
i 

 

 

 

 

Ατομική Διπλωματική Εργασία 

 

 

 

 

BREST CANCER LOCATION DETECTION WITH MACHINE 

LEARNING USING THERMOGRAPH IMAGES 

 

 

 

 

Damianos Kallis 

 

 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ 

 

 

 

 

 

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 

 

 

 

 

 

 

 

Μάιος 2025 



ii 

 

 

 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ 

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 

 

 

 

 

 

 

 

 

Brest cancer location detection with machine learning using Thermograph images 

 

 

Damianos Kallis 

 

 

 

 

Επιβλέπων Καθηγητής 

Christodoulou Christos  

 

 

 

 

 

 

Η Ατομική Διπλωματική Εργασία υποβλήθηκε προς μερική εκπλήρωση  των απαιτήσεων 

απόκτησης του πτυχίου Πληροφορικής του Τμήματος Πληροφορικής του Πανεπιστημίου 

Κύπρου 

 

 

 

Μάιος 2025 



iii 

 

 

 

 

Acknowledgements  

 

First, the main idea came from MammoCheck Ltd and is the one that gave me this 

opportunity for this experience. Also, I would like to thank Prof Christos Christodoulou for 

getting me in touch with the company and helping me with my progress, but he also taught 

me the basics of Machine Learning, and Computational Intelligence. But the most help I got 

was from one of the owners of the company Marios Pafitis who helped me to understand each 

phase of the project and gave me ideas how to continue my research each time I had a 

problem and provided me with useful datasets for my project. Furthermore, I would like to 

thank Valentinos Pariza for helping me to set up Dinov2 and tutor me how it works, by 

giving me a template and explaining each function and Marios Constantinou from the HPC 

Administrators team that gave me access to the HPC. Lastly, I would like to thank my family 

and friends that support and help me get through this project . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

Abstract 

 

Many people today have been diagnosed with breast cancer and in most of the cases the late 

detection causes the cancer to be incurable. Today there are various ways to diagnose breast 

cancer like mammography and ultrasound breast exams however they are not taken so 

frequently from the patients because they are expensive, dangerous or painful. As a result, 

recent studies presented thermography as a complementary tool to primary diagnostic 

methods, for frequent monitoring, which is easier to take, pain-less and radiation-free which 

can be conducted at home in few minutes using an affordable thermal camera attached to a 

smartphone. However, many studies showed that with thermography and Artificial Intelligent 

programs they can detect if a patient has breast cancer, but they cannot detect the location of 

the cancer. So, the goal of my study is to create an algorithm using machine learning to detect 

the location of the cancer in breast thermal images and compare different hyperparameters 

and analyse the results to see how the model performs for this task. 
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Chapter 1 

 

Introduction 

 

 

 

1.1 Problem with common examinations           1 

1.2 Problem with Thermography         1 

1.3 Thesis’ goal           2 

 

 

 

1.1 Problem with common examinations 

 

Breast cancer accounts for one in three female cancers in the United States. The American 

Cancer Society estimates that, of the approximately 168,260,000 women in the US, 316,950 

will receive a new diagnosis of invasive breast cancer annually, and 42,170 will lose their 

lives to the disease [1]. Mammograms, ultrasounds, breast magnetic resonance imaging 

(MRI), and other primary breast cancer screening procedures are typically performed on a 

periodic basis on women. The most crucial and gold standard test for breast cancer is 

mammography, which can identify tumours up to two years before they are palpable. 

However, it is advised that women have routine screenings every two to three years, 

beginning at age 45 [2], due to the ionizing radiation that mammography exposes the patient 

to. Another screening method is ultrasound, which calls for a specialist to operate the 

equipment and interpret the findings. [3] 

 

1.2 Problem with Thermography 

 

On the other hand, thermography is an FDA-approved adjunct to primary breast screening 

methods for breast cancer examinations [4]. The primary advantage of thermography is that it 

can be carried out using reasonably priced thermal camera equipment, and as the camera does 

not produce any radiation, it poses no risk to the patient. Unfortunately, a lot of research 



2 

 

added to the market models for cancer detection showing if a patient is diagnosed with breast 

cancer or not but there is not a model showing the exact location of the cancer. [3]  

 

1.3 Thesis’ goal 

 

As I previously mentioned it is important for fast treatment of the breast cancer to be early 

detected but it is also important for the right treatment to have early localization of the 

tumour area. In this thesis I will try to address this issue, by trying with different models, 

different data and data preprocessing to create an unsupervised algorithm that combines 

multiple techniques to be able to achieve the best accuracy with the detection of the cancer 

area on ill women but also see how the program reacts with healthy women and analyse my 

results using specific metrics.    
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Chapter 2 

 

Background 

 

 

2.1 Machine learning Clustering algorithms       3 

2.2 Vision Transformer          6 

2.3 Dinov2           6 

2.4 Metrics           8 

 

 

 

2.1 Machine learning Clustering algorithms 

 

Cluster algorithms are models that separate different inputs into groups based on the 

similarity of their features that we have in the dataset. Those models can be supervised or 

unsupervised   

  

 

2.1.1 Supervised Cluster algorithms 

 

In supervised algorithms we have in the dataset the desired cluster output for each input, and 

it works like 'teacher' providing the net with the output required for each input. This 

algorithm learns by adjusting the weights to minimize the difference between the desired and 

actual outputs for each input pattern. 

 

 

2.1.1.1 Random Forest Classifier 

 

The basic idea in decision tree classifier is the separation of the inputs at each non-terminal 

node and the choice of the most important data features for the separation of the inputs. 
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Random Forest is a popular and easy machine learning algorithm used for several types of 

classification tasks. A Random Forest is a combination of tree-structured classifiers. Every 

tree of the forest gives an output , assigning each input to the closest class label. As we see in 

the [Figure 1] there are 4 decision trees, and each tree takes as input from the dataset x and 

based on different features each tree gives an output, and the most common output is the 

“winner”. It is a fast method, robust to noise and it is a successful ensemble which can 

identify non-linear patterns in the data. It can easily handle both numerical and categorical 

data. One of the major advantages of Random Forest is that it does not suffer from over-

fitting, even if more trees are appended to the forest. [5] 

 

 

 

Figure 1:Random Forest Classifier diagram with 4 trees 

 

 

 

 

2.1.2 Unsupervised Cluster algorithms 

 

Unlike supervised in unsupervised algorithms we do not have the desired output of each input 

[6]. This network can discover statistical regularities in its input space and automatically 

develops different modes of behavior to represent different classes of inputs (in practical 

applications some `labelling' is required after training, since it is not known at the outset 

which mode of behavior will be associated with a given input class).[5] 
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2.1.2.1 K-means algorithm 

 

K-means is a simple unsupervised cluster algorithm and it is very common as it solves most 

of the clustering problems. The main idea is to define k centroids, one for each cluster. We 

place these centroids most of the time random but different location causes different results. 

So, if it’s not random we try to place them as much as possible far away from each other. 

Next step is to take each point from the inputs and associate it with the closest centroid and 

when there are no inputs left the first epoch is finished. Then we re-calculate the k centroids 

at the centre of each cluster, and we repeat the association with the same inputs as previous  

and the new centroids and we repeat this process until the k centroids stop changing 

locations. That means that the clusters have the minimum square error [7]. And we can see an 

example of 2D point that are pass through K-Means  with 3 as K and it cluster the point into 3 

cluster based on the position [Figure 2]. 

 

 

 

 

Figure 2: 2D Point diagram before and after K-Means classification 
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2.2 Vision Transformer   

 

The Vision Transformer (ViT) introduces a new era of computer vision where images are 

treated as sequences of patches, just like words in Natural Language Processing (NLP). By 

leveraging Transformers instead of Convolutional Neular Networks (CNNs), ViT achieves 

state-of-the-art performance on image recognition tasks with large datasets. While it requires 

large datasets for pre-training, its simplicity, scalability, and effectiveness make it a 

compelling alternative to CNNs. This paradigm shift from convolutional processing to 

attention-based processing could inspire new models for object detection, segmentation, and 

other vision tasks. Registers are extra learnable tokens added to the Vision Transformer input 

sequence that provide dedicated space for internal computations, preventing the model from 

corrupting patch features and improving attention smoothness and downstream task 

performance. Without registers, vision transformers like DINOv2 models tended to repurpose 

background patch tokens (with little information) for internal computations, leading to 

degraded local features and problems like messy attention maps [ Figure 3]. [8] 

 

 

 

Figure 3: Register tokens enable interpretable attention maps in all vision transformers, like the original 

DINO method (Caron et al., 2021). Attention maps are calculated in high resolution for better 

visualisation. [8] 

 

 

 

2.3 Dinov2 

 

DINOv2 is a Self-supervised Vision Transformer Model created by Meta AI and produces 

universal features suitable for image-level visual tasks (image classification, instance 
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retrieval, video understanding) as well as pixel-level visual tasks (depth estimation, semantic 

segmentation). The pipeline Dinov2 follows is easy as it takes only 3 steps. First it chops the 

uncurated data and the curated data into patches called embeddings then it removes form the 

uncurated data very similar images to avoid redundancy and reduce noise and last the 

remaining uncurated images are matched to curated images based on embedding similarity 

and it retrieves them [Figure 4].  [9] 

 

 

 

 

 

Figure 4: Overview of our data processing pipeline. Images from curated and uncurated data sources are 

first mapped to embeddings. Uncurated images are then deduplicated before being matched to curated 

images. The resulting combination augments the initial dataset through a self-supervised retrieval 

system.[9] 

 

 

 

 

DINOv2 demonstrates that self-supervised models trained on curated datasets can achieve 

better generalization and robustness than weakly supervised models like Contrastive 

Language-Image Pre-training (CLIP). The robust features learned by DINOv2 support a wide 

range of vision tasks at image and pixel levels, making them suitable for classification, 

segmentation, depth estimation, and more. For example, it can classify different species of 

animals like flying animals or ground animals like horses, and it can even classify different 

objects like car and show also with different colours similar components between the objects 

in each group [Figure 5]. [9] 
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Figure 5: Visualization of the first PCA components. A PCA between the patches of the images is been 

computed from the same column and show their first 3 components. Each component is matched to a 

different colour channel. Same parts are matched between related images despite changes of pose, style or 

even objects.[9] 

 

 

 

2.4 Metrics 

 

For the task of the classification evaluation, typically we are only interested in binary ratings, 

that is, either the item was selected (1) or not (0) or in our case the patch has a tumour (1) or 

not (0). [10] This matrix contains statistics about actual and predicted classifications and lays 

the fundamental foundations necessary to understand accuracy measurements for a specific 

classifier.[11] 

 

 

2.4.1 TP,FP,TN,FN 

 

This matrix is characterized with 4 attributes that we can compute based on the desired and 

the actual output where we check whether the cluster that represents the cancer area has the 

same patches as the label we created. The attributes are the follows: 

• TP: A patch in the tumour cluster belong in the tumour patches in the label file   

• FP: A patch in the tumour cluster does not belong in the tumour patches in the label 

file 

• TN: A patch that is not in the tumour cluster does not belong in the tumour patches in 

the label file 

• FN: A patch that is not in the tumour cluster belong in the tumour patches in the label 

file 
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  Actual Values 

  Positive Negative 

Predicted Values Positive TP FP 

Negative FN TN 
Table 1: Confusion Matrix for Binary Classifier 

 

 

 

 

2.4.2 Accuracy 

 

Accuracy is the fraction of correct predictions among all predictions or how often a 

prediction is correct. However, the classification accuracy has limitations, especially when 

dealing with imbalanced datasets, where instances of one class may significantly outnumber 

those of other classes. Accuracy = (Number of correctly classified instances) / (Total number 

of instances) [12] 

  

Accuracy = (TP + TN) / (TP + FP + TN + FN) 

 

 

2.4.3 Precision 

 

If there are more than two output classes, the classification accuracy does not provide 

information on the classes that are predicted accurately. In such cases, a more suitable 

measure is precision. Precision is the fraction of the correctly predicted positive results. To be 

more specific it shows the percentage of how many of the patches in the tumour cluster are 

actual tumour patches. [12] 

 

Precision = TP / (TP + FP) 

 

 

2.4.4 Recall 

 

This measures the proportion of actual positives predicted correctly, or how accurately the 

model predicts positive cases. Recall is particularly valuable when false negatives need to be 

minimized. For example, in a medical diagnostic setting like in our problem, recall indicates 

the proportion of actual positive cases that the model correctly identified, which is important 

to avoid missing potentially critical diagnoses. [12] 

 

Recall = TP / (TP + FN). 

 

 

2.4.5 F1-score 

 

The F1-score, which combines precision and recall, is important for models in which both are 

equally important and models for healthcare applications are perfect examples. This is a 

harmonic means of precision and recall that considers both false negatives and false positives. 

The harmonic mean is computed by dividing the number of values in a data series by the sum 

of the reciprocals of each value in the data series. [12] 

 

F1-score = (2 * precision * recall) / (precision + recall) 
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2.4.6 Mean Average Precision  

 

Mean Average Precision (mAP) is the most common evaluation metric. Precision is derived 

from Intersection over Union (IoU), which is the ratio of the area of overlap and the area of 

union between the ground truth and the predicted bounding box. A threshold is set to 

determine if the detection is correct. If the IoU is more than the threshold, it is classified 

as True Positive while an IoU below it is classified as False Positive. If the model fails to 

detect an object present in the ground truth, it is termed as False Negative. Precision 

measures the percentage of correct predictions while the recall measures the correct 

predictions with respect to the ground truth.[13] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/engineering/bounding-box
https://www.sciencedirect.com/topics/computer-science/true-positive
https://www.sciencedirect.com/topics/computer-science/false-positive
https://www.sciencedirect.com/topics/computer-science/false-negative
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Chapter 3 

 

Data Handling 

 

 

3.1 Breast Thermography         11 

3.2 Data Usage          13 

3.3 Data Preprocessing         13 

3.4 Ground Truths          16 

 

 

3.1 Brest Thermography 

 

The idea behind breast thermography is to use an infrared (IR) camera to monitor the breasts' 

surface temperature and then use image post-processing to pinpoint regions of a normal 

temperature. In 1956, Lawson provided one of the earliest indications that breast cancer alters 

the breasts' typical temperature distribution [14]. In comparison to the contralateral region of 

the breast without a tumour, all 26 participants with breast cancer in this study had an 

increase of 1.3 C close to the tumour location. And later studies showed even more increase 

in the temperature of the area around the tumour [15]. 

 

 

3.1.1 “Breast Thermography” dataset 

 

It is image thermography dataset of female thorax zone as scientific contribution in breast 

cancer thermography research area. Dataset was acquired inside a medical office with 

dimensions W:3.20m x L:4.14m x H:2.40m, in grayscale without artificial illumination at a 

temperature 22 - 24°C and relative humidity 45 - 50%. A FLIR A300 camera was used to 

capture the images at a working distance of 1m from the patient. The American Academy of 

Thermology (AAT) protocol was used to prepare the patient and capture. Three images were 

taken of each patient in the female thorax area: anterior, left oblique and right oblique 

positions, but I used only the anterior so that I have the same angle for all my data. The 
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patients ranged in age from 18-81 years with different pathologies related to the female 

breast. The images were captured between 2021 and 2022. There is also a csv file that 

indicate which breasts are malign or benign or normal and has also some information of the 

patient like age, height e.t.c [16]. Using a plot, we can see an example of 32 anterior images 

from this dataset with 32 ill women where we can recognise that in grayscale the tumour area 

is brighter from the other areas [Figure 6] and we can also see the difference with the plot 

with the 32 anterior images from 32 healthy woman [Figure 7].  

 

 

 

 

Figure 6: 32 of anterior images of ill women from "Breast Thermography" dataset 

 

 

 

 

 

 

Figure 7: 32 of anterior images of healthy women from "Breast Thermography" dataset 
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3.1.2 “A New Database for Breast Research with Infrared Image” dataset 

 

The dataset for the following experiments was created using the breast thermography 

database by Silva et al. (2014) and is the one that most researchers in breast thermography 

uses. The database consists of grayscale thermal images of resolution 640 × 480 pixels. The 

database has 173 healthy and 37 sick front-view images. The infrared (IR) images are 

captured by a FLIR thermal camera, model SC620, which has sensitivity of less than 0.04ºC 

range and capture standard −40ºC to 500ºC. [17] 

 

3.2. Dataset usage 

 

In my study I mostly used the “Breast Thermograph” dataset because it includes a csv file 

which was very helpful because, it had information for each breast if it was normal, malign 

pathology or benign pathology and that helped me to understand my data and have an idea 

where the tumour is located. I also use that information to find a more specific area of the 

tumours and label it. I only use “A New Database for Breast Research with Infrared Image” 

dataset to try the unsupervised algorithm with more data because the “Breast Thermograph” 

dataset has only 35 images will ill woman. Furthermore, I use it in the supervised algorithm 

because the labelled data I used were from the “Breast Thermograph” dataset and I wanted to 

use the model on different data so that the patches that I want to classify have similar features 

with the labelled and not the same.  

 

 

3.3 Data Preprocessing  

 

I preprocess the images using dinov2 in Google Collab where I divided the images to patches 

and extract their features. I used different patches combinations (15X15, 25X25 and 40X40 

patches) [Table 2] with 384 features for each patch creating a variety of feature dimensions 

like (35,1600,384), where I had 35 images with 40X40 patches with 384 features for each 

patch. I also try different feature processing ideas like reduction using the Principal 

Component Analysis (PCA) which is a dimensionality reduction technique that transforms 

high-dimensional data into a lower-dimensional space while preserving as much variance 

(information) as possible and I use it to reduce the 384 features to 128 and this gives the 

results better generalization but it losses some information as we can see with PCA reduction 

the breast images are less complicated [Figure 8] and the same images without PCA 

reduction have more information on them [Figure 9]. 
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Patches Dimensions Number of Patches 

15X15 225 

25X25 625 

40X40 1600 

Table 2: Dinov2 patch Maps 

 

 

 

 

Algorithm 1: DINOv2 Feature Extraction Pipeline 

 Data: Images 

 Result: Patch-level features from DINOv2 

1 Initialize: Number of images to process (N_IMGS). 

2 Initialize: Number of rows and columns for image plotting (if needed). 

3 Initialize: How many patches to extract along height and width. 

4 Initialize: Choose the model size (e.g., small, base, large, giant). 

5 Initialize: Set flags for using special DINOv2 versions (e.g., registers, extended). 

6 Load the appropriate DINOv2 model (with or without registers). 

7 Load model weights if using non-extended version. 

8 Resize, center-crop, normalize, and convert images to tensor format. 

9 Use a Gaussian blur and scale images to match patch dimensions. 

10 Initialize: An empty tensor to store preprocessed images. 

11 For each image: 

12  Open it and convert to RGB. 

13  Apply transformations and add to image tensor. 

14 end 

15 Move model and tensors to GPU (if available). 

16 Disable gradient calculation for efficiency. 

17 Forward images through the model. 

18 Extract patch-level features from model output. 
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Figure 8: We can see 32 of anterior images of ill woman from "A New Database for Breast Research with 

Infrared Image " dataset after the algorithm using 40x40 patches and PCA reduction with to 128 features 

and we see how it focuses on the body and the important areas 

 

 

 

 

 

 

Figure 9: We can see with the same dataset as previous and 40X40 patches but without PCA reduction we 

have 384 features, and we can see how different the results are. 
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3.4 Ground Truths 

 

As I will later mention because of the lack of information and labels of the cancer areas I had 

to manually label where is the tumour in the data from the ill women in the “Breast 

Thermography” dataset to have a desired output for evaluation. Unfortunately, I did not have 

an expert diagnose on the images so I found and labelled where I believe that the tumour area 

is located which is the red square you can see in the plot [Figure 10].   

 

 

 

 

Figure 10:Plot with Ground Truths with the 36 images for the “Breast Thermography” dataset 
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4.1 Dinov2 features processing        17 
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4.3 Labelling for supervised classification       18 

4.4 Random Forest Classifier implementation      21 

4.5 K-means implementation with additional images      21 

4.6 Labelling for evaluation         22 

4.7 Visualization          24 

 

 

 

4.1 Dinov2 features processing 

 

First, I had to make the appropriate changes to the features regarding their shape and their 

normalization, and the dimension of the features based on if I want to use PCA reduction, to 

be able to run the clustering algorithm. So first I had to load the feature file and extract the 

number of images ,the number of patches and the feature dimension and in most of the 

experiments the feature file has the shape (number of images, number of patches , number 

of features per patch). Then I had to flatten the features to have shape: (number of images * 

number of patches, number of features per patch)  and cluster the patches instead of entire 

images and then if I wanted to use PCA reduction I had to set the components to 128 and I 

use the function fit_tranform to apply it on the features. 
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4.2 K-means implementation  

 

Then for the clustering I used K-means using as input the normalised 2D features as I 

described. I used multiple numbers of cluster, and random_state=42 to ensure reproducible 

results and I used 10 as n_init that initialise how many times it will run the algorithm with 

different centroids to get the best result. The model then gives for output a 1D array of length 

image_num * patches_num where each value is the cluster number of the specific patch. But 

having all the patches’ cluster number in a 1D was not helpful so I had to reshape the array to 

(N_IMGS, NUM_PATCHES) to be able to set some coordinates to the patches to be easier to 

work with. After the training is over, we can see the visualization of the clusters and analyze 

the results to try different ideas and parameters [Figure 11]. 

 

 

 

Figure 11:Algorith pipeline 

 

 

 

 

 

4.3 Labelling for supervised classification  

 

Because of the limited data information I wasn’t able to find the desired cancer location and 

labels from an expert and I had to create my own manual label so I crated a program for that 

where I load the images, and display them one by one and select the area that I believe it was 

the cancer area and label it using the labels :l l side breast, l r side breast, r r side breast, r l 

side breast, r nipple, l nipple, l upper breast, r upper breast where r is right and l is left and for 
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example l r is the left breast right side [Table 3]. Then the image index , the index of the 

patches that were in the area I selected, and the label and their 384 features were saved in an 

csv file that I will use later [Figure 12].  

 

 

Label Name Description 

l l side breast Left breast at the left side area 

l r side breast Left breast at the right-side area 

r r side breast Right breast at the right-side area 

r l side breast Right breast at the left side area 

r nipple Right breast at the nipple area 

l nipple Left breast at the nipple area 

l upper breast Left breast at the upper area 

r upper breast Right breast ate the upper area 

Table 3: Supervised labels for the area of the tumour 

 

 

 

Algorithm 2: Labelling for supervised classification 

 Data: A Folder With images, Patch-level features from DINOv2 for the images 

 Result: CSV file with the patches number and their features and tumour area label  

1 Define: list of feature files (e.g., “dinov2_features_sick2_15.pt”) 

2 Load all .pt files using torch.load() 

3 Concatenate them into a single tensor called ‘features’ 

4 Derive NUM_PATCHES per image 

5 Derive FEATURE_DIM (number of features per patch) 

6 Derive N_IMGS from total number of patches and NUM_PATCHES 

7 Set: image_folder path 

8 Read and sort all image filenames from the folder with valid extensions (.png, .jpg, 

.jpeg) 

9 PATCH_H sqrt(NUM_PATCHES) 

10 PATCH_W  sqrt(NUM_PATCHES) 

11 Define: save_path for CSV (e.g., “Labelled_patch_features3.csv”) 

12 If CSV doesn’t exist: 

13  Create it with column headers: [“Image_Index”, “Patch_Index”, “Label”, Feature_0, 
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... Feature_N] 

14 end 

15 on_click(event): 

16  Store starting coordinates on first click 

17  Store ending coordinates and calculate region on second click 

18 While True: 

19  Print available images with their indices 

20  Ask user to input an image index (or -1 to exit) 

21  If user enters -1: 

22   Exit program 

23  end 

24  Validate the index: 

25   If invalid, show an error and repeat 

26  end 

27  Load the selected image 

28  Compute patch size dynamically from actual image dimensions 

29  Show image using matplotlib 

30  Let user select a rectangular region (2 mouse clicks) 

31  Ensure width & height are positive (in case of reverse dragging) 

32  Find all small patches within selected rectangle: 

For each NUM_PATCHES: 

33   Compute patch_x and patch_y based on row and column in grid 

34   Check if the patch falls inside the selected rectangle 

35   If yes, add patch_idx to selected_patches 

36  end 

37  Show image again with red rectangle (user selection) and blue boxes (selected 

patches) 

38  Ask user for a label (e.g., “l under breast”, “l upper breast”, etc.) 

39  For each selected patch: 

40   Extract the corresponding feature vector from the features tensor 

41   Append [Image_Index, Patch_Index, Label, Feature Vector] to a list 

42  end 

43  Convert list to DataFrame and append it to the CSV file 

44 end 
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Figure 12: A sample of the csv file showing the image index, the patch index, one class label and some 

features 

 

 

 

4.4 Random Forest Classifier implementation 

 

An extra idea to get better results was to add a supervised classifier to an unsupervised 

classifier. So, by initializing the K to a small value I was able to extract from the K-means 

algorithm the breast area and apply Random Forest Classifier to those patches. I also use the 

csv file I created to help me train my model and add labels. So, I extract the features of the 

patches from the csv and split them randomly to 80% for training and 20% for testing and 

then I numerus the labels to be easier to work with and I train the model using this data for 

100 epoch. I also extracted the features of the breast area patches that I got from the K-means 

algorithm. Applying the trained model as it is on these data did not work because the model 

was clustering all the breast area patches instead of the cancer area only, so I had to add a 

probability threshold to use for the assigning of patches to a cluster. I set the threshold to 0.6 

or 0.7 and extract the predicted probability for each class for every patch and then I get from 

them the highest probability for each patch across all classes and then I use the threshold to 

filter the patches with a classifier’s confidence level. Lastly, I initialize the new clusters and 

fill them with the patches that pass the threshold in a shape: (img_idx, patch_idx).     

 

 

4.5 K-means implementation with additional images  

 

For the validation of my results, I also needed to see how my model will react with 

thermographs of healthy women as it should not find any anomalies. At first, I thought that I 
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could just run the k-means implementation using the features from the images with the 

healthy women, but that approach was wrong because, the model had no cancer area to 

compare with the other areas. The right approach was to train a model using features from 

sick women and then pass from the model features from images with healthy women and see 

the difference.  

 

Algorithm 3: K-means implementation with additional images 

 Data: Patch-level features from DINOv2 for the extra images 

 Result: Visualization of the cluster on the new images 

1 Apply the k-means implementation with features from images with sick women  

2 Define the path to a new image .pt file (e.g., “dinov2_features_healthy_10_pca.pt”) 

3 Load the tensor using torch.load() 

4 Determine the number of new images: 

5 For img_idx from 0 to N_NEW_IMGS-1: 

6  Extract features for the current image 

7  (Optional) Apply dimensionality reduction using PCA: 

new_image_features_reduced  pca.transform(image_features) 

8  Normalize features using previously fitted scaler: 

new_image_features_norm  scaler.transform(image_features) 

9  Predict cluster labels using pre-trained Kmeans: 

new_image_clusters  kmeans.predict(new_image_features_norm) 

10  Reshape cluster assignments back to 2D image grid: 

new_image_clusters.shape  (PATCH_ROWS, PATCH_COLS) or 

(N_NEW_IMGS, NUM_PATCHES) 

11 end 

 

 

4.6 Labelling for evaluation 

 

As I did not had labels for my data, I had to think of a way to evaluate my model’s result. A 

good idea to evaluate my results was to create a CSV file with N rows and P+1 columns 

where N is the number of images and P is the number of patches per image and the first 

column is the index of the image and I assign the value 1 to the patches that were in the area 

of the cancer and 0 to the patches that were not [Figure 13]. 
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Algorithm 4: Labelling for evaluation 

 Data: Number of columns for each row with 1’s,the number each column with 1’s 

 Result: CSV file with 0’s and 1’s labels 

1 Open a new CSV file for writing 

2 For each row (from 1 to rows): 

3  Print which row is currently being filled 

4  Ask the user: “How many 1’s do you want in this row?” 

5  Ask user to enter count column numbers (1 to cols), separated by spaces 

6  Convert input to a list of integers 

7  Validate: Input length equals count 

8  Validate: All indices are within bounds (1 to cols) 

9  If input is invalid: 

10   Print error message and re-prompt 

11  end 

12  Start with a list: [row_index] + [0]*cols 

13  Set positions at selected indices to 1 //index 1 maps to first column (data starts from 

column 1, index 1) 

14  Write the row to the CSV file 

15 end 

 

 

 

 

 

Figure 13: Example of the CSV file with 21 images and the first 18 patches 
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4.7 Visualization  

 

For analysing my results, I also had to see how my model was clustering the images. The fist 

approach was to show a sample of 5 patches per cluster but that was not helpful because the 

patches were so small, and I could not understand what each patch was showing [Figure 14].  

 

 

 

 

Figure 14: Visualization of the 5 patches of the first cluster 

 

 

 

 

 

In the second approach I was creating a k*k heatmap for each cluster combining all the 

images where k is the number of the rows and columns of the patches and the heatmap was 

darker in the areas that multiple images had patches that belonged in the same cluster. This 

was better from the first approach but still had some problems. I was able to understand the 

average area that each cluster was taking but I could not easily compare each cluster because 

they were presented in deferent heatmaps, and I could not analyse each image alone because 

they were all combined in each heatmap [Figure 15].       
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Figure 15: Visualization using a heatmap of the patches from all the images that belongs in the first 

cluster using 25 clusters and 15X15 patches 

 

 

So, for the last approach I took the heatmap idea and change it to fix the problem I 

mentioned. This time I created a k*k heatmap for each image where it was combining all the 

clusters with different colour for each cluster and this way, I was able to analyse each image, 

and it was easier to see the exact regions for each cluster. I also put the number of the cluster 

in each patch because some colures were not so different [Figure 16]. Lastly to be able to 

compare the heatmaps with the original images I created a diagram on the images showing 

the patches and their indexes (i , j) [Figure 17].  

 

 

Figure 16: Visualization using a heatmap of the image 1 using 20 clusters and 15*15 patches and showing 

the cluster number of each patch 
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Figure 17: Diagram on image 1 showing the 15*15 patches and the indexes of each patch  
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5.1 Experiments 

 

In my experiments I tried a lot of approaches and parameters so that I can maximize my 

metrics and more specifically the F1 score as is more important to show that the algorithm is 

not showing more ill patches from the actual ill patches. 

 

 

5.1.1 Feature Map 15X15 

 

I used a 15X15 feature map because I needed to try with a small number first and work my 

way up but 10X10 was too small and I did not get enough information for the clustering. 

Also, I tried each experiment with 20 ,25 and 30 clusters to report the difference and find the 

best cluster number for each case.   

 

 

5.1.1.1 Raw Features 

 

At first, I tried to just cluster the patches without any preprocessing, and the clusters with the 

tumour area are 1 and 8 for 20 clusters, 2 for 25 and 14 for 30 clusters .  
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5.1.1.2 PCA Feature reduction to 128 

 

My data from preprocessing using dinov2 were produced with 384 features that may have 

been a lot for the classifier, and it may cause the model to overfit and not generalize. So, I 

tried to reduce the features using PCA to 128 because they are less than the original 384 

features but not that few to cause the model to have poor training. With this new data the 

tumour clusters now are 18 for 20 clusters , 2 for 25 clusters and 0 and 22 for 30 clusters 

 

 

5.1.1.3 Tumour cluster reassign using K-means centres  

 

I notice from the previous results that the cluster with the tumour area in most of the images 

was detecting the tumour, but it was too general, so I thought I can reassign some of the 

patches from the tumour cluster with a different cluster and first I tried to use the k-means 

centre of the cluster to reassign the furthest patches. Also I set the number of patches that I 

wanted to change based on the cluster’s quantity, to be more specific I ignore the images with 

less than 10 patches, I change the 1/4 of the furthest patches in the tumour cluster if they are 

less than 15, I change the 1/3 if they are less than 20 and if they are more I change the half of 

the furthest patches in the tumour cluster.  

 

 

5.1.1.3.1 Raw Features with tumour cluster reassign using K-means centres 

 

I applied cluster reassign using the k-means centre on the raw data. Again, the clusters with 

the tumour area are 1 and 8 for 20 clusters, 2 for 25 and 14 for 30 clusters. 

 

 

5.1.1.3.2 PCA Feature reduction to 128 with cluster reassign using K-means centres  

 

I applied cluster reassign using the k-means centre on the data with pca features reduction to 

128. Like previous [5.1.1.2] with feature reduction the tumour clusters are 18 for 20 clusters, 

2 for 25 clusters and 0 and 22 for 30 clusters.  
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5.1.1.4 Tumour cluster reassign using Euclidean distance   

 

Using the heatmap that I created with the experiment 5.1.1.3 ,where I reassigned the tumour 

clusters using the k-means centre of the clusters I observed that the centre was not physically 

in the centre of the cluster patches and in some images most of the patches in the tumour 

cluster were close or in the tumour area. This is why I thought to compute the physical cluster 

centre by my self using the Euclidean distance between the patches and use that centres to 

determine which patches are the furthest. And then for the number of the changed patches I 

followed the same pipeline as previous [5.1.1.3] .      

 

 

5.1.1.4.1 Raw Features with tumour cluster reassign using Euclidean distance   

 

I applied cluster reassign using the Euclidean distance for finding the centre on the raw data. 

The tumour clusters are the same with the raw features without clusters reassign. 

 

 

5.1.1.4.2 PCA Feature reduction to 128 with tumour cluster reassign using Euclidean 

 

I applied cluster reassign using the Euclidean distance for finding the centre on the data with 

pca features reduction to 128. Once again, the tumour clusters are the same with the 

experiment with pca reduction without clusters reassign.  

 

 

5.1.1.5 Using more data  

 

In another experiment I tried to train the model with more data because the low results might 

be because of the lack of big dataset. So, I tried to use both “Breast thermography” dataset 

that I have been using and the “A New Database for Breast Research with Infrared Image” 

dataset but only evaluate on the 35 images of “Breast thermography” dataset. 
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5.1.1.5.1 Using more data with raw features 

 

I added more data and used raw features. The tumour clusters are 12 for 20 clusters, 9 for 25 

clusters and 4 for 30 clusters. 

 

5.1.1.5.2 Using more data with PCA Feature reduction to 128 

 

I applied pca features reduction to 128 to all the data. The tumour clusters are 18 for 20 

clusters, 23 for 25 clusters and 12 for 30 clusters.  

 

 

5.1.1.6 Patch selection  

 

Another idea to make the algorithm more precise than it is originally, is to exclude some 

patches from the images that were not important in any of the images before the clustering 

and that made the images more specific, and we ignored unnecessary features. The patches 

that I select to exclude were from 0 to 45 that were mostly the nerk and the arms area and 209 

to 224 that were mostly the belly area. 

 

 

5.1.1.6.1 Raw features with patch selection  

 

I applied the patch selection on the data with raw features. The clusters with the tumour area 

are 3 for 20 clusters, 24 for 25 and 3 for 30 clusters. 

 

 

5.1.1.6.2 PCA Feature reduction to 128 with patch selection  

 

I applied the patch selection on the data with pca features reduction to 128. The clusters with 

the tumour area are 18 for 20 clusters, 1 for 25 and 2 for 30 clusters. 
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5.1.1.7  Patch selection and tumour cluster reassign using Euclidean 

 

Since I had some improvement with patch selection and tumour cluster reassign using 

Euclidean which was better than using the K-means centres I decided to try combining the 

two ideas and analyse the results.  

 

 

5.1.2 Feature Map 25X25 

 

I tried a lot of variation of 15X15 patches, so I had to also try different patch map to see how 

my model works with more patches, and I tried 25X25 and analyse the results with some of 

the ideas I tried with the previous experiment but with more clusters. 

 

5.1.2.1 Raw features  

 

First, I tried the model using data with raw features with 50 clusters only because with less or 

more the model was giving very bad results and the tumour cluster is 26. 

 

 

5.1.2.2 PCA Feature reduction to 128 

 

Then, I tried adding feature reduction to 128 on the data and tried the model with 30 and 50 

clusters and the tumour clusters are 29 for 30 clusters and 6 for 50 clusters. 

 

 

5.1.2.3 Tumour cluster reassign using Euclidean distance   

 

As I realised from the 15x15 experiments I had better results by reassigning the tumour 

clusters using the Euclidean distance for the detection of the physical cluster centres, so I did 

not try using k-means centres for this experiment. Also, the data with reduced features using 

30 clusters gave very bad results with this idea so I kept only the 50 cluster trials. For the raw 

features the tumour cluster is 26 and for the reduced features is 6. 
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5.1.2.4 Patch selection 

 

Lastly, I tried the idea of selecting some patches for the classification to reduce the extra 

information. I extracted the patches 0-150 and 550-625. The tumour clusters are 27 for raw 

features and 0 for reduced features.  

 

 

5.1.3 Testing trained model on healthy women 

 

I also tried to train a model on women with breast cancer and pass through the trained model 

denov2 features with the same processing from some images with healthy women to analyse 

the results and see if the tumour area cluster appears on the healthy images. Because I had the 

best results in the experiment with raw features, patch reassign using Euclidean distance, 

patch selection and 30 cluster [Graph 11] and with reduced features to 128, patch reassign 

and 20 clusters [Graph 6], so I pass 10 new images from those models and see the new 

heatmaps 

 

 

5.1.4 Supervised on unsupervised training 

 

Lastly, I tried to add supervised training on unsupervised training, and I used Random Forest 

classifier and the labels I created with 40X40 patches and 348 features with the “Breast 

Thermography” dataset and applied 10 images from the “A New Database for Breast 

Research with Infrared Image” dataset [7].  
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5.2 Results & Discussion 

 

For analysing the results of the experiments, I used the confusion matrix with the ground 

truths I already mention. More specific I did not give attention to the accuracy because of the 

imbalance of the TP and TN as the TN were way more and the model even with non TN was 

succeeding more than 80% accuracy. I focused only on precision ,recall and f1 score but 

more on the precision and f1 score because I want the model to be precise and I want to 

minimize the FP as much as possible. Also, I used the metric mean average precision with 

IoU which is a common way to analyse models with object detection like tumour detection. 

Moreover, I created a baseline for comparison using a temperature threshold of 85 and my 

model in each experiment had much better results. For each I will display a plot with the best 

runs of the model for that experiment compering them with the baseline and the ground truths 

for better understanding.    

 

5.2.1 Feature Map 15X15 

5.2.1.1 Raw Features 

 

We can see in the chart [Graph 1] with 20 clusters we have the lowest precision, mean AP 

and f1 score with 12%, 24% and 19% respectively and it increases with the increase of the 

clusters peaking up to 15%, 29% and 20% respectively with 30 clusters. But we can see that 

recall is decreasing from 40% to 31% because with more clusters the cluster with the tumour 

area has less patches. 

 

Graph 1:Raw data 
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5.2.1.2 PCA Feature reduction to 128 

 

 

We can see in the graph [Graph 2] that now the precision is decreasing as the clusters 

increase from 14% with 20 clusters to 13% with 30 clusters. The recall and the mean AP 

peaks to 46% and 41% respectively with 30 clusters and the lowest are 35% and 37% with 25 

clusters and lastly the f1 score is almost the same with 20 and 30 clusters with 20% but with 

25 clusters it slightly decreases to 19%.      

 

 

 

 

Graph 2: PCA Feature reduction to 128 

 

 

 

 

5.2.1.3 Tumour cluster reassign using K-means centres  

5.2.1.3.1 Raw Features with tumour cluster reassign using K-means centres 

 

As we can see in the chart [Graph 3] that our result has the same pattern and they are around 

the same with the previous results [Graph 1] but now with 20 clusters the precision starts 

from 13% and the f1 score from 18% and they get to 18% and 20% respectively with 30 

clusters so we can see that now we are more precise. But the mean AP has increased to 41% 

with 30 clusters. We also notice that because specified more the tumour cluster the recall 

starts from 29% with 20 clusters and gets to 24% with 30 clusters.   
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Graph 3:Raw Features with tumour cluster reassign using K-means centres 

 

 

 

5.2.1.3.2 PCA Feature reduction to 128 with cluster reassign using K-means centres  

 

The results have also the same pattern as previous [Graph 2] but now the peak precision and 

f1 score are higher with 17% and 21% respectively with 20 clusters and mean AP is 46% 

with 30 clusters but, peak recall is lower with 40% using 30 clusters [Graph 4].     

 

 

 

Graph 4: PCA Feature reduction to 128 with cluster reassign using K-means centres 
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5.2.1.4 Tumour cluster reassign using Euclidean distance   

5.2.1.4.1 Raw Features with tumour cluster reassign using Euclidean distance   

 

As I expected the result are better from using the k-means centres but unfortunately the 

improvement is minimum. The precision start from 15% with 20 clusters and peaks to 21% 

with 30 cluster and we have +3% improvement from the k-means but the mean AP only 

increased 1% with 42%. Also, the f1 score peaks to 24% with 25 clusters with +4% 

improvement. Lastly recall peaked to 32% with 20 clusters with +3% improvement [Graph 

5].     

 

 

Graph 5: Raw Features with tumour cluster reassign using Euclidean distance 

 

 

 

 

 

5.2.1.4.2 PCA Feature reduction to 128 with tumour cluster reassign using Euclidean 

 

Like the raw data the result with this idea is better than using the k-means centres and they 

are the best results yet with f1 score peaking to 25% and precision peaking to 21% with +4% 

improvement in both metrics using 20 clusters but, the mean AP is 38% in that case and it 

peaked to 41% with 30 clusters. Unfortunately, the recall was decreased to 32% and as the 

clusters increased the metrics were decreasing [Graph 6]. 
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Graph 6: PCA Feature reduction to 128 with tumour cluster reassign using Euclidean 

 

 

 

5.2.1.5 Using more data  

5.2.1.5.1 Using more data with raw features 

 

The results [Graph 7] showed that with more data the model has a very minimum 

improvement from the training with only the “Breast thermography” dataset as with 30 

clusters precision is 16% and f1 score is still 20% and with 20 clusters the recall peaked with 

only 27%. Also the mean AP peaked to 40% with 25 clusters.  

 

 

 

Graph 7: Using more data with raw features 
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5.2.1.5.2 Using more data with PCA Feature reduction to 128 

 

Unfortunately, we have almost the same results with the training with only the one dataset 

with peak precision 14% peak f1 score 20% and peak recall 37% but, the mean AP is less 

with 33%. So, more data was not helpful with reduced data [Graph 8].  

 

 

 

 

Graph 8: Using more data with PCA Feature reduction to 128 
 

 

 

 

 

 

5.2.1.6 Patch selection  

5.2.1.6.1 Raw features with patch selection  

 

With this method I specified the images and managed to get a good improvement on 

precision with peak 22% with 30 clusters as well as on mean AP with 45%. Also, f1 is better 

with 23% but the recall again is 35% with 20 clusters [Graph 9].     
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Graph 9: Raw features with patch selection 

 

 

 

5.2.1.6.2 PCA Feature reduction to 128 with patch selection  

 

We can  notice [Graph 10] that the precision is higher than the pca reduced data without 

patch selection with 17% using 30 clusters but the f1 score remains the same and the recall is 

lower with peak 33% but the mean AP peaked higher with 42%. On this case we can see that 

the results are better without PCA reduction.  

 

 

 

Graph 10: PCA Feature reduction to 128 with patch selection 
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5.2.1.7  Patch selection and tumour cluster reassign using Euclidean 

 

I tried the model only for 30 cluster for the data with the raw features because in most of the 

experiments the data with the raw features had better results from the other  and also the 

experiment with patch selection on raw features had the best precision so far and I thought 

that adding cluster reassigning would improve it even more and it actually does with 28% and 

f1 score 25%  and the best mean AP so far with 56% [Graph 11]. I also tried the 20 clusters 

with reduced features, because it had also the best results in most of the experiment but, 

unfortunately the metrics are better than the experiment with patch selection on reduced 

features but, they are not better than the one with  the cluster reassign using Euclidian on 

reduced data and we see that the precision peaks to 19% ,the f1 score to 23% and the mean 

AP to 40% [Graph 11]. 

 

 

 

Graph 11:Patch selection and tumour cluster reassign using Euclidean 
 

 

5.2.2 25X25 

5.2.2.1 Raw features  

 

We can see that the model in comparison with the 15X15 [Graph 1] has better precision with 

20% and slightly better f1 score with 21% but worst recall with 22% as well as mean AP with 

47% [Graph 12]. 
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Graph 12:Raw features 

 

 

 

5.2.2.2 PCA Feature reduction to 128 

 

We can see that the model with 30 clusters has better recall which is 35% and is lower than 

the 15X15 experiment [Graph 2] but the precision and the f1 score is better with 19% and 

23% respectively. With 50 clusters tho we have better mean AP with 44% [Graph 13]. 

 

 

 

 

Graph 12: PCA Feature reduction to 128 



42 

 

5.2.2.3 Tumour cluster reassign using Euclidean distance   

 

We observe from the graph [Graph 14] that using the clusters reassigning on both raw 

features and reduced features the model is more precise as the precision increased to 26% and 

24% respectively and the mean AP increased to 59% and 56% respectively also, the f1 score 

remains the same with 21% in both trials, but in both trials the recall  reduced to 18%. 

 

 

 

 

Graph 13: Tumour cluster reassign using Euclidean distance   

 

 

 

 

 

5.2.2.4 Patch selection 

 

We can see that in this case with raw data the model is not working well as all the metrics are 

worst from the original result [Graph 12] with precision 18%, recall 13% and f1 score 15% 

[Chart 15]. With reduced features it has almost the same results with the original [Graph 13] 

with more precision 21% and less recall 19% but overall same f1 score around 20% [Graph 

15]. But in both cases we have a good mean Ap with 57% and 52% respectively.  
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Graph 14: Patch selection 
 

 

 

5.2.3 Visualisation and comparison with baseline 

5.2.3.1 PCA Feature reduction to 128 with tumour cluster reassign using Euclidean 

 

We can see the comparison with the experiment using 15X15 patches map, pca reduced 

features to 128, patches reassigning with Euclidean distance and 20 clusters and the tumour 

clusters is the 18 [Plot 1].   
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Plot 1:Comparison with 15X15 original image, baseline, k-means prediction using the experiment 

5.1.1.4.2 with 20 clusters and the GT 

 

 

5.2.3.2  Patch selection and tumour cluster reassign using Euclidean on Raw features 

 

We can see the comparison with the experiment using 15X15 patches map, raw features, 

patches reassigning with Euclidean distance, patch selection and 30 clusters and the tumour 

clusters is the 3 [Plot 2].  
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Plot 2:Comparison with 15X15 original image, baseline, k-means prediction using the experiment 5.1.1.7 

with raw features and the GT 

 

 

 

 

5.2.3.2  Patch selection and tumour cluster reassign using Euclidean on Raw features 

 

Lastly can see the comparison with the experiment using 25X15 patches map, raw features, 

patches reassigning with Euclidean distance and 50 clusters and the tumour clusters is the 26 

[Plot 3].  
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Plot 3:Comparison with 25X25 original image, baseline, k-means prediction using the experiment 5.1.2.3 

with raw features and the GT 
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5.2.3 Testing trained model on healthy women 

 

For the raw features I was looking for the cluster 3 and unfortunately the 7 from 10 images 

have the cluster 3 and its mostly in the breast area so this example did not work as it is 

supposed to [Figure 18]. For the reduced features I am looking for the cluster 18 and again 6 

from 10 images have the tumour cluster but this time the patches on the cluster are mostly 

above the breast area and they have big quantity, so the result in this experiment is better but 

need a human interaction to understand that the tumour clusters is not detecting a tumour 

[Figure 19].   

 

 

Figure 18: An example of 10 heatmaps from thermographs with health women with raw features and 30 

clusters  

 

Figure 19: An example of 10 heatmaps from thermographs with health women with raw features and 30 

clusters 
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5.2.4 Supervised on unsupervised training 

 

First, I tried this model with 0.6 [Figure 21] and 0.7 [Figure 22] probability threshold but in 

both trials the results are wrong because of the poor labeled data, the imbalances of the labels 

(the most tumor areas were in the same breast area) and the unprofessional detection of the 

cancer area. Based on the example of the 10 images [Figure 20] we can see that  with 0.6 

probability threshold [Figure 21] there are some images that did not match with any label and 

some matched with two labels. In the other hand with 0.7 probability threshold [Figure 22] 

only one of the 10 image matched with 2 labels but most of the images matched with non. 

 

 

 

 

Figure 20: An example of 10 thermographs with sick women that I used for Supervised on unsupervised 

training  
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Figure 21: The 10 heatmaps from the thermographs with sick women that I used for Supervised on 

unsupervised training with 0.6 probability threshold 

 

 

 

 

 

 

Figure 22: The 10 heatmaps from the thermographs with sick women that I used for Supervised on 

unsupervised training with 0.6 probability threshold 
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6.1 Conclusion  

 

The purpose of my thesis was to develop un unsupervised model that detect the location of 

the breast cancer on thermographs of ill women to increase the number of early detections of 

breast cancer. 

 

More specific I mostly pre-processed the images with dinov2 and try to apply different ideas 

on the k-means unsupervised classifier. In my thesis I did not get very high result, but I tried 

many ideas [Table 4] with a high potential to work match better with more data , better image 

pre-processing and using qualified labels for training and evaluation. 

 

 

Experiment  Cluster Precision Recall F1 Score Mean AP 

15X15 Raw Features 20 12% 40% 19% 24% 

25 14% 36% 20% 25% 

30 15%  31% 20% 29% 

15X15 PCA Feature reduction to 128 20 14% 37% 20% 24% 

25 13% 35% 19% 24% 

30 13% 46% 20% 38% 

15X15 Raw Features with tumour 

cluster reassign using K-means centres 

20 13% 29% 18% 36% 

25 16% 25% 20% 37% 
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30 18% 24% 20% 41% 

15X15 PCA Feature reduction to 128 

with cluster reassign using K-means 

centres  

20 17% 26% 21% 37% 

25 16% 25% 20% 36% 

30 13% 40% 19% 46% 

15X15 Raw Features with tumour 

cluster reassign using Euclidean 

distance  

20 15% 32% 20% 37% 

25 20% 30% 24% 38% 

30 21% 27% 24% 42% 

15X15 PCA Feature reduction to 128 

with tumour cluster reassign using 

Euclidean 

20 21% 32% 25% 38% 

25 18% 28% 22% 37% 

30 17% 22% 19% 41% 

15X15 Using more data with raw 

features 

20 13% 27% 17% 29% 

25 15% 20% 17% 39% 

30 16% 32% 21% 30% 

15X15 Using more data with PCA 

Feature reduction to 128 

20 14% 37% 20% 29% 

25 13% 27% 18% 29% 

30 14% 26% 18% 33% 

15X15 Raw features with patch 

selection  

20 15% 35% 21% 26% 

25 16% 20% 18% 43% 

30 22% 25% 23% 45% 

15X15 PCA Feature reduction to 128 

with patch selection  

20 14% 33% 20% 27% 

25 15% 28% 20% 32% 

30 17% 22% 19% 41% 

15X15 Patch selection and tumour 

cluster reassign using Euclidean 

30 raw 28% 22% 25% 56% 

20 reduced 19% 28% 23% 40% 

25X25 Raw features 50 20% 21% 21% 47% 

25X25 PCA Feature reduction to 128 30 17% 34% 23% 31% 

50 19% 22% 21% 44% 

25X25 Tumour cluster reassign using 

Euclidean distance   

50 raw 26% 18% 21% 59% 

50 reduced 24% 18% 20% 56% 

25X25 Patch selection 50 raw 18% 13% 15% 57% 

50 reduced 21% 19% 20% 52% 

Table 4: Experiments and evaluation 
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In my experiments the models were mostly successfully detecting the tumour area in images 

where the area was obviously brighter than the other areas. But over all with the labels I 

created the best results were with 15X15 patches, raw features , patch reassigning with the 

Euclidean distance, patch selection and 30 clusters where I manage to get 28% precision 22% 

recall and 25% f1 score. Also, the best results with reduced features to 128 were with 15X15 

patches, patch reassigning with Euclidean distance and 20 cluster and I was able to get 21% 

precision 32% recall and 25% f1 score. Lastly I managed to get the best mean AP with 59% 

using 25X25 patches, cluster reassign using Euclidean distance and 50 clusters on raw 

features.  

 

 

6.2 Future Work 

 

The ideas I tried in my model have the potential to produce better results than the ones I got. I 

believe that I created the bone for a model that can work better with some changes. So, the 

next phase will be to try the models with more data and more qualified labels for the data or a 

suggestion was given to me to proses the images with sodu colouring for better visibility of 

the cancer area. Also is possible to make changes in the images pre-processing for better 

results and try different unsupervised model that may work better with this data and even 

different number of pca feature reduction may give better results.  
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Appendix Α 

 

Codes 

 

Dinov2 pre-processing: 

 

 # Imports for data manipulation and processing 

import torch 

import torchvision.transforms as T 

import numpy as np 

from sklearn.decomposition import PCA 

import sklearn 

# Imports for data loading and visualization 

from PIL import Image 

import matplotlib.pyplot as plt 

import matplotlib.image as mpimg 

# Other Utility Imports 

import os 

 

#Mount the google driver 

from google.colab import drive 

drive.mount('/content/drive') 

 

# Path to your images folder in Google Drive 

image_folder = "/content/drive/My Drive/{image folder}" 

 

# Generate image paths using actual filenames 

img_paths = [os.path.join(image_folder, filename) for filename in 

sorted(os.listdir(image_folder)) if filename.endswith(".jpg")] 

print(img_paths) 

 

##### EXPERIMENT PARAMETERS ##### 

N_IMGS =  35 # Number of images of the specific class to work with 

# Plotting Parameters 

N_ROW_IMGS = 6 # How many rows of images to show in the plotting 
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N_COL_IMGS = 6 # How many of those images will appear in each row 

 

# Define the number of patches along the two dimensions to split each image into 

patch_h = 15 

patch_w = 15 

# Define the size of the model to use for extracting the features of each patch 

model_size = 's' # options: s, b, l, g 

use_registers = False 

use_extended_dinov2 = True 

 

# Instructions: 

# From https://github.com/vpariza/NeCo?tab=readme-ov-file download the student Dinov2 

ViT-S/14 from  https://1drv.ms/u/c/67fac29a77adbae6/EWvXdau9r6NIr-

vIc_xDlxAB1sDrljoaPR_A3JhIEeE8dw?e=pOXEXG 

# upload to google drive 

# and find the path to the file on google drive 

path = "/content/drive/MyDrive/images/neco_on_dinov2r_vit14_model.ckpt" 

!ls /content/drive/MyDrive/images/neco_on_dinov2r_vit14_model.ckpt 

 

 

model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14') 

model.load_state_dict(torch.load(path), strict=False) 

 

tensor = torch.randn(N_IMGS, 3, 224, 224) # 16*14 =224 

display(tensor.shape) 

if use_registers: 

  model = torch.hub.load('facebookresearch/dinov2', 

'dinov2_vit{}14_reg'.format(model_size)) 

else: 

  model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vit{}14'.format(model_size)) 

features_dict = model.forward_features(tensor) 

display(features_dict.keys()) 

display(features_dict['x_norm_clstoken'].shape) 

display(features_dict['x_norm_regtokens'].shape) 

display(features_dict['x_norm_patchtokens'].shape) 

display(features_dict['x_prenorm'].shape) 
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feat_dims = { 

    's':384, # vits14 

    'b':768, # vitb14 

    'l':1024, # vitl14 

    'g':1536, # vitg14 

} 

feat_dim = feat_dims[model_size] 

 

transform = T.Compose([ 

    T.GaussianBlur(9, sigma=(0.1, 2.0)), 

    T.Resize((patch_h * 14,patch_w * 14), interpolation=T.InterpolationMode.LANCZOS), 

    T.CenterCrop((patch_h * 14, patch_w * 14)), 

    T.ToTensor(), 

    T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), 

    # T.Normalize(mean=0.5, std=0.2), 

]) 

 

if use_registers: 

  model = torch.hub.load('facebookresearch/dinov2', 

'dinov2_vit{}14_reg'.format(model_size)) 

else: 

  model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vit{}14'.format(model_size)) 

 

if use_extended_dinov2 == False: 

  model.load_state_dict(torch.load(path), strict=False) 

 

# extract DINOv2 features 

features = torch.zeros(N_IMGS, patch_h * patch_w, feat_dim) 

imgs_tensor = torch.zeros(N_IMGS, 3, patch_h * 14, patch_w * 14) 

for i in range(N_IMGS): 

    img_path = img_paths[i] 

    img = Image.open(img_path).convert('RGB') 

    imgs_tensor[i] = transform(img)[:3] 

with torch.no_grad(): 
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    if torch.cuda.is_available(): 

      features_dict = model.cuda().forward_features(imgs_tensor.cuda()) 

    else: 

      features_dict = model.forward_features(imgs_tensor) 

    print(features_dict.keys()) 

    features = features_dict['x_norm_patchtokens'].cpu() 

 

 

save_path = "/content/drive/MyDrive/{feature file}"  # Change this 

import torch 

 

torch.save(features, save_path)  # Save as a PyTorch tensor 

print("Features saved successfully!") 
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K-means: 

 

import torch 

from sklearn.cluster import KMeans 

import numpy as np 

 

#Check the shape 

# print("Loaded features shape:", features.shape) 

feature_files = [ 

    {dinov2 feature files} 

] 

 

# Load and concatenate features 

features_list = [torch.load(f) for f in feature_files] 

 

for i, f in enumerate(features_list): 

    print(f"File {feature_files[i]} -> Shape: {f.shape}") 

 

#Feature load with 15X15 pacthes 

( 

NUM_PATCHES=int(features_list[0].shape[0]/35) 

FEATURE_DIM = features_list[0].shape[1]   

N_IMGS=int(features_list[0].shape[0]/225) 

features_list[0]= features_list[0].reshape(N_IMGS, NUM_PATCHES,FEATURE_DIM) 

features=features_list[0] 

) 

 

# Concatenate along the batch dimension (axis=0) 

features = torch.cat(features_list, dim=0) 

 

# Check the new shape 

print("Loaded combined features shape:", features.shape) 

 

 

# Assuming features shape: (N_IMGS, NUM_PATCHES, FEATURE_DIM) 

N_IMGS,NUM_PATCHES, FEATURE_DIM = features.shape   
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# Reshape to cluster patches instead of entire images 

patch_features_flattened = features.reshape(-1, FEATURE_DIM)  # Shape: (N_IMGS * 

NUM_PATCHES, FEATURE_DIM) 

 

from sklearn.decomposition import PCA  

 

pca = PCA(n_components=128) # Reduce feature dimension  

features_reduced = pca.fit_transform(patch_features_flattened)  

 

 

# Apply K-Means to patches 

K = 30 # Number of clusters 

 

# Run KMeans on data 

kmeans = KMeans(n_clusters=K, random_state=42, n_init=10) 

patch_clusters = kmeans.fit_predict({features_reduced/ patch_features_flattened) #reduced or 

raw 

 

 

# Reshape back to (N_IMGS, NUM_PATCHES) to know which patch belongs to which 

cluster 

patch_clusters = patch_clusters.reshape(N_IMGS, NUM_PATCHES) 

 

print("Patch Clusters Shape:", patch_clusters.shape)  # Should be (N_IMGS, 

NUM_PATCHES) 

print(patch_clusters) 

 

patch_positions = np.zeros((N_IMGS, NUM_PATCHES, 2), dtype=int)  # Store (i, j) 

positions 

 

 

for img_idx in range(N_IMGS): 

    for patch_idx in range(NUM_PATCHES): 

        i = patch_idx // 40  # Row index 
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        j = patch_idx % 40  # Column index 

        patch_positions[img_idx, patch_idx] = (i, j)  # Store position 

 

 

import os 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Define a color palette for more than 20 clusters 

cmap = sns.color_palette("hls", K) 

 

 

# # Define labels for each heatmap 

labels = [ 

    "Left", "Left", "Right", "Right", "Left", "Left", "Left", "Right", "Right", "Right", 

    "Left", "Right", "Right", "Right", "Left", "Right", "Right", "Left", "Left", "Left", 

    "Right", "Right", "Left", "Right", "Left", "Left", "Left", "Left", "Right", "Right", 

    "Right", "Left", "Left", "Right", "Right" 

]  # Ensure this matches N_IMGS 

 

# Define the output folder on the desktop 

desktop_path = os.path.join(os.path.expanduser("~"), "Desktop") 

output_folder = os.path.join(desktop_path, "Heatmap_Images_40_K20") 

 

# Create folder if it doesn't exist 

os.makedirs(output_folder, exist_ok=True) 

 

# Loop through images and generate heatmaps 

for img_idx in range(N_IMGS): 

    heatmap = np.full((40, 40), -1)  # Initialize with -1 (for missing values) 

 

    for patch_idx in range(NUM_PATCHES): 

        i, j = patch_positions[img_idx, patch_idx] 

        cluster_id = patch_clusters[img_idx, patch_idx] 

        heatmap[i, j] = cluster_id  # Assign cluster ID to heatmap position 
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    # Create the heatmap figure 

    plt.figure(figsize=(8, 6)) 

    # Create annotation labels, blank for -1 

    annot_labels = np.where(heatmap == -1, "", heatmap.astype(int).astype(str)) 

 

    sns.heatmap( 

     heatmap, 

     cmap=cmap, 

     annot=annot_labels, 

     fmt="", 

     linewidths=0.5, 

     linecolor='gray', 

     cbar=True, 

     square=True 

    ) 

 

    # Define the filename using the corresponding label 

    label = labels[img_idx] if img_idx < len(labels) else "Unknown" 

    filename = f"heatmap_{img_idx}_{label}.png" 

    save_path = os.path.join(output_folder, filename) 

 

    # Save the heatmap 

    plt.title(f"Heatmap for Image {img_idx} ({label})") 

    plt.xlabel("Column (j)") 

    plt.ylabel("Row (i)") 

    plt.savefig(save_path, dpi=300, bbox_inches="tight") 

    plt.close()  # Close the figure to free memory 

 

print(f"Heatmaps saved in: {output_folder}") 

 

# evaluation 

import csv 

import numpy as np 

 

# Load your CSV into a numpy array (excluding the first index column) 

csv_file = "output_40.csv"  # ← change this to your actual CSV file name 
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with open(csv_file, "r") as file: 

    reader = csv.reader(file) 

    csv_data = np.array([list(map(int, row[1:])) for row in reader])  # Skip first column 

 

print("CSV shape:", csv_data.shape)  # Should be (N_IMGS, 225) 

 

TP = 0  # CSV == 1 and Cluster == {tumour cluster} 

TN = 0  # CSV == 0 and Cluster != {tumour cluster} 

FP = 0  # CSV == 0 and Cluster == {tumour cluster} 

FN = 0  # CSV == 1 and Cluster != {tumour cluster} 

 

for img_idx in range(35): 

    for patch_idx in range(NUM_PATCHES): 

        cluster = patch_clusters[img_idx, patch_idx] 

        label = csv_data[img_idx, patch_idx] 

 

        if label == 1 and (cluster == {tumour cluster} or  cluster == {tumour cluster}): 

            TP += 1 

        elif label == 0 and (cluster != {tumour cluster} and cluster != {tumour cluster}): 

            TN += 1 

        elif label == 0 and (cluster == {tumour cluster} or cluster == {tumour cluster}): 

            FP += 1 

        elif label == 1 and (cluster != {tumour cluster} and cluster != {tumour cluster}): 

            FN += 1 

 

total = TP + TN + FP + FN 

accuracy = (TP + TN) / total 

precision = TP / (TP + FP) if (TP + FP) > 0 else 0 

recall = TP / (TP + FN) if (TP + FN) > 0 else 0 

f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 

 

print(f"   Accuracy:  {accuracy:.4f}") 

print(f"       Precision: {precision:.4f}") 

print(f"    Recall:    {recall:.4f}") 

print(f"      F1 Score:  {f1:.4f}") 
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Labelling for supervised: 

 

 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib.patches as patches 

import matplotlib.image as mpimg 

import torch 

import pandas as pd 

import os 

 

# --- Load Features --- 

feature_files = [{feature files}]   

features_list = [torch.load(f) for f in feature_files] 

features = torch.cat(features_list, dim=0)   

 

N_IMGS, NUM_PATCHES, FEATURE_DIM = features.shape 

#For 15X15 patches 

( 

# NUM_PATCHES=int(features.shape[0]/35) 

# FEATURE_DIM = features.shape[1]   

# N_IMGS=int(features.shape[0]/225) 

) 

 

# --- Load Image Paths --- 

img_folder = "C:/Users/damia/Desktop/sick3" #add you images’ folder 

img_paths = sorted([os.path.join(img_folder, f) for f in os.listdir(img_folder) if 

f.endswith(('.png', '.jpg', '.jpeg'))]) 

 

# --- Dynamically Determine Grid Size --- 

PATCH_H = int(np.sqrt(NUM_PATCHES)) 

PATCH_W = int(np.sqrt(NUM_PATCHES)) 

 

 

# --- CSV File --- 

save_path = "labeled_patch_features.csv" 
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if not os.path.exists(save_path): 

    df = pd.DataFrame(columns=["Image_Index", "Patch_Index", "Label"] + [f"Feature_{i}" 

for i in range(FEATURE_DIM)]) 

    df.to_csv(save_path, index=False) 

 

 

# --- Function to Select Region Manually --- 

def on_click(event): 

    global large_patch_x, large_patch_y, large_patch_w, large_patch_h 

    if event.xdata is None or event.ydata is None: 

        return 

    if 'start' not in on_click.__dict__: 

        on_click.start = (event.xdata, event.ydata) 

    else: 

        large_patch_x, large_patch_y = int(on_click.start[0]), int(on_click.start[1]) 

        large_patch_w, large_patch_h = int(event.xdata - large_patch_x), int(event.ydata - 

large_patch_y) 

        plt.close() 

 

 

# --- Manual Image Selection Loop --- 

while True: 

    print("\nAvailable images:") 

    for i, path in enumerate(img_paths): 

        print(f"{i}: {os.path.basename(path)}") 

 

    try: 

        img_idx = int(input("\nEnter image number to process (or -1 to exit): ")) 

        if img_idx == -1: 

            print("Exiting program.   ") 

            break 

        if img_idx < 0 or img_idx >= len(img_paths): 

            print("Invalid number. Please try again.") 

            continue 

    except ValueError: 

        print("Invalid input. Please enter a number.") 
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        continue 

 

    img_path = img_paths[img_idx] 

    img = mpimg.imread(img_path) 

    img_h, img_w = img.shape[:2]  # Get actual image size 

 

 

    # Dynamically determine patch size based on image size 

    patch_w = img_w // PATCH_W 

    patch_h = img_h // PATCH_H 

 

    print(f"\nProcessing Image {img_idx}: {img_path}") 

    print(f"Image size: {img_w}x{img_h}, Patch size: {patch_w}x{patch_h}, Grid: 

{PATCH_W}x{PATCH_H}") 

 

 

    # --- Show Image for Manual Selection --- 

    fig, ax = plt.subplots() 

    ax.imshow(img) 

    ax.set_title("Click to select a region (drag from start to end)") 

    fig.canvas.mpl_connect("button_press_event", on_click) 

    plt.show() 

 

 

    # Ensure width and height are positive 

    large_patch_w = abs(large_patch_w) 

    large_patch_h = abs(large_patch_h) 

 

 

    # --- Find Small Patches Inside the Selected Region --- 

    selected_patches = [] 

    for patch_idx in range(NUM_PATCHES): 

        patch_row = patch_idx // PATCH_W 

        patch_col = patch_idx % PATCH_W 

 

        patch_x = patch_col * patch_w 
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        patch_y = patch_row * patch_h 

 

        if (large_patch_x <= patch_x < large_patch_x + large_patch_w) and ( 

            large_patch_y <= patch_y < large_patch_y + large_patch_h 

        ): 

            selected_patches.append(patch_idx) 

 

    print(f"Selected patches: {selected_patches}") 

 

 

    # --- Show Image with Selected Area --- 

    fig, ax = plt.subplots() 

    ax.imshow(img) 

    rect = patches.Rectangle((large_patch_x, large_patch_y), large_patch_w, large_patch_h,  

                             linewidth=2, edgecolor='r', facecolor='none') 

    ax.add_patch(rect) 

     

    for patch_idx in selected_patches: 

        patch_row = patch_idx // PATCH_W 

        patch_col = patch_idx % PATCH_W 

        patch_x = patch_col * patch_w 

        patch_y = patch_row * patch_h 

        patch_rect = patches.Rectangle((patch_x, patch_y), patch_w, patch_h,  

                                       linewidth=1, edgecolor='b', facecolor='none') 

        ax.add_patch(patch_rect) 

 

    ax.set_title(f"Selected Region - Image {img_idx}") 

    plt.show() 

 

 

    # --- Assign a Label --- 

    label = input(f"Enter label for selected region in Image {img_idx} (e.g., 'arm', 'chest', 

'background'): ") 

 

 

    # --- Store Labeled Features --- 
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    labeled_patches = [] 

    for patch_idx in selected_patches: 

        feature_vector = features[img_idx, patch_idx, :].numpy().tolist() 

        labeled_patches.append([img_idx, patch_idx, label] + feature_vector) 

 

 

    # --- Append to CSV --- 

    df_new = pd.DataFrame(labeled_patches, columns=["Image_Index", "Patch_Index", 

"Label"] + [f"Feature_{i}" for i in range(FEATURE_DIM)]) 

    df_new.to_csv(save_path, mode="a", header=False, index=False) 

 

    print(f"   {len(selected_patches)} labeled patches from Image {img_idx} added to 

{save_path}.") 

    print("\nYou can select another image or exit.") 
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Random Forest 

 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.preprocessing import LabelEncoder 

 

# Load the labeled CSV 

df = pd.read_csv("labeled_patch_features3.csv") 

 

# Extract features and labels from the CSV 

X_csv = df.iloc[:, 3:].values  # Features (ignore Image_Index, Patch_Index, Label) 

y_csv = df["Label"].values      # Labels 

 

# Encode labels into numerical values 

label_encoder = LabelEncoder() 

y_csv_encoded = label_encoder.fit_transform(y_csv) 

 

# Get indices of patches that belong to breast Cluster (cluster 0 in this example) 

breast_cluster_indice= np.where(np.isin(patch_clusters, [0])) 

num_patches_in_breast_cluster= breast_cluster_indices [0].shape[0]  # Count of selected 

patches 

print("Number of patches in clusters :", num_patches_in_breast_cluster) 

 

# Extract features of these patches 

breast_cluster_indices_flat = breast_cluster_indices [0] * NUM_PATCHES + 

breast_cluster_indices [1] 

breast_cluster_features = patch_features_flattened[breast_cluster_indices _flat] 

 

# Split CSV data for training 

X_train, X_test, y_train, y_test = train_test_split(X_csv, y_csv_encoded, test_size=0.2, 

random_state=42) 
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# Train a classifier on the labeled CSV data 

clf = RandomForestClassifier(n_estimators=100,random_state=42) 

clf.fit(X_train, y_train) 

 

print("Shape of breast_cluster_features:", breast_cluster_features.shape) 

 

 

from collections import Counter 

print("Training Label Distribution:", Counter(y_train)) 

 

#Set the threshold  

pobability_threshold=0.7 

 

probs = clf.predict_proba(breast_cluster_features)  # shape: (n_patches, n_classes) 

max_probs = np.max(probs, axis=1) 

best_class_ids = np.argmax(probs, axis=1) 

 

 

# Filter patches with confident prediction 

confident = max_probs >= pobability_threshold 

confident_patch_features = breast_cluster_features[confident] 

confident_indices = breast_cluster_indices _flat[confident] 

confident_labels = best_class_ids[confident] 

confident_labels_decoded = label_encoder.inverse_transform(confident_labels) 

# Initialize the matrix with -1s (unlabeled) 

new_patch_clusters = np.full_like(patch_clusters, fill_value=-1) 

 

 

# Assign predicted labels to their corresponding [img_idx, patch_idx] positions 

for idx, flat_idx in enumerate(confident_indices): 

    img_idx, patch_idx = divmod(flat_idx, NUM_PATCHES)  # Convert flat index back to 

2D index 

    new_patch_clusters[img_idx, patch_idx] = confident_labels[idx]  # Store the class label 
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#Display of heatmap 

 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

 

 

# Define a colormap for different clusters 

cmap = sns.color_palette("tab10", np.unique(new_patch_clusters).size)  # Choose 10 distinct 

colors 

 

 

# Function to plot heatmap for a given image index 

def plot_cluster_heatmap(image_idx): 

    plt.figure(figsize=(8, 6)) 

     

    print("Shape of patch_clusters:", new_patch_clusters.shape)  # Should be (num_images, 

height, width) 

    # Ensure it's a 2D array 

    # Reshape cluster_map to 2D (assuming square patches) 

    GRID_HEIGHT = 40  # Adjust based on actual number of patches per row 

    GRID_WIDTH = 40   # Adjust based on actual number of patches per column 

 

    cluster_map = new_patch_clusters[image_idx].reshape(GRID_HEIGHT, GRID_WIDTH) 

 

 

   # Check shape before plotting 

    print(f"Reshaped cluster map shape for image {image_idx}: {cluster_map.shape}") 

 

 

    # Check shape before plotting 

    print(f"Cluster map shape for image {image_idx}: {cluster_map.shape}") 
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    # Plot heatmap 

    sns.heatmap(cluster_map, cmap=cmap, linewidths=0.5, linecolor="gray", annot=False, 

cbar=True) 

     

    plt.title(f"Cluster Heatmap for Image {image_idx}") 

    plt.xlabel("Patch Index (X)") 

    plt.ylabel("Patch Index (Y)") 

    plt.show() 

 

 

# Example: Plot heatmap for a specific image (change index as needed) 

plot_cluster_heatmap(image_idx=0)  # Change 0 to any image index 

 

 

for i in range(N_IMGS):  # Replace with actual number of images 

    plot_cluster_heatmap(i) 
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Labelling for evaluation  

 

import csv 

 

def generate_csv_from_input(filename, rows=35, cols=1600): 

    with open(filename, mode='w', newline='') as file: 

        writer = csv.writer(file) 

        for i in range(1, rows + 1): 

            print(f"\nRow {i}:") 

            count = int(input(f"  How many 1's do you want in this row? ")) 

             

            # Loop until valid input 

            while True: 

                indices_input = input(f"  Enter {count} column numbers (1–{cols}) separated by 

spaces: ") 

                try: 

                    indices = list(map(int, indices_input.strip().split())) 

                    if len(indices) != count or not all(1 <= idx <= cols for idx in indices): 

                        raise ValueError 

                    break 

                except ValueError: 

                    print("    Invalid input. Please enter exactly the correct number of integers 

between 1 and 225.") 

 

            # Initialize row with index and 0s 

            row = [i] + [0] * cols 

            # Set selected indices to 1 

            for idx in indices: 

                row[idx] = 1  # Index 1 refers to the first data column (after the index) 

 

            # Write row to CSV 

            writer.writerow(row) 

    print("\n   CSV file has been generated.") 

# Usage 

generate_csv_from_input("output.csv") 
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Addition code for K-means to pass additional image through the model: 

 

# Setup heatmap output 

desktop_path = os.path.join(os.path.expanduser("~"), "Desktop") 

output_folder = os.path.join(desktop_path, "{Heatmap_Images}") # Replace with your file  

os.makedirs(output_folder, exist_ok=True) 

 

# Load multiple new images from a .pt file 

new_image_file = "{feature file}"  # Replace with your file 

new_images_features = torch.load(new_image_file)  # Shape: (N_NEW_IMGS, 

NUM_PATCHES, FEATURE_DIM) 

print(new_images_features.shape) 

# Get the number of new images 

N_NEW_IMGS =int(new_images_features.shape[0]) 

 

# Color map 

cmap = sns.color_palette("hls", K) 

 

# Loop through new images 

for img_idx in range(N_NEW_IMGS): 

    # Extract patch features for this image 

    new_image_features_flat = new_images_features.reshape(-1, FEATURE_DIM) 

    #PCA reduction if wanted 

    new_features_reduced = pca.fit_transform(new_image_features_flat)  

 

    # Predict cluster IDs 

    new_image_clusters = kmeans.predict(new_features_reduced) 

    

   #  Reshape back to (N_IMGS, NUM_PATCHES) to know which patch belongs to which 

cluster 

    new_image_clusters = new_image_clusters.reshape(N_NEW_IMGS, NUM_PATCHES) 

 

    # Build heatmap matrix 

    heatmap = np.full((15, 15), -1)  # Adjust size as needed 
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    for patch_idx in range(NUM_PATCHES): 

        i, j = patch_positions[img_idx, patch_idx] 

        cluster_id = new_image_clusters[img_idx,patch_idx] 

        heatmap[i, j] = cluster_id 

     

    annot_labels = np.where(heatmap == -1, "", heatmap.astype(int).astype(str)) 

 

    sns.heatmap( 

     heatmap, 

     cmap=cmap, 

     annot=annot_labels, 

     fmt="", 

     linewidths=0.5, 

     linecolor='gray', 

     cbar=True, 

     square=True 

    ) 

     

 

    plt.title(f"Heatmap for Image {img_idx}") 

    plt.xlabel("Column (j)") 

    plt.ylabel("Row (i)") 

 

    filename = f"heatmap_{img_idx}.png" 

    save_path = os.path.join(output_folder, filename) 

    plt.savefig(save_path, dpi=300, bbox_inches="tight") 

    plt.close() 

 

print(f"Heatmaps saved in: {output_folder}") 

 

 

 

 

 

 

 


