

Thesis Dissertation

TRANSLATING C TO RUST MIR

Georgia Michail

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2025

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

Translating C to Rust MIR

Georgia Michail

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfillment of the requirements for the award of degree of

Bachelor in Computer Science at University of Cyprus

May 2025

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Elias

Athanasopoulos, for his invaluable guidance, support, and the wealth of knowledge he

has shared with me throughout this past year. His mentorship has played a crucial role

in the completion of this thesis.

I am also very thankful to my family and close friends for all the support and

understanding through the course of my studies.

Finally, I am very grateful for all the experience and knowledge I gained over the past

four years. I am closing this chapter of my life wiser, happier, and with gratitude.

1

ABSTRACT

This thesis describes a static analysis and translation environment that converts C code

into a Rust-style Mid-level Intermediate Representation (MIR). C remains a major

language for systems programming but lacks essential safety guarantees such as

ownership, lifetime enforcement, and overflow detection. Rust, by contrast, enforces

these guarantees through MIR, a structured compiler-level representation used for

borrow checking and early optimizations. Our work describes a prototype tool that

explores traversal of C sources by the use of Clang’s AST and LibTooling and

generates MIR-style output. The tool’s generated output maintains control flow, scope

of variables, temporary registers, and semantics of formatted printing, closely recreating

the structure and behavior of MIR outputted by the Rust compiler. The tool implements

key C constructs such as functions, expressions, conditionals, and loops, and has

mechanisms for safe arithmetic and printf translation. The evaluation results show that

the tool produces correct MIR-style output for a wide set of C programs, making it a

solid starting point for future work in static analysis and secure code translation.

2

Contents

Chapter 1 .. 4

Introduction ... 4

Chapter 2 .. 7

Background ... 7

2.1 Mid-level Intermediate Representation (MIR).. 7

2.1.1 Introduction to MIR .. 7

2.1.2 Why Use MIR for Analysis and Translation .. 9

2.2 Abstract Syntax Trees and Clang Tooling .. 9

2.2.1 The Role of ASTs in Compilers ... 9

2.2.2 Clang’s AST and LibTooling Framework .. 10

Chapter 3 .. 12

System Architecture .. 12

3.1 System Overview .. 12

3.2 Architecture Components .. 13

3.2.1 Frontend Driver and Tool Initialization ... 13

3.2.2 Frontend Action and AST Consumer ... 13

3.2.3 AST Traversal and Translation Logic .. 13

3.2.4 Function Translation and Return Handling .. 14

3.2.5 Expression and Control Flow Handling ... 14

3.2.6 Formatted Output Handling .. 15

3.2.7 Output Stream Management ... 15

3.3 Internal State and Structure Management ... 16

3.3.1 Temporary Variables and Counters .. 16

3.3.2 Variable Mapping ... 17

3.3.3 Basic Block Management ... 17

3.3.4 Deferred Moves and Late Assignments ... 17

3.4 Execution Flow ... 18

3.5 Assumptions and Limitations .. 20

Chapter 4 .. 22

Implementation ... 22

4.1 AST Visitor and Translation Logic ... 22

4.2 Handling Functions and Parameters .. 24

3

4.3 Handling Binary Operations ... 27

4.4 Control Flow Statements ... 30

4.4.1 While Loops ... 31

4.4.2 If / Else if / Else .. 32

4.5 Handling of Printing .. 32

4.5.1 Basic String Printing ... 32

4.5.2 Support for Width, Precision, and Format Specifiers 33

4.5.3 Type Mapping and Format Selection ... 33

4.5.4 Static Segment Promotion and Formatting Arrays ... 34

4.5.5 Deferred Argument Emission ... 34

4.6 Tool Setup and Execution ... 34

4.6.1 Dependencies .. 34

4.6.2 Building the Tool .. 35

4.6.3 Execution .. 36

Chapter 5 .. 37

Evaluation ... 37

5.1 Testing Strategy .. 37

5.2 Selected Test Cases and Results ... 37

Test Case 1: Formatted Output and Arithmetic ... 39

Test Case 2: Nested Functions, Loops, and Print .. 44

Chapter 6 .. 49

Future Work .. 49

6.1 Support for Additional Language Constructs ... 49

6.2 Advanced Features: Structs, Arrays, and Casts .. 50

6.3 Compiler Optimization Fidelity .. 50

6.4 Evaluation Method .. 51

Chapter 7 .. 52

Related Work .. 52

Chapter 8 .. 53

Conclusion... 53

References .. 55

4

Chapter 1

Introduction

Safety, performance, and reliability are more critical than ever in the modern era of

systems programming. Languages like C have served as the backbone of low-level

software for decades, yet they bring inherent risks: memory errors, data races, and

undefined behavior. Rust has emerged as a powerful alternative, offering memory safety

guarantees without sacrificing speed by managing memory in an unconventional way.

Rather than relying on garbage collection or explicit memory allocation, Rust enforces

an ownership model through a compiler-defined set of rules. As a result, memory and

thread safety are statically enforced at compile time, thereby eliminating entire classes

of bugs that C leaves to be addressed manually by the programmer. Yet the challenge

remains: how do we reconcile the massive base of existing C code with the safety

standards of Rust? This thesis addresses that question by proposing a novel translation

framework that brings the structural rigor of Rust’s MIR (Mid-level Intermediate

Representation) to legacy C code.

The main research problem addressed in this thesis is how to semantically convert C

code into a representation that mimics Rust’s Mid-level Representation (MIR), so

preserving its control flow, variable lifetimes, formatting, and overflow checks. Unlike

source-to-source translators that convert C code directly into Rust syntax, our method

focuses on generating MIR-like output to enable static analysis, optimization modeling,

and possible integration into compiler backends.

Significant difficulties arise when we are trying to translate C’s semantics which lack

inherent concepts of ownership, borrow checking, and lifetime enforcement, into Rust’s

strict safety model. Many times, current tools, such as C2Rust, generate Rust code that

relies mostly on unsafe blocks to manage memory operations and raw pointers, so as a

result they limit the safety guarantees that Rust aims to provide [11]. According to Emre

et al. (2021), aliasing in C code, multiple pointers referring to the same memory, creates

important challenges to automated ownership inference when translating to Rust. In

many cases, developers need to step in manually to ensure safety [19]. Hardekopf et al.

5

(2021) emphasizes on the difficulty involved in achieving memory safety after

translation and offers transformation patterns to turn the unsafe Rust code into safer

alternatives [20]. Finally, Silva et al. investigates the use of borrow-checking concepts

on C code, showing how static analysis might enforce Rust-like safety guarantees in C

programs [21].

However, despite the related works we already mentioned, there is still a need for tools

that can directly convert C code into MIR-like code, enabling easier analysis and

potentially work with Rust’s compiler infrastructure. By focusing on generating MIR-

style output, this thesis aims to fulfill the need for such tools and provide a pathway for

legacy C code to benefit from Rust’s safety mechanisms without requiring major

manual refactoring or unsafe solutions.

Converting legacy C code into MIR-style representation has important academic and

practical advantages. C remains widely used in embedded systems, OS kernels, and

critical infrastructure, areas where safety lapses can be catastrophic. A 2019 Microsoft

report found that the majority of vulnerabilities Microsoft assigns a CVE each year

continue to be memory safety issues, primarily stemming from C and C++ codebases

[24]. Similarly, a study by Google found that 70% of all “severe security bugs” in

Chromium were caused by memory safety problems [25].

Moreover, Rust’s compiler heavily relies on MIR for borrow checking and early

optimizations and exposing these benefits to C code via translation enables research on

cross-language safety enforcement. In doing so, this tool may serve as a research

platform for future work in hybrid analysis, safe interoperability, and even automated

rewriting of unsafe legacy systems.

Translating from C to MIR is not easy. The concepts of ownership, borrow checking, or

lifetime checking, features essential to Rust’s safety guarantees are not native to C code.

It takes careful static inference, approximations, and assumptions to map raw C pointers

and memory to a structured intermediate format. The main challenge we recognized

during the creation of this tool, is to keep the control flow and semantics of the original

C code while still generating valid and analyzable MIR-style output.

While previous tools like C2Rust focused on directly translating C to Rust, often require

extra information from the developer or make educated guesses about the code’s

6

behavior that may lead to unsafe code. Our work is unique in targeting MIR directly,

thus avoiding the complexities of generating Rust source instead enabling reasoning at

the compiler IR level, where true safety checks occur.

This thesis makes the following contributions:

▪ A prototype C++ tool under development, built using Clang’s AST and

LibTooling, designed to traverse C code and emit a Rust MIR-style intermediate

representation.

▪ Support for major language constructs, including functions, variable

declarations, binary operations, while loops, partial conditionals, and formatted

output.

▪ Automatic promotion of static segments, construction of formatting arrays, and

generation of Arguments::new_v1 and new_v1_formatted calls, mimicking

Rust’s println! machinery.

▪ Safety checks for arithmetic, such as overflow assertions using

AddWithOverflow, DivWithOverflow, MulWithOverflow, SubWithOverflow

and runtime division-by-zero guards.

▪ A structured basic block system, preserving the control flow, return paths, and

deferred assignments, just like actual MIR.

▪ A scope-aware variable tracking system, with accurate from C names to MIR

registers and inclusion of debug metadata.

▪ A thorough evaluation suite, comparing the output of thel tool with real Rust

MIR using equivalent Rust programs compiled with –emit=mir.

7

Chapter 2

Background

This chapter provides the necessary background on the Mid-level Intermediate

Representation (MIR) used by the Rust compiler, and on the Clang AST framework

used to traverse and analyze C programs. While both C and Rust are well-known

systems languages, this work focuses on bridging their representations through static

analysis and transformation.

2.1 Mid-level Intermediate Representation (MIR)

2.1.1 Introduction to MIR

Mid-level Intermediate Representation (MIR) represents Rust’s simplified, control-

flow-oriented form of code, which is constructed from the High-level Intermediate

Representation (HIR), the primary intermediate form that the Rust compiler, rustc, uses

for the majority of its internal processing and language evolution. MIR serves as an

intermediate stage between the HIR and LLVM IR (see figure 1).

Figure 1: Rust compilation pipeline

8

For developers, MIR brings several practical benefits including more flexible

borrowing, improves type checking, and helps the compiler catch issues earlier. It also

achieves faster compilation by allowing incremental builds and early Rust-specific

optimizations, even before going to LLVM. Execution speed also benefits from MIR

through smarter handling of drop. Internally, MIR simplifies compiler’s logic by

handling key transformations like match evaluation and drop semantics, reducing

redundancy across stages. Since it has a uniform, low-level structure makes it easier to

develop and maintain complex features and set the stage for developing advanced

compilers in the future.

MIR consists of method signatures that have parameter and variable declarations,

scopes, and basic blocks that define control flow through sequential statements and a

single terminating instruction. The basic blocks include assertions for safety,

assignments for value handling, and metadata like method signatures, scopes, and

parameters. Its structured and transparent format makes MIR ideal for analysis,

optimization, and formal reasoning in systems programming.

fn add(_1: i32, _2: i32) -> i32 {

 debug a => _1;

 debug b => _2;

 let mut _0: i32;

 let mut _3: (i32, bool);

 bb0: {

 _3 = AddWithOverflow(copy _1, copy _2);

 assert(!move (_3.1: bool), "attempt to compute `{} + {}`, which

would overflow", copy _1, copy _2) -> [success: bb1, unwind continue];

 }

 bb1: {

 _0 = move (_3.0: i32);

 return;

 }

}

9

2.1.2 Why Use MIR for Analysis and Translation

One of the main reasons this project adopts Rust’s MIR as a model for translating and

analyzing C code is that MIR is the level where the Rust borrow checker operates. The

borrow checker is responsible for enforcing ownership, borrowing, and lifetime rules in

Rust programs. It ensures that memory accesses are valid, non-overlapping, and free of

data races, but critically, this validation does not occur at the high-level source or low-

level LLVM IR stages. Instead, the borrow checker analyses the MIR form of the code,

which is structured in a way that makes such analysis both tractable and precise.

MIR is more beneficial in many was than lower-level code like LLVM IR and three-

address format. Unlike LLVM IR, which is mostly focused on low-level details of

hardware unlike MIR that is concerned with features found in Rust such as moves,

scopes, drop logic, and references. These features are essential for understanding how

memory is used correctly and for safely analyzing or converting programs.

Additionally, MIR's control-flow structure makes the program’s logic easier to

understand and modify compared to the more flattened and low-level style of three-

address code.

By converting C code into a MIR-like representation, this thesis makes it possible to

analyse at the LLVM level, such as ownership tracking, early borrow checking, and

variable lifetime inference. Although C does not have an ownership model, representing

C programs in a MIR-like format allows the application of Rust-style safety principles,

including the possibility of identifying violations similar to those caught by the borrow

checker. This makes MIR not only a suitable but an ideal target format for static

analysis, transformation, and future safety checking of legacy C code.

2.2 Abstract Syntax Trees and Clang Tooling

2.2.1 The Role of ASTs in Compilers

An Abstract Syntax Tree (AST) is a core data structure used in compilers to present

source code in an ordered tree-like form. The AST’s logic is straightforward since every

expression, statement, or declaration map to an AST node. ASTs have a hierarchical

10

structure, as shown in the figure below, they do not include syntactic details and

preserve the original program’s logical order. More specifically, nodes represent code

constructs, whereas edges represent relationships between the constructs.

ASTs are useful for analyzing code statically without executing it, because they let us

traverse the code and explore the structure of the code directly. This makes them great

for catching bug early. Additionally, because ASTs allow changes in the code’s

structure without compromising functionality, we can efficiently transform and refactor

code using them.

Figure 3: AST example

2.2.2 Clang’s AST and LibTooling Framework

Clang’s AST constitutes a detailed and structured representation of source code written

in C, C++, or Objective-C. The most basic node types include Decl and Stmt. Using

Clang’s RecursiveASTVisitor interface, developers can perform custom analysis by

overriding methods such as VisitFunctionDecl or VisitVarDecl to walk through the

AST. Nevertheless, this framework equips tools with strong capabilities for performing

static analysis, modification, and even restructuring, by representing the program’s

semantics in a well-organized and accessible way.

To aid the creation of such tools Clang implemented LibTooling. LibTooling provides

access to the compiler’s inner workings, allowing developers to parse code, run

diagnostics, and generate abstract syntax trees (ASTs). Particularly, this project utilizes

LibTooling to retrieve the structures of C code and translate them into MIR-like

11

intermediate form, allowing analysis and modifications with precise control flow. The

adaptability of the Clang Abstract Syntax Tree, along with the use of LibTooling makes

them ideal for creating applications that convert source code into an intermediary

format (IR), similar to what our project performs.

12

Chapter 3

System Architecture

3.1 System Overview

The aim of this thesis is to translate C code to the Rust-style Mid-level Intermediate

Representation (MIR) output, driven by the broader goal of enabling structured and

semantically aware translation from C to Rust. The tool we are implementing leverages

Clang’s LibTooling and AST Libraries and is written in C++ since it is directly built on

top of Clang’s LibTooling and AST infrastructure, which is itself implemented in C++.

Our approach does not attempt to generate executable Rust code directly, instead it

focuses on translating C to MIR by reproducing the structure and semantics of MIR,

while iterating and analyzing the C Abstract Syntax Tree (AST). The syntactic and

semantic details required from our tool to generate the MIR-style output that mimics the

Rust compiler are produced by traversing the Abstract Syntax Tree (AST) of the C

source files. The tool parses C source files, traverses their AST, and emits MIR-like

output that captures the control flow, variable declarations, operations, and debug data.

Every line of C code is analyzed and handled in the same way that the equivalent Rust

code would be processed. For example, a line like int c; in C is treated as if it were

let mut c: i32; in Rust, closely mimicking the behavior of the Rust compiler.

Additionally, since the Rust compiler performs a range of optimizations, these must also

be considered during the mimicking stage. The final output aims to resemble what the

Rust compiler would produce internally following type-checking, but prior to lowering

to LLVM IR.

13

3.2 Architecture Components

In the following subchapter, we are going to analyse in depth the architecture of each

major component within the translation tool.

3.2.1 Frontend Driver and Tool Initialization

The Frontend Driver and Tool Initialization component is responsible for setting up the

analysis pipeline. The system starts from the main function and initializes Clang’s

command-line parser and tooling pipeline by using CommonOptionsParser for

processing the arguments, configuring ClangTool, and launching the

CustomFrontendAction to initiate the AST analysis.

auto ExpectedParser =CommonOptionsParser::create(argc,argv,ToolCategory);

 CommonOptionsParser &OptionsParser = ExpectedParser.get();

 ClangTool Tool(OptionsParser.getCompilations(),

 OptionsParser.getSourcePathList());

 return Tool.run(newFrontendActionFactory<CustomFrontendAction>()

 .get()); // call custom action on frontend which is

to run the consumer

3.2.2 Frontend Action and AST Consumer

Once the ClangTool is launched, class CustomFrontendAction is invoked and

overrides the CreateASTConsumer method. This is where our translation pipeline

connects to Clang’s internal AST infrastructure. The AST consumer processes the

parsed translation unit and internally creates an instance of the MyASTVisitor class, the

core of our translation logic.

3.2.3 AST Traversal and Translation Logic

The core component of the tool, MyASTVisitor, utilizes Clang’s

RecursiveASTVisitor to traverse the AST generated from the C source code node by

node. In this component, most of the system’s logic resides, including variable and

14

scope management, register allocation, and basic blocks control. Struct variableInfo,

which has information about every C variable, including its initial value, equivalent

MIR name, type, and scope depth, is one of our several helper structures set especially

for managing variables and scopes. We also have generateDebugScopes method,

which generates the scopes, scopeInsertionOrder vector tracking the sequence of

variable declaration in a function, and scopeBuffer vector storing produced scopes for

printing. Furthermore, localVars, tempVars, and tempVarCounter are helper

structures responsible for the register allocation and management, and structures like the

basic basicBlocks, basicBlocksOperations string vectors, and basicBlockCounter

supervise the control of the basic block.

3.2.4 Function Translation and Return Handling

The system processes full functions using VisitFunctionDecl, where C function

signatures are converted into MIR function headers. Parameters are mapped to uniquely

named registers like _1, and _2 and the return value is always stored in register _0,

while parameters are tracked at the same time. After traversing the function body, the

visitor emits debug scopes and appends all collected basic blocks for execution flow.

When a return statement is encountered, VisitReturnStmt ensures the value is stored

in _0, and if possible, it simplifies the output by removing unnecessary variables which

is an optimization that Rust’s compiler also performs.

3.2.5 Expression and Control Flow Handling

Following functions and variables, translating expressions and control flow logic into

the MIR format comes second most important. The Expression and Control Flow

Handling component guarantees that every operation is shown in the output with correct

semantics and structure. We have implemented various methods that handle binary

operations, unary operations, functions, returns, loops, and conditionals. Binary

operations are handled within VisitBinaryOperator method, which supports various

arithmetic operations like +, -, /, * in a simple way like a + b, but also more

complex chains such as a + b + c, guaranteeing overflow safe computation is

15

enforced using Rust-like AddWithOverflow and similar MIR intrinsics, combined with

assert and move statements to maintain safety guarantees. The tool handles division

and compound assignment operators +=, -=, /= and */, and inserts runtime checks to

catch division by zero or overflow, just like Rust would.

At last, control flow structures including if and while statements are handled by their

corresponding visitor approaches. Dynamic basic blocks to model flow transitions,

condition evaluations, and loop control. For example, VisitWhileStmt generates loop

condition blocks, update blocks, and proper exits. These elements cooperate to

guarantee that, at a lower level, Rust-style form fit for analysis or additional

compilation, the translated output reflects the logic of the original C code.

3.2.6 Formatted Output Handling (printf)

This component of the system converts C printf statements into Rust-style MIR output.

Instead of treating printf as a simple function call, the tool breaks it down into smaller

steps that match how Rust internally formats and prints println! calls. It generates

formatter objects for every variable, divides the format string into textual pieces, and

promotes them as global constants. Then, just like actual Rust MIR, they are bundled

together and passed to a special _print(..) call, ensuring that the output stays

accurate, type safe, and loyal to the way Rust would handle the printing, even though

the input was just a simple C printf.

3.2.7 Output Stream Management

The last component is in charge of producing the MIR-style output. Every C function is

handled separately and generates its output separately as well. Every function the

system generates a function header, debug information for its parameters, variable

declarations, nested scopes, and matching basic blocks. These blocks include key

operations such as assert, goto, and return, all formatted to match Rust’s MIR style.

Every function's output is first created internally using a dedicated vector,

basicblocks, which lets the system arrange the content before printing it. Ultimately,

16

the final output is just the aggregated view of the original C program formed by all

previous function outputs, MIR-like.

Here is a generated block that manages a basic addition as output by the

VisitFuncDecl approach:

 bb0: {

 _3 = AddWithOverflow(copy _1, copy _2);

 assert(!move (_3.1: bool), "attempt to compute `{} + {}`, which

would overflow", copy _1, copy _2) -> [success: bb1, unwind continue];

 }

3.3 Internal State and Structure Management

Throughout the translation process, the tool maintains several internal structures to keep

track of variable names, scopes, basic block organization, and output ordering. These

structures are essential for ensuring that the generated MIR code is consistent, correct,

and semantically aligned with the original C source code.

3.3.1 Temporary Variables and Counters

One of the most important structures is the tempVarCounter, which tracks the number

of temporary variables generated so far. This counter starts at the number of function

parameters for each function and increments each time a new temporary variable is

created during the traversal. This way, we are ensuring that temporary names like _3,

_4, _5, and so on, are unique within the scope of each function.

 // Initialize the temp variable counter to the number of parameters

 tempVarCounter = Func->getNumParams();

Temporary variables are declared using MIR-style tuple types like (i32, bool) and

stored in the tempVars vector. This vector helps prevent duplicate declarations and

ensures that all temporaries are listed at the top of the function body in the final output.

17

3.3.2 Variable Mapping

To maintain consistent naming, the tool uses two main mappings:

▪ paramMap: stores the mapping between original parameter names and their MIR

equivalents.

▪ variableInfo: a map<string, VariableInfo> that holds metadata for all

declared variables. The VariableInfo struct includes details such as the

variable’s MIR name, initial value, type, usage status, return status, usage count,

and more.

These mappings are cleared at the start of each new function and reused during traversal

to resolve identifiers within expressions and statements.

3.3.3 Basic Block Management

The fundamental basicBlockCounter variable records the current block under

creation. Every new block is stored in the basicBlocksOperations and basicBlocks

vector and labelled with a MIR-style identifier (e.g., bb2, bb3).

The tool generates several blocks pushed to basicBlocksOperations in special cases

including division overflow checks or loop updates. Once the function traversal is

finished, this vector is flushed to guarantee proper sequence of emission of all control

flow constructions.

3.3.4 Deferred Moves and Late Assignments

To mirror Rust MIR’s separation between computation and value movement, the tool

uses internal helpers like moveLine, which temporarily holds deferred assignment

instructions. This lets operations like AddWithOverflow emit first, with the final

assignment placed into the next basic block. Particularly in relation to conditional logic

or operations that might cause panic, this design increases both correctness and

readability. Likewise, for while loops, the updateBlock string keeps updates to the

18

loop control variable in a separate basic block, so guaranteeing accurate reevaluation of

loop conditions following every iteration.

3.4 Execution Flow

This subchapter is dedicated to explaining analytically the system’s processing pipeline,

specifically how the components mentioned in the previous subchapter interact

dynamically during a real run of the tool. The tool is structured as a sequence of

logically connected stages, each stage transforming the input and gradually refining raw

C code into structured MIR-style output.

When the tool is executed, the first thing is to process the command line arguments and

identify the source file to analyse using the CommonOptionsParser and create a

ClangTool instance as mentioned previously. The control is therefore handed over to a

custom frontend action, which links the internal logic to Clang’s parsing pipeline, steps

that prepare for the receiving and processing of the input source file. Clang then builds

the Abstract Syntax Tree (AST) by parsing the C source file including all declarations,

expressions, and control flow statements discovered in the original code.

A custom AST consumer is created once the frontend function is activated, which is

notified when the translation unit is ready. At that point, the tool calls TraverseDecl on

the root of the AST, which starts a recursive traversal of all nodes in the program. This

trigger calls to specific Visit*() functions implemented by the visitor, such as

VisitFuncDecl, VisitBinaryOperator, or VisitReturnStmt. Hence, this step marks

the beginning of the actual analysis, as each node encountered is processed to extract its

meaning and convert it to MIR-style output. As the traversal proceeds, the visitor logic

performs translation based on its node type. For example, if the node processed is a

function call, the tool does not shift its focus to the body of the called function. Instead,

each function is processed independently in the order it appears in the source file,

generating the corresponding MIR output. The body of the called function is only

visited when the tool explicitly reaches its own declaration during traversal. This

ensures that the source code is handled in a depth-first manner, preserving the logical

order of the program. Rather than printing output immediately, the system stores it in

various temporary buffers that are printed at the end of every function and cleared at the

19

beginning of every new one. This deferred approach allows the system to manage

formatting, variable renaming, and proper ordering before the final output is written.

Overall, the execution flow of the system ensures that each part of the C program is

visited, processed, and translated in an organized, depth-first manner. This structured

pipeline allows the tool to generate complete, consistent MIR-style output while

maintaining the semantic integrity of the original C source code, which is why this tool

is needed.

20

3.5 Assumptions and Limitations

Several fundamental presumptions must be satisfied if the tool is to operate as expected

and consistently:

i. Input C code is valid and compiles without errors: The tool expects the C code

to be syntactically and semantically correct as if there are compilation errors,

Clang will fail before the tool even starts traversing the AST.

ii. All code is self-contained in a single source file: All functions, variables, and

types must be defined in the same .c file since no cross-file dependencies like

#include “otherfile.h” that would require linking multiple translation units

are supported.

iii. No indirect or dynamic function calls: Only direct function calls are supported,

not function pointers or calls through function variables, resulting in an

assumption from the tool that only direct function calls exist.

iv. Functions do not depend on global variables: The tool assumes functions rely on

their parameters and local variables since global variable reads/writes are not

specially tracked or translated into MIR.

v. No inline assembly or platform-specific extensions; the tool expects portable C

code Clang can parse without custom extensions, hence non-standard language

features or asm(...) are not handled.

vi. Simple expressions and supported operators: Arithmetic operations like +, -,

*, / and simple comparisons like ==, !=, <, > are expected, not complex

ones like ternary operators ?:

vii. Our tool expects that simple control flow structures which support basic control,

partial if handling and while full handling are used in conventional, ordered

manner.

21

Even with these assumptions in place, there are still some limitations to what the tool

can currently do. These limitations reflect choices made during the design and

development process, and they help define the boundaries of the system’s functionality.

The main limitations are outlined below:

i. Does not support global variables

ii. Does not support structures, unions, or pointers

iii. Does not support recursion or function call graph analysis

iv. Does not support multi-file compilation

v. Limited type handling

vi. Incomplete translation for control flow statements

vii. Incomplete optimization or simplification passes

viii. Limited error reporting

ix. Not an executable backend

Now that we have clearly defined our tool’s architecture, execution flow, assumptions,

and limitations, the next chapter will dive into how each major component of the tool

was built and how each part of the translation process is implemented in practice.

22

Chapter 4

Implementation

4.1 AST Visitor and Translation Logic

The primary component of the translation works using Clang’s RecursiveASTVisitor

class to examine AST representations of parsed C programs. The MyASTVisitor visitor

class focuses on key Visit* methods to convert language elements into Rust MIR

intermediate representation. Rather than manually walking the tree node-by-node, Clang

automatically dispatches the traversal to appropriate Visit* methods based on the type

of the encountered AST node. The design of our tool allows modular and scalable

handling of different constructs such as functions, expressions, and control flow

statements.

Each overridden Visit* method focuses on:

▪ Analysing the specific AST node

▪ Emitting the equivalent MIR-like output

▪ Managing temporary variables, scope information, and basic blocks

23

A brief overview of the visitor methods implemented based on the node types, as well

as some of the other implemented functions, is shown below:

Clang AST

Node Type
Visitor Method Purpose Status

FunctionDecl VisitFunctionDecl
Handle function signatures, parameters, and

bodies
Implemented

VarDecl VisitVarDecl Handle variable declarations and type mapping Implemented

DeclRefExpr
VisitDeclRefExpr

Tracks whether the variables are used and

when
Implemented

BinaryOperator VisitBinaryOperator
Handle binary operations (+, -, *, /) with

overflow checking
Implemented

CallExpr VisitCallExpr
Handle direct function calls

Mention strings
Implemented

Helper getExprName
Helper function to generate MIR-like operand

strings from expressions
Implemented

Helper generateDebugScopes
Build scope declarations for variables based on

usage and insertion order
Implemented

Custom Logic handlePrintf
Generate MIR-style formatted printing

(_print(...)), dynamic formatting and promotion
Implemented

Custom Logic
emitPromotedConstan

t

Emit promoted format strings as MIR-style

global constants for use in _print
Implemented

Custom Logic hasSpecialFormatting
Detect formatting flags like %.2f, %05d in

printf to enable new_v1_formatted calls
Implemented

ReturnStmt VisitReturnStmt
Handle return statements and return value

movement
Implemented

IfStmt VisitIfStmt Handle if-else conditional branches Partial

WhileStmt VisitWhileStmt Handle while loops Implemented

UnaryOperator VisitUnaryOperator Log and recognize unary operations Partial

Unimplemented or partially implemented visitor methods are discussed later in the

Future Work chapter.

24

With the overall AST traversal strategy and the key visitor methods outlined, we can

now dive deeper into how some of the most critical components of the translation are

implemented. In the next sections, we will explore the logic behind handling function

declarations, expressions, control flow statements, and special cases, shedding light on

the decisions made to ensure an accurate and robust translation into MIR-like output.

4.2 Handling Functions and Parameters

C program’s functions serve as fundamental programming elements for the accuracy

and reliability of the MIR output generated, since C programs are consisted of multiple

functions. The VisitFunctionDecl method is responsible for this translation, handling

everything from function signatures to local variables and basic blocks. In this section,

we will explain how the tool processes a function, step-by-step, and the motivation

behind every design choice.

The method uses a FunctionDecl named *Func as a parameter and first aims to

differentiate between a full function definition with a body and a simple function

declaration such as a prototype int foo();. Since we are only interested in functions

that contain code, the visitor skips any declarations without a body:

 if (!Func->isThisDeclarationADefinition())

 return true; // Skip function declarations without a body

The next step is to extract the function’s name using the getNameAsString() method

that is inherited from Clang’s NameDecl class, which provides a convenient way to

extract the identifier name of any named declaration, including functions. Then, we

move on to clearing all internal structures used within our tool, ensuring that each new

function traversal starts with a clean state.

Before generating the function’s code, we initialize a counter, tempVarCounter, which

is responsible for tracking how many variables, including parameters and temporary

ones exist. This counter starts at the number of function parameters thus any additional

variables created later have the correct parameter names.

25

 // Initialize the temp variable counter to the number of parameters

 tempVarCounter = Func->getNumParams();

Next, the return type of the function is extracted and mapped into a Rust compatible

type. This is necessary because MIR expects Rust typing conventions:

 // Translate C types to Rust types

 if (returnType == "void")

 returnType = "()";

 else if (returnType == "int")

 returnType = "i32";

 else if (returnType == "unsigned int")

 returnType = "u32";

 else if (returnType == "float")

 returnType = "f32";

 else if (returnType == "double")

 returnType = "f64";

 else if (returnType == "char")

 returnType = "char";

 else if (returnType == "bool")

 returnType = "bool";

 else if (returnType == "char *" || returnType == "const char *")

 returnType = "&str";

 // Special case for main

 if (Func->getNameAsString() == "main")

 returnType = "()";

Additionally, the main function is treated as a special case, always returning (), the

Rust equivalent of void.

We continue with printing the function’s signature and parameters in the Rust MIR

syntax. Each parameter is automatically given a name like _1 or _2, mapped to its Rust

type and save it into an unordered map called paramMap for later use:

 // Print function signature

 llvm::outs() << "fn " << Func->getNameAsString() << "(";

 for (unsigned i = 0; i < Func->getNumParams(); ++i)

 {

 if (i > 0)

 llvm::outs() << ", ";

26

 std::string paramType = Func->getParamDecl(i)-

>getType().getAsString();

 if (paramType == "int")

 paramType = "i32";

 else if (paramType == "unsigned int")

 paramType = "u32";

 else if (paramType == "float")

 paramType = "f32";

 else if (paramType == "double")

 paramType = "f64";

 else if (paramType == "char *" || paramType == "const char *")

 paramType = "&str";

 else if (paramType == "char")

 paramType = "char";

 else if (paramType == "bool")

 paramType = "bool";

 llvm::outs() << "_" << (i + 1) << ": " << paramType;

 std::string paramName = Func->getParamDecl(i)->getNameAsString();

 // Store mapping (e.g., "a" -> "_1", "b" -> "_2")

 paramMap[paramName] = "_" + std::to_string(i + 1);

 }

Following the function signature, the translator emits debug lines for each function

parameter, if any, mimicking the way Rust’s compiler treats parameters separately from

the internal temporaries. This step is important for tools like debuggers or static

analyzers that use source-level information.

 // Ensure we only print debug statements IF the function has

parameters

 if (tempVarCounter > 0)

 {

 for (unsigned i = 0; i < tempVarCounter; ++i)

 {

 llvm::outs() << " debug "

 << Func->getParamDecl(i)->getNameAsString()

 << " => _" << (i + 1) << ";\n";

 }

 }

Before continuing with the traversal of the function’s body, we create the return

variable _0, which holds the return value for the function, mirroring the behaviour of

Rust’s MIR.

27

 // Printing the return variable

 llvm::outs() << " let mut _0: " << returnType << ";\n";

The tool moves on to processing the actual content, the statements and expressions that

compose the body. First, it determines if the function has a body and, if so, calls it to

traverse it. During this traversal, each child node is handled by the corresponding

Visit* method, whether it is a statement like a return statement, while statement, if

statement, call expression, or a binary or unary operation.

 if (Stmt *Body = Func->getBody())

 {

 TraverseStmt(Body); // Process the body of the function.

 }

After the traversal is completed, all local variables encountered or created within the

function are printed, followed by the generation and printing of debug scopes and the

printing of all basic blocks stored in the basicBlocks vector. The function concludes

by resetting some final vectors.

 // Output all basic blocks with dynamically generated labels.

 for (size_t i = 0; i < basicBlocks.size(); i++)

 {

 llvm::outs() << basicBlocks[i];

 }

4.3 Handling Binary Operations

Binary operations are a core component of computational logic within most C programs

and one of the first components we implemented. Their presence, from simple

arithmetic expressions to conditional checks within loops and control structures,

requires precise translation into Rust’s Mid-level Intermediate Representation (MIR) to

preserve semantic accuracy.

In this section, we will take a closer look at how the tool processes binary operations by

implementing the VisitBinaryOperator method. We walk through how it handles

type resolution, manages temporary variables, performs overflow checks, and

28

dynamically generates basic blocks in a style consistent with Rust’s MIR. Additionally,

we discuss a special case involving binary operations within while loop conditions,

which requires careful handling to ensure correct placement and flow.

First step in the VisitBinaryOperator method is to ensure that the tool skips both

system headers and relational operators, which are handled only as part of if statements

inside VisitIfStmt method.

 // Ignore system header operations

 if (Context->getSourceManager().isInSystemHeader(BinOp->getExprLoc()))

 return true;

 std::string Op = BinOp->getOpcodeStr().str();

 std::string rustOp;

 // Skip relational operators—they should be handled inside

`VisitIfStmt()`

 if (Op == ">" || Op == "<" || Op == "==" || Op == "!=")

 {

 return true;

 }

Next step is to retrieve the operand’s type and convert it to appropriate MIR-compatible

type.

C Operator MIR Equivalent

+, += AddWithOverflow

-, -= SubWithOverflow

*, *= MulWithOverflow

/, /= DivWithOverflow

The visitor proceeds to analyse both sides of the expression, unwrapping any implicit

casts to reveal the underlying variables or literals. Then, operand names are resolved

using getNameInfo().getAsString(). If the variable corresponds to a function

parameter, it is then replaced with its MIR name from paramMap. Otherwise, the

resolved variable name is used directly.

29

Before performing general operand analysis and MIR block generation, the visitor first

checks whether the binary operation is occurring inside a while loop. If so, it further

verifies whether the variable being modified by the operation matches the loop control

variable previously extracted from the condition. This selective filtering ensures that

only relevant operations such as i /= 1 in a loop over i are handled specially. When

such a match is found, the tool generates overflow-aware MIR instructions tailored for

loop-safe arithmetic and appends a goto instruction that re-evaluates the loop condition.

Division operations receive additional safeguards, including checks for division by zero

and signed overflow like i32::MIN / -1, ensuring MIR semantics remain correct and

robust during loop iteration.

How the relevant basic blocks are structured:

 blockLabel += moveLine;

 moveLine = "";

 // Basic block for division-by-zero check

 blockLabel += " " + divZeroTemp + " = Eq(" +

formatOperand(rhsVar) + ", const 0_i32);\n";

 blockLabel += " assert(!move " + divZeroTemp + ",

\"attempt to divide `{}` by zero\", " + formatOperand(lhsVar) +

 ") -> [success: bb" + std::to_string(nextBB) +

", unwind continue];\n";

 blockLabel += " }\n";

 basicBlocksOperations.push_back(blockLabel);

 blockLabel = "\n bb" + std::to_string(nextBB) + ": {\n";

 nextBB = basicBlockCounter++;

 // Overflow check (-1 divisor case)

 blockLabel += " " + negTemp + " = Eq(" +

formatOperand(rhsVar) + ", const -1_i32);\n";

 blockLabel += " " + minTemp + " = Eq(" +

formatOperand(lhsVar) + ", const i32::MIN);\n";

 blockLabel += " " + ovfTemp + " = BitAnd(move " +

negTemp + ", move " + minTemp + ");\n";

 blockLabel += " assert(!move " + ovfTemp + ",

\"attempt to compute `{} / {}`, which would overflow\", " +

formatOperand(lhsVar)

 + ", " + formatOperand(rhsVar) + ") ->

[success: bb" + std::to_string(nextBB) + ", unwind continue];\n";

 blockLabel += " }\n";

30

 basicBlocksOperations.push_back(blockLabel);

 blockLabel = "\n bb" + std::to_string(nextBB) + ": {\n";

 // Division operation

 blockLabel += " " + lhsVar + " = Div(" +

formatOperand(lhsVar) + ", " + formatOperand(rhsVar) + ");\n";

 blockLabel += " goto -> bb" + std::to_string(condBB) +

";\n";

 blockLabel += " }\n";

 basicBlocksOperations.push_back(blockLabel);

For all other binary operations outside of loops, the tool follows a general pattern: it

first identifies the target variable receiving the result, determines the correct MIR

intrinsic for the operation, and creates a new temporary variable to store the result along

with an overflow flag. It then generates a basic block containing the computation and

emits an assert! to ensure the operation did not overflow. Division operations are

handled slightly differently, as we previously explained above where we talked about

handling operations on the while loop control variable. Instead of assigning the result

immediately, the tool stores it in the helper string called moveLine that we talked about

in chapter 3.

4.4 Control Flow Statements

Implementing various control flow statements is undoubtedly one of the most important

and challenging parts of our tool’s implementation. Control flow statements can have

various forms and can combine multiple operations, expressions and nested statements.

For example, one while loop may contain several binary operations, function calls,

printf statements and conditional branches, all of which must interact flawlessly. That

was the primary goal for our tool, to combine every operation together simultaneously,

and achieve a near-perfect translation.

31

4.4.1 While Loops

To handle while loops, we implemented VisitWhileStmt method. We firstly extract

the condition of the loop and unwrap nested ImplicitCastExpr nodes, if present, to

access the actual loop control variable and store it in whileLoopVar global string. We

also set the flag insideWhileLoop to true, which will be later used in

VisitBinaryOperator to determine whether an operation is an operation on the

condition variable of the loop. Appropriate error messages are printed, and the loop is

skipped when control variable can not be resolved.

 // Extract Condition

 std::string loopCond;

 if (While->getCond())

 {

 llvm::raw_string_ostream rso(loopCond);

 While->getCond()->printPretty(rso, nullptr,

PrintingPolicy(LangOptions()));

 }

After extracting the condition, the tool creates temporary variables for the loop variable

and the evaluated condition, with their types translated to the appropriate MIR ones.

Basic blocks are then generated for the initialization of the loop variable and evaluation

of the condition. In the condition block, the loop variable is copied, and a MIR-style

comparison operation like Lt, Gt or Eq is applied using the operands extracted from the

original C expression. This comparison result is stored in condVar, which is then used

in a switchInt statement to direct control flow, since the tool translates integer condition

variables. If the condition is false, the loop exits. Otherwise, control transfers to the

block where the loop body begins execution. Next step is to traverse the body of the

while so every operation inside the while loop can be processed and correctly placed

within the while scope.

 // Now lets traverse the rest of the while body

 TraverseStmt(While->getBody());

Finally, after the traversal all basic blocks are pushed inside the basicBlocks vector, and

the loop exists by transferring the control to a newly created exit block.

32

4.4.2 If / Else if / Else

The VisitIfStmt approach has partially applied support for conditional branching. The

aim is to translate C if, else if, and else blocks into distinct basic blocks with

straightforward MIR-style control flow. The approach can currently extract simple

boolean conditions and create a switchInt statement to branch execution between a then

and an else block.

The arrangement of the emitted blocks is not yet totally accurate, though. Many times,

nested conditions, several else if chains, and return-value flow between branches go

unpackled as expected. The resulting MIR might not faithfully reflect the semantics of

the original C code even while switchInt and block labels are produced.

This part aims to record the design and early implementation phases. Part of the

intended future work is full support for appropriately nested if/else blocks. This function

is still experimental until then; accurate translation cannot depend on it.

4.5 Handling of Printing

A major milestone in this thesis was the ability to correctly interpret and convert

printf statements in C code into semantically equivalent Rust println! invocations,

expressed in MIR. Since formatted printing is a critical component in real world C

programs, our tool was designed to support both simple printing and advanced

formatted output with variable interpolation, consistent with how Rust MIR handles

such constructs.

4.5.1 Basic String Printing

The first step in successfully translating print statements was to support basic printf

calls that print constant format strings and the following format specifiers: %d, %i, %u,

%f, %e, %E, %x, %X, %c, and %s, without any width or precision modifiers. These were

translated into calls to Rust’s _print() macro using Arguments::new_v1() and a

33

promoted constant slice representing the format string. For example, the following C

line:

printf("Unsigned: %u | Hex: %x | UpperHex: %X\n", num, num, num);

would be translated into MIR-style calls using new_display, new_lower_hex, and

new_upper_hex respectively, along with a &[&str; N] constant representing the static

string segments.

4.5.2 Support for Width, Precision, and Format Specifiers

Once basic specifiers were working, the tool was extended to correctly handle optional

width and precision modifiers like %05d, %.2f, %8.3e. These are parsed using a regular

expression that captures the width, precision, and type specifier. When any modifier is

detected, the tool emits a call to Arguments::new_v1_formatted, including a

constructed array of Placeholder objects with the correct alignment, padding, flags,

and counts. This approach mirrors how Rust MIR models format output internally and

ensures consistent behavior even for more complex formatting instructions.

4.5.3 Type Mapping and Format Selection

Each printf argument is mapped to its Rust equivalent by inspecting the original C type

through Clang’s AST. This mapping ensures that format specifiers like %d, %f, or %x use

the correct MIR constructors and Rust types.

Common mappings include:

• %d / %i → i32 or i64 with new_display

• %f, %.2f → f32 or f64, optionally with new_lower_exp

• %x, %X → u32 / u64 with new_lower_hex / new_upper_hex

• %s → &str from char arrays or string literals

If a format specifier does not match the argument’s inferred type, the tool falls back to a

safe default or emits an error, minimizing undefined behaviour in the resulting MIR.

34

4.5.4 Static Segment Promotion and Formatting Arrays

Mirroring Rust MIR's treatment of format strings, the tool divides the format string into

stationary segments and encodes them into a &[&str; N] constant array.

Corresponding Argument and Placeholder arrays are created to hold references to the

runtime values and their formatting specifications. Depending on whether formatting

modifiers exist, these arrays are then forwarded to either Arguments::new_v1 or

Arguments::new_v1_formatted.

Every array is stored in a separate temporary variable, and slice coercions are used as

needed. While maintaining the layout and intent of the original C printf, this design

guarantees type-safe, Rust-style formatting behaviour.

4.5.5 Deferred Argument Emission

To ensure that our tool has correct evaluation order and MIR compliance, argument

moves like move _x are deferred into a separate basic block using the moveLine buffer.

The tool first emits all reference and Argument::new_* expressions, deferring actual

move operations until after those constructors complete, using the mechanism described

earlier in section 3.3.4: Deferred Moves and Late Assignments.

4.6 Tool Setup and Execution

By the end of this subchapter, the user will be able to configure, build, and run the tool.

The chapter contains details about the operating system used during the development of

the tool, the necessary installations and dependencies, and the build and execution

process.

4.6.1 Dependencies

The tool was developed and tested on Ubuntu 22.04.5 LTS and uses the Clang and

LLVM components. The following packages need to be installed:

35

sudo apt install llvm-dev clang libclang-dev llvm

The additional dependencies are also necessary for building and compiling the tool:

sudo apt install -y \

 build-essential \

 cmake \

 ninja-build \

 python3 \

 python3-pip \

 git \ libedit-dev \

 libxml2-dev \

 zlib1g-dev \

 libncurses5-dev \

 libssl-dev

4.6.2 Building the Tool

We need to create a directory like ‘c_to_mir’ and add the CMakeLists.txt and

ast_traversal.cpp files inside the new directory. Then, create a subdirectory for

building the project using the following commands:

mkdir build

cd build

We proceed on building the files and compiling the tool:

cmake ..

make

If the building and compiling were successful, it will produce an executable called

astTraverse inside the build/ directory.

36

4.6.3 Execution

To run the tool on a C file and produce the MIR-style output you need to type the

following command in a terminal inside the build/ directory.

./astTraverse path/to/file.c

The tool will parse the C source file, traverse its Abstract Syntax Tree (AST), and print

the corresponding MIR-style code to the terminal. This includes function declarations,

variable declarations, scopes, and control flow blocks.

37

Chapter 5

Evaluation

5.1 Testing Strategy

We assessed our tool against a well-chosen collection of C programs covering many

language aspects including function calls, arithmetic operations, loops, if statements,

and formatted printing using printf. Our aim was to verify that the output generated

matches the structure and semantics of the Rust compiler’s own MIR as closely as

possible. For comparison, we generated equivalent Rust code for each C example,

compiled it with –emit=mir, and manually inspected the MIR output to compare with

the tool’s translation.

5.2 Selected Test Cases and Results

To evaluate the correctness and completeness of the translation process, we designed

and executed 23 test programs written in C. These programs were carefully selected to

cover a wide range of language features, including arithmetic operations, control flow

structures, function call, return statements, and formatted output using printf.

For each test case, the tool was executed to produce a Rust-style MIR output. The

resulting MIR was compared against MIR generated by the Rust compiler with an

equivalent Rust version of the C code.

The table below lists every test case, feature tested, and observed output result. After

that, particular test cases are thoroughly shown together with the original C code,

matching MIR output, and a justification of the correctness.

38

C Program C Program Description Features Tested

add.c Add two integers with overflow check AddWithOverflow

minus.c
Subtract two integers with overflow

check
SubWithOverflow

mul.c Multiply two integers MulWithOverflow

divide.c Divide two integers DivWithOverflow

call_test.c Simple function call (square) Function call

complex_return_chain.c
Nested call with intermediate

computations
Chained call, Add+Mul

emptyfunction.c Function with no body Void function

expirement.c Temp variable reused before return Binary ops, reuse

expirementdiv.c Division followed by multiplication
DivWithOverflow, chained

op

expirementused.c Add + print before return Print, temp var reuse

fmt_test.c
Multiple format specifiers, precision,

padding
Formatted printing

format_char_string.c Print character and string Char & string formatting

format_hex_unsigned.c Print unsigned and hex representations u, x, X formatting

format_scientific_pointe

r.c
Scientific float formatting %e specifiers

multiple_addition.c Chained addition in one line Flattened binary ops

print_complex.c Combined printf with mixed types Advanced printf

printing.c Add + print result Print + AddWithOverflow

printing_multi.c Add + Mul with printf Chained ops with print

test.c Useless assignment followed by return Unused vars

while.c Basic while loop with increment While loop

whilediv.c While loop with division Loop + DivWithOverflow

whilereturn.c While loop with return of counter Loop + return

full_power_test.c
Function call, addition, multiplication,

loop, printf, return

AddWithOverflow,

MulWithOverflow, While

loop, Function call, Print

39

Test Case 1: Formatted Output and Arithmetic (fmt_test.c)

C source code:

#include <stdio.h>

int report(int a, int b, float f) {

 int sum = a + b;

 int product = a * b;

 // simple integer print

 printf("Sum: %d, Product: %d\n", sum, product);

 printf("Sum padded: %05d, Float precise: %8.3f\n", sum, f);

 return sum + product;

}

int main() {

 report(5, 7, 3.14159f);

 return 0;

}

Generated MIR code:

fn report(_1: i32, _2: i32, _3: f32) -> i32 {

 debug a => _1;

 debug b => _2;

 debug f => _3;

 let mut _0: i32;

 let mut _4: i32;

 let mut _5: (i32, bool);

 let mut _6: i32;

 let mut _7: (i32, bool);

 let _8: ();

 let mut _9: std::fmt::Arguments<'_>;

 let _10: &[&str; 3];

 let _11: &[core::fmt::rt::Argument<'_>; 2];

 let _12: [core::fmt::rt::Argument<'_>; 2];

 let mut _13: core::fmt::rt::Argument<'_>;

 let _14: &i32;

 let mut _15: core::fmt::rt::Argument<'_>;

 let _16: &i32;

 let _17: ();

 let mut _18: std::fmt::Arguments<'_>;

40

 let mut _19: &[&str];

 let _20: &[&str; 3];

 let mut _21: &[core::fmt::rt::Argument<'_>];

 let _22: &[core::fmt::rt::Argument<'_>; 2];

 let _23: [core::fmt::rt::Argument<'_>; 2];

 let mut _24: core::fmt::rt::Argument<'_>;

 let _25: &i32;

 let mut _26: core::fmt::rt::Argument<'_>;

 let _27: &f32;

 let mut _28: &[core::fmt::rt::Placeholder];

 let _29: &[core::fmt::rt::Placeholder; 2];

 let _30: [core::fmt::rt::Placeholder; 2];

 let mut _31: core::fmt::rt::Placeholder;

 let mut _32: core::fmt::rt::Alignment;

 let mut _33: core::fmt::rt::Count;

 let mut _34: core::fmt::rt::Count;

 let mut _35: core::fmt::rt::Placeholder;

 let mut _36: core::fmt::rt::Alignment;

 let mut _37: core::fmt::rt::Count;

 let mut _38: core::fmt::rt::Count;

 let mut _39: core::fmt::rt::UnsafeArg;

 let mut _40: (i32, bool);

 scope 1 {

 debug sum => _4;

 scope 2 {

 debug product => _6;

 }

 }

 bb0: {

 _5 = AddWithOverflow(copy _1, copy _2);

 assert(!move (_5.1: bool), "attempt to compute `{} + {}`, which

would overflow", copy _1, copy _2) -> [success: bb1, unwind continue];

 }

 bb1: {

 _4 = move (_5.0: i32);

 _7 = MulWithOverflow(copy _1, copy _2);

 assert(!move (_7.1: bool), "attempt to compute `{} * {}`, which

would overflow", copy _1, copy _2) -> [success: bb2, unwind continue];

 }

 bb2: {

 _6 = move (_7.0: i32);

 _10 = const report::promoted[1];

 _14 = &_4;

 13 = core::fmt::rt::Argument::<'>::new_display::<i32>(copy _14)

-> [return: bb3, unwind continue];

41

 }

 bb3: {

 _16 = &_6;

 15 = core::fmt::rt::Argument::<'>::new_display::<i32>(copy _16)

-> [return: bb4, unwind continue];

 }

 bb4: {

 _12 = [move _13, move _15];

 _11 = &_12;

 9 = Arguments::<'>::new_v1::<3, 2>(copy _10, copy _11) ->

[return: bb5, unwind continue];

 }

 bb5: {

 _8 = _print(move _9) -> [return: bb6, unwind continue];

 }

 bb6: {

 _20 = const report::promoted[0];

 _19 = copy _20 as &[&str] (PointerCoercion(Unsize));

 _25 = &_4;

 24 = core::fmt::rt::Argument::<'>::new_display::<i32>(copy _25)

-> [return: bb7, unwind continue];

 }

 bb7: {

 _27 = &_3;

 26 = core::fmt::rt::Argument::<'>::new_display::<f32>(copy _27)

-> [return: bb8, unwind continue];

 }

 bb8: {

 _23 = [move _24, move _26];

 _22 = &_23;

 _21 = copy _22 as &[core::fmt::rt::Argument<'_>]

(PointerCoercion(Unsize));

 _32 = core::fmt::rt::Alignment::Unknown;

 _33 = core::fmt::rt::Count::Implied;

 _34 = core::fmt::rt::Count::Is(const 5_usize);

 _31 = core::fmt::rt::Placeholder::new(const 0_usize, const ' ',

move _32, const 8_u32, move _33, move _34) -> [return: bb9, unwind

continue];

 }

 bb9: {

 _36 = core::fmt::rt::Alignment::Unknown;

42

 _37 = core::fmt::rt::Count::Is(const 3_usize);

 _38 = core::fmt::rt::Count::Is(const 8_usize);

 _35 = core::fmt::rt::Placeholder::new(const 1_usize, const ' ',

move _36, const 0_u32, move _37, move _38) -> [return: bb10, unwind

continue];

 }

 bb10: {

 _30 = [move _31, move _35];

 _29 = &_30;

 _28 = copy _29 as &[core::fmt::rt::Placeholder]

(PointerCoercion(Unsize));

 _39 = core::fmt::rt::UnsafeArg::new() -> [return: bb11, unwind

continue];

 }

 bb11: {

 18 = Arguments::<'>::new_v1_formatted(move _19, move _21, move

_28, const core::fmt::rt::UnsafeArg {{ _private: () }}) -> [return: bb12,

unwind continue];

 }

 bb12: {

 _17 = _print(move _18) -> [return: bb13, unwind continue];

 }

 bb13: {

 _40 = AddWithOverflow(copy _4, copy _6);

 assert(!move (_40.1: bool), "attempt to compute `{} + {}`, which

would overflow", copy _4, copy _6) -> [success: bb14, unwind continue];

 }

 bb14: {

 _0 = move (_40.0: i32);

 return;

 }

}

const report::promoted[0]: &[&str; 3] = {

 let mut _0: &[&str; 3];

 let mut _1: [&str; 3];

 bb0: {

 _1 = [const "Sum padded: ", const ", Float precise: ", const

"\n"];

 _0 = &_1;

 return;

 }

43

}

const report::promoted[1]: &[&str; 3] = {

 let mut _0: &[&str; 3];

 let mut _1: [&str; 3];

 bb0: {

 _1 = [const "Sum: ", const ", Product: ", const "\n"];

 _0 = &_1;

 return;

 }

}

fn main() -> () {

 let mut _0: ();

 let _1: i32;

 bb0: {

 _1 = report(const 5_i32, const 7_i32, const 3.1415901f32) ->

[return: bb1, unwind continue];

 }

 bb1: {

 return;

 }

}

This example demonstrates the full capability of our tool's formatted output generation,

including dynamic format string promotion, padding and precision handling, use of

Placeholder objects, and safe arithmetic with overflow assertions. The structure, control

flow, and formatting match the MIR emitted by the Rust compiler.

The only difference lies in variable scoping: the Rust compiler moves some variables

into nested scope {} blocks based on usage to optimize lifetime management and

memory. Our tool currently emits all let declarations at the function's top level since we

did not handle that optimization.

44

Test Case 2: Nested Functions, Loops, and Print (full_power_test.c)

C source code:

#include <stdio.h>

int multiply(int a, int b) {

 return a * b;

}

int square_sum_loop(int x, int y) {

 int sum = x + y;

 int result = multiply(sum, sum);

 int counter = 0;

 while (counter < result) {

 counter += 1;

 }

 printf("Final result is: %d, Loop count: %d\n", result, counter);

 return result;

}

int main() {

 int output = square_sum_loop(2, 3);

 return 0;

}

Generated MIR code:

fn multiply(_1: i32, _2: i32) -> i32 {

 debug a => _1;

 debug b => _2;

 let mut _0: i32;

 let mut _3: (i32, bool);

 bb0: {

 _3 = MulWithOverflow(copy _1, copy _2);

 assert(!move (_3.1: bool), "attempt to compute `{} * {}`, which

would overflow", copy _1, copy _2) -> [success: bb1, unwind continue];

 }

 bb1: {

 _0 = move (_3.0: i32);

 return;

45

 }

}

fn square_sum_loop(_1: i32, _2: i32) -> i32 {

 debug x => _1;

 debug y => _2;

 let mut _0: i32;

 let mut _3: i32;

 let mut _4: (i32, bool);

 let mut _5: i32;

 let mut _6: i32;

 let mut _7: bool;

 let mut _8: i32;

 let mut _9: (i32, bool);

 let _10: ();

 let mut _11: std::fmt::Arguments<'_>;

 let _12: &[&str; 3];

 let _13: &[core::fmt::rt::Argument<'_>; 2];

 let _14: [core::fmt::rt::Argument<'_>; 2];

 let mut _15: core::fmt::rt::Argument<'_>;

 let _16: &i32;

 let mut _17: core::fmt::rt::Argument<'_>;

 let _18: &i32;

 scope 1 {

 debug sum => _3;

 scope 2 {

 debug result => _5;

 scope 3 {

 debug counter => const 0_i32;

 }

 }

 }

 bb0: {

 _4 = AddWithOverflow(copy _1, copy _2);

 assert(!move (_4.1: bool), "attempt to compute `{} + {}`, which

would overflow", copy _1, copy _2) -> [success: bb1, unwind continue];

 }

 bb1: {

 _3 = move (_4.0: i32);

 _5 = multiply(copy _3, copy _3) -> [return: bb2, unwind

continue];

 }

 bb2: {

 _6 = const 0_i32;

 goto -> bb3;

46

 }

 bb3: {

 _8 = copy _6;

 _7 = Lt(move _8, copy _5);

 switchInt(move _7) -> [0: bb6, otherwise: bb4];

 }

 bb4: {

 _9 = AddWithOverflow(copy _6, const 1_i32);

 assert(!move (_9.1: bool), "attempt to compute `{} + {}`, which

would overflow", copy _6, const 1_i32) -> [success: bb5, unwind

continue];

 }

 bb5: {

 _6 = move (_9.0: i32);

 goto -> bb3;

 }

 bb6: {

 _12 = const square_sum_loop::promoted[0];

 _16 = &_5;

 15 = core::fmt::rt::Argument::<'>::new_display::<i32>(copy _16)

-> [return: bb7, unwind continue];

 }

 bb7: {

 _18 = &_6;

 17 = core::fmt::rt::Argument::<'>::new_display::<i32>(copy _18)

-> [return: bb8, unwind continue];

 }

 bb8: {

 _14 = [move _15, move _17];

 _13 = &_14;

 11 = Arguments::<'>::new_v1::<3, 2>(copy _12, copy _13) ->

[return: bb9, unwind continue];

 }

 bb9: {

 _10 = _print(move _11) -> [return: bb10, unwind continue];

 }

 bb10: {

 _0 = copy _5;

 return;

 }

47

}

const square_sum_loop::promoted[0]: &[&str; 3] = {

 let mut _0: &[&str; 3];

 let mut _1: [&str; 3];

 bb0: {

 _1 = [const "Final result is: ", const ", Loop count: ", const

"\n"];

 _0 = &_1;

 return;

 }

}

fn main() -> () {

 let mut _0: ();

 let mut _1: i32;

 scope 1 {

 debug output => _1;

 }

 bb0: {

 _1 = square_sum_loop(const 2_i32, const 3_i32) -> [return: bb1,

unwind continue];

 }

 bb1: {

 return;

 }

}

This example shows several key translators' capabilities: nested function calls,

arithmetic with overflow checks, a while-style loop applying switchInt, and formatted

output using Arguments::new_v1. The tool dynamically generates print arguments

depending on value type and position, correctly emitting promoted string constants.

Like the previous example, the tool's output matches the actual Rust MIR almost

exactly. The only noticeable difference is the placement of variable declarations, that

some are not promoted into scopes. Rust MIR generates let declarations at the top of

each function, while it nests variables including result and counter within inner scopes

for memory and lifetime optimization, a future improvement area of our tool.

48

Conclusion

These case studies show that the tool generates MIR structures nearly identical to the

actual Rust compiler, including safety checks, formatted printing, and value flow.

Structural differences are minimal and mostly related to variable scoping. These

findings show that the tool can produce precisely MIR-compliant output from actual C

programs.

49

Chapter 6

Future Work

Time restrictions allow several areas for improvement even though the tool presently

produces consistent and ordered MIR-style output from C source code. The remaining

tasks relate to supporting language constructs, improving semantic accuracy, mimicking

the compiler’s optimizations, and preparing the tool for broader usability and

maintainability.

6.1 Support for Additional Language Constructs

To increase the translator’s compatibility with real world C programs there are several

important constructs that need to be implemented. Those include:

▪ Variable Initialization: The tool successfully handles initializations from

operations like int x = a + b;, expressions, and function calls, but not simple

constant initializations like int a = 5; since Rust’s compiler has optimizations

that sometimes handle those initializations inside the scopes.

▪ Unary Operators: Support for unary negation, logical negation !x, bitwise

complement ~x, and increment/decrement operations ++x, x-- is required.

▪ For loops: We do not have any kind of for statement handling since we focused

on fully implementing while loops. Full translation into equivalent MIR loop

constructs is necessary, including support for loop initializers, condition checks,

and iteration checks.

▪ Switch Statements: Full implementation of VisitSwitchStmt function is

needed, including actual case-by-case branching logic, break handling, and

default case support.

▪ If Statements: The VisitIfStmt logic is partially implemented. It needs full

dynamic construction of conditional blocks, else if chains, final else fallbacks,

and correct placement of return and goto statements.

50

6.2 Advanced Features: Structs, Arrays, and Casts

Many advanced C features still lack support and clearly point the way to where future

development should go:

▪ Structs and Members: The tool does not yet translate struct fields or member

access expressions like obj.field or ptr->field since VisirRecorDecl is not

yet implemented.

▪ Arrays: Currently ignores expressions like arr[i] or pointer arithmetic with

array indices are currently ignored. There has to be added proper memory

indexing logic.

▪ Pointers: Currently, pointer variables are excluded by design. Future versions

may include safe representations or modeled dereferencing (*ptr) and address-

of (&x) operations where possible.

▪ Explicit C-style Casts: Common in C, expressions such (int)x, are not yet

handled by the translator. Handling these correctly via VisitCStyleCastExpr is

necessary for semantic completeness.

6.3 Compiler Optimization Fidelity

A major long-term goal is to mimic all MIR-level optimizations that the Rust compiler

performs:

▪ Elimination of unused variables (dead code removal).

▪ Simplification of return paths by collapsing intermediate temporaries when they

are only used once.

▪ Inlining and scope compression for short-lived temporaries.

▪ Efficient move semantics and deferral of assignments (already partially

implemented using moveLine).

▪ Promotion of constants for formatting output, and reuse of identical formatting

data.

51

This would ensure that the generated MIR not only looks correct but also behaves and

performs like actual compiler-emitted MIR.

6.4 Evaluation Method

The next step is to evaluate the tool’s output using Miri. Miri is a useful tool for

interpreting Rust MIR and looking for undefined behavior, memory errors, and other

safety issues. However, Miri does not accept MIR code directly, instead, it executes

Rust source code by interpreting the MIR generated internally by rustc.

We identified two potential strategies to evaluate our tool’s MIR-style output with Miri.

1. Reconstructing MIR as Rust Code

One theoretical part would be to reconstruct Rust from our MIR code. This

reconstructed Rust code could then be compiled with rustc and executed using

Miri, allowing indirect validation of our output. However, this method would

involve significant reverse-engineering and ultimately double our tool’s

workload which will result in significantly increase the tool’s complexity.

Nevertheless, this approach remains viable for future extensions.

2. Forking rustc to modify the MIR generation phase

A second, more invasive method is to fork the official rust-lang/rust and

modify the MIR generation stage within the compiler itself to inject or replace

MIR with the output of our tool. While this would technically allow direct

evaluation with Miri, such a solution is highly complex, time-consuming, and

requires deep integration into the compiler’s internals. Nonetheless, it represents

a compelling future research direction for those aiming to integrate C-to-MIR

translation more deeply into the Rust toolchain.

This subchapter purposefully features a brief review of these Miri-related restrictions

and possible approaches. For deeper integration and validation, the second method,

compiler forking, may show to be the most exciting future tool.

52

Chapter 7

Related Work

Rust's promise of memory safety and concurrency guarantees has attracted a lot of

interest on this adaptation of C programs into Rust. Several approaches have been

proposed to automate or assist this translation, each addressing the inherent challenges

posed by C’s lack of safety guarantees and Rust’s strict ownership model.

Zhang et al. propose a static analysis framework that retypes C pointers into safe Rust

abstractions like Box and &mut, enabling large-scale migration with reduced use of

unsafe code [18]. Emre et al. propose a monotonic ownership model to reduce aliasing

as a basic barrier to safe translation, showing that accurate ownership inference often

fails in the presence of pointer aliasing [19]. By using pattern based pointer analysis

[20], Hardekopf et al. further streamline the translation pipeline by converting

dangerous Rust into safe Rust. While these approaches focus on generating safe Rust

source, other work shifts toward IR-level modeling. Using annotated source

transformations [21], Silva et al. modify Rust's MIR borrow-checking rules to C;

Michael Ling et al. create a rule based transpiler to progressively rewrite dangerous C

code into safer Rust [22].. Li et al. complement these approaches by doing a user study

emphasizing the pragmatic challenges developers encounter when converting C to Rust,

particularly in regard to ownership and lifetimes [23].

Unlike these tools and studies, our work focuses on directly creating a MIR-style

intermediate representation from C code using Clang AST Traversal, so enabling fine-

grained tracking of ownership semantics, control flow, and variable lifetimes, without

depending on Rust compilation.

53

Chapter 8

Conclusion

This thesis investigated the creation of a stationary analysis and translation tool based

on Mid-level Intermediate Representation (MIR) modeled after Rust compiler from C

source code. Given the limitations of C programming language in terms of memory

safety, lifetime tracking, and overflow detection, we investigated how such constructs

could be encoded in a lower-level, analyzable from inspired by Rust’s internal

compilation stages.

We developed and tested a prototype tool in C++ using Clang's Abstract Syntactic Tree

(AST) and LibTooling frameworks in order to solve this challenge. The tool performs

structural traversal of C code and emits output in a MIR-style format that includes

control flow via basic blocks, variable tracking through scoped registers, arithmetic with

overflow checks, and support for Rust-style formatted printing. Using custom logic and

deferred code generation techniques reflecting Rust's internal behavior, key C constructs

including functions, arithmetic expressions, while loops, and conditionals were

translated into MIR equivalents.

We show throughout this work that it is possible to replicate semantic structure of C

programs in a Rust-like MIR form, so facilitating deeper investigation and providing the

basis for safe refactoring and possible cross-language translation. Using a set of

representative C programs, our evaluation revealed that the produced output in both

structure and logic quite closely matches real Rust MIR.

The tool is not feature-complete, but the results show its efficiency in managing

fundamental language components and show future expansion possibility. Its usability

might be raised even more by extensions including support for structs, pointers, for-

loops, and switch statements as well as better optimizations. Ultimately, this work lays

54

the groundwork for hybrid tools that bring Rust’s safety model to legacy C code via

compiler-level translation and analysis.

55

References

[1] Kinza Yasar, “What is C (programming language)?”, TechTarget.

https://www.techtarget.com/searchwindowsserver/definition/C

[2] Fernando Diaz, “How to secure memory-safe vs. manually managed languages”,

GitLab, Mar. 14, 2023.

https://about.gitlab.com/blog/2023/03/14/memory-safe-vs-unsafe/

[3] EC-Council University, “5 Most Popular Programming Languages for

Cybersecurity”, eccu.

https://www.eccu.edu/blog/most-popular-programming-languages-for-

cybersecurity/

[4] Steve Klabnik, Carol Nichols, and Chris Krycho, with contributions from the

Rust Community, “The Rust Programming Language”, rust-lang.org, Feb. 17,

2025. https://doc.rust-lang.org/book/title-page.html

[5] https://www.rust-lang.org/

[6] JSDevJournal, “Rust's Ownership System: 10 Things You Should Know”,

Hackernoon, Sep. 4, 2023.

https://hackernoon.com/rusts-ownership-system-10-things-you-should-know

[7] Kornel., “Speed of Rust vs C”, https://kornel.ski/rust-c-speed

[8] Syed Murtza, “Zero-Cost Abstractions in Rust: Power Without the Price”,

Dockyard, Apr. 15, 2025.

https://dockyard.com/blog/2025/04/15/zero-cost-abstractions-in-rust-power-

without-the-price

[9] Sara Verdi, “Why Rust is the most admired language among developers”,

GitHub, Aug. 30, 2023.

https://github.blog/developer-skills/programming-languages-and-

frameworks/why-rust-is-the-most-admired-language-among-developers/

[10] Mohammed Tawfik, “Rust Language: Pros, Cons, and Learning Guide”,

Medium, Feb. 19, 2024.

https://medium.com/@apicraft/rust-language-pros-cons-and-learning-guide-

594e8c9e2b7c

[11] c2rust. https://github.com/immunant/c2rust

https://about.gitlab.com/blog/2023/03/14/memory-safe-vs-unsafe/
https://www.eccu.edu/blog/most-popular-programming-languages-for-cybersecurity/
https://www.eccu.edu/blog/most-popular-programming-languages-for-cybersecurity/
https://doc.rust-lang.org/book/title-page.html
https://www.rust-lang.org/
https://hackernoon.com/rusts-ownership-system-10-things-you-should-know
https://kornel.ski/rust-c-speed
https://dockyard.com/blog/2025/04/15/zero-cost-abstractions-in-rust-power-without-the-price
https://dockyard.com/blog/2025/04/15/zero-cost-abstractions-in-rust-power-without-the-price
https://github.blog/author/saraverdi/
https://github.blog/developer-skills/programming-languages-and-frameworks/why-rust-is-the-most-admired-language-among-developers/
https://github.blog/developer-skills/programming-languages-and-frameworks/why-rust-is-the-most-admired-language-among-developers/
https://medium.com/@apicraft/rust-language-pros-cons-and-learning-guide-594e8c9e2b7c
https://medium.com/@apicraft/rust-language-pros-cons-and-learning-guide-594e8c9e2b7c
https://github.com/immunant/c2rust

56

[12] Niko Matsakis, “Introducing MIR”, RustBlog, Apr. 19, 2016.

https://blog.rust-lang.org/2016/04/19/MIR/

[13] Bala Priya C, “Abstract Syntax Tree (AST) - Explained in Plain English”,

Dev.to, Dec. 28, 2022.

https://dev.to/balapriya/abstract-syntax-tree-ast-explained-in-plain-english-1h38

[14] Gunashree RS, “ASTs Meaning: A Complete Programming Guide”, Devzery,

Aug. 22, 2024. https://www.devzery.com/post/asts-meaning

[15] Shrey Vijayvargiya, “What is an Abstract Syntax Tree in Programming?”,

Medium, Apr. 7, 2024. https://javascript.plainenglish.io/what-is-an-abstract-

syntax-tree-in-programming-2f5d8a8d6f72

[16] “Introduction to the Clang AST”, Clang.

https://clang.llvm.org/docs/IntroductionToTheClangAST.html

[17] “LibTooling”, Clang. https://clang.llvm.org/docs/LibTooling.html

[18] Hanliang Zhang, Christina David, Yijun Yu, Meng Wang, “Ownership Guided

C to Rust Translation”, ResearchGate, Jul. 2023.

https://www.researchgate.net/publication/372409182_Ownership_Guided_C_to

_Rust_Translation

[19] Mehmet Emre, Peter Boyland, Aesha Parekh, Ryan Schroeder, Kyle Dewey,

Ben Hardekopf, “Aliasing Limits on Translating C to Safer Rust”,

ResearchGate, Apr. 2023.

https://www.researchgate.net/publication/369863341_Aliasing_Limits_on_Tran

slating_C_to_Safe_Rust

[20] Mehmet Emre, Ryan Schroeder, Kyle Dewey, Ben Hardekopf, “Translating C to

Safer Rust”, ResearchGate, Oct. 2021.

https://www.researchgate.net/publication/355438064_Translating_C_to_safer_R

ust

[21] Tiago Silva, Joao Bispo, Tiago Carvalho, “Foundations for a Rust-Like Borrow

Checker for C”, ResearchGate, Jun. 2024.

https://www.researchgate.net/publication/381588695_Foundations_for_a_Rust-

Like_Borrow_Checker_for_C

[22] Michael Ling, Yijun Yu, Haitao Wu, Yuan Wang, James R. Cordy, Ahmed E.

Hassan, “In Rust We Trust – A Transpiler from Unsafe C to Safer Rust”,

ResearchGate, Oct. 2022.

https://blog.rust-lang.org/2016/04/19/MIR/
https://dev.to/balapriya/abstract-syntax-tree-ast-explained-in-plain-english-1h38
https://www.devzery.com/post/asts-meaning
https://clang.llvm.org/docs/IntroductionToTheClangAST.html
https://clang.llvm.org/docs/LibTooling.html

57

https://www.researchgate.net/publication/364416328_In_rust_we_trust_a_transp

iler_from_unsafe_C_to_safer_rust

[23] Ruishi Li, Bo Wang, Tianyu Li, Prateek Saxena, “Translating C to Rust:

Lessons from a User Study”, ResearchGate, Jan. 2025

https://www.researchgate.net/publication/390111014_Translating_C_To_Rust_

Lessons_from_a_User_Study

[24] MSRC Team, “A proactive approach to more secure code”, Microsoft, Jul. 16,

2019.

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-

code/

[25] “Memory safety”, The Chromium Projects.

https://www.chromium.org/Home/chromium-security/memory-safety/

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://www.chromium.org/Home/chromium-security/memory-safety/

