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Abstract

Many people today have been diagnosed with breast cancer and in most of the cases the late
detection causes the cancer to be incurable. Today there are various ways to diagnose breast
cancer like mammography and ultrasound breast exams however they are not taken so
frequently from the patients because they are expensive, dangerous or painful. As a result,
recent studies presented thermography as a complementary tool to primary diagnostic
methods, for frequent monitoring, which is easier to take, pain-less and radiation-free which
can be conducted at home in few minutes using an affordable thermal camera attached to a
smartphone. However, many studies showed that with thermography and Artificial Intelligent
programs they can detect if a patient has breast cancer, but they cannot detect the location of
the cancer. So, the goal of my study is to create an algorithm using machine learning to detect
the location of the cancer in breast thermal images and compare different hyperparameters

and analyse the results to see how the model performs for this task.
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Chapter 1

Introduction

1.1 Problem with common examinations 1
1.2 Problem with Thermography 1
1.3 Thesis’ goal 2

1.1 Problem with common examinations

Breast cancer accounts for one in three female cancers in the United States. The American
Cancer Society estimates that, of the approximately 168,260,000 women in the US, 316,950
will receive a new diagnosis of invasive breast cancer annually, and 42,170 will lose their
lives to the disease [1]. Mammograms, ultrasounds, breast magnetic resonance imaging
(MRI), and other primary breast cancer screening procedures are typically performed on a
periodic basis on women. The most crucial and gold standard test for breast cancer is
mammography, which can identify tumours up to two years before they are palpable.
However, it is advised that women have routine screenings every two to three years,
beginning at age 45 [2], due to the ionizing radiation that mammography exposes the patient
to. Another screening method is ultrasound, which calls for a specialist to operate the

equipment and interpret the findings. [3]

1.2 Problem with Thermography

On the other hand, thermography is an FDA-approved adjunct to primary breast screening
methods for breast cancer examinations [4]. The primary advantage of thermography is that it
can be carried out using reasonably priced thermal camera equipment, and as the camera does
not produce any radiation, it poses no risk to the patient. Unfortunately, a lot of research
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added to the market models for cancer detection showing if a patient is diagnosed with breast

cancer or not but there is not a model showing the exact location of the cancer. [3]

1.3 Thesis’ goal

As | previously mentioned it is important for fast treatment of the breast cancer to be early
detected but it is also important for the right treatment to have early localization of the
tumour area. In this thesis I will try to address this issue, by trying with different models,
different data and data preprocessing to create an unsupervised algorithm that combines
multiple techniques to be able to achieve the best accuracy with the detection of the cancer
area on ill women but also see how the program reacts with healthy women and analyse my

results using specific metrics.
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Background
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2.3 Dinov2

2.4 Metrics
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2.1 Machine learning Clustering algorithms

Cluster algorithms are models that separate different inputs into groups based on the
similarity of their features that we have in the dataset. Those models can be supervised or

unsupervised

2.1.1 Supervised Cluster algorithms

In supervised algorithms we have in the dataset the desired cluster output for each input, and
it works like ‘teacher' providing the net with the output required for each input. This
algorithm learns by adjusting the weights to minimize the difference between the desired and

actual outputs for each input pattern.

2.1.1.1 Random Forest Classifier

The basic idea in decision tree classifier is the separation of the inputs at each non-terminal

node and the choice of the most important data features for the separation of the inputs.
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Random Forest is a popular and easy machine learning algorithm used for several types of
classification tasks. A Random Forest is a combination of tree-structured classifiers. Every
tree of the forest gives an output , assigning each input to the closest class label. As we see in
the [Figure 1] there are 4 decision trees, and each tree takes as input from the dataset x and
based on different features each tree gives an output, and the most common output is the
“winner”. It is a fast method, robust to noise and it is a successful ensemble which can
identify non-linear patterns in the data. It can easily handle both numerical and categorical
data. One of the major advantages of Random Forest is that it does not suffer from over-

fitting, even if more trees are appended to the forest. [5]

Random Forest Classifier
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Figure 1:Random Forest Classifier diagram with 4 trees

2.1.2 Unsupervised Cluster algorithms

Unlike supervised in unsupervised algorithms we do not have the desired output of each input
[6]. This network can discover statistical regularities in its input space and automatically
develops different modes of behavior to represent different classes of inputs (in practical
applications some “labelling' is required after training, since it is not known at the outset

which mode of behavior will be associated with a given input class).[5]



2.1.2.1 K-means algorithm

K-means is a simple unsupervised cluster algorithm and it is very common as it solves most

of the clustering problems. The main idea is to define k centroids, one for each cluster. We

place these centroids most of the time random but different location causes different results.

So, if it’s not random we try to place them as much as possible far away from each other.

Next step is to take each point from the inputs and associate it with the closest centroid and

when there are no inputs left the first epoch is finished. Then we re-calculate the k centroids

at the centre of each cluster, and we repeat the association with the same inputs as previous

and the new centroids and we repeat this process until the k centroids stop changing

locations. That means that the clusters have the minimum square error [7]. And we can see an

example of 2D point that are pass through K-Means with 3 as K and it cluster the point into 3

cluster based on the position [Figure 2].

Before K-Means

G

e

Figure 2: 2D Point diagram before and after K-Means classification



2.2 Vision Transformer

The Vision Transformer (ViT) introduces a new era of computer vision where images are
treated as sequences of patches, just like words in Natural Language Processing (NLP). By
leveraging Transformers instead of Convolutional Neular Networks (CNNs), ViT achieves
state-of-the-art performance on image recognition tasks with large datasets. While it requires
large datasets for pre-training, its simplicity, scalability, and effectiveness make it a
compelling alternative to CNNs. This paradigm shift from convolutional processing to
attention-based processing could inspire new models for object detection, segmentation, and
other vision tasks. Registers are extra learnable tokens added to the Vision Transformer input
sequence that provide dedicated space for internal computations, preventing the model from
corrupting patch features and improving attention smoothness and downstream task
performance. Without registers, vision transformers like DINOv2 models tended to repurpose
background patch tokens (with little information) for internal computations, leading to

degraded local features and problems like messy attention maps [ Figure 3]. [8]

Without registers With registers

DeiT-111 OpenCLIP DINOv2 DeiT-111 OienCLIP DINOv2

Figure 3: Register tokens enable interpretable attention maps in all vision transformers, like the original

DINO method (Caron et al., 2021). Attention maps are calculated in high resolution for better
visualisation. [8]

2.3 Dinov2

DINOv2 is a Self-supervised Vision Transformer Model created by Meta Al and produces

universal features suitable for image-level visual tasks (image classification, instance
6



retrieval, video understanding) as well as pixel-level visual tasks (depth estimation, semantic
segmentation). The pipeline Dinov2 follows is easy as it takes only 3 steps. First it chops the
uncurated data and the curated data into patches called embeddings then it removes form the
uncurated data very similar images to avoid redundancy and reduce noise and last the
remaining uncurated images are matched to curated images based on embedding similarity

and it retrieves them [Figure 4]. [9]
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Figure 4: Overview of our data processing pipeline. Images from curated and uncurated data sources are
first mapped to embeddings. Uncurated images are then deduplicated before being matched to curated
images. The resulting combination augments the initial dataset through a self-supervised retrieval
system.[9]

DINOv2 demonstrates that self-supervised models trained on curated datasets can achieve
better generalization and robustness than weakly supervised models like Contrastive
Language-Image Pre-training (CLIP). The robust features learned by DINOv2 support a wide
range of vision tasks at image and pixel levels, making them suitable for classification,
segmentation, depth estimation, and more. For example, it can classify different species of
animals like flying animals or ground animals like horses, and it can even classify different
objects like car and show also with different colours similar components between the objects

in each group [Figure 5]. [9]



Figure 5: Visualization of the first PCA components. A PCA between the patches of the images is been
computed from the same column and show their first 3 components. Each component is matched to a
different colour channel. Same parts are matched between related images despite changes of pose, style or
even objects.[9]

2.4 Metrics

For the task of the classification evaluation, typically we are only interested in binary ratings,
that is, either the item was selected (1) or not (0) or in our case the patch has a tumour (1) or
not (0). [10] This matrix contains statistics about actual and predicted classifications and lays
the fundamental foundations necessary to understand accuracy measurements for a specific
classifier.[11]

241 TP,FP,TN,FN

This matrix is characterized with 4 attributes that we can compute based on the desired and
the actual output where we check whether the cluster that represents the cancer area has the
same patches as the label we created. The attributes are the follows:
e TP: A patch in the tumour cluster belong in the tumour patches in the label file
e FP: A patch in the tumour cluster does not belong in the tumour patches in the label
file
e TN: A patch that is not in the tumour cluster does not belong in the tumour patches in
the label file
e FN: A patch that is not in the tumour cluster belong in the tumour patches in the label
file



Actual Values
Positive Negative
Predicted Values Positive TP FP
Negative FN TN

Table 1: Confusion Matrix for Binary Classifier

2.4.2 Accuracy

Accuracy is the fraction of correct predictions among all predictions or how often a
prediction is correct. However, the classification accuracy has limitations, especially when
dealing with imbalanced datasets, where instances of one class may significantly outnumber
those of other classes. Accuracy = (Number of correctly classified instances) / (Total number
of instances) [12]

Accuracy = (TP +TN) /(TP + FP + TN + FN)

2.4.3 Precision

If there are more than two output classes, the classification accuracy does not provide
information on the classes that are predicted accurately. In such cases, a more suitable
measure is precision. Precision is the fraction of the correctly predicted positive results. To be
more specific it shows the percentage of how many of the patches in the tumour cluster are
actual tumour patches. [12]

Precision = TP / (TP + FP)

2.4.4 Recall

This measures the proportion of actual positives predicted correctly, or how accurately the
model predicts positive cases. Recall is particularly valuable when false negatives need to be
minimized. For example, in a medical diagnostic setting like in our problem, recall indicates
the proportion of actual positive cases that the model correctly identified, which is important
to avoid missing potentially critical diagnoses. [12]

Recall = TP / (TP + FN).

2.4.5 F1-score

The F1-score, which combines precision and recall, is important for models in which both are
equally important and models for healthcare applications are perfect examples. This is a
harmonic means of precision and recall that considers both false negatives and false positives.
The harmonic mean is computed by dividing the number of values in a data series by the sum
of the reciprocals of each value in the data series. [12]

F1-score = (2 * precision * recall) / (precision + recall)
9




2.4.6 Mean Average Precision

Mean Average Precision (mAP) is the most common evaluation metric. Precision is derived
from Intersection over Union (loU), which is the ratio of the area of overlap and the area of
union between the ground truth and the predicted bounding box. A threshold is set to
determine if the detection is correct. If the loU is more than the threshold, it is classified

as True Positive while an IoU below it is classified as False Positive. If the model fails to
detect an object present in the ground truth, it is termed as False Negative. Precision
measures the percentage of correct predictions while the recall measures the correct
predictions with respect to the ground truth.[13]

10
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3.1 Brest Thermography

The idea behind breast thermography is to use an infrared (IR) camera to monitor the breasts'
surface temperature and then use image post-processing to pinpoint regions of a normal
temperature. In 1956, Lawson provided one of the earliest indications that breast cancer alters
the breasts' typical temperature distribution [14]. In comparison to the contralateral region of
the breast without a tumour, all 26 participants with breast cancer in this study had an
increase of 1.3 C close to the tumour location. And later studies showed even more increase

in the temperature of the area around the tumour [15].

3.1.1 “Breast Thermography” dataset

It is image thermography dataset of female thorax zone as scientific contribution in breast
cancer thermography research area. Dataset was acquired inside a medical office with
dimensions W:3.20m x L:4.14m x H:2.40m, in grayscale without artificial illumination at a
temperature 22 - 24°C and relative humidity 45 - 50%. A FLIR A300 camera was used to
capture the images at a working distance of 1m from the patient. The American Academy of
Thermology (AAT) protocol was used to prepare the patient and capture. Three images were
taken of each patient in the female thorax area: anterior, left oblique and right oblique

positions, but | used only the anterior so that | have the same angle for all my data. The

11



patients ranged in age from 18-81 years with different pathologies related to the female
breast. The images were captured between 2021 and 2022. There is also a csv file that
indicate which breasts are malign or benign or normal and has also some information of the
patient like age, height e.t.c [16]. Using a plot, we can see an example of 32 anterior images
from this dataset with 32 ill women where we can recognise that in grayscale the tumour area
is brighter from the other areas [Figure 6] and we can also see the difference with the plot

with the 32 anterior images from 32 healthy woman [Figure 7].

] B S T
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Figure 6: 32 of anterior images of ill women from ""Breast Thermography"* dataset

P S s B S
LA e

Figure 7: 32 of anterior images of healthy women from "'Breast Thermography' dataset
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3.1.2 “A New Database for Breast Research with Infrared Image” dataset

The dataset for the following experiments was created using the breast thermography
database by Silva et al. (2014) and is the one that most researchers in breast thermography
uses. The database consists of grayscale thermal images of resolution 640 x 480 pixels. The
database has 173 healthy and 37 sick front-view images. The infrared (IR) images are
captured by a FLIR thermal camera, model SC620, which has sensitivity of less than 0.04°C
range and capture standard —40°C to 500°C. [17]

3.2. Dataset usage

In my study | mostly used the “Breast Thermograph” dataset because it includes a csv file
which was very helpful because, it had information for each breast if it was normal, malign
pathology or benign pathology and that helped me to understand my data and have an idea
where the tumour is located. | also use that information to find a more specific area of the
tumours and label it. I only use “A New Database for Breast Research with Infrared Image”
dataset to try the unsupervised algorithm with more data because the “Breast Thermograph”
dataset has only 35 images will ill woman. Furthermore, 1 use it in the supervised algorithm
because the labelled data I used were from the “Breast Thermograph” dataset and | wanted to
use the model on different data so that the patches that | want to classify have similar features

with the labelled and not the same.

3.3 Data Preprocessing

| preprocess the images using dinov2 in Google Collab where | divided the images to patches
and extract their features. | used different patches combinations (15X15, 25X25 and 40X40
patches) [Table 2] with 384 features for each patch creating a variety of feature dimensions
like (35,1600,384), where | had 35 images with 40X40 patches with 384 features for each
patch. | also try different feature processing ideas like reduction using the Principal
Component Analysis (PCA) which is a dimensionality reduction technique that transforms
high-dimensional data into a lower-dimensional space while preserving as much variance
(information) as possible and | use it to reduce the 384 features to 128 and this gives the
results better generalization but it losses some information as we can see with PCA reduction
the breast images are less complicated [Figure 8] and the same images without PCA

reduction have more information on them [Figure 9].
13



Patches Dimensions Number of Patches

15X15 225
25X25 625
40X40 1600

Table 2: Dinov2 patch Maps

Algorithm 1: DINOv2 Feature Extraction Pipeline

© 0O N oo o A~ W N P

e T e e L o o e
© N O U~ W N P O

Data: Images
Result: Patch-level features from DINOv2
Initialize: Number of images to process (N_IMGS).
Initialize: Number of rows and columns for image plotting (if needed).
Initialize: How many patches to extract along height and width.
Initialize: Choose the model size (e.g., small, base, large, giant).
Initialize: Set flags for using special DINOv2 versions (e.g., registers, extended).
Load the appropriate DINOv2 model (with or without registers).
Load model weights if using non-extended version.
Resize, center-crop, normalize, and convert images to tensor format.
Use a Gaussian blur and scale images to match patch dimensions.
Initialize: An empty tensor to store preprocessed images.
For each image:

Open it and convert to RGB.

Apply transformations and add to image tensor.
end
Move model and tensors to GPU (if available).
Disable gradient calculation for efficiency.
Forward images through the model.
Extract patch-level features from model output.

14



Figure 8: We can see 32 of anterior images of ill woman from "A New Database for Breast Research with
Infrared Image ' dataset after the algorithm using 40x40 patches and PCA reduction with to 128 features

and we see how it focuses on the body and the important areas

Figure 9: We can see with the same dataset as previous and 40X40 patches but without PCA reduction we

have 384 features, and we can see how different the results are.

15



3.4 Ground Truths

As | will later mention because of the lack of information and labels of the cancer areas | had
to manually label where is the tumour in the data from the ill women in the “Breast
Thermography” dataset to have a desired output for evaluation. Unfortunately, | did not have
an expert diagnose on the images so | found and labelled where | believe that the tumour area

is located which is the red square you can see in the plot [Figure 10].

Image Grid (6x6)

Figure 10:Plot with Ground Truths with the 36 images for the “Breast Thermography” dataset
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4.1 Dinov2 features processing

First, I had to make the appropriate changes to the features regarding their shape and their
normalization, and the dimension of the features based on if | want to use PCA reduction, to
be able to run the clustering algorithm. So first | had to load the feature file and extract the

number of images ,the number of patches and the feature dimension and in most of the
experiments the feature file has the shape (number of images, number of patches , number
of features per patch). Then | had to flatten the features to have shape: (number of images *
number of patches, number of features per patch) and cluster the patches instead of entire

images and then if | wanted to use PCA reduction | had to set the components to 128 and |
use the function fit_tranform to apply it on the features.

17



4.2 K-means implementation

Then for the clustering | used K-means using as input the normalised 2D features as |
described. | used multiple numbers of cluster, and random_state=42 to ensure reproducible
results and | used 10 as n_init that initialise how many times it will run the algorithm with
different centroids to get the best result. The model then gives for output a 1D array of length
image_num * patches_num where each value is the cluster number of the specific patch. But
having all the patches’ cluster number in a 1D was not helpful so I had to reshape the array to
(N_IMGS, NUM_PATCHES) to be able to set some coordinates to the patches to be easier to
work with. After the training is over, we can see the visualization of the clusters and analyze

the results to try different ideas and parameters [Figure 11].
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Figure 11:Algorith pipeline

4.3 Labelling for supervised classification

Because of the limited data information | wasn’t able to find the desired cancer location and

labels from an expert and | had to create my own manual label so I crated a program for that

where | load the images, and display them one by one and select the area that | believe it was

the cancer area and label it using the labels :I | side breast, | r side breast, r r side breast, r |

side breast, r nipple, | nipple, | upper breast, r upper breast where r is right and | is left and for
18



example | r is the left breast right side [Table 3]. Then the image index , the index of the

patches that were in the area | selected, and the label and their 384 features were saved in an

csv file that I will use later [Figure 12].

Label Name Description

I | side breast Left breast at the left side area

I r side breast Left breast at the right-side area
r r side breast Right breast at the right-side area
r | side breast Right breast at the left side area

r nipple Right breast at the nipple area

I nipple Left breast at the nipple area

| upper breast Left breast at the upper area

r upper breast Right breast ate the upper area

Table 3: Supervised labels for the area of the tumour

Algorithm 2: Labelling for supervised classification

co N o o b W DN P

10
11
12
13

Data: A Folder With images, Patch-level features from DINOv2 for the images
Result: CSV file with the patches number and their features and tumour area label
Define: list of feature files (e.g., “dinov2_features sick2 15.pt”)

Load all .pt files using torch.load()

Concatenate them into a single tensor called ‘features’

Derive NUM_PATCHES per image

Derive FEATURE_DIM (number of features per patch)

Derive N_IMGS from total number of patches and NUM_PATCHES

Set: image_folder path

Read and sort all image filenames from the folder with valid extensions (.png, .jpg,
Jpeg)

PATCH_H <sqrt(NUM_PATCHES)

PATCH_W < sqrt(NUM_PATCHES)

Define: save path for CSV (e.g., “Labelled patch features3.csv”)

If CSV doesn’t exist:

Create it with column headers: [“Image Index”, “Patch_Index”, “Label”, Feature 0,

19




... Feature_N]

14 end

15 on_click(event):

16 Store starting coordinates on first click

17 Store ending coordinates and calculate region on second click

18 While True:

19 Print available images with their indices

20 Ask user to input an image index (or -1 to exit)

21 If user enters -1:

22 Exit program

23 end

24 Validate the index:

25 If invalid, show an error and repeat

26 end

27 Load the selected image

28 Compute patch size dynamically from actual image dimensions

29 Show image using matplotlib

30 Let user select a rectangular region (2 mouse clicks)

31 Ensure width & height are positive (in case of reverse dragging)

32 Find all small patches within selected rectangle:
For each NUM_PATCHES:

33 Compute patch_x and patch_y based on row and column in grid

34 Check if the patch falls inside the selected rectangle

35 If yes, add patch_idx to selected_patches

36 end

37 Show image again with red rectangle (user selection) and blue boxes (selected
patches)

38 Ask user for a label (e.g., “l under breast”, “l upper breast”, etc.)

39 For each selected patch:

40 Extract the corresponding feature vector from the features tensor

41 Append [Image_Index, Patch_Index, Label, Feature Vector] to a list

42 end

43 Convert list to DataFrame and append it to the CSV file

44 end

20



il Image_Index Patch_Index Label Feature_0 Feature_1 Feature_2 Feature_3 Feature_4 Feature_5

2 0 811 rside breast 2.8249802589416504  '3.5774295330047607 0.3137509524822235 '1.7089725732803345 -2.846147299 -4.586224079
3 0 812 rside breast '2.638679265975952 "3.510869264602661  '0.3703893721103668 '1.3890349864959717 -1.980335236 -5.810262203
4 0 813 Irside breast 2.7236013412475586  '3.4751784801483154 '0.4678930938243866 '1.0461729764938354 -2.269265652 -3.121778727
5 0 851 Lrside breast '2.151430368423462 "1 8433077335357666 -0.082907908 1.228921652 -2.304460287 -6.283298675
6 0 852 rside breast '2.697645425796509 "2.7760539054870605 -0.106626429 "1.683579683303833 -2.518815041 -5.062199116
7 0 853 Irside breast 2.1672794818878174  '3.2269697189331055 -0.440821856 "1.6828128099441528 -3.075628519 -2.790500164
8 0 891 rside breast 2.4677677154541016  '1.3047088384628296 -0.592337191 0.25985202193260193 -1.163866878 -6.90158844
g 0 892 \rside breast '2.163271903991699 "1.2544736862182617 -0.435962796 '1.2523783445358276 -1.994825125 -7.258088589
10 0 893 Lrside breast '2.984417676925659 "2.809438943862915 -1.071157813 '1.8724355697631836 -3.454972029 -3.080748035
11 0 931 Lr side breast '2.430481195449829 "1.4786733388900757 -0.553591847 '0.175986498594284068 -1.938866735 -5.082947731
12 0 932 rside breast '2.2835676670074463  '2.1676135063171367 -0.598027766 "1.3894015550613403 -3.17172718 -4.315526009
13 0 933 Irside breast '2.6978845596313477  '3.1620936393737793 -0.296115518 "1.2788217067718506 -3.1919806 -3.00406589
14 1 1091 Ir side breast -0.409055382 -5.757217884 -1.694445014 '0.5664700269699097 '0.9752983450889587 -8.113540649
15 1 1092 Ir side breast -1.307293892 -8.796862602 -0.732959509 "1.2212677001953125 -1.253412843 -6.007169247
16 1 1093 Ir side breast 0.45011583 -2.330393553 0.4018242657184601 '3.618605613708496 -2.305247784 -4.086119175
17 1 1094 Lr side breast 0.5997675657272339 -1.930781722 '0.5088262557983398 2.8724164962768555 -2.720128536 -5.177294731
18 1 1131 Irside breast -1.314069152 -8.756925583 -1.067542076 '0.7413074374198914 -0.34604609 -6.603651524
19 1 1132 rside breast '0.3391876518726349 -5.491604328 0.082907654 0.14188827574253082 "0.3633917272090912 -3.768157959
20 1 1133 Irside breast '0.8698070049285889 -4.3299641610.19550077617168427 3.168471097846167 -1.117723823 -4.814712906

Figure 12: A sample of the csv file showing the image index, the patch index, one class label and some
features

4.4 Random Forest Classifier implementation

An extra idea to get better results was to add a supervised classifier to an unsupervised
classifier. So, by initializing the K to a small value | was able to extract from the K-means
algorithm the breast area and apply Random Forest Classifier to those patches. | also use the
csv file I created to help me train my model and add labels. So, | extract the features of the
patches from the csv and split them randomly to 80% for training and 20% for testing and
then | numerus the labels to be easier to work with and I train the model using this data for
100 epoch. I also extracted the features of the breast area patches that I got from the K-means
algorithm. Applying the trained model as it is on these data did not work because the model
was clustering all the breast area patches instead of the cancer area only, so | had to add a
probability threshold to use for the assigning of patches to a cluster. I set the threshold to 0.6
or 0.7 and extract the predicted probability for each class for every patch and then I get from
them the highest probability for each patch across all classes and then I use the threshold to
filter the patches with a classifier’s confidence level. Lastly, I initialize the new clusters and

fill them with the patches that pass the threshold in a shape: (img_idx, patch_idx).

4.5 K-means implementation with additional images

For the validation of my results, | also needed to see how my model will react with

thermographs of healthy women as it should not find any anomalies. At first, | thought that I
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could just run the k-means implementation using the features from the images with the
healthy women, but that approach was wrong because, the model had no cancer area to
compare with the other areas. The right approach was to train a model using features from
sick women and then pass from the model features from images with healthy women and see

the difference.

Algorithm 3: K-means implementation with additional images

Data: Patch-level features from DINOv2 for the extra images

Result: Visualization of the cluster on the new images

1 Apply the k-means implementation with features from images with sick women
2 Define the path to a new image .pt file (e.g., “dinov2_features_healthy 10 pca.pt”)
3 Load the tensor using torch.load()

4 Determine the number of new images:

5 Forimg_idx from 0 to N_NEW_IMGS-1:

6 Extract features for the current image

7 (Optional) Apply dimensionality reduction using PCA:
new_image_features_reduced < pca.transform(image_features)

8 Normalize features using previously fitted scaler:
new_image_features_norm < scaler.transform(image_features)

9 Predict cluster labels using pre-trained Kmeans:
new_image_clusters € kmeans.predict(new_image_features_norm)

10 Reshape cluster assignments back to 2D image grid:
new_image_clusters.shape < (PATCH_ROWS, PATCH_COLYS) or
(N_NEW_IMGS, NUM_PATCHES)

11 end

4.6 Labelling for evaluation

As | did not had labels for my data, | had to think of a way to evaluate my model’s result. A
good idea to evaluate my results was to create a CSV file with N rows and P+1 columns
where N is the number of images and P is the number of patches per image and the first
column is the index of the image and | assign the value 1 to the patches that were in the area

of the cancer and 0 to the patches that were not [Figure 13].
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Algorithm 4: Labelling for evaluation
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Data: Number of columns for each row with 1’s,the number each column with 1°’s

Result: CSV file with 0’s and 1’s labels
Open a new CSV file for writing
For each row (from 1 to rows):
Print which row is currently being filled
Ask the user: “How many 1’s do you want in this row?”
Ask user to enter count column numbers (1 to cols), separated by spaces
Convert input to a list of integers
Validate: Input length equals count
Validate: All indices are within bounds (1 to cols)
If input is invalid:
Print error message and re-prompt
end

Start with a list: [row_index] + [0]*cols

Set positions at selected indices to 1 //index 1 maps to first column (data starts from

column 1, index 1)
Write the row to the CSV file

end
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Figure 13: Example of the CSV file with 21 images and the first 18 patches

23

CoococooocOocOoOOCOCO0OOCOCODOOD OO

CoocoooOCcOocOoOOCOCOOOCOODOOCDOoO

cocococococo0coco00000c0OoG0co oo



4.7 Visualization

For analysing my results, | also had to see how my model was clustering the images. The fist
approach was to show a sample of 5 patches per cluster but that was not helpful because the

patches were so small, and | could not understand what each patch was showing [Figure 14].

Patches from Cluster 0

Sl d ]

Figure 14: Visualization of the 5 patches of the first cluster

In the second approach | was creating a k*k heatmap for each cluster combining all the
images where k is the number of the rows and columns of the patches and the heatmap was
darker in the areas that multiple images had patches that belonged in the same cluster. This
was better from the first approach but still had some problems. | was able to understand the
average area that each cluster was taking but I could not easily compare each cluster because
they were presented in deferent heatmaps, and I could not analyse each image alone because

they were all combined in each heatmap [Figure 15].
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Heatmap of Cluster 0 Across Patch Positions
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Figure 15: Visualization using a heatmap of the patches from all the images that belongs in the first
cluster using 25 clusters and 15X15 patches

So, for the last approach | took the heatmap idea and change it to fix the problem I
mentioned. This time | created a k*k heatmap for each image where it was combining all the
clusters with different colour for each cluster and this way, | was able to analyse each image,
and it was easier to see the exact regions for each cluster. | also put the number of the cluster
in each patch because some colures were not so different [Figure 16]. Lastly to be able to
compare the heatmaps with the original images | created a diagram on the images showing
the patches and their indexes (i, j) [Figure 17].
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Figure 16: Visualization using a heatmap of the image 1 using 20 clusters and 15*15 patches and showing
the cluster number of each patch

14 13 12 11 10 9 8

o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Column (j)

25



Patch Grid with Coordinates - Image 1
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Figure 17: Diagram on image 1 showing the 15*15 patches and the indexes of each patch
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Chapter 5

Experiments, Results & Discussion

5.1 Experiments 27
5.2 Results & Discussion 33

5.1 Experiments

In my experiments | tried a lot of approaches and parameters so that I can maximize my
metrics and more specifically the F1 score as is more important to show that the algorithm is
not showing more ill patches from the actual ill patches.

5.1.1 Feature Map 15X15

| used a 15X15 feature map because | needed to try with a small number first and work my
way up but 10X10 was too small and | did not get enough information for the clustering.
Also, | tried each experiment with 20 ,25 and 30 clusters to report the difference and find the
best cluster number for each case.

5.1.1.1 Raw Features

At first, | tried to just cluster the patches without any preprocessing, and the clusters with the
tumour area are 1 and 8 for 20 clusters, 2 for 25 and 14 for 30 clusters .
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5.1.1.2 PCA Feature reduction to 128

My data from preprocessing using dinov2 were produced with 384 features that may have
been a lot for the classifier, and it may cause the model to overfit and not generalize. So, |
tried to reduce the features using PCA to 128 because they are less than the original 384
features but not that few to cause the model to have poor training. With this new data the
tumour clusters now are 18 for 20 clusters , 2 for 25 clusters and 0 and 22 for 30 clusters

5.1.1.3 Tumour cluster reassign using K-means centres

I notice from the previous results that the cluster with the tumour area in most of the images
was detecting the tumour, but it was too general, so | thought I can reassign some of the
patches from the tumour cluster with a different cluster and first | tried to use the k-means
centre of the cluster to reassign the furthest patches. Also I set the number of patches that |
wanted to change based on the cluster’s quantity, to be more specific I ignore the images with
less than 10 patches, | change the 1/4 of the furthest patches in the tumour cluster if they are
less than 15, | change the 1/3 if they are less than 20 and if they are more | change the half of

the furthest patches in the tumour cluster.

5.1.1.3.1 Raw Features with tumour cluster reassign using K-means centres

| applied cluster reassign using the k-means centre on the raw data. Again, the clusters with

the tumour area are 1 and 8 for 20 clusters, 2 for 25 and 14 for 30 clusters.

5.1.1.3.2 PCA Feature reduction to 128 with cluster reassign using K-means centres
| applied cluster reassign using the k-means centre on the data with pca features reduction to

128. Like previous [5.1.1.2] with feature reduction the tumour clusters are 18 for 20 clusters,
2 for 25 clusters and 0 and 22 for 30 clusters.
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5.1.1.4 Tumour cluster reassign using Euclidean distance

Using the heatmap that | created with the experiment 5.1.1.3 ,where | reassigned the tumour
clusters using the k-means centre of the clusters | observed that the centre was not physically
in the centre of the cluster patches and in some images most of the patches in the tumour
cluster were close or in the tumour area. This is why | thought to compute the physical cluster
centre by my self using the Euclidean distance between the patches and use that centres to
determine which patches are the furthest. And then for the number of the changed patches I

followed the same pipeline as previous [5.1.1.3] .

5.1.1.4.1 Raw Features with tumour cluster reassign using Euclidean distance

| applied cluster reassign using the Euclidean distance for finding the centre on the raw data.

The tumour clusters are the same with the raw features without clusters reassign.

5.1.1.4.2 PCA Feature reduction to 128 with tumour cluster reassign using Euclidean

| applied cluster reassign using the Euclidean distance for finding the centre on the data with

pca features reduction to 128. Once again, the tumour clusters are the same with the

experiment with pca reduction without clusters reassign.

5.1.1.5 Using more data

In another experiment | tried to train the model with more data because the low results might

be because of the lack of big dataset. So, I tried to use both “Breast thermography” dataset

that |1 have been using and the “A New Database for Breast Research with Infrared Image”

dataset but only evaluate on the 35 images of “Breast thermography” dataset.
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5.1.1.5.1 Using more data with raw features

| added more data and used raw features. The tumour clusters are 12 for 20 clusters, 9 for 25
clusters and 4 for 30 clusters.

5.1.1.5.2 Using more data with PCA Feature reduction to 128

| applied pca features reduction to 128 to all the data. The tumour clusters are 18 for 20

clusters, 23 for 25 clusters and 12 for 30 clusters.

5.1.1.6 Patch selection

Another idea to make the algorithm more precise than it is originally, is to exclude some
patches from the images that were not important in any of the images before the clustering
and that made the images more specific, and we ignored unnecessary features. The patches
that I select to exclude were from 0 to 45 that were mostly the nerk and the arms area and 209
to 224 that were mostly the belly area.

5.1.1.6.1 Raw features with patch selection

| applied the patch selection on the data with raw features. The clusters with the tumour area
are 3 for 20 clusters, 24 for 25 and 3 for 30 clusters.

5.1.1.6.2 PCA Feature reduction to 128 with patch selection

| applied the patch selection on the data with pca features reduction to 128. The clusters with
the tumour area are 18 for 20 clusters, 1 for 25 and 2 for 30 clusters.
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5.1.1.7 Patch selection and tumour cluster reassign using Euclidean

Since | had some improvement with patch selection and tumour cluster reassign using
Euclidean which was better than using the K-means centres | decided to try combining the
two ideas and analyse the results.

5.1.2 Feature Map 25X25

| tried a lot of variation of 15X15 patches, so | had to also try different patch map to see how
my model works with more patches, and | tried 25X25 and analyse the results with some of
the ideas | tried with the previous experiment but with more clusters.

5.1.2.1 Raw features

First, | tried the model using data with raw features with 50 clusters only because with less or
more the model was giving very bad results and the tumour cluster is 26.

5.1.2.2 PCA Feature reduction to 128

Then, | tried adding feature reduction to 128 on the data and tried the model with 30 and 50
clusters and the tumour clusters are 29 for 30 clusters and 6 for 50 clusters.

5.1.2.3 Tumour cluster reassign using Euclidean distance

As | realised from the 15x15 experiments | had better results by reassigning the tumour
clusters using the Euclidean distance for the detection of the physical cluster centres, so | did
not try using k-means centres for this experiment. Also, the data with reduced features using

30 clusters gave very bad results with this idea so | kept only the 50 cluster trials. For the raw

features the tumour cluster is 26 and for the reduced features is 6.
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5.1.2.4 Patch selection

Lastly, I tried the idea of selecting some patches for the classification to reduce the extra
information. | extracted the patches 0-150 and 550-625. The tumour clusters are 27 for raw

features and 0 for reduced features.

5.1.3 Testing trained model on healthy women

| also tried to train a model on women with breast cancer and pass through the trained model
denov2 features with the same processing from some images with healthy women to analyse
the results and see if the tumour area cluster appears on the healthy images. Because | had the
best results in the experiment with raw features, patch reassign using Euclidean distance,
patch selection and 30 cluster [Graph 11] and with reduced features to 128, patch reassign
and 20 clusters [Graph 6], so | pass 10 new images from those models and see the new
heatmaps

5.1.4 Supervised on unsupervised training

Lastly, I tried to add supervised training on unsupervised training, and | used Random Forest

classifier and the labels I created with 40X40 patches and 348 features with the “Breast

Thermography” dataset and applied 10 images from the “A New Database for Breast
Research with Infrared Image” dataset [7].
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5.2 Results & Discussion

For analysing the results of the experiments, | used the confusion matrix with the ground
truths I already mention. More specific | did not give attention to the accuracy because of the
imbalance of the TP and TN as the TN were way more and the model even with non TN was
succeeding more than 80% accuracy. | focused only on precision ,recall and f1 score but
more on the precision and f1 score because | want the model to be precise and | want to
minimize the FP as much as possible. Also, | used the metric mean average precision with
loU which is a common way to analyse models with object detection like tumour detection.
Moreover, | created a baseline for comparison using a temperature threshold of 85 and my
model in each experiment had much better results. For each | will display a plot with the best
runs of the model for that experiment compering them with the baseline and the ground truths

for better understanding.

5.2.1 Feature Map 15X15
5.2.1.1 Raw Features

We can see in the chart [Graph 1] with 20 clusters we have the lowest precision, mean AP
and f1 score with 12%, 24% and 19% respectively and it increases with the increase of the
clusters peaking up to 15%, 29% and 20% respectively with 30 clusters. But we can see that
recall is decreasing from 40% to 31% because with more clusters the cluster with the tumour

area has less patches.
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Graph 1:Raw data
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5.2.1.2 PCA Feature reduction to 128

We can see in the graph [Graph 2] that now the precision is decreasing as the clusters
increase from 14% with 20 clusters to 13% with 30 clusters. The recall and the mean AP
peaks to 46% and 41% respectively with 30 clusters and the lowest are 35% and 37% with 25
clusters and lastly the f1 score is almost the same with 20 and 30 clusters with 20% but with
25 clusters it slightly decreases to 19%.
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Graph 2: PCA Feature reduction to 128

5.2.1.3 Tumour cluster reassign using K-means centres

5.2.1.3.1 Raw Features with tumour cluster reassign using K-means centres

As we can see in the chart [Graph 3] that our result has the same pattern and they are around
the same with the previous results [Graph 1] but now with 20 clusters the precision starts
from 13% and the f1 score from 18% and they get to 18% and 20% respectively with 30
clusters so we can see that now we are more precise. But the mean AP has increased to 41%
with 30 clusters. We also notice that because specified more the tumour cluster the recall

starts from 29% with 20 clusters and gets to 24% with 30 clusters.
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Graph 3:Raw Features with tumour cluster reassign using K-means centres

5.2.1.3.2 PCA Feature reduction to 128 with cluster reassign using K-means centres

The results have also the same pattern as previous [Graph 2] but now the peak precision and
f1 score are higher with 17% and 21% respectively with 20 clusters and mean AP is 46%

with 30 clusters but, peak recall is lower with 40% using 30 clusters [Graph 4].
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Graph 4: PCA Feature reduction to 128 with cluster reassign using K-means centres
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5.2.1.4 Tumour cluster reassign using Euclidean distance
5.2.1.4.1 Raw Features with tumour cluster reassign using Euclidean distance

As | expected the result are better from using the k-means centres but unfortunately the
improvement is minimum. The precision start from 15% with 20 clusters and peaks to 21%
with 30 cluster and we have +3% improvement from the k-means but the mean AP only
increased 1% with 42%. Also, the fl1 score peaks to 24% with 25 clusters with +4%
improvement. Lastly recall peaked to 32% with 20 clusters with +3% improvement [Graph
5].
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Graph 5: Raw Features with tumour cluster reassign using Euclidean distance

5.2.1.4.2 PCA Feature reduction to 128 with tumour cluster reassign using Euclidean

Like the raw data the result with this idea is better than using the k-means centres and they
are the best results yet with f1 score peaking to 25% and precision peaking to 21% with +4%
improvement in both metrics using 20 clusters but, the mean AP is 38% in that case and it
peaked to 41% with 30 clusters. Unfortunately, the recall was decreased to 32% and as the

clusters increased the metrics were decreasing [Graph 6].
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Graph 6: PCA Feature reduction to 128 with tumour cluster reassign using Euclidean

5.2.1.5 Using more data

5.2.1.5.1 Using more data with raw features

The results [Graph 7] showed that with more data the model has a very minimum
improvement from the training with only the “Breast thermography” dataset as with 30
clusters precision is 16% and f1 score is still 20% and with 20 clusters the recall peaked with
only 27%. Also the mean AP peaked to 40% with 25 clusters.
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Graph 7: Using more data with raw features
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5.2.1.5.2 Using more data with PCA Feature reduction to 128

Unfortunately, we have almost the same results with the training with only the one dataset
with peak precision 14% peak f1 score 20% and peak recall 37% but, the mean AP is less
with 33%. So, more data was not helpful with reduced data [Graph 8].
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Graph 8: Using more data with PCA Feature reduction to 128

5.2.1.6 Patch selection

5.2.1.6.1 Raw features with patch selection
With this method | specified the images and managed to get a good improvement on

precision with peak 22% with 30 clusters as well as on mean AP with 45%. Also, f1 is better
with 23% but the recall again is 35% with 20 clusters [Graph 9].
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Graph 9: Raw features with patch selection

5.2.1.6.2 PCA Feature reduction to 128 with patch selection

We can notice [Graph 10] that the precision is higher than the pca reduced data without
patch selection with 17% using 30 clusters but the f1 score remains the same and the recall is
lower with peak 33% but the mean AP peaked higher with 42%. On this case we can see that
the results are better without PCA reduction.
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Graph 10: PCA Feature reduction to 128 with patch selection
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5.2.1.7 Patch selection and tumour cluster reassign using Euclidean

| tried the model only for 30 cluster for the data with the raw features because in most of the
experiments the data with the raw features had better results from the other and also the
experiment with patch selection on raw features had the best precision so far and | thought
that adding cluster reassigning would improve it even more and it actually does with 28% and
f1 score 25% and the best mean AP so far with 56% [Graph 11]. | also tried the 20 clusters
with reduced features, because it had also the best results in most of the experiment but,
unfortunately the metrics are better than the experiment with patch selection on reduced
features but, they are not better than the one with the cluster reassign using Euclidian on
reduced data and we see that the precision peaks to 19% ,the f1 score to 23% and the mean
AP to 40% [Graph 11].
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Graph 11:Patch selection and tumour cluster reassign using Euclidean

5.2.2 25X25
5.2.2.1 Raw features

We can see that the model in comparison with the 15X15 [Graph 1] has better precision with
20% and slightly better f1 score with 21% but worst recall with 22% as well as mean AP with
47% [Graph 12].
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Graph 12:Raw features

5.2.2.2 PCA Feature reduction to 128

We can see that the model with 30 clusters has better recall which is 35% and is lower than
the 15X15 experiment [Graph 2] but the precision and the f1 score is better with 19% and
23% respectively. With 50 clusters tho we have better mean AP with 44% [Graph 13].
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Graph 12: PCA Feature reduction to 128
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5.2.2.3 Tumour cluster reassign using Euclidean distance

We observe from the graph [Graph 14] that using the clusters reassigning on both raw
features and reduced features the model is more precise as the precision increased to 26% and
24% respectively and the mean AP increased to 59% and 56% respectively also, the f1 score

remains the same with 21% in both trials, but in both trials the recall reduced to 18%.
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Graph 13: Tumour cluster reassign using Euclidean distance

5.2.2.4 Patch selection

We can see that in this case with raw data the model is not working well as all the metrics are
worst from the original result [Graph 12] with precision 18%, recall 13% and f1 score 15%
[Chart 15]. With reduced features it has almost the same results with the original [Graph 13]
with more precision 21% and less recall 19% but overall same f1 score around 20% [Graph

15]. But in both cases we have a good mean Ap with 57% and 52% respectively.
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Graph 14: Patch selection

5.2.3 Visualisation and comparison with baseline

5.2.3.1 PCA Feature reduction to 128 with tumour cluster reassign using Euclidean

We can see the comparison with the experiment using 15X15 patches map, pca reduced
features to 128, patches reassigning with Euclidean distance and 20 clusters and the tumour
clusters is the 18 [Plot 1].
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Plot 1:Comparison with 15X15 original image, baseline, k-means prediction using the experiment
5.1.1.4.2 with 20 clusters and the GT

5.2.3.2 Patch selection and tumour cluster reassign using Euclidean on Raw features

We can see the comparison with the experiment using 15X15 patches map, raw features,

patches reassigning with Euclidean distance, patch selection and 30 clusters and the tumour

clusters is the 3 [Plot 2].
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Plot 2: Comparison with 15X15 original image, baseline, k-means prediction using the experiment 5.1.1.7
with raw features and the GT

5.2.3.2 Patch selection and tumour cluster reassign using Euclidean on Raw features

Lastly can see the comparison with the experiment using 25X15 patches map, raw features,

patches reassigning with Euclidean distance and 50 clusters and the tumour clusters is the 26

[Plot 3].
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5.2.3 Testing trained model on healthy women

For the raw features | was looking for the cluster 3 and unfortunately the 7 from 10 images
have the cluster 3 and its mostly in the breast area so this example did not work as it is
supposed to [Figure 18]. For the reduced features | am looking for the cluster 18 and again 6
from 10 images have the tumour cluster but this time the patches on the cluster are mostly
above the breast area and they have big quantity, so the result in this experiment is better but
need a human interaction to understand that the tumour clusters is not detecting a tumour
[Figure 19].

Heatmap for Image 0 Heatmap for Image 2

xxxxxx

Figure 18: An example of 10 heatmaps from thermographs with health women with raw features and 30
clusters

Heatmap for Image 3

Heatmap for Image 1

Heatmap for Image 2
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Column )

Figure 19: An example of 10 heatmaps from thermographs with health women with raw features and 30
clusters
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5.2.4 Supervised on unsupervised training

First, I tried this model with 0.6 [Figure 21] and 0.7 [Figure 22] probability threshold but in
both trials the results are wrong because of the poor labeled data, the imbalances of the labels
(the most tumor areas were in the same breast area) and the unprofessional detection of the
cancer area. Based on the example of the 10 images [Figure 20] we can see that with 0.6
probability threshold [Figure 21] there are some images that did not match with any label and
some matched with two labels. In the other hand with 0.7 probability threshold [Figure 22]

only one of the 10 image matched with 2 labels but most of the images matched with non.

Figure 20: An example of 10 thermographs with sick women that | used for Supervised on unsupervised
training
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Figure 21: The 10 heatmaps from the thermographs with sick women that | used for Supervised on
unsupervised training with 0.6 probability threshold

Custer Heatmap for image 3 Custer Hetmap for mage |

- Custer Hestmap fo image 5 o
Custer Hestmap fo mage 7 g e

Figure 22: The 10 heatmaps from the thermographs with sick women that I used for Supervised on
unsupervised training with 0.6 probability threshold
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Chapter 6

Conclusion & Future Work

6.1 Conclusion 68
6.2 Future Work 70

6.1 Conclusion

The purpose of my thesis was to develop un unsupervised model that detect the location of
the breast cancer on thermographs of ill women to increase the number of early detections of

breast cancer.

More specific | mostly pre-processed the images with dinov2 and try to apply different ideas
on the k-means unsupervised classifier. In my thesis | did not get very high result, but I tried
many ideas [Table 4] with a high potential to work match better with more data , better image

pre-processing and using qualified labels for training and evaluation.

Experiment Cluster Precision | Recall F1 Score | Mean AP
15X15 Raw Features 20 12% 40% 19% 24%

25 14% 36% 20% 25%

30 15% 31% 20% 29%
15X15 PCA Feature reduction to 128 20 14% 37% 20% 24%

25 13% 35% 19% 24%

30 13% 46% 20% 38%
15X15 Raw Features with tumour | 20 13% 29% 18% 36%
cluster reassign using K-means centres | 25 16% 25% 20% 37%

68




30 18% 24% 20% 41%
15X15 PCA Feature reduction to 128 | 20 17% 26% 21% 37%
with cluster reassign using K-means | 25 16% 25% 20% 36%
centres 30 13% 40% 19% 46%
15X15 Raw Features with tumour | 20 15% 32% 20% 37%
cluster reassign using Euclidean | 25 20% 30% 24% 38%
distance 30 21% 27% 24% 42%
15X15 PCA Feature reduction to 128 | 20 21% 32% 25% 38%
with tumour cluster reassign using | 25 18% 28% 22% 37%
Euclidean 30 17% 22% 19% 41%
15X15 Using more data with raw | 20 13% 27% 17% 29%
features 25 15% 20% 17% 39%

30 16% 32% 21% 30%
15X15 Using more data with PCA | 20 14% 37% 20% 29%
Feature reduction to 128 25 13% 27% 18% 29%

30 14% 26% 18% 33%
15X15 Raw features with patch | 20 15% 35% 21% 26%
selection 25 16% 20% 18% 43%

30 22% 25% 23% 45%
15X15 PCA Feature reduction to 128 | 20 14% 33% 20% 27%
with patch selection 25 15% 28% 20% 32%

30 17% 22% 19% 41%
15X15 Patch selection and tumour | 30 raw 28% 22% 25% 56%
cluster reassign using Euclidean 20 reduced | 19% 28% 23% 40%
25X25 Raw features 50 20% 21% 21% 47%
25X25 PCA Feature reduction to 128 30 17% 34% 23% 31%

50 19% 22% 21% 44%
25X25 Tumour cluster reassign using | 50 raw 26% 18% 21% 59%
Euclidean distance 50 reduced | 24% 18% 20% 56%
25X25 Patch selection 50 raw 18% 13% 15% 57%

50 reduced | 21% 19% 20% 52%

Table 4: Experiments and evaluation
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In my experiments the models were mostly successfully detecting the tumour area in images
where the area was obviously brighter than the other areas. But over all with the labels I
created the best results were with 15X15 patches, raw features , patch reassigning with the
Euclidean distance, patch selection and 30 clusters where | manage to get 28% precision 22%
recall and 25% f1 score. Also, the best results with reduced features to 128 were with 15X15
patches, patch reassigning with Euclidean distance and 20 cluster and | was able to get 21%
precision 32% recall and 25% f1 score. Lastly | managed to get the best mean AP with 59%
using 25X25 patches, cluster reassign using Euclidean distance and 50 clusters on raw

features.

6.2 Future Work

The ideas | tried in my model have the potential to produce better results than the ones | got. |
believe that | created the bone for a model that can work better with some changes. So, the
next phase will be to try the models with more data and more qualified labels for the data or a
suggestion was given to me to proses the images with sodu colouring for better visibility of
the cancer area. Also is possible to make changes in the images pre-processing for better
results and try different unsupervised model that may work better with this data and even
different number of pca feature reduction may give better results.
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Appendix A

Codes
Dinov2 pre-processing:

# Imports for data manipulation and processing
import torch

import torchvision.transforms as T

import numpy as np

from sklearn.decomposition import PCA
import sklearn

# Imports for data loading and visualization
from PIL import Image

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

# Other Utility Imports

import os

#Mount the google driver
from google.colab import drive
drive.mount(*/content/drive’)

# Path to your images folder in Google Drive

image_folder = "/content/drive/My Drive/{image folder}"

# Generate image paths using actual filenames

img_paths = [os.path.join(image_folder, filename) for filename in
sorted(os.listdir(image_folder)) if filename.endswith(".jpg™)]
print(img_paths)

#i### EXPERIMENT PARAMETERS #####

N_IMGS = 35 # Number of images of the specific class to work with

# Plotting Parameters

N_ROW_IMGS = 6 # How many rows of images to show in the plotting
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N_COL_IMGS = 6 # How many of those images will appear in each row

# Define the number of patches along the two dimensions to split each image into
patch_h =15

patch_w =15

# Define the size of the model to use for extracting the features of each patch
model_size ='s' # options: s, b, I, g

use_registers = False

use_extended_dinov2 = True

# Instructions:

# From https://github.com/vpariza/NeCo?tab=readme-ov-file download the student Dinov2
ViT-S/14 from https://1drv.ms/u/c/67fac29a77adbae6/EWvXdau9r6NIr-
vic_xDIXAB1sDrljoaPR_A3JhIEeE8dw?e=pOXEXG

# upload to google drive

# and find the path to the file on google drive

path = "/content/drive/MyDrive/images/neco_on_dinov2r_vitl4 _model.ckpt"”

lls /content/drive/MyDrive/images/neco_on_dinov2r_vitl4 _model.ckpt

model = torch.hub.load('facebookresearch/dinov2', ‘'dinov2_vits14')

model.load_state dict(torch.load(path), strict=False)

tensor = torch.randn(N_IMGS, 3, 224, 224) # 16*14 =224
display(tensor.shape)
if use_registers:

model = torch.hub.load('facebookresearch/dinov2’,
'dinov2_vit{}14 reg'.format(model_size))
else:

model = torch.hub.load('facebookresearch/dinov2’, 'dinov2_vit{}14'.format(model_size))
features_dict = model.forward_features(tensor)
display(features_dict.keys())
display(features_dict['x_norm_clstoken'].shape)
display(features_dict['x_norm_regtokens'].shape)
display(features_dict['’x_norm_patchtokens'].shape)

display(features_dict['x_prenorm].shape)
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feat_dims = {
's':384, # vits14
'h":768, # vith14
'1:1024, # vitl14
'g':1536, # vitg14
}

feat_dim = feat_dims[model_size]

transform = T.Compose([
T.GaussianBlur(9, sigma=(0.1, 2.0)),
T.Resize((patch_h * 14,patch_w * 14), interpolation=T.InterpolationMode.LANCZOS),
T.CenterCrop((patch_h * 14, patch_w * 14)),
T.ToTensor(),
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
# T.Normalize(mean=0.5, std=0.2),

)

if use_registers:
model = torch.hub.load('facebookresearch/dinov2’,
'dinov2_vit{}14 reg'.format(model_size))
else:
model = torch.hub.load('facebookresearch/dinov2’, 'dinov2_vit{}14".format(model_size))

if use_extended_dinov2 == False:

model.load_state dict(torch.load(path), strict=False)

# extract DINOv2 features
features = torch.zeros(N_IMGS, patch_h * patch_w, feat_dim)
imgs_tensor = torch.zeros(N_IMGS, 3, patch_h * 14, patch_w * 14)
for i in range(N_IMGS):

img_path = img_paths[i]

img = Image.open(img_path).convert(RGB")

imgs_tensor[i] = transform(img)[:3]
with torch.no_grad():



if torch.cuda.is_available():

features_dict = model.cuda().forward_features(imgs_tensor.cuda())
else:

features_dict = model.forward_features(imgs_tensor)
print(features_dict.keys())

features = features_dict['’x_norm_patchtokens'].cpu()

save_path = "/content/drive/MyDrive/{feature file}" # Change this

import torch

torch.save(features, save_path) # Save as a PyTorch tensor

print("Features saved successfully!™)



K-means:

import torch
from sklearn.cluster import KMeans

import numpy as np

#Check the shape
# print("Loaded features shape:", features.shape)
feature_files =[

{dinov2 feature files}

# Load and concatenate features

features_list = [torch.load(f) for f in feature_files]

for i, f in enumerate(features_list):
print(f'File {feature_files[i]} -> Shape: {f.shape}")

#Feature load with 15X15 pacthes

(

NUM_PATCHES=int(features_list[0].shape[0]/35)

FEATURE_DIM = features_list[0].shape[1]

N_IMGS=int(features_list[0].shape[0]/225)

features_list[0]= features_list[0].reshape(N_IMGS, NUM_PATCHES,FEATURE_DIM)

features=features_list[0]

)

# Concatenate along the batch dimension (axis=0)

features = torch.cat(features_list, dim=0)

# Check the new shape
print("Loaded combined features shape:", features.shape)

# Assuming features shape: (N_IMGS, NUM_PATCHES, FEATURE_DIM)

N_IMGS,NUM_PATCHES, FEATURE_DIM = features.shape
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# Reshape to cluster patches instead of entire images
patch_features flattened = features.reshape(-1, FEATURE_DIM) # Shape: (N_IMGS *
NUM_PATCHES, FEATURE_DIM)

from sklearn.decomposition import PCA

pca = PCA(n_components=128) # Reduce feature dimension

features_reduced = pca.fit_transform(patch_features_flattened)

# Apply K-Means to patches
K =30 # Number of clusters

# Run KMeans on data
kmeans = KMeans(n_clusters=K, random_state=42, n_init=10)
patch_clusters = kmeans.fit_predict({features_reduced/ patch_features_flattened) #reduced or

raw

# Reshape back to (N_IMGS, NUM_PATCHES) to know which patch belongs to which
cluster
patch_clusters = patch_clusters.reshape(N_IMGS, NUM_PATCHES)

print("Patch  Clusters Shape:", patch_clusters.shape) # Should be (N_IMGS,
NUM_PATCHES)

print(patch_clusters)

patch_positions = np.zeros((N_IMGS, NUM_PATCHES, 2), dtype=int) # Store (i, j)

positions

for img_idx in range(N_IMGS):
for patch_idx in range(NUM_PATCHES):

i = patch_idx // 40 # Row index
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j = patch_idx % 40 # Column index
patch_positions[img_idx, patch_idx] = (i, j) # Store position

import 0s
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns

# Define a color palette for more than 20 clusters

cmap = sns.color_palette("hls"”, K)

# # Define labels for each heatmap

labels = [
"Left", "Left", "Right", "Right", "Left", "Left", "Left", "Right", "Right", "Right",
"Left", "Right", "Right", "Right", "Left", "Right", "Right", "Left", "Left", "Left",
"Right", "Right", "Left", "Right", "Left", "Left", "Left", "Left", "Right", "Right",
"Right", "Left", "Left", "Right", "Right"

] # Ensure this matches N_IMGS

# Define the output folder on the desktop
desktop_path = os.path.join(os.path.expanduser(*~"), "Desktop™)
output_folder = os.path.join(desktop_path, "Heatmap_Images_40_K20")

# Create folder if it doesn't exist

os.makedirs(output_folder, exist_ok=True)

# Loop through images and generate heatmaps
for img_idx in range(N_IMGS):
heatmap = np.full((40, 40), -1) # Initialize with -1 (for missing values)

for patch_idx in range(NUM_PATCHES):
I, ] = patch_positions[img_idx, patch_idx]
cluster_id = patch_clusters[img_idx, patch_idx]

heatmapli, j] = cluster_id # Assign cluster ID to heatmap position
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# Create the heatmap figure

plt.figure(figsize=(8, 6))

# Create annotation labels, blank for -1

annot_labels = np.where(heatmap == -1, "", heatmap.astype(int).astype(str))

sns.heatmap(
heatmap,
cmap=cmap,
annot=annot_labels,
fmt="",
linewidths=0.5,
linecolor="gray’,
char=True,

square=True

)

# Define the filename using the corresponding label

label = labels[img_idx] if img_idx < len(labels) else "Unknown"
filename = f"heatmap_{img_idx}_{label}.png"

save_path = os.path.join(output_folder, filename)

# Save the heatmap

plt.title(f"Heatmap for Image {img_idx} ({label})")
plt.xlabel(*Column (j)")

plt.ylabel("Row (i)")

plt.savefig(save path, dpi=300, bbox_inches="tight")
plt.close() # Close the figure to free memory

print(f"Heatmaps saved in: {output_folder}")

# evaluation
import csv

import numpy as np

# Load your CSV into a numpy array (excluding the first index column)

csv_file ="output_40.csv" # « change this to your actual CSV file name
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with open(csv_file, "r") as file:
reader = csv.reader(file)

csv_data = np.array([list(map(int, row[1:])) for row in reader]) # Skip first column

print("CSV shape:", csv_data.shape) # Should be (N_IMGS, 225)

TP =0 #CSV == 1 and Cluster == {tumour cluster}
TN =0 # CSV == 0 and Cluster != {tumour cluster}
FP =0 # CSV == 0 and Cluster == {tumour cluster}
FN =0 # CSV == 1 and Cluster != {tumour cluster}

for img_idx in range(35):
for patch_idx in range(NUM_PATCHES):
cluster = patch_clusters[img_idx, patch_idx]

label = csv_data[img_idx, patch_idx]

if label == 1 and (cluster == {tumour cluster} or cluster == {tumour cluster}):
TP+=1

elif label == 0 and (cluster != {tumour cluster} and cluster != {tumour cluster}):
TN+=1

elif label == 0 and (cluster == {tumour cluster} or cluster == {tumour cluster}):
FP+=1

elif label == 1 and (cluster != {tumour cluster} and cluster != {tumour cluster}):
FN+=1

total = TP+ TN + FP + FN

accuracy = (TP + TN) / total

precision = TP/ (TP + FP) if (TP + FP) >0 else 0
recall =TP /(TP + FN) if (TP + FN) >0 else 0

f1 =2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0

print(f" £4 Accuracy: {accuracy:.4f}")
print(f* @ Precision: {precision:.4f}")
print(f" ~~ Recall: {recall:.4f}")
print(f" = F1 Score: {f1:.4f}")



Labelling for supervised:

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.image as mpimg
import torch

import pandas as pd

import 0s

# --- Load Features ---
feature_files = [{feature files}]
features_list = [torch.load(f) for f in feature_files]

features = torch.cat(features_list, dim=0)

N_IMGS, NUM_PATCHES, FEATURE_DIM = features.shape
#For 15X15 patches

(

# NUM_PATCHES=int(features.shape[0]/35)

# FEATURE_DIM = features.shape[1]

# N_IMGS=int(features.shape[0]/225)

)

# --- Load Image Paths ---
img_folder = "C:/Users/damia/Desktop/sick3" #add you images’ folder
img_paths = sorted([os.path.join(img_folder, f) for f in os.listdir(img_folder) if

f.endswith((".png’, ".jpg’, ".jpeg))])

# --- Dynamically Determine Grid Size ---
PATCH_H = int(np.sqrt(NUM_PATCHES))
PATCH_W = int(np.sqrt(NUM_PATCHES))

#--- CSV File ---

save_path = "labeled patch_features.csv"
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if not os.path.exists(save_path):
df = pd.DataFrame(columns=["Image_Index", "Patch_Index", "Label"] + [f"Feature_{i}"
for i in range(FEATURE_DIM)])

df.to_csv(save_path, index=False)

# --- Function to Select Region Manually ---
def on_click(event):
global large_patch_x, large_patch_y, large_patch_w, large_patch_h
if event.xdata is None or event.ydata is None:
return
if 'start' not in on_click.__dict__:
on_click.start = (event.xdata, event.ydata)
else:
large_patch_x, large_patch_y = int(on_click.start[0]), int(on_click.start[1])
large_patch_w, large_patch_h = int(event.xdata - large_patch_x), int(event.ydata -
large_patch_y)
plt.close()

# --- Manual Image Selection Loop ---
while True:
print("\nAvailable images:")
for i, path in enumerate(img_paths):
print(f*{i}: {os.path.basename(path)}")

try:
img_idx = int(input("\nEnter image number to process (or -1 to exit): "))
if img_idx ==-1:
print("Exiting program. £4")
break
if img_idx < 0 or img_idx >= len(img_paths):
print("Invalid number. Please try again.")
continue
except ValueError:

print("Invalid input. Please enter a number.")
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continue

img_path = img_paths[img_idx]
img = mpimg.imread(img_path)

img_h, img_w = img.shape[:2] # Get actual image size

# Dynamically determine patch size based on image size
patch w=1img_w // PATCH_ W
patch_h=img_h //PATCH_H

print(f"\nProcessing Image {img_idx}: {img_path}")
print(f'Image size: {img_w}x{img_h}, Patch size: {patch w}x{patch _h}, Grid:
{PATCH_W}X{PATCH_H}")

# --- Show Image for Manual Selection ---

fig, ax = plt.subplots()

ax.imshow(img)

ax.set_title("Click to select a region (drag from start to end)")
fig.canvas.mpl_connect("button_press_event", on_click)

plt.show()

# Ensure width and height are positive
large_patch_w = abs(large_patch_w)

large_patch_h = abs(large_patch_h)

# --- Find Small Patches Inside the Selected Region ---
selected_patches =]
for patch_idx in range(NUM_PATCHES):

patch_row = patch_idx // PATCH_W

patch_col = patch_idx % PATCH_W

patch_x = patch_col * patch_w
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patch_y = patch_row * patch_h

if (large_patch_x <= patch_x < large_patch_x + large_patch_w) and (
large_patch_y <= patch_y < large_patch_y + large_patch_h

selected_patches.append(patch_idx)

print(f"Selected patches: {selected_patches}")

# --- Show Image with Selected Area ---

fig, ax = plt.subplots()

ax.imshow(img)

rect = patches.Rectangle((large_patch_x, large_patch_y), large_patch_w, large_patch_h,
linewidth=2, edgecolor="r", facecolor="none’)

ax.add_patch(rect)

for patch_idx in selected_patches:
patch_row = patch_idx // PATCH_W
patch_col = patch_idx % PATCH_W
patch_x = patch_col * patch_w
patch_y = patch_row * patch_h
patch_rect = patches.Rectangle((patch_x, patch_y), patch_w, patch_h,
linewidth=1, edgecolor="b', facecolor="none")

ax.add_patch(patch_rect)

ax.set_title(f"Selected Region - Image {img_idx}")
plt.show()

# --- Assign a Label ---
label = input(f"Enter label for selected region in Image {img_idx} (e.g., 'arm’, ‘chest’,

'background’): ")

# --- Store Labeled Features ---
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labeled_patches =[]

for patch_idx in selected_patches:
feature_vector = features[img_idx, patch_idx, :].numpy().tolist()
labeled_patches.append([img_idx, patch_idx, label] + feature_vector)

# --- Append to CSV ---
df_new = pd.DataFrame(labeled_patches, columns=["Image_Index", "Patch_Index",
"Label"] + [f"Feature_{i}" for i in range(FEATURE_DIM)])

df_new.to_csv(save_path, mode="a", header=False, index=False)
print(f" 4 {len(selected_patches)} labeled patches from Image {img_idx} added to

{save_path}.")
print("\nYou can select another image or exit.")

A-14



Random Forest

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

from sklearn.preprocessing import LabelEncoder

# Load the labeled CSV

df = pd.read_csv("labeled_patch_features3.csv")

# Extract features and labels from the CSV
X_csv = df.iloc[:, 3:].values # Features (ignore Image_Index, Patch_Index, Label)

y_csv = df["Label"].values  # Labels

# Encode labels into numerical values
label_encoder = LabelEncoder()

y_csv_encoded = label_encoder.fit_transform(y_csv)

# Get indices of patches that belong to breast Cluster (cluster 0 in this example)
breast_cluster_indice= np.where(np.isin(patch_clusters, [0]))
num_patches_in_breast_cluster= breast_cluster_indices [0].shape[0] # Count of selected
patches

print("Number of patches in clusters :", num_patches_in_breast_cluster)

# Extract features of these patches
breast_cluster_indices_flat = breast_cluster_indices [0] * NUM_PATCHES +
breast_cluster_indices [1]

breast_cluster_features = patch_features_flattened[breast_cluster_indices _flat]
# Split CSV data for training

X_train, X test, y train, y test = train_test split(X_csv, y_csv_encoded, test size=0.2,

random_state=42)
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# Train a classifier on the labeled CSV data
clf = RandomForestClassifier(n_estimators=100,random_state=42)
clf.fit(X_train, y_train)

print("Shape of breast_cluster features:", breast_cluster_features.shape)

from collections import Counter

print("Training Label Distribution:”, Counter(y_train))

#Set the threshold
pobability_threshold=0.7

probs = clf.predict_proba(breast_cluster_features) # shape: (n_patches, n_classes)
max_probs = np.max(probs, axis=1)
best_class_ids = np.argmax(probs, axis=1)

# Filter patches with confident prediction

confident = max_probs >= pobability_threshold

confident_patch_features = breast_cluster_features[confident]
confident_indices = breast_cluster_indices _flat[confident]

confident_labels = best_class_ids[confident]

confident_labels_decoded = label_encoder.inverse_transform(confident_labels)
# Initialize the matrix with -1s (unlabeled)

new_patch_clusters = np.full_like(patch_clusters, fill_value=-1)

# Assign predicted labels to their corresponding [img_idx, patch_idx] positions
for idx, flat_idx in enumerate(confident_indices):

img_idx, patch_idx = divmod(flat_idx, NUM_PATCHES) # Convert flat index back to
2D index

new_patch_clusters[img_idx, patch_idx] = confident_labels[idx] # Store the class label
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#Display of heatmap

import matplotlib.pyplot as plt
import seaborn as sns

import numpy as np

# Define a colormap for different clusters
cmap = sns.color_palette("tab10", np.unique(new_patch_clusters).size) # Choose 10 distinct

colors

# Function to plot heatmap for a given image index
def plot_cluster_heatmap(image_idx):

plt.figure(figsize=(8, 6))

print("Shape of patch_clusters:”, new_patch_clusters.shape) # Should be (num_images,
height, width)
# Ensure it's a 2D array
# Reshape cluster_map to 2D (assuming square patches)
GRID_HEIGHT =40 # Adjust based on actual number of patches per row
GRID_WIDTH =40 # Adjust based on actual number of patches per column

cluster_map = new_patch_clusters[image_idx].reshape(GRID_HEIGHT, GRID_WIDTH)

# Check shape before plotting
print(f'Reshaped cluster map shape for image {image_idx}: {cluster_map.shape}")

# Check shape before plotting

print(f"Cluster map shape for image {image_idx}: {cluster_map.shape}")
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# Plot heatmap
sns.heatmap(cluster_map, cmap=cmap, linewidths=0.5, linecolor="gray", annot=False,
cbar=True)

plt.title(f"Cluster Heatmap for Image {image_idx}")
plt.xlabel("Patch Index (X)")

plt.ylabel("Patch Index (Y)")

plt.show()

# Example: Plot heatmap for a specific image (change index as needed)

plot_cluster _heatmap(image_idx=0) # Change 0 to any image index

for i in range(N_IMGS): # Replace with actual number of images

plot_cluster_heatmap(i)
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Labelling for evaluation

import csv

def generate_csv_from_input(filename, rows=35, cols=1600):
with open(filename, mode="w', newline=") as file:
writer = csv.writer(file)
for i in range(1, rows + 1):
print(f"\nRow {i}:")

count = int(input(f* How many 1's do you want in this row? "))

# Loop until valid input
while True:
indices_input = input(f" Enter {count} column numbers (1-{cols}) separated by
spaces: ")
try:
indices = list(map(int, indices_input.strip().split()))
if len(indices) !'= count or not all(1 <= idx <= cols for idx in indices):
raise ValueError
break
except ValueError:

print(" X Invalid input. Please enter exactly the correct number of integers
between 1 and 225.")

# Initialize row with index and Os
row = [i] + [0] * cols

# Set selected indices to 1

for idx in indices:

row[idx] =1 # Index 1 refers to the first data column (after the index)

# Write row to CSV

writer.writerow(row)
print("\n &4 CSV file has been generated.")
# Usage

generate_csv_from_input("output.csv")
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Addition code for K-means to pass additional image through the model:

# Setup heatmap output

desktop_path = os.path.join(os.path.expanduser(*~"), "Desktop™)

output_folder = os.path.join(desktop_path, "{Heatmap_Images}") # Replace with your file
os.makedirs(output_folder, exist_ok=True)

# Load multiple new images from a .pt file

new_image_file = "{feature file}" # Replace with your file

new_images features = torch.load(new_image file) # Shape: (N_NEW_IMGS,
NUM_PATCHES, FEATURE_DIM)

print(new_images_features.shape)

# Get the number of new images

N_NEW_IMGS =int(new_images_features.shape[0])

# Color map

cmap = sns.color_palette("hls", K)

# Loop through new images

for img_idx in range(N_NEW_IMGS):
# Extract patch features for this image
new_image_features_flat = new_images_features.reshape(-1, FEATURE_DIM)
#PCA reduction if wanted

new_features_reduced = pca.fit_transform(new_image_features_flat)

# Predict cluster IDs

new_image_clusters = kmeans.predict(new_features_reduced)

# Reshape back to (N_IMGS, NUM_PATCHES) to know which patch belongs to which
cluster

new_image_clusters = new_image_clusters.reshape(N_NEW_IMGS, NUM_PATCHES)

# Build heatmap matrix

heatmap = np.full((15, 15), -1) # Adjust size as needed
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for patch_idx in range(NUM_PATCHES):
I, ] = patch_positions[img_idx, patch_idx]
cluster_id = new_image_clusters[img_idx,patch_idx]
heatmapli, j] = cluster_id

annot_labels = np.where(heatmap == -1, """, heatmap.astype(int).astype(str))

sns.heatmap(
heatmap,
cmap=cmap,
annot=annot_labels,
fmt="",
linewidths=0.5,
linecolor='gray’,
char=True,

square=True

)

plt.title(f"Heatmap for Image {img_idx}")
plt.xlabel("Column (j)")
plt.ylabel("Row (i)")

filename = f"heatmap_{img_idx}.png"
save_path = os.path.join(output_folder, filename)
plt.savefig(save path, dpi=300, bbox_inches="tight")

plt.close()

print(f"Heatmaps saved in: {output_folder}")
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