
 

 

Individual Diploma Thesis 

 

 

 

 

CONCURRENT REVERSING PETRI NETS AN EXTENSION OF 

REVERSING PETRI NETS 

 

 

 

 

Georgios Gregoriou 

 

 

University Of Cyprus 

 

 

 

 

 

Department of Computer Science 

 

 

 

 

 

 

 

May 2025 

 



UNIVERSITY OF CYPRUS 

DEPARTMENT OF COMPUTER SCIENCE 

 

 

 

 

 

 

 

 

Concurrent Reversing Petri nets an extension of Reversing Petri nets 

 

Georgios Gregoriou 

 

 

 

 

 

 

 

Supervisor 

Anna Philippou 

 

 

 

 

 

 

The Individual Diploma Thesis was submitted in partial fulfillment of the requirements for 

the acquisition of the Informatics degree from the Department of Computer Science of the 

University of Cyprus 

 

 

 

May 2025 

 



Abstract 

 

This thesis introduces Concurrent Reversing Petri Nets (CRPNs), an extension of Reversing 

Petri Nets (RPNs) designed to more accurately model complex reversible and concurrent 

behaviors found in systems such as biochemical pathways. Although RPNs offer a strong 

basis for causal and out-of-causal-order reversibility, their capacity to manage numerous 

identical tokens, controlled execution, and coordinated actions is constrained. To address 

these gaps, CRPNs incorporate three key capabilities: (1) support for token multiplicity 

through the individual token interpretation; (2) conditional transition activation and reversal 

through logical preconditions and predetermined transition enablement permissions; and (3) 

the capacity to activate and reverse transitions involving shared token instances concurrently. 

These enhancements enable the user to have more control over states that occur within a 

modeled system. The framework is formalized and evaluated through two case studies: 

catalysis, illustrating simultaneous transition execution and reversal; and DNA mismatch 

repair, a complex biochemical process requiring out-of-causal-order reversibility and 

component reuse. We demonstrate that CRPNs offer increased modeling flexibility compared 

to traditional RPNs and Multi-Reversing Petri Nets (MRPNs), while preserving core 

principles like causal tracking and structural consistency. 
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1.1 Introduction 

 

1.1 Motivation 

Reversible computation has gained increasing prominence due to its applications across 

diverse domains including biological modeling, quantum computation, and low-energy 

computing. Central to this paradigm is the ability to execute transitions not only in the 

forward direction, advancing system state, but also in reverse, restoring previous 

configurations.  

In a sequential context, reversibility typically means being able to undo previous actions in 

the exact reverse order they were performed, a technique known as backtracking. However, 

when dealing with concurrent systems, the concept becomes more complicated. In fact, 

multiple methods have been explored across different theoretical frameworks[1, 2, 3, 4, 5, 6]. 

A suitable and common approach to tackle a majority of such systems is causal-consistent 

reversibility, which follows the rule of order which states that only when the products of a 

transition have been undone may the transition be reversed [7]. The other well-studied 

approach is out-of-causal-order reversibility, which allows the reversal to be executed in an 

out-of-causal order [8, 9, 10], most notably found in biochemical systems. 

Petri nets have become a potent formalism for representing causality [11, 12, 13] and 

concurrency in this context. Individual token histories and reversible transitions have been 

added to the classical model in recent attempts to support reversibility. However, the capacity 

of these improvements to convey complex behaviors present in biological and chemical 

systems is still limited, especially when those systems call for coordination between 



2 

 

simultaneous execution and reversal of transitions, multiple indistinguishable components, or 

control over execution.  

 

1.2 Our extension 

In this work, we present an extension to Reversing Petri Nets [5] (RPNs) that enables a richer 

class of behaviors, due to multiple indistinguishable tokens of the same type, but also by 

introducing two key features: controlled transition execution and reversal, and simultaneous 

activation and reversal of transitions. Even when several tokens of the same kind coexist, our 

model maintains a unique causal history for each token instance by using the individual token 

interpretation [19, 21]. In addition to enabling the simultaneous execution and undoing of 

paired transitions involving overlapping token instances, this feature permits transitions to be 

selectively fired or reversed based on propositional preconditions. For a variety of 

biologically inspired processes to be accurately captured, such expressive control over 

transition semantics is necessary.  

To demonstrate the utility of our framework, we model two representative examples: 

catalysis, wherein a reaction is enabled or facilitated by the presence of a non-consumed 

agent(catalyst), and DNA mismatch repair [14], a complex multi-step biochemical pathway 

involving hierarchical dependencies, conditional reversibility, and component reuse. These 

case studies highlight the need for controlled and simultaneous transition mechanisms, and 

illustrate how our extension faithfully captures the behavior of systems that cannot be 

recreated by standard reversible Petri nets. 

 

1.3 Methodology 

The motivation for the development of this extension to the traditional RPNs was a 

fundamental limitation in the ability of current models to accurately and expressively 

represent complex biochemical systems, like DNA mismatch repair [20] (MMR). We started 

by investigating Reversing Petri Nets [5] (RPNs), which provide a potent formalism for using 

token histories to model causal and out-of-causal order reversibility. However, traditional 

RPNs treat each token as a unique entity, which becomes cumbersome and impractical when 

modeling systems with multiple indistinguishable instances of the same type. This limitation 

prompted our attention to the Multi-Reversing Petri Nets [19] (MRPNs) extension, which 

supports multiple tokens of the same type under the individual token interpretation, thereby 

preserving reversibility through local histories. While MRPNs addressed token multiplicity, 

they lacked mechanisms for controlled or conditional reversibility and did not support the 

simultaneous execution and reversal of transitions-features critically needed for accurately 

modeling biological phenomena like MMR. In the MMR helper proteins must be able to 
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initiate and reverse reactions out of strict causal order, sometimes simultaneously, as part of 

the complex temporal and causal interactions, as described in the Calculus of Covalent 

Bonding [20] (CCB) literature. Motivated by these realizations and difficulties, we developed 

CRPNs as a novel extension that combines token multiplicity, propositional logic-based 

transition control, and concurrent execution and reversal of transitions. As we will show in 

Chapters 3 and 4, this formulation offers the semantic flexibility required to more accurately 

represent realistic biological models, like catalysis and MMR. In order to close the gap 

between theoretical formalisms and the requirements of biochemical system modeling, 

CRPNs are a synthesis of important concepts from RPNs and MRPNs that have been 

revised and expanded. 

 

1.4 Thesis organization 

This thesis consists of five more chapters: Chapter 2 introduces the main components of 

Reversing Petri Nets (RPNs) and outlines the limitations which prompted our extension. 

Chapter 3 introduces Concurrent Reversing Petri Nets (CRPNs) and presents their definition 

and formalization, which focuses on supporting multiple indistinguishable tokens of the same 

type, controlling transition activation, and enabling simultaneous execution and reversal of 

transitions. The chapter also includes a modeling example based on catalysis in an RPN and 

chapter 3 in a CRPN. Chapter 4 presents the DNA mismatch repair process, as an example 

that cannot be modeled in a traditional RPN and then follows up with its modeling in a 

CRPN. Chapter 5 provides a detailed comparison between MRPNs and the newly proposed 

CRPNs, highlighting the improvements and the differences of the two. Finally, Chapter 6 

summarizes the main contributions of the thesis and outlines potential directions for future 

research and enhancements to the proposed framework. 
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Background Work 

 

 

2.1 RPNs           4 

2.2 MRPNs                            5 

 

 

2.1 RPNs 

Reversing Petri Nets (RPNs) have been proposed as a net-based formalism to capture both 

forward and reversible computation in systems which features individual tokens that can be 

connected via bonds [5]. This enables a causal-consistent form of reversibility, which has 

proven effective in modeling a range of phenomena including transaction systems and 

biochemical reactions. The definition of an RPN (A, P, B, T, F) as stated in [5] is the 

following: 

 

1. A is a finite set of bases or tokens ranged over by a, b, ....  

2. P is a finite set of places.  

3. B ⊆{(a, b) | a, b ϵ A, a ≠ b} is a set of undirected bonds ranged over by β, γ, ....We use the 

notation a - b for a bond (a, b) ∈ B and assume that a - b = b - a.  

4. T is a finite set of transitions.  

5. F : (P × T ∪T × P) →2A∪B defines a set of directed arcs each associated with a subset of    

A ∪ B where, whenever (a, b) ϵ F(x, y), then a, b ϵ F(x, y). 

 

An RPN is represented as a bipartite directed graph consisting of two types of nodes: places 

found in P, drawn as circles, and transitions found in T, drawn as rectangles. Tokens found in 

A, depicted by black dots, are found inside places and represent resources in the modeled 

system, while bonds found in B, define which tokens are linked together. A set of directed 

arcs F is responsible for linking places to transitions and vice versa, and it also indicates the 

flow of tokens during execution. For instance, if a ϵ A, x ϵ P and t ϵ T then a ϵ F(x, t) implies 

that for transition t to fire a token a is required and F(t, x) implies that the transition t after its 

been fired will move token a to its outgoing place x. 
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A specific arrangement of tokens across the places is called a marking, with the initial 

marking describing the system's starting state. 

 

A fundamental restriction of this definition is that tokens are unique: every instance is 

distinguished by its identity, even if it shares a base type with others. While this guarantees 

clarity in reversal semantics, it introduces inefficiencies when modeling systems with 

multiple indistinguishable components. For instance, to represent multiple molecules of the 

same kind or several parallel entities with identical roles, one must define distinct token types 

or duplicate transitions, leading to inflated models. 

To relax this restriction, subsequent work [15] introduced token multiplicity giving each 

model the ability to contain any number of tokens that have the same type. This introduced 

the possibility of firing a transition more than once with new sets of tokens each time. This 

can introduce nondeterminism, backward conflict, when reversing transitions. Furthermore, 

to define reversible semantics in the instance of such backward conflicts, two methodologies 

were established, inspired by the individual token and the collective token interpretations [16, 

17], defined to reason about causality in Petri nets.  

 

2.2 MRPNs 

A drawback of RPNs, as already mentioned, is their inability to manage multiple tokens of 

the same type, thus leading to an extension of RPNs, Multi-Reversing Petri Nets (MRPNs). 

Because each token in a RPN is distinct, the user is forced to duplicate transitions and labels 

when modeling multiple instances of the same component, which causes problems with 

readability and scalability. The individual token interpretation, which distinguishes tokens of 

the same type based on their causal history rather than their identity, allows MRPNs to be 

used in such scenarios. This enables token multiplicity while also preserving reversibility and 

causal consistency.  

Formally, an MRPN [19] is a tuple (P, T, 𝒜, 𝒜v, ℬ, F), where P and T denote places and 

transitions, respectively, 𝒜 is a set of token types, 𝒜v a set of token variables, ℬ ⊆ 𝒜 x 𝒜 a 

set of bond types, and F a function mapping arcs to sets of token or bond variables. Tokens 

are associated with causal histories in the form of sequences of transition applications, 

enabling both forward execution and causal-order reversal. Transitions consume tokens from 

their input places and produce tokens (and bonds) at output places, updating each token’s 

causal path. 

MRPNs have also been modeled to have transition execution be conditioned by logical 

predicates by using guarded transitions [22, 23]. Each transition is associated with a forward 

condition (CF) and a reverse condition (CR). These are logical expressions over the data 
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values within tokens. A transition is allowed to fire or reverse only if its respective condition 

evaluates to TRUE under a given variable assignment. For example, only tokens with specific 

data (e.g., temperature ≥ 338°C) may enable or disable a transition. 

Graphically, they are the same as the RPNs, with the exception of arcs labeled with token and 

bond variables as opposed to tokens. MRPNs, also, enable the same transition to be fired 

multiple times using different token instances of the same type, as long as the transition is 

enabled to fire. 

This capability is critical in biological modeling. Consider catalysis: 

In the catalysis example we have two inactive molecules a and b, which only with the 

intervention of a catalyst c are able to be bonded. The reaction is as follows: catalyst c binds 

itself to molecule a and because the energy barrier is lower, the reaction can proceed, and the 

two molecules a and b can be bonded. In the creation of the bond the catalyst is no longer 

needed and is separated from a, breaking its bond with it.  

 

Figure 1. Catalysis in MRPNs 

 

A MRPN model of this process is shown in Fig. 1, where transition t1’s execution bonds 

molecules A1 and C1 and moves them to place x, while the execution of t2 bonds molecules 

A1 and B1 and moves them to place y. In Fig.1 we see the final state which arises after the 

firing of transitions t1 and t2 and the reversal of t1. In this state, bond A1 – B1 has stayed in 

place y, while base C1 has returned to its starting place. 

 

These two actions, A1 bonding to B1 and A1 breaking its bond with C1, happen 

simultaneously and cannot be recreated with traditional reversing Petri nets because they 

require the simultaneous firing and reversal of transitions t2 and t1, respectively. By bonding 

the elements first and then reversing the bond with the catalyst, there exists an in-between 

stage, where a component that consists of the two molecules A1 and B1 and the catalyst C1 
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appears which does not appear in catalysis normally. With this extension we aim to bypass 

this in-between stage by using simultaneous execution of paired transitions. 
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3.1 Definition of Concurrent Reversing Petri Nets 

We present CRPNs, an extension of RPNs that allows specific transitions to be fired or 

reversed and allow simultaneous activation and reversal of two transitions following the 

individual token interpretation. Formally, they are defined as follows: 

 

Definition 1. A Concurrent Reversing Petri net (CRPN) is a tuple (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C) 

where: 

 1. Pl is a finite set of places and T is a finite set of transitions. 

 2. 𝒜 is a finite set of base or token types ranged over by A, B, ... 

 3. 𝒜v is a finite set of token variables ranged over by a, b, … We write type(a) for the type 

of variable a and assume that type(a) ϵ 𝒜 for all a ϵ 𝒜v. 

 4. ℬ ⊆ 𝒜 x 𝒜 is a finite set of undirected bond types ranged over by β, γ, … We assume ℬ 

to be a symmetric relation and we consider the elements (A, B) and (B, A) to refer to the 

same bond type, which we denote by A-B. Furthermore, we write ℬv ⊆ 𝒜v x 𝒜v, assuming 

that (a, b) and (b, a) represent the same bond, also denoted as a-b. 

 5. F :(Pl x T  T x Pl) → P(𝒜v  ℬv) defines a set of directed labelled arcs each associated 

with a subset of 𝒜v  ℬv, where (a, b) ϵ F(x, y) implies that a, b ϵ F(x, y). Moreover, for all t 

ϵ T, x, y ϵ Pl, x  y, F(x, t)  F(y, t) = . 

6. D = Df   Db  Dfb, where Df ⊆ T, Db ⊆ T and Dfb ⊆ ((T x T) x (𝒜v x 𝒜v)), where T = {t | 

t ϵ T} 

7. C: T  Prop, where Prop is a simple propositional logic language s.t. Ψ:=  True | Ψ | Ψ  

Ψ | Ψ  Ψ | p, where p are propositions relating to the existence of token and bond instances 

capturing preconditions for the firing of transitions, which will be explained in section 3.2 
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As standard in net-based frameworks, places and transitions are connected via 

labelled directed arcs. These labels are derived from 𝒜v  ℬv. They express the 

requirements, and the effects of transitions based on the type of tokens consumed. Thus, 

collections of tokens corresponding to the same types and connections as the variables on the 

labelled arc are able to participate in the transition. More precisely, if F(x, t)=X  Y, where X 

⊆ 𝒜v,Y ⊆ ℬv, the firing of t requires a distinct token instance of type type(a) for each a ϵ X, 

such that the overall selection of tokens are connected together satisfying the restrictions 

posed by Y. Similarly, if F(t, x) = X  Y, where X ⊆ 𝒜v,Y ⊆ ℬ v, this implies that during the 

forward execution of the transition for each a ϵ X a token instance of type type(a) will be 

transmitted to place x by the transition, in addition to the bonds specified by Y, some of 

which will be created as an effect of the transition. We make the assumption that if (a, b) ϵ Y 

then a, b ϵ X and the same variable cannot be used on two incoming arcs of a transition. 

 

T defines the reversal of the transitions found in T, indicated by an underscore. Therefore, for 

each transition t ϵ T, t is the reversal of the transition. 

 

D defines that for every transition tf found in Df, tf can be fired on its own, for every transition 

tb found in Db, tb can be reversed on its own and for every pair of transitions tf, tb, and 

variables u, v used by transition tf and tb respectively, ((tf, tb), (u, v)) found in Dfb defines that 

tf can be fired while at the same time tb is reversed as long as the token instances used for u 

and v are the same (Note that type(u) = type(v) must hold). Transitions or pair of transitions 

that are not found in D cannot be fired / reversed. 

 

 We introduce the following notations. We write •t = { x ϵ Pl | F(x, t)   } and t• =  

{ x ϵ Pl | F(t, x)   } for the incoming and outgoing places of transition t, respectively. 

Furthermore, we write pre(t) = x ϵ Pl F(x, t) for the union of all labels on the incoming arcs of 

transition t, and post(t) = x ϵ Pl F(t, x) for the union of all labels on the outgoing arcs of 

transition t. 

 We restrict our attention to well-formed CRPNs, which satisfy the conservation 

property [18] in the sense that the number of tokens in a net remains constant during 

execution. 

Definition 2. A CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C) is well-formed if for all t ϵ T: 

1. 𝒜v  pre(t) = 𝒜v  post(t) and 

2. F(t, x)  F(t, y) =  for all x, y ϵ Pl, x   y 
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Thus, a well-formed CRPN satisfies (1) whenever a variable exists in the incoming arcs of a 

transition then it also exists on its outgoing arcs, and vice versa, which implies that transitions 

neither create nor erase tokens, and (2) tokens/bonds cannot be cloned into more than one 

outgoing place. 

 

In the context of token multiplicity, a mechanism is needed in order to distinguish 

between token instances with respect to their causal path. To capture this, we distinguish 

between token instances, as follows: 

 

Definition 3. Given a CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C) a token instance has the form (A, i, 

xs, sp) where xs is a (possibly empty) list of triples [(k1, t1, v1), …,  (kn, tn, vn)] with n  0, 

where i  1, A  𝒜, sp ϵ Pl, and for all i, ki ϵ  , ti  T, and vi ϵ {*}  𝒜v. We write 𝒜I for the 

set of token instances ranged over by A1, A2, …, and we define the set of bond instances ℬI 

by ℬI = 𝒜I x 𝒜I. Furthermore, given Ai = (A, i, [(k1, t1, v1), …,  (kn, tn, vn)], sp), we write 

 

startPl(Ai) = sp : Starting place of token Ai 

type(Ai) = A 

Ai↓ = (A, i) 

history(Ai) = [(k1, t1, v1), …,  (kn, tn, vn)] 

cpath Ai = [(t1, v1), …,  (tn, vn)] 

last(Ai) = (kn, tn, vn) 

Ai + (k,t,v) = (A, i, [(k1, t1, v1), …,  (kn, tn, vn), (k,t,v)], sp) 

Init(Ai) = (A, i, [(k1, t1, v1), …,  (kn-1, tn-1, vn-1)], sp) 

 

The set of token instances 𝒜I corresponds to the basic entities that occur in a system. 

In the initial state of a net, tokens have the form (A, i, [], sp) where i is a unique identifier for 

the specific token instance of type A. As computation proceeds the tokens evolve to capture 

their causal path. If a transition t is executed in the forward direction, with some token 

instance (A, i, [(k1, t1, v1), …, (kn, tn, vn)], sp) substituted for a variable v, then the token 

evolves to (A, i, [(k1, t1, v1), …, (kn, tn, vn), (k, t, v)], sp), where k is an integer that 

characterizes the executed transition, as we will formally define in the sequel. In the instance 

that the effect of a transition t is reverted for a specific execution k, then all token instances 

that have partaken in that execution  will have the instance (k, t, _) removed from their 

histories. 
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As with RPNs the association of token/bond instances to places is called a marking such that 

M: P  2 𝒜I ∪ ℬI, where we assume that if (Ai, Bi) ϵ M(x) then Ai, Bi ϵ M(x). In addition, we 

employ the notion of a history, which assigns a memory to each transition H: T  2ℕ. 

Intuitively, a history of H(t) =  for some t ϵ T captures that the transition has not taken 

place, or every execution of it has been reversed, and a history such that k ϵ H(t), captures 

that the transition had a firing with identifier k that was not reversed. Note that |H(t)| > 1 may 

arise due to cycles but also due to the consecutive execution of the transition by different 

token instances. A pair of a marking and a history, <M, H>, describes a state of an MRPN 

with <M0, H0> the initial state, where H0(t) =  for all t ϵ T and if Ai ϵ M0(x), x ϵ P, then Ai = 

(A, i, [], sp), and Ai ϵ M0(y) implies that x = y. 

 

Finally, we define con(Ai, W), where Ai ϵ 𝒜I and W  𝒜I  ℬ I, to be the tokens connected 

to Ai as well as the bonds creating these connections according to set W: 

 con(Ai, W) = ({Ai}  W) 

             { x | w s.t. path(Ai, w, W), (Bi, Ci) ϵ  w, x ϵ {(Bi, Ci), Bi, Ci}} 

where path(Ai, w, W) if w = <β1, …, βn>, and for all 1  i  n, βi=(xi-1, xi) ϵ  W   ℬ I, xi ϵ W 

 𝒜I, and x0 =Ai 

 

Definition 4. Given a CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C), an initial marking M0 and a set of 

bases and bonds C  AI  BI, we write: 

 

lastT(C) =            

lastPl(C) =  

  

Thus, last(C)  ⊥ represents the last transition that has been executed that has used 

component C in its input arcs. Otherwise, if last(C) = ⊥ (undefined), there is no transition that 

has been fired using component C that has not been reversed. Similarly, lastP(C)  ⊥ 

represents the place where component C is currently found in and is the outgoing place 

connected to lastT(C), assuming such a place is unique, or the starting place of component C 

in the initial marking if lastT(C) =⊥ and every token found in C has the same starting place, 

and undefined otherwise. 

 

t, if ∀ Ai ϵ C ∃, ki, vi, such that, last(Ai) = (ki, t, vi) 

⊥, otherwise 

 

x, if t = lastT(C), {x} = {y | ∀ Ai ϵ C, last(Ai) = (ki, t, vi), vi ≠ *, v ϵ F(t, y)}  

sp, if lastT(C) = ⊥ and ∀ Ai ϵ C | startPl(Ai) = sp 

⊥, otherwise 
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3.2 Forward Execution 

When firing a transition in a CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C), a set of token and bond 

instances, determined by the transition’s incoming arcs, is selected and transferred to the 

transition’s outgoing places, potentially creating bonds in the process. Precisely, for a 

transition t we define eff(t) to represent the bonds that are created on its outgoing arcs but are 

not present on its incoming ones: 

 

eff(t) = post(t) - pre(t) 

 

 Due to the possibility of multiple token instances that possess the same type, a 

transition can be fired with different token instances. To enable this behavior, we define the 

following: 

 

Definition 5. An injective function : V  𝒜I, where V ⊆ 𝒜v, is called a type-respecting 

assignment if for all a ϵ V, if (a) = Ai then type(a) = type(Ai). 

 

We extend the above notation and write (a, b) for ( (a), (b)) and, given a set L 

⊆ 𝒜v  ℬv, we write (L) = { (x) | x ϵ L}.  

Based on the above we define the following: 

 

Definition 6. Given an CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C), a state <M, H> and a transition t ϵ 

Df, we say that t is forward-enabled in <M, H> if there exists a type-respecting S: pre(t) 𝒜v 

  𝒜I such that: 

1.  a ϵ x ϵ Pl F(x, t), S(a) ϵ M(x) 

2. If a, b ϵ F(x, t) for some x ϵ •t and (a, b) ϵ eff(t), then S(a, b)  M(x) 

3. If a ϵ F(t, y1) and b ϵ F(t, y2), for some y1, y2 ϵ t•, y1  y2, then con(S(a), comp(t ,S , M))   

con(S(b), comp(t, S, M)) 

4. Sat(t, <M, H>, S) 

where comp(t, S, M) = ( x ϵ •t M(x)  S(eff(t))) 

 

Thus, t forward-enabled in state <M, H> if there exists a type-respecting assignment S 

to the tokens of the outgoing arcs of the transition tb, which we will refer to as a forward-

enabling-assignment, such that (1) the token instances and bonds needed for t to be fired, 

based on the assignment S, are found in the incoming places of the arcs that they were 

assigned to, (2) no two already bonded token instances that are to be used to fire t can be 
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bonded again, and (3) connected token instances that are directed by transition t cannot be 

sent to different outgoing places. This helps maintain the original amount of token instances 

because otherwise components could be cloned through the firing of a transition, (4) 

preconditions of t must be met for it to be fired, where Sat is a function that takes as input a 

transition t, a state <M, H> and an assignment S and returns true only if the preconditions of t 

are met in state <M, H> for assignment S. Note that comp(t, S, M) = ( x ϵ •t M(x)  S(eff(t))) 

is composed of the token and bond instances that occur in the incoming places of t ( x ϵ •t 

M(x), which includes the new bond instances created by t (S(eff(t)). Intuitively, comp(t, S, 

M) contains the components that are moved forward by the transition.  

  

To execute the transition t according to an enabling assignment S, the selected token 

instances along with their connected components are relocated to the outgoing places of the 

transition t as specified by the outgoing arcs, with bonds created accordingly. An additional 

effect is the update of the affected token and bond instances to capture the executed transition 

in their causal path. To capture this update, we define the following, where k is an integer 

associated with the specific transition instance: 

 

Ai (S, t, k) =  

 

Note that Ai may not belong to the range of S, i.e. S-1(Ai) = , if Ai was not specifically 

selected to instantiate a variable in pre(t) but, nonetheless, belonged to a connected 

component transferred by the transition. This is recorded in the causal path of the token 

instance via the triple (k, t, *). Moreover, we write (Ai, Bj)  (S, t, k) for (Ai  (S, t, k), Bj  

(S, t, k)) and, given L  AI  BI, we write L  (S, t, k) = {x  (S, t, k) | x  L}. Finally, the 

history of the executed transition is updated to include the next unused integer. Given the 

above we define: 

 

Definition 7. Given a CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C), a state <M, H> and a transition t ϵ 

Df, that is enabled in state <M, H>, and an enabling assignment S, we write <M, H>  <M’, 

H’> where for all x ϵ Pl: 

 

M’(x) = (M(x) - a ϵ F(x, t) con(S(a), M(x))) 

             a ϵ F(t, x) (con(S(a), comp(t, S, M))  (S, t, k) 

 

(t, S) 

Ai + (k, t, a), if S(a) = Ai 

Ai + (k, t, *), if S-1(Ai) = ⊥ 
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where k = max({0}  H(t)) +1 and 

H’(t’) =  

 

 

Figure 2. Catalysis in CRPNs initial state 

 

 

 

Figure 3. Example of forward execution 

 

 

H(t’)  {k}, if t’ = t 

H(t’), otherwise 
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In Fig 2. we see the initial state of catalysis model in a CRPN and in Fig. 3 we show the 

result of the forward execution of t1, thus a bond is created between A1 and C1 and then we 

show the forward execution of t2 thus a bond is created between A1 and B1. t1 ϵ Df is forward-

enabled  in Fig. 2 since 1. is met since both A1 and C1 are in the correct incoming places of t1, 

2. is met since A1 and C1 are not bonded token instances, 3. is met since no bonded token 

instances are sent to different places by transition t1 and 4. is met since transition t1 has no 

preconditions (similarly for t2 ϵ Df). Before this action, in Fig. 2, A1 = (A, 1, [], spA1), B1 = 

(B, 1, [], spB1), B2 = (B, 2, [], spB2), C1 = (C, 1, [], spC1), C2 = (C, 2, [], spC2) and after in 

first state of Fig. 3, (A, 1, [(1, t1, a)], spA1), B1 = (B, 1,[], spB1), B2 = (B, 2, [], spB2), C1 = (C, 

1, [(1, t1, c)], spC1), C2 = (C, 2, [], spC2). 

 

The histories of the two transitions will both have the instance 1 in them indicating their one 

activation. If t1 was to be fired once again then its history would equal to {1,2} and so on. 

 

3.3 Out-of-Causal-Order Reversing 

Out-of-causal-order reversing arises in systems where the reversal of a transition does not 

strictly require that all its subsequent dependent transitions be reversed first. This 

phenomenon is especially relevant in biological contexts as in [14]. This relaxation allows for 

greater flexibility in modeling reversible processes that do not strictly require Causal-Order 

reversibility. Given the above we define: 

 

Definition 8. Given a CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C), a state <M, H> and t ϵ Db, we say 

that transition t is oco-enabled in <M, H> if there exists a type-respecting S: post(t) 𝒜v   

𝒜I such that: 

 

(kb, tb, _ ) where  a ϵ x ϵ Pl F(tb, x), (kb, tb, _ ) ϵ history(S(a)) 

 

Thus, tb is oco-enabled in state <M, H> if there exists a set of instances identified by a 

type-respecting assignment S to the tokens of the outgoing arcs of transition t, such that all 

have been used in the same firing of transition t. 

  

To reverse t according to an enabling assignment S, the bonds created by the transition 

are reversed and every new connected component C is moved to place X, where lastPl(C) = 

X. An additional effect is the update of the affected token and bond instances to capture the 

reversal of transitions in their causal path. To capture this update, we define the following, 

where k is an integer associated with the specific transition instance being reversed: 
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Ai (S, t, k) =  

 

 

Note that Ai may not belong to the range of S, i.e. S-1(Ai) =  , if Ai was not specifically 

selected to instantiate a variable in pre(t) but, nonetheless, belonged to a connected 

component transferred by the transition. This is recorded in the causal path of the token 

instance via the triple (k, t, *). Moreover, we write (Ai, Bj)  (S, tb, k) for (Ai  (S, t, k), Bj 

 (S, t, k)) and, given L  AI  BI, we write L  (S, t, k) = {x  (S, t, k) | x  L}. Finally, 

the history of the executed transition is updated to not include integer k. Given the above we 

define: 

 

Definition 9. Given a CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C), a state <M, H> and a transition t ϵ 

Db, that is oco-enabled in state <M, H>, and an enabling assignment S, we write <M, H>  

<M’, H’> where for all x ϵ Pl: 

 

M’(x) = (M(x)  

   y ϵ Pl, a ϵ post(tb), S(a) ϵ M(y), φ, y ≠ x  ( [ [ con(S(a), M(y) – S(eff(tb)))  (S, tb, kb)]  

All*]) 

-  ( 

 S(eff(t)) 

 a ϵ post(tb), S(a) ϵ M(x) (con(S(a), M(x) – S(eff(tb))) | ¬ξ) 

) 

 

where φ: lastPl([ [con(S(a), M(y) – S(eff(tb)))]  (S, tb, kb)]  All*) = x 

           ξ: lastPl([ [con(S(a), M(x) – S(eff(tb)))]  (S, tb, kb)]  All*) = x  

 

where k = max( k’ ϵ H(t) k’ | t is oco-enabled for its k’th execution)  and 

 

H’(t’) =  

 

where All* refers to every (k, t, v) that in the history of any token instance in a component 

appears with v=* (if after the reversal of a transition, a certain combination of k and t always 

(t, S) 

Ai - (k, t, a), if S(a) = Ai 

Ai - (k, t, *), if S-1(Ai) = ⊥ 

 

H(t’) - {k}, if t’ = t 

H(t’), otherwise 
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appears with *, i.e. (k, t, *), in every token instance’s history, in a specific component, that it 

appears in, then (k, t, *) is removed from all the token instance’s histories) 

 

4. Catalysis in CRPNs final state 

 

In Fig. 4 we show the result of the reversal of the first execution of t1, after t1 and t2 have 

been fired as shown in the second CRPN of Fig. 3. t1 ϵ Db is oco-enabled  in the second state 

of Fig. 3 since 1. is met since for kb = 1 both token instances A1 and C1 contain set (1, t1, _) in 

their histories. Before this action, in the second state of Fig. 3, A1 = (A, 1, [(1, t1, a), (1, t2, 

d)], spA1), B1 = (B, 1, [(1, t2, e)], spB1), B2 = (B, 2, [], spB2), C1 = (C, 1, [(1, t1, c), (1, t2, *)], 

spC1), C2 = (C, 2, [], spC2) and after in first state of Fig. 4, (A, 1, [(1, t2, d)], spA1), B1 = (B, 

1,[ (1, t2, e)], spB1), B2 = (B, 2, [], spB2), C1 = (C, 1, [], spC1), C2 = (C, 2, [], spC2).The 

history of transition t1 will no longer have element 1 in it. 

 

3.4 Concurrent Execution 

Definition 10. Given a CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C), a state <M, H> and ((tf, tb), (u, v)) ϵ 

D, we say that ((tf, tb), (u, v))  is concurrently-enabled in <M, H> if there exists a type-

respecting S: (pre(tf)  post(tb)) 𝒜v   𝒜I such that: 

1. S(u) = S(v) 

2.  a ϵ x ϵ Pl F(x, tf), S(a) ϵ M(x) 

3. (kb, tb, _ ) where  a ϵ x ϵ Pl F(tb, x), (kb, tb, _ ) ϵ history(S(a)) 

4. If a, b ϵ F(x, tf) for some x ϵ •tf and (a, b) ϵ eff(tf), then S(a, b)  M(x), unless if  (c, d) ϵ 

eff(tb), with (S(c), S(d)) = (S(a), S(b)) 

5. If a ϵ F(tf, y1) and b ϵ F(tf, y2), for some y1, y2 ϵ tf•, y1  y2, then con(S(a), compf(tf , tb, S , M)) 

  con(S(b), compf(tf, tb, S, M)) 

6. Sat(tf, <M, H>, S) 

Where compf(tf, tb, S, M) = (( x ϵ •tf M(x)- S(eff(tb)))  S(eff(tf))) 
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Thus, simultaneous firing and reversing of transitions tf and tb respectively is 

concurrently-enabled in state <M, H> if there exists a type-respecting assignment S to the 

tokens of the outgoing arcs of transition tb and to the tokens of the incoming arcs of transition 

tf, which we will refer to as a concurrent-enabling assignment of (tf, tb), such that (1) the 

token instances used for the variables u and v on the incoming arcs of tf and tb ,respectively, 

are the same, (2) the token instances and bonds needed for tf to be fired, based on the 

assignment S, are found in the incoming places of the arcs that they were assigned to, (3) the 

token instances and bonds needed for the reversal of tb all have been used in the same firing 

of transition tb, (4) no two already bonded token instances that are to be used to fire tf can be 

bonded again, unless their bond was a result of the execution of tb that will be reversed, (5) 

connected token instances that are directed by transition tf cannot be sent to different 

outgoing places. This helps maintain the original amount of token instances because 

otherwise components could be cloned through the firing of a transition, (6) Preconditions of 

tf must be met for it to be fired, where Sat is a function that takes as input a transition t, a state 

<M, H> and an assignment S and returns true only if the preconditions of t are met in state 

<M, H> for assignment S. Note that compf(tf, tb, S, M) = ( x ϵ •tf M(x)  S(eff(tf)))- S(eff(tb)) 

is composed of the token and bond instances that occur in the incoming places of tf ( x ϵ •tf 

M(x), which includes the new bond instances created by tf (S(eff(tf)), and excludes the bonds 

that were created due to the activation of tb (- S(eff(tb))). Intuitively, compf(tf, tb, S, M) 

contains the components that arise after cancelling the effect of tb and then implementing the 

effect of tf.  

 

An action ((tf, tb), (u, v)) where tf ϵ T, tb ϵ T, u ϵ 𝒜  post(tf), v ϵ 𝒜  post(tb) defines the 

simultaneous activation of transition tf and reversal of transition tb where u is a variable found 

in the outgoing arcs of tf, v is a variable found in the outgoing arcs of tb and both have been 

assigned the same token instance. Given the above we define: 

 

Definition 11. Given a CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C), a state <M, H>, an action a =       

((tf, tb), (u, v)) tf ϵ T, tb ϵ T, u ϵ 𝒜  post(tf) v ϵ 𝒜  post(tb) that is concurrently-enabled, 

with assignment S we write <M, H>  <M’, H’> where for all x ϵ Pl: 

 

 

 

 

(a, S) 
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M’(x) = (M(x)  

 a ϵ F(tf, x) ( [ [con(S(a), compf(tf, tb, S, M))  (S, tb, kb)]  All*]  (S, tf, kf))  

  y ϵ Pl, a ϵ post(tb), S(a) ϵ M(y), φ, y ≠ x  ( [ [ con(S(a), M(y) – S(eff(tb)))  (S, tb, kb)]  All*] 

| c ϵ F(y, tf) (c | S(c) = S(a)) = ) ) 

 –  (  

a ϵ F(x, tf) con(S(a), M(x) – S(eff(tb)))  

 S(eff(tb)) 

 a ϵ post(tb), S(a) ϵ M(x) (con(S(a), M(x) – S(eff(tb))) | ¬ξ, c ϵ F(y, tf) (c | S(c) = S(a)) = )) 

 

where kf = max({0}  H(t)) +1 and 

kb =  max( k’ ϵ H(t) k’ | tb is oco-enabled for its k’th execution) and 

 

H’(t’) =     and 

 

φ: lastPl([ [con(S(a), M(y) – S(eff(tb)))]  (S, tb, kb)]  All*) = x and 

ξ: lastPl([ [con(S(a), M(x) – S(eff(tb)))]  (S, tb, kb)]  All*) = x 

 

With the addition of concurrent execution, we can now move from the first state as shown in 

Fig. 3 directly to the state as shown in Fig. 4 bypassing the intermediate second state as 

shown in Fig. 3. We will set into effect ((t2, t1),(d, a)) ϵ Dfb, where d is the variable on the arc 

between the incoming place of t2 and t2 and DP is the variable in the arc between the 

incoming place of t1 and t1. Therefore ((t2, t1),(d, a)) is concurrently-enabled. 1. is met since 

the token instance used for both of those variables is A1 (the same), 2. is met since both A1 

and B1 are in the correct incoming places of t2, 3. is met since for kb = 1 both token instances 

A1 and C1 contain set (1, t1, _) in their histories, 4. is met since A1 and B1 are not bonded 

token instances, 5. is met since no bonded token instances are sent to different places by 

transition t2 and 6. is met since transition t2 has no preconditions. Before this action, in the 

first state of Fig. 3, A1 = (A, 1, [(1, t1, a)], spA1), B1 = (B, 1, [], spB1), B2 = (B, 2, [], spB2),  

C1 = (C, 1, [(1, t1, c)], spC1), C2 = (C, 2, [], spC2) and after in Fig. 4, (A, 1, [(1, t2, d)], spA1), 

B1 = (B, 1, [(1, t2, e)], spB1), B2 = (B, 2, [], spB2), C1 = (C, 1, [], spC1), C2 = (C, 2, [], spC2). 

And thus, with this extension to the RPNs the operator has more control over the 

transitions that can be fired or reversed at a given moment. 

H(t’) - {kb}, if t’ = tb 

H(t’)  {kf}, if t’ = tf 

H(t’), otherwise 
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Chapter 4 

 

DNA misatch repair 

 

 

4.1 Description of DNA mismatch repair       20 

4.2 Modeling DNA mismatch repair        21 

 

 

4.1 Description of DNA mismatch repair 

The DNA mismatch repair [14, 20] is initiated when a DNA strand contains a mismatched 

pair of bases (adenine (A), cytosine (C), guanine (G) or thymine (T)), that is, two bases that 

cannot match namely A-C, A-G, T-C and T-G (intended bonds are between A-T and C-G). 

The process after identifying the mismatch will continue with the methylation of the DNA 

strand, as we will explain and model later on, and by using the proteins MutS, MutL, MutH, 

and UvrD, the methylated strand can be identified and therefore the mismatch can be 

targeted. The process then continues by removing the component which contains the 

mismatched base from the DNA strand. Specifically, MutS recruits MutL and MutH after 

first binding to the mismatch. MutL can then create a loop in the DNA and recognize the 

methylated strand. In this loop, the old strand is covered by MutL and itself, while the newer 

strand is now outside. The unmethylated strand is then cleaved by MutH. Because of the size 

of the proteins and the DNA loop, this occurs some distance away from the mismatch. After 

detecting the cleavage, UvrD can proceed along the strand in the direction of the mismatch. 

As it progresses, the outer strand is removed. The DNA loop vanishes concurrently with the 

release of the MutL, MutH, and MutS proteins. Ultimately, UvrD removes the incorrect base 

along with its neighbors by moving to a position just beyond the mismatch. After that, UvrD 

removes itself from the DNA, leaving the original, proper strand to be finished. 

 

In the DNA mismatch repair process, there are instances where bonds are created and 

destroyed that involve the same token instance of a component, simultaneously, which 

prompted us to create this extension to the traditional RPNs. Therefore, now the components 

of token instances that appear in the net at any given time follow the anatomy of the 

component as it is in the real DNA mismatch repair process without extra in-between stages. 

 In the following section we model the CRPNs for the DNA mismatch repair. We note 

that for the sake of clarity some transitions create multiple bonds between multiple token 
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instances so the diagrams can remain as small as possible. In this instance we assume that 

each transition that creates multiple bonds is composed of a number of transitions equal to the 

number of bonds it creates and each one of these sub-transitions can be reversed.   

 

4.2 Modeling DNA mismatch repair  

Now we will model the DNA repair process, by first creating a DNA strand with a pair of 

mismatched bases and then following the sequence of actions as found in [20] for the repair 

process, in a CRPN (Pl, T, 𝒜, 𝒜v, ℬ, F, D, C) 

 

Figure 5. Creation of the first 4 elements of the DNA chain 
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The CRPN in Fig. 5 implements the creation of the first 4 elements in the DNA strand (2 

bases adenine (A), cytosine (C), guanine (G) or thymine (T) and 2 deoxyribose/phosphate 

groups (DP)). The component created and moved to the outgoing place P1 of the transitions 

will either be the component DP-C-G-DP if t1 is executed or DP-T-A-DP if t2 is executed 

(components DP-A-T-DP and DP-T-A-DP are considered the same). 

 

 

Figure 6. Expanding the DNA chain 
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Now we continue by expanding the DNA strand, as shown in Fig. 6. Transitions t1 and t2 

are responsible for adding new components DP-C-G-DP if t1 is executed or DP-T-A-DP if t2 

is executed to the DNA chain created in Fig. 5 in place P1, linking the DPs of the new 

components with the DPs on the edge of the DNA chain. 

The preconditions for transitions t1 and t2 to fire are: 

1. |y1|, |y2| ≤ 2, where |y| refers to the number of bonds that instance y has connected to it 

2. There exists path P of length 3 where the S(y1) and S(y2) are the starting and end 

points of the path respectively and for every other token instance x in the path type(x) 

= C || G || T || A, where if type(x) = C then x is a cytosine base, if type(x) = G then x is 

a guanine base, if type(x) = T then x is a thymine base and if type(x) = A then x is an 

adenine base 

 

Figure 7. Mismatch in the DNA chain 
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We now proceed with the creation of a mismatch in the DNA strand followed by a correct 

set of 4 elements. In the example, as shown in Fig. 7, transition t1 receives two token 

instances of types A and G and creates an A-G type mismatch on the DNA strand found in 

place P1 and adds a C-G match right after as transition t3 does in Fig. 6, moving the whole 

component to place P2. Similarly, the rest of the mismatches (T-G, T-C, A-C) can be 

implemented in the same way. The preconditions for the transition to fire are: 

1. |y1|, |y2| ≤ 2, where |y| refers to the number of bonds that instance y has connected to it 

2. There exists path P of length 3 where the S(y1) and S(y2) are the starting and end 

points of the path respectively and for every other token instance x in the path type(x) 

= C || G || T || A 

 

After the creation of a mismatch, we can continue using the second CRPN to continue the 

DNA chain. It is important to mention here that we will focus on examples with one DNA 

mismatch in a particular DNA strand. 

 

 

Figure 8. Methylation of the DNA chain 

 

 

The CRPN in Fig. 8 implements the first step in DNA mismatch repair process. We will 

follow a repair mechanism in bacteria called Methyl Mismatch Repair (MMR) which 

focuses on the methylation of the DNA strand after it has been created. Methylation refers to 

the bond creation with a methyl group, in our example transition t6 bonds the methyl group 

(Me) with the adenine base A1 and moves the component to place P3. Where DNA is a label 

for the exact component used in [20], which is found in place P2, and DNA’ = DNA  {(A1, 

Me)}. 
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Figure 9. MutS binds to the mismatch 

 

 

After the methylation process, we can continue with the  main reactions in the MMR system, 

which will show the importance of the extension we have established to the RPN model. As 

shown in Fig. 9, MutS attaches to the mismatched bases of the DNA strand found in place 

P3 and the new DNA strand is moved to place P4 (bonds are created by transition t7 between 

A2 and MutS and between G3 and MutS). The preconditions for the transition to fire are: 

1. |a|, |g| = 1 

2. con(S(a), M(x)) = con(S(g),M(x)), where x the place S(a) and S(g) are found 

Precondition 1. targets the two bases that are mismatched (they are the only token instances 

in the component that are bonded with only one token instance).  

Precondition 2. ensures that token instances that are used for a and g are token instances that 

are part of the same component. 

 

 

Figure 10. MutL bonds to MutL 

 



26 

 

 

Figure 11. MutL bonds to the DNA strand (on Me) 

 

Now the new proteins MutL and MutS are permitted  to bond together using transition t8 as 

shown in Fig. 10, thus the DNA chain from place P4 is moved to place P5, followed by the 

creation of a bond between MutL and Me from the DNA strand as shown in Fig 11, where 

DNA is a label for the exact component used in [20], which is taken from place P5 to P6 by 

adding the bond (MutL, Me), and DNA’ = DNA  {(MutL, Me)}. 

 

Then MutH bonds with MutL. This is similar to the bonding between MutL and Me as 

shown in Fig. 11 (after the creation of the bond the DNA chain is moved to place P7). 

 

 

Figure 12. MutH bonds to the DNA strand (on DP8) 

 

Then MutH will create a bond with DP8 through transition t10, as shown in Fig. 12, thus the 

DNA chain from place P7 is moved to place P8, where DNA is a label for the exact 

component used in [20], and DNA’ = DNA  {(MutH, DP8)}, and due to the creation of this 

bond, the bond between DP8 and DP9 is destroyed. These two actions happen at the same 

time thus we will use a pair of transitions to implement it.  

The transition t4 (transition t4 found in Fig. 6, we note that in this case assume that t4 

was only responsible for the creation of the  bond between DP8 and DP9 and its reversal will 

not destroy other bonds created while DP8 and DP9 were being bonded) is the transition 
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responsible for the creation of the bond between DP8 and DP9 and t10 is responsible for the 

creation of the bond between MutH and DP8. Thus, we will set into effect ((t10, t4),(DP8, 

DP1)) ϵ Dfb, where DP8 is the variable on the arc between the incoming place of t10 and t10 

and DP1 is the variable in the arc between the incoming place of t4 and t4. Therefore, ((t10, 

t4),( DP8, DP1)) is concurrently-enabled. 1. is met since the token instance used for both of 

those variables is DP8 (the same), 2. is met since in this stage both MutH and DP8 will be in 

the correct incoming places of the transition shown in Fig. 12, 3. is met since both token 

instances DP8 and DP9 contain set (kb, t4, _) in their histories, since they have been used to 

fire t4 for a specific execution kb, 4. is met since MutH and DP8 are not bonded token 

instances, 5. is met since no bonded token instances are sent to different places by transition 

t10 and 6. is met since the following precondition of transition t10 to fire is met. 

The precondition for the transition to fire is: 

1. con(S(c), M(x)) = con(S(muh), M(x)) , where x the place S(c) and S(muh) are found 

Precondition 1. ensures that token instances that are used for c and muh are token instances 

that are part of the same component. 

 

 

Figure 13. UvrD bonds to the DNA strand (on DP10) 

 

 

Then UvrD creates a bond with DP10 through transition t11, as shown in Fig. 13, thus the 

DNA chain from place P8 is moved to place P9, where DNA is a label for the exact 

component used in [20], and DNA’ = DNA  {( UvrD, DP10)}, and due to the creation of this 

bond, the bond between DP10 and DP9 is destroyed. These two actions happen at the same 

time thus a pair of transitions is needed to implement it as shown previously. 
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Figure 14. UvrD bonds to the DNA strand (on T2) 

 

Then UvrD creates a bond with T2 through transition t12,  as shown in Fig. 14, thus the 

DNA chain from place P9 is moved to place P10, where DNA is a label for the exact 

component used in [20], and DNA’ = DNA  {( UvrD, T2)},  and due to the creation of this 

bond, the bond between T2 and A1 is destroyed. These two actions happen at the same time 

thus a pair of transitions is needed to implement it as shown previously. 

The precondition for the transition to fire is: 

1. con(S(c), M(x)) = con(S(uv), M(x)) , where x the place S(c) and S(uv) are found 

Precondition 1. ensures that token instances that are used for c and uv are token instances that 

are part of the same component. 

 

 

 

Figure 15. UvrD bonds to the DNA strand (on DP11) 

 

Then UvrD creates a bond with D11 through transition t13, as shown in Fig. 15, thus the 

DNA chain from place P10 is moved to place P11, where DNA is a label for the exact 

component used in [20], and DNA’ = DNA  {( UvrD, DP11)}, and due to the creation of this 

bond, the bonds between UvrD and DP10 and between DP10 and DP11 are destroyed. We will 

follow the creation and destruction of bonds as they are found in paper [20] therefore we will 

use a pair of transitions for the creation of the bond between UvrD and DP11 and reversal of 

the bond between UvrD and DP10 and then follow up with the reversal of the bond between 

DP10 and DP11. For the first part: 

The precondition for the transition to fire is: 
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1. con(S(c), M(x)) = con(S(uv), M(x)) , where x the place S(c) and S(uv) are found 

Precondition 1. ensures that token instances that are used for c and uv are token instances that 

are part of the same component. 

 

Then the bond between DP10 and DP11 is reversed. 

 

 

Figure 16. UvrD bonds to the DNA strand (on C3) 

 

Then UvrD creates a bond with C3 through transition t14, as shown in Fig. 16, thus the DNA 

chain from place P11 is moved to place P12, where DNA is a label for the exact component 

used in [20], and DNA’ = DNA  {( UvrD, C3)}, and due to the creation of this bond, the 

bond between T2 and UvrD is destroyed. These two actions happen at the same time thus a 

pair of transitions is needed to implement it as shown previously. 

The precondition for the transition to fire is: 

1. con(S(c), M(x)) = con(S(uv), M(x)) , where x the place S(c) and S(uv) are found 

Precondition 1. ensures that token instances that are used for c and muh are token instances 

that are part of the same component. 

 

Then the bond between C3 and G1 is reversed. 

 

The MMR process continues with similar processes to the ones shown above until the 

mismatch and the proteins used in the MMR process are not bonded to the DNA strand. 

Therefore, we have established the importance of the extension we have proposed to the 

RPNs. 
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5.1 MRPNs 

In this section, we compare the expressive capabilities of our extended model with those of 

Multi-Reversing Petri Nets (MRPNs) introduced in prior work [19] and in chapter 2. MRPNs 

extend Reversing Petri Nets by supporting multiple tokens of the same type under the 

individual token interpretation, enabling causal-order reversing semantics. Our model 

functions similarly while also introducing additional mechanisms to increase control and 

expressiveness, particularly in contexts that require more precise regulation of transition 

behavior. 

 

5.2 Token Multiplicity and Causality 

Both MRPNs and our model allow multiple indistinguishable tokens of the same base type to 

coexist. In both frameworks, these tokens are distinguished solely by their causal paths, 

which are updated with every transition in which a token participates. This shared foundation 

ensures that the semantics of token evolution and the structure of bond formation remain 

consistent between the two models.  

 

 

5.3 Transition Control 

A key point of departure from MRPNs lies in our model's explicit control over transition 

execution and reversal. In MRPNs, reversibility is implicitly determined by the state of the 
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tokens and the causal dependencies in the system. In contrast, our model introduces a control 

structure D = Df ∪ Db ∪ Dfb, which statically determines whether a transition may fire, be 

reversed, or participate in a simultaneous action. This allows the user to have more control 

over the behavior of the system, allowing certain transitions to be designated as forward only 

or reversible only under specific assignments, as the user pleases. 

This distinction proves particularly useful in biological modeling, where irreversible actions 

(e.g., cleavage, strand excision) must be explicitly constrained, and optional reversal is 

allowed only under certain preconditions (e.g., the absence of a repair complex). While 

MRPNs are expressive enough to encode these behaviors indirectly through token 

constraints, our model provides a more direct and declarative mechanism. 

 

5.4 Simultaneous Transition Execution 

Another notable enhancement in our model is the ability to fire and reverse transitions 

simultaneously. This feature allows transitions t1 and t2 to execute in opposite directions in a 

single step, provided they share a token instance for their variables u and v respectively, and 

((t1,t2),(u,v)) ∈ Dfb holds. MRPNs do not support simultaneous execution natively; instead, 

such behavior must be modeled by sequences of intermediate steps, potentially introducing 

auxiliary places or tokens which may be unwanted in some systems. 

Simultaneous actions are essential in contexts where coordinated changes must occur, such as 

enzyme binding coupled with product release, or concurrent structural shifts in 

macromolecular complexes. By allowing paired transitions to operate in tandem, our model 

reflects the atomicity of such reactions more faithfully and reduces the modeling overhead 

required to express them. 

 

5.5 Expressiveness and Encoding 

The work on MRPNs shows that for every net with multiple tokens of the same type, there 

exists a corresponding net with only single-token instances and an isomorphic labeled 

transition system (LTS), establishing expressiveness equivalence. While our model preserves 

this baseline result under the individual token interpretation, the addition of control directives 

and simultaneous execution introduces behaviors that cannot be captured by traditional 

MRPNs without significant restructuring. 

In particular, enforcing irreversible transitions or modeling atomic bidirectional transitions 

would require encoding control logic externally in MRPNs, potentially obscuring the core net 

structure. Our model, by contrast, offers native support for such features, allowing them to be 

expressed directly in the net definition. 
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5.6 Destroying bonds by the execution of transitions 

Another key semantic difference lies in how bond deletion is handled. In MRPNs, the 

breaking of bonds can occur as part of the forward execution of a transition, allowing 

transitions to consume bonded components and emit them unconnected, even if the bond was 

not created by that same transition. This offers flexibility in modeling systems where bond 

dissolution occurs as part of a transformation or dissociation. In contrast, our model enforces 

a conservative bond discipline, where the only permissible way to undo a bond is by 

reversing the specific transition that created it. This restriction ensures a tighter coupling 

between causal history and bond structure, preserving a form of structural determinism. 

While this may limit expressiveness in some artificial scenarios, it aligns well with biological 

intuition, where bond formation and breakage are typically treated as reversible actions with 

defined energetic or enzymatic triggers. It also supports cleaner out-of-causal-order semantics 

by preventing unintended structural rewrites through forward transitions alone.  
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6.1 Summary 

In this paper, we have presented an extension of Reversing Petri Nets that allows for the 

simultaneous activation of transitions, explicit control over the execution and reversal of 

transitions, and multiple indistinguishable tokens of the same type. The model can capture 

out-of-causal-order reversibility and follows the individual token interpretation, in which 

each token instance is identified by its causal history. More expressive modeling of intricate, 

concurrent systems where exact coordination and selective reversibility are crucial is made 

possible by these additions.  

The addition of a control structure that statically chooses which transitions may be fired 

or reversed, or take part in compound actions is a unique aspect of our model. This makes it 

possible to depict both coordinated behavior through simultaneous execution and irreversible 

transitions, like those found in biochemical pathways. These capabilities go beyond what is 

natively supported in Multi-Reversing Petri Nets (MRPNs), offering a more direct and 

structured means of expressing biological dependencies and process-level control. 

We have used two case studies to illustrate the applicability of our approach: DNA mismatch 

repair (MMR) and catalysis. While the latter emphasizes the necessity of controlled, multi-

step activity including binding and coordinated reversal/firing, the former demonstrates how 

catalysis can be modeled without in between steps which are not true to real life. Using a 

combination of coordinated and concerted transitions, we were able to accurately mimic the 

activity of helper proteins and DNA components in MMR. These illustrations demonstrate 

how well our model captures true biochemical processes that require both structural 

adaptability and semantic accuracy. 

The extension is particularly well-suited to biological systems where reversibility is governed 

not just by causality but also by biochemical constraints and conditional interactions. In the 

context of the MMR pathway, our model supports complex bonding and unbonding 
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sequences and enables abstraction over lower-level steps without sacrificing correctness. In 

conclusion, the proposed framework is a strong and adaptable extension of reversible Petri 

nets. It expands the use of net-based models in computational biology and reversible 

computation by allowing the modeling of highly organized, concurrent, and biologically 

faithful systems through the incorporation of token multiplicity, transition control, and 

simultaneous actions. 

 

6.2 Future research 

While we abstracted from spatial aspects and reaction rates in the current framework, these 

remain promising directions for future work. 

Our next step is looking into tool support for simulation and verification using the extended 

model, which includes incorporating spatial limitations and stochastic behaviors. 

Furthermore, extending the theoretical foundations to encompass richer forms of 

synchronization and interaction (e.g., multi-party bonds or temporal guards) would further 

enhance the model’s expressiveness and applicability to a broader class of systems. Some 

weaknesses of this model which we would like to improve is the need to break transitions 

into sub-transitions to undo a specific effect and the ability to activate/reverse more than two 

transitions simultaneously. 
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