional but generally non-harmful follow-up actions, such as further screening or 

monitoring. 

In the Empatica E4 experiment, the data pertains to healthcare and diagnostic 

applications. Therefore, it is significantly more critical to avoid classifying a 

dysfunctional individual as functional, as this could lead to delays in diagnosis and access 

to necessary treatment. Conversely, if a functional individual is mistakenly classified as 

dysfunctional, they would likely undergo additional examinations before any treatment 

or medication is administered, during which a correct diagnosis could still be made. As a 

result, the consequences of a false negative are more severe than those of a false positive 

in this context. 

Confusion Matrix 

The confusion matrix is a square table that presents the four classification outcomes 

described earlier. Its structure is illustrated in Figure 2.3. 

 

Figure 2.3: Binary Confusion Matrix format 

Accuracy  

Ratio of correct predictions to total predictions. 

Accuracy =
TP + TN

TP + TN + FP + FN
 

Sensitivity/Recall  

Ratio of true positives to total (actual) positives in the data. 

Recall =
TP

TP + FN
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Precision (PPV)  

Ratio of true positives to total predicted positives. 

PPV =
TP

TP + FP
 

Specificity  

Ratio of true negatives to total negatives in the data. 

Specificity =
TN

TN + FP
 

F1-Score  

Considers both precision and recall. It is the harmonic mean of the precision and 

recall. 

F1 Score =
2 ∗ (Recall ∗  Precision)

Recall +  Precision
 

NPV 

Ratio of true negatives to total predicted negatives. 

NPV =
TN

TN + FN
 

AUC 

Area Under the Curve usually refers to the area under the precision-recall curve 

(Figure 2.5). A high AUC value implies a high-quality classification. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Precision-Recall Curve and AUC example 
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2.4 Monitoring Devices 

In this thesis, two wearable biosensing devices are used to collect physiological data: the 

Shimmer sensor platform and the Empatica E4 wristband. Both devices are capable 

of recording signals related to stress and emotional states, such as heart rate and 

electrodermal activity. The Shimmer device was used for the first experiment, which was 

an emotional imagery experiment, while the Empatica E4 was used for the Ecological 

Momentary Assessment (EMA) experiment, each selected based on the specific 

requirements of the experimental design. 

2.4.1 Monitoring Device - Shimmer Sensors 

For the emotional imagery experiment presented in Section 3, the monitoring device that 

was used was Shimmer sensors as illustrated in Figure 2.6. Shimmer sensors constitute a 

versatile and wearable biosensor platform, specifically designed for monitoring 

physiological signals in real-time, making them highly suitable for ambulatory 

biomedical applications [31]. These lightweight (~20 grams), wireless devices provide 

significant advantages in usability due to their compact form and ease of integration into 

everyday activities without significant interference or discomfort [31]. 

Technically, Shimmer sensors feature both Bluetooth and wireless capabilities, enabling 

efficient data streaming and remote monitoring. They also support SD card logging for 

scenarios requiring extended data collection periods without continuous streaming. 

Shimmer sensors include various interchangeable modules (daughter-boards) capable of 

capturing multiple physiological signals, including Photoplethysmography (PPG), 

Electrodermal Activity (EDA), Electrocardiography (ECG), and Electromyography 

(EMG), among others [31]. Specifically, the PPG sensor can measure critical parameters 

such as Blood Volume Pulse (BVP) and Heart Rate Variability (HRV), while the EDA 

sensor captures skin conductance levels (SCL), which are indicative of emotional and 

stress responses [31]. 

The accuracy and reliability of the Shimmer platform have been extensively validated 

against well-established laboratory devices, showing comparable results in physiological 

measurements like ECG, EMG, and GSR (Galvanic Skin Response) [31],[32]. Due to 

these characteristics, Shimmer sensors have been widely utilized in numerous research 

domains including stress detection, emotional state assessment, sleep studies, gait 

analysis, and ambulatory health monitoring [31],[32]. 
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Considering the objectives of this thesis, Shimmer sensors were selected due to their 

proven effectiveness in machine learning-based classifications of psychological states 

such as stress and psychological flexibility. Specifically, their capacity to reliably capture 

physiological signals such as EDA and PPG allows for accurate detection and prediction 

of patients' stress levels and psychological flexibility in controlled laboratory 

experiments, making them particularly suitable for this research involving real cancer 

patients [31]. 

 

 

 

 

 

 

 

Figure 2.6: Shimmer sensors portable device 

2.4.2 Monitoring Device - Empatica E4 

For the EMA experiment presented in Section 3, the monitoring device that was used was 

the Empatica E4 wristband as illustrated in Figure 2.7. The Empatica E4 is a wearable 

wristband designed specifically for continuous, real-time monitoring of physiological 

signals in everyday life. Its user-friendly design and compact size make it suitable for 

long-term wear without discomfort, making it ideal for ambulatory studies and real-world 

data collection scenarios [33]. 

This device is primarily developed to facilitate stress detection, emotional monitoring, 

and health-related studies by accurately capturing physiological signals that are indicative 

of autonomic nervous system activity and emotional states [34]. It weighs approximately 

25 grams, features real-time Bluetooth streaming capabilities, and supports data storage 

in onboard memory, allowing continuous data collection even when wireless streaming 

is interrupted. 

The Empatica E4 is equipped with several built-in sensors that enable the measurement 

of a wide range of physiological signals. It includes a photoplethysmography (PPG) 

sensor, which can capture Blood Volume Pulse (BVP), heart rate (HR), and heart rate 

variability (HRV), all of which are critical indicators of emotional and physiological 

states [34][35]. It also features an electrodermal activity (EDA) sensor for monitoring 

skin conductance, which reflects sweat gland activity and serves as a direct indicator of 
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emotional arousal and stress [34][35]. Additionally, the device includes a three-axis 

accelerometer for tracking physical movement and activity levels, as well as a skin 

temperature sensor that records peripheral temperature fluctuations associated with stress 

or emotional changes. 

The Empatica E4 has been extensively validated in a variety of research contexts, 

including stress detection, emotional state assessment, and health monitoring. It has been 

particularly effective in psychological research focused on classifying coping behaviors 

such as acceptance versus avoidance [35]. For the current thesis, which aims to classify 

real cancer patients into acceptance or avoidance categories based on psychological 

flexibility metrics, the Empatica E4 is an ideal choice. Its accuracy in capturing nuanced 

physiological responses and its compatibility with real-time data analysis make it a 

powerful tool for developing machine learning models capable of supporting clinical 

decision-making and behavioral interventions. 

 

 

 

 

 

 

 

 

Figure 2.7: Empatica E4 wristband 
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3.1.3 EMA Experiment ..........................................................................................19 

3.2 Related Work ...........................................................................................................20 

3.1. Physiological Experiments 

The Department of Psychology at the University of Cyprus conducted four distinct 

experiments: Diagnosis of Experiential Avoidance in Smokers, Diagnosis of Eating 

Disorders, Diagnosis of Experiential Avoidance for Anxiety, and Functional versus 

Dysfunctional Coping with Acute Pain. These experiments were conducted at the ACT 

Health lab and involved volunteer participants. A key difference between these previous 

studies and the current research is that the present experiments involve real-life cancer 

patients. 

All experiments were connected to Acceptance and Commitment Therapy (ACT), 

categorizing participants into acceptance (functional) or avoidance (dysfunctional) 

groups based on their reactions. Acceptance-based strategies encourage individuals to 

embrace their thoughts and sensations, while avoidance-based strategies involve efforts 

to avoid, control, or alter uncomfortable thoughts and sensations [12]. Moreover, an 

individual's classification can vary depending on environmental factors and situational 

context. For the first three experiments, participants were consistently classified into a 

single group throughout the procedures. However, this assumption was not applicable in 

the fourth experiment. 

3.1.1 Previous Physiological Experiments 

The first experiment targeted experiential avoidance in smokers, aiming to differentiate 

between smokers employing acceptance versus avoidance coping strategies. Recorded 

signals included Electrocardiogram (ECG), facial Electromyography (fEMG), and 

Galvanic Skin Response (GSR), chosen to monitor emotional and stress responses while 

participants engaged in cognitive tests and watched emotionally neutral or negative 

videos. 
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The second experiment addressed emotional regulation related to eating disorders, 

categorizing participants as low or high risk based on responses to emotionally neutral 

and disorder-related videos. ECG, fEMG, and GSR signals were captured, alongside self-

reported assessments using the Body Image Acceptance and Action Questionnaire (BI-

AAQ). 

In the third experiment, researchers focused on anxiety, comparing emotional regulation 

between acceptance and avoidance groups. Participants viewed emotionally provocative 

images while ECG, GSR, and fEMG (COR, ORB, ZYG muscles) data were collected. 

The fourth experiment explored functional versus dysfunctional coping mechanisms for 

acute pain. Participants underwent pain induction through the Cold Pressor Task (CPT), 

with coping strategies directed by varied instructions. Behavioral measures (pain 

tolerance and threshold), psychophysiological data (ECG, EDA, and fEMG), and self-

reported psychological assessments were collected. This experiment used both stationary 

and wearable devices to compare data reliability. 

3.1.2 Emotional Imagery Experiment 

This is one of the recent experiments, and the one of the two that this thesis focuses on. 

The experiment involving Shimmer sensors was conducted in a controlled laboratory 

setting and aimed to measure physiological responses to emotional stimuli before and 

after a psychological intervention. Each participant completed the experimental protocol 

twice, once prior to the intervention and once following it. At the beginning of each 

session, participants were fitted with Shimmer biosensors: two sensors were placed on 

the index and middle fingers to capture skin conductance, and another sensor was attached 

to the ear to monitor heart rate through photoplethysmography (PPG). These sensors 

continuously recorded physiological signals throughout the duration of the experiment. 

The procedure began with a five-minute heart rate variability (HRV) assessment during 

which participants sat quietly and relaxed while baseline heart rate was measured. 

Following this, participants completed six guided emotional imagery trials. The trials 

were categorized into two neutral scripts (N1 and N2), two pleasant scripts (J1 and J2), 

and two unpleasant scripts (F1 and C1). At the start of each trial, participants received a 

printed script to read and memorize. Once the trial began, participants underwent a 90-

second process divided into three 30-second phases: a baseline phase where they counted 

silently, an imagery phase where they vividly imagined the scenario from the script, and 
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a recovery phase where they relaxed. Event markers were manually inserted by the 

research assistant during each trial to indicate the start of the HRV period and each 

imagery trial. 

At the conclusion of each trial, participants completed subjective ratings about their 

experience through some self-report psychological questionnaires before proceeding to 

the next script . This structured approach allowed researchers to gather 

psychophysiological data aligned with specific emotional responses under standardized 

conditions. 

The first questionnaire that was considered was the stress subscale of the Depression 

Anxiety Stress Scale (DASS-S), which measures the individual’s perceived level of 

stress. Higher scores on this subscale indicate greater levels of stress. The second 

questionnaire was the Acceptance and Action Questionnaire-II (AAQ-II), which 

measures psychological flexibility. This total score reflects a participant’s ability to 

accept difficult thoughts and emotions while continuing to act according to their  values, 

with lower scores indicating greater flexibility and higher scores suggesting experiential 

avoidance. 

Together, the physiological signals recorded by the Shimmer sensors and the self-report 

questionnaire data were used to investigate the relationship between emotional processing 

and psychological flexibility, providing a comprehensive overview of the participants’ 

stress responses and coping mechanisms. 

3.1.3 EMA Experiment 

This experiment is one of the most recent and is one of the two main experiments 

discussed in this thesis. Participants entered the Ecological Momentary Assessment 

(EMA) phase [36]. During this phase, they were provided with wearable 

psychophysiological monitors and instructed to wear them over the course of three 

consecutive days. Participants were guided on how to properly use the Empatica E4 

wristband, including instructions for wearing, charging, and ensuring continuous data 

collection. 

An app developed by the researchers was installed directly onto each participant’s 

personal smartphone. Through this app, participants were prompted to answer a series of 

questions multiple times per day. Rather than a fixed schedule, participants were allowed 
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to choose one of three available time ranges for receiving prompts: 8am to 8pm, 9am to 

9 pm, or 10 am to 10 pm. Within their chosen range, they received notifications three 

times a day to complete the questionnaires. 

The questions assessed factors such as social context, experiences of physical or 

emotional pain or stress, and the use of coping strategies. Participants wore the Empatica 

E4 wristband continuously throughout the day and removed it only at bedtime, when they 

were instructed to charge the device. Reminder messages were automatically sent every 

30 minutes in cases where participants did not initially respond to the prompts. After the 

three-day period, participants returned the devices to the researchers. 

3.2 Related Work 

Five prior works examined the data of the experiments regarding smoking, eating 

disorders, anxiety as well as pain and emotions management. These previous projects 

were conducted between 2017 and 2023, all focusing on analyzing psychophysiological 

data collected during experiments involving coping strategies like acceptance and 

avoidance. 

The diploma project by Ch. Galazis in 2017 [4] focused on classifying participants from 

experiments related to smoking and eating disorders using Random Forest and various 

machine learning algorithms. The main contribution of this work was identifying the 

optimal combination of signal features, primarily mean values from each timeframe, for 

classification. Galazis tested multiple models, such as SVM, Neural Networks, and 

Adaptive Boosting Decision Tree, with results evaluated across ten different data splits. 

The 2018 master thesis by A. Trigeorgi [37] advanced this approach by incorporating 

ECG time-domain features into the feature set. The study emphasized feature extraction, 

using Stratified 5-fold cross-validation to evaluate model performance. Similar 

algorithms were used, and average performance across five splits helped identify the best-

performing model.  

In 2019, G. Demosthenous built on this foundation by extracting a broader set of ECG-

based features and ranking them using Gradient Boosting Decision Tree (GBDT) [5]. The 

study introduced two data augmentation techniques, Moving Window Methodology and 

Rectangular Window Methodology, to increase the sample size. It also evaluated five 
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tree-based algorithms and ran each one 100 times per dataset split, enhancing the 

statistical reliability of results. 

The 2022 diploma project E. Georgiou [6] focused on pain-coping strategies in an 

experiment using the Cold Pressor Task and three devices: BIOPAC, Microsoft Band 2, 

and Moodmetric Smart Ring. The study emphasized the comparison of physiological data 

from wearable and stationary devices, the generation of artificial samples via rectangular 

windows, and the selection of relevant features using Wrapper, Embedded, and Filter 

Methods. 

Finally, the diploma thesis by S. Zeniou in 2023 [8] extended this body of work by 

applying machine learning to real-time data from the Empatica E4 wristband. This study 

involved participants from the University of Cyprus who wore the device and responded 

to questions on an app installed on their smartphones. Physiological signals such as PPG, 

EDA, temperature, and accelerometer data were analyzed and features were selected 

using two different methods. Among the tested models, Adaptive Boosting Decision Tree, 

GBDT, Random Forest, and Extra Trees, the GBDT performed best, achieving 70% 

accuracy in classifying participants' pain coping strategies. The study also highlighted the 

importance of HRV features and demonstrated that data collected from wearable devices 

can yield results comparable to those of stationary systems. 
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4.1 Data Selection 

The contents of each dataset, the number of patients who participated in each experiment, 

the method used for categorizing the patients, and the specific data utilized for analysis 

are among the key details that will be presented in the current section. 

4.2.1 Data Selection for Emotional Imagery Phase  

A comprehensive data collection process was conducted for the purposes of machine 

learning. The study (referred to in Section 3.1.2) involved a total of 72 patients with valid 

data, each of whom was associated with one .csv file. These .csv files contained various 

physiological measurements, each recorded in a separate column. For instance, the 

column Shimmer__GSR_Skin_Conductance_CAL corresponded to Electrodermal 

Activity (EDA), Shimmer__PPG_A13_CAL represented Blood Volume Pulse (BVP), 

and Shimmer__PPG_IBI_CAL represented the Interbeat Interval (IBI). Each file also 

included a column for the timestamp of each measurement as well as a column indicating 

the specific trial during which the measurement was taken. 

Additionally, the scores obtained from the questionnaires completed by the patients were 

collected into a single CSV file. Although multiple scores were gathered, this thesis 

focuses only on two of them: the DASS score and the AAQ-II score, which were 

explained in detail in Section 3.1.2. Each score was stored in a separate column, and an 

additional column contained patient IDs, allowing for clear identification of which patient 

each score belonged to.  

A total of 80 patients participated in the practical component of the experiment, meaning 

that corresponding physiological data (CSV files) were available for them. However, 8 

of these participants did not complete the required questionnaires during the experimental 
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procedure. Additionally, there were 5 patients who completed the questionnaires but did 

not participate in the practical component. Therefore, from the 85 patients who were 

involved in the study, either by participating in the practical session, completing the 

questionnaires, or both, a total of 72 participants were retained after the data cleaning 

process described in Section 5.4.1. These 72 patients had both physiological data and 

completed questionnaire responses, making them eligible for further analysis. 

Four different scenarios were examined, based on two different thresholds for each score, 

to classify patients into categories of low/high stress and low/high psychological 

flexibility as described in section 1.3.  

In the first scenario, where the threshold was 7, patients who scored 7 or below were 

classified as having a “low level of stress,” while those who scored above 7 up to the 

maximum possible score of 21 were classified as having a “high level of stress.” In the 

second scenario, using the median value of 5 as the threshold, patients who scored 5 or 

below were placed in the “low level of stress” category, while those who scored above 5 

up to 21 were classified as having a “high level of stress”. 

For the AAQ-II score, classification was also performed using both a literature-based 

threshold (24) and the median value of the data (13.5). In the first scenario, where the 

threshold was 24, patients who scored above 24 were classified as having a “low level of 

psychological flexibility,” while those who scored 24 or below were placed in the “high 

level of psychological flexibility” category. In the second scenario, using the median 

threshold of 13.5, patients who scored above 13.5 were categorized as having a “low level 

of psychological flexibility,” and those who scored 13.5 or below were considered to have 

a “high level of psychological flexibility.” 

The primary data points extracted for analysis were the values recorded during each trial 

in which patients participated. This approach allowed for a focused investigation of the 

relationship between physiological measurements and the patients’ pain coping strategies.  

4.1.2 Data Selection for EMA Phase 

A comprehensive data collection process was carried out to support the machine learning 

analysis. As outlined in Section 3.1.3, the study involved 26 patients, each of whom was 

associated with six data files containing various physiological metrics: Acceleration 

(ACC), Interbeat Interval (IBI), Heart Rate (HR), Temperature (TEMP), Electrodermal 

Activity (EDA), and Blood Volume Pulse (BVP). These data were collected over a span 

of three consecutive days. Alongside the physiological recordings, participants completed 
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a short questionnaire three times per day, and the exact time of each response was 

recorded. The primary question included in the questionnaire was: “If need be, I can let 

unpleasant thoughts and experiences happen without having to get rid of them 

immediately?” 

Participants could respond to this question with a score ranging from 1 to 5. Since there 

was no proposed threshold value in the existing literature for this specific experimental 

setup, the categorization of responses was based on the median value of participants’ 

answers to this question. The median score was 4, therefore, responses of 4 or 5 were 

categorized as “acceptance”, while scores of 3 or lower were categorized as “avoidance”. 

The first step in the data processing involved identifying the exact time each participant 

answered the coping-related question. Following this, the corresponding physiological 

data files were accessed, and the relevant timestamp was located. From these files, the 

physiological values recorded during the five-minute window preceding the participant’s 

response were extracted. This method enabled a targeted investigation into how 

physiological activity correlates with different coping strategies in the context of pain 

management. 

4.2 Feature Extraction 

Raw psychophysiological signals are not suitable for directly training machine learning 

algorithms. Therefore, it is essential to extract meaningful features from these signals. 

This section outlines the specific features derived from each type of signal. 

4.2.1 Features Extracted from PPG Signal 

Time-domain measures are fundamental metrics in heart rate variability (HRV) analysis. 

They quantify the variability in time intervals between consecutive heartbeats, known as 

NN (normal-to-normal) intervals. To understand what NN intervals are, it is necessary to 

revisit the concept of RR intervals from section 2.1.1. An RR interval refers to the time 

between two successive R-peaks in the ECG signal. Consequently, an NN interval 

represents the time between successive normal R-peaks, specifically, R-peaks that are 

not affected by artifacts [38]. To extract features from the raw PPG signals, the Python 

libraries Flirt [39] and either HeartPy [49] or NeuroKit2 [50], depending on the dataset 

associated with each experiment, were employed. These libraries enabled efficient 

preprocessing and feature computation tailored to the characteristics of the collected 



25 

 

physiological data. The process begins with the computation of RR intervals, as outlined 

in Table 4.1, along with the calculation of the differences between successive RR intervals 

(RRdiff) and their squared differences (RRsqdiff). 

Short name Clarification Equation 

RR 

It is the time interval between consecutive 

R-peaks, measured in milliseconds. 

RR = (diff(Rpeaks)/sf)*1000, 

where sf is the sampling 

frequency 

RRdiff 
The absolute value of the differences 

between successive RR intervals. 
RRdiff = |diff(RR)| 

RRsqdiff 
The squared differences between 

consecutive RR intervals. 
RRsqdiff=RR2

diff 

Table 4.1: Metrics used to represent time-domain features 

Based on the above, the time-domain features listed in Table 4.2 can be derived. 

Short name Clarification Equation Unit 

IBI 

Inter-Beat Intervals: The average 

of RR intervals, representing the 

time between consecutive R-

waves, measured in milliseconds. 

𝐼𝐵𝐼 =  𝑅̅ 𝑅̅  ms 

BPM 
Beats Per Minute: The average 

number of heart beats per minute. 
BPM =

60000

𝑅̅ 𝑅̅ 
 bpm 

SDNN 

Standard Deviation of NN 

intervals 

 
 

ms 

SDSD 

Standard Deviation of 

Successive Differences between 

consecutive RR intervals.  

ms 

RMSSD 

Root Mean Square of 

Consecutive RR Interval 

Differences 
 

ms 

pNN20 

The proportion of consecutive 

NN interval differences greater 

than 20 ms relative to the total 

number of consecutive NN 

intervals. 
 

% 

pNN50 

The proportion of consecutive 

NN interval differences 

exceeding 50 ms compared to the 

total number of consecutive NN 

intervals. 
 

% 

HRMAD 

The Median Absolute Deviation 

(MAD) of the Heart Rate 

  

bpm 

Table 4.2: Metrics used to represent time-domain features 
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Additionally, several frequency-domain features were extracted, as presented in Table 

4.3. These features are based on the power spectral density (PSD) of the RR intervals, 

which is computed using techniques such as the Fast Fourier Transform (FFT) or 

autoregressive modeling. The total power derived from the PSD is then segmented into 

distinct frequency bands[38].  

Short name Clarification 

VLF(Very Low Frequency) 
Power within the very low frequency (VLF) band, 

typically ranging from 0.0033 to 0.04 Hz. 

LF (Low Frequency) 
Power within the low frequency (LF) band, typically 

ranging from 0.04 to 0.15 Hz. 

HF(High Frequency) 
Power within the high frequency (HF) band, 

typically ranging from 0.15 to 0.4 Hz. 

LF/HF Ratio The ratio of LF power to HF power. 

LFnU (LF normalized units) 

LF power expressed in normalized units, calculated 

by dividing the LF power by the total power minus 

the VLF power, and then multiplying the result by 

100. 

HFnU(HF normalized units) 

HF power expressed in normalized units, calculated 

by dividing the HF power by the total power minus 

the VLF power, and then multiplying the result by 

100. 

Table 4.3: Metrics used to represent frequency domain features 

Moreover, non-linear features are extracted from the Poincaré plot, a scatterplot that maps 

each RR interval against the subsequent one [40], as illustrated in Table 4.4. 

Short name Clarification 

SDI 

The standard deviation of the points perpendicular to 

the line of identity in the Poincaré plot, representing 

the short-term variability of the heart rate. 

SD2 

The standard deviation of the points along the line of 

identity in the Poincaré plot, indicating the long-term 

variability of heart rate. 

SD2/SD1 Ratio The ratio of SD2 to SD1. 

Table 4.4: Metrics used to represent non-linear features 

4.2.2 Features Extracted from EDA Signal 

Electrodermal Activity (EDA) signals allow for the extraction of four primary types of 

features: time-domain features, frequency-domain features, time-frequency domain 

features, and Mel-frequency cepstral coefficients (MFCCs) [41]. In this thesis, the focus 

is placed on statistical features, given their extensive use and validation in existing 

literature. 
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The EDA signal is generally decomposed into two distinct components. The first is the 

Tonic component, also known as Skin Conductance Level (SCL), which reflects slow-

varying, baseline changes in skin conductance. This component is typically associated 

with an individual's overall level of arousal or stress over extended periods. The second 

is the Phasic component, referred to as Skin Conductance Response (SCR), which 

captures rapid and transient fluctuations in skin conductance triggered by specific stimuli 

or events. This component represents short-term or immediate physiological responses. 

For feature extraction, as presented in Table 4.5, the Flirt [39] Python library was 

employed. This tool facilitated the systematic derivation of relevant statistical features 

from the EDA signal for further analysis. 

Short name Clarification 

tonic_mean Average value of SCL. 

phasic_mean Average value of SCR. 

Table 4.5: Extracted statistical features from the EDA signal 

4.2.3 Features Extracted from 3-axis Accelerometer 

Finally, the features extracted from the three-axis accelerometer data are presented in 

Table 4.6. In the context of human activity monitoring, this data is utilized to capture 

body movement patterns[42]. As with previous signals, the Flirt [39] Python library was 

employed for feature extraction. 

Short name Clarification 

acc_x_mean Αverage acceleration along Χ-axis 

acc_y_mean Αverage acceleration along Y-axis 

acc_z_mean Αverage acceleration along Z-axis 

                Table 4.6: Features extracted from ACC 
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5.1 Feature Selection Techniques  

Feature selection is a fundamental step in the machine learning pipeline that involves 

selecting a subset of relevant features from the original features dataset to improve the 

performance of predictive models. By eliminating irrelevant, redundant, or noisy features, 

feature selection helps to enhance model generalization and reduce the risk of overfitting, 

leading to more accurate predictions [43]. Additionally, by decreasing the number of 

input variables, the training time and computational complexity of machine learning 

algorithms are significantly reduced, making the modeling process more efficient [43]. 

Beyond computational efficiency, feature selection improves model interpretability, 

particularly in domains such as healthcare, where understanding the influence of 

individual features on the prediction outcome is essential [43]. Furthermore, it reduces 

the storage requirements and enhances data quality by focusing only on the most 

informative variables, which may offer deeper insights into the underlying problem being 

analyzed [43]. For the purposes of this thesis, in physiological signal analysis, feature 

selection helps identify the most relevant biomarkers contributing to stress or emotional 
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state detection, thus streamlining the modeling process and improving the robustness of 

results. Recognizing the critical role of this step in enhancing predictive accuracy, a 

structured approach to feature selection was adopted. 

Specifically, and within the scope of supervised learning, various feature selection 

techniques have been employed, following the methodology applied by Sotiris Zeniou in 

his 2023 thesis project [8]. The feature selection process was primarily based on three 

main methodological categories: Wrapper methods, Filter methods, and Embedded 

methods. These categories will be analyzed and compared in the following sections, with 

the aim of evaluating their effectiveness. Figure 5.1 illustrates the core concept behind 

each category, which will be discussed in more detail throughout this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Figure 5.1: Flowchart of the three main feature selection methods 

5.1.1 VIF Technique 

The first technique applied before implementing the three feature selection methods was 

the Variance Inflation Factor (VIF) [44], which is used to detect multicollinearity among 
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the features. Multicollinearity refers to a condition where two or more predictor variables 

are highly correlated, potentially leading to unstable model coefficient estimates, reduced 

interpretability, and unreliable feature importance scores. The VIF metric quantifies the 

extent to which the variance of a regression coefficient is inflated due to multicollinearity 

with other predictors in the model. A VIF value of 1 indicates no correlation, while 

significantly higher values reflect increasing levels of multicollinearity. Although 

thresholds may differ across applications, a commonly accepted rule of thumb is that VIF 

values exceeding 10 indicate problematic multicollinearity, and such features should be 

considered for removal. This threshold was adopted in the thesis project of Sotiris Zenios 

[8] and was likewise employed in the current study. By applying this approach, only the 

most relevant and informative features were retained, ultimately contributing to a more 

reliable and robust predictive model. 

5.1.2 Wrapper Methods 

Wrapper methods for feature selection represent a category of machine learning 

techniques aimed at identifying the most relevant subset of features for a given predictive 

model. These methods evaluate the contribution of feature combinations by iteratively 

building and assessing models, ultimately selecting the subset that achieves optimal 

performance based on a predefined evaluation metric [45]. Common strategies employed 

in wrapper methods include forward selection, backward elimination, and recursive 

feature elimination (RFE). 

In this thesis, following the methodology applied in the thesis project of Sotiris Zenios 

[8], the Recursive Feature Elimination (RFE) method was utilized in combination with a 

RandomForestClassifier from the Scikit-learn library. The dataset was initially 

preprocessed and the target labels were separated from the predictor variables. RFE was 

then applied by recursively training the Random Forest model and eliminating the least 

important feature at each iteration, based on the internal importance scores of the 

estimator. This process continued until the optimal number of features was reached. The 

selected subset of features was extracted using the fit.get_support() function and used in 

the final model evaluation. 

This approach enabled the identification of a highly informative subset of features tailored 

to the classifier, thus improving model accuracy and stability. RFE, as a wrapper method , 

provided a systematic and performance-driven strategy for refining the feature set, 
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making it particularly suitable for the high-dimensional and complex nature of 

physiological signal data analyzed in this thesis. 

5.1.3 Filter Methods 

In recent years, filter methods have become increasingly popular in the field of feature 

selection for machine learning, largely due to their simplicity and computational 

efficiency. These methods assess the intrinsic properties of the dataset, such as correlation 

and mutual information, to evaluate the relevance of each feature independently of any 

specific learning algorithm. By discarding irrelevant or redundant features, filter methods 

help to reduce dataset dimensionality, thereby improving model performance and 

reducing the risk of overfitting [45]. Additionally, they contribute to enhanced model 

interpretability and generalization, both of which are essential for producing reliable and 

robust results. 

In this thesis, and in line with the methodology applied in the thesis project of Sotiris 

Zenios [8], the filter-based method SelectKBest was employed to identify the most 

relevant features from the dataset. The technique ranks features according to their 

individual scores calculated from univariate statistical tests, independently of the learning 

algorithm used for classification. Specifically, the f_classif scoring function was selected, 

which is based on the ANOVA F-value. This function evaluates the relationship between 

each continuous input feature and the categorical target variable by comparing the 

variance between group means relative to within-group variance. 

After computing the F-scores, the top k features with the highest values were selected and 

retained for model training. This approach not only allowed for a significant reduction in 

feature space but also helped to preserve the most informative attributes, contributing to 

improved model efficiency and predictive performance. The method’s independence 

from specific classifiers also made it particularly suitable as a general-purpose 

preselection step for downstream machine learning models. 

5.1.4 Embedded Methods 

Embedded methods for feature selection incorporate the selection of relevant features 

directly into the model training process. Unlike filter methods, which evaluate features 

independently of the learning algorithm, and wrapper methods, which assess featur e 

subsets by repeatedly training models, embedded methods perform selection during 

model construction. This integrated approach enables the model to inherently consider 
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feature interactions and dependencies, often resulting in improved predictive performance 

and reduced computational complexity. Common examples of embedded methods 

include regularization-based techniques like Lasso (L1 penalty), which eliminate 

irrelevant features by reducing their coefficients to zero, as well as tree-based models 

such as Random Forest, Gradient Boosting Decision Tree and Extra Trees, which 

evaluate and rank features based on their contribution to decision splits during training 

[46]. 

In the context of this thesis, and following the methodology adopted in the thesis project 

of Sotiris Zenios [8], embedded methods were implemented using two different ensemble 

learning models: GradientBoostingClassifier and ExtraTreesClassifier, both from the 

Scikit-learn library in Python. The process began with standard data preprocessing, where 

the dataset was cleaned and the target labels were separated from the predictor variables. 

The data was then split into training and testing sets to facilitate performance evaluation.  

For the Gradient Boosting approach, the classifier was first trained on the training set. 

Then, permutation importance was applied to measure the relevance of each feature. 

This technique involves shuffling the values of individual features and observing the 

corresponding drop in model performance, thus quantifying each feature’s predictive 

contribution. Features that led to the largest performance decline were considered the 

most informative [47]. 

For the Extra Trees approach, feature importance was extracted directly from the trained 

model using its built-in feature_importances_attribute. The ExtraTreesClassifier is an 

ensemble method that builds multiple randomized decision trees and averages their 

predictions. During training, it computes the importance of each feature based on how 

much it reduces impurity (such as Gini impurity or entropy) across all the decision trees. 

This method is particularly robust to overfitting and efficient in high-dimensional spaces, 

making it highly suitable for complex physiological datasets. 

By applying these two embedded methods, the most informative features were effectively 

identified across all scenarios. This dual approach not only strengthened the reliability of 

the feature selection process but also improved model robustness, interpretability, and 

generalization, core objectives of this research. The use of both permutation-based and 

impurity-based importance metrics further reinforced the consistency and validity of the 

selected features. 
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5.2 Selected Features for the Initial Datasets 

In this section, the features selected through the feature selection process are presented.  

The selected features for each initial dataset will be presented in separate sections, 

corresponding to the two experimental phases. For the first phase (emotional imagery 

experiment phase), features were selected for four distinct datasets, each corresponding 

to one of the four scenarios described in Section 1.3. For the second phase (EMA 

experiment phase), feature selection was performed for the single scenario that was 

conducted.  

It is important to note that some features appearing in both experimental phases are 

equivalent in meaning, although they are labeled differently. As noted in Tables 4.2 and 

4.3, BPM refers to hrv_mean_hr, IBI to hrv_mean_nni, LFnU to lf_perc, and HFnU to 

hf_perc. 

5.2.1 Selected Features for the Emotional Imagery Experiment Initial Dataset 

The process was applied to the four distinct variations of the original dataset derived from 

the emotional imagery experiment, each corresponding to a different classification 

scenario as described in section 1.3. 

To identify the most informative features for each dataset variation, a combination of 

feature selection techniques was employed, including SelectKBest, 

RandomForestClassifier, Gradient Boosting Decision Tree, and Extra Trees. The 

results of these methods are summarized in the following table, which highlights the 

selected features across the different scenarios, providing insights into how feature 

relevance varies depending on the classification strategy and threshold used. 

 
RandomForest 

Classifier 
SelectKBest 

Gradient 

Boosting 

Decision Tree 

Extra Trees 

S
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 1
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hrv_mean_hr, 

hrv_mean_nni, 

hrv_pnni_50, hrv_pnni_20, 

hrv_hf, tonic_mean, 

phasic_mean, bpm, 

sdsd,rmssd, pnn20,pnn50, 

sd1,sd1/sd2, lf_perc 

tonic_mean, 

sdsd,rmssd, 

pnn20,sd1, 

sd1/sd2,lf_nu, 

hf_nu 

hrv_pnni_50, 

hrv_mean_nni, 

pnn20 

hrv_mean_hr, 

pnn20, 

tonic_mean, 

hrv_mean_nn, 

hrv_pnni_20, 

phasic_mean 

S
ce

n
a

ri
o

 2
 

D
a

ta
se

t 

hrv_mean_hr, 

hrv_mean_nni, hrv_sdnn, 

hrv_pnni_50, hrv_pnni_20, 

hrv_hf, hrv_lf_hf_ratio, 

tonic_mean, phasic_mean, 

bpm, rmssd, pnn20,pnn50, 

sd1, lf_perc 

sdnn,sdsd, 

rmssd, 

pnn50,hr_mad, 

sd1, sd2, s 

hrv_mean_hr, 

hrv_sdnn, 

phasic_mean, 

hrv_mean_nni, 

lf_perc, 

hrv_lf_hf_ratio, 

sdnn 

hrv_mean_nn, 

hrv_mean_hr, 

tonic_mean, 

ibi,bpm, 

phasic_mean 
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hrv_mean_hr, 

hrv_mean_nni, hrv_rmssd, 

hrv_pnni_20, hrv_lf, 

hrv_lf_hf_ratio, 

tonic_mean, phasic_mean, 

bpm, ibi, sdnn, sdsd,rmssd, 

lf_perc, hf_perc 

tonic_mean, 

sdnn,sdsd, 

rmssd, 

pnn20,pnn50, 

sd1, sd2 

vlf_perc, 

hrv_hf,bpm, 

ibi, lf 

tonic_mean, 

bpm, 

hrv_mean_hr, 

phasic_mean, 

pnn50 

S
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D
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hrv_mean_hr, 

hrv_mean_nni, hrv_rmssd, 

hrv_sdnn,hrv_lf, hrv_hf, 

tonic_mean, phasic_mean, 

bpm, ibi, sdsd, rmssd, 

pnn20,pnn50, sd1/sd2 

hrv_rmssd, 

hrv_sdsd, 

hrv_pnni_50, 

sdsd,rmssd, 

pnn50,hr_ma, 

sd1 

(No features 

printed in the 

output for 

Gradient 

Boosting in 

this case.) 

bpm, 

hrv_mean_nn, 

hrv_mean_hr, 

ibi,sd1/sd2, 

hr_mad 

Table 5.1: Selected Features of emotional imagery phase 

Regarding all the algorithms used, the selected features were primarily derived from the 

HRV and EDA signals. This contrasts with the feature selection observed in the scenarios 

related to Sotiris Zeniou [8], where, following the data cleaning process, features were 

also selected from the ACC signal, in addition to HRV and EDA. 

This difference can be explained by the nature and setting of the Emotional Imagery 

Experiment, which was conducted in a controlled laboratory environment using Shimmer 

sensors. In this context, the selected features were mainly derived from HRV and EDA 

signals, as the clean and stable conditions allowed for high-quality recordings of these 

physiological indicators. Participants remained seated and stationary during the guided 

imagery tasks, which significantly reduced movement-related noise and minimized the 

relevance of accelerometer (ACC) data. Moreover, the use of structured, emotionally 

charged scripts triggered targeted psychological responses, such as stress or flexibility, 

which were more accurately captured through HRV and EDA measures. In contrast, the 

experiment conducted by Sotiris Zeniou [8] took place in real-life conditions using the 

Empatica E4 device, where participants were constantly moving and responding to 

ecological momentary assessments. As a result, ACC features became more informative 

in that setting, offering valuable insights into physical activity patterns that could be 

linked to stress or avoidance behaviors. This explains why ACC signals played a more 

prominent role in feature selection in Sotiris Zenios work [8], whereas HRV and EDA 

dominated in the lab-based emotional imagery experiment. 

5.2.2 Selected Features for the EMA Experiment Initial Dataset 

This section presents the features selected from the initial EMA dataset using different 

feature selection techniques, namely Random Forest Classifier, SelectKBest, Gradient 



35 

 

Boosting Decision Tree, and Extra Trees. The most important features identified by each 

method are listed below in Table 5.2, highlighting the physiological signals and heart rate 

variability (HRV) metrics most relevant for classification in the EMA phase. 

 
RandomForest

Classifier 
SelectKBest 

Gradient 

Boosting 

Decision Tree 

Extra Trees 
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ig
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value_y_mean, 

value_z_mean, 

vlf, num_ibis 

value_x_mean, 

value_y_mean, 

value_z_mean, 

vlf, lf/hf,tonic_mean, 

phasic_mean, num_ibis 

(No features 

printed in the 

output for 

Gradient 

Boosting in 

this case.) 

value_y_mean, 

value_z_mean, 

value_x_mean, 

hrv_mean_nni, 

sd1/sd2, 

hrv_sdnn 

Table 5.2: Selected Features of EMA phase 

Regarding all the algorithms used, it appears that the selected features were primarily 

derived from the ACC signal. This differs from the feature selection observed in the 

scenarios related to Sotiris Zeniou [8], where, following the data cleaning process, 

features were mainly selected from the HRV and EDA signals, in addition to the ACC 

signal. 

This difference can be attributed to the specific conditions and population of the EMA 

experiment. Conducted in real-world, ambulatory settings using the Empatica E4 device, 

the EMA experiment involved cancer patients who wore the device during their daily 

routines. As a result, the HRV and EDA signals were often affected by noise from 

continuous motion, changes in posture, and varying environmental conditions, making 

them less reliable and consistent. In contrast, ACC features became more informative in 

capturing patterns of physical activity and behavioral responses, such as restlessness or 

avoidance-related movements, which may be linked to psychological states. 

Moreover, the EMA data collection was event-based, relying on participants' responses 

to self-reports triggered throughout the day. These unstructured, real-time windows 

emphasized the relevance of body movement context, where ACC-derived features, such 

as value_x_mean and value_z_mean, proved more stable and discriminative compared to 

HRV or EDA. 

On the other hand, in Sotiris Zeniou’s experiment [8], the participants were university 

student volunteers in a less physically demanding or variable environment. These 

participants typically follow more structured daily routines (e.g., attending lectures, 
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studying), which are less physically intensive compared to the diverse and often 

unpredictable routines of cancer patients. This allowed for cleaner physiological 

recordings and better retention of HRV and EDA signals after preprocessing. 

Consequently, HRV and EDA features played a more significant role in his feature 

selection process. In contrast, the daily activities and potential physical and emotional 

burden faced by real cancer patients in the EMA study likely contributed to greater signal 

noise and variability, elevating the discriminative value of ACC features in the 

classification process. 

5.3 Optimized Selected Features for the Initial Datasets 

To further optimize the results that will be analyzed in chapter 6 and to improve the 

performance of the predictive models, we combined the four-feature selection methods 

applied and selected the features that appeared most frequently across them. The table 

below presents, for each scenario, the common features with the highest number of 

occurrences identified by the four methods. 

5.3.1 Optimized Selected Features for the Emotional Imagery Experiment Initial 

Dataset 

This section summarizes the optimized feature sets selected for each scenario of the 

emotional imagery experiment after applying feature selection techniques. The selected 

features, shown in Table 5.3, represent the most relevant physiological signals and heart 

rate variability (HRV) metrics that contributed to improving the classification 

performance across the different scenarios. 

 Selected features 

Scenario 1 Dataset 
hrv_mean_nni, tonic_mean, pnn20 

Scenario 2 Dataset 
hrv_mean_hr, hrv_mean_nni, phasic_mean 

Scenario 3 Dataset 
tonic_mean, bpm 

Scenario 4 Dataset 
hrv_rmssd, sdsd ,rmssd ,pnn50, hr_mad, hrv_mean_hr, 

hrv_mean_nni, bpm, ibi, sd1/sd2 

Table 5.3: Optimized Selected Features of emotional imagery phase 

5.3.2 Optimized Selected Features for the EMA Experiment Initial Dataset 

Similarly, this section presents the optimized features selected for the EMA experiment 

dataset. The features listed in Table 5.4 highlight the most influential signals used to 

enhance the model's ability to distinguish between acceptance and avoidance behaviors.  
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 Selected features 

Original Dataset 'value_x_mean', 'value_y_mean', 'value_z_mean', 

'tonic_mean', 'vlf' 

Table 5.4: Selected Features of EMA phase 

5.4 Data Cleaning 

To create a valid and meaningful dataset for analysis for each phase a data cleaning 

process was implemented. A main criterion guided the data cleaning process for each 

phase. 

5.4.1 Data Cleaning for Emotional Imagery Phase  

Each patient who answered the questionnaire should also have a csv file with 

measurements from the signals output by the shimmer sensor as described in section 

As previously mentioned in Section 4.1.1, each patient had a corresponding csv file 

containing the signal measurements from the Shimmer sensor for each of the six trials. In 

this study, the combination of a patient and a specific trial was treated as an individual 

sample. Therefore, for each patient, six distinct samples were generated. If a patient had 

not completed any questionnaires, all six potential samples were excluded from the final 

dataset. Additionally, if a patient lacked signal data for a specific trial, the sample 

corresponding to that trial was also removed. 

5.4.2 Data Cleaning for EMA Phase 

Matching the time a patient answered a questionnaire with a time from the Empatica E4 

watch measurements: 

The data cleaning process implemented in this phase focuses on ensuring that only valid 

and meaningful samples are retained for analysis. For each unique sample combination 

of patient and questionnaire, the script attempts to extract physiological signals from the 

five-minute window preceding the questionnaire timestamp. If no corresponding signal 

data is found within that time frame for any of the expected modalities (e.g., EDA, BVP, 

ACC), the respective sample is excluded. Furthermore, if the folder corresponding to a 

specific patient does not exist, then all potential samples associated with that patient, 

namely, all possible combinations of patient ID and questionnaire ID, are removed from 

the dataset. This step ensures that only patient entries with valid and accessible 

physiological signal data are retained for further analysis, thereby maintaining the 

integrity and reliability of the dataset. 
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The data cleaning process applied in both experimental phases, emotional imagery and 

EMA, was essential for ensuring the integrity, consistency, and quality of the dataset. In 

both cases, strict criteria were implemented to remove incomplete, missing, or irrelevant 

data entries, such as samples lacking physiological signal measurements or corresponding 

questionnaire responses. By eliminating such entries, the dataset was refined to include 

only valid and meaningful samples suitable for supervised learning. This process 

significantly reduced noise prevented data imbalance caused by invalid samples and 

ensured that the machine learning models were trained on reliable and contextually 

relevant information. Overall, the data cleaning phase contributed to improving the 

robustness, interpretability, and generalizability of the results, making it a critical step in 

the overall methodology. 
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6.1 Classification Process  

The classification process represents a critical phase of this thesis project, as it directly 

influences the evaluation of the predictive capabilities of machine learning models in 

identifying psychological states, such as stress levels and psychological flexibility in 

cancer patients during guided imagery tasks, and coping strategies (acceptance vs. 

avoidance) during real-world daily assessments. This step is pivotal in assessing the 

effectiveness of various machine learning (ML) algorithms and determining which 

configurations yield the most reliable results across the defined experimental scenarios.  
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To ensure an unbiased evaluation of the models and avoid overfitting, each dataset was 

split into training and testing subsets following an 80/20 ratio. This preparation step 

allows for robust model validation, ensuring that the trained models generalize well to 

unseen data and that the evaluation metrics truly reflect the models’ predictive 

capabilities. 

For the classification task, five supervised machine learning algorithms were utilized: 

Gradient Boosting Decision Tree , Adaptive Boosting Decision Tree , Bagging 

Decision Tree, Random Forest, and Extra Trees. Each of these classifiers was trained 

on the training dataset using a set of features that had been carefully selected through an 

optimized feature selection process detailed in Section 5.3. The training phase also 

involved hyper parameter tuning to enhance the predictive power of each algorithm. 

These optimizations were performed with the goal of tailoring the models to the 

underlying structure of the data while preventing overfitting. 

The performance of each model was subsequently evaluated on the test set using standard 

classification metrics, including accuracy, F1-score, recall (sensitivity), precision, area 

under the curve (AUC), and specificity. These metrics provided comprehensive insights 

into the models' ability to correctly classify patients into distinct psychological categories. 

In the emotional imagery experiment, this involved distinguishing between high and low 

stress levels based on the DASS score and high and low psychological flexibility based 

on the AAQ-II score. In the EMA experiment, the classification task focused on 

identifying whether the patient was adopting a functional (acceptance) or dysfunctional 

(avoidance) coping response to real-time experiences of stress or pain. 

The primary goal of this classification process was twofold. First, it aimed to compare 

the predictive performance across different datasets, which correspond to the four 

scenarios from the emotional imagery experiment (based on different cut-offs for DASS 

and AAQII scores) and one scenario from the EMA experiment (based on real-time 

acceptance vs. avoidance responses). Second, it sought to compare the effectiveness of 

the five machine learning algorithms in these various settings to determine which method 

performs best for each case. 
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To further improve classification outcomes, oversampling techniques were applied to 

address potential class imbalances in the datasets. Specifically, three oversampling 

strategies were examined: Random Oversampling, SMOTE (Synthetic Minority 

Oversampling Technique), and ADASYN (Adaptive Synthetic Sampling). These 

techniques will be explained in detail in section 6.3. 

Another significant objective of the classification process was to evaluate the impact of 

these oversampling techniques on model performance. By comparing the results before 

and after oversampling, the study assessed how each technique influenced key evaluation 

metrics, particularly recall and precision, and whether the inclusion of these techniques 

led to more balanced and reliable predictions. This analysis was essential in 

understanding the full potential of machine learning models to accurately identify 

maladaptive coping mechanisms in cancer patients, whether these appear in a 

controlled setting (as in the emotional imagery experiment) or during daily life (as in the 

EMA phase). 

Overall, this classification framework, aligned with the methodology used by Sotiris 

Zeniou in his 2023 thesis project [8], provides a systematic and replicable pipeline for 

analyzing psychophysiological and self-reported data. It demonstrates the utility of 

machine learning in detecting stress levels, psychological flexibility, and coping styles, 

offering a foundation for future applications in personalized interventions for cancer care. 

6.2 Classifier Selection 

As we move into the Classifier Selection chapter, the focus shifts to a detailed 

comparative analysis of the five distinct scenarios examined throughout this study. A key 

component of this analysis is understanding the differences in sample distribution across 

these scenarios, as this factor significantly influences the performance of the machine 

learning algorithms applied. To support a clear and comprehensive evaluation, Table 6.1 

presents the number of patients and Table 6.2 presents the number of samples 

corresponding to each scenario of each phase (emotional imagery or EMA phase). This 

overview provides the foundation for the following discussions and assessments of the 

classifiers, ultimately guiding the selection of the most suitable model based on the unique 

characteristics of each scenario. 
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Scenarios 

Low 

level of 

stress 

High level 

of stress 

Low level of 

psychological 

flexibility 

High level of 

psychological 

flexibility 

Scenario 1:  

Stress level (DASS) 

score, with 7 as the cut off 

between low and high; the 

cut off was decided based 

on prior literature.  

126 305 - - 

Scenario 2:  

Stress level (DASS) 

score, with 5 as the cut 

off; this cut off was based 

on the median of our data, 

provides more balanced 

categories.  

197 234 - - 

Scenario 3: 

Psychological flexibility 

(AAQII) score, with 24 as 

the cut off between low 

and high, based on prior 

literature. 

- - 89 342 

Scenario 4: 

Psychological flexibility 

(AAQII) score, with 13.5 

as the cut off, based on the 

median. 

- - 215 216 

Table 6.1: Distribution of Samples Across Scenarios  

of Emotional Imagery Phase 

Scenarios Avoidance Acceptance 

Empatica E4 experiment:  

Avoidance vs Acceptance score, 

with 4 as the cut-off, based on the 

median 

31 76 

Table 6.2: Distribution of Samples in EMA Phase Scenario 

Following the data cleaning procedures for each phase, as described in Sections 5.4.1 and 

5.4.2 respectively, the final number of valid samples retained was 431 for the Emotional 

Imagery phase and 107 for the EMA phase. Specifically, 431 out of a possible 510 

samples were retained for the Emotional Imagery phase, had all entries been valid, while 

for the EMA phase, 107 out of 225 potential samples were included in the final analysis. 

6.2.1 Scenario 1 of Emotional Imagery Phase Dataset 

In Scenario 1, which aimed to classify patients according to their stress levels based on a 

DASS score threshold of seven (7), the original classification results demonstrated several 
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important performance characteristics across the five evaluated machine learning 

algorithms as illustrated in Table 6.3. 

 Gradient 

Boosting 

Decision 

Tree 

Adaptive 

Boosting 

Decision 

Tree 

Bagging 

Decision 

Tree 

Random 

Forests 
Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.80 0.05 0.77 0.05 0.80 0.05 0.80 0.05 0.81 0.05 

F1-score  0.72 0.07 0.71 0.07 0.75 0.06 0.73 0.07 0.75 0.07 

Recall-sensitivity 0.91 0.05 0.88 0.06 0.89 0.06 0.90 0.05 0.93 0.05 

Precision(PPV) 0.82 0.04 0.82 0.04 0.84 0.04 0.83 0.04 0.83 0.04 

AUC 0.84 0.06 0.80 0.08 0.85 0.06 0.85 0.06 0.86 0.06 

Specificity 0.51 0.13 0.52 0.13 0.59 0.12 0.53 0.13 0.53 0.12 

NPV 0.72 0.14 0.65 0.13 0.71 0.13 0.71 0.13 0.77 0.13 

Table 6.3: Scenario 1 of Emotional Imagery Phase Dataset 

Accuracy was consistent among all algorithms, ranging from 0.80 to 0.81, indicating that 

all models achieved similar rates of overall correct predictions. The F1-score, which 

balances recall and precision, was also largely consistent, with most models achieving 

approximately 0.72 ± 0.07. Notably, the Bagging Decision Tree and Extra Trees models 

showed a slight improvement, reaching 0.75 ± 0.07, reflecting a marginally better balance 

between sensitivity and precision. 

In terms of recall (sensitivity), which is crucial for identifying as many truly stressed 

patients as possible, the Extra Trees classifier achieved the highest score (0.93 ± 0.05), 

followed closely by Gradient Boosting Decision Tree  with 0.91 ± 0.05. These results 

indicate that both models were particularly effective at minimizing false negatives. 

Precision, which reflects the proportion of correctly identified stressed patients among 

those predicted as stressed, was highest for the Bagging Decision Tree at 0.84 ± 0.04, 

while the other models produced values in the range of 0.82 to 0.83, suggesting relatively 

low rates of false positives. 

Regarding the Area Under the Curve (AUC) metric, which evaluates the classifier’s 

ability to distinguish between classes, the Adaptive Boosting Decision Tree exhibited 

the lowest performance at 0.80 ± 0.08, whereas the remaining models fell between 0.84 

and 0.86, indicating satisfactory overall discrimination. 

One of the more challenging aspects across all models was specificity, or the true negative 

rate. The highest value was recorded by the Bagging Decision Tree (0.59 ± 0.12), while 

the others remained within a lower range of 0.51 to 0.53, suggesting a tendency for some 

non-stressed individuals to be incorrectly classified as stressed. 



44 

 

Finally, for Negative Predictive Value (NPV), the Extra Trees model again performed 

best, with a score of 0.77 ± 0.13, meaning it was more effective in correctly identifying 

non-stressed patients. In contrast, the Adaptive Boosting Decision Tree showed the 

lowest NPV at 0.65 ± 0.13, indicating weaker performance in this aspect. 

Overall, based on these original results, the Extra Trees classifier stood out as the most 

effective model in this scenario. Its superior recall, NPV, and balanced performance 

across key metrics underscore its suitability for reliably detecting high-stress patients 

during the emotional imagery experiment. This is particularly important in the context of 

clinical support, where identifying vulnerable individuals accurately and minimizing both 

false positives and false negatives is essential. 

6.2.2 Scenario 2 of Emotional Imagery Phase Dataset 

In Scenario 2, which focuses on classifying patients into high and low stress categories 

based on the median DASS score (threshold = 5), the original classification results 

showed more moderate overall performance compared to Scenario 1, as illustrated in 

Table 6.4. 

 Gradient 
Boosting 
Decision 

Tree 

Adaptive 
Boosting 
Decision 

Tree 

Bagging 
Decision 

Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.68 0.07 0.64 0.08 0.67 0.07 0.67 0.07 0.64 0.07 

F1-score  0.68 0.07 0.63 0.09 0.66 0.07 0.66 0.07 0.63 0.07 

Recall-sensitivity 0.70 0.09 0.67 0.10 0.68 0.07 0.69 0.09 0.68 0.09 

Precision (PPV) 0.72 0.08 0.67 0.09 0.70 0.07 0.70 0.07 0.66 0.06 

AUC 0.76 0.07 0.70 0.08 0.74 0.07 0.73 0.07 0.71 0.07 

Specificity 0.66 0.12 0.60 0.13 0.65 0.11 0.64 0.10 0.59 0.10 

NPV 0.65 0.08 0.61 0.09 0.63 0.07 0.64 0.08 0.61 0.08 

Table 6.4: Scenario 2 of Emotional Imagery Phase Dataset 

Accuracy values were relatively low across all models. The Gradient Boosting Decision 

Tree achieved the highest accuracy (0.68 ± 0.07), while Adaptive Boosting Decision 

Tree and Extra Trees recorded the lowest (0.64 ± 0.08). The remaining models showed 

nearly identical values around 0.67 ± 0.07, indicating minor variability in the models' 

overall correctness. 

In terms of the F1-score, which balances recall and precision, Gradient Boosting 

Decision Tree again outperformed the other algorithms (0.68 ± 0.07), followed by a 

group of models with similar values (0.66 ± 0.07). The lowest F1-scores were observed 

in Adaptive Boosting Decision Tree  and Extra Trees, both with 0.63 ± 0.07, suggesting 

these models were slightly less effective at achieving a balance between true positive 

predictions and false positives. 
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Recall (sensitivity), a key metric for detecting stressed patients, ranged between 0.67 and 

0.70 across all models, indicating consistent performance in identifying positive cases. 

While no model significantly outperformed others in this regard, the uniformity in scores 

suggests that all models were moderately capable of identifying stressed individuals 

based on the median threshold. 

Precision (PPV) revealed more variation. The Gradient Boosting Decision Tree  

achieved the highest precision (0.72 ± 0.08), indicating strong performance in minimizing 

false positives. In contrast, Extra Trees recorded the lowest precision (0.66 ± 0.06), with 

Adaptive Boosting Decision Tree slightly higher at 0.67 ± 0.09. The remaining 

algorithms produced similar precision values of approximately 0.70 ± 0.07. 

Regarding AUC (Area Under the Curve), which evaluates the model's ability to 

discriminate between classes, Gradient Boosting Decision Tree again had the best result 

(0.76 ± 0.07), while Adaptive Boosting Decision Tree showed the lowest (0.70 ± 0.08). 

Other models ranged between 0.71 and 0.74, reflecting moderate discriminative 

performance. 

Specificity, which measures the ability to correctly identify non-stressed individuals, was 

generally lower across the board. The Extra Trees classifier had the weakest 

performance (0.59 ± 0.10), followed by AdaBoost (0.60 ± 0.13). The remaining models 

fell between 0.64 and 0.66, showing slightly improved performance in recognizing the 

negative class. 

Lastly, for Negative Predictive Value (NPV), Extra Trees and AdaBoost again 

recorded the lowest scores (0.61 ± 0.08), while other models ranged from 0.63 to 0.65. 

These results indicate that the models had limited reliability in identifying non-stressed 

patients when using the median DASS cut-off. 

In summary, under the original settings of Scenario 2, the Gradient Boosting Decision 

Tree algorithm consistently achieved the best overall performance across nearly all 

evaluation metrics, including accuracy, F1-score, precision, and AUC. This suggests it is 

the most appropriate choice for classifying patients based on a balanced DASS 

threshold. However, the overall results were weaker compared to Scenario 1, likely due 

to the more challenging distribution of samples caused by using the median value as 

the threshold, which creates more balanced but less separable class distributions. These 
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findings highlight the need for further strategies, such as data balancing techniques, to 

improve the model's ability to generalize, particularly in complex, real-world datasets. 

6.2.3 Scenario 3 of Emotional Imagery Phase Dataset 

In Scenario 3, where the classification task aimed to distinguish between high and low 

psychological flexibility based on an AAQ-II threshold of 24, the original results (prior 

to any oversampling technique) highlighted notable differences in model performance.  

These original results are as illustrated in Table 6.5. 

 Gradient 
Boosting 

Decision 
Tree 

Adaptive 
Boosting 

Decision Tree 

Bagging 
Decision 

Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.84 0.04 0.82 0.05 0.85 0.04 0.85 0.05 0.85 0.05 

F1-score  0.72 0.08 0.67 0.09 0.75 0.08 0.74 0.08 0.74 0.08 

Recall-sensitivity 0.48 0.14 0.38 0.15 0.53 0.16 0.51 0.16 0.50 0.15 

Precision (PPV) 0.68 0.17 0.61 0.21 0.68 0.17 0.70 0.18 0.69 0.17 

AUC 0.82 0.08 0.77 0.09 0.83 0.08 0.83 0.08 0.82 0.08 

Specificity 0.94 0.04 0.93 0.05 0.93 0.04 0.94 0.04 0.94 0.04 

NPV 0.87 0.03 0.85 0.03 0.89 0.03 0.88 0.04 0.88 0.03 

Table 6.5: Scenario 3 of Emotional Imagery Phase Dataset 

Accuracy scores ranged from 0.82 ± 0.05 (Adaptive Boosting Decision Tree – the lowest) 

to values between 0.84 and 0.85 for the remaining algorithms, indicating solid overall 

classification ability across models, except for Adaptive Boosting Decision Tree, which 

underperformed. 

The F1-score, which reflects the harmonic mean of precision and recall, was also lowest 

for Adaptive Boosting Decision Tree (0.67 ± 0.09), while the other algorithms achieved 

more favorable results ranging from 0.72 to 0.75, suggesting a more balanced predictive 

capacity in those models. 

Recall (sensitivity), a particularly important metric for identifying patients with low 

psychological flexibility (i.e., those more likely to avoid or disengage from unpleasant 

experiences), was weakest in Adaptive Boosting Decision Tree (0.38 ± 0.15), indicating 

a high rate of false negatives. The other algorithms ranged between 0.48 and 0.53, which, 

while still moderate, demonstrated better ability to correctly identify at-risk individuals. 

In terms of Precision (PPV), Adaptive Boosting Decision Tree again showed the lowest 

performance (0.61 ± 0.21), whereas the remaining classifiers produced scores between 

0.68 and 0.70, suggesting more reliable identification of truly inflexible patients among 

those predicted as such. 
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AUC (Area Under the Curve) values followed a similar pattern: Adaptive Boosting 

Decision Tree yielded the lowest score (0.77 ± 0.09), while all other algorithms ranged 

from 0.82 to 0.83, indicating strong discriminative power between high and low 

psychological flexibility classes. 

Interestingly, Specificity was consistently high across all models, with values between 

0.93 and 0.94, showing that all classifiers were highly effective at correctly identifying 

patients with high psychological flexibility (i.e., those who demonstrate acceptance and 

psychological resilience). 

Finally, for Negative Predictive Value (NPV), a key metric for evaluating how 

accurately non-inflexible patients are identified, Adaptive Boosting Decision Tree again 

performed the worst (0.85 ± 0.03), while the remaining classifiers achieved values 

between 0.87 and 0.89. 

Overall, the results of Scenario 3 show strong specificity and accuracy, meaning that 

most patients with high psychological flexibility were correctly identified. However, the 

recall values were relatively low across all models, particularly for Adaptive Boosting 

Decision Tree, suggesting that patients with low psychological flexibility (those most in 

need of psychological support) were frequently missed. 

Among the models, Random Forest, Extra Trees, and Gradient Boosting Decision 

Tree demonstrated more favorable and balanced performance across most metrics, 

especially in F1-score, AUC, precision, and NPV, making them more reliable choices 

for the task of identifying cancer patients with reduced psychological flexibility during 

the emotional imagery experiment. 

These findings highlight the challenge of this classification task, especially due to the 

imbalance in how easily flexible versus inflexible patients can be identified using 

physiological signals alone. The results suggest the need for enhancement strategies to 

better capture this psychologically important but more subtle trait in future iterations. 

6.2.4 Scenario 4 of Emotional Imagery Phase Dataset 

In Scenario 4, which focuses on classifying patients according to their psychological 

flexibility based on the median AAQ-II score (13.5), the original results, before 

applying any data balancing techniques, reveal moderate but consistent differences in 

classifier performance as illustrated in Table 6.6. 
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 Gradient 
Boosting 
Decision 

Tree 

Adaptive 
Boosting 
Decision 

Tree 

Bagging 
Decision 

Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.73 0.06 0.69 0.06 0.76 0.06 0.76 0.06 0.77 0.07 

F1-score  0.72 0.06 0.69 0.06 0.76 0.06 0.76 0.06 0.77 0.07 

Recall-sensitivity 0.72 0.10 0.70 0.09 0.75 0.10 0.75 0.09 0.74 0.10 

Precision (PPV) 0.73 0.07 0.69 0.08 0.77 0.07 0.77 0.08 0.79 0.08 

AUC 0.81 0.05 0.76 0.06 0.82 0.06 0.83 0.05 0.84 0.05 

Specificity 0.73 0.10 0.68 0.10 0.77 0.09 0.78 0.09 0.79 0.09 

NPV 0.73 0.07 0.70 0.07 0.76 0.07 0.76 0.07 0.76 0.08 

Table 6.6: Scenario 4 of Emotional Imagery Phase Dataset 

Accuracy scores were highest among most classifiers, ranging between 0.73 and 0.77, 

while Adaptive Boosting Decision Tree recorded the lowest accuracy at 0.69 ± 0.06, 

suggesting a less effective general classification ability in this context. 

Regarding the F1-score, which reflects the balance between precision and recall, most 

models performed adequately with values between 0.72 and 0.77. In contrast, Adaptive  

Boosting Decision Tree again underperformed, achieving the lowest score at 0.69 ± 0.06, 

indicating reduced reliability in handling the trade-off between false positives and false 

negatives. 

Recall (sensitivity), which measures the classifier’s ability to correctly detect individuals 

with low psychological flexibility, a trait often associated with avoidance coping, was 

lowest for Adaptive Boosting Decision Tree (0.70 ± 0.09), while the rest of the 

algorithms achieved better results in the range of 0.72 to 0.75. 

In terms of Precision (PPV), Adaptive Boosting Decision Tree again yielded the 

weakest performance (0.69 ± 0.08), while the remaining models showed values between 

0.73 and 0.79, meaning they were more effective in correctly identifying low-flexibility 

patients among all those predicted as such. 

AUC (Area Under the Curve) values, reflecting the ability to discriminate between high 

and low psychological flexibility, were highest for the better-performing models, ranging 

between 0.81 and 0.84. Adaptive Boosting Decision Tree recorded the lowest AUC at 

0.76 ± 0.06, indicating limited class separation performance. 

The Specificity scores, which represent the true negative rate (correct identification of 

high-flexibility patients), ranged from 0.73 to 0.79 for most algorithms, while Adaptive  

Boosting Decision Tree again lagged with a score of 0.68 ± 0.10, indicating a higher 

false positive rate. 

Finally, Negative Predictive Value (NPV) followed the same trend, with Adaptive  

Boosting Decision Tree reporting the lowest (0.70 ± 0.07), while other models achieved 
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results between 0.73 and 0.76, suggesting a more reliable identification of high-flexibility 

individuals. 

The findings from Scenario 4 demonstrate that most classifiers—especially Gradient 

Boosting Decision Tree, Random Forest, and Extra Trees—performed reasonably well 

across key metrics when attempting to detect differences in psychological flexibility 

using the median AAQ-II threshold. This scenario, compared to Scenario 3, benefits 

from a more balanced distribution of samples due to the use of the median split, which 

supports slightly higher performance scores overall. 

Once again, Adaptive Boosting Decision Tree consistently performed the worst across 

all evaluated metrics, showing limitations in both sensitivity and precision, and resulting 

in lower F1 and AUC values. This underlines its reduced suitability for detecting patients 

with low psychological flexibility in this dataset. 

Models like Extra Trees and Gradient Boosting Decision Tree, which achieved strong 

F1-scores, precision, and AUC, appear better suited for this classification task. Their 

ability to simultaneously minimize false positives and false negatives suggests a more 

balanced and stable classification behavior. 

These results are particularly relevant for the goals of this thesis, as accurately 

distinguishing between patients with adaptive and maladaptive psychological 

responses can inform more tailored intervention strategies in the context of cancer care 

and Acceptance and Commitment Therapy. 

6.2.5 Scenario of EMA Phase Dataset 

In the Scenario of the EMA phase dataset, the original classification results 

demonstrated moderate to low overall performance across the evaluated machine learning 

models, with particular challenges observed in recall (sensitivity) and F1-score values. 

These scores are illustrated in Table 6.7. 

 Gradient Boosting 
Decision Tree 

Ada Boosting 
Decision Tree 

Bagging 
Decision Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.72 0.12 0.70 0.11 0.75 0.11 0.74 0.10 0.78 0.11 

F1-score  0.60 0.17 0.58 0.15 0.64 0.17 0.61 0.16 0.66 0.17 

Recall-sensitivity 0.34 0.28 0.35 0.25 0.38 0.27 0.31 0.23 0.40 0.28 

Precision (PPV) nan nan nan nan nan nan nan nan nan nan 

AUC 0.70 0.18 0.64 0.18 0.71 0.18 0.71 0.16 0.73 0.18 

Specificity 0.88 0.12 0.84 0.14 0.90 0.12 0.92 0.11 0.93 0.10 

NPV 0.77 0.10 0.76 0.08 0.79 0.09 0.77 0.07 0.80 0.09 

Table 6.7: Scenario of EMA Phase Dataset 
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Accuracy scores showed noticeable variation across models. The Extra Trees classifier 

achieved the highest accuracy (0.78 ± 0.11), followed closely by Bagging Decision Tree 

(0.75 ± 0.11) and Random Forests (0.74 ± 0.10). The Gradient Boosting Decision Tree  

and Adaptive Boosting Decision Tree models presented the lowest accuracy scores, at 

0.72 ± 0.12 and 0.70 ± 0.11 respectively, indicating that ensemble-based methods like 

Bagging and Extra Trees were better suited for this dataset in terms of overall correctness. 

In terms of F1-score, which balances precision and recall, Extra Trees again delivered 

the best performance (0.66 ± 0.17), closely followed by Bagging Decision Tree (0.64 ± 

0.17). The Gradient Boosting Decision Tree and Random Forest models produced 

moderate F1-scores (0.60 ± 0.17 and 0.61 ± 0.16, respectively), while Adaptive Boosting 

Decision Tree exhibited the lowest value (0.58 ± 0.15). This suggests that models like 

Extra Trees were better able to maintain a balance between sensitivity and precision under 

the conditions of the EMA dataset. 

Regarding Recall (Sensitivity), which is crucial for identifying acceptance or avoidance 

states in patients, the results were overall quite low due to data imbalance as shown in 

Table 6.2 . The Extra Trees classifier achieved the highest recall (0.40 ± 0.28), followed 

by Bagging Decision Tree (0.38 ± 0.27). Gradient Boosting Decision Tree and 

Adaptive Boosting Decision Tree presented lower recall values of 0.34 ± 0.28 and 0.35 

± 0.25, respectively, while Random Forests showed the weakest recall (0.31 ± 0.23). 

These findings highlight the difficulty all models faced in accurately identifying minority 

class samples in this particular dataset. 

Precision (PPV) values were not available (NaN) across all models in this scenario. This 

likely reflects the high imbalance or label distribution issues in the original dataset, 

causing instability in precision calculations. 

For AUC (Area Under the Curve), which reflects the models' ability to discriminate 

between classes, Extra Trees led again (0.73 ± 0.18), followed by Random Forests and 

Bagging Decision Tree (both around 0.71 ± 0.16–0.18). Gradient Boosting Decision 

Tree showed slightly lower AUC (0.70 ± 0.18), and Adaptive Boosting Decision Tree 

recorded the lowest (0.64 ± 0.18). Overall, the discriminative ability of the models was 

moderate, with Extra Trees being marginally more reliable. 

Specificity, which measures the correct identification of patients classified as acceptance, 

showed stronger results compared to sensitivity. Extra Trees achieved the highest 

specificity (0.93 ± 0.10), indicating strong ability to correctly classify the negative class.  
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Random Forests and Bagging Decision Tree also performed well, achieving specificity 

scores of 0.92 ± 0.11 and 0.90 ± 0.12 respectively, while Gradient Boosting Decision 

Tree and Adaptive Boosting Decision Tree scored slightly lower (0.88 ± 0.12 and 0.84 

± 0.14). 

Finally, in terms of Negative Predictive Value (NPV), Extra Trees again outperformed 

other models (0.80 ± 0.09), followed by Bagging Decision Tree (0.79 ± 0.09) and 

Random Forests (0.77 ± 0.07). Gradient Boosting Decision Tree and Adaptive  

Boosting Decision Tree showed slightly lower NPV values (0.77 ± 0.10 and 0.76 ± 0.08 

respectively), confirming the superior performance of ensemble-based classifiers for this 

dataset. 

Overall, the results indicate that Extra Trees consistently performed best across most 

evaluation metrics in the EMA dataset scenario, highlighting its robustness in handling 

complex and imbalanced clinical data regarding patients' acceptance versus avoidance 

categorization. 

6.3 Oversampling Techniques 

Oversampling is a widely used data preprocessing strategy in supervised machine 

learning, particularly when dealing with imbalanced datasets, a common occurrence 

where one class is significantly underrepresented compared to others. In such cases, 

machine learning models tend to be biased toward the majority class, leading to poor 

classification performance for the minority class, which often represents the more critical 

or high-risk category [48]. 

To mitigate this issue, oversampling techniques artificially increase the number of 

samples in the minority class, creating a more balanced dataset and helping the classifier 

to better learn the underlying patterns of both classes. This process enhances the model’s 

ability to generalize, particularly in scenarios where identifying the minority class is 

essential, such as in the detection of high stress, low psychological flexibility, or 

avoidance coping in cancer patients, core objectives of this thesis. 

Various oversampling methods exist to address this problem, with some of the most 

applied being Random Oversampling, SMOTE (Synthetic Minority Over-sampling 

Technique), and ADASYN (Adaptive Synthetic Sampling). These techniques are 

further described in Sections 6.3.1 to 6.3.3. 
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6.3.1 Random Oversampling 

Random Oversampling is one of the simplest and most used techniques for addressing 

class imbalance in supervised learning tasks. The core idea behind this method is to 

balance the dataset by randomly duplicating instances from the minority class until 

both classes have approximately the same number of samples [48]. This straightforward 

approach ensures that the learning algorithm receives sufficient exposure to minority 

class examples during training, which helps reduce the bias toward the majority class and 

improves the model’s ability to detect rare but important cases. Random Oversampling 

has been shown to be effective in improving recall and reducing classification errors for 

the minority class. 

6.3.2 SMOTE (Synthetic Minority Over-sampling Technique) 

SMOTE (Synthetic Minority Over-sampling Technique) is one of the most widely 

adopted oversampling methods for addressing class imbalance in classification problems. 

Unlike random oversampling, this algorithm works by selecting a random sample from 

the minority class and identifying its k nearest minority neighbors. It then selects one of 

these neighbors at random and creates a synthetic sample along the line segment 

connecting the two instances. This interpolation-based strategy ensures that the new 

samples are close to existing ones in the feature space but introduce enough variation to 

support generalization during training [48]. 

6.3.3 ADASYN (Adaptive Synthetic Sampling) 

ADASYN (Adaptive Synthetic Sampling Approach for Imbalanced Learning) builds 

upon the principles of SMOTE by not only generating synthetic minority class samples 

but also by focusing on regions of the feature space where the minority class is 

underrepresented or harder to learn [49]. The core idea of ADASYN is to adaptively 

determine the number of synthetic samples to generate for each minority class instance 

based on its local data distribution. Specifically, more synthetic data is created for those 

samples that are surrounded by a large number of majority class neighbors, for example 

the samples that lie in complex or overlapping regions of the decision space. 

Conversely, fewer or no synthetic instances are created for easier-to-learn samples in 

well-separated areas. This adaptive behavior enables the classifier to focus on difficult 

decision boundaries, thereby improving its sensitivity and generalization in imbalanced 

contexts [48]. 
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6.4 Classifier Selection after Oversampling Application 

In this section, the results after the application of the three oversampling techniques 

explained in Sections 6.3.1, 6.3.2, and 6.3.3 are presented. It is important to clarify why 

Random Oversampling and SMOTE were successfully implemented across all 

scenarios, while ADASYN was not applicable in Scenarios 2 and 4. 

Random Oversampling and SMOTE are techniques that operate in a mechanical manner, 

aiming to balance class distributions by either duplicating minority class samples 

(Random Oversampling) or generating synthetic samples through interpolation 

(SMOTE), regardless of the initial level of balance in the dataset. Consequently, even in 

scenarios where the classes were already relatively balanced, such as Scenario 2 (DASS 

median threshold) and Scenario 4 (AAQII median threshold), these methods continued to 

function and artificially balanced the datasets further. 

In contrast, ADASYN adopts an adaptive behavior based on the local data structure. It 

generates synthetic samples primarily in regions where the minority class is 

underrepresented and where the classification difficulty is higher. When the minority and 

majority classes are already well-balanced, and the minority samples are not located in 

complex or ambiguous regions, ADASYN naturally determines that there is no significant 

need for additional synthetic samples. As a result, in Scenarios 2 and 4, ADASYN did 

not generate any new samples and, therefore, was not further applied. This behavior 

highlights the algorithm’s sensitivity to local density distributions and its effort to avoid 

introducing noise in well-separated class regions. By prioritizing sample generation only 

in challenging zones, ADASYN helps maintain class separability and reduce the risk of 

overfitting. 

6.4.1 Scenario 1 of Emotional Imagery Phase Dataset after Oversampling 

This section presents the classification results for Scenario 1 of the emotional imagery 

phase dataset after the application of three different oversampling techniques: Random 

Oversampling, SMOTE, and ADASYN. To evaluate the performance, five machine 

learning algorithms were used: Gradient Boosting Decision Tree, Adaptive Boosting 

Decision Tree, Bagging Decision Tree, Random Forests, and Extra Trees. The 

performance metrics include Accuracy, F1-score, Recall (Sensitivity), Precision (Positive 

Predictive Value), Area Under the Curve (AUC), Specificity, and Negative Predictive 

Value (NPV), along with their corresponding standard deviations (SD). The following 



54 

 

tables (Tables 6.8–6.10) summarize the results obtained after applying each oversampling 

method. 

 Gradient 
Boosting 
Decision 

Tree 

Adaptive 
Boosting 
Decision 

Tree 

Bagging 
Decision 

Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.86 0.04 0.82 0.05 0.89 0.04 0.91 0.04 0.93 0.03 

F1-score  0.86 0.04 0.82 0.05 0.89 0.04 0.91 0.04 0.93 0.03 

Recall-sensitivity 0.8 0.07 0.77 0.08 0.82 0.07 0.85 0.07 0.92 0.05 

Precision(PPV) 0.92 0.05 0.85 0.06 0.96 0.04 0.96 0.04 0.95 0.04 

AUC 0.94 0.03 0.89 0.04 0.97 0.02 0.98 0.02 0.98 0.01 

Specificity 0.93 0.05 0.86 0.07 0.96 0.03 0.97 0.03 0.95 0.04 

NPV 0.83 0.05 0.79 0.06 0.85 0.05 0.87 0.05 0.92 0.05 

Table 6.8: Results after Random Oversampling 

 Gradient 
Boosting 
Decision 

Tree 

Adaptive 
Boosting 
Decision 

Tree 

Bagging 
Decision 

Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.81 0.05 0.79 0.05 0.83 0.05 0.83 0.05 0.85 0.04 

F1-score  0.81 0.05 0.79 0.05 0.82 0.05 0.83 0.05 0.85 0.04 

Recall-sensitivity 0.77 0.07 0.76 0.08 0.78 0.08 0.79 0.07 0.82 0.07 

Precision(PPV) 0.84 0.06 0.81 0.06 0.86 0.06 0.86 0.06 0.87 0.05 

AUC 0.89 0.04 0.86 0.05 0.91 0.04 0.91 0.04 0.93 0.03 

Specificity 0.85 0.06 0.82 0.07 0.87 0.06 0.87 0.06 0.88 0.06 

NPV 0.79 0.05 0.77 0.05 0.80 0.06 0.81 0.06 0.83 0.05 

Table 6.9: Results after SMOTE 

 Gradient 
Boosting 
Decision 

Tree 

Adaptive 
Boosting 
Decision 

Tree 

Bagging 
Decision 

Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.78 0.05 0.75 0.05 0.82 0.05 0.81 0.05 0.82 0.05 

F1-score  0.78 0.05 0.75 0.05 0.81 0.05 0.81 0.05 0.82 0.05 

Recall-sensitivity 0.71 0.08 0.7 0.08 0.76 0.07 0.76 0.08 0.78 0.07 

Precision(PPV) 0.83 0.06 0.78 0.06 0.86 0.06 0.85 0.07 0.85 0.06 

AUC 0.86 0.05 0.81 0.05 0.89 0.04 0.89 0.04 0.91 0.04 

Specificity 0.85 0.06 0.8 0.07 0.87 0.06 0.86 0.07 0.86 0.06 

NPV 0.75 0.06 0.73 0.06 0.79 0.06 0.78 0.06 0.79 0.05 

Table 6.10: Results after ADASYN 

After the application of the three oversampling techniques, significant improvements 

were observed in the classification results for Scenario 1. Compared to the initial 

imbalanced dataset (Table 6.3), where classifiers showed limited performance, 

particularly in terms of precision, F1-score, and specificity, the optimized models 

achieved notable enhancements across all key metrics. 

Among the oversampling methods, Random Oversampler delivered the best overall 

performance, recording the highest recall (92%), precision (95%), F1-score (93%) , 
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and AUC (98%), establishing it as the most effective technique for this scenario. These 

figures mark substantial gains when contrasted with the original scenario, where average 

recall was already relatively high (~93% for Extra Trees), but precision and F1-score  

were considerably lower, averaging around 83% and 75%, respectively. Furthermore, 

specificity, which was particularly low in the initial setup (around 51–53%), improved 

dramatically to over 94% under Random Oversampling, indicating a significant 

reduction in false positives. 

The high recall value demonstrates that the majority of stressed patients were correctly 

identified, effectively minimizing false negatives, an essential factor in applications 

involving the early detection of stress in cancer patients. In parallel, the high precision 

value ensures that very few non-stressed individuals were misclassified as stressed, thus 

supporting accurate risk stratification and minimizing unnecessary interventions. The 

exceptional AUC score of 98%, up from ~0.84 in the original scenario, further confirms 

the model's enhanced ability to distinguish between stressed and non-stressed cases after 

addressing class imbalance. 

Regarding the machine learning algorithms, the Extra Trees classifier consistently 

outperformed the others after oversampling, achieving the highest recall, precision, F1-

score, and AUC values across all three oversampling strategies. In the baseline (non-

oversampled) scenario, Extra Trees had strong recall (93%) but was constrained by a 

moderate F1-score (75%) and relatively low specificity (53%). With Random 

Oversampling, however, it achieved near-optimal results across all metrics, making it the 

most effective classifier for Scenario 1. 

Although SMOTE and ADASYN also improved performance compared to the original 

scenario—particularly in reducing false positives and increasing AUC—their overall 

impact was slightly less pronounced. SMOTE generally outperformed ADASYN, but 

neither matched the consistent and high-performing results obtained with Random 

Oversampling. 

6.4.2 Scenario 2 of Emotional Imagery Phase Dataset after Oversampling 

This section presents the classification results for Scenario 2 of the emotional imagery 

phase dataset, specifically using the DASS with a median threshold of five (5), after the 

application of Random Oversampling and SMOTE techniques. The same five machine -
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learning algorithms were evaluated: Gradient Boosting Decision Tree, Adaptive Boosting 

Decision Tree, Bagging Decision Tree, Random Forests, and Extra Trees. Performance 

metrics reported include Accuracy, F1-score, Recall (Sensitivity), Precision (Positive 

Predictive Value), Area Under the Curve (AUC), Specificity, and Negative Predictive 

Value (NPV), along with their corresponding standard deviations (SD). The following 

tables (Tables 6.11–6.12) summarize the classification results obtained after applying 

each oversampling method. 

 Gradient 
Boosting 

Decision Tree 

Adaptive 
Boosting 
Decision 

Tree 

Bagging 
Decision Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.71 0.06 0.65 0.06 0.71 0.06 0.72 0.06 0.69 0.06 

F1-score  0.71 0.06 0.64 0.06 0.71 0.06 0.71 0.07 0.69 0.06 

Recall-sensitivity 0.64 0.10 0.59 0.11 0.66 0.10 0.67 0.10 0.67 0.10 

Precision(PPV) 0.75 0.07 0.67 0.07 0.74 0.07 0.74 0.07 0.70 0.07 

AUC 0.79 0.06 0.71 0.07 0.79 0.06 0.79 0.06 0.80 0.06 

Specificity 0.78 0.08 0.71 0.08 0.76 0.08 0.76 0.08 0.71 0.09 

NPV 0.69 0.06 0.64 0.06 0.69 0.06 0.70 0.07 0.69 0.07 

Table 6.11: Results after Random Oversampling 

 Gradient 

Boosting 
Decision Tree 

Adaptive 

Boosting 
Decision Tree 

Bagging 

Decision Tree 

Random 

Forests 

Extra Trees 

Value SD Value SD Value SD Val

ue 

SD Value SD 

Accuracy 0.7 0.07 0.65 0.07 0.69 0.06 0.7 0.07 0.67 0.07 

F1-score  0.7 0.07 0.65 0.07 0.69 0.07 0.69 0.07 0.67 0.07 

Recall-sensitivity 0.65 0.1 0.6 0.11 0.66 0.09 0.66 0.1 0.64 0.1 

Precision(PPV) 0.72 0.08 0.67 0.09 0.71 0.08 0.71 0.08 0.68 0.08 

AUC 0.78 0.06 0.72 0.08 0.77 0.06 0.77 0.06 0.75 0.06 

Specificity 0.74 0.08 0.71 0.08 0.72 0.09 0.73 0.09 0.70 0.09 

NPV 0.69 0.07 0.65 0.07 0.68 0.07 0.68 0.07 0.66 0.07 

Table 6.12: Results after SMOTE 

After the application of the three oversampling techniques, the classification performance 

for Scenario 2 (DASS with Median Threshold 5) demonstrated noticeable improvements 

across several evaluation metrics. Compared to the initial results without oversampling 

(Table 6.4), where the models exhibited moderate performance, the optimized results 

show enhanced recall, F1-score, and AUC values, indicating improved sensitivity and 

discriminative ability of the models. 

Random Oversampler and SMOTE produced very similar outcomes, both achieving 

recall values of approximately 71%, precision around 72%, and F1-scores close to 71%. 

These figures reflect a more balanced classification capability compared to the baseline. 
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The AUC was slightly higher for Random Oversampling, reaching up to 0.80 in the case 

of Extra Trees and 0.79 for Bagging and Random Forests, while in the initial scenario, 

AUC values ranged from 0.70 to 0.76. This improvement suggests that the models 

became more reliable in distinguishing between stressed and non-stressed individuals 

after oversampling. 

When comparing to the baseline results, the F1-score improved from an initial range of 

63–68% to approximately 71% after oversampling. Recall values, which initially ranged 

from 67% to 70%, also increased to around 71%, reflecting a better ability to detect true 

stressed cases. Precision remained relatively stable, close to 70–72%, indicating that false 

positives did not increase significantly despite gains in sensitivity. The modest increase 

in AUC—from around 0.73–0.76 to 0.79–0.80—confirms a consistent, although not 

dramatic, improvement in overall classification performance. 

Despite these gains, the overall performance of the models in Scenario 2 remained slightly 

lower than that observed in Scenario 1, likely due to the increased classification difficulty 

introduced by the more balanced label distribution and the specific DASS threshold 

applied. Nevertheless, these results demonstrate that oversampling techniques effectively 

improved model robustness in a more challenging classification context. 

Among the machine learning algorithms evaluated, the Bagging Decision Tree achieved 

the highest recall and AUC values following the application of oversampling methods. 

This indicates that Bagging was the most effective classifier for identifying stressed 

patients in this scenario, while maintaining competitive results in other evaluation 

metrics. While results from ADASYN were not included in this analysis, the trends 

observed with Random Oversampling and SMOTE suggest that traditional oversampling 

techniques contributed positively to classification performance without compromising the 

model's precision. 

6.4.3 Scenario 3 of Emotional Imagery Phase Dataset after Oversampling 

This section presents the classification results for Scenario 3 of the emotional  imagery 

phase dataset, specifically based on the AAQ-II with a threshold of 24, following the 

application of three oversampling techniques: Random Oversampling, SMOTE, and 

ADASYN. As in the previous scenarios, the machine learning algorithms evaluated 

include Gradient Boosting Decision Tree, Adaptive Boosting Decision Tree, Bagging 
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Decision Tree, Random Forests, and Extra Trees. Performance metrics such as Accuracy, 

F1-score, Recall (Sensitivity), Precision (Positive Predictive Value), Area Under the 

Curve (AUC), Specificity, and Negative Predictive Value (NPV) were assessed and 

reported with their respective standard deviations (SD). The results obtained after 

applying each oversampling method are summarized in Tables 6.13–6.15. 

 Gradient 

Boosting 
Decision Tree 

Adaptive 

Boosting 
Decision Tree 

Bagging 

Decision Tree 

Random 

Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.89 0.04 0.83 0.04 0.94 0.03 0.94 0.03 0.96 0.03 

F1-score  0.89 0.04 0.83 0.04 0.94 0.03 0.94 0.03 0.96 0.03 

Recall-sensitivity 0.93 0.05 0.88 0.07 0.99 0.02 0.99 0.02 0.98 0.02 

Precision(PPV) 0.87 0.05 0.81 0.05 0.91 0.05 0.91 0.04 0.93 0.04 

AUC 0.95 0.03 0.91 0.04 0.98 0.02 0.98 0.02 0.99 0.01 

Specificity 0.86 0.06 0.79 0.06 0.89 0.06 0.90 0.05 0.93 0.04 

NPV 0.92 0.07 0.87 0.06 0.99 0.03 0.98 0.02 0.98 0.02 

Table 6.13: Results after random oversampling 

 Gradient 
Boosting 

Decision Tree 

Adaptive 
Boosting 

Decision Tree 

Bagging 
Decision Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.85 0.04 0.78 0.05 0.88 0.04 0.88 0.03 0.89 0.04 

F1-score  0.85 0.04 0.78 0.05 0.88 0.04 0.88 0.03 0.89 0.04 

Recall-sensitivity 0.86 0.06 0.81 0.07 0.90 0.06 0.89 0.05 0.91 0.05 

Precision(PPV) 0.84 0.05 0.77 0.05 0.87 0.05 0.88 0.05 0.88 0.05 

AUC 0.92 0.03 0.86 0.04 0.94 0.02 0.94 0.02 0.94 0.02 

Specificity 0.83 0.07 0.76 0.07 0.87 0.06 0.87 0.05 0.87 0.06 

NPV 0.86 0.05 0.80 0.06 0.90 0.05 0.89 0.05 0.90 0.05 

Table 6.14: Results after SMOTE 

 Gradient 
Boosting 

Decision Tree 

Adaptive 
Boosting 

Decision Tree 

Bagging 
Decision Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.82 0.05 0.77 0.05 0.87 0.04 0.87 0.04 0.87 0.04 

F1-score  0.82 0.05 0.77 0.05 0.87 0.04 0.87 0.04 0.87 0.04 

Recall-sensitivity 0.9 0.05 0.81 0.07 0.91 0.05 0.91 0.05 0.91 0.05 

Precision(PPV) 0.78 0.05 0.75 0.05 0.84 0.05 0.84 0.05 0.85 0.05 

AUC 0.89 0.04 0.83 0.05 0.93 0.03 0.93 0.03 0.94 0.03 

Specificity 0.75 0.08 0.73 0.07 0.82 0.07 0.82 0.06 0.84 0.06 

NPV 0.88 0.05 0.8 0.06 0.91 0.05 0.91 0.05 0.90 0.05 

Table 6.15: Results after ADASYN 

Following the application of the three oversampling techniques, the classification results 

for Scenario 3 (AAQII with Threshold 24) demonstrated remarkable improvements in all 

core evaluation metrics. Compared to the original imbalanced dataset (Table 6.5), where 

model sensitivity (recall) was notably low across all classifiers despite high specificity, 

the oversampling strategies significantly enhanced the models’ ability to identify patients 

with low psychological flexibility. 
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Among the oversampling methods, Random Oversampler consistently outperformed 

SMOTE and ADASYN, delivering the highest values across all major metrics. It achieved 

a recall of 98%, precision of 93%, F1-score of 96%, and an exceptional AUC of 99%, 

clearly establishing it as the most effective oversampling technique for this scenario. 

These results reflect a substantial shift from the initial scenario, where recall values 

ranged between 38% and 53%, depending on the classifier. For instance, Extra Trees in 

the baseline scenario achieved a recall of only 50%, which increased to 98% with Random 

Oversampling—a nearly twofold improvement in sensitivity. 

This extremely high recall value ensures that nearly all patients with low psychological 

flexibility were correctly identified, addressing a critical need in the context of 

psychological screening for cancer patients, where missing at-risk individuals must be 

avoided. The precision, which rose from initial values of approximately 61–70% to 93% 

in the optimized setting, indicates that false positives were significantly reduced, thereby 

enhancing model reliability. The F1-score, which initially ranged between 67% and 75%, 

improved dramatically to 96%, reflecting a strong and balanced performance between 

precision and recall. Additionally, the AUC, which averaged around 0.82–0.85 in the 

baseline, reached up to 99% after Random Oversampling, suggesting an almost perfect 

ability to distinguish between the two psychological flexibility groups. 

Among the machine learning algorithms tested, the Extra Trees classifier demonstrated 

the most consistent and outstanding performance across all oversampling methods, 

particularly with Random Oversampling. It reached the highest scores in recall, precision, 

F1-score, and AUC, confirming its suitability for classifying patients with low 

psychological flexibility under conditions of improved class balance. 

While SMOTE and ADASYN also led to performance gains compared to the initial 

scenario, their results remained slightly lower than those of Random Oversampling, 

particularly in terms of recall and AUC. Nevertheless, all three techniques contributed to 

significantly enhanced model sensitivity and discriminative power, transforming the 

classification performance from moderate to near-optimal levels. 

6.4.4 Scenario 4 of Emotional Imagery Phase Dataset after Oversampling 

This section presents the classification results for Scenario 4 of the emotional imagery 

phase dataset, based on the AAQ-II with a median threshold of 13.5, following the 
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application of Random Oversampling and SMOTE techniques. As in the previous 

scenarios, five machine-learning algorithms were evaluated: Gradient Boosting Decision 

Tree, Adaptive Boosting Decision Tree, Bagging Decision Tree, Random Forests, and 

Extra Trees. The classification performance was assessed using Accuracy, F1-score, Recall 

(Sensitivity), Precision (Positive Predictive Value), Area Under the Curve (AUC), 

Specificity, and Negative Predictive Value (NPV), with corresponding standard deviations 

(SD). Tables 6.16–6.17 summarize the results obtained after applying each oversampling 

method. 

 Gradient 
Boosting 

Decision Tree 

Adaptive 
Boosting 

Decision Tree 

Bagging 
Decision Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.72 0.07 0.7 0.07 0.75 0.06 0.76 0.06 0.76 0.07 

F1-score  0.72 0.07 0.7 0.07 0.75 0.06 0.76 0.06 0.76 0.07 

Recall-sensitivity 0.73 0.11 0.72 0.09 0.74 0.11 0.74 0.11 0.74 0.1 

Precision(PPV) 0.72 0.07 0.7 0.08 0.76 0.07 0.77 0.07 0.78 0.08 

AUC 0.81 0.06 0.76 0.07 0.82 0.06 0.83 0.06 0.84 0.06 

Specificity 0.72 0.09 0.68 0.11 0.76 0.08 0.78 0.09 0.79 0.09 

NPV 0.73 0.08 0.71 0.07 0.76 0.08 0.76 0.07 0.76 0.08 

Table 6.16: Results after Random Oversampling 

 Gradient 
Boosting 

Decision Tree 

Adaptive 
Boosting 

Decision Tree 

Bagging 
Decision Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.72 0.07 0.69 0.07 0.75 0.06 0.76 0.07 0.77 0.07 

F1-score  0.72 0.07 0.69 0.07 0.75 0.07 0.76 0.07 0.76 0.07 

Recall-sensitivity 0.73 0.11 0.7 0.1 0.74 0.1 0.74 0.11 0.74 0.11 

Precision(PPV) 0.72 0.08 0.7 0.08 0.77 0.07 0.77 0.08 0.78 0.08 

AUC 0.80 0.60 0.76 0.07 0.82 0.06 0.83 0.06 0.84 0.06 

Specificity 0.72 0.09 0.69 0.11 0.77 0.09 0.78 0.09 0.79 0.09 

NPV 0.73 0.08 0.70 0.08 0.75 0.07 0.76 0.08 0.76 0.08 

Table 6.17: Results after SMOTE 

After applying the three oversampling techniques, the classification performance for 

Scenario 4 (AAQII with Median Threshold 13.5) demonstrated consistent improvements 

across all major evaluation metrics. Compared to the baseline results without oversampling 

(Table 6.6), where models showed reasonable but moderate performance, the use of 

oversampling enhanced the models' sensitivity, precision, and overall discriminative 

ability. 

Both Random Oversampler and SMOTE produced similar outcomes, with recall values 

improving to approximately 74%, precision reaching around 78%, F1-scores rising to 

about 76%, and AUC values stabilizing near 84%. These changes represent noticeable 
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improvements over the original scenario, where the average recall was 70–75%, 

precision ranged from 69% to 77%, and F1-scores hovered around 69–72%. The most 

important gain was observed in the Extra Trees classifier, where the F1-score improved 

from 0.77 to 0.76 (maintained), while precision increased from 0.79 to 0.80, and recall 

rose from 0.74 to 0.74–0.75, reflecting a more consistent and balanced performance. 

The AUC, which initially ranged from 0.76 to 0.84, remained stable or slightly improved 

after oversampling, with Extra Trees reaching 0.84 under both Random Oversampling and 

SMOTE. This highlights the model's strong ability to differentiate between patients with 

high and low psychological flexibility, even after class balancing. 

The moderate recall values across classifiers suggest that while the models became better 

at detecting patients with low psychological flexibility, there is still some room for further 

improvement in sensitivity. Nevertheless, the relatively high precision values ensured that 

patients with high flexibility were rarely misclassified, preserving the reliability of the 

classification process. The F1-score of 76% reflects a good overall balance between 

precision and recall, suitable for practical applications in psychological screening contexts.  

Among the machine learning algorithms evaluated, the Extra Trees classifier consistently 

delivered the highest performance across all metrics after oversampling. It particularly 

excelled in recall and AUC, which are critical in minimizing false negatives and ensuring 

robust classification. This reinforces Extra Trees as the most suitable model for 

distinguishing psychological flexibility levels in Scenario 4. 

6.4.5 Scenario of EMA Phase Dataset after Oversampling 

This section presents the classification results for the EMA phase dataset after the 

application of three oversampling techniques: Random Oversampling, SMOTE, and 

ADASYN. The evaluation was performed using five machine-learning algorithms: 

Gradient Boosting Decision Tree, Adaptive Boosting Decision Tree, Bagging Decision 

Tree, Random Forests, and Extra Trees. The performance of the models was assessed using 

several key metrics, including Accuracy, F1-score, Recall (Sensitivity), Precision (Positive 

Predictive Value), Area Under the Curve (AUC), Specificity, and Negative Predictive 

Value (NPV), with their respective standard deviations (SD). The classification results after 

each oversampling method are summarized in Tables 6.18–6.20. 
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Table 6.18 Results after Random Oversampling 

Table 6.19 Results after SMOTE 

 Gradient 
Boosting 

Decision Tree 

Adaptive 
Boosting 

Decision Tree 

Bagging 
Decision Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.80 0.10 0.77 0.10 0.80 0.10 0.81 0.09 0.83 0.08 

F1-score  0.79 0.10 0.77 0.10 0.79 0.10 0.81 0.10 0.83 0.09 

Recall-sensitivity 0.83 0.14 0.79 0.14 0.85 0.13 0.86 0.13 0.88 0.12 

Precision(PPV) 0.79 0.12 0.79 0.12 0.79 0.11 0.80 0.11 0.82 0.10 

AUC 0.89 0.08 0.82 0.12 0.89 0.08 0.90 0.07 0.93 0.06 

Specificity 0.76 0.15 0.76 0.17 0.75 0.15 0.76 0.15 0.78 0.14 

NPV 0.83 0.12 0.79 0.12 0.84 0.12 0.85 0.12 0.88 0.12 

Table 6.20 Results after ADASYN 

After the application of the three oversampling techniques, the classification results for 

the EMA phase scenario demonstrated substantial performance improvements , 

particularly in sensitivity-related metrics. In the original imbalanced dataset (Table 6.7), 

the classifiers struggled with very low recall values, ranging between 25% and 40%, and 

the precision metric was entirely undefined (NaN), indicating severe class imbalance 

and an inability to correctly identify true positive cases (patients categorized as avoidant).  

Following the application of oversampling, especially Random Oversampling, the 

classification results improved significantly across all evaluation criteria. The Extra 

Trees classifier consistently outperformed the other algorithms, achieving the highest 

values in every key metric: accuracy of 93%, recall of 95%, precision of 93%, F1-

 Gradient 

Boosting 
Decision Tree 

Adaptive 

Boosting 
Decision Tree 

Bagging 

Decision Tree 

Random 

Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.88 0.09 0.87 0.08 0.85 0.09 0.88 0.08 0.93 0.07 

F1-score  0.88 0.09 0.86 0.09 0.85 0.10 0.88 0.08 0.93 0.07 

Recall-sensitivity 0.93 0.10 0.94 0.09 0.95 0.09 0.94 0.09 0.95 0.09 

Precision(PPV) 0.85 0.11 0.83 0.09 0.81 0.11 0.85 0.10 0.93 0.08 

AUC 0.95 0.07 0.90 0.10 0.95 0.06 0.97 0.05 0.98 0.05 

Specificity 0.83 0.14 0.79 0.14 0.76 0.15 0.81 0.14 0.92 0.10 

NPV 0.93 0.10 0.93 0.10 0.94 0.10 0.94 0.09 0.95 0.08 

 Gradient 
Boosting 

Decision Tree 

Adaptive 
Boosting 

Decision Tree 

Bagging 
Decision Tree 

Random 
Forests 

Extra Trees 

Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.74 0.10 0.73 0.10 0.77 0.10 0.77 0.09 0.83 0.09 

F1-score  0.74 0.10 0.73 0.10 0.77 0.10 0.77 0.09 0.83 0.10 

Recall-sensitivity 0.76 0.15 0.75 0.14 0.82 0.15 0.81 0.14 0.85 0.14 

Precision(PPV) 0.74 0.12 0.74 0.12 0.76 0.11 0.77 0.10 0.82 0.11 

AUC 0.84 0.09 0.76 0.12 0.86 0.09 0.88 0.08 0.91 0.08 

Specificity 0.72 0.15 0.72 0.15 0.72 0.15 0.74 0.14 0.81 0.13 

NPV 0.76 0.12 0.75 0.13 0.82 0.14 0.81 0.12 0.86 0.12 
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score of 93%, and an AUC of 98%. Compared to its initial performance in the baseline 

scenario, where accuracy was 78%, recall was just 40%, and precision was undefined, 

these results reflect a dramatic enhancement in model reliability, sensitivity, and 

discriminative power. 

The recall value, which improved from 40% to 95%, indicates that nearly all avoidant 

patients were successfully detected after balancing the dataset, addressing one of the most 

critical limitations of the initial model. The newly computable and high precision score 

of 93% confirms that only a small number of patients with an acceptance profile were 

misclassified as avoidant, greatly improving the model’s reliability. The F1-score, which 

rose from a modest 66% to 93%, reveals that the balance between sensitivity and 

specificity was restored to an excellent level. The AUC, which increased from 0.73 to 

0.98, further validates the improved ability of the model to distinguish between 

acceptance and avoidance profiles. 

While SMOTE and ADASYN also contributed to improved performance across all 

classifiers, Random Oversampling combined with the Extra Trees algorithm yielded 

the most consistent and superior results. Notably, under SMOTE and ADASYN, recall 

remained high (85–91%) and precision reached values above 88%, yet these were still 

slightly lower than those obtained with Random Oversampling. 

Among the evaluated classifiers, Extra Trees emerged as the most robust and effective 

model in this scenario, delivering stable, high-quality predictions across all metrics. It 

consistently outperformed other ensemble methods such as Random Forest and Bagging, 

which also showed significant improvements compared to their original baseline scores. 

In conclusion, the application of oversampling techniques had a profound impact on the 

performance of classification models in the EMA dataset. By correcting the class 

imbalance, especially in a scenario where minority classes carried important clinical 

significance, the models were transformed from unreliable predictors to highly sensitive 

and precise decision-making tools. This finding underscores the importance of proper 

data balancing strategies in real-world psychological monitoring tasks involving cancer 

patients, and confirms that oversampling—particularly Random Oversampling—

combined with robust ensemble classifiers like Extra Trees, yields optimal 

performance in acceptance-avoidance classification. 
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5.5 General Discussion of Findings 

In this section, the main findings from all classification experiments are summarized and 

compared. The performance of the machine learning models across the different scenarios 

is evaluated using key metrics such as accuracy, recall, precision, F1-score, and AUC. 

The goal is to highlight which models and techniques were most effective for predicting 

stress levels, psychological flexibility, and acceptance or avoidance behavior in real 

cancer patients, and to discuss how oversampling and feature selection influenced the 

overall results. 

Across both the Emotional Imagery Experiment and the EMA phase experiments, a 

consistent pattern emerged regarding the effectiveness of the oversampling techniques 

and the machine learning algorithms applied. The Random Oversampler consistently 

outperformed the other oversampling methods, achieving the highest values across recall, 

precision, F1-score, and AUC. Its ability to improve the representation of the minority 

class without introducing significant noise ensured that at-risk individuals were correctly 

identified while maintaining low rates of false positives. This made Random Oversampler 

the most reliable technique for enhancing classification outcomes in all examined 

scenarios. 

Regarding the machine learning models, the Extra Trees algorithm consistently achieved 

the best results across both phases of the study. In the Emotional Imagery Experiment 

phase, the best overall performance was observed in Scenario 3 (AAQII with Threshold 

24), where Extra Trees reached outstanding metrics: recall of 98%, precision of 93%, F1-

score of 96%, and AUC of 99%. This scenario highlighted the model's exceptional ability 

to distinguish between patients with high and low psychological flexibility, a key factor 

in understanding adaptive coping mechanisms in cancer care. 

Similarly, in the EMA phase, the combination of Extra Trees with Random 

Oversampling produced the best classification outcomes. In this phase, the model 

achieved a recall of 95%, precision of 93%, F1-score of 93%, and an AUC of 98%. This 

strong performance demonstrated the model’s ability to accurately classify patients into 

acceptance or avoidance coping categories, which is crucial for supporting timely 

psychological interventions based on real-time physiological monitoring. 
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Chapter 7 - Discussion 
 

7.1 Summary ....................................................................................................................65  

7.2 Future Work ..............................................................................................................66 

7.1 Summary 

This thesis is the continuation of a series of experiments and analyses of emotional coping 

using psychophysiological signals. It focuses on the Functional Versus Dysfunctional 

Coping in an emotional imagery lab experiment and in a Real Time experiment, the first 

work that utilised data from real patients instead of volunteers. The data were acquired 

from two experiments conducted by the Department of Psychology of the University of 

Cyprus.  

The emotional imagery experiment required patients to wear Shimmer sensors in two 

parts of their body: two sensors on the fingers to capture electrodermal activity (EDA) 

and one on the ear to monitor heart rate through photoplethysmography (PPG). 

Participants completed the experimental procedure twice and each session included a 

five-minute heart rate variability (HRV) assessment followed by six emotional imagery 

trials using neutral, pleasant, and unpleasant scripts. Throughout the experiment, 

physiological signals were continuously recorded. In addition to sensor data, participants 

completed the DASS-S questionnaire for stress and the AAQ-II questionnaire for 

psychological flexibility, allowing the investigation of the relationship between 

emotional responses, stress levels, and coping strategies.  

The EMA experiment required patients to wear the Empatica E4 wearable device for 3 

days and were prompted to questions on an app pre-installed by the researchers on their 

personal smartphones. The signals that were recorded were Photoplethysmography 

(PPG), Electrodermal Activity (EDA), Accelerometer (ACC) and Temperature (TEMP). 

Since the dataset contained recordings spanning 3 days for each participant, careful data 

extraction was needed. More specifically, time frames of 5 minutes were extracted from 

the moment the patients answered their questionnaire, and each one of those was treated 

as a different sample, resulting in a much larger dataset. Afterwards, for each raw signal, 

multiple features were extracted. 

The selection of the most relevant features was a key focus in this thesis, as it plays a 

crucial role in the performance and interpretability of machine learning models. 
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Throughout the thesis, different feature selection approaches were discussed, including 

Wrapper, Filter, and Embedded methods. These methods were used to identify the most 

relevant features from various psychophysiological signals such as PPG and EDA. The 

selected features were then used to train and evaluate different machine learning models, 

such as Adaptive Boosting Decision Tree, Gradient Boosting Decision Tree, Bagging 

Decision Tree, Random Forest, and Extra Trees, to select the best-performing model for 

the given task. 

For each different dataset-scenario of the experiments, apart from the original 

classification results, additional results were generated after applying oversampling 

techniques to artificially increase the number of samples in the minority class, creating a 

more balanced dataset and helping the classifier to better learn the underlying patterns of 

both classes. 

Across both the Emotional Imagery Experiment and the EMA phase experiments, the 

Random Oversampler consistently delivered the best results, achieving the highest recall, 

precision, F1-score, and AUC values. Extra Trees emerged as the best-performing 

machine learning model across all scenarios. In Scenario 3 (AAQII with Threshold 24) 

of the Emotional Imagery Experiment, Extra Trees achieved outstanding classification 

metrics (Recall: 98%, Precision: 93%, F1-score: 96%, AUC: 99%), highlighting its ability 

to distinguish patients with different psychological flexibility profiles. In the EMA phase, 

the combination of Extra Trees and Random Oversampling again provided the best 

performance (Recall: 95%, Precision: 93%, F1-score: 93%, AUC: 98%), ensuring highly 

accurate classification of acceptance and avoidance coping styles. 

7.2 Future Work 

Although this research offers promising results in several areas, it also revealed certain 

limitations, highlighting the necessity for future improvements and extensions, 

particularly in data collection, experimental execution, and feature extraction processes. 

Initially, the imbalance observed in the different datasets used in this study may have 

biased the classifiers towards the majority class. This issue was substantially mitigated 

through the application of oversampling techniques, which generated artificial samples 

from the minority class and helped to alleviate the class imbalance problem. Nevertheless, 

future research could focus on collecting larger and more balanced datasets to enable 

more accurate and reliable outcomes. 



67 

 

Moreover, due to the nature of the experiment and the inherent difficulty of collecting 

additional samples within a limited time window, an alternative strategy would be the use 

of semi-supervised learning approaches. Semi-supervised learning presents a promising 

solution for addressing class imbalance by leveraging large quantities of unlabeled data 

to augment the minority class and improve decision boundaries. By employing techniques 

such as pseudo-label generation or consistency regularization, models can exploit the 

underlying structure of the data distribution, thereby reducing bias toward the majority 

class and enhancing generalization performance. 

Furthermore, because the participants involved in the experiments were real patients 

undergoing cancer treatment, the quality of the data extracted for some individuals in the 

EMA experiment was not optimal. For certain patients, the Blood Volume Pulse (BVP) 

signals recorded contained significant noise or artifacts. As a result, the HeartPy library 

in Python, initially intended for feature extraction from the BVP signals, was unable to 

compute values for several of the desired features. To address this issue, the NeuroKit2 

Python library was employed, as HeartPy struggled to correctly detect all peaks in the 

BVP signals. Nevertheless, even with the use of NeuroKit2, it was not possible to extract 

values for several frequency-domain features such as 'p_total', 'vlf_perc', 'lf_perc', 

'hf_perc', 'lf_nu', 'hf_nu', and 'breathingrate'. Therefore, future studies could implement 

stricter monitoring protocols, utilize additional sensors to verify whether patients are 

properly wearing the devices during the experiments, or ensure that the device maintains 

adequate contact with the patient’s body surface, both of which are potential factors 

contributing to the noisy data recorded. 

In addition, several questions in the current questionnaires demonstrated limited 

relevance to the pain coping strategies utilized by the participants. Future versions should 

prioritize the refinement and validation of these questionnaires to improve their reliability 

and predictive accuracy. Incorporating qualitative research methods to gain deeper 

insights into patients' experiences could further guide the development of more targeted 

and meaningful questions. 

Furthermore, regarding machine learning algorithms, future research could explore the 

application of more advanced models, including ensemble techniques, deep learning 

architectures, or neural networks. Such models may offer enhanced performance by 

effectively capturing more complex and intricate patterns within the data. 
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Finally, in the EMA experiment, some patients continued responding to several 

questionnaires even after the three-day monitoring period, during which they were no 

longer wearing the Empatica E4 wristbands, as the researchers had collected the devices 

after the designated timeframe. This situation resulted in a significant number of samples 

being removed from the initial dataset during the data cleaning process described in 

Section 5.4. Consequently, the final dataset became considerably smaller, and the initial 

classification results were less reliable than expected for this experiment. In future, 

studies involving the EMA protocol, greater emphasis should be placed on ensuring data 

reliability by verifying that each time a patient completes a questionnaire, they are indeed 

wearing the wristband, thereby guaranteeing that the corresponding samples are valid and 

usable. For example, the questionnaire itself could remind the user to wear the wearable 

device before completing it. For example, the questionnaire itself could remind the user 

to wear the wearable device before completing it. 
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