
Thesis Dissertation

HIGH BIAS BRANCH PREDICTION ON HARDWARE
LEVEL

George Demetriou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2025

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

HIGH BIAS BRANCH PREDICTION ON HARDWARE LEVEL

George Demetriou

Supervisor

Dr. Yiannakis Sazeidis

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2025

Acknowledgments

I would like to begin by expressing my sincere gratitude to my thesis supervisor, Dr.

Yiannakis Sazeidis. His unwavering support, availability, and guidance throughout the

duration of this work have been invaluable. I am particularly thankful for his insightful

feedback and thoughtful advice, which consistently motivated me to persevere and im-

prove. His ability to offer alternative perspectives greatly enriched my understanding and

approach to the subject matter.

I also wish to extend my appreciation to all the professors who have contributed to

my academic development over the past four years. Their dedication to teaching and

their commitment to fostering intellectual growth provided me with a strong academic

foundation, upon which this thesis has been built.

To all those acknowledged, as well as to anyone whose contributions may not be

explicitly mentioned, I offer my heartfelt thanks.

1

Summary

This thesis investigates a static program-based approach to branch prediction, aiming to

complement existing hardware-based predictors. Motivated by the limited research on

highly biased branches, it explores the feasibility of accurately predicting the direction of

such branches using static analysis techniques.

Two classification tasks are addressed. The first is predicting whether a branch is

taken or not-taken. The second involves identifying high-bias branches. To solve both

tasks, a diverse set of machine learning models was evaluated, including convolutional

neural networks (CNNs), multilayer perceptrons (MLPs), Random Forests (RF), and XG-

Boost (XGB). Features were extracted from a corpus of SPEC CPU-style benchmarks,

and models were trained under both per-benchmark and cross-benchmark regimes using

only static information such as opcode patterns, operand types, jump span, and control-

flow context.

The empirical results show that tree-based ensemble models (RF, XGB) significantly

outperform neural models (CNN, MLP) in the taken/not-taken task, while CNN and MLP

suffer from poor recall. In contrast, all models perform well on high-bias classification,

with XGBoost achieving the highest accuracy, confirming the separability of this class

using static features alone.

Based on these findings, the thesis proposes a hardware-level architectural enhance-

ment: the Static Program-Based Branch Prediction Unit (SPBBPU). This unit targets

high-bias branches specifically and integrates with existing branch predictors and com-

piler hints. Its predictions are combined via a multiplexer that selects the output based on

predicted bias status, allowing for improved accuracy and robustness in biased scenarios.

The approach is shown to be feasible through data analysis, model performance, and

per-benchmark breakdowns. High-bias branches are common across all programs; their

bias can be accurately detected; and, once identified, their outcomes can be predicted re-

liably. These results suggest a practical path toward incorporating learned static branch

behavior into future microarchitectures, enabling more accurate, low-overhead predic-

tions at decode time.

2

Contents

1 Introduction 10
1.1 Motivation . 10

1.2 Contributions . 11

2 Background 13
2.1 Modern CPUs and Branch Prediction . 13

2.2 Program-Based Branch Prediction . 15

2.2.1 Program-Based Prediction Features 16

2.3 Profile-Based Branch Prediction . 17

2.3.1 Profile-Based Prediction Features 18

2.4 Hardware-Level Branch Prediction: Dynamic and Static Hint Bit Ap-

proaches . 18

2.4.1 Traditional Dynamic Branch Prediction 19

2.4.2 Dynamic Branch Prediction without Hint Bits 19

2.4.3 Static Program-Based Prediction with Hint Bits 20

2.4.4 Comparison: With and Without Hint Bits 21

2.4.5 Illustrative Pipeline with Hint Bits 21

2.4.6 Discussion . 22

3 A Hardware Static Program-Based Mechanism for Predicting Highly Biased
Branches 23
3.1 Overview . 23

3.2 Proposed Mechanism and Deployment Idea 23

3.3 Feature Set for Static Prediction . 24

3.4 Design Rationale . 25

3.5 Machine Learning Framework . 25

3.6 Static Program-Based Branch Prediction Unit (SPBBPU) Integration . . . 26

3.7 Example: High-Bias Branch in perlbench_r 27

3

4 Evaluation of Frameworks and Experimental methodology 29
4.1 SPEC CPU2017 Benchmark Suite . 29

4.2 Experimental Setup . 31

4.3 Pin Tool API . 31

4.3.1 Instrumentation Approach . 32

4.3.2 Implementation Details . 32

4.3.3 Output Format . 32

4.3.4 Use Case in the Thesis . 33

4.4 Machine Learning Algorithms . 33

4.4.1 Classification Objective . 33

4.4.2 Models Evaluated . 34

4.4.3 Training and Evaluation Protocol 34

5 Evaluation 36
5.1 Prevalence of Highly Biased Branches 36

5.1.1 Branch Bias Distribution and Dynamic Impact in perlbench_r . 36

5.1.2 Bias Histogram per Benchmark 41

5.1.3 Execution-Weighted and Unique Address Distribution 46

5.1.4 Conclusion: Bias is Widespread and Predictable 52

5.2 Can the Model Predict High Bias and Direction? 52

5.3 Comparison: General vs. High-Bias Branch Outcome Prediction 57

5.3.1 Evaluation Metrics . 57

5.3.2 Per-Benchmark Comparison . 57

5.3.3 Discussion . 59

5.4 Feature Importance Analysis . 60

5.5 Per-Benchmark vs. Cross-Benchmark Generalization in Taken/Not-Taken

Prediction . 62

5.5.1 Experimental Settings . 62

5.5.2 Aggregate Performance Comparison 62

5.5.3 Stacked Bar Plot Analysis . 62

5.5.4 Interpretation and Discussion 64

5.5.5 Conclusion . 64

5.6 Comparison of Learning Methods . 64

5.6.1 Taken / Not–Taken Prediction 64

5.6.2 Bias (>0.995) Prediction . 66

5.6.3 Discussion . 68

4

6 Related Work 69
6.1 Static Program-Based Heuristics . 69

6.2 Evidence-Based Static Prediction (ESP) 69

6.3 Dynamic, Hardware-Based Predictors 70

6.3.1 Perceptron and Neural Predictors 70

6.3.2 Tree-Based and Boosted-Tree Predictors 70

6.4 Other ML-Driven Performance Modeling 70

6.5 Summary . 71

7 Conclusion 72
7.1 Future Work . 72

7.2 Conclusion . 73

5

List of Figures

2.1 Five-stage RISC pipeline showing instruction flow from fetch to write-

back. Branch instructions are resolved during Execute, making early pre-

diction essential. 14

2.2 Pipeline architecture relying solely on dynamic hardware branch predic-

tion (BPU) without static hint bits. 20

2.3 Pipeline architecture supporting both dynamic and static (hint bit) branch

prediction using a multiplexer to select the prediction source. 22

3.1 Hardware integration of the SPBBPU (red), which statically predicts high-

bias branches using extracted features. The conventional dynamic BPU

remains unchanged for all other branches. 26

5.1 Percentage of addresses per bias percentage bin for perlbench_r. 37

5.2 Number of addresses per bias bin for perlbench_r. 37

5.3 Total execution count per bias bin for perlbench_r. 38

5.4 Percentage of total dynamic execution per bias bin for perlbench_r. . . 38

5.5 Total execution count per bias bin, subdivided by execution frequency

category (perlbench_r). 39

5.6 Percentage of global execution count per bias bin and execution category

(perlbench_r). 39

5.7 Number of unique static branches per bias bin and execution category

(perlbench_r). 40

5.8 Dynamic execution count per bias bin, with separate bars for taken and

not-taken outcomes in perlbench_r. 40

5.9 Unique branch count per bias bucket for perlbench_r, split by outcome

(taken vs. not-taken) that there are more not taken than taken. 41

5.10 Distribution of branch address counts across bias intervals. The sharp

concentration at the extremes (bias close to 0% or 100%) indicates that

most branches are heavily biased, with few exhibiting neutral behavior. . . 42

6

5.11 Percentage of unique branch addresses per bias bucket. This confirms

that the majority of static branches are either predominantly taken or not

taken, making them suitable targets for static classification. 43

5.12 Total execution counts grouped by branch bias intervals for each bench-

mark. The plots show that most execution activity concentrates on highly

biased branches, particularly those near 100% or 0% bias, highlighting

their disproportionate influence on program performance. 44

5.13 Relative contribution of each bias category to total execution count. While

highly biased branches dominate execution in absolute terms, this plot

confirms their dominance even when normalized. The sharp peak near 0%

and 100% bias illustrates the concentration of dynamic execution around

these extremes. 45

5.14 Execution distribution across bias categories segmented by execution fre-

quency. The data reveal that most execution time is concentrated in a

small number of branches that are either almost always taken or not taken.

This reinforces the practical importance of accurately predicting highly

biased branches in performance-critical paths. As we can see leela does

not behave like the as the majority of its branches have a 75% bias and

that is due to its algorithm. 47

5.15 Global distribution of execution percentages across bias intervals, grouped

by frequency category. The figure shows that across all benchmarks,

a significant proportion of total execution is associated with branches

exhibiting extreme bias. This indicates that even though some biased

branches are infrequent, their cumulative execution contribution remains

non-negligible, reinforcing their relevance to prediction models. 48

5.16 Global distribution of unique branches across bias intervals and frequency

categories. The figure highlights that a substantial number of distinct

branch instructions exhibit extreme bias, particularly in the 0–5% and

95–100% intervals. This supports the notion that many static branches

demonstrate highly skewed behavior, making them suitable targets for

static prediction mechanisms. 49

5.17 Stacked bar plots of dynamic execution counts for each bias interval, sep-

arated by taken and not taken outcomes for every benchmark. These plots

reveal that for most benchmarks, the bulk of dynamic executions occur

at the extreme bias intervals and are predominantly from either taken or

not-taken branches, confirming the highly polarized nature of real-world

branch behavior. This further emphasizes the motivation for static predic-

tion mechanisms focused on highly biased branches. 50

7

5.18 Unique static branch counts per bias interval, split by taken and not taken

outcomes. This global view across all benchmarks confirms that the vast

majority of statically observed branches fall in the extreme bins (i.e., al-

ways taken or always not taken), and that each bin tends to be dominated

by a single outcome. This further reinforces the feasibility and usefulness

of statically identifying and optimizing for high-bias branches. 51

5.19 Stacked Accuracy Breakdown Across Benchmarks For Direction Prediction 53

5.20 Dynamic: Stacked Accuracy Breakdown Across Benchmarks For Direc-

tion Prediction . 53

5.21 Execution-weighted stacked classification outcomes for bias prediction

across benchmarks. TP: True Positive, TN: True Negative, FP: False Pos-

itive, FN: False Negative. 55

5.22 Static confusion matrix breakdown (general model). 58

5.23 Execution-weighted confusion matrix breakdown (general model). 58

5.24 Staic confusion matrix breakdown (high-bias-only model). 59

5.25 Execution-weighted confusion matrix breakdown (high-bias-only model). 59

5.26 Random Forest feature importance scores for static branch prediction.

The most influential features are Jump Span, Static After, and Static

Before, while operand types and register information are less important. . 60

5.27 XGBoost sequential feature selection: accuracy as a function of the num-

ber of features. Most gains are realized by the first several features, sup-

porting the design of lightweight static predictors. 61

5.28 Execution-weighted stacked accuracy breakdown for per-benchmark train-

ing/testing. 63

5.29 Execution-weighted stacked accuracy breakdown for cross-benchmark train-

ing/testing. 63

5.30 Static stacked accuracy breakdown for Taken/Not-Taken across test bench-

marks. 66

5.31 Execution-weighted stacked accuracy breakdown for High-Bias (>0.995)

branches. 68

8

List of Tables

4.1 Branch Frequencies and Pin Overhead per Benchmark 30

5.1 Per-Benchmark Direction Classification Performance 54

5.2 Per-Benchmark Bias Classification Performance 56

5.3 Aggregate Performance Summary for Bias Prediction 57

5.4 Overall Performance: General vs. High-Bias Branch Prediction 57

5.5 Comparison of Prediction Metrics: Per-Benchmark vs. Cross-Benchmark 62

5.6 Per-Benchmark Classification Performance on Taken/Not-Taken (Dynamic

Features) . 65

5.7 Per-Benchmark Performance on Predicting High-Bias Branches 67

9

Chapter 1

Introduction

1.1 Motivation

Branch prediction remains a fundamental challenge in modern computer architecture,

with significant implications for instruction-level parallelism and overall processor perfor-

mance. Despite decades of advancements in hardware-based dynamic prediction mech-

anisms [15, 23], certain categories of branches like those that are infrequently executed

or highly biased continue to present difficulties. These branches often arise in rare exe-

cution paths such as error handling, boundary checks, or infrequent conditions, yet their

misprediction can impose disproportionate penalties on performance.

To mitigate prediction failures, compilers can emit static branch hints [14], which

serve as lightweight guidance for the processor. However, these hints are typically de-

rived from heuristics or limited profiling and are often insufficient for accurate prediction.

When uncertainty remains, responsibility is deferred to hardware predictors, which rely

on runtime behavior to adapt. These predictors, while powerful, require sufficient histori-

cal execution to make accurate inferences, rendering them less effective for cold paths or

rare events [22].

An alternative approach leverages program-based prediction: the use of static code

features to predict branch behavior without executing the program. This technique offers

distinct advantages in terms of input-independence, scalability, and integration with com-

pilation pipelines. The central hypothesis of this work is that certain branch behaviors,

particularly those that are highly biased, can be effectively inferred through static analysis

and machine learning models trained on program features.

This thesis aims to evaluate the effectiveness of this static, program-based approach,

particularly in predicting whether a branch is likely to be taken. In doing so, it addresses

several fundamental research questions regarding the feasibility, limitations, and compar-

ative advantages of static branch prediction models.

10

1.2 Contributions

This work makes the following primary contributions:

1. Empirical Evaluation of Bias-Aware Static Prediction. We assess whether highly

biased branches (e.g., taken or not-taken more than 99% of the time) can be reli-

ably predicted using only static features extracted from binary code. The goal is to

determine the extent to which such branches exhibit predictable patterns that can be

captured without runtime information.

2. Quantitative Characterization of Branch Bias. We perform a systematic analy-

sis of branch bias prevalence across a range of SPEC CPU2017 benchmarks [25],

measuring the distribution and density of biased branches to establish whether they

represent a meaningful optimization target.

3. Feature-Source Analysis and Interpretability. Using feature selection techniques

(e.g., sequential forward selection and feature importance from tree-based models),

we identify which program features (e.g., opcode, operand type, control flow po-

sition) are most predictive of branch bias. We explore potential reasons for their

predictive power and examine the semantic role of influential features.

4. Model Evaluation under Unified Framework. We implement and evaluate multi-

ple machine learning models—including Convolutional Neural Networks (CNNs),

Multi-Layer Perceptrons (MLPs), and Gradient Boosting Machines (GBMs)—under

a consistent training and evaluation framework. This comparison allows for fair as-

sessment of model performance in terms of accuracy, recall, precision, and execution-

weighted F1-score.

5. Justification for Bias-Targeted Prediction. We argue that static prediction is par-

ticularly suitable for highly biased branches, as hardware predictors require re-

peated executions to learn such patterns—a luxury not afforded for rare or cold

branches.Rarely executed branches are common in many benchmarks. Our analysis

supports the claim that static models can provide value where dynamic predictors

are weakest [5].

6. Comparative Study Against Generalized Models. We compare the performance

of bias-specialized models against generalized machine learning models trained to

predict all branches. Our results demonstrate that targeting only biased branches

leads to higher accuracy and better robustness, highlighting the benefit of special-

ization in branch prediction.

11

7. Feature Ranking and Model Interpretability. We rank the most significant fea-

tures contributing to branch predictability and provide insights into their relative

importance. This serves both to validate the model and to inform future feature

engineering for compiler-assisted prediction systems.

8. Cross-Benchmark vs. Per-Benchmark Evaluation. We investigate whether mod-

els trained on data from multiple benchmarks generalize well to unseen programs

or whether benchmark-specific models yield superior results. This analysis informs

the scalability and generality of the proposed approach.

12

Chapter 2

Background

2.1 Modern CPUs and Branch Prediction

Central Processing Units (CPUs) serve as the core component of computer systems, re-

sponsible for executing programs and managing computational tasks [13]. As computing

demands have grown more complex, CPU architectures have significantly evolved to han-

dle sophisticated software and intricate processing requirements efficiently [21]. Among

the key features of modern CPU design is the use of pipeline architecture, which improves

instruction throughput by overlapping execution stages [23].

A pipeline allows multiple instructions to be processed simultaneously at different

stages, similar to an assembly line [24]. However, this parallelism introduces new chal-

lenges, particularly in the presence of conditional branches. Since the outcome of a branch

is not known until late in the pipeline, fetching the correct next instruction in advance

becomes speculative. To mitigate the potential performance penalties of mispredicted

branches, modern CPUs employ branch prediction mechanisms.

The basic stages of a modern CPU pipeline include:

1. Fetch: The CPU retrieves an instruction from memory.

2. Decode: The instruction is analyzed and interpreted.

3. Execute: The CPU performs the operation described by the instruction.

4. Memory Access: Data is accessed from memory if required by the instruction.

5. Write Back: The results of execution are stored back into memory or registers.

13

Figure 2.1: Five-stage RISC pipeline showing instruction flow from fetch to write-back.

Branch instructions are resolved during Execute, making early prediction essential.

The Fetch stage is particularly critical when considering branch prediction. It initiates

the instruction cycle and interacts with the memory hierarchy [21]. If a conditional branch

is encountered and its outcome is unknown, the processor must speculate on the target

address to continue fetching instructions without stalling the pipeline. Accurate prediction

reduces control hazards, improves instruction throughput, and sustains high performance

[18].

Misfetches caused by incorrect predictions lead to instruction squashing and pipeline

flushing, which are costly in terms of performance. As a result, both static and dy-

namic prediction strategies are utilized to forecast branch directions. Static predictors

use compile-time heuristics or code structure, while dynamic predictors rely on runtime

history and hardware state.

Another key stage in the pipeline is Memory Access, which may be affected by prior

control decisions [24]. For example, in speculative execution paths, incorrect branch

predictions can cause unnecessary memory access operations, compounding performance

inefficiencies. Understanding how branches interact with instruction fetch and memory

access is essential for evaluating and optimizing branch prediction strategies.

Memory interactions can also be categorized into types such as Load, Read For Own-

14

ership (RFO), Prefetch, and Writeback. Each of these may be affected by branch predic-

tion, especially in speculative execution contexts:

• Load: Retrieves data for computation, which may be on a speculative path.

• Read For Ownership (RFO): Acquires exclusive access for modification, where

mispredictions may introduce false sharing [2].

• Prefetch: Anticipates future data use—prediction accuracy can significantly influ-

ence its effectiveness [18].

• Writeback: Commits results back to memory, which must be managed carefully in

speculative paths [24].

In summary, pipeline performance and memory hierarchy interactions are intricately

tied to the behavior of branches. Understanding these components provides the necessary

context for exploring and evaluating branch prediction techniques, which aim to maximize

instruction-level parallelism and minimize execution stalls in modern processors [2, 23].

2.2 Program-Based Branch Prediction

Program-based branch prediction refers to the technique of estimating the outcome of

a conditional branch specifically, whether it will be taken or not—taken based solely on

static properties of the program’s code. Unlike dynamic branch prediction, which relies on

runtime execution history and hardware structures such as branch history tables or pattern

predictors, program-based prediction operates without executing the program. It instead

utilizes information extracted from the program’s binary or intermediate representation [3,

7, 8].

The goal of program-based prediction is to infer branch behavior using features such

as instruction opcodes, operand types, surrounding control-flow structure, and immedi-

ate values or offsets. These features can be derived during compilation or static binary

analysis and serve as input to machine learning models trained to classify branches.

This approach is particularly useful for:

• Profile-free environments: where runtime data collection is impractical or costly.

• Cold or rarely executed code: which lacks sufficient execution history for accurate

dynamic prediction [12].

• Compiler optimizations: where early prediction of branch direction can inform

instruction scheduling, code layout, or speculative transformations [7, 20].

15

Program-based prediction is often implemented as a supervised learning task: a la-

beled dataset of branches (with known taken/not-taken outcomes) is used to train a pre-

dictive model. During inference, this model can then classify new, unseen branches based

on their static features alone.

In this thesis, program-based prediction is studied in the context of highly biased

branches (branches that are overwhelmingly taken or not taken). These branches are

good candidates for static prediction, as their behavior tends to be governed by structural

program logic rather than dynamic inputs.

2.2.1 Program-Based Prediction Features

These features are extracted statically from code, without requiring program execution:

Branch Opcode The specific instruction opcode (e.g., JNE, JZ, JL) of the conditional

branch. It indicates the type of comparison or jump condition being evaluated.

Direction Whether the target of the branch is forward or backward in the instruction

stream. Backward branches are often associated with loops, which are typically taken

frequently.

Operand Opcode / Function / Type Metadata for the operand being compared in the

branch:

Opcode: Instruction used to compute the operand (e.g., SUB, CMP)

Function: Abstract semantic category, e.g., arithmetic, logical, comparison

Type: The data type or representation, such as integer, float, or pointer

RA and RB Instruction Metadata (Opcode, Function, Type) Static tracking of the

instruction(s) that produced the source operands:

RA/RB Opcode: The last instruction that wrote to the RA/RB operand

RA/RB Function: Semantic role of that instruction (e.g., load, compare, shift)

RA/RB Type: Operand type classification (e.g., integer, floating-point)

These features capture the computation context of the branch decision inputs [8].

Flag Setter Identifies whether a prior instruction explicitly sets condition flags used

by the branch (e.g., via CMP, TEST). The presence and type of flag-setting instruction

can influence predictability.

Jump Span The static distance (in bytes or instructions) between the branch and

its target. Longer distances may imply cross-function jumps, while short distances are

typical of loops or short conditionals.

Static Before / After The number of static instructions before and after the branch

within its containing function. These can reflect control flow density and local complexity.

Opcode Sequence or Frequency Histogram A sequence or histogram of opcode

types in a fixed window around the branch (e.g.,±5 instructions). This captures local

16

instruction patterns that may correlate with branch semantics [8].

Instruction Distance (Offset) An absolute offset (often encoded as an immediate in

the instruction) that points to the branch target. Useful as a spatial feature, sometimes

correlated with branch role (e.g., loops vs. conditionals) [12].

Control Flow Context Encodes the shape or topology of the local control flow graph,

such as fan-in, fan-out, loop headers, or merge points. This can help differentiate struc-

tural branches from incidental ones [7].

Instruction Density Measures how many static instructions exist around the branch.

Denser regions may correspond to hot paths or performance-critical code blocks.

2.3 Profile-Based Branch Prediction

Profile-based branch prediction leverages dynamic information collected during program

execution to predict the direction of conditional branches. This approach relies on profil-

ing runs (executions of the program with representative inputs) to gather statistical data

about each branch’s behavior, such as how frequently it is taken or not taken [5, 9].

In contrast to program-based prediction, which uses only static code features, profile-

based prediction incorporates actual runtime behavior to improve accuracy. Branch direc-

tion frequencies obtained from profiling can then be embedded into the program binary as

metadata or used during compilation to influence optimizations. For instance, compilers

can use profile information to guide branch ordering, layout decisions, or to emit static

hints (e.g., using the likely/unlikely annotations in GCC or LLVM) [13, 20].

Profile-based prediction is commonly used in:

• Profile-Guided Optimization (PGO): where branch behavior statistics help the

compiler optimize code layout and reduce mispredictions [9].

• Software-based prediction models: that use profile data as training labels for ma-

chine learning [8].

• Compiler-inserted static hints: where frequently taken branches are annotated to

help the processor make better static predictions [14].

However, profile-based prediction has limitations. It requires representative inputs

to be effective, if the input distribution shifts at deployment time, the predictions may

become inaccurate. Additionally, collecting profile data introduces overhead and com-

plexity, making it less suitable for fast or lightweight deployment scenarios.

This thesis focuses on program-based prediction to avoid the reliance on profile data

and explore whether static features alone can offer accurate prediction for specific branch

classes, particularly those that are highly biased.

17

2.3.1 Profile-Based Prediction Features

These features are computed or observed at runtime during profiling runs:

Taken / Not Taken Count Counts of how many times the branch was taken or not.

These are the primary indicators of branch bias used in profile-guided optimization [9].

Execution Frequency The total number of times the branch was executed. Branches

with low frequency may not be well-learned by dynamic predictors.

Confidence Estimator A measure of how consistent the prediction outcome is. High-

confidence predictions may be used to bypass further prediction logic [5].

Speculative Update Behavior Tracks how often speculative predictions are later cor-

rected. Frequent rollbacks may indicate a mispredict-prone branch.

Stall Cycles on Mispredict Measures how many cycles the processor stalls when

a misprediction occurs at the branch. This reflects the performance cost of inaccurate

predictions [13].

Reorder Buffer Pressure The degree to which mispredictions congest the instruction

pipeline’s reorder buffer, preventing forward progress [13].

Cache Miss Association Observes whether cache misses tend to occur after certain

branches. Some predictors associate branch behavior with memory access patterns [5].

Global History Register (GHR) A bit-vector encoding recent global branch out-

comes. Used to capture long-range inter-branch dependencies [30].

Local History Table (LHT) Stores local histories of each individual branch, captur-

ing consistent behavior across multiple executions of the same branch [30].

Pattern History Table (PHT) A table indexed by hashed history patterns; each entry

holds a saturating counter that biases prediction. Common in two-level predictors [30].

Path History Sequence of recently taken basic blocks or function calls. Used to

correlate long execution paths with branch behavior.

Branch Target Buffer (BTB) Caches recently taken indirect branches and their tar-

gets. Used to accelerate prediction for indirect or computed jumps [13].

Return Address Stack (RAS) Tracks return addresses for call-return pairs, enabling

prediction of return instructions.

2.4 Hardware-Level Branch Prediction: Dynamic and Static
Hint Bit Approaches

Branch prediction is a critical technique for improving instruction-level parallelism in

modern pipelined processors. Since control-flow instructions such as conditional branches

can alter the program counter (PC) in non-sequential ways, processors must predict the

outcome of branches early in the pipeline to avoid costly stalls or wasted work from

18

mispredicted instructions. This section reviews hardware-level branch prediction mech-

anisms, with a focus on both traditional dynamic prediction and static program-based

prediction using hint bits, as represented in Figure 2.3.

2.4.1 Traditional Dynamic Branch Prediction

In conventional designs, branch prediction is performed by a dedicated hardware unit

known as the Branch Prediction Unit (BPU). The BPU typically consists of structures

such as the Branch History Table (BHT), Pattern History Table (PHT), Branch Target

Buffer (BTB), and Return Address Stack (RAS), which collectively track the outcomes

and targets of previously encountered branches [13, 23, 30].

When a branch instruction is fetched from the instruction cache, the BPU consults

these hardware tables to predict the next PC:

• Local predictors use the outcome history of individual branches.

• Global predictors use the outcomes of recent branches to form a global history.

• Hybrid predictors combine multiple prediction schemes for higher accuracy.

If the BPU predicts that a branch will be taken, the pipeline fetches instructions from the

predicted target. If the prediction proves incorrect during execution, a pipeline flush is

required, incurring a performance penalty.

2.4.2 Dynamic Branch Prediction without Hint Bits

Figure 2.2 illustrates a pipeline that relies solely on dynamic branch prediction, without

support for statically embedded hint bits. In this architecture, all branch predictions are

made by the hardware Branch Prediction Unit (BPU), which maintains internal struc-

tures such as local/global history tables, pattern history tables, or other predictive mecha-

nisms [13, 23].

When the processor fetches instructions from the instruction memory, the BPU re-

ceives the current program counter (PC) and uses it to index its prediction tables. Based

on accumulated runtime history and the outcomes of previous branches, the BPU predicts

the next PC for the instruction fetch unit, allowing the pipeline to speculatively continue

execution without stalling.

In this setup, the processor does not utilize any statically computed prediction infor-

mation from the binary. All prediction logic is adaptive and updated at runtime, enabling

the BPU to learn program behavior over repeated executions. However, this also means

that cold-start branches (those not previously encountered) and branches with irregular

19

or input-dependent patterns may incur more mispredictions, as the BPU requires several

executions to build up an accurate history.

This approach is robust for most general-purpose code, but can struggle with cold or

highly biased branches where dynamic adaptation is slow or unnecessary. The absence

of hint bits in the pipeline means that all prediction improvements must come from hard-

ware structures and runtime feedback, with no support for compiler- or profile-inserted

guidance.

Figure 2.2: Pipeline architecture relying solely on dynamic hardware branch prediction

(BPU) without static hint bits.

2.4.3 Static Program-Based Prediction with Hint Bits

An alternative to purely dynamic prediction is to embed statically computed predictions

directly into the program binary using hint bits. This static approach leverages compile-

time analysis, profiling, or machine learning techniques to determine the likely outcome

of each branch before execution [7, 8, 20]. The prediction is encoded as an additional bit

(or bits) associated with each branch instruction.

Hardware support for hint bits typically requires minimal modification to the pro-

cessor pipeline:

• When a branch instruction is fetched, the hint bit is read alongside the instruction

from the instruction cache.

20

• A multiplexer (MUX) at the input to the PC selection logic allows the processor to

choose between the static prediction (hint bit) and the prediction from the dynamic

BPU.

• A control mechanism (e.g., set by the processor mode, or by software) determines

which source is used for branch prediction on a per-branch or per-program basis.

This structure is shown in Figure 2.3, where the MUX selects between the static hint path

and the traditional dynamic prediction path.

2.4.4 Comparison: With and Without Hint Bits

Without hint bits, the pipeline relies exclusively on dynamic predictors in the BPU,

which adapt to program behavior at runtime but may require several mispredictions to

“learn” new patterns or handle cold-start branches.

With hint bits, the processor can exploit prior static analysis or profiling to guide

branch prediction from the very first execution. This is particularly effective for highly

biased branches, where behavior is consistent and predictable across runs.

A system may be designed to:

• Use hint bits for branches statically determined to be highly biased.

• Fall back to dynamic prediction for branches with uncertain or input-dependent

outcomes.

• Combine both strategies using a MUX, as in Figure 2.3, for maximum flexibility

and accuracy.

2.4.5 Illustrative Pipeline with Hint Bits

Figure 2.3 illustrates a pipeline that integrates both dynamic branch prediction and static

hint bits to improve prediction accuracy and flexibility. At the instruction fetch stage,

a multiplexer (MUX) selects between two sources of prediction: the static hint bit em-

bedded within the instruction (typically read from the instruction cache or memory) and

the output of the dynamic branch prediction unit (BPU). This hybrid mechanism supports

four possible prediction scenarios (00, 01, 10, 11), depending on the combination of out-

puts from the static hint bit and the dynamic BPU. When the static prediction mode is

enabled, the branch outcome is determined directly from the static hint bit, offering fast,

low-latency prediction with minimal overhead—ideal for highly predictable branches. If

static prediction is not used, the pipeline defers to the dynamic BPU, which adapts over

21

time based on execution history. By incorporating both mechanisms, the processor archi-

tecture achieves a balance between speed and adaptivity, leveraging static hints for simple

control flows while still accommodating complex or data-dependent branches through

dynamic learning.

Figure 2.3: Pipeline architecture supporting both dynamic and static (hint bit) branch

prediction using a multiplexer to select the prediction source.

2.4.6 Discussion

Hardware support for static branch prediction using hint bits provides a practical mech-

anism for leveraging offline program analysis and machine learning within traditional

processor pipelines. By augmenting or bypassing the BPU with statically computed pre-

dictions, processors can reduce misprediction rates for highly biased or easily analyzed

branches, reduce pipeline stalls, and improve overall instruction throughput.

This approach is particularly relevant in environments where branch behavior is stable

across executions, or where profile-guided compilation can accurately identify bias at

compile time. The combined use of dynamic and static predictors, facilitated by a simple

MUX structure, offers the best of both worlds: rapid adaptation to runtime conditions and

robust prediction for statically predictable branches.

22

Chapter 3

A Hardware Static Program-Based
Mechanism for Predicting Highly
Biased Branches

3.1 Overview

Program-based prediction aims to anticipate the behavior of branches solely through static

analysis, without executing the code. This methodology is particularly focused on highly

biased branches—those that are almost always taken or not taken. In this framework, ma-

chine learning models are trained offline on statically extracted features to predict whether

a given conditional branch is likely to be taken.

The long-term goal of this mechanism is to enable its integration into future hardware

systems. Such integration could take the form of compiler-inserted hint bits, static pre-

diction units alongside traditional branch predictors, or hybrid designs that merge static

and dynamic prediction capabilities, particularly in scenarios where runtime data is insuf-

ficient or unavailable.

3.2 Proposed Mechanism and Deployment Idea

The central idea of this mechanism is to leverage statically trained models to perform

profile-based prediction for branches that exhibit extreme bias. This prediction mech-

anism is envisioned as a lightweight hardware-level enhancement designed to operate

without requiring execution history.

In the proposed hardware implementation, the code cache loader (or an auxiliary anal-

ysis unit) is augmented with a prediction engine that processes code as it is loaded into the

instruction cache. Upon detecting conditional branches in the newly loaded cache block,

23

the prediction unit will extract relevant static features from the surrounding instructions

and classify the branches using a pre-trained model. This process can be conducted in

one of two modes:

• Offline Mode: A predictive model is trained in advance on a large set of branches

across benchmarks, then embedded in hardware as a fixed classifier. Upon loading

code into the cache, the classifier predicts branch directions based on extracted

static features.

• Online Mode: A simplified predictor is trained or updated incrementally using

runtime feedback, allowing adaptation to application-specific patterns. In this case,

the hardware maintains and evolves a local model.

This static prediction engine is invoked at cache load time and is optimized for low-

latency operation. Because it targets only highly biased branches, which tend to exhibit

predictable structural patterns, the classifier complexity can remain low while maintaining

accuracy.

The predicted branch direction (taken or not taken) can then be encoded as a branch

hint bit or passed to the existing branch prediction unit to influence initial prediction deci-

sions. This process is especially useful in cold-start conditions where dynamic predictors

have no history available.

3.3 Feature Set for Static Prediction

To enable prediction in the absence of profiling data, a comprehensive set of features is

extracted for each conditional branch instruction. These features are derived from the

instruction itself, its operands, and the surrounding static context.

Instruction-level characteristics include the Branch Opcode, which identifies the spe-

cific type of branch instruction, and the Direction, denoting whether the target is for-

ward or backward relative to the instruction’s location. Operand-specific features such

as Operand Opcode, Operand Function, and Operand Type provide metadata on the

computation being performed and how operands are compared.

Further context is captured by tracing the origins of the branch’s operands, specifically

the RA and RB sources, capturing their opcode, function, and operand types. The presence

of a Flag Setter—an instruction that affects condition flags used by the branch—is

another key indicator of behavior.

The Jump Span feature encodes the static distance to the branch target, while Static

Before and Static After provide a view into local instruction density within the func-

tion. Metadata such as Function, Language, and Branch Address are included for

24

traceability and indexing. Finally, Taken Count and Not Taken Count are used strictly

for label construction and evaluation, and are excluded from the training features.

3.4 Design Rationale

The use of statically derived features allows prediction to be performed early in the compi-

lation or binary translation process. This is particularly advantageous in several practical

settings.

First, cold execution paths—such as those associated with error handling or rare con-

dition checks—often do not execute frequently enough for dynamic predictors to learn

reliable patterns. Static models, by contrast, can offer upfront predictions regardless of

runtime frequency.

Second, in resource-constrained systems such as embedded environments, storage and

power limitations may preclude the use of sophisticated dynamic predictors or profiling

mechanisms. Here, statically embedded predictions can serve as an efficient alternative.

Third, in ahead-of-time compilation pipelines or binary translation workflows (e.g.,

just-in-time compilers, static binary rewriters), having a reliable prediction mechanism

that does not rely on profiling simplifies the integration of branch prediction metadata.

The features used in this work were selected based on prior literature, mutual informa-

tion scores, and empirical forward feature selection to maximize predictive value while

maintaining interpretability.

3.5 Machine Learning Framework

To realize this prediction mechanism, a machine learning framework was implemented

for training classifiers based on the extracted features and corresponding branch outcome

labels.

Training is conducted offline using a dataset composed of statically extracted feature

vectors and corresponding labels, which indicate whether a branch was typically taken or

not. In particular, a subset of branches labeled as "highly biased"—e.g., exhibiting a taken

or not-taken ratio above 99%—are used to explore whether this type of behavior can be

statically identified with high precision.

Several model architectures were tested under this framework, including Convolu-

tional Neural Networks (CNNs), which process encoded feature sequences via 1D convo-

lutions, Multi-Layer Perceptrons (MLPs) for dense feature modeling, Logistic Regression

as a linear baseline, and Gradient Boosting Machines (GBMs), which combine decision

trees in an additive fashion.

25

Each model was evaluated under both single-benchmark and cross-benchmark condi-

tions. In the former, training and testing were conducted on disjoint subsets of the same

benchmark; in the latter, models were trained on multiple benchmarks and evaluated on

unseen ones to assess generalizability.

3.6 Static Program-Based Branch Prediction Unit (SPBBPU)
Integration

Figure 3.1 illustrates the integration of the proposed Static Program-Based Branch Pre-

diction Unit (SPBBPU) into the existing processor pipeline. All standard pipeline and

dynamic branch prediction logic remain unchanged; the SPBBPU is introduced as a dedi-

cated module for high-bias branches. Now the MUX instead of the previous inputs of the

4 cases (00, 01, 10, 11) also takes into consideration if the branch is highly bias because

in that case it takes the prediction of SPBBPU.

Figure 3.1: Hardware integration of the SPBBPU (red), which statically predicts high-bias

branches using extracted features. The conventional dynamic BPU remains unchanged for

all other branches.

Operational Flow:

• When instructions are fetched into the instruction cache, the SPBBPU monitors the

instruction stream in parallel with the existing pipeline.

26

• For each conditional branch, the SPBBPU checks whether it qualifies as a high-bias

branch. This determination can be made by inspecting hint bits, static features, or

by predicting at run time.

• If a branch is identified as high-bias, the SPBBPU extracts relevant static features

(e.g., opcode, operand types, control-flow context) and uses its internal, lightweight

hardware-implemented model (e.g., a small neural network or rule-based logic) to

predict the branch direction.

• The SPBBPU outputs its prediction to the pipeline control logic. For these branches,

the dynamic branch predictor is either bypassed or taken into consideration.

• For all other branches, prediction proceeds as usual through the dynamic BPU,

without intervention from the SPBBPU.

Key Advantages:

• Minimal Architectural Intrusion: Only the SPBBPU is added. All other pro-

cessor components, including the dynamic branch predictor, instruction fetch, and

decode logic, remain unmodified.

• Selective Application: The SPBBPU is only active for statically identified high-

bias branches, ensuring that its impact is focused where static prediction is most

effective.

• No Hybrid Prediction: There is a strict separation of responsibility. The SPBBPU

exclusively predicts high-bias branches; the dynamic BPU predicts all others.

• Hardware Simplicity: The SPBBPU can be implemented as a lightweight hard-

ware block, invoked only when relevant, with low overhead.

This approach ensures seamless integration with existing architectures while provid-

ing the accuracy and cold-start benefits of static prediction for highly predictable (high-

bias) branches.

3.7 Example: High-Bias Branch in perlbench_r

To demonstrate the concept of a highly biased branch, consider a representative case from

the perlbench_r benchmark, which is based on the perl5 interpreter. The following

pseudocode illustrates a branch that checks for a specific token pattern during Perl source

parsing:

27

1 f u n c t i o n check_comma (s : s t r i n g) −> vo id :
2 a s s e r t s i s not n u l l
3
4 i f s [0] == ’ ’ and s [1] == ’ (’ :
5 i f s y n t a x _ w a r n i n g _ e n a b l e d () :
6 w = s [2 :]
7 l e v e l = 1
8 whi le w i s not empty and l e v e l > 0 :
9 i f w[0] == ’ (’ : l e v e l += 1

10 e l i f w[0] == ’) ’ : l e v e l −= 1
11 w = w [1 :]
12
13 whi le w[0] i s s p a c e :
14 w = w [1 :]
15
16 i f w[0] in END_TOKENS:
17 i s s u e _ w a r n i n g (" func − l i k e c o n s t r u c t d e t e c t e d ")

Listing 3.1: Pseudocode of high-bias branch

Why Is This Branch Highly Biased? The condition:

1 i f s [0] == ’ ’ and s [1] == ’ (’ :

is only true in rare but syntactically regular situations. Since it occurs in a parsing

function, the input triggering this branch is both uncommon and consistent across runs.

As a result, this branch is taken in approximately 97.35% of executions in a predictable

pattern, qualifying it as highly biased.

Predictability via Static Analysis This branch relies on constant comparisons on known

characters, making it a prime target for static prediction. Its opcode sequence, operand

types, and contextual position within the function yield strong signals to a machine learn-

ing model trained purely on program structure. Since the outcome is deterministic and

minimally affected by dynamic inputs, the static predictor can infer the direction with

high confidence.

Reference Original code from perl5/toke.c #L12019.

28

https://github.com/Perl/perl5/blob/blead/toke.c#L12019

Chapter 4

Evaluation of Frameworks and
Experimental methodology

4.1 SPEC CPU2017 Benchmark Suite

The SPEC CPU2017 benchmark suite [25] is a standardized collection of compute-intensive

workloads developed by the Standard Performance Evaluation Corporation (SPEC). It is

widely used for evaluating and comparing the performance of modern CPUs and system

architectures. The suite includes a diverse set of real-world applications written in C,

C++, and Fortran, covering domains such as physics simulations, artificial intelligence,

compiler design, and financial modeling.

The benchmarks are divided into two primary categories: speed and rate. The speed

benchmarks measure the performance of a system running a single copy of the work-

load, while the rate benchmarks assess throughput by executing multiple instances in

parallel. For this thesis, we utilize the speed versions of selected workloads from the

SPEC CPU2017 suite to extract control flow and branch behavior features, facilitating an

in-depth study of branch prediction characteristics across a broad spectrum of program

behaviors.

SPEC CPU2017 is particularly suitable for this work because it reflects the complexity

and variability found in real-world applications, ensuring that the evaluation of branch

prediction models is both rigorous and generalizable.

29

Table 4.1: Branch Frequencies and Pin Overhead per Benchmark

Benchmark Languages Description Taken Not Taken Total Taken % Not Taken % Time w/ Pin (s) Time w/o Pin (s)

507.cactuBSSN_r C, Fortran Numerical relativity (Einstein equations) 6,124,534,232 8,449,063,979 14,573,598,211 42.02% 57.98% 862 120
531.deepsjeng_r C++ AI-based chess engine 78,676,666,947 86,856,574,217 165,533,241,164 47.53% 52.47% 9,157 228
519.lbm_r C Lattice-Boltzmann method for fluid dynamics 77,223,661 125,840,417 203,064,078 38.03% 61.97% 408 123
557.xz_r C Compression utility (XZ / LZMA) 19,303,804,391 13,672,973,189 32,976,777,580 58.54% 41.46% 1,516 98
508.namd_r C++ Molecular dynamics 28,695,435,918 9,429,271,454 38,124,707,372 75.27% 24.73% 1,279 149
520.omnetpp_r C++ Discrete event simulation (OMNeT++) 43,390,497,850 60,257,723,316 103,648,221,166 41.86% 58.14% 6,158 299
538.imagick_r C Based on ImageMagick (image processing) 55,842,991,084 3,515,721,023 59,358,712,107 94.08% 5.92% 12,114 881
510.parest_r C++ Finite element analysis 157,564,094,317 36,191,377,913 193,755,472,230 81.32% 18.68% 15,774 256
544.nab_r C, NAB Nucleic Acid Builder (AmberTools subset) 28,993,759,798 8,876,928,847 37,870,688,645 76.56% 23.44% 6,293 206
500.perlbench_r C, Perl Based on the Perl interpreter (in C) 55,539,389,721 39,091,891,037 94,631,280,758 58.69% 41.31% 7,515 85
502.gcc_r C Based on GCC compiler code 13,594,495,015 20,230,798,504 33,825,293,519 40.19% 59.81% 1,924 26
511.povray_r C++ Ray tracing (POV-Ray engine) 89,389,027,725 42,818,555,477 132,207,583,202 67.61% 32.39% 13,891 228
541.leela_r C++ AI Go engine (Leela Zero) 78,659,068,304 68,357,365,974 147,016,434,278 53.50% 46.50% 9,565 371
523.xalancbmk_r C++ XSLT processing (Xalan-C++) 92,084,737,763 24,306,524,892 116,391,262,655 79.12% 20.88% 12,068 171
505.mcf_r C Network optimization problem 26,266,167,190 15,798,987,287 42,065,154,477 62.44% 37.56% 5,254 266
526.blender_r C, C++, Python Blender rendering (core in C/C++) 23,155,087,631 33,052,828,572 56,207,916,203 41.20% 58.80% 9,372 183

30

4.2 Experimental Setup

All experiments in this thesis were conducted on a local x86_64 machine running a Linux

environment. The system configuration is as follows:

• CPU: 12th Gen Intel® CoreTM i7-12700 with 20 logical cores (10 performance

and 10 efficiency threads), supporting simultaneous multithreading (SMT) with 2

threads per core.

• Memory: 32 GB of RAM, of which 30 GiB were available for user-space execu-

tion; a swap partition of 15 GiB was also available but remained unused during the

experiments.

• Storage: The system is equipped with a non-rotational NVMe SSD (indicated

by ROTA = 0), which provides high throughput and low latency suitable for I/O-

intensive workloads.

• Cache Hierarchy:

– L1 Data Cache: 512 KiB (12 instances)

– L1 Instruction Cache: 512 KiB (12 instances)

– L2 Cache: 12 MiB (9 instances)

– L3 Cache: 25 MiB (shared)

• Operating System: Linux kernel version 5.14.0-427.18.1.el9_4.x86_64.

This configuration ensures sufficient computational and memory resources for parallel

model training and feature extraction from large binary datasets.

4.3 Pin Tool API

Intel’s Pin is a dynamic binary instrumentation framework widely used in research and

performance analysis for x86/x86_64 binaries. In this thesis, the Pin Tool API is used to

implement a custom instrumentation pass for extracting runtime features associated with

conditional branches. The goal is to collect execution-level metadata that complements

static analysis and enables accurate training and evaluation of machine learning models

for branch prediction.

31

4.3.1 Instrumentation Approach

The custom Pin tool was developed using the INST_COND_BR category in the Pin API

to identify and analyze conditional branch instructions. The tool performs the following

operations for each branch encountered:

• Address Logging: Captures the program counter (PC) of the branch instruction to

establish a mapping between dynamic behavior and static features.

• Execution Outcome: Records whether the branch was taken or not during execu-

tion. This binary label is used as the prediction target.

• Execution Count: Maintains a count of how many times each branch was taken

or not-taken, enabling downstream labeling of biased branches based on runtime

frequency.

• Operand Extraction: Extracts source operands (when applicable) by intercept-

ing the relevant registers or memory addresses used in the comparison before the

conditional branch. This allows correlation with static operand-based features.

• Contextual Metadata: Optionally captures function name (if symbol informa-

tion is present), call site context, and basic block boundaries for enhanced static-

dynamic linkage.

4.3.2 Implementation Details

The instrumentation pass was implemented using the following Pin API routines:

• INS_IsBranch() and INS_IsConditionalBranch() to identify target instruc-

tions.

• INS_InsertIfCall() and INS_InsertThenCall() for efficient predicate evalu-

ation.

• INS_InsertCall() to log outcomes and addresses during execution.

• PIN_GetContextReg() and INS_RegR() to access operand-level register values at

runtime.

4.3.3 Output Format

The output of the Pin tool is written in CSV format, containing the following fields:

• Branch Address

32

• Function Name

• Taken Count

• Not Taken Count

• Operand Registers / Immediate Values (if extracted)

This dataset serves as the dynamic component in the feature pipeline and is later joined

with statically extracted features to construct the full training set.

4.3.4 Use Case in the Thesis

The Pin Tool was primarily used to:

1. Identify biased branches (those that are taken or not-taken with ≥ 99% probability).

2. Provide the ground truth labels for machine learning classifiers (e.g., taken vs. not-

taken).

3. Analyze discrepancies between static predictions and actual runtime behavior.

The collected data enables both supervised training and execution-weighted evalua-

tion, supporting the overarching hypothesis of this work that static features can meaning-

fully predict branch behavior.

4.4 Machine Learning Algorithms

To evaluate the feasibility and effectiveness of program-based branch prediction, a range

of machine learning algorithms were implemented and tested under a unified evaluation

framework. These models are trained using static features extracted from compiled bina-

ries, and are tasked with predicting whether a branch instruction is likely to be taken or

not.

4.4.1 Classification Objective

The primary task is a binary classification problem: determining whether a given condi-

tional branch is more frequently taken or not taken based on its static characteristics. In

some experiments, this task is refined to predicting highly biased branches—those taken

(or not) at least 99% of the time. Models are trained using labels generated from dynamic

profiling (via Pin Tool) and features derived from disassembly and control-flow analysis.

33

4.4.2 Models Evaluated

The following models were selected to represent a diverse set of learning paradigms:

Logistic Regression

Logistic Regression (LR) serves as a simple and interpretable baseline for branch outcome

prediction. Despite its linear nature, LR can often capture trends in highly separable data,

such as biased branches influenced by specific opcodes or operand types.

Gradient Boosting Machines

Gradient Boosting Machines (GBMs), including implementations like XGBoost, are en-

semble methods that construct a sequence of weak learners (typically decision trees) to

correct the residuals of previous learners. GBMs are effective for tabular data and pro-

vide natural support for feature importance analysis, which is leveraged in this thesis to

interpret model behavior.

Multi-Layer Perceptrons (MLPs)

MLPs are fully connected feedforward neural networks capable of modeling non-linear

relationships. In this work, MLPs are used to capture complex feature interactions that

may not be easily linearly separable. A standard architecture with two hidden layers and

ReLU activation is employed.

Convolutional Neural Networks (CNNs)

CNNs, although typically used in image and signal processing, are adapted here to op-

erate on structured, fixed-length feature vectors. By treating features as one-dimensional

sequences, CNNs can detect local patterns and invariant substructures in feature space.

This architecture has shown superior performance in capturing neighborhood-level pat-

terns among branch-related features.

4.4.3 Training and Evaluation Protocol

Each model is trained and evaluated using the same preprocessed datasets to ensure com-

parability. The datasets are split using an 80/20 train-test split unless otherwise stated.

Key steps include:

• Imputation: Missing categorical values are imputed with a constant placeholder,

and numeric values with the column mean.

34

• Encoding: Categorical features are ordinally encoded. Numeric features are stan-

dardized.

• Evaluation Metrics: Accuracy, Precision, Recall, and F1-Score are reported for

each benchmark, along with execution-weighted summaries across all benchmarks.

Accuracy =
T P+T N

T P+T N +FP+FN
(4.1)

Precision =
T P

T P+FP
(4.2)

Recall =
T P

T P+FN
(4.3)

F1-Score = 2× Precision×Recall
Precision+Recall

(4.4)

35

Chapter 5

Evaluation

5.1 Prevalence of Highly Biased Branches

A central hypothesis of this thesis is that many conditional branches exhibit extreme

bias—that is, they are taken almost always or almost never. Such biased branches are

particularly promising candidates for static prediction, especially in scenarios where hard-

ware predictors lack sufficient runtime history or are poorly optimized for cold paths.

To validate this assumption, we performed a comprehensive analysis of conditional

branch instructions using a diverse set of SPEC CPU2017 benchmarks. While this bench-

mark suite may not feature a large number of rarely executed (the focus of this thesis),

highly biased branches, its widespread use and accessibility make it a practical choice for

this initial investigation. For each benchmark, we extracted every branch instance and

calculated its bias ratio

5.1.1 Branch Bias Distribution and Dynamic Impact in perlbench_r

This section presents a detailed analysis of branch bias and execution characteristics for

the perlbench_r benchmark, based on eight complementary visualizations. The goal

is to illustrate the distribution of branch biases, their dynamic significance, and the mo-

tivation for a static high-bias prediction mechanism. All of the trends observed for this

benchmark are seen in almost all of the benchmarks.

36

Figure 5.1: Percentage of addresses per bias percentage bin for perlbench_r.

1. Percentage of Addresses per Bias (Figure 5.1) This figure shows what percent-

age of unique branch instructions (addresses) fall into each bias bin. The vast major-

ity of branches are clustered at very high bias values (∼99–100%), indicating that most

branches in this benchmark are overwhelmingly taken or not-taken. Only a small minority

are distributed across moderate bias bins.

Figure 5.2: Number of addresses per bias bin for perlbench_r.

2. Address Count per Bias (Figure 5.2) This raw count reinforces the previous ob-

servation: thousands of static branch addresses are concentrated in the highest bias bins,

while few exist elsewhere. This highlights that high-bias branches dominate the static

control flow structure.

37

Figure 5.3: Total execution count per bias bin for perlbench_r.

3. Total Execution Count per Bias (Figure 5.3) Here, the y-axis measures total dy-

namic executions summed for all branches in each bias bin. Again, the highest bias bins

not only contain the most branches but are also responsible for nearly all dynamic branch

decisions (billions of executions).

Figure 5.4: Percentage of total dynamic execution per bias bin for perlbench_r.

4. Percentage of Total Execution Count per Bias (Figure 5.4) This normalized view

demonstrates that over 60% of all dynamic executions are attributable to the highest bias

branches alone. The remaining bins collectively account for a much smaller share, under-

scoring the extreme dominance of high-bias branches in the program’s dynamic control

flow.

38

Figure 5.5: Total execution count per bias bin, subdivided by execution frequency cate-

gory (perlbench_r).

5. Execution Distribution per Bias by Category (Figure 5.5) Each stacked bar is

subdivided by how many times the branch executes (from “once” to “>5,000,000$”),

showing that most dynamic activity in high-bias bins comes from branches executed mil-

lions of times. This confirms that a small set of very high-bias, high-frequency branches

dominates runtime behavior .

Figure 5.6: Percentage of global execution count per bias bin and execution category

(perlbench_r).

6. Global Execution Percentage per Bias by Category (Figure 5.6) This graph fur-

ther normalizes the data, confirming that the vast majority of all dynamic branch outcomes

are the result of high-bias branches executed over a million times each . Lower-bias or

infrequently-executed branches have minimal global effect.

39

Figure 5.7: Number of unique static branches per bias bin and execution category

(perlbench_r).

7. Unique Branch Count per Bias by Category (Figure 5.7) The final visualization

reveals that, even among high-bias branches, there is a spectrum of execution frequencies:

some are “cold” (executed once), while others are “hot” (executed millions of times). This

justifies a prediction approach that identifies and targets only the highly biased, frequently

executed branches for static prediction .

Figure 5.8: Dynamic execution count per bias bin, with separate bars for taken and not-

taken outcomes in perlbench_r.

8. Dynamic Execution Count per Bias Bin, Split by Taken and Not Taken (Figure 5.8)
This plot reveals that, for nearly all bias intervals, the majority of dynamic executions are

concentrated in either the taken or not-taken class, especially for the extreme bias bins

(∼99–100% and ∼0–1%). This further illustrates the highly polarized nature of branch

40

behavior in this benchmark and supports the case for highly selective static prediction

mechanisms.

Figure 5.9: Unique branch count per bias bucket for perlbench_r, split by outcome

(taken vs. not-taken) that there are more not taken than taken.

9. Unique Branches per Bias Bucket, Split by Taken/Not-Taken (Figure 5.9) This

static analysis shows that most branch instructions are strongly biased in one direction.

The last bin (99–100%) contains the majority of branches, most of which consistently

yield the same outcome. This static polarity complements the dynamic execution trends

seen earlier and further supports the case for selectively applying static prediction to high-

bias branches.

Summary These graphs collectively show that the perlbench_r benchmark, like many

other benchmarks, is dominated by a small set of highly biased, frequently executed

branches. In this thesis we examine if static program-based prediction is particularly

effective for such cases, providing motivation for the proposed hardware design focused

on high-bias branches.

5.1.2 Bias Histogram per Benchmark

Figures 5.10 through 5.13 show per-benchmark histograms of branch bias, aggregated

either by raw counts, execution-weighted counts, or normalized proportions. In all bench-

marks, we observe that a significant proportion of branches fall into the extreme bins—e.g.,

[0.0−0.05] or [0.95−1.0]. This strongly indicates the presence of statically biased branches

in a wide variety of workloads.

41

Figure 5.10: Distribution of branch address counts across bias intervals. The sharp con-

centration at the extremes (bias close to 0% or 100%) indicates that most branches are

heavily biased, with few exhibiting neutral behavior.

42

Figure 5.11: Percentage of unique branch addresses per bias bucket. This confirms that

the majority of static branches are either predominantly taken or not taken, making them

suitable targets for static classification.

43

Figure 5.12: Total execution counts grouped by branch bias intervals for each benchmark.

The plots show that most execution activity concentrates on highly biased branches, par-

ticularly those near 100% or 0% bias, highlighting their disproportionate influence on

program performance.

44

Figure 5.13: Relative contribution of each bias category to total execution count. While

highly biased branches dominate execution in absolute terms, this plot confirms their

dominance even when normalized. The sharp peak near 0% and 100% bias illustrates the

concentration of dynamic execution around these extremes.

45

5.1.3 Execution-Weighted and Unique Address Distribution

In addition to raw bias distribution, we also analyze branches from three complementary

perspectives:

• Total execution count per bias bin (Figure 5.14),

• Execution percentage grouped by frequency categories (Figure 5.15),

• Unique branch address distribution per bin (Figure 5.16).

46

Figure 5.14: Execution distribution across bias categories segmented by execution fre-

quency. The data reveal that most execution time is concentrated in a small number of

branches that are either almost always taken or not taken. This reinforces the practical

importance of accurately predicting highly biased branches in performance-critical paths.

As we can see leela does not behave like the as the majority of its branches have a 75%

bias and that is due to its algorithm.

47

Figure 5.15: Global distribution of execution percentages across bias intervals, grouped

by frequency category. The figure shows that across all benchmarks, a significant propor-

tion of total execution is associated with branches exhibiting extreme bias. This indicates

that even though some biased branches are infrequent, their cumulative execution contri-

bution remains non-negligible, reinforcing their relevance to prediction models.

48

Figure 5.16: Global distribution of unique branches across bias intervals and frequency

categories. The figure highlights that a substantial number of distinct branch instructions

exhibit extreme bias, particularly in the 0–5% and 95–100% intervals. This supports

the notion that many static branches demonstrate highly skewed behavior, making them

suitable targets for static prediction mechanisms.

49

Figure 5.17: Stacked bar plots of dynamic execution counts for each bias interval, sepa-

rated by taken and not taken outcomes for every benchmark. These plots reveal that for

most benchmarks, the bulk of dynamic executions occur at the extreme bias intervals and

are predominantly from either taken or not-taken branches, confirming the highly polar-

ized nature of real-world branch behavior. This further emphasizes the motivation for

static prediction mechanisms focused on highly biased branches.

50

Figure 5.18: Unique static branch counts per bias interval, split by taken and not taken

outcomes. This global view across all benchmarks confirms that the vast majority of stat-

ically observed branches fall in the extreme bins (i.e., always taken or always not taken),

and that each bin tends to be dominated by a single outcome. This further reinforces the

feasibility and usefulness of statically identifying and optimizing for high-bias branches.

51

5.1.4 Conclusion: Bias is Widespread and Predictable

Across all metrics—static frequency, execution count, and unique instruction count—we

observe a consistent trend: branches are overwhelmingly skewed toward highly biased

behavior. This justifies the design decision to focus on bias-aware static prediction.

These insights establish that:

• High-bias branches are not rare edge cases; they are statistically dominant.

• These branches offer meaningful opportunities for static prediction to complement

hardware prediction.

• Any prediction model that leverages bias can generalize well across benchmarks

and workloads.

Having established this, we next evaluate whether program-based prediction models

can accurately identify these high-bias branches using static features alone.

5.2 Can the Model Predict High Bias and Direction?

To assess whether the model can effectively determine if a branch is highly biased and

whether it is likely to be taken or not, we trained a binary classifier using the complete

feature set and evaluated its performance across all benchmarks. Both for bias prediction

and direction we used XGBoost as it had the best results for both categories. The results

are visualized in Figure 5.19 and summarized in Table 5.1.

Confusion Matrix Terms

• TP (True Positives): Instances where the model correctly predicted taken.

• TN (True Negatives): Instances where the model correctly predicted not taken.

• FP (False Positives): Instances where the model incorrectly predicted taken (actual

direction is not taken).

• FN (False Negatives): Instances where the model incorrectly predicted not taken

(actual direction is taken).

52

Figure 5.19: Stacked Accuracy Breakdown Across Benchmarks For Direction Prediction

Figure 5.20: Dynamic: Stacked Accuracy Breakdown Across Benchmarks For Direction

Prediction

Evaluation Summary. As indicated by the overall confusion matrix:

Predicted Not Taken Predicted Taken

Actual Not Taken 22,691 4175

Actual Taken 9,315 6795

The classifier is heavily biased toward predicting the majority class (not taken). This

is reflected in the low recall value of 42.18% for the taken class, despite a moderate overall

53

accuracy of 68.61%. Precision (61.94%) and F1 score (50.18%) remain low, indicating

poor performance in detecting taken branches, which are in the minority.

Per-Benchmark Trends.

Table 5.1 presents the individual benchmark metrics. Many benchmarks show low recall

and F1 scores, suggesting the model fails to correctly classify taken branches in those

cases.

Table 5.1: Per-Benchmark Direction Classification Performance

Benchmark Accuracy Precision Recall F1-Score

features_500.perlbench 0.6457 0.5396 0.3632 0.4342

features_502.gcc 0.6656 0.6249 0.3640 0.4600

features_505.mcf 0.6828 0.5120 0.3699 0.4295

features_507.cactuBSSN 0.7281 0.6792 0.4618 0.5498

features_508.namd 0.7572 0.6879 0.5874 0.6337

features_510.parest 0.7602 0.6944 0.5853 0.6352

features_511.povray 0.6990 0.5324 0.3677 0.4350

features_519.lbm 0.6996 0.5328 0.4577 0.4924

features_520.omnetpp 0.6992 0.6460 0.4981 0.5625

features_523.xalancbmk 0.7086 0.6544 0.4829 0.5557

features_526.blender 0.6616 0.5883 0.4423 0.5050

features_531.deepsjeng 0.7021 0.5702 0.4762 0.5190

features_538.imagick 0.6871 0.5382 0.4458 0.4876

features_541.leela 0.7158 0.6637 0.5225 0.5847

features_544.nab 0.7109 0.5657 0.4590 0.5068

features_557.xz 0.6468 0.5349 0.3786 0.4434

Discussion.

The stacked bar plot clearly visualizes a predominance of true negatives (green), indicat-

ing that the classifier is mostly identifying branches as not taken. However, the relatively

small amount of true positives (blue) and the dominance of false negatives (red) suggest

a major challenge in detecting highly biased branches that are frequently taken.

This result points to two important conclusions:

• The model currently struggles to predict whether a branch is taken, especially when

taken branches are underrepresented.

• Class imbalance may be significantly impairing learning. Resampling or focusing

only on highly biased branches (instead of all) could yield better results.

54

Figure 5.21: Execution-weighted stacked classification outcomes for bias prediction

across benchmarks. TP: True Positive, TN: True Negative, FP: False Positive, FN: False

Negative.

Observation: Figure 5.21 presents the execution-weighted classification outcome for

predicting whether branches are highly biased. In contrast to the taken/not-taken pre-

diction task, this task achieves significantly higher performance across all benchmarks.

The true positive (TP) and true negative (TN) proportions dominate the stack for nearly

every benchmark, while false positives (FP) and false negatives (FN) are minimal. This

indicates that the model is both precise and sensitive in identifying biased behavior.

Performance Summary: As shown in Table 5.2, the bias prediction task achieves

an overall execution-weighted accuracy of 79.48% and a precision of 76.76%, with near-

perfect recall of 93.42%. The resulting F1-score of 84.28% demonstrates that the model

is not only detecting biased branches accurately, but doing so with strong class balance.

Moreover, most benchmarks exhibit both high individual accuracy and perfect recall, con-

firming the model’s robustness in this setting.

Conclusion: These results support the claim that program-based learning can effec-

tively classify highly biased branches. Given that such branches are static in behavior,

they are particularly well-suited for this kind of prediction, and performance suggests that

bias labels could reliably be inferred without runtime profiling.

55

Table 5.2: Per-Benchmark Bias Classification Performance

Benchmark Accuracy Precision Recall F1-Score

features_500.perlbench 0.7311 0.7548 0.9426 0.8383

features_502.gcc 0.6751 0.6842 0.9277 0.7876

features_503.bwaves 0.7961 0.8550 0.9032 0.8784

features_505.mcf 0.7780 0.8247 0.9217 0.8705

features_507.cactuBSSN 0.8217 0.8474 0.9526 0.8969

features_508.namd 0.8412 0.8547 0.9369 0.8939

features_510.parest 0.8235 0.8481 0.9380 0.8908

features_511.povray 0.7762 0.8108 0.9310 0.8667

features_519.lbm 0.8341 0.8928 0.9203 0.9063

features_520.omnetpp 0.7915 0.8175 0.9407 0.8748

features_521.wrf 0.7829 0.8321 0.9194 0.8736

features_523.xalancbmk 0.8360 0.8531 0.9616 0.9041

features_526.blender 0.7552 0.7805 0.9354 0.8509

features_527.cam4 0.8224 0.8582 0.9453 0.8996

features_531.deepsjeng 0.7787 0.8371 0.8262 0.8316

features_538.imagick 0.8068 0.8426 0.9429 0.8899

features_541.leela 0.8235 0.8626 0.9181 0.8895

features_544.nab 0.8236 0.8477 0.9523 0.8970

features_548.exchange2 0.7829 0.8321 0.9194 0.8736

features_549.fotonik3d 0.8026 0.8406 0.9355 0.8855

features_554.roms 0.7961 0.8540 0.9141 0.8830

features_557.xz 0.8058 0.8342 0.9348 0.8816

56

Table 5.3: Aggregate Performance Summary for Bias Prediction

Metric Value

Overall Accuracy (confusion matrix based) 0.7474

Overall Precision 0.7676

Overall Recall 0.9342

Overall F1-Score 0.8428

True Average Accuracy (across benchmarks) 0.7948

5.3 Comparison: General vs. High-Bias Branch Out-
come Prediction

This section compares two models trained to predict whether a branch will be taken or

not taken. In both cases XGBoost was used to have a fair comparisson:

• A general model trained on all branches, regardless of their bias.

• A high-bias-only model trained exclusively on branches with bias > 0.995.

5.3.1 Evaluation Metrics

Table 5.4 summarizes the aggregated metrics across all benchmarks.

Table 5.4: Overall Performance: General vs. High-Bias Branch Prediction

Model Type Accuracy Precision Recall F1-Score

General Model (All branches) 0.6861 0.6194 0.4218 0.5018

High-Bias Model (Bias > 0.995) 0.7174 0.6401 0.4419 0.5229

While the high-bias model exhibits higher accuracy than the general model, it also has

substantially better recall and F1-score. This is expected, as the model trained explicitly

on high-bias datasets, leading the model to predominantly predict better than the other

model).

5.3.2 Per-Benchmark Comparison

Figures 5.22 and 5.24 show stacked confusion matrix breakdowns across benchmarks

for the two models. Both models reflects a diverse classification profile, while at the

57

same time True Negatives (Green) dominate the graphs, suggesting difficulty capturing

minority taken cases.

Figure 5.22: Static confusion matrix breakdown (general model).

Figure 5.23: Execution-weighted confusion matrix breakdown (general model).

58

Figure 5.24: Staic confusion matrix breakdown (high-bias-only model).

Figure 5.25: Execution-weighted confusion matrix breakdown (high-bias-only model).

5.3.3 Discussion

The general model benefits from exposure to a broader range of branch behaviors, en-

abling similar recall and F1-score despite lower precision. In contrast, the high-bias model

demonstrates better precision and accuracy signifying that a model specifically trained for

high bias branches outperforms the genera model.

This supports the hypothesis that while bias-targeted prediction may be feasible in

terms of accuracy, it requires careful class balancing or alternative strategies (e.g., cost-

59

sensitive learning) to handle imbalanced distributions effectively.

5.4 Feature Importance Analysis

Understanding which static program features most influence branch outcome prediction is

essential for building efficient and interpretable models, as well as for informing hardware

implementation strategies. In this section, we analyze the relative importance of individ-

ual features using two complementary approaches: Random Forest feature importance

metrics and sequential forward feature selection with XGBoost.

Random Forest Feature Importances

Figure 5.26 presents the feature importance scores assigned by a Random Forest classifier

trained on the static feature set. The results reveal that Jump Span (the distance between

the branch and its target) is by far the most informative feature, followed by local instruc-

tion density features (Static After and Static Before). These three features together

account for the majority of predictive power in the model. Additional contributors include

the Bias (dynamic execution bias used as a label during evaluation), Branch Opcode,

and several operand metadata features. In contrast, lower-level architectural details such

as operand types and register types appear to have limited standalone impact.

Figure 5.26: Random Forest feature importance scores for static branch prediction. The

most influential features are Jump Span, Static After, and Static Before, while

operand types and register information are less important.

60

Sequential Feature Selection

To further assess the minimum feature subset required for strong predictive performance,

we conducted sequential forward feature selection using an XGBoost classifier. Fig-

ure 5.27 shows model accuracy as a function of the number of features included. The

results indicate that the majority of accuracy gains are achieved with the first 6–8 fea-

tures. Beyond this point, adding more features yields only marginal improvements, and

in some cases, may lead to diminishing returns or slight overfitting.

Figure 5.27: XGBoost sequential feature selection: accuracy as a function of the number

of features. Most gains are realized by the first several features, supporting the design of

lightweight static predictors.

This trend confirms that a compact subset of static features—primarily jump span,

local instruction density, and a few branch/operand characteristics—is sufficient for high

prediction accuracy. These findings have direct implications for hardware design: they

enable practical, low-overhead branch prediction units that operate on a small set of easily

extractable features. The features elected were: - Branch Opcode - Operand Opcode

- Operand Function - Static Before - Static After - Jump Span - Bias confirming their

importance shown in the graph above.

Summary

Together, these analyses show that only a handful of carefully chosen static features are

necessary to approach the upper bounds of prediction accuracy. This supports the core

thesis that static, program-based prediction is both feasible and hardware-friendly for

high-bias branch prediction, as it avoids the complexity and overhead associated with

large, profile-based feature sets.

61

5.5 Per-Benchmark vs. Cross-Benchmark Generalization
in Taken/Not-Taken Prediction

In this analysis, we evaluate the accuracy of static program-based models in predicting

whether each conditional branch will be taken or not taken, using only features de-

rived from pin tool. XGBOOST was used for the two models as it offers both a fair

comparison and the highest accuracy. The classification performance is measured in both

per-benchmark and cross-benchmark training/testing scenarios.

5.5.1 Experimental Settings

• Per-benchmark evaluation: Each benchmark is split into independent training

and test sets. The model is trained and evaluated using data drawn solely from

the same program, capturing locally optimal patterns but potentially overfitting to

benchmark-specific features.

• Cross-benchmark evaluation: The model is trained on a subset of benchmarks

and evaluated on a disjoint set of unseen benchmarks. This simulates deployment

to new code and tests the model’s ability to generalize.

5.5.2 Aggregate Performance Comparison

Table 5.5 summarizes the aggregate metrics for both settings:

Table 5.5: Comparison of Prediction Metrics: Per-Benchmark vs. Cross-Benchmark

Setting Accuracy Precision Recall F1-Score

Per-Benchmark (separate) 0.6861 0.6194 0.4218 0.5018

Cross-Benchmark (complete) 0.6444 0.4421 0.2155 0.2897

The results show that while accuracy is slightly better in Per-Benchmark, precision,

recall, and F1-score are far lower for the cross-benchmark scenario. This is expected:

training on diverse programs introduces more variability and challenges the model’s abil-

ity to generalize to unseen code.

5.5.3 Stacked Bar Plot Analysis

Figures 5.28 and 5.29 present execution-weighted, stacked bar plots of classification out-

comes for the test benchmarks under each setting.

62

Figure 5.28: Execution-weighted stacked accuracy breakdown for per-benchmark train-

ing/testing.

Figure 5.29: Execution-weighted stacked accuracy breakdown for cross-benchmark train-

ing/testing.

In both settings, the vast majority of dynamic executions are classified as true nega-

tives (TN, green), with only a small proportion as true positives (TP, blue). False neg-

atives (FN, red) make up a substantial portion of the remainder, especially in the cross-

benchmark setting. The model struggles to correctly identify taken branches (TP) when

deployed on unseen benchmarks, and is biased towards predicting not-taken outcomes

due to the inherent imbalance of the data.

63

5.5.4 Interpretation and Discussion

The similarity in overall accuracy between the two settings is misleading; accuracy is

dominated by the abundance of not-taken branches (the majority class). Precision, recall,

and F1-score reveal the true difficulty of generalizing static predictions: recall in particu-

lar drops sharply in the cross-benchmark setting, indicating that the model rarely predicts

a branch as taken unless it is extremely confident.

The stacked bar plots reinforce these findings. Cross-benchmark evaluation results

in a higher fraction of false negatives, as the model fails to generalize features indica-

tive of "taken" branches from one program to another. This highlights a key challenge

in static branch prediction: the features that distinguish highly biased branches may be

program-specific, and training on a broader set of benchmarks is necessary, but not always

sufficient, for generalization.

5.5.5 Conclusion

While static, program-based predictors can achieve reasonable accuracy within individual

benchmarks, their ability to generalize is limited. Practical deployment will require either

benchmark adaptation, more sophisticated feature engineering, or hybrid approaches that

incorporate runtime information or profile-guided adaptation. Nevertheless, the approach

remains promising for classes of branches with strongly consistent, structurally encoded

bias.

5.6 Comparison of Learning Methods

In this section we compare the four classifiers—CNN, MLP, Random Forest and XG-

Boost—on both the Taken/Not-Taken task and the Bias (>0.995) task. Tables 5.6 and

5.7 summarize per-benchmark performance, and Figure 5.30 / Figure 5.31 will show the

execution-weighted stacked breakdowns side by side.

5.6.1 Taken / Not–Taken Prediction

64

Table 5.6: Per-Benchmark Classification Performance on Taken/Not-Taken (Dynamic Features)

Benchmark CNN MLP RF XGB
Acc. P R F1 Acc. P R F1 Acc. P R F1 Acc. P R F1

500.perlbench_r 0.6257 0.0000 0.0000 0.0000 0.6262 0.7500 0.0022 0.0044 0.6451 0.5321 0.4307 0.4760 0.6457 0.5396 0.3632 0.4342
502.gcc_r 0.6117 0.6471 0.0177 0.0344 0.6109 0.6814 0.0113 0.0221 0.6467 0.5571 0.4756 0.5131 0.6656 0.6249 0.3640 0.4600
505.mcf_r 0.6772 0.0000 0.0000 0.0000 0.6772 0.0000 0.0000 0.0000 0.7164 0.6000 0.3642 0.4532 0.6828 0.5120 0.3699 0.4295
507.cactuBSSN_r 0.6405 0.0000 0.0000 0.0000 0.6405 0.0000 0.0000 0.0000 0.7269 0.6566 0.5039 0.5702 0.7281 0.6792 0.4618 0.5498
508.namd_r 0.6404 0.0000 0.0000 0.0000 0.6424 0.0000 0.0000 0.0000 0.7930 0.7492 0.6332 0.6863 0.7572 0.6879 0.5874 0.6337
510.parest_r 0.6642 0.5732 0.2280 0.3263 0.6434 0.0000 0.0000 0.0000 0.7750 0.7157 0.6123 0.6600 0.7602 0.6944 0.5853 0.6352
511.povray_r 0.6849 0.0000 0.0000 0.0000 0.6849 0.5000 0.0019 0.0039 0.7204 0.5810 0.4047 0.4771 0.6990 0.5324 0.3677 0.4350
519.lbm_r 0.6839 1.0000 0.0070 0.0140 0.6816 0.0000 0.0000 0.0000 0.7152 0.5773 0.3944 0.4686 0.6996 0.5328 0.4577 0.4924
520.omnetpp_r 0.6152 0.5636 0.0390 0.0729 0.6074 0.3043 0.0088 0.0171 0.6885 0.6252 0.4931 0.5513 0.6992 0.6460 0.4981 0.5625
523.xalancbmk_r 0.6572 0.6405 0.2084 0.3145 0.6226 0.0000 0.0000 0.0000 0.7225 0.6704 0.5207 0.5861 0.7086 0.6544 0.4829 0.5557
526.blender_r 0.6179 0.5523 0.1095 0.1828 0.6098 0.0000 0.0000 0.0000 0.6729 0.6063 0.4614 0.5240 0.6616 0.5883 0.4423 0.5050
531.deepsjeng_r 0.6638 1.0000 0.0037 0.0073 0.5735 0.3462 0.2967 0.3195 0.7194 0.6264 0.4176 0.5011 0.7021 0.5702 0.4762 0.5190
538.imagick_r 0.6660 0.0000 0.0000 0.0000 0.6630 0.3333 0.0090 0.0176 0.6952 0.5650 0.3795 0.4541 0.6871 0.5382 0.4458 0.4876
541.leela_r 0.6353 0.6064 0.1348 0.2205 0.6172 0.0000 0.0000 0.0000 0.7376 0.7034 0.5437 0.6133 0.7158 0.6637 0.5225 0.5847
544.nab_r 0.6764 0.0000 0.0000 0.0000 0.3926 0.3168 0.7582 0.4469 0.7095 0.5714 0.4098 0.4773 0.7109 0.5657 0.4590 0.5068
557.xz_r 0.6284 0.0000 0.0000 0.0000 0.6239 0.4000 0.0247 0.0465 0.6606 0.5755 0.3292 0.4188 0.6468 0.5349 0.3786 0.4434

Overall 0.6308 0.5996 0.0496 0.0916 0.6191 0.3689 0.0225 0.0425 0.6842 0.5979 0.4813 0.5333 0.6861 0.6194 0.4218 0.5018

65

(a) CNN (b) Random Forest

(c) MLP (d) XGBoost

Figure 5.30: Static stacked accuracy breakdown for Taken/Not-Taken across test bench-

marks.

5.6.2 Bias (>0.995) Prediction

66

Table 5.7: Per-Benchmark Performance on Predicting High-Bias Branches

Benchmark CNN MLP RF XGB
Acc. P R F1 Acc. P R F1 Acc. P R F1 Acc. P R F1

500.perlbench_r 0.7395 0.7395 1.0000 0.8502 0.7392 0.7405 0.9966 0.8496 0.7087 0.7633 0.8784 0.8168 0.7311 0.7548 0.9426 0.8383
502.gcc_r 0.6552 0.6551 0.9906 0.7886 0.6528 0.6523 0.9967 0.7885 0.6423 0.7063 0.7691 0.7363 0.6751 0.6842 0.9277 0.7876
503.bwaves_r 0.8158 0.8158 1.0000 0.8986 0.8026 0.8219 0.9677 0.8889 0.8026 0.8406 0.9355 0.8855 0.7961 0.8550 0.9032 0.8784
505.mcf_r 0.8097 0.8097 1.0000 0.8948 0.8097 0.8097 1.0000 0.8948 0.7966 0.8257 0.9493 0.8832 0.7780 0.8247 0.9217 0.8705
507.cactuBSSN_r 0.8161 0.8163 0.9990 0.8985 0.8145 0.8145 1.0000 0.8978 0.8229 0.8497 0.9506 0.8973 0.8217 0.8474 0.9526 0.8969
508.namd_r 0.7141 0.7141 1.0000 0.8332 0.7141 0.7141 1.0000 0.8332 0.8443 0.8525 0.9455 0.8966 0.8412 0.8547 0.9369 0.8939
510.parest_r 0.7907 0.8135 0.9435 0.8737 0.7672 0.7673 0.9996 0.8682 0.8268 0.8565 0.9301 0.8918 0.8235 0.8481 0.9380 0.8908
511.povray_r 0.7817 0.7817 1.0000 0.8775 0.7817 0.7817 1.0000 0.8775 0.7823 0.8146 0.9341 0.8703 0.7762 0.8108 0.9310 0.8667
519.lbm_r 0.8722 0.8722 1.0000 0.9317 0.8700 0.8719 0.9974 0.9305 0.8655 0.8926 0.9614 0.9257 0.8341 0.8928 0.9203 0.9063
520.omnetpp_r 0.7744 0.7744 1.0000 0.8729 0.7744 0.7744 1.0000 0.8729 0.7866 0.8179 0.9319 0.8712 0.7915 0.8175 0.9407 0.8748
521.wrf_r 0.8158 0.8158 1.0000 0.8986 0.8158 0.8158 1.0000 0.8986 0.7961 0.8394 0.9274 0.8812 0.7829 0.8321 0.9194 0.8736
523.xalancbmk_r 0.8108 0.8168 0.9855 0.8933 0.8039 0.8038 1.0000 0.8912 0.8440 0.8604 0.9620 0.9083 0.8360 0.8531 0.9616 0.9041
526.blender_r 0.7471 0.7476 0.9987 0.8551 0.7471 0.7472 0.9996 0.8552 0.7578 0.7858 0.9289 0.8514 0.7552 0.7805 0.9354 0.8509
527.cam4_r 0.8421 0.8421 1.0000 0.9143 0.8421 0.8421 1.0000 0.9143 0.8092 0.8561 0.9297 0.8914 0.8224 0.8582 0.9453 0.8996
531.deepsjeng_r 0.6613 0.6613 1.0000 0.7961 0.6267 0.6598 0.8991 0.7611 0.7874 0.8418 0.8355 0.8386 0.7787 0.8371 0.8262 0.8316
538.imagick_r 0.8280 0.8280 1.0000 0.9059 0.8260 0.8276 0.9976 0.9047 0.8169 0.8472 0.9502 0.8958 0.8068 0.8426 0.9429 0.8899
541.leela_r 0.7747 0.7750 0.9988 0.8728 0.7267 0.7762 0.9088 0.8373 0.8371 0.8641 0.9368 0.8990 0.8235 0.8626 0.9181 0.8895
544.nab_r 0.8064 0.8064 1.0000 0.8928 0.7984 0.8073 0.9852 0.8874 0.8316 0.8402 0.9770 0.9034 0.8236 0.8477 0.9523 0.8970
548.exchange2_r 0.8224 0.8212 1.0000 0.9018 0.7303 0.8430 0.8226 0.8327 0.7961 0.8394 0.9274 0.8812 0.7829 0.8321 0.9194 0.8736
549.fotonik3d_r 0.8158 0.8158 1.0000 0.8986 0.8158 0.8200 0.9919 0.8978 0.7829 0.8370 0.9113 0.8726 0.8026 0.8406 0.9355 0.8855
554.roms_r 0.8421 0.8421 1.0000 0.9143 0.7895 0.8582 0.8984 0.8779 0.8092 0.8561 0.9297 0.8914 0.7961 0.8540 0.9141 0.8830
557.xz_r 0.7813 0.7805 0.9980 0.8760 0.7737 0.7737 1.0000 0.8724 0.8043 0.8236 0.9506 0.8826 0.8058 0.8342 0.9348 0.8816

Overall 0.7294 0.7312 0.9908 0.8414 0.7234 0.7261 0.9927 0.8387 0.7351 0.7851 0.8734 0.8269 0.7474 0.7676 0.9342 0.8428

67

(a) CNN (b) Random Forest

(c) MLP (d) XGBoost

Figure 5.31: Execution-weighted stacked accuracy breakdown for High-Bias (>0.995)

branches.

5.6.3 Discussion

Across the two tasks, we see that

• CNN yields moderate overall accuracy on Taken/Not-Taken (63%) but very low

recall on rare classes; for Bias it achieves high recall but its precision and F1 drop

on some benchmarks.

• MLP underperforms CNN on Taken/Not-Taken (62% vs. 63%) but matches its high

recall on Bias, slightly lower F1 overall.

• Random Forest improves both precision and recall on Taken/Not-Taken (68%

overall) and yields strong F1 on the Bias task (83%).

• XGBoost attains the best-balanced performance on Taken/Not-Taken (69% acc,

0.62 F1) and the highest recall+precision on Bias (0.84 F1).

Overall, the tree-based methods (RF, XGB) outperform the neural models on the Taken/Not-

Taken task, while on the Bias task all learners achieve very high recall but differ in

precision and F1. Figure 5.30 and Figure 5.31 visually confirm these trends on a per-

benchmark basis.

68

Chapter 6

Related Work

Branch prediction has been one of the most intensively studied problems in microarchi-

tecture for decades, due to its critical impact on instruction-level parallelism and pipeline

utilization. In this chapter we survey three broad categories of prior work: (1) static,

program-based heuristics; (2) evidence-based static prediction using machine learning;

and (3) dynamic, hardware-based predictors including neural and tree-based approaches.

We conclude with a brief discussion of more general ML-driven performance modeling

efforts.

6.1 Static Program-Based Heuristics

Early “static” predictors make decisions entirely at compile time, using simple heuristics

extracted from program structure. One of the most famous is the backward-taken/forward-

not-taken (BTFNT) rule, which exploits the loop-branch bias to predict all backward

branches as taken and forwards as not taken. McFarling and Hennessy first codified a

set of such heuristics in MIPS compilers [23], and Ball & Larus [4] later showed how

to combine eight intuitive rules (e.g. loop branch, pointer comparison, call/return) in a

fixed, a priori ordering to achieve 80–90% static accuracy on SPEC programs. Wu &

Larus [27] extended this work by using Dempster–Shafer theory to fuse multiple heuris-

tics’ probability estimates; however, their experiments showed only marginal improve-

ment—if any—over the simpler fixed-order scheme.

6.2 Evidence-Based Static Prediction (ESP)

To overcome the reliance on hand-tuned heuristics, Calder et al. [6] proposed Evidence-

Based Static Prediction (ESP), which uses supervised ML (neural nets or decision trees)

to learn, from a corpus of programs, a mapping from static code features (e.g. opcode pat-

69

terns, CFG-derived attributes) to the branch take probability. ESP requires an offline train-

ing phase on existing binaries, but thereafter can predict on unseen programs purely from

their static features. On a suite of 43 C and Fortran programs, ESP reduced static mispre-

diction from 25% (best heuristic) to around 20% :contentReference[oaicite:0]index=0.

Subsequent work has refined the feature sets and tree-based learners, but the core ESP

idea remains the leading ML-based static predictor.

6.3 Dynamic, Hardware-Based Predictors

While static methods require no runtime support, dynamic branch predictors—implemented

in hardware—continue to dominate high-performance CPUs. Beginning with two-bit

counters and gshare/TAGE schemes [29], the community has explored richer structures at

the cost of extra logic.

6.3.1 Perceptron and Neural Predictors

Jiménez & Lin introduced perceptron-based branch predictors that treat the global history

bits and branch address bits as input neurons, learning a weight vector per branch via an

on-line update rule [15]. These predictors can exploit long histories (e.g. 64 bits) and

achieve higher accuracy than gshare at similar hardware cost. Follow-on work applies

piecewise-linear ensembles [16], ahead-pipelined pipelines [17], and small MLPs [26] to

further boost prediction of “hard-to-predict” branches.

6.3.2 Tree-Based and Boosted-Tree Predictors

More recently, researchers have begun to investigate decision trees and boosted-tree en-

sembles in hardware, taking advantage of their interpretability and compact look-up pat-

terns. Early proposals used small regression trees to predict taken probability from se-

lected global/local history patterns [1]; very-low-latency XGBoost variants have also been

prototyped in FPGAs, showing comparable accuracy to perceptrons while enabling incre-

mental retraining [10].

6.4 Other ML-Driven Performance Modeling

Beyond branch prediction, ML techniques have been used to model caches [11], nop-

regression data-dependency throughput [28], and to guide DVFS or QoS controllers [19].

These works echo the ESP philosophy—learn from a corpus of measurements to predict

microarchitectural behavior quickly and accurately.

70

6.5 Summary

In summary, static heuristics remain simple and zero-overhead but plateau around 75–80%

accuracy. ESP showed that supervised ML can improve static prediction into the low-20%

misprediction regime. Dynamic, hardware-based perceptron/MLP predictors push accu-

racy still higher at moderate cost, and tree-based methods promise additional gains with

efficient implementations. Our work extends this lineage by systematically comparing

four ML paradigms (CNN, MLP, Random Forest, XGBoost) on two branch prediction

tasks, and demonstrating that modern tree-based learners can outperform classic neural

schemes under practical budgets.

71

Chapter 7

Conclusion

7.1 Future Work

While the results of this thesis demonstrate the viability of static, ML-based branch pre-

diction, several directions remain open for future exploration.

Hardware Integration.

As discussed before, the Static Program-Based Branch Prediction Unit (SPBBPU) cur-

rently exists only as a conceptual design and has not yet been integrated into hardware.

All evaluation was performed offline at the software level using high-level models and

profiling traces. An important avenue for future work is to implement a prototype of

SPBBPU at the RTL or FPGA level, integrate it with an existing RISC-V or x86 core, and

quantify the latency and area overhead versus performance benefits in a real pipeline.

Further Evaluation

Despite the extensive evaluation conducted on this approach, there are still some exper-

iments that remain unexplored. For instance, one promising direction would be to first

classify whether a branch exhibits high bias or not. Only if the branch is classified as high

bias would a subsequent prediction be made for whether it is taken or not taken.

Feature Extension.

Although our current feature set—covering opcode types, jump distances, operand classes,

and local instruction context—already yields useful prediction accuracy, there is clear

headroom for improvement. Future work could explore additional static features such as:

• Control-flow graph (CFG) shape descriptors (e.g., loop nesting depth, post-dominators)

72

• Symbolic register value ranges or constant propagation indicators

The inclusion of such richer features may enable finer discrimination between hard-

to-predict branches, especially in the taken/not-taken task, where recall remains relatively

low even for tree-based models (e.g., 48.1% for RF and 42.2% for XGB).

7.2 Conclusion

In this thesis, we have investigated the use of machine learning (ML) to improve static

branch prediction in modern wide-issue processors. We proposed a Static Program-
Based Branch Prediction Unit (SPBBPU) that leverages learned predictions from of-

fline profiling to assist the traditional hardware BPU, especially for branches that exhibit

highly biased behavior. The core idea is to statically extract rich features from binary

code and use ML models to learn predictive patterns without requiring runtime feedback.

We instantiated this framework using four representative learning algorithms—1D

convolutional neural networks (CNNs), multilayer perceptrons (MLPs), Random Forests

(RF), and XGBoost (XGB)—and evaluated them on two complementary tasks:

• Taken / Not-Taken Prediction. Predicting whether a branch is taken, using only

static features.

• High-Bias Classification. Identifying whether a branch has a taken-probability

above 99.5%, again using static features alone.

All models were trained on an 80/20 split over a suite of SPEC-style benchmarks

spanning C, C++, Fortran, and numerical or symbolic domains. We evaluated both un-

weighted (per-benchmark) and execution-weighted (global) metrics: accuracy, precision,

recall, and F1 score. In addition, we generated stacked bar charts to visualize each model’s

classification breakdown (TP/TN/FP/FN) for every benchmark.

Summary of Findings

1. Taken / Not-Taken Prediction is a skewed classification task.

The majority of branches in most programs are not taken, making naïve prediction

trivial but unhelpful for identifying truly taken branches. The ML models were

tasked with capturing both precision and recall, especially on the minority class.

2. Tree-based methods outperform neural nets on Taken/Not-Taken.

73

• CNN achieved global accuracy ≈ 63%, but recall on the “taken” class was

only ≈ 5%, with F1 ≈ 0.09.

• MLP performed similarly (accuracy ≈ 62%, poor recall).

• RF improved both precision and recall (precision ≈ 60%, recall ≈ 48%, F1 ≈
0.53).

• XGBoost matched RF in accuracy (≈ 68%) and offered a strong balance with

F1 ≈ 0.50.

These results suggest that tree-based learners better exploit the discrete and struc-

tural nature of static features like opcode classes, branch directionality, jump span,

and register use.

3. High-Bias Classification is easier and more separable.

Branches with taken-probability ≥ 99.5% were reliably identified by all models:

• All four learners reached recall ≥ 0.87 and precision ≥ 0.70.

• CNN and MLP achieved F1 ≈ 0.84, with global accuracy between 72–73%.

• RF and XGBoost also reached F1 ≈ 0.83–0.84, with XGBoost achieving the

best accuracy at 74.7%.

These results suggest that when bias is strong, even shallow models or basic statis-

tical patterns suffice to classify branches correctly.

4. Cross-Benchmark vs. Per-Benchmark Training.

We compared training a separate model for each benchmark versus using a cross-

benchmark model trained on 80% of benchmarks and tested on the rest. The cross-

benchmark models generalized well, maintaining over 72% average accuracy on

High-Bias classification and improving maintainability by avoiding per-program

retraining. This supports the feasibility of global SPBBPU models integrated in

static compilers.

5. Feature Importance Analysis.

We computed feature importances using Random Forests and XGBoost. The most

influential static features included:

• Jump Span — the relative distance of the jump target

• Surrounding Static Context — frequencies of certain opcodes before and

after the branch

74

• Opcode of the Flag-Setting Instruction

• Bias Label (for meta learning)

• RA/RB Operand Types and Register Classes

This analysis reveals that branch predictability is strongly tied to structural code

patterns and local context.

6. SPBBPU: Hardware Integration of Static Predictions.

Based on the encouraging results, we proposed a Static Program-Based Branch

Prediction Unit (SPBBPU), a dedicated microarchitectural unit that integrates ML-

derived static bias predictions with traditional BPU and hint-bit mechanisms. The

SPBBPU:

• Identifies and filters high-bias branches (those likely to be always taken or not

taken)

• Predicts bias from encoded static features embedded as binary hint bits

• Collaborates with the BPU and compiler hints via a 3-input multiplexer

• Applies a final rule to output prediction, giving more weight to SPBBPU in

high-bias branches

Feasibility. Our profiling showed that many programs exhibit a large number of

high-bias branches (e.g., imagick_r with 94% taken or parest_r with 81% taken).

Furthermore:

• The High-Bias label can be predicted with 99% recall (MLP, CNN) and F1 ≥
0.84

• Once bias is known, taken/not-taken behavior is predicted with ≥ 75% accu-

racy

• This indicates that SPBBPU can offer early, accurate predictions for hardware

control flow

Final Thoughts

This thesis demonstrates that static branch prediction can be significantly improved with

machine learning models trained on disassembled binaries. Our proposed SPBBPU can

be practically implemented with small tables, hint encodings, and compiler-based offline

learning, and it complements—but does not replace—the dynamic predictor. As branch

resolution remains a core performance limiter in modern out-of-order pipelines, hybrid

approaches such as this may guide future microarchitectural innovations.

75

Bibliography

[1] T. Anderson, T. Harris, and M. J. Flynn. Perceptron-based dynamic mem-

ory prefetching. In Proceedings of the 20th International Symposium on High-

Performance Computer Architecture (HPCA), pages 156–167. IEEE, 2014.

[2] J.-L. Baer. Microprocessor Architecture: From Simple Pipelines to Chip Multipro-

cessors. Cambridge University Press, 2010.

[3] T. Ball and J. R. Larus. Branch prediction for free. In Proceedings of the ACM SIG-

PLAN Conference on Programming Language Design and Implementation, pages

300–313. ACM, 1993.

[4] T. Ball and J. R. Larus. Efficient path profiling. In Proceedings of the 29th Annual

ACM/IEEE International Symposium on Microarchitecture (MICRO), pages 46–57,

1993.

[5] B. Calder and D. Grunwald. The design and evaluation of a dynamic branch predic-

tor. The Journal of Supercomputing, 11(2):141–160, 1997.

[6] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer, and B. Zorn.

Evidence–based static branch prediction using machine learning. ACM Transactions

on Programming Languages and Systems, 19(1):188–222, Jan. 1997.

[7] B. Calder, D. Grunwald, D. Lindsay, M. Martin, M. Mozer, and B. Zorn. Corpus-

based static branch prediction. ACM SIGPLAN Notices, 30(6):79–92, 1997.

[8] B. Calder, D. Grunwald, D. Lindsay, M. Martin, M. Mozer, and B. Zorn. Evidence-

based static branch prediction using machine learning. In Proceedings of the 28th

Annual International Symposium on Computer Architecture, pages 254–263. IEEE,

2001.

[9] P. P. Chang, S. A. Mahlke, and W.-m. W. Hwu. Using profile information to assist

classic code optimizations. Software: Practice and Experience, 29(10):929–948,

1999.

76

[10] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD), 2016.

[11] B. Dong, C. Cheng, and P. Wei. Memory cocktail therapy: Hybrid cache manage-

ment for emerging non-volatile memories. In Proceedings of the 2012 International

Conference on Computer-Aided Design (ICCAD), pages 123–130. IEEE, 2012.

[12] P. G. Emma and E. S. Davidson. Characterization of branch and data dependencies

in programs for evaluating pipeline performance. IEEE Transactions on Computers,

36(7):859–875, 1987.

[13] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, 6th edition, 2017.

[14] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual,

2022. Available at https://www.intel.com/content/www/us/en/developer/

articles/technical/intel-sdm.html.

[15] D. A. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. In Pro-

ceedings HPCA Seventh International Symposium on High-Performance Computer

Architecture, pages 197–206. IEEE, 2001.

[16] D. A. Jiménez and C. Lin. Reducing the cost of branch prediction with a sensitivity-

optimized neural predictor. In Proceedings of the 8th International Symposium on

High-Performance Computer Architecture (HPCA), pages 90–101, 2002.

[17] D. A. Jiménez and C. Lin. A scalable, accurate, and low-latency branch predictor. In

Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pages 78–88, 2003.

[18] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small

fully-associative cache and prefetch buffers. In Proceedings of the 17th Annual In-

ternational Symposium on Computer Architecture, pages 364–373. IEEE Computer

Society Press, 1990.

[19] K. Kusano and V. Sarkar. Machine learning–driven power and performance man-

agement for modern data center platforms. Technical report, Rice University De-

partment of Computer Science, 2020.

[20] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-

mann, 1997.

77

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

[21] D. A. Patterson and J. L. Hennessy. Computer Organization and Design RISC-V

Edition: The Hardware Software Interface. Morgan Kaufmann, 2020.

[22] A. Seznec. Analysis of the o-gehl branch predictor. In Proceedings of the 32nd

Annual International Symposium on Computer Architecture, pages 394–405. IEEE,

2005.

[23] J. E. Smith. A study of branch prediction strategies. In Proceedings of the 8th an-

nual symposium on Computer Architecture, pages 135–148. IEEE Computer Society

Press, 1981.

[24] W. Stallings. Computer Organization and Architecture: Designing for Performance.

Pearson Education, 10th edition, 2015.

[25] Standard Performance Evaluation Corporation. SPEC CPU 2017 Benchmark Suite.

https://www.spec.org/cpu2017/, 2017. Accessed: 2025-05-13.

[26] L. Tarsa, G. Pekhimenko, and C. J. Rossbach. Cnn-based branch prediction for hard-

to-predict branches. In Proceedings of the 21st International Symposium on High

Performance Computer Architecture (HPCA), pages 216–227, 2015.

[27] N. Wu and J. R. Larus. Feedback-directed conditional branch probability estimation.

In Proceedings of the 27th Annual International Symposium on Computer Architec-

ture (ISCA), pages 100–110, 1994.

[28] S. Ye, M. Deisher, C. Ellis, R. Singh, and C. A. Baldwin. Ithemal: Accurate, portable

basic-block throughput estimation using hierarchical rnns. In Proceedings of the

39th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), pages 190–205. ACM, 2018.

[29] T. S. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. Proceedings

of the 24th Annual International Symposium on Microarchitecture (MICRO), pages

51–61, 1993.

[30] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive branch

prediction. ACM SIGARCH Computer Architecture News, 20(2):124–134, 1992.

78

https://www.spec.org/cpu2017/

	Introduction
	Motivation
	Contributions

	Background
	Modern CPUs and Branch Prediction
	Program-Based Branch Prediction
	Program-Based Prediction Features

	Profile-Based Branch Prediction
	Profile-Based Prediction Features

	Hardware-Level Branch Prediction: Dynamic and Static Hint Bit Approaches
	Traditional Dynamic Branch Prediction
	Dynamic Branch Prediction without Hint Bits
	Static Program-Based Prediction with Hint Bits
	Comparison: With and Without Hint Bits
	Illustrative Pipeline with Hint Bits
	Discussion

	A Hardware Static Program-Based Mechanism for Predicting Highly Biased Branches
	Overview
	Proposed Mechanism and Deployment Idea
	Feature Set for Static Prediction
	Design Rationale
	Machine Learning Framework
	Static Program-Based Branch Prediction Unit (SPBBPU) Integration
	Example: High-Bias Branch in perlbench_r

	Evaluation of Frameworks and Experimental methodology
	SPEC CPU2017 Benchmark Suite
	Experimental Setup
	Pin Tool API
	Instrumentation Approach
	Implementation Details
	Output Format
	Use Case in the Thesis

	Machine Learning Algorithms
	Classification Objective
	Models Evaluated
	Training and Evaluation Protocol

	Evaluation
	Prevalence of Highly Biased Branches
	Branch Bias Distribution and Dynamic Impact in perlbench_r
	Bias Histogram per Benchmark
	Execution-Weighted and Unique Address Distribution
	Conclusion: Bias is Widespread and Predictable

	Can the Model Predict High Bias and Direction?
	Comparison: General vs. High-Bias Branch Outcome Prediction
	Evaluation Metrics
	Per-Benchmark Comparison
	Discussion

	Feature Importance Analysis
	Per-Benchmark vs. Cross-Benchmark Generalization in Taken/Not-Taken Prediction
	Experimental Settings
	Aggregate Performance Comparison
	Stacked Bar Plot Analysis
	Interpretation and Discussion
	Conclusion

	Comparison of Learning Methods
	Taken / Not–Taken Prediction
	Bias (>0.995) Prediction
	Discussion

	Related Work
	Static Program‐Based Heuristics
	Evidence‐Based Static Prediction (ESP)
	Dynamic, Hardware‐Based Predictors
	Perceptron and Neural Predictors
	Tree‐Based and Boosted‐Tree Predictors

	Other ML‐Driven Performance Modeling
	Summary

	Conclusion
	Future Work
	Conclusion

