
i

Ατομική Διπλωματική Εργασία

BREST CANCER LOCATION DETECTION WITH MACHINE

LEARNING USING THERMOGRAPH IMAGES

Damianos Kallis

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μάιος 2025

ii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Brest cancer location detection with machine learning using Thermograph images

Damianos Kallis

Επιβλέπων Καθηγητής

Christodoulou Christos

Η Ατομική Διπλωματική Εργασία υποβλήθηκε προς μερική εκπλήρωση των απαιτήσεων

απόκτησης του πτυχίου Πληροφορικής του Τμήματος Πληροφορικής του Πανεπιστημίου

Κύπρου

Μάιος 2025

iii

Acknowledgements

First, the main idea came from MammoCheck Ltd and is the one that gave me this

opportunity for this experience. Also, I would like to thank Prof Christos Christodoulou for

getting me in touch with the company and helping me with my progress, but he also taught

me the basics of Machine Learning, and Computational Intelligence. But the most help I got

was from one of the owners of the company Marios Pafitis who helped me to understand each

phase of the project and gave me ideas how to continue my research each time I had a

problem and provided me with useful datasets for my project. Furthermore, I would like to

thank Valentinos Pariza for helping me to set up Dinov2 and tutor me how it works, by

giving me a template and explaining each function and Marios Constantinou from the HPC

Administrators team that gave me access to the HPC. Lastly, I would like to thank my family

and friends that support and help me get through this project .

iv

Abstract

Many people today have been diagnosed with breast cancer and in most of the cases the late

detection causes the cancer to be incurable. Today there are various ways to diagnose breast

cancer like mammography and ultrasound breast exams however they are not taken so

frequently from the patients because they are expensive, dangerous or painful. As a result,

recent studies presented thermography as a complementary tool to primary diagnostic

methods, for frequent monitoring, which is easier to take, pain-less and radiation-free which

can be conducted at home in few minutes using an affordable thermal camera attached to a

smartphone. However, many studies showed that with thermography and Artificial Intelligent

programs they can detect if a patient has breast cancer, but they cannot detect the location of

the cancer. So, the goal of my study is to create an algorithm using machine learning to detect

the location of the cancer in breast thermal images and compare different hyperparameters

and analyse the results to see how the model performs for this task.

v

Περιεχόμενα

Chapter 1 Introduction……………………………………………………………… 1

 1.1 Problem with common examinations 1

 1.2 Problem with Thermography 1

 1.3 Thesis’ goal 2

Chapter 2 Background……….……………………………………………………… 3

 2.1 Machine learning Clustering algorithms 3

2.2 Vision Transformer 6

2.3 Dinov2 6

2.4 Metrics 8

Chapter 3 Data Handling………………………………………………..…..……… 11

 3.1 Breast Thermography 11

 3.2 Data Usage 13

 3.3 Data Preprocessing 13

 3.4 4 Ground Truths 16

Chapter 4 Implementation……………………………….…………….……………. 17

4.1 Dinov2 features processing 17

4.2 K-means implementation 18

4.3 Labelling for supervise classification 18

4.4 Random Forest Classifier implementation 21

4.5 K-means implementation with additional images 21

4.6 Labelling for evaluation 22

4.7 Visualization 24

Chapter 5 Experiments, Results & Discussion …………………………………….. 27

5.1 Experiments 27

vi

5.2 Results & Discussion 33

Chapter 6 Conclusion & Future Work…………………………………………….. 68

 6.1 Conclusion 68

 6.2 Future Work 70

References ………………………….……………………………………………………. 71

Appendix Α……………………….……..…………………………………..….………… Α-1

1

Chapter 1

Introduction

1.1 Problem with common examinations 1

1.2 Problem with Thermography 1

1.3 Thesis’ goal 2

1.1 Problem with common examinations

Breast cancer accounts for one in three female cancers in the United States. The American

Cancer Society estimates that, of the approximately 168,260,000 women in the US, 316,950

will receive a new diagnosis of invasive breast cancer annually, and 42,170 will lose their

lives to the disease [1]. Mammograms, ultrasounds, breast magnetic resonance imaging

(MRI), and other primary breast cancer screening procedures are typically performed on a

periodic basis on women. The most crucial and gold standard test for breast cancer is

mammography, which can identify tumours up to two years before they are palpable.

However, it is advised that women have routine screenings every two to three years,

beginning at age 45 [2], due to the ionizing radiation that mammography exposes the patient

to. Another screening method is ultrasound, which calls for a specialist to operate the

equipment and interpret the findings. [3]

1.2 Problem with Thermography

On the other hand, thermography is an FDA-approved adjunct to primary breast screening

methods for breast cancer examinations [4]. The primary advantage of thermography is that it

can be carried out using reasonably priced thermal camera equipment, and as the camera does

not produce any radiation, it poses no risk to the patient. Unfortunately, a lot of research

2

added to the market models for cancer detection showing if a patient is diagnosed with breast

cancer or not but there is not a model showing the exact location of the cancer. [3]

1.3 Thesis’ goal

As I previously mentioned it is important for fast treatment of the breast cancer to be early

detected but it is also important for the right treatment to have early localization of the

tumour area. In this thesis I will try to address this issue, by trying with different models,

different data and data preprocessing to create an unsupervised algorithm that combines

multiple techniques to be able to achieve the best accuracy with the detection of the cancer

area on ill women but also see how the program reacts with healthy women and analyse my

results using specific metrics.

3

Chapter 2

Background

2.1 Machine learning Clustering algorithms 3

2.2 Vision Transformer 6

2.3 Dinov2 6

2.4 Metrics 8

2.1 Machine learning Clustering algorithms

Cluster algorithms are models that separate different inputs into groups based on the

similarity of their features that we have in the dataset. Those models can be supervised or

unsupervised

2.1.1 Supervised Cluster algorithms

In supervised algorithms we have in the dataset the desired cluster output for each input, and

it works like 'teacher' providing the net with the output required for each input. This

algorithm learns by adjusting the weights to minimize the difference between the desired and

actual outputs for each input pattern.

2.1.1.1 Random Forest Classifier

The basic idea in decision tree classifier is the separation of the inputs at each non-terminal

node and the choice of the most important data features for the separation of the inputs.

4

Random Forest is a popular and easy machine learning algorithm used for several types of

classification tasks. A Random Forest is a combination of tree-structured classifiers. Every

tree of the forest gives an output , assigning each input to the closest class label. As we see in

the [Figure 1] there are 4 decision trees, and each tree takes as input from the dataset x and

based on different features each tree gives an output, and the most common output is the

“winner”. It is a fast method, robust to noise and it is a successful ensemble which can

identify non-linear patterns in the data. It can easily handle both numerical and categorical

data. One of the major advantages of Random Forest is that it does not suffer from over-

fitting, even if more trees are appended to the forest. [5]

Figure 1:Random Forest Classifier diagram with 4 trees

2.1.2 Unsupervised Cluster algorithms

Unlike supervised in unsupervised algorithms we do not have the desired output of each input

[6]. This network can discover statistical regularities in its input space and automatically

develops different modes of behavior to represent different classes of inputs (in practical

applications some `labelling' is required after training, since it is not known at the outset

which mode of behavior will be associated with a given input class).[5]

5

2.1.2.1 K-means algorithm

K-means is a simple unsupervised cluster algorithm and it is very common as it solves most

of the clustering problems. The main idea is to define k centroids, one for each cluster. We

place these centroids most of the time random but different location causes different results.

So, if it’s not random we try to place them as much as possible far away from each other.

Next step is to take each point from the inputs and associate it with the closest centroid and

when there are no inputs left the first epoch is finished. Then we re-calculate the k centroids

at the centre of each cluster, and we repeat the association with the same inputs as previous

and the new centroids and we repeat this process until the k centroids stop changing

locations. That means that the clusters have the minimum square error [7]. And we can see an

example of 2D point that are pass through K-Means with 3 as K and it cluster the point into 3

cluster based on the position [Figure 2].

Figure 2: 2D Point diagram before and after K-Means classification

6

2.2 Vision Transformer

The Vision Transformer (ViT) introduces a new era of computer vision where images are

treated as sequences of patches, just like words in Natural Language Processing (NLP). By

leveraging Transformers instead of Convolutional Neular Networks (CNNs), ViT achieves

state-of-the-art performance on image recognition tasks with large datasets. While it requires

large datasets for pre-training, its simplicity, scalability, and effectiveness make it a

compelling alternative to CNNs. This paradigm shift from convolutional processing to

attention-based processing could inspire new models for object detection, segmentation, and

other vision tasks. Registers are extra learnable tokens added to the Vision Transformer input

sequence that provide dedicated space for internal computations, preventing the model from

corrupting patch features and improving attention smoothness and downstream task

performance. Without registers, vision transformers like DINOv2 models tended to repurpose

background patch tokens (with little information) for internal computations, leading to

degraded local features and problems like messy attention maps [Figure 3]. [8]

Figure 3: Register tokens enable interpretable attention maps in all vision transformers, like the original

DINO method (Caron et al., 2021). Attention maps are calculated in high resolution for better

visualisation. [8]

2.3 Dinov2

DINOv2 is a Self-supervised Vision Transformer Model created by Meta AI and produces

universal features suitable for image-level visual tasks (image classification, instance

7

retrieval, video understanding) as well as pixel-level visual tasks (depth estimation, semantic

segmentation). The pipeline Dinov2 follows is easy as it takes only 3 steps. First it chops the

uncurated data and the curated data into patches called embeddings then it removes form the

uncurated data very similar images to avoid redundancy and reduce noise and last the

remaining uncurated images are matched to curated images based on embedding similarity

and it retrieves them [Figure 4]. [9]

Figure 4: Overview of our data processing pipeline. Images from curated and uncurated data sources are

first mapped to embeddings. Uncurated images are then deduplicated before being matched to curated

images. The resulting combination augments the initial dataset through a self-supervised retrieval

system.[9]

DINOv2 demonstrates that self-supervised models trained on curated datasets can achieve

better generalization and robustness than weakly supervised models like Contrastive

Language-Image Pre-training (CLIP). The robust features learned by DINOv2 support a wide

range of vision tasks at image and pixel levels, making them suitable for classification,

segmentation, depth estimation, and more. For example, it can classify different species of

animals like flying animals or ground animals like horses, and it can even classify different

objects like car and show also with different colours similar components between the objects

in each group [Figure 5]. [9]

8

Figure 5: Visualization of the first PCA components. A PCA between the patches of the images is been

computed from the same column and show their first 3 components. Each component is matched to a

different colour channel. Same parts are matched between related images despite changes of pose, style or

even objects.[9]

2.4 Metrics

For the task of the classification evaluation, typically we are only interested in binary ratings,

that is, either the item was selected (1) or not (0) or in our case the patch has a tumour (1) or

not (0). [10] This matrix contains statistics about actual and predicted classifications and lays

the fundamental foundations necessary to understand accuracy measurements for a specific

classifier.[11]

2.4.1 TP,FP,TN,FN

This matrix is characterized with 4 attributes that we can compute based on the desired and

the actual output where we check whether the cluster that represents the cancer area has the

same patches as the label we created. The attributes are the follows:

• TP: A patch in the tumour cluster belong in the tumour patches in the label file

• FP: A patch in the tumour cluster does not belong in the tumour patches in the label

file

• TN: A patch that is not in the tumour cluster does not belong in the tumour patches in

the label file

• FN: A patch that is not in the tumour cluster belong in the tumour patches in the label

file

9

 Actual Values

 Positive Negative

Predicted Values Positive TP FP

Negative FN TN
Table 1: Confusion Matrix for Binary Classifier

2.4.2 Accuracy

Accuracy is the fraction of correct predictions among all predictions or how often a

prediction is correct. However, the classification accuracy has limitations, especially when

dealing with imbalanced datasets, where instances of one class may significantly outnumber

those of other classes. Accuracy = (Number of correctly classified instances) / (Total number

of instances) [12]

Accuracy = (TP + TN) / (TP + FP + TN + FN)

2.4.3 Precision

If there are more than two output classes, the classification accuracy does not provide

information on the classes that are predicted accurately. In such cases, a more suitable

measure is precision. Precision is the fraction of the correctly predicted positive results. To be

more specific it shows the percentage of how many of the patches in the tumour cluster are

actual tumour patches. [12]

Precision = TP / (TP + FP)

2.4.4 Recall

This measures the proportion of actual positives predicted correctly, or how accurately the

model predicts positive cases. Recall is particularly valuable when false negatives need to be

minimized. For example, in a medical diagnostic setting like in our problem, recall indicates

the proportion of actual positive cases that the model correctly identified, which is important

to avoid missing potentially critical diagnoses. [12]

Recall = TP / (TP + FN).

2.4.5 F1-score

The F1-score, which combines precision and recall, is important for models in which both are

equally important and models for healthcare applications are perfect examples. This is a

harmonic means of precision and recall that considers both false negatives and false positives.

The harmonic mean is computed by dividing the number of values in a data series by the sum

of the reciprocals of each value in the data series. [12]

F1-score = (2 * precision * recall) / (precision + recall)

10

2.4.6 Mean Average Precision

Mean Average Precision (mAP) is the most common evaluation metric. Precision is derived

from Intersection over Union (IoU), which is the ratio of the area of overlap and the area of

union between the ground truth and the predicted bounding box. A threshold is set to

determine if the detection is correct. If the IoU is more than the threshold, it is classified

as True Positive while an IoU below it is classified as False Positive. If the model fails to

detect an object present in the ground truth, it is termed as False Negative. Precision

measures the percentage of correct predictions while the recall measures the correct

predictions with respect to the ground truth.[13]

https://www.sciencedirect.com/topics/engineering/bounding-box
https://www.sciencedirect.com/topics/computer-science/true-positive
https://www.sciencedirect.com/topics/computer-science/false-positive
https://www.sciencedirect.com/topics/computer-science/false-negative

11

Chapter 3

Data Handling

3.1 Breast Thermography 11

3.2 Data Usage 13

3.3 Data Preprocessing 13

3.4 Ground Truths 16

3.1 Brest Thermography

The idea behind breast thermography is to use an infrared (IR) camera to monitor the breasts'

surface temperature and then use image post-processing to pinpoint regions of a normal

temperature. In 1956, Lawson provided one of the earliest indications that breast cancer alters

the breasts' typical temperature distribution [14]. In comparison to the contralateral region of

the breast without a tumour, all 26 participants with breast cancer in this study had an

increase of 1.3 C close to the tumour location. And later studies showed even more increase

in the temperature of the area around the tumour [15].

3.1.1 “Breast Thermography” dataset

It is image thermography dataset of female thorax zone as scientific contribution in breast

cancer thermography research area. Dataset was acquired inside a medical office with

dimensions W:3.20m x L:4.14m x H:2.40m, in grayscale without artificial illumination at a

temperature 22 - 24°C and relative humidity 45 - 50%. A FLIR A300 camera was used to

capture the images at a working distance of 1m from the patient. The American Academy of

Thermology (AAT) protocol was used to prepare the patient and capture. Three images were

taken of each patient in the female thorax area: anterior, left oblique and right oblique

positions, but I used only the anterior so that I have the same angle for all my data. The

12

patients ranged in age from 18-81 years with different pathologies related to the female

breast. The images were captured between 2021 and 2022. There is also a csv file that

indicate which breasts are malign or benign or normal and has also some information of the

patient like age, height e.t.c [16]. Using a plot, we can see an example of 32 anterior images

from this dataset with 32 ill women where we can recognise that in grayscale the tumour area

is brighter from the other areas [Figure 6] and we can also see the difference with the plot

with the 32 anterior images from 32 healthy woman [Figure 7].

Figure 6: 32 of anterior images of ill women from "Breast Thermography" dataset

Figure 7: 32 of anterior images of healthy women from "Breast Thermography" dataset

13

3.1.2 “A New Database for Breast Research with Infrared Image” dataset

The dataset for the following experiments was created using the breast thermography

database by Silva et al. (2014) and is the one that most researchers in breast thermography

uses. The database consists of grayscale thermal images of resolution 640 × 480 pixels. The

database has 173 healthy and 37 sick front-view images. The infrared (IR) images are

captured by a FLIR thermal camera, model SC620, which has sensitivity of less than 0.04ºC

range and capture standard −40ºC to 500ºC. [17]

3.2. Dataset usage

In my study I mostly used the “Breast Thermograph” dataset because it includes a csv file

which was very helpful because, it had information for each breast if it was normal, malign

pathology or benign pathology and that helped me to understand my data and have an idea

where the tumour is located. I also use that information to find a more specific area of the

tumours and label it. I only use “A New Database for Breast Research with Infrared Image”

dataset to try the unsupervised algorithm with more data because the “Breast Thermograph”

dataset has only 35 images will ill woman. Furthermore, I use it in the supervised algorithm

because the labelled data I used were from the “Breast Thermograph” dataset and I wanted to

use the model on different data so that the patches that I want to classify have similar features

with the labelled and not the same.

3.3 Data Preprocessing

I preprocess the images using dinov2 in Google Collab where I divided the images to patches

and extract their features. I used different patches combinations (15X15, 25X25 and 40X40

patches) [Table 2] with 384 features for each patch creating a variety of feature dimensions

like (35,1600,384), where I had 35 images with 40X40 patches with 384 features for each

patch. I also try different feature processing ideas like reduction using the Principal

Component Analysis (PCA) which is a dimensionality reduction technique that transforms

high-dimensional data into a lower-dimensional space while preserving as much variance

(information) as possible and I use it to reduce the 384 features to 128 and this gives the

results better generalization but it losses some information as we can see with PCA reduction

the breast images are less complicated [Figure 8] and the same images without PCA

reduction have more information on them [Figure 9].

14

Patches Dimensions Number of Patches

15X15 225

25X25 625

40X40 1600

Table 2: Dinov2 patch Maps

Algorithm 1: DINOv2 Feature Extraction Pipeline

 Data: Images

 Result: Patch-level features from DINOv2

1 Initialize: Number of images to process (N_IMGS).

2 Initialize: Number of rows and columns for image plotting (if needed).

3 Initialize: How many patches to extract along height and width.

4 Initialize: Choose the model size (e.g., small, base, large, giant).

5 Initialize: Set flags for using special DINOv2 versions (e.g., registers, extended).

6 Load the appropriate DINOv2 model (with or without registers).

7 Load model weights if using non-extended version.

8 Resize, center-crop, normalize, and convert images to tensor format.

9 Use a Gaussian blur and scale images to match patch dimensions.

10 Initialize: An empty tensor to store preprocessed images.

11 For each image:

12 Open it and convert to RGB.

13 Apply transformations and add to image tensor.

14 end

15 Move model and tensors to GPU (if available).

16 Disable gradient calculation for efficiency.

17 Forward images through the model.

18 Extract patch-level features from model output.

15

Figure 8: We can see 32 of anterior images of ill woman from "A New Database for Breast Research with

Infrared Image " dataset after the algorithm using 40x40 patches and PCA reduction with to 128 features

and we see how it focuses on the body and the important areas

Figure 9: We can see with the same dataset as previous and 40X40 patches but without PCA reduction we

have 384 features, and we can see how different the results are.

16

3.4 Ground Truths

As I will later mention because of the lack of information and labels of the cancer areas I had

to manually label where is the tumour in the data from the ill women in the “Breast

Thermography” dataset to have a desired output for evaluation. Unfortunately, I did not have

an expert diagnose on the images so I found and labelled where I believe that the tumour area

is located which is the red square you can see in the plot [Figure 10].

Figure 10:Plot with Ground Truths with the 36 images for the “Breast Thermography” dataset

17

Chapter 4

Implementation

4.1 Dinov2 features processing 17

4.2 K-means implementation 18

4.3 Labelling for supervised classification 18

4.4 Random Forest Classifier implementation 21

4.5 K-means implementation with additional images 21

4.6 Labelling for evaluation 22

4.7 Visualization 24

4.1 Dinov2 features processing

First, I had to make the appropriate changes to the features regarding their shape and their

normalization, and the dimension of the features based on if I want to use PCA reduction, to

be able to run the clustering algorithm. So first I had to load the feature file and extract the

number of images ,the number of patches and the feature dimension and in most of the

experiments the feature file has the shape (number of images, number of patches , number

of features per patch). Then I had to flatten the features to have shape: (number of images *

number of patches, number of features per patch) and cluster the patches instead of entire

images and then if I wanted to use PCA reduction I had to set the components to 128 and I

use the function fit_tranform to apply it on the features.

18

4.2 K-means implementation

Then for the clustering I used K-means using as input the normalised 2D features as I

described. I used multiple numbers of cluster, and random_state=42 to ensure reproducible

results and I used 10 as n_init that initialise how many times it will run the algorithm with

different centroids to get the best result. The model then gives for output a 1D array of length

image_num * patches_num where each value is the cluster number of the specific patch. But

having all the patches’ cluster number in a 1D was not helpful so I had to reshape the array to

(N_IMGS, NUM_PATCHES) to be able to set some coordinates to the patches to be easier to

work with. After the training is over, we can see the visualization of the clusters and analyze

the results to try different ideas and parameters [Figure 11].

Figure 11:Algorith pipeline

4.3 Labelling for supervised classification

Because of the limited data information I wasn’t able to find the desired cancer location and

labels from an expert and I had to create my own manual label so I crated a program for that

where I load the images, and display them one by one and select the area that I believe it was

the cancer area and label it using the labels :l l side breast, l r side breast, r r side breast, r l

side breast, r nipple, l nipple, l upper breast, r upper breast where r is right and l is left and for

19

example l r is the left breast right side [Table 3]. Then the image index , the index of the

patches that were in the area I selected, and the label and their 384 features were saved in an

csv file that I will use later [Figure 12].

Label Name Description

l l side breast Left breast at the left side area

l r side breast Left breast at the right-side area

r r side breast Right breast at the right-side area

r l side breast Right breast at the left side area

r nipple Right breast at the nipple area

l nipple Left breast at the nipple area

l upper breast Left breast at the upper area

r upper breast Right breast ate the upper area

Table 3: Supervised labels for the area of the tumour

Algorithm 2: Labelling for supervised classification

 Data: A Folder With images, Patch-level features from DINOv2 for the images

 Result: CSV file with the patches number and their features and tumour area label

1 Define: list of feature files (e.g., “dinov2_features_sick2_15.pt”)

2 Load all .pt files using torch.load()

3 Concatenate them into a single tensor called ‘features’

4 Derive NUM_PATCHES per image

5 Derive FEATURE_DIM (number of features per patch)

6 Derive N_IMGS from total number of patches and NUM_PATCHES

7 Set: image_folder path

8 Read and sort all image filenames from the folder with valid extensions (.png, .jpg,

.jpeg)

9 PATCH_H sqrt(NUM_PATCHES)

10 PATCH_W  sqrt(NUM_PATCHES)

11 Define: save_path for CSV (e.g., “Labelled_patch_features3.csv”)

12 If CSV doesn’t exist:

13 Create it with column headers: [“Image_Index”, “Patch_Index”, “Label”, Feature_0,

20

... Feature_N]

14 end

15 on_click(event):

16 Store starting coordinates on first click

17 Store ending coordinates and calculate region on second click

18 While True:

19 Print available images with their indices

20 Ask user to input an image index (or -1 to exit)

21 If user enters -1:

22 Exit program

23 end

24 Validate the index:

25 If invalid, show an error and repeat

26 end

27 Load the selected image

28 Compute patch size dynamically from actual image dimensions

29 Show image using matplotlib

30 Let user select a rectangular region (2 mouse clicks)

31 Ensure width & height are positive (in case of reverse dragging)

32 Find all small patches within selected rectangle:

For each NUM_PATCHES:

33 Compute patch_x and patch_y based on row and column in grid

34 Check if the patch falls inside the selected rectangle

35 If yes, add patch_idx to selected_patches

36 end

37 Show image again with red rectangle (user selection) and blue boxes (selected

patches)

38 Ask user for a label (e.g., “l under breast”, “l upper breast”, etc.)

39 For each selected patch:

40 Extract the corresponding feature vector from the features tensor

41 Append [Image_Index, Patch_Index, Label, Feature Vector] to a list

42 end

43 Convert list to DataFrame and append it to the CSV file

44 end

21

Figure 12: A sample of the csv file showing the image index, the patch index, one class label and some

features

4.4 Random Forest Classifier implementation

An extra idea to get better results was to add a supervised classifier to an unsupervised

classifier. So, by initializing the K to a small value I was able to extract from the K-means

algorithm the breast area and apply Random Forest Classifier to those patches. I also use the

csv file I created to help me train my model and add labels. So, I extract the features of the

patches from the csv and split them randomly to 80% for training and 20% for testing and

then I numerus the labels to be easier to work with and I train the model using this data for

100 epoch. I also extracted the features of the breast area patches that I got from the K-means

algorithm. Applying the trained model as it is on these data did not work because the model

was clustering all the breast area patches instead of the cancer area only, so I had to add a

probability threshold to use for the assigning of patches to a cluster. I set the threshold to 0.6

or 0.7 and extract the predicted probability for each class for every patch and then I get from

them the highest probability for each patch across all classes and then I use the threshold to

filter the patches with a classifier’s confidence level. Lastly, I initialize the new clusters and

fill them with the patches that pass the threshold in a shape: (img_idx, patch_idx).

4.5 K-means implementation with additional images

For the validation of my results, I also needed to see how my model will react with

thermographs of healthy women as it should not find any anomalies. At first, I thought that I

22

could just run the k-means implementation using the features from the images with the

healthy women, but that approach was wrong because, the model had no cancer area to

compare with the other areas. The right approach was to train a model using features from

sick women and then pass from the model features from images with healthy women and see

the difference.

Algorithm 3: K-means implementation with additional images

 Data: Patch-level features from DINOv2 for the extra images

 Result: Visualization of the cluster on the new images

1 Apply the k-means implementation with features from images with sick women

2 Define the path to a new image .pt file (e.g., “dinov2_features_healthy_10_pca.pt”)

3 Load the tensor using torch.load()

4 Determine the number of new images:

5 For img_idx from 0 to N_NEW_IMGS-1:

6 Extract features for the current image

7 (Optional) Apply dimensionality reduction using PCA:

new_image_features_reduced  pca.transform(image_features)

8 Normalize features using previously fitted scaler:

new_image_features_norm  scaler.transform(image_features)

9 Predict cluster labels using pre-trained Kmeans:

new_image_clusters  kmeans.predict(new_image_features_norm)

10 Reshape cluster assignments back to 2D image grid:

new_image_clusters.shape  (PATCH_ROWS, PATCH_COLS) or

(N_NEW_IMGS, NUM_PATCHES)

11 end

4.6 Labelling for evaluation

As I did not had labels for my data, I had to think of a way to evaluate my model’s result. A

good idea to evaluate my results was to create a CSV file with N rows and P+1 columns

where N is the number of images and P is the number of patches per image and the first

column is the index of the image and I assign the value 1 to the patches that were in the area

of the cancer and 0 to the patches that were not [Figure 13].

23

Algorithm 4: Labelling for evaluation

 Data: Number of columns for each row with 1’s,the number each column with 1’s

 Result: CSV file with 0’s and 1’s labels

1 Open a new CSV file for writing

2 For each row (from 1 to rows):

3 Print which row is currently being filled

4 Ask the user: “How many 1’s do you want in this row?”

5 Ask user to enter count column numbers (1 to cols), separated by spaces

6 Convert input to a list of integers

7 Validate: Input length equals count

8 Validate: All indices are within bounds (1 to cols)

9 If input is invalid:

10 Print error message and re-prompt

11 end

12 Start with a list: [row_index] + [0]*cols

13 Set positions at selected indices to 1 //index 1 maps to first column (data starts from

column 1, index 1)

14 Write the row to the CSV file

15 end

Figure 13: Example of the CSV file with 21 images and the first 18 patches

24

4.7 Visualization

For analysing my results, I also had to see how my model was clustering the images. The fist

approach was to show a sample of 5 patches per cluster but that was not helpful because the

patches were so small, and I could not understand what each patch was showing [Figure 14].

Figure 14: Visualization of the 5 patches of the first cluster

In the second approach I was creating a k*k heatmap for each cluster combining all the

images where k is the number of the rows and columns of the patches and the heatmap was

darker in the areas that multiple images had patches that belonged in the same cluster. This

was better from the first approach but still had some problems. I was able to understand the

average area that each cluster was taking but I could not easily compare each cluster because

they were presented in deferent heatmaps, and I could not analyse each image alone because

they were all combined in each heatmap [Figure 15].

25

Figure 15: Visualization using a heatmap of the patches from all the images that belongs in the first

cluster using 25 clusters and 15X15 patches

So, for the last approach I took the heatmap idea and change it to fix the problem I

mentioned. This time I created a k*k heatmap for each image where it was combining all the

clusters with different colour for each cluster and this way, I was able to analyse each image,

and it was easier to see the exact regions for each cluster. I also put the number of the cluster

in each patch because some colures were not so different [Figure 16]. Lastly to be able to

compare the heatmaps with the original images I created a diagram on the images showing

the patches and their indexes (i , j) [Figure 17].

Figure 16: Visualization using a heatmap of the image 1 using 20 clusters and 15*15 patches and showing

the cluster number of each patch

26

Figure 17: Diagram on image 1 showing the 15*15 patches and the indexes of each patch

27

Chapter 5

Experiments, Results & Discussion

5.1 Experiments 27

5.2 Results & Discussion 33

5.1 Experiments

In my experiments I tried a lot of approaches and parameters so that I can maximize my

metrics and more specifically the F1 score as is more important to show that the algorithm is

not showing more ill patches from the actual ill patches.

5.1.1 Feature Map 15X15

I used a 15X15 feature map because I needed to try with a small number first and work my

way up but 10X10 was too small and I did not get enough information for the clustering.

Also, I tried each experiment with 20 ,25 and 30 clusters to report the difference and find the

best cluster number for each case.

5.1.1.1 Raw Features

At first, I tried to just cluster the patches without any preprocessing, and the clusters with the

tumour area are 1 and 8 for 20 clusters, 2 for 25 and 14 for 30 clusters .

28

5.1.1.2 PCA Feature reduction to 128

My data from preprocessing using dinov2 were produced with 384 features that may have

been a lot for the classifier, and it may cause the model to overfit and not generalize. So, I

tried to reduce the features using PCA to 128 because they are less than the original 384

features but not that few to cause the model to have poor training. With this new data the

tumour clusters now are 18 for 20 clusters , 2 for 25 clusters and 0 and 22 for 30 clusters

5.1.1.3 Tumour cluster reassign using K-means centres

I notice from the previous results that the cluster with the tumour area in most of the images

was detecting the tumour, but it was too general, so I thought I can reassign some of the

patches from the tumour cluster with a different cluster and first I tried to use the k-means

centre of the cluster to reassign the furthest patches. Also I set the number of patches that I

wanted to change based on the cluster’s quantity, to be more specific I ignore the images with

less than 10 patches, I change the 1/4 of the furthest patches in the tumour cluster if they are

less than 15, I change the 1/3 if they are less than 20 and if they are more I change the half of

the furthest patches in the tumour cluster.

5.1.1.3.1 Raw Features with tumour cluster reassign using K-means centres

I applied cluster reassign using the k-means centre on the raw data. Again, the clusters with

the tumour area are 1 and 8 for 20 clusters, 2 for 25 and 14 for 30 clusters.

5.1.1.3.2 PCA Feature reduction to 128 with cluster reassign using K-means centres

I applied cluster reassign using the k-means centre on the data with pca features reduction to

128. Like previous [5.1.1.2] with feature reduction the tumour clusters are 18 for 20 clusters,

2 for 25 clusters and 0 and 22 for 30 clusters.

29

5.1.1.4 Tumour cluster reassign using Euclidean distance

Using the heatmap that I created with the experiment 5.1.1.3 ,where I reassigned the tumour

clusters using the k-means centre of the clusters I observed that the centre was not physically

in the centre of the cluster patches and in some images most of the patches in the tumour

cluster were close or in the tumour area. This is why I thought to compute the physical cluster

centre by my self using the Euclidean distance between the patches and use that centres to

determine which patches are the furthest. And then for the number of the changed patches I

followed the same pipeline as previous [5.1.1.3] .

5.1.1.4.1 Raw Features with tumour cluster reassign using Euclidean distance

I applied cluster reassign using the Euclidean distance for finding the centre on the raw data.

The tumour clusters are the same with the raw features without clusters reassign.

5.1.1.4.2 PCA Feature reduction to 128 with tumour cluster reassign using Euclidean

I applied cluster reassign using the Euclidean distance for finding the centre on the data with

pca features reduction to 128. Once again, the tumour clusters are the same with the

experiment with pca reduction without clusters reassign.

5.1.1.5 Using more data

In another experiment I tried to train the model with more data because the low results might

be because of the lack of big dataset. So, I tried to use both “Breast thermography” dataset

that I have been using and the “A New Database for Breast Research with Infrared Image”

dataset but only evaluate on the 35 images of “Breast thermography” dataset.

30

5.1.1.5.1 Using more data with raw features

I added more data and used raw features. The tumour clusters are 12 for 20 clusters, 9 for 25

clusters and 4 for 30 clusters.

5.1.1.5.2 Using more data with PCA Feature reduction to 128

I applied pca features reduction to 128 to all the data. The tumour clusters are 18 for 20

clusters, 23 for 25 clusters and 12 for 30 clusters.

5.1.1.6 Patch selection

Another idea to make the algorithm more precise than it is originally, is to exclude some

patches from the images that were not important in any of the images before the clustering

and that made the images more specific, and we ignored unnecessary features. The patches

that I select to exclude were from 0 to 45 that were mostly the nerk and the arms area and 209

to 224 that were mostly the belly area.

5.1.1.6.1 Raw features with patch selection

I applied the patch selection on the data with raw features. The clusters with the tumour area

are 3 for 20 clusters, 24 for 25 and 3 for 30 clusters.

5.1.1.6.2 PCA Feature reduction to 128 with patch selection

I applied the patch selection on the data with pca features reduction to 128. The clusters with

the tumour area are 18 for 20 clusters, 1 for 25 and 2 for 30 clusters.

31

5.1.1.7 Patch selection and tumour cluster reassign using Euclidean

Since I had some improvement with patch selection and tumour cluster reassign using

Euclidean which was better than using the K-means centres I decided to try combining the

two ideas and analyse the results.

5.1.2 Feature Map 25X25

I tried a lot of variation of 15X15 patches, so I had to also try different patch map to see how

my model works with more patches, and I tried 25X25 and analyse the results with some of

the ideas I tried with the previous experiment but with more clusters.

5.1.2.1 Raw features

First, I tried the model using data with raw features with 50 clusters only because with less or

more the model was giving very bad results and the tumour cluster is 26.

5.1.2.2 PCA Feature reduction to 128

Then, I tried adding feature reduction to 128 on the data and tried the model with 30 and 50

clusters and the tumour clusters are 29 for 30 clusters and 6 for 50 clusters.

5.1.2.3 Tumour cluster reassign using Euclidean distance

As I realised from the 15x15 experiments I had better results by reassigning the tumour

clusters using the Euclidean distance for the detection of the physical cluster centres, so I did

not try using k-means centres for this experiment. Also, the data with reduced features using

30 clusters gave very bad results with this idea so I kept only the 50 cluster trials. For the raw

features the tumour cluster is 26 and for the reduced features is 6.

32

5.1.2.4 Patch selection

Lastly, I tried the idea of selecting some patches for the classification to reduce the extra

information. I extracted the patches 0-150 and 550-625. The tumour clusters are 27 for raw

features and 0 for reduced features.

5.1.3 Testing trained model on healthy women

I also tried to train a model on women with breast cancer and pass through the trained model

denov2 features with the same processing from some images with healthy women to analyse

the results and see if the tumour area cluster appears on the healthy images. Because I had the

best results in the experiment with raw features, patch reassign using Euclidean distance,

patch selection and 30 cluster [Graph 11] and with reduced features to 128, patch reassign

and 20 clusters [Graph 6], so I pass 10 new images from those models and see the new

heatmaps

5.1.4 Supervised on unsupervised training

Lastly, I tried to add supervised training on unsupervised training, and I used Random Forest

classifier and the labels I created with 40X40 patches and 348 features with the “Breast

Thermography” dataset and applied 10 images from the “A New Database for Breast

Research with Infrared Image” dataset [7].

33

5.2 Results & Discussion

For analysing the results of the experiments, I used the confusion matrix with the ground

truths I already mention. More specific I did not give attention to the accuracy because of the

imbalance of the TP and TN as the TN were way more and the model even with non TN was

succeeding more than 80% accuracy. I focused only on precision ,recall and f1 score but

more on the precision and f1 score because I want the model to be precise and I want to

minimize the FP as much as possible. Also, I used the metric mean average precision with

IoU which is a common way to analyse models with object detection like tumour detection.

Moreover, I created a baseline for comparison using a temperature threshold of 85 and my

model in each experiment had much better results. For each I will display a plot with the best

runs of the model for that experiment compering them with the baseline and the ground truths

for better understanding.

5.2.1 Feature Map 15X15

5.2.1.1 Raw Features

We can see in the chart [Graph 1] with 20 clusters we have the lowest precision, mean AP

and f1 score with 12%, 24% and 19% respectively and it increases with the increase of the

clusters peaking up to 15%, 29% and 20% respectively with 30 clusters. But we can see that

recall is decreasing from 40% to 31% because with more clusters the cluster with the tumour

area has less patches.

Graph 1:Raw data

34

5.2.1.2 PCA Feature reduction to 128

We can see in the graph [Graph 2] that now the precision is decreasing as the clusters

increase from 14% with 20 clusters to 13% with 30 clusters. The recall and the mean AP

peaks to 46% and 41% respectively with 30 clusters and the lowest are 35% and 37% with 25

clusters and lastly the f1 score is almost the same with 20 and 30 clusters with 20% but with

25 clusters it slightly decreases to 19%.

Graph 2: PCA Feature reduction to 128

5.2.1.3 Tumour cluster reassign using K-means centres

5.2.1.3.1 Raw Features with tumour cluster reassign using K-means centres

As we can see in the chart [Graph 3] that our result has the same pattern and they are around

the same with the previous results [Graph 1] but now with 20 clusters the precision starts

from 13% and the f1 score from 18% and they get to 18% and 20% respectively with 30

clusters so we can see that now we are more precise. But the mean AP has increased to 41%

with 30 clusters. We also notice that because specified more the tumour cluster the recall

starts from 29% with 20 clusters and gets to 24% with 30 clusters.

35

Graph 3:Raw Features with tumour cluster reassign using K-means centres

5.2.1.3.2 PCA Feature reduction to 128 with cluster reassign using K-means centres

The results have also the same pattern as previous [Graph 2] but now the peak precision and

f1 score are higher with 17% and 21% respectively with 20 clusters and mean AP is 46%

with 30 clusters but, peak recall is lower with 40% using 30 clusters [Graph 4].

Graph 4: PCA Feature reduction to 128 with cluster reassign using K-means centres

36

5.2.1.4 Tumour cluster reassign using Euclidean distance

5.2.1.4.1 Raw Features with tumour cluster reassign using Euclidean distance

As I expected the result are better from using the k-means centres but unfortunately the

improvement is minimum. The precision start from 15% with 20 clusters and peaks to 21%

with 30 cluster and we have +3% improvement from the k-means but the mean AP only

increased 1% with 42%. Also, the f1 score peaks to 24% with 25 clusters with +4%

improvement. Lastly recall peaked to 32% with 20 clusters with +3% improvement [Graph

5].

Graph 5: Raw Features with tumour cluster reassign using Euclidean distance

5.2.1.4.2 PCA Feature reduction to 128 with tumour cluster reassign using Euclidean

Like the raw data the result with this idea is better than using the k-means centres and they

are the best results yet with f1 score peaking to 25% and precision peaking to 21% with +4%

improvement in both metrics using 20 clusters but, the mean AP is 38% in that case and it

peaked to 41% with 30 clusters. Unfortunately, the recall was decreased to 32% and as the

clusters increased the metrics were decreasing [Graph 6].

37

Graph 6: PCA Feature reduction to 128 with tumour cluster reassign using Euclidean

5.2.1.5 Using more data

5.2.1.5.1 Using more data with raw features

The results [Graph 7] showed that with more data the model has a very minimum

improvement from the training with only the “Breast thermography” dataset as with 30

clusters precision is 16% and f1 score is still 20% and with 20 clusters the recall peaked with

only 27%. Also the mean AP peaked to 40% with 25 clusters.

Graph 7: Using more data with raw features

38

5.2.1.5.2 Using more data with PCA Feature reduction to 128

Unfortunately, we have almost the same results with the training with only the one dataset

with peak precision 14% peak f1 score 20% and peak recall 37% but, the mean AP is less

with 33%. So, more data was not helpful with reduced data [Graph 8].

Graph 8: Using more data with PCA Feature reduction to 128

5.2.1.6 Patch selection

5.2.1.6.1 Raw features with patch selection

With this method I specified the images and managed to get a good improvement on

precision with peak 22% with 30 clusters as well as on mean AP with 45%. Also, f1 is better

with 23% but the recall again is 35% with 20 clusters [Graph 9].

39

Graph 9: Raw features with patch selection

5.2.1.6.2 PCA Feature reduction to 128 with patch selection

We can notice [Graph 10] that the precision is higher than the pca reduced data without

patch selection with 17% using 30 clusters but the f1 score remains the same and the recall is

lower with peak 33% but the mean AP peaked higher with 42%. On this case we can see that

the results are better without PCA reduction.

Graph 10: PCA Feature reduction to 128 with patch selection

40

5.2.1.7 Patch selection and tumour cluster reassign using Euclidean

I tried the model only for 30 cluster for the data with the raw features because in most of the

experiments the data with the raw features had better results from the other and also the

experiment with patch selection on raw features had the best precision so far and I thought

that adding cluster reassigning would improve it even more and it actually does with 28% and

f1 score 25% and the best mean AP so far with 56% [Graph 11]. I also tried the 20 clusters

with reduced features, because it had also the best results in most of the experiment but,

unfortunately the metrics are better than the experiment with patch selection on reduced

features but, they are not better than the one with the cluster reassign using Euclidian on

reduced data and we see that the precision peaks to 19% ,the f1 score to 23% and the mean

AP to 40% [Graph 11].

Graph 11:Patch selection and tumour cluster reassign using Euclidean

5.2.2 25X25

5.2.2.1 Raw features

We can see that the model in comparison with the 15X15 [Graph 1] has better precision with

20% and slightly better f1 score with 21% but worst recall with 22% as well as mean AP with

47% [Graph 12].

41

Graph 12:Raw features

5.2.2.2 PCA Feature reduction to 128

We can see that the model with 30 clusters has better recall which is 35% and is lower than

the 15X15 experiment [Graph 2] but the precision and the f1 score is better with 19% and

23% respectively. With 50 clusters tho we have better mean AP with 44% [Graph 13].

Graph 12: PCA Feature reduction to 128

42

5.2.2.3 Tumour cluster reassign using Euclidean distance

We observe from the graph [Graph 14] that using the clusters reassigning on both raw

features and reduced features the model is more precise as the precision increased to 26% and

24% respectively and the mean AP increased to 59% and 56% respectively also, the f1 score

remains the same with 21% in both trials, but in both trials the recall reduced to 18%.

Graph 13: Tumour cluster reassign using Euclidean distance

5.2.2.4 Patch selection

We can see that in this case with raw data the model is not working well as all the metrics are

worst from the original result [Graph 12] with precision 18%, recall 13% and f1 score 15%

[Chart 15]. With reduced features it has almost the same results with the original [Graph 13]

with more precision 21% and less recall 19% but overall same f1 score around 20% [Graph

15]. But in both cases we have a good mean Ap with 57% and 52% respectively.

43

Graph 14: Patch selection

5.2.3 Visualisation and comparison with baseline

5.2.3.1 PCA Feature reduction to 128 with tumour cluster reassign using Euclidean

We can see the comparison with the experiment using 15X15 patches map, pca reduced

features to 128, patches reassigning with Euclidean distance and 20 clusters and the tumour

clusters is the 18 [Plot 1].

44

45

46

47

48

49

50

Plot 1:Comparison with 15X15 original image, baseline, k-means prediction using the experiment

5.1.1.4.2 with 20 clusters and the GT

5.2.3.2 Patch selection and tumour cluster reassign using Euclidean on Raw features

We can see the comparison with the experiment using 15X15 patches map, raw features,

patches reassigning with Euclidean distance, patch selection and 30 clusters and the tumour

clusters is the 3 [Plot 2].

51

52

53

54

55

56

57

Plot 2:Comparison with 15X15 original image, baseline, k-means prediction using the experiment 5.1.1.7

with raw features and the GT

5.2.3.2 Patch selection and tumour cluster reassign using Euclidean on Raw features

Lastly can see the comparison with the experiment using 25X15 patches map, raw features,

patches reassigning with Euclidean distance and 50 clusters and the tumour clusters is the 26

[Plot 3].

58

59

60

61

62

63

64

Plot 3:Comparison with 25X25 original image, baseline, k-means prediction using the experiment 5.1.2.3

with raw features and the GT

65

5.2.3 Testing trained model on healthy women

For the raw features I was looking for the cluster 3 and unfortunately the 7 from 10 images

have the cluster 3 and its mostly in the breast area so this example did not work as it is

supposed to [Figure 18]. For the reduced features I am looking for the cluster 18 and again 6

from 10 images have the tumour cluster but this time the patches on the cluster are mostly

above the breast area and they have big quantity, so the result in this experiment is better but

need a human interaction to understand that the tumour clusters is not detecting a tumour

[Figure 19].

Figure 18: An example of 10 heatmaps from thermographs with health women with raw features and 30

clusters

Figure 19: An example of 10 heatmaps from thermographs with health women with raw features and 30

clusters

66

5.2.4 Supervised on unsupervised training

First, I tried this model with 0.6 [Figure 21] and 0.7 [Figure 22] probability threshold but in

both trials the results are wrong because of the poor labeled data, the imbalances of the labels

(the most tumor areas were in the same breast area) and the unprofessional detection of the

cancer area. Based on the example of the 10 images [Figure 20] we can see that with 0.6

probability threshold [Figure 21] there are some images that did not match with any label and

some matched with two labels. In the other hand with 0.7 probability threshold [Figure 22]

only one of the 10 image matched with 2 labels but most of the images matched with non.

Figure 20: An example of 10 thermographs with sick women that I used for Supervised on unsupervised

training

67

Figure 21: The 10 heatmaps from the thermographs with sick women that I used for Supervised on

unsupervised training with 0.6 probability threshold

Figure 22: The 10 heatmaps from the thermographs with sick women that I used for Supervised on

unsupervised training with 0.6 probability threshold

68

Chapter 6

Conclusion & Future Work

6.1 Conclusion 68

6.2 Future Work 70

6.1 Conclusion

The purpose of my thesis was to develop un unsupervised model that detect the location of

the breast cancer on thermographs of ill women to increase the number of early detections of

breast cancer.

More specific I mostly pre-processed the images with dinov2 and try to apply different ideas

on the k-means unsupervised classifier. In my thesis I did not get very high result, but I tried

many ideas [Table 4] with a high potential to work match better with more data , better image

pre-processing and using qualified labels for training and evaluation.

Experiment Cluster Precision Recall F1 Score Mean AP

15X15 Raw Features 20 12% 40% 19% 24%

25 14% 36% 20% 25%

30 15% 31% 20% 29%

15X15 PCA Feature reduction to 128 20 14% 37% 20% 24%

25 13% 35% 19% 24%

30 13% 46% 20% 38%

15X15 Raw Features with tumour

cluster reassign using K-means centres

20 13% 29% 18% 36%

25 16% 25% 20% 37%

69

30 18% 24% 20% 41%

15X15 PCA Feature reduction to 128

with cluster reassign using K-means

centres

20 17% 26% 21% 37%

25 16% 25% 20% 36%

30 13% 40% 19% 46%

15X15 Raw Features with tumour

cluster reassign using Euclidean

distance

20 15% 32% 20% 37%

25 20% 30% 24% 38%

30 21% 27% 24% 42%

15X15 PCA Feature reduction to 128

with tumour cluster reassign using

Euclidean

20 21% 32% 25% 38%

25 18% 28% 22% 37%

30 17% 22% 19% 41%

15X15 Using more data with raw

features

20 13% 27% 17% 29%

25 15% 20% 17% 39%

30 16% 32% 21% 30%

15X15 Using more data with PCA

Feature reduction to 128

20 14% 37% 20% 29%

25 13% 27% 18% 29%

30 14% 26% 18% 33%

15X15 Raw features with patch

selection

20 15% 35% 21% 26%

25 16% 20% 18% 43%

30 22% 25% 23% 45%

15X15 PCA Feature reduction to 128

with patch selection

20 14% 33% 20% 27%

25 15% 28% 20% 32%

30 17% 22% 19% 41%

15X15 Patch selection and tumour

cluster reassign using Euclidean

30 raw 28% 22% 25% 56%

20 reduced 19% 28% 23% 40%

25X25 Raw features 50 20% 21% 21% 47%

25X25 PCA Feature reduction to 128 30 17% 34% 23% 31%

50 19% 22% 21% 44%

25X25 Tumour cluster reassign using

Euclidean distance

50 raw 26% 18% 21% 59%

50 reduced 24% 18% 20% 56%

25X25 Patch selection 50 raw 18% 13% 15% 57%

50 reduced 21% 19% 20% 52%

Table 4: Experiments and evaluation

70

In my experiments the models were mostly successfully detecting the tumour area in images

where the area was obviously brighter than the other areas. But over all with the labels I

created the best results were with 15X15 patches, raw features , patch reassigning with the

Euclidean distance, patch selection and 30 clusters where I manage to get 28% precision 22%

recall and 25% f1 score. Also, the best results with reduced features to 128 were with 15X15

patches, patch reassigning with Euclidean distance and 20 cluster and I was able to get 21%

precision 32% recall and 25% f1 score. Lastly I managed to get the best mean AP with 59%

using 25X25 patches, cluster reassign using Euclidean distance and 50 clusters on raw

features.

6.2 Future Work

The ideas I tried in my model have the potential to produce better results than the ones I got. I

believe that I created the bone for a model that can work better with some changes. So, the

next phase will be to try the models with more data and more qualified labels for the data or a

suggestion was given to me to proses the images with sodu colouring for better visibility of

the cancer area. Also is possible to make changes in the images pre-processing for better

results and try different unsupervised model that may work better with this data and even

different number of pca feature reduction may give better results.

71

References

[1] "Key Statistics for Breast Cancer," American Cancer Society, Jan. 22, 2025. [Online].

Available: https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-

breast-cancer.html

[2] European Commission Initiative on Breast Cancer (ECIBC), European Guidelines on

Breast Cancer Screening and Diagnosis: Recommendations List, European Union,

Apr. 2025. [Online]. Available: https://healthcare-

quality.jrc.ec.europa.eu/ecibc/european-breast-cancer-guidelines

[3] M. Pafitis, MammoCheck: An affordable and safe method for breast cancer

examination at home, M.S. thesis, Frederick Univ., 2022.

[4] U.S. Food and Drug Administration, "FDA issues warning letter to clinic illegally

marketing unapproved thermography device, warns consumers to avoid using

thermography devices to detect breast cancer," Feb. 25, 2019. [Online]. Available:

https://www.fda.gov/news-events/press-announcements/fda-issues-warning-letter-

clinic-illegally-marketing-unapproved-thermography-device-warns-consumers

[5] A. D. Kulkarni and B. Lowe, "Random Forest Algorithm for Land Cover

Classification," Comput. Sci. Fac. Publ. Present., Paper 1, 2016. [Online]. Available:

http://hdl.handle.net/10950/341

[6] A. Chaudhary, S. Kolhe, and R. Kamal, "An improved random forest classifier for

multi-class classification," School of Computer Science and IT, Devi Ahilya

University, Indore, India. Volume 3, Issue 4, December 2016, Pages 215-222

[7] T. M. Kodinariya and P. R. Makwana, "Review on determining number of clusters in

K-means clustering," Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 1, no. 6, pp.

90–95, June 2013. [Online]. Available: www.ijarcsms.com

https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html
https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html
https://healthcare-quality.jrc.ec.europa.eu/ecibc/european-breast-cancer-guidelines
https://healthcare-quality.jrc.ec.europa.eu/ecibc/european-breast-cancer-guidelines
https://www.fda.gov/news-events/press-announcements/fda-issues-warning-letter-clinic-illegally-marketing-unapproved-thermography-device-warns-consumers
https://www.fda.gov/news-events/press-announcements/fda-issues-warning-letter-clinic-illegally-marketing-unapproved-thermography-device-warns-consumers
http://hdl.handle.net/10950/341
file:///C:/journal/information-processing-in-agriculture/vol/3/issue/4
http://www.ijarcsms.com/

72

[8] G. Ayana et al., "Vision-transformer-based transfer learning for mammogram

classification," Diagnostics, vol. 13, no. 2, p. 178, 2023, doi:

10.3390/diagnostics13020178.

[9] M. Oquab et al., "DINOv2: Learning Robust Visual Features without Supervision,"

Trans. Mach. Learn. Res., 2024. [Online]. Available:

https://arxiv.org/abs/2304.07193.

[10] A. Gunawardana and G. Shani, "A survey of accuracy evaluation metrics of

recommendation tasks," J. Mach. Learn. Res., vol. 10, pp. 2935–2962, Dec. 2009.

[11] M. Z. Naser and A. H. Alavi, "Insights into performance fitness and error metrics for

machine learning," unpublished manuscript, Glenn Dept. of Civil Eng., Clemson

Univ., Clemson, SC, and Dept. of Civil and Environ. Eng., Univ. of Pittsburgh,

Pittsburgh, PA, 2023.

[12] S. Sathyanarayanan and B. R. Tantri, "Confusion Matrix-Based Performance

Evaluation Metrics," Afr. J. Biomed. Res., vol. 27, no. 4s, pp. 4023–4031, Nov. 2024,

doi: 10.53555/AJBR.v27i4S.4345.

[13] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, "A survey

of modern deep learning based object detection models," Digital Signal Processing,

vol. 126, p. 103514, 2022, doi: 10.1016/j.dsp.2022.103514.

[14] R. Lawson, "Implications of surface temperatures in the diagnosis of breast cancer,"

Can. Med. Assoc. J., vol. 75, no. 4, pp. 309–310, Aug. 1956.

[15] J.-L. Gonzalez-Hernandez et al., "Technology, application and potential of dynamic

breast thermography for the detection of breast cancer," Int. J. Heat Mass Transf., vol.

131, pp. 558–573, 2019, doi: 10.1016/j.ijheatmasstransfer.2018.11.089.

[16] S. Rodriguez-Guerrero et al., “Breast Thermography,” Mendeley Data, V3, 2024.

[Online]. Available: https://doi.org/10.17632/mhrt4svjxc.3

[17] L. F. Silva et al., "A new database for breast research with infrared image," J. Med.

Imaging Health Inform., vol. 4, no. 1, pp. 92–100, 2014.

https://arxiv.org/abs/2304.07193
https://doi.org/10.1016/j.dsp.2022.103514

A-1

Appendix Α

Codes

Dinov2 pre-processing:

 # Imports for data manipulation and processing

import torch

import torchvision.transforms as T

import numpy as np

from sklearn.decomposition import PCA

import sklearn

Imports for data loading and visualization

from PIL import Image

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

Other Utility Imports

import os

#Mount the google driver

from google.colab import drive

drive.mount('/content/drive')

Path to your images folder in Google Drive

image_folder = "/content/drive/My Drive/{image folder}"

Generate image paths using actual filenames

img_paths = [os.path.join(image_folder, filename) for filename in

sorted(os.listdir(image_folder)) if filename.endswith(".jpg")]

print(img_paths)

EXPERIMENT PARAMETERS #####

N_IMGS = 35 # Number of images of the specific class to work with

Plotting Parameters

N_ROW_IMGS = 6 # How many rows of images to show in the plotting

A-2

N_COL_IMGS = 6 # How many of those images will appear in each row

Define the number of patches along the two dimensions to split each image into

patch_h = 15

patch_w = 15

Define the size of the model to use for extracting the features of each patch

model_size = 's' # options: s, b, l, g

use_registers = False

use_extended_dinov2 = True

Instructions:

From https://github.com/vpariza/NeCo?tab=readme-ov-file download the student Dinov2

ViT-S/14 from https://1drv.ms/u/c/67fac29a77adbae6/EWvXdau9r6NIr-

vIc_xDlxAB1sDrljoaPR_A3JhIEeE8dw?e=pOXEXG

upload to google drive

and find the path to the file on google drive

path = "/content/drive/MyDrive/images/neco_on_dinov2r_vit14_model.ckpt"

!ls /content/drive/MyDrive/images/neco_on_dinov2r_vit14_model.ckpt

model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')

model.load_state_dict(torch.load(path), strict=False)

tensor = torch.randn(N_IMGS, 3, 224, 224) # 16*14 =224

display(tensor.shape)

if use_registers:

 model = torch.hub.load('facebookresearch/dinov2',

'dinov2_vit{}14_reg'.format(model_size))

else:

 model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vit{}14'.format(model_size))

features_dict = model.forward_features(tensor)

display(features_dict.keys())

display(features_dict['x_norm_clstoken'].shape)

display(features_dict['x_norm_regtokens'].shape)

display(features_dict['x_norm_patchtokens'].shape)

display(features_dict['x_prenorm'].shape)

A-3

feat_dims = {

 's':384, # vits14

 'b':768, # vitb14

 'l':1024, # vitl14

 'g':1536, # vitg14

}

feat_dim = feat_dims[model_size]

transform = T.Compose([

 T.GaussianBlur(9, sigma=(0.1, 2.0)),

 T.Resize((patch_h * 14,patch_w * 14), interpolation=T.InterpolationMode.LANCZOS),

 T.CenterCrop((patch_h * 14, patch_w * 14)),

 T.ToTensor(),

 T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),

 # T.Normalize(mean=0.5, std=0.2),

])

if use_registers:

 model = torch.hub.load('facebookresearch/dinov2',

'dinov2_vit{}14_reg'.format(model_size))

else:

 model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vit{}14'.format(model_size))

if use_extended_dinov2 == False:

 model.load_state_dict(torch.load(path), strict=False)

extract DINOv2 features

features = torch.zeros(N_IMGS, patch_h * patch_w, feat_dim)

imgs_tensor = torch.zeros(N_IMGS, 3, patch_h * 14, patch_w * 14)

for i in range(N_IMGS):

 img_path = img_paths[i]

 img = Image.open(img_path).convert('RGB')

 imgs_tensor[i] = transform(img)[:3]

with torch.no_grad():

A-4

 if torch.cuda.is_available():

 features_dict = model.cuda().forward_features(imgs_tensor.cuda())

 else:

 features_dict = model.forward_features(imgs_tensor)

 print(features_dict.keys())

 features = features_dict['x_norm_patchtokens'].cpu()

save_path = "/content/drive/MyDrive/{feature file}" # Change this

import torch

torch.save(features, save_path) # Save as a PyTorch tensor

print("Features saved successfully!")

A-5

K-means:

import torch

from sklearn.cluster import KMeans

import numpy as np

#Check the shape

print("Loaded features shape:", features.shape)

feature_files = [

 {dinov2 feature files}

]

Load and concatenate features

features_list = [torch.load(f) for f in feature_files]

for i, f in enumerate(features_list):

 print(f"File {feature_files[i]} -> Shape: {f.shape}")

#Feature load with 15X15 pacthes

(

NUM_PATCHES=int(features_list[0].shape[0]/35)

FEATURE_DIM = features_list[0].shape[1]

N_IMGS=int(features_list[0].shape[0]/225)

features_list[0]= features_list[0].reshape(N_IMGS, NUM_PATCHES,FEATURE_DIM)

features=features_list[0]

)

Concatenate along the batch dimension (axis=0)

features = torch.cat(features_list, dim=0)

Check the new shape

print("Loaded combined features shape:", features.shape)

Assuming features shape: (N_IMGS, NUM_PATCHES, FEATURE_DIM)

N_IMGS,NUM_PATCHES, FEATURE_DIM = features.shape

A-6

Reshape to cluster patches instead of entire images

patch_features_flattened = features.reshape(-1, FEATURE_DIM) # Shape: (N_IMGS *

NUM_PATCHES, FEATURE_DIM)

from sklearn.decomposition import PCA

pca = PCA(n_components=128) # Reduce feature dimension

features_reduced = pca.fit_transform(patch_features_flattened)

Apply K-Means to patches

K = 30 # Number of clusters

Run KMeans on data

kmeans = KMeans(n_clusters=K, random_state=42, n_init=10)

patch_clusters = kmeans.fit_predict({features_reduced/ patch_features_flattened) #reduced or

raw

Reshape back to (N_IMGS, NUM_PATCHES) to know which patch belongs to which

cluster

patch_clusters = patch_clusters.reshape(N_IMGS, NUM_PATCHES)

print("Patch Clusters Shape:", patch_clusters.shape) # Should be (N_IMGS,

NUM_PATCHES)

print(patch_clusters)

patch_positions = np.zeros((N_IMGS, NUM_PATCHES, 2), dtype=int) # Store (i, j)

positions

for img_idx in range(N_IMGS):

 for patch_idx in range(NUM_PATCHES):

 i = patch_idx // 40 # Row index

A-7

 j = patch_idx % 40 # Column index

 patch_positions[img_idx, patch_idx] = (i, j) # Store position

import os

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Define a color palette for more than 20 clusters

cmap = sns.color_palette("hls", K)

Define labels for each heatmap

labels = [

 "Left", "Left", "Right", "Right", "Left", "Left", "Left", "Right", "Right", "Right",

 "Left", "Right", "Right", "Right", "Left", "Right", "Right", "Left", "Left", "Left",

 "Right", "Right", "Left", "Right", "Left", "Left", "Left", "Left", "Right", "Right",

 "Right", "Left", "Left", "Right", "Right"

] # Ensure this matches N_IMGS

Define the output folder on the desktop

desktop_path = os.path.join(os.path.expanduser("~"), "Desktop")

output_folder = os.path.join(desktop_path, "Heatmap_Images_40_K20")

Create folder if it doesn't exist

os.makedirs(output_folder, exist_ok=True)

Loop through images and generate heatmaps

for img_idx in range(N_IMGS):

 heatmap = np.full((40, 40), -1) # Initialize with -1 (for missing values)

 for patch_idx in range(NUM_PATCHES):

 i, j = patch_positions[img_idx, patch_idx]

 cluster_id = patch_clusters[img_idx, patch_idx]

 heatmap[i, j] = cluster_id # Assign cluster ID to heatmap position

A-8

 # Create the heatmap figure

 plt.figure(figsize=(8, 6))

 # Create annotation labels, blank for -1

 annot_labels = np.where(heatmap == -1, "", heatmap.astype(int).astype(str))

 sns.heatmap(

 heatmap,

 cmap=cmap,

 annot=annot_labels,

 fmt="",

 linewidths=0.5,

 linecolor='gray',

 cbar=True,

 square=True

)

 # Define the filename using the corresponding label

 label = labels[img_idx] if img_idx < len(labels) else "Unknown"

 filename = f"heatmap_{img_idx}_{label}.png"

 save_path = os.path.join(output_folder, filename)

 # Save the heatmap

 plt.title(f"Heatmap for Image {img_idx} ({label})")

 plt.xlabel("Column (j)")

 plt.ylabel("Row (i)")

 plt.savefig(save_path, dpi=300, bbox_inches="tight")

 plt.close() # Close the figure to free memory

print(f"Heatmaps saved in: {output_folder}")

evaluation

import csv

import numpy as np

Load your CSV into a numpy array (excluding the first index column)

csv_file = "output_40.csv" # ← change this to your actual CSV file name

A-9

with open(csv_file, "r") as file:

 reader = csv.reader(file)

 csv_data = np.array([list(map(int, row[1:])) for row in reader]) # Skip first column

print("CSV shape:", csv_data.shape) # Should be (N_IMGS, 225)

TP = 0 # CSV == 1 and Cluster == {tumour cluster}

TN = 0 # CSV == 0 and Cluster != {tumour cluster}

FP = 0 # CSV == 0 and Cluster == {tumour cluster}

FN = 0 # CSV == 1 and Cluster != {tumour cluster}

for img_idx in range(35):

 for patch_idx in range(NUM_PATCHES):

 cluster = patch_clusters[img_idx, patch_idx]

 label = csv_data[img_idx, patch_idx]

 if label == 1 and (cluster == {tumour cluster} or cluster == {tumour cluster}):

 TP += 1

 elif label == 0 and (cluster != {tumour cluster} and cluster != {tumour cluster}):

 TN += 1

 elif label == 0 and (cluster == {tumour cluster} or cluster == {tumour cluster}):

 FP += 1

 elif label == 1 and (cluster != {tumour cluster} and cluster != {tumour cluster}):

 FN += 1

total = TP + TN + FP + FN

accuracy = (TP + TN) / total

precision = TP / (TP + FP) if (TP + FP) > 0 else 0

recall = TP / (TP + FN) if (TP + FN) > 0 else 0

f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0

print(f" Accuracy: {accuracy:.4f}")

print(f" Precision: {precision:.4f}")

print(f" Recall: {recall:.4f}")

print(f" F1 Score: {f1:.4f}")

A-10

Labelling for supervised:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as patches

import matplotlib.image as mpimg

import torch

import pandas as pd

import os

--- Load Features ---

feature_files = [{feature files}]

features_list = [torch.load(f) for f in feature_files]

features = torch.cat(features_list, dim=0)

N_IMGS, NUM_PATCHES, FEATURE_DIM = features.shape

#For 15X15 patches

(

NUM_PATCHES=int(features.shape[0]/35)

FEATURE_DIM = features.shape[1]

N_IMGS=int(features.shape[0]/225)

)

--- Load Image Paths ---

img_folder = "C:/Users/damia/Desktop/sick3" #add you images’ folder

img_paths = sorted([os.path.join(img_folder, f) for f in os.listdir(img_folder) if

f.endswith(('.png', '.jpg', '.jpeg'))])

--- Dynamically Determine Grid Size ---

PATCH_H = int(np.sqrt(NUM_PATCHES))

PATCH_W = int(np.sqrt(NUM_PATCHES))

--- CSV File ---

save_path = "labeled_patch_features.csv"

A-11

if not os.path.exists(save_path):

 df = pd.DataFrame(columns=["Image_Index", "Patch_Index", "Label"] + [f"Feature_{i}"

for i in range(FEATURE_DIM)])

 df.to_csv(save_path, index=False)

--- Function to Select Region Manually ---

def on_click(event):

 global large_patch_x, large_patch_y, large_patch_w, large_patch_h

 if event.xdata is None or event.ydata is None:

 return

 if 'start' not in on_click.__dict__:

 on_click.start = (event.xdata, event.ydata)

 else:

 large_patch_x, large_patch_y = int(on_click.start[0]), int(on_click.start[1])

 large_patch_w, large_patch_h = int(event.xdata - large_patch_x), int(event.ydata -

large_patch_y)

 plt.close()

--- Manual Image Selection Loop ---

while True:

 print("\nAvailable images:")

 for i, path in enumerate(img_paths):

 print(f"{i}: {os.path.basename(path)}")

 try:

 img_idx = int(input("\nEnter image number to process (or -1 to exit): "))

 if img_idx == -1:

 print("Exiting program. ")

 break

 if img_idx < 0 or img_idx >= len(img_paths):

 print("Invalid number. Please try again.")

 continue

 except ValueError:

 print("Invalid input. Please enter a number.")

A-12

 continue

 img_path = img_paths[img_idx]

 img = mpimg.imread(img_path)

 img_h, img_w = img.shape[:2] # Get actual image size

 # Dynamically determine patch size based on image size

 patch_w = img_w // PATCH_W

 patch_h = img_h // PATCH_H

 print(f"\nProcessing Image {img_idx}: {img_path}")

 print(f"Image size: {img_w}x{img_h}, Patch size: {patch_w}x{patch_h}, Grid:

{PATCH_W}x{PATCH_H}")

 # --- Show Image for Manual Selection ---

 fig, ax = plt.subplots()

 ax.imshow(img)

 ax.set_title("Click to select a region (drag from start to end)")

 fig.canvas.mpl_connect("button_press_event", on_click)

 plt.show()

 # Ensure width and height are positive

 large_patch_w = abs(large_patch_w)

 large_patch_h = abs(large_patch_h)

 # --- Find Small Patches Inside the Selected Region ---

 selected_patches = []

 for patch_idx in range(NUM_PATCHES):

 patch_row = patch_idx // PATCH_W

 patch_col = patch_idx % PATCH_W

 patch_x = patch_col * patch_w

A-13

 patch_y = patch_row * patch_h

 if (large_patch_x <= patch_x < large_patch_x + large_patch_w) and (

 large_patch_y <= patch_y < large_patch_y + large_patch_h

):

 selected_patches.append(patch_idx)

 print(f"Selected patches: {selected_patches}")

 # --- Show Image with Selected Area ---

 fig, ax = plt.subplots()

 ax.imshow(img)

 rect = patches.Rectangle((large_patch_x, large_patch_y), large_patch_w, large_patch_h,

 linewidth=2, edgecolor='r', facecolor='none')

 ax.add_patch(rect)

 for patch_idx in selected_patches:

 patch_row = patch_idx // PATCH_W

 patch_col = patch_idx % PATCH_W

 patch_x = patch_col * patch_w

 patch_y = patch_row * patch_h

 patch_rect = patches.Rectangle((patch_x, patch_y), patch_w, patch_h,

 linewidth=1, edgecolor='b', facecolor='none')

 ax.add_patch(patch_rect)

 ax.set_title(f"Selected Region - Image {img_idx}")

 plt.show()

 # --- Assign a Label ---

 label = input(f"Enter label for selected region in Image {img_idx} (e.g., 'arm', 'chest',

'background'): ")

 # --- Store Labeled Features ---

A-14

 labeled_patches = []

 for patch_idx in selected_patches:

 feature_vector = features[img_idx, patch_idx, :].numpy().tolist()

 labeled_patches.append([img_idx, patch_idx, label] + feature_vector)

 # --- Append to CSV ---

 df_new = pd.DataFrame(labeled_patches, columns=["Image_Index", "Patch_Index",

"Label"] + [f"Feature_{i}" for i in range(FEATURE_DIM)])

 df_new.to_csv(save_path, mode="a", header=False, index=False)

 print(f" {len(selected_patches)} labeled patches from Image {img_idx} added to

{save_path}.")

 print("\nYou can select another image or exit.")

A-15

Random Forest

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.preprocessing import LabelEncoder

Load the labeled CSV

df = pd.read_csv("labeled_patch_features3.csv")

Extract features and labels from the CSV

X_csv = df.iloc[:, 3:].values # Features (ignore Image_Index, Patch_Index, Label)

y_csv = df["Label"].values # Labels

Encode labels into numerical values

label_encoder = LabelEncoder()

y_csv_encoded = label_encoder.fit_transform(y_csv)

Get indices of patches that belong to breast Cluster (cluster 0 in this example)

breast_cluster_indice= np.where(np.isin(patch_clusters, [0]))

num_patches_in_breast_cluster= breast_cluster_indices [0].shape[0] # Count of selected

patches

print("Number of patches in clusters :", num_patches_in_breast_cluster)

Extract features of these patches

breast_cluster_indices_flat = breast_cluster_indices [0] * NUM_PATCHES +

breast_cluster_indices [1]

breast_cluster_features = patch_features_flattened[breast_cluster_indices _flat]

Split CSV data for training

X_train, X_test, y_train, y_test = train_test_split(X_csv, y_csv_encoded, test_size=0.2,

random_state=42)

A-16

Train a classifier on the labeled CSV data

clf = RandomForestClassifier(n_estimators=100,random_state=42)

clf.fit(X_train, y_train)

print("Shape of breast_cluster_features:", breast_cluster_features.shape)

from collections import Counter

print("Training Label Distribution:", Counter(y_train))

#Set the threshold

pobability_threshold=0.7

probs = clf.predict_proba(breast_cluster_features) # shape: (n_patches, n_classes)

max_probs = np.max(probs, axis=1)

best_class_ids = np.argmax(probs, axis=1)

Filter patches with confident prediction

confident = max_probs >= pobability_threshold

confident_patch_features = breast_cluster_features[confident]

confident_indices = breast_cluster_indices _flat[confident]

confident_labels = best_class_ids[confident]

confident_labels_decoded = label_encoder.inverse_transform(confident_labels)

Initialize the matrix with -1s (unlabeled)

new_patch_clusters = np.full_like(patch_clusters, fill_value=-1)

Assign predicted labels to their corresponding [img_idx, patch_idx] positions

for idx, flat_idx in enumerate(confident_indices):

 img_idx, patch_idx = divmod(flat_idx, NUM_PATCHES) # Convert flat index back to

2D index

 new_patch_clusters[img_idx, patch_idx] = confident_labels[idx] # Store the class label

A-17

#Display of heatmap

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

Define a colormap for different clusters

cmap = sns.color_palette("tab10", np.unique(new_patch_clusters).size) # Choose 10 distinct

colors

Function to plot heatmap for a given image index

def plot_cluster_heatmap(image_idx):

 plt.figure(figsize=(8, 6))

 print("Shape of patch_clusters:", new_patch_clusters.shape) # Should be (num_images,

height, width)

 # Ensure it's a 2D array

 # Reshape cluster_map to 2D (assuming square patches)

 GRID_HEIGHT = 40 # Adjust based on actual number of patches per row

 GRID_WIDTH = 40 # Adjust based on actual number of patches per column

 cluster_map = new_patch_clusters[image_idx].reshape(GRID_HEIGHT, GRID_WIDTH)

 # Check shape before plotting

 print(f"Reshaped cluster map shape for image {image_idx}: {cluster_map.shape}")

 # Check shape before plotting

 print(f"Cluster map shape for image {image_idx}: {cluster_map.shape}")

A-18

 # Plot heatmap

 sns.heatmap(cluster_map, cmap=cmap, linewidths=0.5, linecolor="gray", annot=False,

cbar=True)

 plt.title(f"Cluster Heatmap for Image {image_idx}")

 plt.xlabel("Patch Index (X)")

 plt.ylabel("Patch Index (Y)")

 plt.show()

Example: Plot heatmap for a specific image (change index as needed)

plot_cluster_heatmap(image_idx=0) # Change 0 to any image index

for i in range(N_IMGS): # Replace with actual number of images

 plot_cluster_heatmap(i)

A-19

Labelling for evaluation

import csv

def generate_csv_from_input(filename, rows=35, cols=1600):

 with open(filename, mode='w', newline='') as file:

 writer = csv.writer(file)

 for i in range(1, rows + 1):

 print(f"\nRow {i}:")

 count = int(input(f" How many 1's do you want in this row? "))

 # Loop until valid input

 while True:

 indices_input = input(f" Enter {count} column numbers (1–{cols}) separated by

spaces: ")

 try:

 indices = list(map(int, indices_input.strip().split()))

 if len(indices) != count or not all(1 <= idx <= cols for idx in indices):

 raise ValueError

 break

 except ValueError:

 print(" Invalid input. Please enter exactly the correct number of integers

between 1 and 225.")

 # Initialize row with index and 0s

 row = [i] + [0] * cols

 # Set selected indices to 1

 for idx in indices:

 row[idx] = 1 # Index 1 refers to the first data column (after the index)

 # Write row to CSV

 writer.writerow(row)

 print("\n CSV file has been generated.")

Usage

generate_csv_from_input("output.csv")

A-20

Addition code for K-means to pass additional image through the model:

Setup heatmap output

desktop_path = os.path.join(os.path.expanduser("~"), "Desktop")

output_folder = os.path.join(desktop_path, "{Heatmap_Images}") # Replace with your file

os.makedirs(output_folder, exist_ok=True)

Load multiple new images from a .pt file

new_image_file = "{feature file}" # Replace with your file

new_images_features = torch.load(new_image_file) # Shape: (N_NEW_IMGS,

NUM_PATCHES, FEATURE_DIM)

print(new_images_features.shape)

Get the number of new images

N_NEW_IMGS =int(new_images_features.shape[0])

Color map

cmap = sns.color_palette("hls", K)

Loop through new images

for img_idx in range(N_NEW_IMGS):

 # Extract patch features for this image

 new_image_features_flat = new_images_features.reshape(-1, FEATURE_DIM)

 #PCA reduction if wanted

 new_features_reduced = pca.fit_transform(new_image_features_flat)

 # Predict cluster IDs

 new_image_clusters = kmeans.predict(new_features_reduced)

 # Reshape back to (N_IMGS, NUM_PATCHES) to know which patch belongs to which

cluster

 new_image_clusters = new_image_clusters.reshape(N_NEW_IMGS, NUM_PATCHES)

 # Build heatmap matrix

 heatmap = np.full((15, 15), -1) # Adjust size as needed

A-21

 for patch_idx in range(NUM_PATCHES):

 i, j = patch_positions[img_idx, patch_idx]

 cluster_id = new_image_clusters[img_idx,patch_idx]

 heatmap[i, j] = cluster_id

 annot_labels = np.where(heatmap == -1, "", heatmap.astype(int).astype(str))

 sns.heatmap(

 heatmap,

 cmap=cmap,

 annot=annot_labels,

 fmt="",

 linewidths=0.5,

 linecolor='gray',

 cbar=True,

 square=True

)

 plt.title(f"Heatmap for Image {img_idx}")

 plt.xlabel("Column (j)")

 plt.ylabel("Row (i)")

 filename = f"heatmap_{img_idx}.png"

 save_path = os.path.join(output_folder, filename)

 plt.savefig(save_path, dpi=300, bbox_inches="tight")

 plt.close()

print(f"Heatmaps saved in: {output_folder}")

