
Diploma Project

AI-Enhanced SDR-Based

RF Signals to Text Platform

George Pettemeridis

Department of Computer Science

May 2025

UNIVERSITY OF CYPRUS

Faculty of Pure and Applied Sciences

Department of Computer Science

AI-Enhanced SDR-Based RF Signals to

Text Platform

George Pettemeridis

Advisor: Dr. Panayiotis Kollios

The Thesis was submitted in partial fulfillment of the requirements for obtaining the

Computer Science degree of the Department of Computer Science of the University of

Cyprus

May 2025

i

Acknowledgements

I would like to express my sincere gratitude to the individuals whose support and contri-

butions have been instrumental in the successful completion of this research.

First and foremost, I extend my heartfelt thanks to my advisor, Dr. Panayiotis Kollios,

for their invaluable guidance, continuous support, and insightful feedback throughout this

project. Their mentorship played a vital role in shaping the direction and outcome of this

work.

I am also thankful to the KIOS Drones Team, whose collective efforts and collaborative

spirit created a productive and supportive research environment. Being part of this team

has significantly enriched my experience and the quality of this thesis.

In particular, I would like to express my deepest appreciation to Dr. Nicolas Soulis and

Maria Karatzia of the Drones Team. Their dedicated assistance, expertise, and encour-

agement were essential in carrying this project to completion. This work would not have

been possible without them.

Thank you all for your contributions and unwavering support.

ii

ABSTRACT

Thiswork presents a system for automating speech transcription from conventional walkie-
talkie communication using a combination of low-cost hardware, specialized signal pro-
cessing software, and advanced speech recognition models. The proposed system is de-
signed to facilitate real-time monitoring that leverages RTL-SDR (RealTek Limited Soft-
ware Defined Radio) to detect and capture audio signals from active walkie-talkie chan-
nels within a specified frequency range. A channel identification procedure is employed
to locate the active frequency channel, and then GNU Radio processes the audio signal
by converting it into a standardized WAV format suitable for speech-to-text analysis. The
audio data is transcribed using the Faster-Whisper model. The proposed system architec-
ture consists of four main components: (1) signal acquisition and channel detection using
RTL-SDR, (2) signal processing and audio extraction via GNU Radio, (3) speech-to-text
conversion using Faster-Whisper, and (4) speaker diarization (classification) based on di-
rection of arrival (DOA). This modular design aims to provide a reliable and cost-effective
solution for real-time transcription applications in fields such as security, emergency re-
sponse, and situational awareness. Numerous experimental evaluations were conducted
to assess the system’s performance in terms of channel detection accuracy, transcription
quality, classification accuracy, and resilience to environmental factors such as back-
ground noise and variable signal strength. Initial results demonstrate that the combination
of RTL-SDR and GNU Radio effectively isolates walkie-talkie channels, Faster-Whisper
maintains high transcription accuracy, even under noisy conditions, and diarization is pos-
sible using DOA measurements of the walkie-talkie signal. This study contributes to the
field by demonstrating a practical approach to real-time speech transcription using open-
source tools, signal processing, and SDR technology. Future work will further investigate
methodologies to improve the noise reduction and processing speed and also enhance the
system’s adaptability across diverse communication environments.

Keywords: Software-Defined Radio (SDR); Signal Processing; Speech-to-Text; Walkie-
Talkie Transcription; Real-Time Monitoring; Direction of Arrival; Artificial Intelligence

iii

TABLE OF CONTENTS

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

1 Introduction 1
1.1 Background Information . 1
1.2 Problem Statement . 1
1.3 Objectives . 2
1.4 Structure of the Thesis . 3

2 Literature Review 4
2.1 Overview of SDR Technology . 4
2.2 GNU Radio and its Role in Signal Processing 4

2.2.1 Architecture Overview . 5
2.2.2 Simplifying Signal Manipulation 5
2.2.3 GNU radio-based Walkie-Talkie Applications 5

2.3 Speech-to-Text Technologies . 5
2.3.1 Machine Learning Model Comparisons 6

2.4 Direction-of-Arrival (DoA) and KrakenSDR 7
2.4.1 Overview of DoA Technology 7
2.4.2 Existing Algorithms for DoA . 8
2.4.3 KrakenSDR . 9

2.4.3.1 What is KrakenSDR? 9

iv

2.5 Clustering . 10
2.5.1 Clustering Methodologies . 10

2.5.1.1 Partitioning Methods 10
2.5.1.2 Hierarchical Clustering 10
2.5.1.3 Density-Based Clustering 10
2.5.1.4 Model-Based Clustering 11

2.6 Related Work . 11

3 Technical Background 14
3.1 Docker Containers . 14

3.1.1 Docker Architecture . 14
3.1.2 Containerization . 14
3.1.3 Docker benefits in DevOps . 15
3.1.4 Docker Compose . 15

3.2 Fourier Transform (FT) . 16
3.2.1 Fast Fourier Transform . 16
3.2.2 Inverse Fast Fourier Transform (IFFT) 17

3.3 Understanding RTL-SDR and Walkie-Talkie Signal Structure 18
3.3.1 The Fundamentals of RTL-SDR 19

3.3.1.1 Crystal oscillator . 19
3.3.2 Modulations . 20

3.3.2.1 Amplitude Modulation (AM) 20
3.3.2.2 Frequency Modulation (FM) 21
3.3.2.3 Key Differences Between AM and FM 23

3.3.3 KrakenSDR hardware overview 23
3.4 GNU Radio for Signal Processing . 25

3.4.1 GNU Radio Fundamentals . 25
3.4.2 Signal Processing Blocks and Flowgraphs 25
3.4.3 Using GNU Radio with hardware in the loop or in simulation mode 26
3.4.4 GNU Radio Companion (GRC) 26

3.5 OpenAI Whisper for Speech-to-Text Conversion 26
3.5.1 Transformers . 26

3.5.1.1 Quantization . 27
3.5.1.2 CTranslate2 . 27
3.5.1.3 Inner Workings of the Whisper Model 28

v

3.5.1.4 Performance Characteristics of Whisper 29
3.5.1.5 Using Faster-Whisper for Local Transcription 30

3.6 Challenges in Real-Time Signal Processing 32
3.6.1 Noise Reduction . 33
3.6.2 Synchronization of Signal Capture 33
3.6.3 Signal Processing Delays in Transcription 33
3.6.4 DoA Challenges . 34

4 System Architecture and Implementation 35
4.1 System Overview . 35

4.1.1 Frontend architecture . 35
4.1.2 Back end architecture . 36

4.2 Calibrating the RTL-SDR . 38
4.2.1 Parts Per Million (PPM) . 38

4.2.1.1 Calibration Procedure Output 40
4.3 Channel Scanning and Signal Capture 42

4.3.1 Channel Scanning . 42
4.3.2 Signal Capture . 44

4.3.2.1 GNU Radio Modules 44
4.3.2.2 Noise Threshold Block 48
4.3.2.3 WAV File Appender 48

4.4 Speech-to-Text Pipeline Using Whisper 49
4.4.1 Real-Time Audio Processing . 49

4.4.1.1 Audio Reading Function 49
4.4.1.2 Silence Detection Function 50
4.4.1.3 Silence Checking Function 50
4.4.1.4 Integration with Transcription 51

4.5 DoA Implementation . 52

5 Experimental Results 56
5.1 Walkie-Talkie Signal Capture Analysis 56

5.1.1 Walkie-Talkie Signal Capture Analysis Results 57
5.2 Speech-To-Text Analysis . 57

5.2.1 Results . 58
5.3 DoA Classification Analysis . 59

vi

5.3.1 DoA Classification Analysis Results 61
5.4 Real Life Experiment . 62
5.5 Ethical Considerations . 65

6 Conclusion and Future work 67
6.1 Conclusion . 67
6.2 Future Work . 67

BIBLIOGRAPHY 69

APPENDICES 72

I Title of Appendix 73

vii

LIST OF TABLES

2.1 Comparison of Traditional and Whisper-Like ASR Systems 6

3.1 Key Differences Between AM and FM 23

4.1 Example of audio Transcription Data. 52
4.2 Example of direction of arrival (DoA) measurements over time. 53
4.3 Example of diarization results. 53

5.1 Test phrases and corresponding distances 58

viii

LIST OF FIGURES

2.1 Brief timeline of SDR’s history. 4
2.2 Comparison of ULA and UCA Configurations 8
2.3 Hierarchical Diagram of Clustering Methodologies 10

3.1 An example of FFT and IFFT. 18
3.2 Representation of the system structure. 19
3.3 Example of Amplitude Modulation. 21
3.4 Example of FM Modulation. 22
3.5 KrakenSDR Hardware Descriptions. 24
3.6 Average transcription time for each model (in seconds). 31
3.7 Average accuracy metrics (WER, MER, WIL) for each model. 32

4.1 Representation of the system structure. 35
4.2 Frontend system overview. 36
4.3 Backend System Architecture. 38
4.4 PPM Correction of RTL-SDR . 41
4.5 Gnuradio flowchart signal capture. 47

5.1 Map showcasing setup for Distance Experiment. 56
5.2 Graph showing the power transmission compared to the distance. 57
5.3 Waveform analysis of the captured audio at various distances. 59
5.4 DoA experiment setup. 60
5.5 DoA experiment results. 61
5.6 DoA experiment results. 62
5.7 Front-end platform results for transmitter 2 and transmitter 4 64
5.8 Real-Life experiment results. 65

ix

LIST OF ABBREVIATIONS

Important abbreviations that have been used in the text and need explanation are briefly
presented.

SDR Software Defined Radio
DOA Direction Of Arrival
RTL-SDR Realtek Software Defined Radio
WAV Waveform Audio File Format
STT Speech-To-Text
UCA Uniform Circular Array
ULA Uniform Linear Array
RTL-SDR RealTek Limited - Software Defined Radio
GRC GNU Radio Companion
FFT Fast Fourrier Transform
VHF/UHF Very High Frequency/Ultra High Frequency
OS Operating System

x

Chapter 1 Introduction

1.1 Background Information

Traditional radio systems rely on fixed hardware configurations designed to operate on
specific frequencies and modulation schemes, which makes it difficult for different radio
systems to communicate with each other; for example, firefighters may be unable to com-
municate with police if their systems operate on different frequencies and cannot adapt to
each other’s modulation formats. This issue is solved by SDR (Software Defined Radio),
which replaces dedicated hardware components with software algorithms that allow a sin-
gle device to tune into various frequencies and modulation schemes dynamically. The
flexibility of SDRmakes it ideal for applications that require versatile communication op-
tions, including telecommunications, emergency response, and military operations.
SDR captures analog signals, such as AM or FM, and converts them into digital signals
that a software can process and analyze. Through this analog-to-digital conversion, SDR
systems can receive a wide range of signals and apply processing techniques, such as fil-
tering, demodulation, and decoding, to interpret these signals for various purposes. For
example, SDR can capture and demodulate audio signals from specific frequencies, con-
verting them as WAV files, which can then be further processed or analyzed by software
applications.
This ability to digitally process captured signals also enables more advanced applications,
such as determining the origin of a transmission. One such technique is Direction of Ar-
rival (DoA), which identifies the direction from which a transmitting signal is arriving.
The transmitted signals include radio waves or sound waves.

1.2 Problem Statement

There is a growing need for real-time monitoring and transcription of voice communi-
cations in fields like public safety, emergency management, and security [1]. However,
traditional radio systems lack the ability to dynamically scan, capture, and transcribe voice
communications across multiple radio frequencies, which can bottleneck coordinated re-
sponses. SDR provides a solution by enabling flexible, software-based signal capture,
yet most SDR applications only convert audio into transcribed text without going further.
Furthermore, previous SDR-to-text setups often struggle with noisy environments and re-
quire costly hardware setups for accurate transcription.

1

Another challenge that arises is the ability to detect where a signal is coming from (eg.
an audio signal, a Wi-Fi signal or in a attack scenario, a jammer). Direction of Arrival
can also assist emergency responders in identifying the direction of a transmitting SDR,
someone talking through a radio, and therefore be able to quickly go to their location and
provide any necessary assistance, or be able to identify who is speaking based on the di-
rection of the transmitter.
This project aims to address these challenges by using SDR to capture and process ra-
dio communications in real-time, specifically targeting walkie-talkie frequencies. The
captured audio is processed and converted to text using OpenAI’s Whisper model, an
advanced deep-learning-based speech recognition system. In addition the system also
utilizes krakenSDR to find the DoA, and identify multiple speakers. This setup lever-
ages SDR’s flexibility and Whisper’s noise resilience, offering a scalable, cost-effective
solution for real-time voice communication transcription and DoA identification with po-
tential applications in security, public safety, emergency managment, and coordination
efforts across communication systems.

1.3 Objectives

1. Identify Walkie-Talkie Channels: Utilization of RTL-SDR to scan frequencies
and identify active channels used by walkie-talkies. Walkie-talkies typically oper-
ate in VHF/UHF(Very High Frequency/Ultra High Frequency) bands, so scanning
within these frequency ranges is crucial. The goal is to determine the exact frequen-
cies at which transmissions occur and monitor them in real time.

2. Capture Audio from Walkie-Talkies: After active channels are identified, the
RTL-SDR needs to capture audio from these frequencies. This involves tuning the
SDR to the identified frequency and recording the audio in real time, while handling
changes in signal strength, background noise, and potential interference.

3. Convert Audio to Text: The recorded audio is transcribed into text using OpenAI’s
Whisper model, known for handling noisy real-world audio.

4. Identify Speaker: After transmission for a walkie-talkie has begun, with the help
of krakenSDR, identify the direction from which the signal is coming from and
therefore identify the speaker.

2

1.4 Structure of the Thesis

This thesis is organized into five main chapters:
Chapter 1 introduces the research background, outlines the problem statement, and sets
the thesis objectives and scope.
Chapter 2 provides a comprehensive literature review, covering the foundational con-
cepts of SDR, the capabilities of RTL-SDR, GNU Radio’s role in signal processing, and
recent advancements in speech-to-text technologies, with a focus on OpenAI’s Whisper
model, an overview of DoA technology and introduction to the KrakenSDR.
Chapter 3 explains the technical background necessary to understand the system’s compo-
nents, including an in-depth exploration of SDR fundamentals, walkie-talkie signal char-
acteristics, Whisper’s speech recognition process, krakenSDR hardware capabilities and
challenges associated with these systems.
Chapter 4 presents the design and implementation of the system architecture, detailing
each step of the signal acquisition, audio processing, and transcription pipeline, including
diagrams and relevant code snippets.
Chapter 5 presents experiments, testing of the system and their respective results.
Chapter 6 presents coclusion and future work.

3

Chapter 2 Literature Review

2.1 Overview of SDR Technology

The timeline in Figure 2.1 represents the evolution of SDR (Software-Defined Radio). Ini-
tially, radio systems were heavily hardware-based, with each function (modulation, filter-
ing, decoding) implemented using physical components. Over time, advancements shifted
these functions into the digital domain, allowing software to handle tasks once managed
by dedicated hardware. This evolution led to more flexible, adaptable, and cost-effective
radio systems, resulting in fully digital, software-driven designs.

Figure 2.1: Brief timeline of SDR’s history.

2.2 GNU Radio and its Role in Signal Processing

GNU Radio is a robust tool for signal processing, ideal for tasks like detecting and pro-
cessing walkie-talkie channels. Its modular architecture allows users to create signal pro-
cessing workflows visually using the GNU Radio Companion (GRC).

4

2.2.1 Architecture Overview

GNU Radio utilizes a flowgraph architecture that allows users to connect various process-
ing blocks, each performing a specific function such as filtering, modulation, or demodu-
lation. This design simplifies the construction of signal processing pipelines and makes it
easy to build and modify applications without the need for extensive coding.

2.2.2 Simplifying Signal Manipulation

TheGRC serves as a graphical interface for designing these flowgraphs, generating Python
code that manages the signal processing tasks automatically. Users can manipulate data
streams visually, adjust parameters in real-time, and visualize results through various
sinks, including FFT(Fast Fourrier Transfer) displays.

2.2.3 GNU radio-based Walkie-Talkie Applications

In the context of walkie-talkie channel detection, GNU Radio can seamlessly integrate
with SDR hardware, helping with real-time signal reception and processing. Users can
configure flowgraphs to filter and decode signals from designated channels, visualize fre-
quency spectrum, and even implement features such as audio playback from decoded sig-
nals. This capability is essential for effectively analyzing radio communications, espe-
cially in dynamic environments.

2.3 Speech-to-Text Technologies

Speech recognition technology has made remarkable advancements over the years. Tradi-
tional systems, such as Kaldi and CMU Sphinx, are built on statistical models like Hid-
denMarkovModels (HMMs) andGaussianMixture Models (GMMs). These systems
require a lot of feature engineering and phonetic modeling, with dependencies on prede-
fined vocabularies and language models.

Recent innovations, particularlyOpenAI’sWhispermodel, employ end-to-end deep learn-
ing architectures, specificallyTransformers [2]. Whisper is trained on large-scale datasets
that have diverse languages and audio environments. This enables the model to learn
representations directly from raw audio to text, thereby minimizing the need for manual
feature extraction and complicated pre-processing.

5

2.3.1 Machine Learning Model Comparisons

The shift from traditional statistical methods to deep learning models like Whisper rep-
resents a significant leap in speech recognition technology, facilitating more reliable and
versatile applications.

Table 2.1: Comparison of Traditional and Whisper-Like ASR Systems

Category Traditional Systems Whisper and Similar
Models

Accuracy and Robustness Performance can be im-
pacted in noisy settings
or with accented speech
due to limited training
data and a dependency on
handcrafted features.

Demonstrate higher ac-
curacy and robustness
across various languages
and acoustic conditions,
thanks to extensive train-
ing and their capacity to
generalize.

End-to-End Learning Employ distinct com-
ponents for acoustic
modeling, pronunciation
lexicons, and language
modeling.

Integrates all compo-
nents into a single model,
streamlining the pipeline
and reducing potential
error sources.

Adaptability and Scalability Adapting to new lan-
guages or domains often
requires significant
manual effort and data
preparation.

Can be fine-tuned or ex-
panded with additional
data more efficiently,
utilizing transfer learning
capabilities.

Resource Requirements Generally require fewer
computational resources
for training, although they
may not achieve state-of-
the-art performance.

Demands substantial
computational power
for training but delivers
superior performance,
making it ideal for appli-
cations where accuracy is
important.

6

2.4 Direction-of-Arrival (DoA) and KrakenSDR

2.4.1 Overview of DoA Technology

Estimation of DoA is performed with data acquisition by the antenna array and further
processed through algorithms specifically designed for that purpose. Such algorithms are
based on phase differences or time delay of the signals at each of the antenna elements,
determining the source direction. High accuracy can be achieved when the employed
algorithm belongs to high-resolution types (eg. Multiple Signal Classification-MUSIC-
algorithm) even under closely spaced sources or under considerable noise conditions. Ac-
curacy and resolution in DoA estimation largely depend on the antenna array configuration
and on the type of algorithm applied. Among such configurations applied in practice are:

• Uniform Linear Array (ULA): A ULA (Figure 2.2(a)) is formed by placing an-
tennas in a straight line with equal spacing between the antennas. Its simplicity of
design and ease of implementation make it a very popular choice for many appli-
cations. However, ULAs lack in performance regarding the resolving power when
the signals are arriving from the same or closely spaced directions.

• Uniform Circular Array (UCA): A UCA (Figure 2.2(b)) is formed by placing
antennas in a circular configuration. It offers 360-degree coverage and relatively
better resolution for some scenarios, such as when the direction of arrival falls in a
wide span. A significant drawback is that UCA systems can be more complex to
design and may have extra computational burden.

7

z

y

1

2

3

4

5

θ

Incoming Signal

(a) Uniform Linear Array (ULA)

1

2
3

4
5

Incoming Signal

(b) Uniform Circular Array (UCA)

Figure 2.2: Comparison of ULA and UCA Configurations

Depending on the application requirements for resolution, area of coverage, and system
complexity, either ULA or UCA can be employed [3]. The configuration is generally
chosen empirically based on the application needs while also considering the trade-offs.

2.4.2 Existing Algorithms for DoA

All the various algorithms developed for estimating DoA can be broadly classified under
three categories: spectral-based, subspace-based, and parametric algorithms [4].

Spectral-BasedAlgorithms: These algorithms include the traditional beamformingmethod
and rely on scanning the spatial spectrum for peaks corresponding to DoA. Though simple
and computationally efficient, they are not so effective practically, which is due to poor
resolution. Besides, Spectral-Based Algorithms are susceptible to noise, especially when
the distance between the sources is small.

Subspace-Based Algorithms: Using subspace techniques like MUSIC and ESPRIT, the
signal space can be decomposed into a signal and noise subspace. This assures very good
resolution of even closely spaced sources. In fact, the MUSIC algorithm, employs or-
thogonality between the noise subspace and source steering vectors. Thus, it provides
very accurate estimations of DoA.

Parametric Algorithms: Parametric Algorithms model the statistical properties of a sig-
nal for providing estimates of DoA and other parameters. A number Parametric Algo-

8

rithms, such as the maximum likelihood method, give very good accuracy, though at high
computational cost; hence, less suitable practically in a real environment.

2.4.3 KrakenSDR

2.4.3.1 What is KrakenSDR?

KrakenSDR is a five-channel coherent software-defined radio aimed at advanced applica-
tions that require numerous synchronized radio channels. It has been mainly used in sig-
nal processing applications, including DoA estimation, passive radar, beamforming [5].
The key feature differentiating the KrakenSDR from other SDRs is that the platform can
achieve phase-coherent operation, which is necessary for correctly measuring the phase
difference between the signals received by multiple antennas.
Features:

• Multi-Channel Coherence: The five channels of KrakenSDR are phase coherent-
unlike the usual SDR, which operates at independent channels. Thus, it targets
applications based on direction finding and beamforming.

• Open-Source Software: KrakenSDR comes with open-source software that helps
in handling complicated applications like DoA estimation. The software helps to
visualize the results, interface other systems, and experimental testing.

• Real-Time DoA Estimation: KrakenSDR is widely used for real-time direction
finding. It accurately estimates the angle of an incoming signal using a five-antenna
array, making it valuable for various applications such as signal localization and
spectrum monitoring.

• Application Extension: It can also be integrated with larger systems, serve in-
dependently, and performs a variety of activities (eg. monitoring RF activity or
mapping signals geographically)

9

2.5 Clustering

Clustering is a fundamental unsupervised learning technique used in data analysis and
machine learning. Its purpose is to group together data in clusters such that the similarity
between the data points inside a cluster is higher than the data points in different clusters.
Clustering does not require labeled data, instead, it explores the structure of the dataset.

2.5.1 Clustering Methodologies

Clustering Methodologies

Partitioning Methods

K-means

Hierarchical Clustering

Bottom-Up (Agglomerative) Top-Down (Divisive)

Density-Based Clustering Centroid-Based Clustering

Figure 2.3: Hierarchical Diagram of Clustering Methodologies

2.5.1.1 Partitioning Methods

K-means: The K-means algorithm is popular due to its simplicity and efficiency. It cre-
ates clusters multiple times until the data converges to specific clusters. However, it re-
quires the initial centroids to be set, and the performance of the algorithm depends on this
initialization.

2.5.1.2 Hierarchical Clustering

This approach follows a tree-like structure and can be categorized into two methods:

• Bottom-Up (Agglomerative): Starts with each point of the dataset separately and
merges clusters iteratively until a desired threshold is reached.

• Top-Down (Divisive): Begins with a single cluster containing the entire dataset and
recursively divides it into smaller clusters until a specific threshold is met.

2.5.1.3 Density-Based Clustering

Density-based clustering algorithm defines an epsilon distance and a ”minimum neigh-
bors” value. If there is sufficient number of neighbors based on the epsilon distance, then
a cluster is created. Thus, by correctly tuning the parameters, we can accurately create
clusters.

10

2.5.1.4 Model-Based Clustering

Model-based clustering is a statistical approach to the clustering problem. For each data
point, we try to recreate it using a combination of basic probability distribution. That
combination is called a ”component” and it determines in which cluster the data point
belongs [6, 7].

2.6 Related Work

The exploration of capturing signals from walkie-talkies with the use of RTL-SDR (Soft-
ware Defined Radio) technology that is followed by eavesdropping and subsequent pro-
cessing to convert these signals into text represents a multifaceted area of research that
intersects various domains, including signal processing, clustering algorithms, and ma-
chine learning. This summary will look at the methods and results from related studies
and point out areas where they are lacking.

The initial step in this process involves the capture of walkie-talkie signals using RTL-
SDR, a versatile tool that allows for the reception of a wide range of frequencies, making
it suitable for various communication signals (e.g., walkie-talkie RF signals). In [8] , the
RTL-SDR can sample frequency bands that encompass signals from FM radio, GSM, and
other communication protocols, therefore providing a rich source of data analysis. The
capability of RTL-SDR to operate across a broad spectrum is crucial for eavesdropping
applications, as it enables the interception of communications that might otherwise be
inaccessible.

Once the signals are collected, the next phase involves demodulation and conversion to
text. This process typically utilizes software platforms like GNU Radio [9], which pro-
vide the necessary tools for signal processing. GNU Radio allows the implementation of
various demodulation techniques that can convert analog signals into a digital format suit-
able for further analysis. However, the literature lacks comprehensive studies that detail
the specific algorithms and methodologies employed in the demodulation of walkie-talkie
signals. Even though some studies examined the GNU radio general capabilities, they do
not provide in-depth analyses of the signal processing techniques that are most effective
for walkie-talkie communications [10].

Recent studies have recognized OpenAI Whisper model potential in automatic speech
recognition (ASR) tasks. For instance, recent evaluations of Whisper reveal its robust
transcription capabilities across various accents [11]. However, they highlight that the

11

model’s effectiveness could be further optimized through fine-tuning for specific language
characteristics or by improving efficiency through various techniques [12]. Thus, while
Whisper shows promise in diverse ASR applications, addressing these optimization needs
is crucial for elevating its performance benchmarks.

Further, the conversion of signals into a digital format is a critical step in various cluster-
ing algorithms to identify the target. This is where the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm is employed due to its ability to identify
clusters of varying shapes, sizes, and an unkown numbers of clusters, which is essential
in cases where the inherently noisy nature of communication signals is present. The al-
gorithm’s effectiveness is highlighted in various studies demonstrating its application in
network space clustering by exploring its use in ship trajectories. These studies underscore
the versatility of DBSCAN in handling complex datasets [13–15].

However, the application of DBSCAN to walkie-talkie signal clustering presents unique
challenges. For instance, the algorithm requires careful tuning of its parameters, specifi-
cally the neighborhood distance (Eps) and the minimum number of points (MinPts) [13].
The sensitivity of DBSCAN to these parameters can lead to suboptimal clustering results if
not appropriately calibrated. This issue is acknowledged in the literature [16], emphasiz-
ing on the importance of parameter selection in achieving effective clustering outcomes.
Despite this, there remains a lack of empirical studies that specifically address the param-
eter optimization for walkie-talkie signal clustering.

Moreover, the integration of Direction of Arrival (DoA) estimation techniques with DB-
SCAN for clustering purposes is an area that requires further exploration. Estimation of
DoA can enhance speaker identification by providing spatial information on the source
of signals. While some studies have investigated the use of clustering algorithms in con-
junction with DoA techniques, the specific application to walkie-talkie signals remains
underexplored. This presents an opportunity for future research to develop methodolo-
gies that combine these approaches effectively.

Furthermore, the existing literature focuses on the technical capabilities of clustering al-
gorithms like DBSCANwithout adequately addressing the limitations and potential biases
inherent in these methods. For example, the clustering process can be influenced by the
quality of the input data, which may be affected by noise and interference from other
signals. A more nuanced understanding of these limitations is necessary to improve the
robustness of the methodologies employed in this field [17].

In conclusion, while numerous research attempts have investigated the various compo-

12

nents of capturing and processing walkie-talkie signals, significant gaps remain. The inte-
gration of RTL-SDR technology with advanced signal processing techniques in GNU Ra-
dio, coupled with effective clustering algorithms (such as DBSCAN), presents a promising
avenue for research. However, the challenges associated with parameter optimization, the
integration of DoA estimation, and the ethical implications of eavesdropping must be ad-
dressed to advance this field comprehensively. Future research avenues should aim to
fill these gaps, providing a more holistic understanding of the methodologies and their
implications in real-world applications.

Through these contributions, this thesis extends the application of SDR beyond signal de-
tection to encompass real-time, content-level monitoring of voice communications, which
has potential for significant impact in fields where clear and accurate transcription of radio
signals is crucial.

13

Chapter 3 Technical Background

3.1 Docker Containers

Docker is an open-source platform that enables the automation of deploying, scaling, and
managing applications by using lightweight, portable containers. Docker allows appli-
cations to run consistently across various environments (eg. development, testing, and
production) by packaging the application along with its dependencies and configurations
in a container [18]. This chapter provides an overview of Docker’s containerization tech-
nology, explains its functionality, and highlights its significance in modern development.

3.1.1 Docker Architecture

Docker uses containerization technology, which packages an application and all its depen-
dencies into a single, isolated environment known as a container. Unlike virtual machines,
which encapsulate an entire operating system along with applications, Docker containers
share the host OS kernel. This kernel-sharing feature makes containers more lightweight
and efficient, using fewer system resources and enabling faster start-up times.

The Docker Engine is the core of Docker, which has two main components: the Docker
Daemon and the Docker CLI (Command Line Interface). The Docker Daemon waits
for requests from the Docker CLI and builds and manages Docker objects, such as images
and containers. An image can be considered as a kind of pre-configured snapshot of an
application and its environment on the other hand, a container is actually a running instance
of an image.

Docker uses a layered file system for images, each layer of an image representing the
changes from the previous layer. This layering technique enables the efficient manage-
ment of images and faster builds since Docker can reuse the unchanged layers while cre-
ating new images.

3.1.2 Containerization

At the core of Docker functionality is containerization, an isolation process for applica-
tions in their own environment sharing the host system’s OS (Operating System) kernel.
Thus, each container contains everything the application needs—libraries, binaries, and
even configuration files—making sure it will behave as expected, regardless of the under-
lying infrastructure. Containerization gives resource efficiency; once created, containers

14

can be stopped or started quickly to enhance system responsiveness.

3.1.3 Docker benefits in DevOps

Key reasons why Docker has been one of the most fundamental tools in the DevOps and
cloud-native ecosystem include:

• Portability: Docker containers are highly portable across operating systems and
cloud providers. Because the application and its dependencies are packaged to-
gether, Docker ensures that the behavior is consistent across different environments.

• Resource Efficiency: Containers share the host operating system’s kernel. Multiple
containers can run on the same system with very low overhead, unlike traditional
virtual machines, which require their own OS.

• Scalability: Docker enables the creation of scalable applications due to the ease of
replicating containers, which eases the scaling of applications horizontally.

• Rapid Development and Deployment: Docker enables the rapid iteration and de-
ployment of images and the creation of containers. This fast lifecycle thus quickens
the development process and encourages practices for continuous integration and
delivery.

• Isolation and Security: Containers encapsulate an application’s code and depen-
dencies, isolating it from other applications. This isolation improves security and
decreases compatibility issues.

3.1.4 Docker Compose

Docker Compose simplifies themanagement ofmulti-container applications. Using a con-
figuration file docker-compose.yml, users may declare services, networks, and volumes
using a single format for building, starting, andmanipulating containers—while using only
a few command lines.
The docker-compose.yml file defines all the services and their configurations. One com-
mand starts all services, connects them to each other, and creates a network so that con-
tainers can communicate with each other easily.

15

3.2 Fourier Transform (FT)

The Fourier Transform (FT) is a mathematical operation that transforms a signal from its
time domain into the frequency domain . This transformation decomposes a complex sig-
nal into its composing sinusoidal components, each with a specific frequency, amplitude,
and phase [19, 20].

Mathematically, the Fourier Transform is defined as:

X(f) =

∫ ∞

−∞
x(t)e−j2πft dt (3.1)

where:

• x(t) is the time-domain signal,

• X(f) is the Fourier Transform, which represents the signal in the frequency domain,

• f is the frequency, and

• j is the imaginary unit (j2 = −1).

The Fourier Transform essentially evaluates how much of each frequency component is
present in the original time-domain signal, producing a spectrum that represents the am-
plitude (and sometimes phase) of each frequency.

3.2.1 Fast Fourier Transform

While the Fourier Transform is a very powerful tool in signal analysis, for large datasets
direct computation can become very computationally intensive, hence the computational
complexity of O(N2). To overcome this problem, the Fast Fourier Transform (FFT)
was developed. FFT is an efficient algorithm for computing the Fourier Transform where
it reduces the computational complexity to O(N logN).

The FFT algorithm achieves efficiency in computing Fourier Transform through a divide-
and-conquer technique. It first divides the signal into smaller parts, performs calculations
over each part, and then combines them. Particularly, FFT becomes efficient when the
number of data points, N is a power of 2 and hence can easily divide the computation
recursively.

The FFT has wide application in practical fields because of its speed and efficiency, en-
abling real-time or near-real-time frequency analysis in applications such as audio pro-
cessing, telecommunications, and medical imaging.

16

3.2.2 Inverse Fast Fourier Transform (IFFT)

The Inverse Fast Fourier Transform (IFFT) is a computational algorithm that, in essence,
reverses the FFT. It transforms a signal from the frequency domain back to the time do-
main. IFFT takes the frequency components and reconstructs the original signal in the
time domain, essentially reversing the FFT process. This operation is very important in
the applications of signal processing, where, after a modification or filtering is applied
in the frequency domain, one has to convert back to a time-domain representation for
playback or further analysis of the signal. .

The mathematical expression for the Inverse Fourier Transform is:

x(t) =

∫ ∞

−∞
X(f)ej2πft df (3.2)

In practical applications, the IFFT allows us to take the frequency-domain representation
obtained from an FFT and reconstruct the original signal accurately, provided that no es-
sential frequency components were modified or removed.

17

Figure 3.1: An example of FFT and IFFT.

For example in Figure 3.1, the first subplot shows the original 5 Hz and 50 Hz sine wave
signals in the time domain [21]. The second plot shows the combined signal. The third
plot displays the FFT of the combined signal, highlighting the frequency components at 5
Hz and 50 Hz. The final plot shows the reconstructed signal using the Inverse FFT, which
matches the combined signal in the time domain.

3.3 Understanding RTL-SDR and Walkie-Talkie Signal Structure

The RTL-SDR is a versatile, low-cost tool for capturing signals from approximately 24
MHz up to about 1.7 GHz. That huge range makes it useful for capturing everything from
FM radios to air traffic communications and two-way radios. While conventional radios
depend on fixed hardware parts, the software approach utilized by the RTL-SDR provides
versatility and adaptability in performing all forms of signal processing.

18

3.3.1 The Fundamentals of RTL-SDR

The RTL-SDR works by capturing analog signals from the radio frequency spectrum and
converting them into digital formats for processing by software like GNU Radio. This
conversion is crucial for the RTL-SDR’s ability to detect and analyze real-world signals,
such as those from walkie-talkies. The device is based on a repurposed DVB-T (Digital
Video Broadcasting – Terrestrial) USB dongle, originally designed for TV signal recep-
tion. Its tunable frequency range allows it to be adapted for general radio signal reception.

Figure 3.2: Representation of the system structure.

3.3.1.1 Crystal oscillator

The RTL-SDR is a radio signal decoder-software-defined radio reliant on a piezoelectric
crystal oscillator, as are most software-defined radio technologies. A small crystal is made
to oscillate or vibrate at a specific frequency. It provides a steady timing source and forms
the basis of the radio signal tuning process, as seen in Figure 3.2. By default, all the
older-generation radios had to replace the crystals manually since each crystal is tuned
for certain types of resonating frequencies. Operating such radios required changing from
one crystal that had been ’cut’ or engineered to resonate at 14 MHz, to a crystal resonating
on 28 MHz in order to switch channels from 14 to 28 MHz. However, with such manual
tuning, flexibility was restricted by needing physical changes when frequency adjustments
had to be made.

However, in a modern software radio system, only one crystal oscillator is used at a spec-

19

ified base frequency, for example, 28.8 MHz. To tune across a wide range of frequencies,
electronic multiplication or division is applied to this base frequency. For example, to lock
into a signal of 57.6 MHz for a crystal oscillating at 28.8 MHz, it can be resonated at two
times the base frequency. This kind of modern solution allows a single crystal to support
more frequencies. Nevertheless, some problems persist about frequency stability, given
primarily by thermal variations and natural tolerances in the crystal’s construction. Over
time, this may cause a slight frequency shift, which can result in the SDR being slightly
off its target frequency.

In this context, PPM, or ”parts per million,” is one of the key units of measurement used
in characterizing the stability and accuracy of a frequency. More precisely, in software-
defined radios, PPM describes the deviation of the oscillator frequency from its nominal
value. For instance, if an oscillator operates at a frequency of 28.8 MHz and has a PPM
value of 10, then it has a potential frequency drift of 10 parts per million, which can be
interpreted as a possible variation of ±0.288 kHz.

Some calibration processes are necessary to solve such inaccuracies. First, the SDR can be
aligned with a known, stable frequency source, a local FM transmission or a meteorologi-
cal broadcast. Users then tune the PPM correction factor to make the needed adjustments
in frequency drift. This is a necessary process for calibration such that the frequency
shown on the SDR corresponds to the real frequency received. The SDR should there-
fore offer great accuracy in situations where an exact display of frequency becomes very
critical, such as the decoding of digital signals or receiving emergency communications.

3.3.2 Modulations

3.3.2.1 Amplitude Modulation (AM)

In AM (Amplitude Modulation), the amplitude of the carrier signal is varied in propor-
tion to the message signal and the frequency remains constant. Information, therefore, is
encoded in the changes in amplitude of the carrier wave. AM is normally used in radio
broadcasting and is known for its simplicity. However, it’s more susceptible to noise, as
noise generally affects the amplitude of the signal. Figure 3.3 shows the process of Am-
plitude Modulation (AM). The top plot displays the carrier signal, a high-frequency sine
wave with constant amplitude. The bottom plot shows the data signal, a lower-frequency
sine wave that contains the information to be transmitted. The middle plot shows the
modulated signal, where the amplitude of the carrier varies according to the data signal.

20

Figure 3.3: Example of Amplitude Modulation.

3.3.2.2 Frequency Modulation (FM)

In FM (Frequency Modulation), the frequency of the carrier signal is varied in accordance
with the message signal, while the amplitude remains constant. FM is less prone to noise
because noise primarily affects amplitude, making it a popular choice for high-fidelity au-
dio broadcasting, such as FM radio. However, FM requires a larger bandwidth compared
to AM, which is a trade-off for its improved noise resistance. Figure 3.4 shows the process
of Frequency Modulation (FM). The top plot presents the carrier signal, a high-frequency
sine wave with constant amplitude and frequency. The bottom plot shows the data signal,
a lower-frequency wave containing the information to be transmitted. In the middle plot,
the modulated signal is shown, where the frequency of the carrier varies according to the
amplitude of the data signal, while its amplitude remains constant.

21

Figure 3.4: Example of FM Modulation.

22

3.3.2.3 Key Differences Between AM and FM

Table 3.1: Key Differences Between AM and FM

Aspect AM FM

Carrier Signal Variation The message signal mod-
ulates the amplitude of the
carrier wave, while the
frequency remains constant.

The message signal mod-
ulates the frequency of the
carrier wave, while the
amplitude remains constant.

Noise Sensitivity More prone to noise be-
cause noise affects the
amplitude.

Less affected by noise since
information is encoded in
frequency.

Bandwidth Requirement Requires less bandwidth. Needs a larger bandwidth
and finds application in
fields where signal clarity
is preferred over bandwidth
efficiency.

Application Used in ordinary radio
broadcasting.

Used in high-quality audio
broadcasting and where
noise resistance is crucial.

3.3.3 KrakenSDR hardware overview

KrakenSDR is a 5-channel coherent SDR platform designed for demanding RF applica-
tions that require synchronized multi-channel receive. The hardware design brings to-
gether several components for phase-coherent signal processing, suitable for use in ap-
plications like radio direction finding, passive radar, and beamforming. Below are the
main hardware components of the system. 3.5 illustrates the top view of the KrakenSDR
device. It shows five SMA antenna input ports labeled CH0 to CH4, which are used to
connect antennas for signal reception. The device features heatsink fins and a centrally
located cooling fan to ensure efficient thermal management during operation. Along the
bottom edge, there are ports for power and data connections. Additionally, LED indicators
labeled ”PWR” and ”NOISE” are present to display the device’s power status and noise
source activity, respectively.

23

RF Front-End: The system is integrated with five RTL-SDR modules; each has one in-
dependent receiving channel. These give a combined frequency range from 24MHz to
1.766GHz and a maximum tunable instantaneous bandwidth of 2.56MHz per channel.
There is an SMA connector for antenna input on each channel, enabling flexible deploy-
ment with external antennas or custom arrays.

Synchronization Mechanism: Coherent operation over all channels is maintained due
to the presence of a common reference clock and LO distribution network. This ensures
appropriate phase alignment useful in direction finding and interferometry applications.
This ensures LO synchronization to reduce phase drift and guarantees coherence over long
operating conditions.

Data Processing: EachRTL-SDRmodule is responsible for providing raw IQ(Real/Imaginary)
data to the core software which is designed to run on an external computing device for data
processing. The KrakenSDR is connected to the computing device via a USB-C cable for
data transfer.

Connectivity and Power: The KrakenSDR requires DC power from a 5v 2.4A USB-C
power supply. It can be powered thourgh a powerbank for portability and avoid the need
for a power plug.

Mechanical Design: The KrakenSDR is protected through a small aluminum housing
which also reduces RF interference between the channels and utilizes passive thermal
management.

Figure 3.5: KrakenSDR Hardware Descriptions.

24

3.4 GNU Radio for Signal Processing

GNU Radio is a free, open-source software development toolkit that is specifically de-
signed at signal processing applications. It provides the appropriate tools, which enable
the user to build up and manipulate software-defined radio systems. In that respect, it
comes with a set of ready signal processing blocks with which radio systems can be de-
signed, tested, and simulated on the computer with or without real RF hardware. This
has made it very popular in the academic and commercial sectors for both research into
wireless communications and for the more practical implementation of radio systems.

3.4.1 GNU Radio Fundamentals

At the core, GNU Radio uses the Python programming language for developing signal
processing applications based on Python scripts. With large libraries and intuitive syntax,
Python allows for much easier manipulation and testing of radio systems. It thus provides
a system that is flexible and, at the same time, simple to manipulate for both beginners
and experienced developers. The interface and high-level programming in GNU Radio is
done in Python, while much of the central signal processing is done in C++, making it
computationally efficient.

3.4.2 Signal Processing Blocks and Flowgraphs

In this sense, the modular approach in place within GNU Radio relies on the bricks called
signal processing blocks or modules, performing a specific job like filtering, modulation,
demodulation, and FFT calculations. The blocks are combined into flowgraphs, describ-
ing the structure and data flow of a signal processing pipeline. Blocks are linked by the
user to make a complete signal processing system, where each block represents a different
stage in the pipeline.

• Types of Blocks: GNU Radio provides a range of pre-built blocks, such as filters,
oscillators, mixers, amplifiers, and modulators, which are the building blocks of any
radio system.

• Custom Blocks: Users can create custom blocks for specialized processing needs,
providing flexibility to tailor GNU Radio for unique projects or research applica-
tions.

25

3.4.3 Using GNU Radio with hardware in the loop or in simulation mode

GNURadio versatility allows functioning with or without RD hardware:

• With Hardware: GNU Radio interfaces well with SDR hardware such as RTL-
SDR, USRP, and HackRF. Users can transmit and receive RF signals in real time.
In this environment, GNU Radio will process the signals captured by devices like
RTLSDR and perform many practical tasks such as capturing walkie-talkie com-
munications or capturing FM broadcasts.

• Without Hardware (Simulation Mode): In the absence of hardware, GNU Radio
can simulate an entire radio system creating and processing signals only in software.
Thus, the user can design a prototype of the signal processing part and test the same
without any physical RF hardware, perfect for academic research and prototyping.

3.4.4 GNU Radio Companion (GRC)

GNU Radio includes a graphical interface called GNU Radio Companion (GRC), which
simplifies the process of building and visualizing flowgraphs. GRC allows users to design
signal processing systems by dragging and connecting blocks visually, making it easier to
test and troubleshoot designs. This GUI-based approach is especially helpful for beginners
to SDR or prefer visual design over coding.

3.5 OpenAI Whisper for Speech-to-Text Conversion

3.5.1 Transformers

Transformers represent a new architecture for training models, initially described in the
2017 work Attention is All You Need [2]. This new model represented a radical turn from
the formerly traditional RNNs (Recurrent Neural Network) [22], which conventionally
processes sequences in a step-by-step manner, taking in one word of input at a time. The
main disadvantages of this approach are that RNNs tend to forget important contextual
information from the beginning of long sentences, and are computationally expensive to
train because parallelization is not well-supported [23].

Transformers overcome these weaknesses with three mechanisms:

1. Positional Encodings: The transformer model embeds each word’s position in the
input sentence, allowing the model to learn word order and contextual relations.

26

2. Attention Mechanism: The transformer does not take one word at a time; instead,
it views the whole sentence at once. The model makes explicit which words in the
sentence are relevant to the given target word on the basis of long-range contextual
dependencies.

3. Self-Attention: Using self-attention, the model grasps every word in terms of its
neighbours to gain deeper semantic understanding contextually.

These are some of the new features in Transformers that greatly lift their performance in
complexity for tasks where an RNN typically falls apart in accuracy.

3.5.1.1 Quantization

This technique decreases the computational and memory load that somemodern models—
based on transformer architecture—demand. Specifically, quantization involves convert-
ing weights and activations into lower-precision data types, like 8-bit integers (int8), rather
than relying on the standard 32-bit floating-point data type that is typically used. This al-
lows a reduction in size and accelerates processing with minimal loss of model accuracy.

3.5.1.2 CTranslate2

CTranslate2 [24] is a highly optimized C++/Python library for transformer models which
accelerates and reduces memory consumption, hence efficient deployment. Some of the
optimization techniques applied in this framework include the following:

1. Quantization: CTranslate2 supports quantization methods like INT8 and INT16.
Such storage of the weights and the activations of the model using their lower-
precision datatypes, as is shown in Section 3.5.1.1, allows CTranslate2 to reduce
the memory size and increase the computational throughput. This is done as a part
of model conversion, so this does not affect the model’s accuracy that much but does
improve efficiency. It further supports static and dynamic quantization: wherever
possible, the reduced precision during computation is used for saving time with no
hit on accuracy.

2. Efficient Runtime Execution: The library is internally optimized at a low level
for CPU and GPU runtime. CTranslate2 applies the AVX2, AVX512 instruction set
for CPUs and add-ons for NVIDIA graphics cards using CUDA. These are able to
make full use of the available parallel processing facilities in hardware. In addition
to this, CTranslate2 has a fast-working memory allocator and a thread scheduler,

27

able to cut down the time taken for thread management and memory allocation and
hence speed up inferences.

3. Batch Processing and Parallelism: CTranslate2 can merge a number of input se-
quences into one and hence can be utilized more efficiently with the hardware. In
other words, it supports the running of multiple sequences in parallel, which raises
the efficiency to a higher level.

4. Memory-Efficient Layers: CTranslate2 optimizes the transformer layer structure,
particularly the memory-intensive operations like self-attention and feed-forward
layers. It fuses some operations, reducing the number of memory copies between
layers to lower the peak memory consumption. Therefore, the model will run with
less latency on systems that have lower RAM or low memory capacity, like mobile
and edge devices.

5. On-Demand Loading of Model Weights: For larger models, support is available
in CTranslate2 for lazy loading of model weights-that is, model weights would be
loaded only when required during inference. Regarding on-demand loading, only
the most necessary weights would keep a residence in memory at any time. It comes
in handy for low-memory systems on which bigger models might be necessary on
tiny devices without running out of memory.

6. Model Pruning and Sparsity Support: It also optionally includes pruning ofmodels-
that is, all the unnecessary connections or neurons in the network get removed so
that the model is lightweight. It reduces model size and latency through pruning
of the unnecessary parts of the network. The support also provides sparse matrix
operations; these can utilize sparsity in the pruned models to further accelerate com-
putation.

These optimizations allow CTranslate2 to deploy transformer-based models in environ-
ments requiring high computational efficiency and low memory usage, such as mobile
applications, edge devices, and real-time processing scenarios. Each technique is care-
fully implemented to ensure minimal impact on model accuracy while achieving signifi-
cant improvements in performance.

3.5.1.3 Inner Workings of the Whisper Model

Whisper is based on a transformer architecture 3.5.1, which is optimized for sequence-
to-sequence tasks, making it highly suitable for speech-to-text conversion. It operates by

28

processing audio data—typically in the form of WAV files—and generating text outputs
through its encoder-decoder mechanism.

• Audio Processing and Feature Extraction: Whisper first transforms the input au-
dio signal into a spectrogram, a visual representation of the audio’s frequency spec-
trum over time. This spectrogram serves as the input to the model, which extracts
temporal and frequency-based features crucial for understanding spoken words.

• Encoder-Decoder Mechanism: Whisper’s transformer model includes an encoder
that processes the spectrogram and a decoder that translates the encoded features
into text. The encoder maps the audio signal to a series of high-dimensional vectors
representing sound features, while the decoder generates textual tokens based on
these encoded features. This process enables Whisper to handle various speaking
rates, accents, and environmental noise.

Whisper is trained on a large, diverse dataset, which gives it a high degree of generalization
across audio conditions and languages. As a result, it performs well on both high-quality
and degraded audio, making it robust for practical applications where audio clarity may
vary(eg. walkie-talkie communications).

3.5.1.4 Performance Characteristics of Whisper

Whisper’s performance is distinguished by its accuracy and noise resilience. Key charac-
teristics include:

• High Accuracy in Noisy Environments: Whisper is particularly strong in noisy or
challenging environments due to its extensive training data, which includes audio
with various background noises. This feature is essential for transcribing walkie-
talkie communications, where noise and interference are common.

• Multilingual Capability: Whisper can recognize and transcribe multiple languages
without the need of language-specific models, which adds flexibility to systems that
may encounter multilingual audio data.

• Robustness to Accents and Audio Quality: Whisper is capable of accurately tran-
scribing different accents and various audio qualities, including low-bitrate or com-
pressed audio, which makes it suitable for SDR-based applications where signal
quality might be variable.

29

3.5.1.5 Using Faster-Whisper for Local Transcription

The selection of the most suitable model for this thesis was driven by two primary factors:
accuracy and speed, both of which are essential for real-time transcription ofwalkie-talkie
audio. Among the leading models in this field, OpenAI’s Whisper[25] and Facebook’s
Wav2Vec2[26] are highly regarded due to their robust performance in automated speech
recognition (ASR) tasks. Furthermore, several optimized versions of these models have
been developed to enhance efficiency for specific applications. Notable examples include
WhisperCPP[27], a C++ reimplementation of Whisper designed to improve execution
speed on certain hardware, and Faster-Whisper[28], which utilizes CTranslate2 3.5.1.2
for optimized inference.

For evaluation, the JIWER (JImilarity Word Error Rate) [29] Python library was used to
calculate transcription metrics. JIWER provides functions to compute key ASR metrics
by comparing the reference transcription with the model outputs. It generates:

• Word Error Rate (WER): Measures the rate of word-level errors by comparing
the predicted transcription with the ground truth, making it a fundamental indicator
of word-by-word accuracy.

• MatchErrorRate (MER): Focuses on sequencematching errors, providing insight
into the structural accuracy of the transcription.

• Word Information Lost (WIL): Evaluates the loss of essential information in the
transcription, which is critical for assessing the preservation of context and meaning
in real-time ASR.

Given the real-time nature of this application, the elapsed transcription time is also a
crucial metric. In this study, audio samples were utilized from the Harvard Speech Cor-
pus [30], a well-established dataset in ASR research. The transcription times and accuracy
metrics are presented in the following figures (see Fig. 3.6 and Fig. 3.7). The tests were
run using the same device and specifically on the CPU of the device, some models can
utilize CUDA but since CUDA is not available on all devices a more general approach
was chosen(CPU).

30

Figure 3.6: Average transcription time for each model (in seconds).

As shown in Fig. 3.6, WhisperCPP and OpenAI’s standard Whisper model (Turbo) were
considerably slower than other optimized models, rendering them unsuitable for real-time
processing requirements. These models, despite their potential accuracy, were excluded
from further consideration due to their latency.

31

Figure 3.7: Average accuracy metrics (WER, MER, WIL) for each model.

When analyzing accuracy, the standard Whisper model displayed higher WER and WIL
values compared toWav2Vec2 and the Distilled version of Faster-Whisper. However,
the Distilled version of Faster-Whisper excelled in both word-by-word accuracy (WER)
and contextual information retention (WIL), making it more favorable for real-time appli-
cations.

In conclusion, while OpenAI’s Whisper model exhibited strong overall accuracy, the Dis-
tilled Faster-Whisper model emerged as the optimal choice due to its balanced perfor-
mance in both speed and accuracy. This model not only meets the real-time processing
demands but also provides reliable transcription accuracy for walkie-talkie audio, fulfill-
ing the requirements of this thesis.

3.6 Challenges in Real-Time Signal Processing

Real-time signal processing is a set of complex challenges, particularly capturing, analyz-
ing, and then transcribing the audio signals within a Software-Defined Radio framework.
Among many, three major areas of challenges emerge from the literature: noise interfer-
ence mitigation, signal acquisition process synchronization, and transcription delay man-
agement. Each of these aspects is very critical assuring that the processing of audio signals

32

is not only effective but also precise; hence, competent methodologies and sophisticated
algorithms are required to enhance performance and reliability for real-time applications.

3.6.1 Noise Reduction

Signal processing suffers from deterioration in signal quality due to external noise and
interference signals from other electronic devices. Indeed, strong noises pose barriers
to obtaining appropriate audio data. Noise cancellation is highly dependent on how ef-
fective the mechanism of filtering is in which the desired signal is to be separated from
unwanted background noise without hampering the quality of the captured content. How-
ever, achieving such a balance in a real-time scenario is a highly computational task be-
cause complex algorithms for filtering may introduce latency, hence contrasting with the
motivation of real-time processing.

3.6.2 Synchronization of Signal Capture

For multi-frequency/channel SDR applications, synchronization of signal capture is es-
pecially of critical importance. Capture must be synchronized at the moment the signal
reaches a specific state to avoid timing errors within the recorded data. In the conditions
of dynamic frequency hopping or to monitor different channels of walkie-talkies simul-
taneously, this problem worsens. While exact time-stamping and high-fidelity sampling
mechanisms can help some systems meet these demands, they often require hardware that
may not be suitable for portable, low-cost devices.

3.6.3 Signal Processing Delays in Transcription

Audio signals can be captured in real-time using a complex model such as OpenAI Whis-
per; however, this introduces delays and reduces any possible real-time scenarios even
further. Faster versions (e.g., SYSTRAN’s Faster-Whisper[28]) with smaller machine
learning complexity and architecture can provide better efficiency of both inference en-
gines and a wide usage of 8-bit quantization. The signal processing delays can lead to the
system’s degrading performance in various emergency scenarios, and therefore, the need
for real-time speech transcription is becoming a mandate to avoid serious hazards.

33

3.6.4 DoA Challenges

Determining the direction of arrival (DoA) of a signal is a challenging task. One of the
main challenges is dealing with noise, which can strongly impact the estimation’s preci-
sion as well as the clustering. The other challenge is correctly matching a cluster(Speaker)
to its associated transcription value to be interpreted reliably. The final challenge is ac-
curate array calibration, since small misalignments can produce spurious estimates of the
DoA.

In summary, real-time signal processing in SDR applications involves navigating a bal-
ance among computational efficiency, signal quality, and prompt transcription. These
challenges necessitate careful consideration of hardware capabilities, software optimiza-
tion, and algorithm selection to ensure reliable performance in time-sensitive environ-
ments.

34

Chapter 4 System Architecture and Implementation

4.1 System Overview

Figure 4.1: Representation of the system structure.

4.1.1 Frontend architecture

Figure 4.2 showcases the frontend of the platform. Specifically, at the top part (leftmost)
there is a text box displaying the timestamp of the transcribed text as well as the speaker
classified. On the right part of the text box, the user can query the database of previously
transcribed WAV files. Start/stop buttons for transcription and reception are located at

35

the bottom of the Transcription Output window (leftmost), enabling/disabling the WAV-
to-text model and the RTL-SDR, respectively. The map below the buttons displays the
receiver, with a blue line representing the DOA of the received signal. On the right of
the Transcription Output window there is the signal processing window from the GNU
Radio where it showcases the Raw received data, the results of passing the signal through
the Band Pass filter and the Demodulated signal (rightmost) as well as the audio received
after demodulation.

Figure 4.2: Frontend system overview.

4.1.2 Back end architecture

The backend system is responsible for signal acquisition, processing, transcription, and
data storage. It operates entirely within a Docker container (3.1) and includes the follow-
ing components:

1. RTL-SDR Signal Acquisition

• The RTL-SDR hardware (Figure 3.2) captures raw radio signals from walkie-
talkies.

• These signals are streamed into the backend for further processing.

2. GNU Radio Signal Processing

• GNU Radio (Subsection 2.2) processes the raw signals, applying filtering and
demodulation techniques (Subsection 3.3.2).

• The processed signals are converted into audio files in .wav format, suitable
for transcription.

36

3. Channel Finder

• A Python-based script scans a predefined frequency range and identifies active
channels.

• The script configures GNURadio to tune to the selected frequency for optimal
signal capture.

4. Speech-to-Text Conversion

• The audio files generated by GNU Radio are transcribed into text using the
OpenAI Whisper model (Subsection 3.5).

• Metadata, including timestamps and source frequency, is added to the tran-
scriptions.

5. SQLite Database for Data Storage

• The transcribed text, along with associated metadata, is stored in an SQLite
database.

• This database serves as the central repository for transcription data, enabling
efficient querying and retrieval.

37

Figure 4.3: Backend System Architecture.

The backend Figure (4.3) (red parts showcase the backend parts) operates autonomously
once initiated by the frontend, processing signals and storing the results for later retrieval
and visualization.

4.2 Calibrating the RTL-SDR

4.2.1 Parts Per Million (PPM)

As previously discussed in Subsection 3.3.1.1, it is important to calibrate the RTL-SDR
(Software Defined Radio) due to frequency deviations that may compromise the accuracy

38

of received signals. This is done by finding a specific known frequency. Since the specific
frequencies used by the walkie-talkie are known, an appropriate channel can be selected.
Channel 3 is selected at 446.03125 MHz, and then these steps are followed:

The steps below outline the process for calibrating the RTL-SDR device. This involves
measuring the frequency offset, calculating the correction in PPM, and plotting the power
spectrum to visualize the calibration results.

1. Initialize the RTL-SDR device:

• Set the sampling rate.

• Set the center frequency to the known frequency (e.g., walkie-talkie channel
frequency).

• Enable automatic gain control.

• Apply an initial PPM correction if available.

2. Capture radio samples:

• Collect a block of raw IQ samples from the SDR device.

3. Perform frequency analysis:

• Compute the FFT (Fast Fourier Transform) of the captured samples.

• Shift the FFT output to center the frequency components.

• Calculate the power spectrum from the FFT results.

• Generate the corresponding frequency axis.

4. Identify the peak frequency:

• Find the frequency with the highest power in the spectrum.

5. Calculate frequency offset and PPM correction:

• Compute the difference between the known frequency and the measured fre-
quency.

• Calculate the recommended PPM correction using the formula:

PPM correction =
Known Frequency−Measured Frequency

Known Frequency
× 106

6. Visualize results:

• Plot the power spectrum, highlighting the known and measured frequencies.

39

• Display the frequency offset and recommended PPM correction.

7. Close the RTL-SDR device:

• Release resources and terminate the SDR connection.

4.2.1.1 Calibration Procedure Output

• Setup: The known frequency represents a stable signal source (e.g., walkie-talkie
channel).

• Frequency Offset: The peak in the power spectrum indicates the actual received
frequency.

• PPM Correction: This value adjusts for hardware-specific offsets in the SDR, im-
proving future frequency accuracy.

• Visualization: The plot provides a graphical confirmation of the calibration results.

40

(a) Comparison between known and measured frequency before calibration

(b) Comparison between known and measured frequency after calibration (27PPM)

Figure 4.4: PPM Correction of RTL-SDR

As seen in Figure 4.4, before calibrating the PPM, there is a frequency difference of 12
kHz between the actual frequency and the measured frequency. While this may not seem
concerning, it is significant in this case, where the channels of the walkie-talkies are very
close together. For example, channel 2 operates at 446.01875 MHz and channel 3 at
446.03125 MHz, with only a 12.5 kHz difference between them. With such a frequency
inconsistency, attempting to listen on channel 2 would result in the RTL-SDR receiving
data from channel 3 instead. After applying a 27 PPM calibration, the frequency difference
is reduced to just 0.04 kHz, which is acceptable for this purpose.

41

4.3 Channel Scanning and Signal Capture

4.3.1 Channel Scanning

The following pseudocode outlines the logic for scanning predefined frequencies, analyz-
ing the signal spectrum, detecting peaks, and identifying the closest active channel.

Listing 4.1: Channel Finding Pseudocode
1 // Initialize the SDR device
2 initialize SDR
3 set sample rate to 2.048 MHz
4 enable automatic gain control
5 apply PPM correction (e.g., 23 ppm)
6

7 // Define a list of predefined frequencies (channels)
8 frequencies = [446.00625 MHz, 446.01875 MHz, ..., 446.09375 MHz]
9

10 // Define a target frequency for scanning
11 target_frequency = 446.05 MHz
12

13 // Function to scan a frequency
14 function scan_frequency(frequency, sdr):
15 set SDR center frequency to frequency
16 capture samples from SDR
17 return samples
18

19 // Function to compute power spectrum
20 function detect_signal(samples):
21 perform FFT on samples
22 compute power spectrum from FFT results
23 return power spectrum
24

25 // Function to detect peaks in the power spectrum
26 function detect_peaks(power, multiplier = 10):
27 calculate threshold as multiplier * median(power)
28 find peaks above threshold
29 return peaks and peak properties
30

31 // Main function for channel finding
32 function find_channel():
33 initialize SDR and configure parameters
34

42

35 // Scan the target frequency
36 samples = scan_frequency(target_frequency, sdr)
37 power = detect_signal(samples)
38 peaks, properties = detect_peaks(power)
39

40 // Check for significant peaks
41 if peaks are not empty:
42 find the peak with the highest amplitude
43 calculate the frequency of the highest peak
44 match the peak frequency to the closest predefined channel
45 return the closest channel and its number
46 else:
47 print "No significant peaks detected"
48 return None
49

50 close SDR connection
51 end function
52

53 // Execute the channel finding process
54 find_channel()

43

4.3.2 Signal Capture

The signal capture happens via Gnuradio (Section 2.2), the blocks used and their purpose
are explained below.

4.3.2.1 GNU Radio Modules

The flowchart shown in Figure 4.5 demonstrates the key blocks used in GNU Radio. Be-
low is an explanation of each block, its role in the flowchart, and its generic purpose in
signal processing applications.

1. RTL-SDR Source

• Role in the Flowchart: Configures the RTL-SDR device to capture raw IQ
samples from a specified center frequency (e.g., 446.031 MHz) with a sample
rate of 2.4 MHz. Gain and frequency correction are applied.

• Generic Purpose: Interfaces with RTL-SDR devices to receive RF signals,
enabling their conversion into digital IQ data for further processing.

2. Band Pass Filter

• Role in the Flowchart: Passes only the frequency components within a spe-
cific range, defined by the low cutoff frequency (-6.25 kHz) and high cutoff
frequency (+6.25 kHz), suppressing out-of-band noise.

• Generic Purpose: Isolates the desired signal from surrounding noise or inter-
ference in the frequency spectrum.

3. Low Pass Filter

• Role in the Flowchart: Further filters the signal, removing high-frequency
components outside the desired range (cutoff frequency: 15 kHz), ensuring
only relevant frequency components are preserved.

• Generic Purpose: Removes noise and reduces bandwidth, focusing on the
essential signal.

4. Noise Threshold

• Role in the Flowchart: Demodulates theWideband FM (WBFM) signal, con-
verting it into a baseband audio signal with reduced bandwidth. The ‘audio
decimation‘ parameter of 10 reduces the sample rate(by choosing 1 in N dat-
apoints), optimizing the signal for audio playback or analysis.

44

• Generic Purpose: Filters out low-power noise or irrelevant signals in the
signal chain, improving signal clarity.

5. WBFM Receive

• Role in the Flowchart: Demodulates theWideband FM (WBFM) signal, con-
verting it into a baseband audio signal with reduced bandwidth (audio deci-
mation: 10).

• Generic Purpose: Converts FM-modulated signals into audio signals for fur-
ther analysis or playback.

6. Multiply Constant

• Role in the Flowchart: Multiplies the signal by a constant value (3), scaling
its amplitude for visualization or storage.

• Generic Purpose: Adjusts signal amplitude for normalization or to match
downstream processing requirements.

7. Add

• Role in the Flowchart: Combines two input signals: the main signal and its
complex conjugate, to enhance or process the signal further.

• Generic Purpose: Used to sum signals or perform mathematical operations
on multiple inputs.

8. Complex Conjugate

• Role in the Flowchart: Calculates the complex conjugate of the input signal,
often used for phase correction or correlation tasks.

• Generic Purpose: Provides signalmanipulation for advanced processing tasks,
such as phase alignment.

9. WAV File Appender

• Role in the Flowchart: Stores the processed audio signal in a WAV file for
offline playback or further analysis.

• Generic Purpose: Writes audio data to a standard file format for storage or
post-processing.

10. QT GUI Frequency Sink (Raw Data and Band Pass)

• Role in the Flowchart: Displays the frequency-domain representation of the
signal at various stages (e.g., raw IQ data, bandpass filtered signal).

45

• Generic Purpose: Provides real-time spectral analysis for monitoring signal
frequency components.

11. QT GUI Time Sink

• Role in the Flowchart: Displays the time-domain waveform of the demodu-
lated signal, showing amplitude variations over time.

• Generic Purpose: Visualizes real-time time-domain characteristics of the
processed signal.

Two custom blocks, Noise Threshold andWAV File Appender, were created in Python
to fulfill the specific requirements of this pipeline. These blocks were developed fol-
lowing the GNU Radio documentation for Embedded Python Blocks, ensuring seamless
integration and efficient processing.

46

Figure 4.5: Gnuradio flowchart signal capture. 47

4.3.2.2 Noise Threshold Block

The Noise Threshold block is designed to filter out weak signals by applying a threshold
to the signal’s magnitude. Signals with magnitudes below the specified threshold are set
to zero, effectively removing low-power noise and enhancing the signal’s quality.

Listing 4.2: Noise Threshold Block
1 // Custom GNU Radio block: Noise Threshold
2 // Input: Complex signal
3 // Output: Complex signal with weak signals zeroed out
4

5 function NoiseThreshold(low_threshold):
6 initialize block with input and output signatures as complex signals
7 set low_threshold to the provided value
8

9 function process(input_signal):
10 magnitude = compute magnitude of input_signal
11 output_signal = set values of input_signal to 0 if magnitude < low_threshold
12 return output_signal

4.3.2.3 WAV File Appender

TheWAVFile Appender block is used to save processed audio signals into aWAV file. It
appends data to an existing WAV file or creates a new one if it does not exist. This ensures
that the processed audio can be stored for offline analysis or playback. The block manages
file operations, including updating the WAV file header when the flowgraph stops.

Listing 4.3: WAV File Appender Block
1 // Custom GNU Radio block: WAV File Appender
2 // Input: Audio samples
3 // Output: None (data is saved to a file)
4

5 function WAVFileAppender(file_path):
6 initialize block with input signature as float
7 set file_path to the provided value
8 if file exists:
9 open file for appending and read header
10 else:
11 create a new WAV file with appropriate parameters
12

48

13 function process(input_signal):
14 convert input_signal from float to int16
15 append converted data to the WAV file
16

17 function stop():
18 update WAV file header with the correct frame count
19 close the file

4.4 Speech-to-Text Pipeline Using Whisper

The WAV file is processed by the speech-to-text pipeline to transcribe spoken audio into
text. To achieve real-time processing, the pipeline reads and processes the audio incremen-
tally as the WAV file is being created. This approach ensures minimal latency between
audio capture and transcription.

4.4.1 Real-Time Audio Processing

Real-time processing is implemented through a combination of efficient audio reading,
silence detection, and transcription. The key components of this pipeline are described
below:

4.4.1.1 Audio Reading Function

The read_new_audio function reads new audio data from the WAV file incrementally,
starting from the last processed position [Listing 4.4]. It ensures the audio is prepared for
transcription by:

• Reading only the newly written audio frames from the specified position in the file.

• Resampling the audio to 16 kHz to meet Whisper’s input requirements.

• Converting the audio to mono by averaging across channels.

• Returning the new audio data, the updated position, and the corresponding time
offset.

49

Listing 4.4: Pseudocode for read_new_audio
1 function read_new_audio(file, last_position):
2 try:
3 new_data, sample_rate = load audio from file starting at last_position
4 if no frames read:
5 return None, last_position, 0.0
6

7 time_offset = last_position / sample_rate
8 resample new_data to 16 kHz
9 convert new_data to mono
10 update last_position with the number of frames read
11 return new_data, updated last_position, time_offset
12 except error:
13 return None, last_position, 0.0

4.4.1.2 Silence Detection Function

The is_silence function determines whether a segment of audio represents silence by
comparing its maximum amplitude to a predefined threshold. This function is critical
for tasks such as detecting when to pause transcription or identifying silent sections for
post-processing.

Listing 4.5: Pseudocode for is_silence
1 function is_silence(data, threshold=0.1):
2 return true if maximum amplitude of data < threshold

4.4.1.3 Silence Checking Function

The checkForSilence functionmonitors the audio file for consecutive silent segments of
a specified duration. It reads new audio using read_new_audio and increments a silence
duration counter when silence is detected. If non-silent audio is encountered, the counter
is reset. Once the specified duration of silence is reached, the function returns the updated
file position.

Listing 4.6: Pseudocode for checkForSilence
1 function checkForSilence(file, plot_stop_flag, last_position, seconds=5):
2 initialize silence_duration = 0
3 sample_rate = 16000

50

4

5 while silence_duration < seconds and plot_stop_flag is not set:
6 new_data, last_position, time_offset = read_new_audio(file, last_position)
7 if new_data is None:
8 wait 1 second
9 continue
10

11 duration = length of new_data / sample_rate
12 if is_silence(new_data):
13 increment silence_duration by duration
14 else:
15 reset silence_duration to 0
16

17 wait 1 second
18

19 if silence_duration >= seconds:
20 return last_position

4.4.1.4 Integration with Transcription

The transcribe_audio function coordinates the transcription process by:

• Incrementally reading new audio data from the file.

• Sending the data to Whisper for transcription.

• Adjusting transcription timestamps to account for the file’s offset timing.

• Storing the results in a database for retrieval.

The integration of these components enables seamless real-time transcription while the
WAV file is being created.

Listing 4.7: Pseudocode for transcribe_audio
1 function transcribe_audio(wavFile, model):
2 last_position = 0
3 connect to database
4

5 while stop_flag is not set:
6 if wavFile exists:
7 new_data, last_position, time_offset = read_new_audio(wavFile,

last_position)
8 if new_data is not None:

51

9 segments = transcribe new_data with model
10 for segment in segments:
11 adjusted_start = segment.start + time_offset
12 adjusted_end = segment.end + time_offset
13 store transcription in database
14 else:
15 print "wavFile does not exist."
16

17 wait 1 second

4.5 DoA Implementation

The KrakenSDR system timestamps and stores DoA values for analysis in the future.
DoA values and speech transcriptions with timestamps are then combined in an attempt
to perform speaker diarization through the following sequence of operations:

1. Set a start timestamp at audio record (e.g., 15:00:00)

2. Transcribe speech segments with start/end timestamps in relation

3. DoA values match with a starting time.

4. DBSCAN clustering clusters similar DoA readings

5. Centroids of clusters represent individual speakers

Table 4.1: Example of audio Transcription Data.

Audio Start Audio End Transcription
15:00:00 15:00:10 This is location 1

52

Table 4.2: Example of direction of arrival (DoA) measurements over time.

Timestamp DoA (°)
15:00:00 190
15:00:01 189
15:00:02 190
15:00:03 191
15:00:04 192
15:00:05 190
15:00:06 189
15:00:07 190
15:00:08 190
15:00:09 191
15:00:10 189

Table 4.3: Example of diarization results.

Start Time End Time Text Speaker
15:00:00 15:00:10 This is location 1 1

53

Listing 4.8: Speaker Diarization Algorithm
1 function process_transcription(start, end, wavFile):
2 // Retrieve temporal DoA data
3 ref_time = get_reference_time()
4 absolute_start = ref_time + start
5 absolute_end = ref_time + end
6 DoA_data = retrieve_DoA(absolute_start, absolute_end)
7

8 if no DoA_data:
9 return empty list
10 // Cluster processing
11 initialize dbscan with eps=20, min_samples=5
12 clusters = dbscan.fit_predict(DoA_data)
13 // Calculate cluster centroids
14 valid_clusters = filter_noise(clusters)
15 centroids = calculate_centroids(DoA_data, valid_clusters)
16

17 // Speaker matching process
18 initialize transcription_speakers as empty list
19

20 for each centroid in cluster_centroids:
21 set matched = False
22

23 // Check against known speakers
24 for each (known_centroid, speaker_id) in cluster_to_speaker:
25 if absolute(centroid - known_centroid) <= 10: // Threshold check
26 append speaker_id to transcription_speakers
27 set matched = True
28 break loop // Exit speaker search
29 // Handle new speaker case
30 if not matched:
31 add centroid to cluster_to_speaker with next_speaker_id
32 append next_speaker_id to transcription_speakers
33 increment next_speaker_id by 1
34

35 // Recursive processing
36 if multiple speakers detected:
37 mid_point = (start + end) / 2
38 process_transcription(conn, start, mid_point, wavFile)
39 process_transcription(conn, mid_point, end, wavFile)
40 else:
41 save_results(conn, start, end, speakers[0], wavFile)

54

42

43 return speakers

55

Chapter 5 Experimental Results

The system analysis was divided into three parts:

• Walkie-Talkie Signal Capture Analysis

• Speech-To-Text Analysis

• DoA Classification Analysis

5.1 Walkie-Talkie Signal Capture Analysis

The signal capture analysis involved transmitting a signal using an off-the-shelf walkie-
talkie and capturing it at varying distances. The distances captured were between 100 and
600 m with increments of 100 m. A transmitter (walkie-talkie) was set up on top of a
house at about 4 meters height and 0m as seen on the Figure 5.1. The receiver was then
gradually moved away from the transmitter while recording the transmitted signal. The
signal was captured and analyzed using FFT [3.2.1]. Specifically, the receiver was tuned
to a specific frequency (446.00625 MHz) and collected IQ data points, which were then
processed through the FFT to extract the power spectrum. It is important to note that the
amplitude values provided by the FFT are not absolute measurements but rather relative
values used for analysis. Figure 5.1 shows the experimental setup.

Transmitter: Motorola T92 H2O 446MHz.
Receiver: The RTL-SDR receiver was calibrated as explained in Section 4.2.

Figure 5.1: Map showcasing setup for Distance Experiment.

56

5.1.1 Walkie-Talkie Signal Capture Analysis Results

Figure 5.2 presents the relationship between distance and received power, with the distance
represented on the x-axis and the corresponding received power displayed on the y-axis.
The illustration demonstrates how variations in distance influence the amplitude of the
received power.

0

10

20

30

40

50

60

70

80

5 36 64 95 125 156 186 217 248 278 309 339 370 401 429 460 490 521 551 582 613

R
ec

ei
ve

d
Po

w
er

 (l
og

)

Distance (Meters)

Figure 5.2: Graph showing the power transmission compared to the distance.

5.2 Speech-To-Text Analysis

To evaluate the speech-to-text accuracy and distance capture capability, a predefined phrase
was used as the ground truth. The phrase was:

”This is a distance test {number}”

The {number} corresponds to the distance in meters, where:

• 1 → 100m

• 2 → 200m

• 3 → 300m

• 4 → 400m

• 5 → 500m

• 6 → 600m

The test was conducted with the following distances as also shown in Table 5.1:

57

Table 5.1: Test phrases and corresponding distances

Text Distance
This is a distance test 1 100m
This is a distance test 2 200m
This is a distance test 3 300m
This is a distance test 4 400m
This is a distance test 5 500m
This is a distance test 6 600m

5.2.1 Results

The recorded speech-to-text outputs with corresponding timestamps are as follows:

• [0.00 - 5.18]: ”This is a distance test one.” (100m)

• [6.50 - 9.98]: ”This is in distance test two.” (200m)

• [11.68 - 15.86]: ”This is a distance test three.” (300m)

• [17.34 - 21.36]: ”This is a distance test four.” (400m)

• [21.36 - 23.36]: ”Thank you.”

• [29.92 - 30.12]: ”I.”

• [30.12 - 31.16]: ”This is a great”

• [31.16 - 31.42]: ”chance”

• [31.42 - 31.98]: ”and C.”

• [31.98 - 32.92]: ”See.”

The analysis of the results indicates a clear correlation between distance and transcrip-
tion accuracy. Within the range of 100 meters to 400 meters, the transcription process is
successful. However, as we extend beyond 500 meters, the accuracy of the transcriptions
deteriorates significantly, resulting in fractured and incomplete outputs. This aligns with
the observations presented in Figure 5.2, which illustrates that the signal power remains
robust and stable up to approximately 410meters. Beyond this threshold, there is a notable
decline in signal strength and stability. This instability likely contributes to the incorrect
and fractured transcription. Consequently, it can be inferred that maintaining signal in-
tegrity is critical for achieving accurate transcription results, particularly in scenarios that
require communication over extended ranges.

58

A spectral analysis was conducted on the captured audio to further examine the signal
quality. The waveform representations of the recorded audio at different distances are
shown in Figure 5.3.

Figure 5.3: Waveform analysis of the captured audio at various distances.

The spectral analysis confirms again that at 400m distance, the signal is strong enough
with speech patterns that can be understood. However above 500m there is a noticeable
increase in background noise, causing significant distortion in the captured audio. This
noise interference can justify the speech-to-text system produced wrong or fragmented
transcriptions at these distances.

Signal deterioration can occur naturally as the signal weakens over distance. Although
the path between the obstacles and receiver was mostly clear, a few trees were present
and could affect the signal slightly. Vegetation can absorb or scatter signals, especially at
certain frequencies. However, in this study, such small obstacles are considered normal
and expected in typical real-world conditions.

In summary, all tests conducted showed that the signal remained generally stable and
transcription was possible for up to 400m. Beyond this distance, the signal became too
unstable, with excessive noise preventing accurate transcription.

5.3 DoA Classification Analysis

For the Direction of Arrival (DoA) Classification Analysis, an experiment was conducted
in an outdoor field setting. In this experiment, the receiver, specifically the KrakenSDR,
was positioned in a static location. Meanwhile, the transmitting device was moved to
three predetermined locations within the field. These locations were selected based on

59

their known coordinates and established as the ground truth for the analysis.

To evaluate the effectiveness of the DoA data collected, clustering was performed on the
data obtained from these distinct positions. The clustering process involved analyzing
the signals received at each of the fixed locations to identify patterns and groupings that
could indicate the direction from which the signals originated. By comparing these clus-
ters against the ground truth locations, we aimed to assess the accuracy of the DoA clas-
sification methodology. This comprehensive approach not only facilitated a structured
evaluation of the DoA data but also contributed to a deeper understanding of the system’s
performance in real-world scenarios.
The figure below shows the setup for the experiment.

Figure 5.4: DoA experiment setup.

60

5.3.1 DoA Classification Analysis Results

The DoA was clustered and placed on a polar map with 0 Degrees representing north.
The 3 different colors and symbols show the 3 clusters respectively, while the black color
shows the ground truth which is the actual position as captured in the experiment.

Figure 5.5: DoA experiment results.

As seen by the Figure 5.5, the captured DoA values are close to the ground truth hence
using this system, speakers can be assigned to the data.

61

5.4 Real Life Experiment

In this section a real life experiment will be analyzed that was conducted similarly to
the DoA experiment setup Figure 5.5. Trasmitters were set up on 4 locations around the
receiver as show in Figure 5.6.

Figure 5.6: DoA experiment results.

For each transmitter, a specific phrase was chosen:

1. ”This is Transmitter 1. I am transmitting to report severe flooding in the area.
Proceed with caution and await further instructions.”

2. ”This is Transmitter 2. Roads are becoming impassable due to rising water. Emer-
gency response teams, please coordinate accordingly.”

3. ”This is Transmitter 3. Evacuation may be necessary. All units, stand by for updates
and assistance requests.”

62

4. ”This is Transmitter 4. Emergency conditions are worsening. Stay alert, follow
protocol, and ensure public safety.”

63

(a) Transmitter 2

(b) Transmitter 4

Figure 5.7: Front-end platform results for transmitter 2 and transmitter 4

64

Figure 5.7 shows the configurations of Transmitter 2 and Transmitter 4, alongside their
respective DoAs and accompanying audio signals.

Figure 5.8: Real-Life experiment results.

Figure 5.8 illustrates that the system effectively transcribed the audio from the walkie-
talkies and accurately assigned speaker identities in this scenario.

5.5 Ethical Considerations

This research explores the technical capabilities of Software-Defined Radio (SDR) for an-
alyzing radio frequency signals. All activities were conducted in compliance with applica-

65

ble legal and regulatory frameworks. This work aims to contribute to the understanding of
RF technologies, and it is intended for informational and educational purposes only. We
advocate for the responsible and ethical use of these technologies, emphasizing respect
for privacy and the legal conditions governing use.

66

Chapter 6 Conclusion and Future work

6.1 Conclusion

This proof-of-concept study successfully demonstrated a system capable of detecting and
analyzingwalkie-talkie communications using software-defined radio (SDR) and advanced
AI tools. By identifying active VHF/UHF channels with an RTL-SDR, capturing audio
transmissions, and converting them to text using OpenAI’sWhisper model, we established
an effective pipeline for real-time audio processing. Additionally, by integrating direction-
finding capabilities via the KrakenSDR, the system could approximate the direction of the
transmission, enabling speaker identification based on signal direction. This end-to-end
approach presents a practical solution for monitoring and interpreting short-range radio
communications, with potential applications in emergency response, situational aware-
ness, and security monitoring. The findings from the signal capture analysis experiment,
as detailed in Section 5.1, indicate accuracy in transcription when distances are maintained
below 500meters. This suggests effective signal integrity and processing capability within
this range. Furthermore, the Direction of Arrival (DoA) Capture analysis presented in Sec-
tion 5.3 demonstrates reliability to ascertain the orientation of incoming signals.

Additionally, the real-life experiment outlined in Section 5.4 further supports these re-
sults, revealing that the system not only captures and transcribes audio effectively but
also assigns speakers accurately based on their respective transmitter’s signal direction.
Such findings collectively highlight the system’s potential for real-world applications in
emergency management, public safety and coordination across communication systems.

6.2 Future Work

While this study provides an extensive research on transcribing Walkie-Talkie signals as
well as identifying a speaker based on the DoA of the incoming signal there are still areas
that warrant further exploration.

A higher quality Software Defined Radio (SDR), such as the HackRF, could potentially
enhance both the range and overall quality of the captured signals. By offering improved
sensitivity and advanced processing capabilities, high-quality SDRs can detect weaker
signals that lower-grade equipment might miss.

A fine-tuned model trained on specific phrases from walkie-talkies could potentially help
the model transcribe text with better results since it will learn to understand voice from

67

walkie-talkie.

A further improvement is a localization system using a dual-receiver setup with two Krak-
enSDR units. By placing these receivers at known locations, it will be possible to capture
the direction-of-arrival (DoA) values of incoming signals simultaneously. These mea-
surements can then be processed using triangulation algorithms to estimate the position of
the transmitting source. This approach would yield better results compared to the single-
receiver and clustering method, that shows only who is speaking. Future research will
focus on the synchronization between the KrakenSDR devices, refining the signal pro-
cessing techniques to reliably extract DoA values under varying environmental conditions,
and validating the method through both simulated and real-world experiments.

Another idea is to get the entire system airborne, on a drone. This will help capture the
signal muchmore efficiently since there will be fewer obstacles, allowing the RTL-SDR to
capture the signal at greater distances. The system could also be easily moved to another
location where attention is needed.

68

BIBLIOGRAPHY

[1] G. Baldini, T. Sturman, A. Dalode, A. Kropp, and C. Sacchi, “An emergency com-
munication system based on software-defined radio,” EURASIP Journal on Wireless
Communications and Networking, vol. 2014, pp. 1–16, 2014.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information pro-
cessing systems, vol. 30, 2017.

[3] F. Zubir, M. K. A. Rahim, T. Masri, and M. N. Karim, “Comparison between circu-
lar array and linear array microstrip antenna,” in 2008 IEEE International RF and
Microwave Conference, 2008, pp. 422–426.

[4] P. J. Chung, M. Viberg, and J. Yu, “Chapter 14 - DOA Estimation Methods and
Algorithms,” in Academic Press Library in Signal Processing: Volume 3, A. M.
Zoubir, M. Viberg, R. Chellappa, and S. Theodoridis, Eds. Elsevier, 2014, vol. 3,
pp. 599–650.

[5] L. Trapani, F. Taylor, E. Gattis, Y. Chen, S. Lo, D. Akos et al., “Testing a coherent
software defined radio platform for detection of angle of arrival of rf signals,” in
Proceedings of the 36th International Technical Meeting of the Satellite Division of
The Institute of Navigation (ION GNSS+ 2023), 2023, pp. 3829–3836.

[6] I. C. Gormley, T. B. Murphy, and A. E. Raftery, “Model-based clustering,” Annual
Review of Statistics and Its Application, vol. 10, no. 1, pp. 573–595, 2023.

[7] P. D. McNicholas, “Model-based clustering,” Journal of Classification, vol. 33, pp.
331–373, 2016.

[8] R. W. Stewart, L. H. Crockett, D. S. W. Atkinsons, K. W. Barlee, D. H. Crawford,
I. G. Chalmers, and E. Sozer, “A low-cost desktop software defined radio design
environment usingMATLAB, Simulink, and the RTL-SDR,” IEEECommunications
Magazine, vol. 53, no. 9, pp. 64–71, 2015.

[9] “Gnu radio project.” [Online]. Available: https://www.gnuradio.org/

[10] A. Radhi, H. Akkar, and H. Abdullah, “Sdr-based intelligent cooperative spectrum
sensing for cognitive radio systems,” Engineering and Technology Journal, vol. 41,
no. 2, pp. 1–11, 2023.

69

https://www.gnuradio.org/

[11] C. Graham and N. Roll, “Evaluating openai’s whisper asr: performance analysis
across diverse accents and speaker traits,” JASA Express Letters, vol. 4, no. 2, 2024.

[12] M.Na andM. Chung, “Optimizing vocabularymodeling for dysarthric speech recog-
nition,” in Computers Helping People with Special Needs: 15th International Con-
ference, 2016, pp. 507–510.

[13] X. Zhang and S. Zhou, “Woa-dbscan: application of whale optimization algorithm
in dbscan parameter adaption,” IEEE Access, vol. 11, pp. 91 861–91 878, 2023.

[14] Y. Zhang, X. Yuan, M. Li, G. Zhao, and H. Wang, “Multi-density adaptive trajectory
clustering algorithm for ships based on ais data,” IEEE Access, vol. 11, pp. 108 198–
108 210, 2023.

[15] D.Deng, “Dbscan clustering algorithm based on density,” in 7th International Forum
on Electrical Engineering and Automation (IFEEA), 2020, pp. 949–953.

[16] S. Akbar andM. Khan, “Critical analysis of density-based spatial clustering of appli-
cations with noise (dbscan) techniques,” International Journal of Database Theory
and Application, vol. 7, no. 5, pp. 17–28, 2014.

[17] M. Ezuma, F. Erden, C. Anjinappa, O. Özdemir, and I. Güvenç, “Detection and
classification of uavs using rf fingerprints in the presence of wi-fi and bluetooth in-
terference,” IEEE Open Journal of the Communications Society, vol. 1, pp. 60–76,
2020.

[18] I. Docker, “Docker: Accelerated container application development,” 2013.
[Online]. Available: https://www.docker.com/

[19] E. O. Brigham and R. E. Morrow, “The fast fourier transform,” IEEE Spectrum,
1967.

[20] K. R. Rao, D. N. Kim, and J. J. Hwang, Fast Fourier transform-algorithms and
applications. Springer Science & Business Media, 2011.

[21] M. Mazzei, Signal (electrical engineering). Research Starters, 2023.

[22] I. D. Mienye, T. G. Swart, and G. Obaido, “Recurrent Neural Networks: A Compre-
hensive Review of Architectures, Variants, and Applications,” Information, vol. 15,
no. 9, p. 517, 2024.

[23] M. V. Vildyaeva, E. A. Egorova, and A. B. Vavrenyuk, “Using a neural network to
convert a radio signal from an rtl-sdr receiver to text,” in 2020 IEEE Conference of

70

https://www.docker.com/

Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),
2020, pp. 1449–1451.

[24] G. Klein and O. Contributors, “Ctranslate2: Fast inference engine for opennmt
models,” gitHub repository. [Online]. Available: https://github.com/OpenNMT/
CTranslate2

[25] OpenAI, “Openai: Advancing digital intelligence for the benefit of humanity.”
[Online]. Available: https://openai.com/

[26] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec: Unsupervised pre-
training for speech recognition,” arXiv:1904.05862 [cs.CL], 2019.

[27] G. Gerganov, “Whisper.cpp: High-performance whisper implementation in c++,”
2024. [Online]. Available: https://github.com/ggerganov/whisper.cpp

[28] SYSTRAN, “Faster-whisper: Efficient whisper model implementation,” 2024.
[Online]. Available: https://github.com/SYSTRAN/faster-whisper

[29] Jitsi, “Jiwer: Similarity measures for automatic speech recognition evaluation,”
gitHub repository. [Online]. Available: https://github.com/jitsi/jiwer

[30] P. Demonte, “Speech corpus - harvard - raw audio.” [Online]. Avail-
able: https://salford.figshare.com/articles/media/Speech_corpus_-_Harvard_-
_raw_audio/7862666

[31] A. M. Wyglinski, R. Getz, T. Collins, and D. Pu, Software-defined radio for engi-
neers. Artech House, 2018.

71

https://github.com/OpenNMT/CTranslate2
https://github.com/OpenNMT/CTranslate2
https://openai.com/
https://github.com/ggerganov/whisper.cpp
https://github.com/SYSTRAN/faster-whisper
https://github.com/jitsi/jiwer
https://salford.figshare.com/articles/media/Speech_corpus_-_Harvard_-_raw_audio/7862666
https://salford.figshare.com/articles/media/Speech_corpus_-_Harvard_-_raw_audio/7862666

APPENDICES

72

APPENDIX I

Title of Appendix

73

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background Information
	Problem Statement
	Objectives
	Structure of the Thesis

	Literature Review
	Overview of SDR Technology
	GNU Radio and its Role in Signal Processing
	Architecture Overview
	Simplifying Signal Manipulation
	GNU radio-based Walkie-Talkie Applications

	Speech-to-Text Technologies
	Machine Learning Model Comparisons

	Direction-of-Arrival (DoA) and KrakenSDR
	Overview of DoA Technology
	Existing Algorithms for DoA
	KrakenSDR
	What is KrakenSDR?

	Clustering
	Clustering Methodologies
	Partitioning Methods
	Hierarchical Clustering
	Density-Based Clustering
	Model-Based Clustering

	Related Work

	Technical Background
	Docker Containers
	Docker Architecture
	Containerization
	Docker benefits in DevOps
	Docker Compose

	Fourier Transform (FT)
	Fast Fourier Transform
	Inverse Fast Fourier Transform (IFFT)

	Understanding RTL-SDR and Walkie-Talkie Signal Structure
	The Fundamentals of RTL-SDR
	Crystal oscillator

	Modulations
	Amplitude Modulation (AM)
	Frequency Modulation (FM)
	Key Differences Between AM and FM

	KrakenSDR hardware overview

	GNU Radio for Signal Processing
	GNU Radio Fundamentals
	Signal Processing Blocks and Flowgraphs
	Using GNU Radio with hardware in the loop or in simulation mode
	GNU Radio Companion (GRC)

	OpenAI Whisper for Speech-to-Text Conversion
	Transformers
	Quantization
	CTranslate2
	Inner Workings of the Whisper Model
	Performance Characteristics of Whisper
	Using Faster-Whisper for Local Transcription

	Challenges in Real-Time Signal Processing
	Noise Reduction
	Synchronization of Signal Capture
	Signal Processing Delays in Transcription
	DoA Challenges

	System Architecture and Implementation
	System Overview
	Frontend architecture
	Back end architecture

	Calibrating the RTL-SDR
	Parts Per Million (PPM)
	Calibration Procedure Output

	Channel Scanning and Signal Capture
	Channel Scanning
	Signal Capture
	GNU Radio Modules
	Noise Threshold Block
	WAV File Appender

	Speech-to-Text Pipeline Using Whisper
	Real-Time Audio Processing
	Audio Reading Function
	Silence Detection Function
	Silence Checking Function
	Integration with Transcription

	DoA Implementation

	Experimental Results
	Walkie-Talkie Signal Capture Analysis
	Walkie-Talkie Signal Capture Analysis Results

	Speech-To-Text Analysis
	Results

	DoA Classification Analysis
	DoA Classification Analysis Results

	Real Life Experiment
	Ethical Considerations

	Conclusion and Future work
	Conclusion
	Future Work

	BIBLIOGRAPHY
	APPENDICES
	Title of Appendix

