Diploma Project

INVESTIGATING THE APPLICATION OF OFFLINE
REINFORCEMENT LEARNING ALGORITHMS IN
DIGITAL ASSET PORTFOLIO OPTIMIZATION

Christos losif

University of Cyprus

Department of Computer Science

May 2025

UNIVERSITY OF CYPRUS

Department of Computer Science

Investigating the Application of Offline Reinforcement

Learning Algorithms in Digital Asset Portfolio Optimization

Christos losif

Supervisor

Prof. Chryssis Georgiou

The Thesis was submitted in partial fulfillment of the requirements for obtaining the Com-

puter Science degree of the Department of Computer Science of the University of Cyprus

May 2025

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Chryssis Georgiou, for
his guidance, support, and insightful feedback throughout the process of this thesis. His exper-
tise and encouragement have been instrumental in helping me achieve my academic goals and

complete this work.

I also extend my thanks to Giorgos Demosthenous, a Ph.D. Student at University of Cyprus, for
his exceptional guidance and support during the technical aspects of this thesis. His expertise and
willingness to share knowledge were invaluable when faced with challenges. His contribution

was vital for the success of this work.

Lastly, I would like to thank my friends and family for supporting me during my studies.

il

ABSTRACT

The increasing prominence of cryptocurrencies as an alternative asset class has significantly
reshaped the financial landscape, presenting both novel opportunities and unique challenges
for investors. Characterized by high volatility, non-linear dependencies, and rapidly evolving
market conditions, cryptocurrencies require innovative strategies for effective portfolio man-

agement.

This thesis explores a novel approach to digital asset portfolio optimization by applying offline
reinforcement learning algorithms, a machine learning paradigm that enables agents to learn
optimal decision policies from fixed historical datasets, without interacting with a live environ-
ment. This approach is particularly attractive in financial domains, where extensive historical

data is available but real-time experimentation is costly or impractical.

We model the portfolio optimization task as a Markov Decision Process, using historical hourly
and daily price data for eleven major cryptocurrencies. This dataset is preprocessed and aug-

mented in order to be efficiently used for offline reinforcement learning.

A comprehensive set of offline RL algorithms is evaluated, including Batch-Constrained Q-
Learning (BCQ), Discrete BCQ, Conservative Q-Learning (CQL), Discrete CQL, Implicit Q-
Learning (IQL), Bootstrapping Error Accumulation Reduction (BEAR), TD3 with Behavioral
Cloning (TD3+BC), and the Decision Transformer (DT). Each algorithm is trained under two
distinct reward functions: absolute return and Sharpe ratio. Performance is assessed using key
financial metrics such as mean return, volatility, and risk-adjusted return, and is benchmarked

against traditional strategies like HODL and uniformly random allocation.

Our results demonstrate that offline RL methods can match or exceed the performance of tradi-
tional strategies in digital asset markets. The analysis also underscores the sensitivity of these
methods to hyperparameter tuning and the critical role of reward function design in shaping

agent behavior.

il

TABLE OF CONTENTS

ABSTRACT jii
TABLE OF CONTENTS iv
LIST OF TABLES ix
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiv
1 Introduction 1
.1 Motivation e e e e e 1

1.2 GoalsoftheStudy 2

1.3 Methodology 2

1.4 Document Organization 3

2 Background Knowledge 4
2.1 Portfolio Optimization Definition. 5
2.2 Introduction to Cryptocurrenciest i i 6

2.3 Reinforcement Learning 6
2.3.1 Essential Elements of Reinforcement Learning 6

23.1.1 Policy 6

23.1.2 RewardSignal, 7

23.13 ValueFunction., 7

2.3.1.4 EnvironmentModel 0oL 7

2.3.1.5 Markov Decision Process 8

2.3.2 Tabular Solution Methods 8

2.3.2.1 Dynamic Programming 9

2.3.22 Monte CarloMethods 9

2.3.2.3 Temporal-Difference Learning 9

2324 On-Policy SARSA 10

v

2.4

2.3.2.5 Off-Policy Q-Learning 11

2.3.3 Approximate Solution Methods, . 11
2.3.4 Hyper-Parameters 12
Offline Reinforcement Learning 12
24.1 Offline RL Workflow 13
242 Offline RL Challenges 13
2.4.3 Batch Constrained Q-Learning 14
243.1 Motivation 14
2432 Mainldea oo 14
2433 KeyComponentsof BCQ 15
2434 Algorithm Overview 15
2.43.5 Hyper-parameters 16
244 Discrete BCQo 17
2.44.1 Algorithm Overview 17
2.44.2 Hyper-parameters 18
24.5 Conservative Q-Learning L. 18
2451 Motivation oL 18
2452 Mainldeao oo 19
2453 Algorithm Overview 19
2454 Hyper-parameters 19
24.6 ImplicitQ-Learning, 20
24.6.1 Motivation 20
2462 Mainldea 20
2.4.6.3 Expectile Regression 20
24.6.4 Algorithm Overview 21
2.4.6.5 Hyper-parameters, 22
2.4.7 Bootstrapping Error Accumulation Reduction 22
24.7.1 Motivation 22
2472 Mainldea 23
2.4.7.3 Algorithm Overview 23
2.47.4 Hyper-Parameters 25
2.4.8 Temporal Difference Learning 3 with Behavioral Cloning 25
2481 Motivation 25
2482 Mainldea oo 25
2483 Behavioral Cloning 26
2.4.8.4 Algorithm Overview 26
2.4.8.5 Hyper-Parameters 26

2.4.9 Decision Transformer

24.9.1 Motivation
2492 Mainldea
2493 Transformers. Lo
2494 Trajectory representation
2495 Hyper-Parameters
2.4.10 Algorithm Classification

2.5 Related Work

Methodology and Implementation

3.1 Dataset Characteristics e
3.2 Dataset Pre-Processing
3.3 MDP Model for Portfolio Optimization
3.4 Dataset Augmentation e e
3.4.1 Actions Generationo
342 Rewards Generation
3.5 PythonImplementation,
3.5.1 Dataset Handling with MDPDataset
3.5.2 Action Encoding for Discrete and Continuous Algorithms
3.53 TrainingProcess

Algorithm Evaluation and Analysis

4.1 Evaluation Framework
411 MEtrics o e
4.1.2 Experimental Setup
4.1.3 Hardware Specifications,
4.1.4 Experiment Methodology

4.2 BCQ Results

4.2.1 Sharpe Ratio Reward FunctionResults
422 Analysis
4.2.3 Returns Reward FunctionResults
424 Analysis e
43 Discrete BCQResults
4.3.1 Sharpe Ratio Reward Function Results

4.3.2 Analysis

433

4.3.4 Analysis
4.4 CQL Results

Returns Reward FunctionResults

31
31
32
32
32
34
34
35
35
36
37

39
40
40
42
42
42
43
44
45
46
47
48
48
49
50
51
52

vi

4.4.1 Sharpe Ratio Reward FunctionResults 53

442 Analysis 54

4.43 Returns Reward FunctionResults 55

444 Analysis e 56

4.5 Discrete CQLResults 57
4.5.1 Sharpe Ratio Reward FunctionResults 58

452 Analysis e 59

4.5.3 Returns Reward FunctionResults 60

454 Analysis 61

46 IQLResults e 62
4.6.1 Sharpe Ratio Reward FunctionResults 63

4.6.2 Analysis e 64

4.6.3 Returns Reward FunctionResults 65

4.64 Analysis e 66

47 BEARResults e 67
4.7.1 Sharpe Ratio Reward Function Results 68

472 Analysis e 69

4.7.3 Returns Reward FunctionResults 70

474 Analysis 71

48 TD3+BCResults e 72
4.8.1 Sharpe Ratio Reward FunctionResults 73

4.82 Analysis 74

4.8.3 Returns Reward FunctionResults 75

484 Analysis e 76

49 DTResults e 77
4.9.1 Sharpe Ratio Reward Function Results 77

492 Analysis e 78

4.9.3 Returns Reward FunctionResults 79

494 Analysis 80

4.10 Comparison Between Algorithms 81
4.10.1 Sharpe Ratio Reward Function 81
4.10.1.1 Analysis 82

4.10.2 Returns Reward Function 82
4.10.2.1 Analysis 82

4.10.3 Reward Function Comparison 83

5 Discussion 86

vii

5.1 Conclusion s 86

52 Future Work 87
BIBLIOGRAPHY 88
APPENDICES 92
I Guide on Reproducing the Experiments 93

viii

LIST OF TABLES

1.1

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Chapter Descriptions e

BCQ agent performance comparison across different configurations on Sharpe
Ratio reward function. Lo
Best performing BCQ configuration compared to HODL and Random strategies
on Sharpe Ratio reward function.
BCQ agent performance comparison across different configurations on Returns
reward function. L.
Best performing BCQ configuration compared to HODL and Random strategies
on Returns reward function.o Lo
Discrete BCQ agent performance comparison across different configurations on
Sharpe Ratio reward function.
Best performing Discrete BCQ configuration compared to HODL and Random
strategies on Sharpe Ratio reward function.
Discrete BCQ agent performance comparison across different configurations on
Returns reward function. L L Lo
Best performing Discrete BCQ configuration compared to HODL and Random
strategies on Returns reward function.
CQL agent performance comparison across different configurations on Sharpe
Ratio reward function. oL Lo
Best performing CQL configuration compared to HODL and Random strategies
on Sharpe Ratio reward function.
CQL agent performance comparison across different configurations on Returns
reward function.
Best performing CQL configuration compared to HODL and Random strategies
on Returns reward function. L Lo
Discrete CQL agent performance comparison across different configurations on
Sharpe Ratio reward function. L.
Best performing Discrete CQL configuration compared to HODL and Random
strategies on Sharpe Ratio reward function.

X

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

431

4.32

Discrete CQL agent performance comparison across different configurations on
Returns reward function. L oL 60
Best performing Discrete CQL configuration compared to HODL and Random
strategies on Returns reward function., .. 60
IQL agent performance comparison across different configurations on Sharpe

Ratio reward function. 63
Best performing IQL configuration compared to HODL and Random strategies

on Sharpe Ratio reward function. 63
IQL agent performance comparison across different configurations on Returns
reward function. L 65
Best performing IQL configuration compared to HODL and Random strategies

on Returns reward function. L oL 65
BEAR agent performance comparison across different configurations on Sharpe

Ratio reward function. Lo 68
Best performing BEAR configuration compared to HODL and Random strate-

gies on Sharpe Ratio reward function. 68
BEAR agent performance comparison across different configurations on Re-

turns reward function. L oL 70
Best performing BEAR configuration compared to HODL and Random strate-

gies on Returns reward function., 70
TD3+BC agent performance comparison across different configurations on Sharpe
Ratio reward function. L o 73
Best performing TD3+BC configuration compared to HODL and Random strate-

gies on Sharpe Ratio reward function. 73
TD3+BC agent performance comparison across different configurations on Re-

turns reward function. L. Lo 75
Best performing TD3+BC configuration compared to HODL and Random strate-

gies on Returns reward function., 75
DT agent performance comparison across different configurations on Sharpe
Ratio reward function. Lo oL 77
Best performing DT configuration compared to HODL and Random strategies

on Sharpe Ratio reward function. L. 78
DT agent performance comparison across different configurations on Returns
reward function.o Lo 79
Best performing DT configuration compared to HODL and Random strategies

on Returns reward function. &0

4.33 Comparison of best performing configuration of each algorithm on Sharpe Ratio
reward function.
4.34 Comparison of best performing configuration of each algorithm on Returns re-

ward function. e

xi

LIST OF FIGURES

2.1
2.2

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

The agent—environment interaction in a Markov decision process.

[Mustration of offline RL workflow.
[Nlustration of MDP model for portfolio optimization.

BCQ agent performance comparison across different configurations and strate-
gies on Sharpe Ratio reward function.
BCQ agent performance comparison across different configurations and strate-
gies on Returns reward function. oo,
Discrete BCQ agent performance comparison across different configurations
and strategies on Sharpe Ratio reward function.
Discrete BCQ agent performance comparison across different configurations
and strategies on Returns reward function.
CQL agent performance comparison across different configurations and strate-
gies on Sharpe Ratio reward function.
CQL agent performance comparison across different configurations and strate-
gies on Returns reward function. L.
Discrete CQL agent performance comparison across different configurations
and strategies on Sharpe Ratio reward function.
Discrete CQL agent performance comparison across different configurations
and strategies on Returns reward function.
IQL agent performance comparison across different configurations and strate-
gies on Sharpe Ratio reward function.
IQL agent performance comparison across different configurations and strate-
gies on Returns reward function.
BEAR agent performance comparison across different configurations and strate-
gies on Sharpe Ratio reward function.
BEAR agent performance comparison across different configurations and strate-

gies on Returns reward function.o,

Xil

33

47

56

66

71

4.13 TD3+BC agent performance comparison across different configurations and

strategies on Sharpe Ratio reward function. 74
4.14 TD3+BC agent performance comparison across different configurations and

strategies on Returns reward function., .. 76
4.15 DT agent performance comparison across different configurations and strategies

on Sharpe Ratio reward function., 78
4.16 DT agent performance comparison across different configurations and strategies

on Returns reward function. L Lo 80
4.17 Bar charts comparing the two reward functions for each metric and algorithm . 84
4.18 Heatmap comparing the performance of algorithms under the two reward func-

tions. Color encoding: red indicates higher values under the Returns reward,

blue indicates higher values under the Sharpe Ratioreward. 85

xiii

LIST OF ABBREVIATIONS

RL Reinforcement Learning

MDP Markov Decision Process

TD Temporal Difference

BCQ Batch Constrained Q-Learning

CQL Conservative Q-Learning

IQL Implicit Q-Learning

BEAR Bootstrapping Error Accumulation Reduction
BC Behavioral Cloning

DT Decision Transformer

VAE Variational Autoencoder

SAC Soft Actor-Critic

AWR Advantage-Weighted Regression
MMD Maximum Mean Discrepancy

GPT Generative Pre-trained Transformer
OLHCV Open, Low, High, Close, Volume
USD United Stated Dollar

BTC Bitcoin

ETH Ethereum

DeFi Decentralized Finance

API Application Programming Interface
AVG Average

Std dev ~ Standard Deviation

OOD Out Of Distribution

Xiv

1 Introduction

L1 Motivation e e 1
1.2 Goalsofthe Study e 2
1.3 Methodology e 2
1.4 Document Organization it 3

1.1 Motivation

The portfolio optimization problem [1] has been a central focus of financial research for decades,
as investors and researchers strive to maximize returns while minimizing risk. Over the past ten
years, the financial landscape has undergone a significant transformation with the emergence
of a new asset class: cryptocurrencies [2]. Among these, Bitcoin [2] has emerged as the most
prominent, capturing the attention of both individual and institutional investors. Unlike tra-
ditional assets such as stocks, bonds, and commodities, cryptocurrencies are characterized by
extreme volatility and high risk, presenting unique challenges for portfolio management. This
unpredictability has made it increasingly important to develop innovative strategies that can

effectively incorporate these digital assets into investment portfolios.

Over the years, numerous techniques have been proposed to address the portfolio optimization
problem, ranging from traditional mean-variance optimization to more advanced approaches [3].
However, the effectiveness of these methods varies, and many struggle to adapt to the dynamic
and unpredictable nature of financial markets. With the rapid advancement of machine learn-
ing and artificial intelligence, new opportunities have emerged to tackle this complex problem.
Researchers have explored a wide array of techniques, including statistical models, supervised
learning, evolutionary algorithms, and reinforcement learning. Despite these efforts, no single
approach has achieved widespread success, particularly when applied to the unique challenges

posed by cryptocurrencies.

In this thesis, we explore a promising and novel direction in the field of portfolio optimization
by leveraging a machine learning technique that has not yet been applied to this task. Offline
reinforcement learning [4] offers a unique combination of strengths, blending the flexibility
and adaptive learning capabilities of traditional reinforcement learning with the ability to utilize
vast amounts of historical data. This makes it particularly well-suited for financial applications,
where large datasets are readily available, but real-time interaction with the environment is often
impractical or costly. By testing a variety of offline reinforcement learning algorithms, we aim

to uncover new insights into their potential for optimizing portfolios, especially in the context

of highly volatile assets like cryptocurrencies. Our work seeks to contribute to the ongoing
evolution of portfolio management strategies, offering a fresh perspective on how cutting-edge

machine learning techniques can address one of finance’s most enduring challenges.

1.2 Goals of the Study

The primary objective of this study is to explore the potential of offline reinforcement learning
algorithms in addressing the complex challenges of cryptocurrency portfolio optimization. To
achieve this, we aim to train and evaluate a diverse set of offline RL algorithms, leveraging their

ability to learn from historical data without requiring real-time interaction with the environment.

A critical aspect of this study involves evaluating different hyperparameter [5] combinations
for each algorithm to assess their impact on performance. This systematic exploration aims
to identify the most effective configurations for optimizing portfolio performance, particularly
in cryptocurrency markets. By comparing the results across algorithms, we seek to determine
which oftline reinforcement learning methods are best suited for managing portfolios that in-
clude digital assets. Additionally, the study examines how different reward functions influence
outcomes, providing deeper insights into the strengths and limitations of each approach in ad-

dressing the unique challenges posed by cryptocurrencies.

1.3 Methodology

Firstly, we selected datasets comprising time series data for eleven cryptocurrencies, segmented
into hourly and daily intervals. The next step involved formulating the portfolio optimization
problem as a reinforcement learning task, specifically modeling it as a Markov Decision Process
(MDP) [6]. This required defining the state space, action space, and reward function in a way

that accurately reflected the dynamics of cryptocurrency trading.

To evaluate the selected algorithms, we selected a reliable and robust framework that offered
pre-built implementations of offline RL methods. Next, we realized that the dataset was incom-
plete, lacking certain critical elements necessary for training offline RL algorithms. To address
this, we devised a creative solution to generate the missing data, ensuring the dataset was both

comprehensive and suitable for training.

With the dataset complete, we normalized the data to ensure consistency and improve the sta-
bility of the training process. We trained a total of 64 different models with different hyper-
parameter combinations, conducted on the High-Performance Computing (HPC) infrastructure

at the University of Cyprus.

Finally, after completing the experiments, we analyzed the results to evaluate the performance

of each algorithm. This analysis involved comparing the algorithms based on their ability to

optimize cryptocurrency portfolios, with a focus on metrics such as Sharpe Ratio.

1.4 Document Organization

Chapter Description

Chapter 2 This chapter introduces the foundational concepts neces-
sary to contextualize the thesis. We begin by defining port-
folio optimization and cryptocurrencies. Next, we present
the core principles of classical reinforcement learning,
followed by a detailed exploration of offline RL and its
distinguishing characteristics. Each algorithm is examined
in depth, with a focus on its theoretical underpinnings and
practical implications. The chapter concludes with a dis-
cussion of related work, positioning this research within

the broader landscape of existing studies.

Chapter 3 This chapter details the implementation methodology of
our study. We begin by describing the dataset’s charac-
teristics and the pre-processing steps applied. Next, we
present the formulation of the problem as a Markov De-
cision Process (MDP). Following this, we explain the
techniques employed to handle missing values within the

dataset.

Chapter 4 This chapter outlines the experimental methodology and
evaluates the results obtained from various hyperparameter
configurations and reward functions, providing a detailed

analysis for each scenario.

Chapter 5 This final chapter evaluates the overall performance of the
proposed algorithms, summarizes the key findings, and

suggests potential directions for future research.

Table 1.1: Chapter Descriptions

Background Knowledge

2.1
2.2
23

24

Portfolio Optimization Definition 5
Introduction to Cryptocurrencies 6
Reinforcement Learning 6
2.3.1 Essential Elements of Reinforcement Learning 6
2.3.1.1 Policy 6
23.12 RewardSignal, 7
2.3.13 Value Function 7
23.1.4 EnvironmentModel. 7
2.3.1.5 Markov Decision Process 8
2.3.2 Tabular Solution Methods 8
2321 Dynamic Programming 9
2322 Monte CarloMethods 9
2.3.23 Temporal-Difference Learning 9
2.3.24 On-Policy SARSA 10
2.3.2.5 Off-Policy Q-Learning 11
2.3.3 Approximate Solution Methods 11
234 Hyper-Parameters 12
Offline Reinforcement Learning 12
24.1 Offline RL Workflow 13
2.4.2 Offline RL Challenges 13
243 Batch Constrained Q-Learning, .. 14
243.1 Motivation 14
2432 Mainldea 14
2433 KeyComponentsof BCQ 15
2434 Algorithm Overview 15
2435 Hyper-parameters 16
244 Discrete BCQ 17
2441 Algorithm Overview 17
2442 Hyper-parameters 18
245 Conservative Q-Learning 18
2451 Motivation 18
2452 Mainldea 19
2453 Algorithm Overview 19
2454 Hyper-parameters, 19
24.6 ImplicitQ-Learning 20
2.4.6.1 Motivation 20

25

2462 Mainldea 20
2.4.6.3 Expectile Regression 20
2.4.64 Algorithm Overview 21
2.4.6.5 Hyper-parameters 22
2.4.7 Bootstrapping Error Accumulation Reduction 22
24.7.1 Motivation 22
2472 Mainldea 23
2473 Algorithm Overview 23
2474 Hyper-Parameters 25
2.4.8 Temporal Difference Learning 3 with Behavioral Cloning 25
24.8.1 Motivation 25
2482 Mainldea 25
24.83 BehavioralCloning 26
24.84 Algorithm Overview 26
2.4.8.5 Hyper-Parameters 26
24.9 Decision Transformer L o 27
2491 Motivation 27
2492 Mainldea 27
2493 Transformers 27
2.49.4 Trajectory representation 28
2.4.9.5 Hyper-Parameters 28
2.4.10 Algorithm Classification 29
Related Work o 29

2.1 Portfolio Optimization Definition

Portfolio optimization is the systematic process of selecting the most efficient allocation of assets

from a set of possible portfolios, guided by specific objectives [1]. These objectives typically in-

volve maximizing desirable factors, such as expected returns, while simultaneously minimizing

associated costs, such as financial risk [1]. This dual focus creates a multi-objective optimization

problem, where the goal is to strike an optimal balance between risk and reward. The complexity

of this problem arises from the need to consider various constraints, market dynamics, and the

interplay between different assets, making it a fundamental challenge in both theoretical finance

and practical investment management.

2.2 Introduction to Cryptocurrencies

A cryptocurrency (commonly referred to as “crypto”) is a form of digital currency that operates
on a decentralized computer network, eliminating the need for reliance on a central authority,
such as a government or financial institution, to manage or regulate it [2]. At the core of cryp-
tocurrencies is the blockchain [2], a distributed digital ledger that records all transactions in
a secure, transparent, and immutable manner. This ledger uses a consensus mechanism, such
as Proof of Work (PoW), to validate transactions, control the creation of new units (coins),
and verify the transfer of ownership. The blockchain’s decentralized nature ensures that every
transaction is publicly recorded and tamper-proof, providing a high level of transparency and

security.

Despite the term “cryptocurrency,” these digital assets function less like traditional currencies
and more like a non-correlated asset class, distinguished by decentralization, extreme volatility,
and non-linear return profiles. Their inclusion in portfolios is driven by their low historical
correlation with conventional assets, offering potential diversification benefits and efficiency

gains in optimized allocations.

2.3 Reinforcement Learning

Reinforcement Learning (RL) [6] is a process of learning how to map situations to actions in
order to maximize a numerical reward signal. Unlike other learning methods, the learner is not
explicitly instructed on which actions to take. Instead, it must explore and determine which
actions produce the highest rewards through trial and error. In more complex scenarios, actions
not only influence the immediate reward but also impact future situations and, consequently,
all subsequent rewards. The two key features that define reinforcement learning are trial-and-
error exploration and the handling of delayed rewards, which set it apart from other learning

paradigms.

2.3.1 Essential Elements of Reinforcement Learning

2.3.1.1 Policy

A policy [6] dictates how a learning agent behaves at any given moment. Essentially, it serves
as a mapping from the perceived states of the environment to the actions the agent should take
in those states. In some instances, the policy may be straightforward, such as a simple function
or a lookup table. In more complex cases, it might require extensive computational processes,

like a search algorithm. The policy is the heart of a reinforcement learning agent because it

alone determines the agent’s behavior. Policies can also be stochastic, meaning they assign

probabilities to each possible action rather than prescribing a single definitive action .

2.3.1.2 Reward Signal

A reward signal [6] establishes the objective of a reinforcement learning problem. At each
time step, the environment provides the reinforcement learning agent with a single numerical
value, known as the reward. The agent’s primary goal is to maximize the cumulative reward
it accumulates over time. This reward signal essentially defines what constitutes positive and
negative outcomes for the agent, serving as the immediate and fundamental aspect of the problem
it must solve. The reward signal is also the key driver for modifying the agent’s policy; if an
action chosen by the policy results in a low reward, the policy may be adjusted to favor different
actions in similar situations in the future. In many cases, reward signals can be stochastic,
meaning they depend probabilistically on the state of the environment and the actions taken by
the agent .

2.3.1.3 Value Function

While the reward signal reflects what is beneficial in the short term, a value function [6] defines
what is advantageous over the long term. Essentially, the value of a state represents the total
reward an agent can expect to accumulate in the future, starting from that state. Rewards capture
the immediate, intrinsic appeal of a given state, whereas values reflect the long-term desirability
of states, considering the likelihood of subsequent states and the rewards they may offer. For
instance, a state might provide a low immediate reward but still hold a high value if it frequently
leads to other states that yield substantial rewards. Conversely, a state with a high immediate

reward might have a low value if it often results in unfavorable future states .

2.3.1.4 Environment Model

The fourth and final component of certain reinforcement learning systems is an environment
model [6]. This model simulates the behavior of the environment or, more broadly, enables pre-
dictions about how the environment will respond. For example, given a specific state and action,
the model can forecast the resulting next state and the associated reward. Models are primarily
used for planning, which refers to the process of determining a course of action by anticipating
potential future scenarios before they are encountered. Reinforcement learning methods that
incorporate models and planning are referred to as model-based methods. These contrast with
model-free methods, which rely solely on trial-and-error learning and do not use explicit models,

representing an approach that is often seen as the opposite of planning.

2.3.1.5 Markov Decision Process

A Markov Decision Process [6] is a mathematical framework designed to model decision-
making in environments where outcomes are influenced by both randomness and the choices
of a decision-maker. It is defined by four key components: a set of states, a set of actions, tran-
sition probabilities that describe how the system moves from one state to another based on the
chosen action, and a reward function that provides feedback for each transition. At each time
step, the process is in a specific state, and the decision-maker selects an action. This action
triggers a transition to a new state according to the transition probabilities, and a corresponding
reward is received. In the case of a finite MDP we assume that the state, action, and reward sets

are finite . The following figure (Figure 2.1) shows an illustration of the process:

> Agent

State Reward Action

A

Environment

Figure 2.1: The agent—environment interaction in a Markov decision process.

2.3.2 Tabular Solution Methods

In its simplest form, reinforcement learning deals with problems where the state and action
spaces are small enough for value functions to be represented as arrays or tables. In such cases,
the methods can often achieve exact solutions, meaning they can precisely determine the optimal

value function and the optimal policy [6].

2.3.2.1 Dynamic Programming

The term Dynamic Programming (DP) [6] refers to a collection of algorithms used to compute
optimal policies when a perfect model of the environment is available, represented as a Markov
decision process. While classical DP algorithms are of limited practical use in reinforcement
learning due to their reliance on a perfect model and their high computational cost, they remain
theoretically significant. DP serves as a crucial foundation for understanding many modern
methods, as it provides a framework for achieving optimal decision-making. In essence, many
reinforcement learning techniques can be seen as efforts to replicate the effectiveness of DP but

with reduced computational demands and without requiring a perfect model of the environment

[6].

2.3.2.2 Monte Carlo Methods

Unlike dynamic programming (DP), Monte Carlo [6] methods do not assume complete knowl-
edge of the environment. Instead, they rely solely on experience, sample sequences of states,
actions, and rewards obtained through actual or simulated interaction with the environment.
Learning from actual experience is particularly remarkable because it does not require any prior
knowledge of the environment’s dynamics, yet it can still lead to optimal behavior. Learning
from simulated experience is equally powerful. While a model is necessary in this case, it only
needs to generate sample transitions rather than the full probability distributions of all possible
transitions, as required by DP. In many practical scenarios, it is surprisingly straightforward
to generate experience that follows the desired probability distributions, even when obtaining

those distributions explicitly is impractical or infeasible [6].

2.3.2.3 Temporal-Difference Learning

Temporal Difference (TD) [6] learning combines ideas from both Monte Carlo methods and dy-
namic programming (DP). Similar to Monte Carlo approaches, TD methods can learn directly
from raw experience without requiring a model of the environment’s dynamics. Like DP, TD
methods update their estimates by bootstrapping, using other learned estimates to refine predic-
tions without waiting for a final outcome. This interplay between TD, DP, and Monte Carlo
methods is a central and recurring theme in the theory of reinforcement learning, highlighting
how these approaches complement and build upon one another [6]. The TD(0) algorithm is

shown below in procedural form (Algorithm 1).

Algorithm 1 Tabular TD(0)

1: Input: the policy 7 to be evaluated
2: Algorithm parameter: step size « € (0, 1]
3: Initialize V'(s), for all s € S, arbitrarily except that V' (terminal) = 0
4: for each episode do
Initialize S
for each step of episode do
A < action given by 7 for S
Take action A, observe R, S’
V(S)«+ V(S)+ax[R+~V(S)—V(S)]
10: S8
11: until S is terminal

X

2.3.2.4 On-Policy SARSA

The process begins by focusing on learning an action-value function instead of a state-value
function. Specifically, in the context of on-policy methods, the goal is to estimate ¢, (s, a) for the
current behavior policy 7, across all states s and actions a. This estimation can be accomplished
using a Temporal Difference (TD) approach, similar to the one discussed earlier. In previous
sections, we examined transitions from state to state, learning the values of states. Now, we
extend this to transitions between state-action pairs, aiming to learn the values of these pairs.
Formally, both cases are analogous, as they represent Markov chains with an associated reward
process. From this foundation, it is straightforward to design an on-policy control algorithm
based on the SARSA prediction method. As with all on-policy approaches, we continuously
estimate ¢, for the behavior policy 7, while simultaneously refining 7 to become more greedy
with respect to ¢,. This dual process of estimation and policy improvement is central to on-
policy reinforcement learning [6]. The SARSA algorithm is shown below in procedural form
(Algorithm 2).

Algorithm 2 SARSA

1: Algorithm parameters: step size o € (0, 1], small € > 0
2: Initialize Q(s,a), forall s € ST, a € A(s), arbitrarily except that Q(terminal, -) = 0
3: for each episode do

4: Initialize S

5: Choose A from S using policy derived from @ (e.g., e-greedy)

6: for each step of episode do

7 Take action A, observe R, S’

8: Choose A’ from S’ using policy derived from Q) (e.g., e-greedy)
9: Q(S,A) «+ Q(S,A) + a x [R+vQ(5",A") — Q(S, A)]
10: S+ S, A A

11: until S is terminal

10

2.3.2.5 Off-Policy Q-Learning

In this scenario, the learned action-value function, (), directly approximates ¢*, the optimal
action-value function, regardless of the policy being followed. Simply put, in off-policy learning
we seek to learn a value function for a target policy 7, given data due to a different behavior
policy b. This significantly simplifies the algorithm’s analysis and has enabled early proofs of
convergence. While the policy still plays a role by determining which state-action pairs are
visited and updated, the only requirement for correct convergence is that all pairs continue to be
updated over time. This ensures that the algorithm progressively refines its estimates toward the

optimal values [6]. The Q-learning algorithm is shown below in procedural form (Algorithm 3).

Algorithm 3 Q-Learning

1: Algorithm parameters: step size o € (0, 1], small € > 0
2: Initialize Q(s,a), forall s € ST, a € A(s), arbitrarily except that Q(terminal, -) = 0
3: for each episode do

4: Initialize S

5: for each step of episode do

6: Choose A from S using policy derived from @ (e.g., e-greedy)
7: Take action A, observe R, S’

8: Q(S,A) «+ Q(S,A) + a x [R+ ymax, Q(S",a) — Q(S, A)]
9: S« 9
10: until S is terminal

2.3.3 Approximate Solution Methods

In many real-world tasks where reinforcement learning is applied, the state space is combina-
torial and extremely large. For instance, the number of possible camera images far exceeds the
number of atoms in the universe. In such cases, finding an optimal policy or the optimal value
function is infeasible, even with infinite time and data. Instead, the goal shifts to finding a good

approximate solution using limited computational resources [6].

The challenge with large state spaces is not only the memory required to store large tables but
also the time and data needed to populate them accurately. In many practical tasks, almost every
state encountered will be unique, having never been seen before. To make informed decisions in
such states, the agent must generalize from previous experiences with states that are similar in
some sense. This raises the central issue of generalization: How can experience with a limited
subset of the state space be effectively generalized to produce a reliable approximation over a

much larger subset?

To address this, we can combine reinforcement learning methods with existing generalization

11

techniques. The type of generalization required is often referred to as function approximation,
as it involves using examples from a desired function (e.g., a value function) to construct an
approximation of the entire function. Function approximation is essentially an instance of su-
pervised learning, where the goal is to learn a mapping from inputs (states) to outputs (values or
actions) based on observed data. This integration allows reinforcement learning algorithms to

scale to problems with vast state spaces by leveraging patterns and similarities in the data [6].

2.3.4 Hyper-Parameters

Hyper-parameters [5] are parameters whose values are set before the learning process of a ma-
chine learning model begins. Unlike model parameters (e.g., weights in a neural network),
hyper-parameters are not learned from the data but are instead configured by the practitioner to

control the learning process. Common hyper-parameters in both RL and offline RL are:

* Actor and Critic learning rate: controls how much a model’s parameters are adjusted

during training.

* Discount Factor Gamma v: determines the importance of future rewards, with values

between 0 (myopic) and 1 (far-sighted).

 Batch Size: the number of experience samples (e.g., state-action-reward tuples) used in a

single training update.

2.4 Offline Reinforcement Learning

The online learning model of reinforcement learning algorithms, while a core strength, also
poses significant challenges to their broader adoption. Traditional RL relies on iteratively col-
lecting experience by interacting with the environment, typically using the latest learned policy,
and then using that experience to improve the policy. However, in many real-world scenarios,
this online interaction is impractical. Data collection can be prohibitively expensive (e.g., in
robotics, educational agents, or healthcare) or dangerous (e.g., in autonomous driving or health-
care). Moreover, even in domains where online interaction is possible, there is often a prefer-
ence to leverage previously collected data—particularly in complex environments where large
datasets are essential for effective generalization. These challenges underscore the need for ap-
proaches that can learn effectively from offline data, minimizing the risks and costs associated

with online interaction [4].

12

2.4.1 Offline RL Workflow

Offline reinforcement learning utilizes a fixed dataset D, which is collected by some (potentially
unknown) behavior policy. This dataset is gathered once and remains unchanged throughout
the training process, making it possible to leverage large, pre-existing datasets. During training,
the algorithm does not interact with the Markov Decision Process (MDP) at all. The policy is
deployed only after it has been fully trained, ensuring that all learning occurs offline without any
additional environmental interaction. The following figure (Figure 2.2) shows an illustration of

the process:

States, Actions,
Rewards

Buffer
D

Learn
Policy b

Environment .
Environment

Data Collection Training Deployment

Figure 2.2: Illustration of offline RL workflow.

2.4.2 Offline RL Challenges

One of the most apparent challenges in offline reinforcement learning is its complete reliance
on a static dataset . Since the learning algorithm cannot interact with the environment, there is
no opportunity to improve exploration. Exploration lies entirely outside the algorithm’s scope,
meaning that if D lacks transitions from high-reward regions of the state space, discovering those
regions may be impossible. This limitation highlights the critical importance of the dataset’s

quality and coverage for successful offline RL [4].

A more subtle yet practically significant challenge is that offline reinforcement learning fun-
damentally revolves around counterfactual reasoning. Counterfactual queries involve asking
“what if” questions, hypotheses about what might happen if the agent were to take actions dif-
ferent from those recorded in the dataset. This is essential because, to improve upon the behavior
policy that generated D, the learned policy must deviate from the actions observed in the data.
However, this requirement pushes the boundaries of many current machine learning tools, which

are designed under the assumption that data is independent and identically distributed (i.i.d.). In

13

standard supervised learning, the goal is to perform well on data drawn from the same distribu-
tion as the training set. In contrast, offline RL aims to learn a policy that behaves differently,

and ideally better, than the behavior policy reflected in D [4].

The core difficulty in addressing these counterfactual queries is distributional shift [4]. While the
function approximator (e.g., the policy, value function) is trained on data from one distribution,
it is evaluated on a different distribution. This shift arises from two factors: (1) the new policy
visits states that may differ from those in D, and (2) the process of maximizing expected return
inherently alters the distribution of states and actions.

2.4.3 Batch Constrained Q-Learning

Batch-Constrained Q-learning (BCQ) [7] 1s one of the first deep reinforcement learning algo-
rithms specifically designed to learn effectively from fixed, offline datasets. Its core idea is to
constrain the action space, ensuring that the agent’s behavior remains close to the data distri-
bution in the provided batch. By doing so, BCQ mitigates the risks of distributional shift and
extrapolation errors, which are common challenges in offline reinforcement learning. This ap-
proach allows the algorithm to learn robust policies without requiring additional interaction with

the environment.

2.4.3.1 Motivation

Most modern off-policy deep reinforcement learning algorithms operate in a growing batch set-
ting, where data is collected, stored in an experience replay buffer, and used to train the agent
before further data collection. However, these algorithms often fail in a pure batch setting,
especially when the dataset is not representative of the true distribution under the current pol-
icy. Surprisingly, off-policy agents can perform significantly worse than the behavioral agent
that generated the dataset, even when trained with the same algorithm. This failure stems from
extrapolation error, a fundamental issue in off-policy RL where unseen state-action pairs are
assigned unrealistic values due to a mismatch between the policy-induced data distribution and
the batch data distribution [7]. As a result, learning an accurate value function for policies that
select actions outside the batch becomes highly challenging.

2.4.3.2 Main Idea

Current off-policy deep reinforcement learning algorithms struggle with extrapolation error be-
cause they select actions based on learned value estimates without considering the reliability of
those estimates. This can lead to overestimating the value of out-of-distribution actions that are

not well-represented in the dataset. However, the value of an off-policy agent can be accurately

14

assessed in regions where sufficient data is available. The solution is conceptually straightfor-
ward: to prevent extrapolation error, a policy should induce a similar state-action visitation to
the batch [7].

2.4.3.3 Key Components of BCQ

* Generative Model for Action Constraints: BCQ employs a generative model (e.g., a
Variational Autoencoder) trained on the actions present in the dataset. This model cap-
tures the distribution of actions conditioned on states, enabling the generation of candidate

actions that are similar to those in the batch.

* Perturbation Model: A perturbation model is used to make small adjustments to the ac-
tions generated by the generative model. This allows the policy to explore slight variations

of the existing actions without significantly deviating from the data distribution.

* Q-Networks: BCQ uses two Q-networks to estimate the value of state-action pairs. The
Q-networks are trained using a modified version of Clipped Double Q-learning [8], which
takes the minimum of the two Q-values to reduce overestimation bias and penalize uncer-
tainty in regions where data is scarce. The learning target for the Q-networks is a convex
combination of the minimum and maximum Q-values, which helps to balance exploration

and exploitation.

* Policy Improvement: During policy improvement, BCQ selects the action with the high-
est Q-value from the set of generated and perturbed actions. This ensures that the policy

remains within the support of the batch data while still seeking to improve performance.

2.4.3.4 Algorithm Overview

The Batch-Constrained Q-learning (BCQ) algorithm begins by initializing a generative model
G.(s), a perturbation model {4(s, a, ®), and two Q-networks (), and ()p,. During training, a
batch of transitions (s, a, r, s") is sampled from the fixed dataset. Candidate actions a; ~ G,,(s')

are generated and perturbed using £,(s’, a;, ®). The target Q-value y is computed as:

y =r+ymax |Amin Qo (s',ai) + (1 - A) max Qo (', a;) (2.1)
The Q-networks are updated using this target, and the perturbation model is updated to maximize
the Q-value of the perturbed actions. The generative model is also updated to better approxi-
mate the action distribution in the batch. During policy execution, at each state s, n actions are
generated from G, (s), perturbed, and the action with the highest Q-value is selected[7]. The
BCQ algorithm is shown below (Algorithm 4):

15

Algorithm 4 BCQ

1:

10:
I1:
12:
13:

A A T U

Input: Batch B, horizon 7', target network update rate 7, mini-batch size N, max perturba-

tion ®, number of sampled actions n, minimum weighting A.

: Initialize Q-networks Qy, , Qg,, perturbation network &,, and VAE G, = {E,,,, D, }, with

random parameters ¢, 0o, ¢, w, and target networks Qg , Qgy, §¢r With 0} < 61,05 < 05,
¢ < .
fort =1to 7 do
Sample mini-batch of N transitions (s, a,r, s") from B
p, 0 =E, (s,a), a=D,(s,z), z~N(u,o) > Sample VAE
w < argmin,, Y _(a — a)? + Dxp (N (i, 0)||IN(0, 1)) > Update VAE
Sample n actions: {a; ~ G, (s)},
Perturb each action: {a; = a; + &,(s', a;,)},
Set value target y (Eqn. 2.1)
6 < argming > _(y — Qy(s,a))? > Update critic
¢ <—argmaxy »_ Qp, (s,a +&p(s,a,P)),a ~ G,(s) > Update perturbation model
Update target networks: 0, <— 76 + (1 — 7)6,
¢ 1o+ (1—71)¢

2.4.3.5 Hyper-parameters

These are the hyper-parameters we experimented with during evaluation:

* Number of sampled actions n and action flexibility ®: The selection of n involves a trade-
off between imitation learning and reinforcement learning approaches. When & = 0 and
the number of sampled actions n = 1, the policy mimics behavioral cloning. Conversely,

as ® — aur — Amin and n — o0, the algorithm converges toward Q-learning.
 Actor Learning Rate.
* Critic Learning Rate.
* Discount Factor Gamma.
* Number of Critics: How many Q-Networks.

* Weight factor A\ (Equation 2.1): enables control over how heavily uncertainty at future

time steps is penalized.

* Target Network Synchronization Coefficiency: Controls how slowly the target networks

are updated relative to the main networks.
* Batch Size.

* KL regularization term for Conditional VAE.

16

2.4.4 Discrete BCQ

2.4.4.1 Algorithm Overview

The Discrete BCQ [9] algorithm is a streamlined adaptation of the original BCQ algorithm,
tailored specifically for discrete action spaces. By eliminating the complexities associated with
continuous actions, the discrete version retains the core principles of BCQ while simplifying its

implementation.

In the original BCQ, a state-conditioned generative model G|, is trained to approximate the be-
havioral policy 7, and actions are sampled from this model before being perturbed within a
bounded range. For discrete actions, this process is simplified by directly computing the prob-
abilities of all possible actions using G, (a|s) ~ m,(als). A threshold 7 is then applied to fil-
ter out low-probability actions, ensuring that only actions with sufficient likelihood under the
behavioral policy are considered. This threshold is adaptively scaled by the maximum action
probability from G, allowing the algorithm to focus on actions that are both high-value and

consistent with the data distribution:

m(s) = arg max Qo(s,a). (2.2)

al|Gy(als)/ maxs Go (a)s)>1

The policy is derived by selecting the highest-valued action among those that meet the thresh-
old criterion, effectively constraining the arg max operation to in-distribution actions. The Q-
network is trained using a modified Bellman update, where the max operation is replaced with
actions chosen by this constrained policy:

£6) =1, (- Qu(s.) — Quls a>) . 23)

max
a'|Gu(a’|s")/ maxg Gy (als')>T
To further mitigate overestimation bias, the discrete BCQ employs Double DON [10], lever-
aging the current Q-network ()y for action selection and the target Q-network @)y for value

evaluation.

The generative model G, which serves as a behavioral cloning network, is trained using stan-
dard supervised learning with a cross-entropy loss. This ensures an accurate approximation of
the behavioral policy, enabling the algorithm to effectively constrain action selection to the sup-
port of the batch data. The result is a robust and efficient batch reinforcement learning method
that outperforms existing algorithms in discrete-action settings. The algorithm is summarized
below (Algorithm 5):

17

Algorithm 5 Discrete BCQ
Require: Batch B, number of iterations 7', target update rate 7, mini-batch size N, threshold 7

1: Initialize Q-network @y, generative model GG, and target network Qg with 6" +— 6
2: fort =1to 7" do

3 Sample mini-batch M of N transitions (s, a,r, s’) from B

4 a' = arg maXy|a, (a'|s')/ maxs Gu (s’ >+ Qo (s', a’)

5: 0 < argming >, earle (M +7Qo (8", a) — Qo(s, a))

6 w < argmin, — > o l0g Gu(als)

7 if £ mod target update rate = O then

8 0+ 0

2.4.4.2 Hyper-parameters

These are the hyper-parameters we experimented with during evaluation:
* Learning Rate.
* Discount Factor Gamma.
* Number of Critics: How many Q-Networks.

 Target Network Update Interval: How often updating the parameters of the Q-Networks.

Batch Size.
 Action flexibility threshold represented as 7 in Equation 2.2

» Regularization term for imitation function.

2.4.5 Conservative Q-Learning

2.4.5.1 Motivation

Standard value-based off-policy reinforcement learning algorithms exhibit significant limita-
tions when applied to offline settings. The fundamental challenges stem from bootstrapping
with out-of-distribution actions and overfitting to limited data. During policy evaluation, the al-
gorithms propagate increasingly erroneous estimates when encountering actions not represented
in the dataset. Furthermore, without environmental interaction, they tend to develop patholog-
ically optimistic value estimates, particularly for states and actions near the boundaries of the
batch data distribution. This systematic overestimation in value functions critically undermines
policy improvement, as the agent becomes drawn to unreliable, overvalued actions. These in-
herent limitations of offline learning create a pressing need for more robust value estimation

approaches that can maintain accuracy without online interaction [11].

18

2.4.5.2 Main Idea

The algorithm tackles value overestimation in offline RL by learning a conservative Q-function
that produces lower-bound estimates. Instead of strictly constraining all state-action values, the
method specifically targets the policy’s expected value, maintaining useful estimates while pre-
venting overoptimism. The approach modifies standard Q-learning through a dual optimization
process: first minimizing Q-values for selected state-action pairs, then maximizing values for
dataset examples. This balanced formulation preserves realistic value estimates while enabling

effective learning from the available offline data [11].

2.4.5.3 Algorithm Overview

The core innovation of CQL lies in its modified Q-function update, which incorporates a reg-
ularization term to prevent overestimation of Q-values due to out-of-distribution actions [11].

The Q-function update is given by the Equation 2.4:

Q" ¢+ argmin - (Eswp amptaly) [Q(S, 8)] — Egup aury als) [R5, 2)]) %Es,a,w [(Q(s, a) — BTQM (s, a)) 2] .

¢ (2.4)
The first term, Esp a~p(ajs)[@ (S, a)], minimizes Q-values under a chosen distribution s:(als).
This ensures that the Q-function does not overestimate values for actions not well-covered in the
dataset [11]. The second term, Eq.p a~z,(als)[Q(S, 2)], maximizes Q-values under the empirical
behavior policy m5. This prevents excessive underestimation for actions that are in the dataset
[11]. CQL can be implemented with minimal modifications to existing deep RL algorithms,
typically requiring fewer than 20 additional lines of code [11]. For example, in actor-critic
methods like SAC [12], the Q-loss is augmented with the CQL regularization term, while the
policy update remains unchanged. It is also important to note that the algorithm works with
discrete action spaces if built on top of QR-DQON [13] instead of SAC.

2.4.5.4 Hyper-parameters

These are the hyper-parameters we experimented with during evaluation:

* Conservative Weight «: Scales the strength of the CQL regularization term in the Q-
function loss (Equation 2.4).

» Actor Learning Rate.
* Critic Learning Rate.
* Discount Factor Gamma.

* Number of Critics: How many Q-Networks.

19

» Target Network Synchronization Coefficiency: Controls how slowly the target networks

are updated relative to the main networks.
* Batch Size.

* Number of sampled actions.

2.4.6 Implicit Q-Learning

2.4.6.1 Motivation

Offline reinforcement learning faces a fundamental challenge: improving over the behavior
policy in a dataset while avoiding errors caused by evaluating unseen actions, which can lead to
overestimation or instability due to distributional shift [14]. Existing methods either constrain
the policy to stay close to the data like BCQ [7], which limits improvement, or regularize value
functions like CQL [11], resulting in additional complexity. Implicit OQ-Learning (IQL) [14]
aims to bypass this trade-off entirely by never querying out-of-sample actions during training,

enabling safer and more scalable offline RL without sacrificing performance [14].

2.4.6.2 Main Idea

Prior offline reinforcement learning methods rely on in-distribution constraints to mitigate the
risks of value function extrapolation, but these constraints alone often fail to fully prevent es-
timation errors when evaluating unseen actions. This work challenges the necessity of such
constraints by introducing a method that learns an optimal policy entirely from in-sample data,
eliminating the need to query the value of any out-of-distribution actions during training. The
core innovation lies in approximating the optimal in-support value function by estimating an
upper expectile of the action-value distribution for each state, a technique enabled by expec-
tile regression. This allows the algorithm to implicitly prioritize high-value actions within the
dataset while avoiding explicit maximization over unseen actions. The approach alternates be-
tween fitting this value function and performing Bellman updates on the Q-function, using only
observed actions in the targets. Finally, the policy is extracted via advantage-weighted regres-
sion (AWR) [15][16][17][18], which naturally constrains the learned policy to the dataset sup-
port without explicit regularization. Unlike prior methods, this framework achieves multi-step
dynamic programming, critical for tasks requiring trajectory stitching, while maintaining the

stability of purely in-sample learning [14].

2.4.6.3 Expectile Regression

Expectile regression [19] is a statistical method that generalizes ordinary least squares by asym-

metrically weighting positive and negative residuals. For a given asymmetry parameter 7 €

20

(0, 1), the T-expectile m, of a random variable X minimizes the asymmetric squared loss:

m, = argminE [L](X — m)] (2.5)

where the loss function L] is given by:
Ly(u) = |7 — I(u < 0)|u? (2.6)

When 7 = 0.5, this reduces to standard mean regression, while 7 > 0.5 places more weight on
over-prediction errors, yielding higher estimates that approximate conditional upper quantiles.
Expectile regression was introduced as a least-squares analogue to quantile regression [20],

offering computational advantages while preserving similar tail-sensitive properties.

2.4.6.4 Algorithm Overview

The method employs expectile regression to approximate the maximum ()-value over in-distribution

actions, enabling multi-step dynamic programming. The algorithm proceeds in two phases:

1. Value Function Learning: IQL first learns a state value function Vj,(s) using an asym-

metric Lo loss:
Ly (¥) = E(s.op~p [L3 (Q(s,a) — Vyp(s))] (2.7)

where L} (u) = |7 — I(u < 0)|u? is the expectile loss and 7 € (0.5, 1) controls optimism.
The Q-function is then updated via TD learning:

Lo(0) = By | (r(s, @) + 7Vl = Qols.)] (2.8)

2. Policy Extraction: The policy 7, (als) is obtained through advantage-weighted regres-
sion (AWR):

Lx(¢) = E(s.a)~p [exp (B (Qg(s, @) — Vi (s))) log s (als)] (2.9)

where (3 is an inverse temperature parameter that trades off between policy improvement
and behavioral cloning.

This approach avoids evaluating unseen actions while still performing dynamic programming,
achieving state-of-the-art results on offline RL benchmarks [21]. The algorithm is shown below
(Algorithm 6):

21

Algorithm 6 IQL

1: Initialize parameters 1, 6, é, 0.
TD learning (IQL):

2: for each gradient step do

3: Y <=1 — A VyLy(¢¥)

4: 0 < 0 —X\oVoLo(6)

550 O (1—a)f+ab
Policy extraction (AWR):

: for each gradient step do

¢ &= AVsLn(9)

N

2.4.6.5 Hyper-parameters

These are the hyper-parameters we experimented with during evaluation:
* Expectile 7: Expectile value for value function training (Equation 2.7).
» Actor Learning Rate.
* Critic Learning Rate.
* Discount Factor Gamma.
* Number of Critics: How many Q-Networks.

 Target Network Synchronization Coefficiency: Controls how slowly the target networks

are updated relative to the main networks.

» Batch Size.

2.4.7 Bootstrapping Error Accumulation Reduction

2.4.7.1 Motivation

The motivation behind the BEAR (Bootstrapping Error Accumulation Reduction) [22] algorithm
stems from the challenges faced in off-policy reinforcement learning, particularly when learning
from static datasets. In many real-world applications, such as autonomous driving or robotics,
collecting new on-policy data is expensive or impractical, making it crucial to leverage existing
off-policy data effectively. However, traditional off-policy methods often struggle with insta-
bility and poor performance due to bootstrapping errors caused by evaluating actions outside the
training data distribution. These errors accumulate during training, leading to divergent or sub-
optimal policies. BEAR aims to address this limitation by developing a more robust approach

22

to off-policy learning that can handle diverse and imperfect datasets, such as those generated by

random, suboptimal, or expert policies.

2.4.7.2 Main Idea

The main idea of BEAR revolves around mitigating bootstrapping errors by constraining the
policy to actions within the support of the training data distribution. Instead of strictly matching
the behavior policy’s density, BEAR focuses on ensuring that the learned policy only selects ac-
tions that are well-represented in the dataset. This approach strikes a balance between avoiding
out-of-distribution actions, which introduce errors, and maintaining the flexibility to improve
upon the behavior policy. By doing so, BEAR achieves more stable and reliable performance
across a wide range of datasets, whether they contain random, mediocre, or expert demonstra-

tions, without requiring additional interaction with the environment.

2.4.7.3 Algorithm Overview

The authors propose a practical actor-critic algorithm that employs distribution-constrained back-
ups to mitigate the accumulation of bootstrapping errors. The core idea is to restrict policy search
to those policies that share the same support as the training distribution, thereby preventing in-

advertent error propagation.
The algorithm consists of two key components:

1. Multiple Q-functions with a conservative update rule: Similar to BCQ [7], the method

utilizes K Q-functions and selects the minimum Q-value for policy improvement.

2. A support constraint: This ensures that the policy search is confined to policies that

align with the support of the behavior policy.

Both components modify the policy improvement step in standard actor-critic algorithms. Ad-
ditionally, the authors note that policy improvement can also be performed using the mean of

the K Q-functions, which in their experiments yields comparable performance.

Let {Q1,...,Qk} denote the set of Q-functions. The policy is then updated to maximize a
conservative Q-value estimate within the constrained policy set:

Ty(s) := max Eqor(s) { min Qj(s,a)] (2.10)

melle j=1,..., K

In practice, the behavior policy is typically unknown, necessitating an approximate method to
constrain the learned policy to its support. To address this, the authors introduce a differen-
tiable constraint that approximately enforces this restriction and solve the resulting constrained

optimization problem using dual gradient descent.

23

The method employs Maximum Mean Discrepancy (MMD) [23] as a measure between the un-
known behavior policy 3 and the actor policy my. MMD is chosen because it can be estimated
using only samples from the distributions, without requiring explicit density estimates. Given
samples {x1,...,2,} ~ Pand {yy,...,yn} ~ @, the empirical MMD between P and Q) is

computed as:

1
MMD* ({1, -+, 2} {Y1, -+ Ym}) = Zk‘ i,) Zk Tyt —3 D k(s ui).
77

(2.11)
where k(-,-) denotes any universal kernel. Experiments show that both Laplacian and Gaus-
sian kernels perform well. Notably, MMD does not depend on the explicit densities of the
distributions and can be optimized directly through samples. Putting everything together, the

optimization problem in the policy improvement step is:

Ty = max By pEqor(s) L minK Qj(s,a)] s.t. Esop [MMD(D(s),w(:]s))] <e (2.12)

WEA‘S|

where ¢ is an approximately chosen threshold. The algorithm is summarized below (Algorithm
7):

Algorithm 7 BEAR
Require: Dataset D, target network update rate 7, mini-batch size N, sampled actions for MMD

n, minimum A\
1: Initialize Q-ensemble {Qy, }/<,, actor 7y, Lagrange multiplier «, target networks {Qg/ }/<,,
and a target actor my, with ¢ <— ¢, 0 < 0,
2: fort € {1,...,N} do
Sample mini-batch of transitions (s, a,r,s") ~ D
Q-update:

Sample p action samples, {a; ~ 7y (-|s") }i_;

3

4

5

6: Define y(s, a) := max,, [Amin;j—; g QQ;(S ca;) + (I —A)max;—y g Qg;(sl, a;))

7 Vi, 0; < argming, (Qy, (s,a) — (1 + vy(s,a)))?

8 Policy-update:

9 Sample actions {G; ~ my(-|s)}2, and {a; ~ D(s)}}j_,, n preferably an intermediate
integer (1-10)

10: Update ¢, a by minimizing Equation 2.12 by using dual gradient descent with Lagrange
multiplier «

11: Update Target Networks: 0, < 70, + (1 — 7)0.; ¢' < 7o+ (1 — 7)¢’

24

2.4.7.4 Hyper-Parameters

These are the hyper-parameters we experimented with during evaluation:
* Number of MMD Action Samples.
* MMD Kernel: Gaussian or Laplacian.
* Gaussian kernel sigma.
* Number of steps to warmup the policy function.
» Actor Learning Rate.
* Critic Learning Rate.
* Discount Factor Gamma.
* Number of Critics: How many Q-Networks.

* Target Network Synchronization Coefficiency: Controls how slowly the target networks

are updated relative to the main networks.

» Batch Size.

2.4.8 Temporal Difference Learning 3 with Behavioral Cloning

2.4.8.1 Motivation

The motivation behind the Temporal Difference Learning 3 with Behavioral Cloning (TD3+BC)
[24] algorithm stems from the observation that many existing offline reinforcement learning
methods introduce significant complexity, including additional hyper-parameters, secondary
components like generative models, and extensive modifications to underlying RL algorithms.
These complexities not only increase computational costs [24] but also make the algorithms
harder to implement, tune, and reproduce [25][26][27]. The authors sought to address these
challenges by exploring whether a minimalist approach could achieve comparable performance
to state-of-the-art offline RL algorithms. Their goal was to reduce the barriers to entry for of-
fline RL by developing a method that is simple to implement, computationally efficient, and
requires minimal changes to existing online RL frameworks, while still effectively mitigating

the extrapolation error problem inherent in offline settings.

2.4.8.2 Main Idea

The main idea of the TD3+BC algorithm is to combine the strengths of reinforcement learning
and behavior cloning in a straightforward manner. By adding a behavior cloning term to the
policy update step of the TD3 [28] algorithm, the method ensures that the learned policy remains

25

close to the actions present in the dataset, thereby reducing the risk of extrapolation errors.
Additionally, the algorithm normalizes the state features in the dataset to improve stability during

training.

2.4.8.3 Behavioral Cloning

An alternative method for training policies involves imitating an expert or predefined behavior.
Behavior Cloning (BC) [29] is a form of imitation learning that uses supervised learning to
train a policy to replicate the actions observed in a given dataset. In contrast to reinforcement
learning, the effectiveness of this approach heavily relies on the quality and performance of the

data collection process.

2.4.8.4 Algorithm Overview

The authors present their approach to offline reinforcement learning by building upon the TD3
algorithm with two key modifications. The first change introduces a behavior cloning regular-

ization term into TD3’s standard policy update step:

7 = argmax E, p [Q(s,7(s))] — 7 = argmax E¢ o)up [AQ(s,7(s)) — (7(s) — a)?] (2.13)
™ ™

This modification encourages the learned policy to stay close to the actions present in dataset

D, addressing the extrapolation error problem common in offline RL. The behavior cloning

term acts as a constraint, preventing the policy from deviating too far from the demonstrated

actions while still allowing for policy improvement through reinforcement learning. The second

modification involves normalizing the state features across the dataset to have zero mean and

unit variance:
Si — Hi
S; —
o; + €

Where s; is the i-th feature of the state s, € is a small normalization constant and, ; and o; are

(2.14)

the mean and standard deviation, respectively, of the i-th feature across the dataset. This simple
preprocessing step enhances training stability, particularly important in the offline setting where

the dataset remains fixed.

2.4.8.5 Hyper-Parameters

These are the hyper-parameters we experimented with during evaluation:
» «: Balances RL (Q-maximization) and BC (imitation) in policy updates.
» Actor Learning Rate.

* Critic Learning Rate.

26

* Discount Factor Gamma.
* Number of Critics: How many Q-Networks.

* Target Network Synchronization Coefficiency: Controls how slowly the target networks

are updated relative to the main networks.
* Batch Size.
* Policy Update Frequency: How often updating the actor.
* Std dev for target noise.

* Clipping range for target noise.

2.4.9 Decision Transformer

2.4.9.1 Motivation

The motivation behind the Decision Transformer (DT) [30] stems from the desire to simplify and
scale reinforcement learning by re-framing it as a sequence modeling problem. Traditional RL
methods often rely on complex techniques like temporal difference learning or policy gradients,
which can be unstable and require careful tuning. By leveraging the success of transformer
architectures in language [31] and vision tasks [32], the authors propose a paradigm shift: instead
of using dynamic programming or value functions, they treat RL as a conditional sequence
generation task. This approach avoids challenges like bootstrapping and discounting future
rewards, while capitalizing on the transformer’s ability to model long-range dependencies and

perform implicit credit assignment.

2.4.9.2 Main Idea

The Decision Transformer models RL trajectories as sequences of states, actions, and returns-to-
go (cumulative future rewards), using a causally masked transformer to autoregressively predict
actions. At test time, the model generates actions conditioned on a desired return, effectively
“prompting” the policy to achieve specific performance levels. Unlike traditional RL methods, it
does not explicitly learn value functions or policy gradients; instead, it relies on the transformer’s
ability to capture patterns in historical data and generalize to new scenarios. The simplicity of
this framework enables it to match or surpass state-of-the-art offline RL methods while avoiding

many of their pitfalls like distributional shift and value overestimation [4].

2.4.9.3 Transformers

The transformer architecture, introduced by Vaswani et al. [33], was designed to efficiently

process sequential data. It relies on stacked self-attention layers with residual connections. In

27

each layer, the model takes n input embeddings (each representing a token) and produces n
output embeddings while preserving dimensionality. For every token, linear transformations
generate a key, query, and value vector. The output for a given token is computed by weighting
all value vectors based on how closely their corresponding keys match its query—this is done

using a softmax-normalized dot product:
2=) softmax ({(:. k))}}=1), - v; (2.15)
j=1

This mechanism allows the model to dynamically assign importance (”credit”) to different parts
of the input by measuring similarity between queries and keys. The authors adopt the GPT ar-
chitecture [34], which adds a causal self-attention mask to the transformer. This modification re-
stricts each token to attending only to previous tokens in the sequence, enabling auto-regressive
generation (predicting one token at a time). Further architectural details can be found in the

original papers.

2.4.9.4 Trajectory representation

The design of the trajectory representation prioritizes two key goals: it must allow transformers
to capture meaningful patterns in the data, and it must support conditional action generation
during inference. A major challenge lies in handling rewards—since the model should base
its actions on future desired outcomes rather than past rewards, simply using raw rewards is
insufficient. To address this, the authors replace rewards with returns-to-go, the sum of future

rewards from the current timestep onward:

T

Ri=> "y (2.16)

t'=t

This leads to the following trajectory representation:

T = <E1,51,CL1,§2,52,CL27...,ET,ST,CLT) (217)

2.4.9.5 Hyper-Parameters

These are the hyper-parameters we experimented with during evaluation:

* Context Size: The number of past timesteps (states, actions, returns-to-go) fed into the

model for auto-regressive prediction.

» Learning Rate.

28

* Discount Factor Gamma.
* Number of Layers: The depth of the Transformer model.
* Number of Attention Heads.

» Batch Size.

* Warm-up Steps: Gradually increase the learning rate from 0 to its peak value over N

steps.

2.4.10 Algorithm Classification

Offline reinforcement learning algorithms can be broadly categorized based on their core method-
ological approaches. Policy Constraint methods, such as BCQ, BEAR, and TD3+BC, address
distributional shift by explicitly or implicitly regularizing the learned policy to remain close
to the behavior policy underlying the dataset. Pessimistic Value Learning methods, including
CQL and IQL, mitigate overestimation of out-of-distribution (OOD) actions by conservatively
modifying the Q-function through penalties or implicit constraints. Finally, Transformer-Based
Methods like Decision Transformer, reformulate RL as a sequence modeling task, leveraging
autoregressive prediction to bypass traditional value or policy optimization entirely. This work

focuses on analyzing these three key paradigms.

2.5 Related Work

While offline reinforcement learning has demonstrated success across various domains, its ap-
plication to cryptocurrency portfolio optimization remains unexplored in the existing literature.
A thorough review reveals no prior work specifically evaluating offline RL algorithms for this
use case. However, several relevant studies have investigated related approaches in adjacent

domains.

Recent advances have applied deep reinforcement learning techniques to traditional stock port-
folio optimization, achieving promising results in simulated market environments. Notably,
Yang et al. [35] introduce a novel ensemble strategy that integrates three actor-critic [36] algo-
rithms: Proximal Policy Optimization (PPO) [37][38], Advantage Actor-Critic (A2C) [39], and
Deep Deterministic Policy Gradient (DDPG) [40], to dynamically optimize trading strategies in

complex and non-stationary markets.

Similarly, a growing body of work has begun exploring RL methods for cryptocurrency trading
strategies. Lucarelli at al. [41] used a multi-agent approach with local agents (DQN techniques
[10]), one for each asset of the portfolio, and a global agent as a reward function that describes

the global portfolio environment.

29

A significant contribution by Cui et al. [42] introduced a Conditional Value-at-Risk (CVaR)-
based deep reinforcement learning framework for portfolio optimization. Their approach lever-
ages Proximal Policy Optimization (PPO) [38] as the core algorithm, incorporating CVaR di-
rectly into the reward function to explicitly optimize for tail risk management in volatile market

conditions.

30

3 Methodology and Implementation

3.1 Dataset Characteristics i it e 31
3.2 Dataset Pre-Processing e 32
3.3 MDP Model for Portfolio Optimization 32
3.4 Dataset Augmentation e e 32
34.1 Actions Generation e 34
342 Rewards Generation 34
3.5 Python Implementation 35
3.5.1 Dataset Handling with MDPDataset 35
3.5.2 Action Encoding for Discrete and Continuous Algorithms 36
3,53 Training Process 37

3.1 Dataset Characteristics

This study utilizes hourly OHLCV (Open, High, Low, Close, Volume) data for six cryptocur-
rency trading pairs (AAVE/USDT, BTC/USDT, DOGE/USDT, DOT/USDT, ETH/USDT, and
UNI/USDT) collected via the Binance API. OHLCYV is a standardized financial data format
where each timestamp includes the opening price (Open), highest and lowest prices during the

interval (High, Low), closing price (Close), and trading volume (Volume).

The selected cryptocurrencies represent a diverse range of market capitalizations, use cases,
and volatility profiles: Bitcoin (BTC) and Ethereum (ETH) as large-cap benchmarks; AAVE,
DOT, and UNI as mid-cap DeFi tokens; and DOGE as a high-volatility meme coin. This variety
ensures the portfolio optimization framework is tested under heterogeneous market conditions.
All pairs are quoted against Tether (USDT), a stablecoin pegged 1:1 to the US dollar, isolating

price movements to the crypto assets themselves rather than countercurrency fluctuations.

The datasets span from October 15, 2020 up to September 30, 2024. Though both hourly and
daily resolutions were available, hourly data was chosen to maximize training samples, en-
abling the model to capture finer temporal patterns despite increased computational costs. The
resulting high-frequency dataset provides a robust foundation for offline reinforcement learning
algorithms to learn nuanced, time-dependent strategies for portfolio allocation.

31

3.2 Dataset Pre-Processing

The dataset was partitioned into training and test sets with an 85:15 split ratio, a common practice
for datasets of this scale. While shuffling is typically recommended in machine learning to
mitigate bias and enhance generalization [43], it is critical to preserve the temporal order in time-
series data. Shuffling would disrupt the inherent sequential dependencies, thereby invalidating

the modeling of temporal dynamics.

For feature scaling, we applied standardization using the StandardScaler from scikit-learn [44].
The scaler was fitted exclusively on the training set features, followed by a transformation of
both the training and test sets. Importantly, the test set was only transformed (not refit) to prevent

data leakage, ensuring that model evaluation reflects real-world generalization performance.

Standardization was chosen over alternative normalization techniques (e.g., Min-Max scaling)
due to the nature of cryptocurrency price data. Unlike bounded datasets, cryptocurrencies lack
a fixed maximum value, making Min-Max scaling infeasible. Standardization centers the data
to zero mean and unit variance, preserving relative value distributions while maintaining com-

parability across features.

3.3 MDP Model for Portfolio Optimization

In order to model the dynamic and highly volatile crypto market we use a Markov Decision

Process as follows:

* State s = [01, hq,l1,¢1,01, ..., 0n, By, Ly, €n, v,]: @ vector that includes open prices, high

prices, low prices, close prices and volumes for n cryptocurrencies.

 Action a: a vector of n discrete actions, one for each crypto. An action is either buy, sell,

or hold. For the buy and sell options, we use a fixed amount worth of asset (e.g. $500).

* Reward r(s, a): The reward for taking action « at state s. For our case the reward can be

Sharpe Ratio or the returns.

An illustration of the model is shown in Figure 3.1.

3.4 Dataset Augmentation

A significant challenge in our experimental setup was the absence of two critical components
required for offline reinforcement learning: actions and rewards at each timestep. In offline
RL, the learning process relies on logged experience tuples of the form (s, a;, ¢, S¢41), where

s¢ 1s the state, a; the action, r, the reward, and s;,, the subsequent state. However, our dataset

32

Asset 1]
Asset 2)

o1, h1, L1, c1, v1

02, hz, Iz, c2, v2

=Y

On, hn, [n; Cn, Vn

Asset n)
v v v K/‘/

State s

Reward ri

Action ai

4

Learning
Agent

Figure 3.1: Illustration of MDP model for portfolio optimization.

consisted solely of raw time-series observations, generated passively rather than by an explicit

behavior policy [6].

This limitation is analogous to supervised learning, where models require labeled input-output
pairs for training. Without actions and rewards, the dataset lacks the necessary structure to
learn a policy or value function directly. To address this, we augmented the data by deriving
implicit actions and rewards from the time-series dynamics, enabling the application of offline

RL algorithms.

33

3.4.1 Actions Generation

To generate actions for each timestep, we employed a computationally efficient method, crucial
for processing large datasets without introducing significant overhead. First, the percentage

change in the closing price between consecutive time steps was calculated as:

_ Pt — Pt—1
Pt—1 ’

4t (3.1

where ¢, represents the price change at timestep ¢ and p; denotes the closing price at ¢. These
price changes were then mapped to discrete actions (buy, sell, or hold) based on a fixed threshold

€. Specifically, the action a, for each timestep was determined as follows:

buy whenq > €
a; = { sell when ¢ < —e (3.2)

hold when —e < ¢ <e¢

This approach encodes market reactions to price movements: buy and sell actions are triggered
only when the price change exceeds a meaningful threshold, while insignificant fluctuations
result in a hold signal. The threshold e must be small to avoid overlooking subtle but statistically
relevant trends, yet large enough to filter out negligible noise. For our experiments, we set
e = 0.01 (1%), balancing sensitivity to market movements with robustness to micro-volatility.
This choice ensures that actions reflect economically meaningful decisions rather than stochastic

price variations.

3.4.2 Rewards Generation

The reward signal was derived from a rolling Sharpe ratio of equally-weighted portfolio re-
turns to evaluate investment performance while accounting for risk. First, percentage returns
were computed for each asset by taking the first difference of closing prices normalized by the

previous price:
Dt — Pt

Pt—1

These individual asset returns were combined into a returns matrix, representing the multivariate

(3.3)

Tt

time series of all assets. A simple equal-weight portfolio strategy was implemented by assigning
uniform weights to all assets, with portfolio returns calculated as the dot product of the returns
matrix and the weight vector. The rewards were then generated as rolling Sharpe ratios: for
each timestep ¢ after an initial window period, the reward was computed as the Sharpe ratio

of the portfolio’s most recent rolling window returns. This approach provides a risk-adjusted

34

performance metric that penalizes volatile returns, encouraging the agent to learn strategies that
achieve consistent gains rather than erratic performance. The rolling window mechanism en-
sures local sensitivity to recent market conditions while maintaining computational efficiency
through vectorized operations. During our experiments, we used a rolling window of 168 time
steps, corresponding to one week of hourly data. This choice balances provides statistical ro-
bustness, since a week-long window provides sufficient data points to compute a stable Sharpe

ratio, mitigating the impact of short-term noise.

To evaluate the sensitivity of our reinforcement learning agent to different reward formulations,
we implemented a simpler secondary reward function based solely on raw portfolio returns
without risk adjustment. This approach follows the same initial steps as our primary method:
percentage returns are computed for each asset, which are then combined into a multivariate
returns matrix. An equal-weight portfolio strategy is again enforced, with portfolio-wide returns
calculated via the dot product of the returns matrix and weight vector. The key distinction lies
in the reward definition: instead of using a rolling Sharpe ratio, this variant directly uses the
instantaneous portfolio return as the reward signal at each timestep. While computationally
more efficient, this simplification trades off risk-awareness for simplicity. Its inclusion serves
as an ablation study to isolate the impact of risk-adjusted rewards, particularly relevant given

the high volatility inherent to cryptocurrency markets.

3.5 Python Implementation

For our experiments, we utilized d3rlpy [45], a Python framework specifically designed for data-
driven deep reinforcement learning. This library provides an efficient implementation of the
algorithms we aimed to evaluate, along with useful utilities for handling reinforcement learning

datasets.

3.5.1 Dataset Handling with MDPDataset

In supervised learning, training typically involves iterating over input data X and correspond-
ing labels Y. However, reinforcement learning requires mini-batches consisting of state-action-
reward-next-state tuples (s, a, 7, S¢41) along with episode termination flags. Manually con-
verting raw observations, actions, rewards, and terminal flags into these tuples can be tedious
and error-prone. To streamline this process, d3rlpy provides the MDPDataset class (Listing
3.1), which automates dataset construction and management, allowing us to focus on algorithm

evaluation rather than data pre-processing.

train_dataset = d3rlpy.dataset.MDPDataset(

observations=train_observations,

35

actions=actions,

rewards=rewards,

terminals=terminals,

action_space=d3rlpy.constants.ActionSpace.DISCRETE if action_type ==
else d3rlpy.constants.ActionSpace.CONTINUOUS

Listing 3.1: Dataset construction using MDPDataset class.

3.5.2 Action Encoding for Discrete and Continuous Algorithms

We encoded actions as integers:
* 0 for hold
* 1 for buy
2 for sell

Since our portfolio consists of n assets, each action is initially represented as a vector of length

n, with one entry per asset.

* Discrete Algorithms (Discrete BCQ, Discrete CQL): To handle discrete action spaces,
we converted the action vector into a single discrete value using a base-3 encoding. For

example, the action vector @ = (1,2,1,0, 1, 2) translates to:
a=1x3+2x3"+1x33+0x3>+1x3"+2x3°=437 (3.4)

With 6 assets, this results in 3 = 729 possible discrete actions. We chose base-3 encoding
because it is mathematically correct since collisions are not possible and computationally
optimal since it requires the least amount of memory to store the value compared to other

techniques (for example concatenating the values as a string).

The following two code snippets show the encoding and decoding in python:

combined_action = sum(action * (3 ** i) for i, action in

enumerate (reversed(action_set)))

Listing 3.2: Encoding from base-3 to base-10.

for idx, asset in enumerate(assets):

actions[asset] = (action // (3 ** (len(assets) - 1 - idx))) % 3

Listing 3.3: Decoding from base-10 to base-3.

36

» Continuous Algorithms (BCQ, CQL, BEAR, IQL, TD3+BC, DT): Since continuous al-
gorithms cannot process discrete actions directly but can keep the vector format, we in-
troduced a pseudo-continuous action space by mapping discrete actions to random floats

within defined ranges:
— Hold: Random value in [-0.34, 0.34]
— Buy: Random value in [0.34, 1]
— Sell: Random value in [-1,-0.34]

The action space was normalized to the range [—1, 1], a standard convention in continuous

reinforcement learning [12][28].

3.5.3 Training Process

The training protocol consisted of 20 epochs per algorithm, with each epoch comprising 34694
time-steps, resulting in a total of 20 x 34694 = 693880 time-steps. This training duration
follows standard reinforcement learning requirements for datasets of comparable size, ensuring

sufficient learning while mitigating overfitting risks.

After loading the dataset into MDPDataset, we create an algorithm object (Listing 3.4) and start
training using the fit() method provided by the d3rlpy API (Listing 3.5). More details about the

hyper-parameter selection can be found in Section 4.1.4.

algo = d3rlpy.algos.BCQConfig(
batch_size=512,
gamma=0.98,
actor_learning_rate=0.0001,
critic_learning_rate=0.0001,
n_critics=2,
tau=0.003,
beta=0.1,
action_flexibility=0.2,
n_action_samples=40,
lam=0.7,
update_actor_interval=1,

) .create(device=torch.cuda.is_available())

Listing 3.4: An example of creating a BCQ algorithm object with specific hyper-parameters.
Also if available, the algorithm will run on CUDA.

algo.fit(dataset=train_dataset,

37

n_steps=n_train_timesteps*args.epochs,

n_steps_per_epoch=n_train_timesteps)

Listing 3.5: Initiating the training of the algorithm, while specifying the dataset and the number

of timesteps and epochs.

38

Algorithm Evaluation and Analysis

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Evaluation Framework 40
411 MetriCS ot e e e e e 40
4.1.2 Experimental Setup 42
4.1.3 Hardware Specifications 42
4.1.4 Experiment Methodology, 42
BCQResults e e 43
4.2.1 Sharpe Ratio Reward FunctionResults 44
422 Analysis. e 45
423 Returns Reward FunctionResults 46
424 Analysis. e 47
Discrete BCQ Results e 48
4.3.1 Sharpe Ratio Reward FunctionResults 48
432 AnalysiS. e e 49
4.3.3 Returns Reward FunctionResults 50
434 AnalysiS. e e e e 51
CQL Results e e 52
4.4.1 Sharpe Ratio Reward FunctionResults 53
442 Analysis. e e e e e 54
4.43 Returns Reward FunctionResults 55
444 AnalysiS. e e e 56
Discrete CQL Results 57
4.5.1 Sharpe Ratio Reward FunctionResults 58
452 Analysis. e 59
4.53 Returns Reward FunctionResults 60
454 Analysis. e 61
IQL Results e 62
4.6.1 Sharpe Ratio Reward FunctionResults 63
4.62 Analysis. e 64
4.6.3 Returns Reward FunctionResults 65
4.64 AnalysiS. e e 66
BEAR Results 67
4.7.1 Sharpe Ratio Reward FunctionResults 68
472 AnalysiS. e e e 69
473 Returns Reward FunctionResults 70
474 Analysis. e e e 71
TD3+BCResults e 72

4.8.1 Sharpe Ratio Reward FunctionResults 73

482 AnalysiS. e e 74

4.8.3 Returns Reward FunctionResults 75

484 Analysis. e e e e 76

49 DTResults e e 77
4.9.1 Sharpe Ratio Reward FunctionResults 77

492 AnalysiS. e e 78

493 Returns Reward FunctionResults 79

494 Analysis. 80

4.10 Comparison Between Algorithms 81
4.10.1 Sharpe Ratio Reward Function 81
4.10.1.1 Analysis. e 82

4.10.2 Returns Reward Function. 82
4.102.1 Analysis. e 82

4.10.3 Reward Function Comparison 83

4.1 Evaluation Framework

Unlike supervised learning where evaluation simply compares predictions to ground truth labels,
reinforcement learning requires a dynamic testing environment to properly assess an agent’s se-
quential decision-making capabilities. Our evaluation framework simulates real-world trading
conditions by processing the agent’s actions (buy/sell/hold) through a virtual trading system
that tracks portfolio value, budget constraints, and asset allocations over time. The environ-
ment maintains three parallel portfolios: one controlled by our trained RL agent, a benchmark
portfolio using a simple HODL strategy (a simple strategy that allocates assets in the beginning
and then holds), and a random-action portfolio for baseline comparison. At each timestep, the
system executes trades based on the agent’s decisions while respecting real-world constraints
like available budget and asset units. Key performance metrics including portfolio value trajec-
tory and risk-adjusted returns are computed and compared against benchmarks. This approach
provides a comprehensive assessment of the agent’s ability to maximize returns while managing
risk, crucial for financial applications where the consequences of actions unfold over time and
depend on market dynamics. The testing environment also logs all transactions and portfolio

states, enabling detailed analysis of the agent’s strategy.

4.1.1 Metrics

The metrics used for evaluating the performance of the agent are the following:

40

Sharpe Ratio: The Sharpe Ratio measures risk-adjusted returns by comparing excess
returns above the risk-free rate to their volatility. It is calculated as:
ER,— R

Sharpe Ratio = ————=,

Op

where 2, are the portfolio returns, 7y is the risk free rate, and o, is the standard deviation
of the returns. The risk-free rate 12, represents the return of a theoretically “safe” invest-
ment (like US Treasury bills). By subtracting this from portfolio returns, we isolate the
extra compensation earned for taking risk. A ratio above 1 indicates the strategy generates
excess returns that adequately compensate for its volatility, while a ratio below 1 suggests

the risk may not be justified.

Average of Daily Returns: The arithmetic mean of daily portfolio value changes. This
baseline metric measures the strategy’s raw earning potential but should be interpreted

alongside risk metrics.

Average of Monthly Returns: The mean monthly portfolio growth, providing insight
into medium-term performance while smoothing out daily market noise. Particularly rel-

evant for assessing the strategy’s robustness across market cycles.

Standard Deviation of Daily Returns: The volatility of daily returns, quantifying the
strategy’s risk profile. High values indicate greater unpredictability in short-term perfor-

mance.

Standard Deviation of Monthly Returns: The dispersion of monthly returns, reveal-
ing the strategy’s consistency over longer periods. Lower values suggest more reliable

performance regardless of market conditions.

Cumulative Return: Cumulative return is the total change in the value of an investment
over a specific period of time, expressed as a percentage of the original investment. It
measures the overall gain or loss, including all income and capital gains. It is calculated

as:
Vi — Vi

i

R= x 100, (4.2)

where R is the cumulative return percentage, and V; and V; represent the initial and final

portfolio values, respectively.

This evaluation approach allows us to assess both the absolute performance (through return

averages) and the quality of returns (via volatility measures and risk-adjusted metrics). The

combination of daily and monthly perspectives provides complementary views of the strategy’s

behavior across different time horizons, while the Sharpe ratio serves as our primary metric for

comparing risk-adjusted performance against alternative strategies.

41

In evaluating our reinforcement learning agent, we deliberately focused on financial perfor-
mance metrics rather than algorithmic training statistics such as actor or critic loss values. This
methodological choice reflects our primary objective of assessing real-world trading perfor-
mance rather than model convergence characteristics. While training losses provide insight into
the learning process, they serve as indirect proxies that may not correlate with actual trading

effectiveness.

4.1.2 [Experimental Setup

The evaluation framework was designed to provide sufficient capital for meaningful trading ac-
tivity while maintaining realistic constraints. All three portfolios (RL agent, HODL, and random
strategy) were initialized with $10,000 in total asset value, equally distributed across the six as-
sets in the portfolio. To ensure adequate liquidity for trading decisions, the agent was allocated
an operating budget of $1,000,000. Each trading action (buy or sell) involved $500 worth of
the specified asset, establishing a consistent trade size that was small relative to the total budget
(0.05% of available funds per transaction). This configuration ensured that the agent’s trad-
ing capacity would not be artificially constrained by capital limitations during the evaluation
period, while still maintaining reasonable position sizes that reflect practical trading scenarios.
The $500 trade size represents a balanced value, large enough to impact portfolio performance

while small enough to allow for gradual position adjustments.

4.1.3 Hardware Specifications

The experiments were conducted on the UCY High Performance Computing (HPC) cluster on
COMPUTE partition. Each node has the following CPU model: Intel(R) Xeon(R) Gold 6226R
CPU @ 2.90GHz [46].

Regarding the memory, we ran each algorithm with 600 MB of allocated memory.

4.1.4 Experiment Methodology

We began by initializing all algorithms with the default parameter values recommended by both
the original authors and the d3rlpy framework [45]. Through an iterative refinement process,
we adjusted core hyper-parameters, such as the learning rate and batch size, until achieving
stable agent performance, halting further adjustments once no additional improvements were

observed.

With these optimized base hyper-parameters fixed, we conducted eight experimental trials per
algorithm. Each trial tested four distinct hyperparameter configurations (specific to each algo-

rithm’s unique design) under two reward functions: Sharpe Ratio and Returns (using identical

42

configurations for both). This resulted in a total of 64 experiments. Ideally, we would test every
possible hyperparameter configuration, both common and unique, but the resulting combinato-
rial explosion makes this approach impractical given the time constraints of this thesis. Thus,

even slight parameter changes can lead to different results upon reproduction.
Our analysis proceeded in four stages:

* Hyperparameter Sensitivity: Evaluating how each configuration influenced agent per-
formance and identifying the optimal setup for each algorithm.

* Benchmark Comparison: Contrasting the best-performing configuration against two

baseline strategies, HODL and Random, for every algorithm.

* Cross-Algorithm Evaluation: Comparing the top-performing configurations across all

algorithms.

* Reward Function Analysis: Assessing the impact of the two reward functions (Sharpe
Ratio and Returns) on overall results.

4.2 BCQ Results

The following hyper-parameters remained constant:
» Actor learning rate: 0.0001
* Critic learning rate: 0.0001
* Number of critics: 2
* Discount factor ~: 0.98
 Batch size: 512
 Target network synchronization coefficiency: 0.003
* Beta: 0.1
The experiments were performed with the following configurations:
* Configuration 1: Sampled Actions: 40, Action Flexibility: 0.2, Weight Factor A: 0.7
* Configuration 2: Sampled Actions: 40, Action Flexibility: 0.5, Weight Factor A: 0.7
* Configuration 3: Sampled Actions: 60, Action Flexibility: 0.2, Weight Factor A: 0.7
* Configuration 4: Sampled Actions: 40, Action Flexibility: 0.2, Weight Factor \: 0.4

43

4.2.1 Sharpe Ratio Reward Function Results

Config3 Config 4

Metrics Config1 Config 2

Sharpe Ratio 0.0095 0.0069 0.0035
Avg Daily Return 0.035 0.163 0.030
Avg Monthly Return 0.851 4.873 -0.053
Std Dev Daily Return 0.608 3.688 1.012
Std Dev Monthly Return ~ 1.951 17.498 2.700
Cumulative Return 8.733 15.656 5.490

0.0063

0.139
4.126
3.131
14.080
13.306

Table 4.1: BCQ agent performance comparison across different configurations on Sharpe

Ratio reward function.

Metrics Config1 HODL Random
Sharpe Ratio 0.0095 -0.0089 -0.0032
Avg Daily Return 0.035 0.003 0.006
Avg Monthly Return 0.851 0.054 0.149
Std Dev Daily Return 0.608 0.205 0.368
Std Dev Monthly Return 1.951 1.185 1.991

Cumulative Return

8.733

0.171 0.953

Table 4.2: Best performing BCQ configuration compared to HODL and Random strategies on

Sharpe Ratio reward function.

44

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

| —— Benchmark HODL —— Benchmark HODL
Agent Portfolio Value 131 Agent Portfolio Value
—— Random Action Portfolio Value —— Random Action Portfolio Value

1 e T e m ey e

Value USD
Value USD
=
5

0.9

i
1.08 W ”’H*MW‘ ol
1.06 N "’W %ﬁ M 0.8 1

W
! 0.7

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
—— Benchmark HODL 134 — Benchmark HODL
Agent Portfolio Value Agent Portfolio Value
1.15 4 — Random Action Portfolio Value L, | —— Random Action Portfolio value
1101 1 NWW
e = W;::R:w;::?

. H
105 | MWWWA

Value USD
Value USD
=
o

0.9 1

0.8 1

0.7 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps

(c) Configuration 3 (d) Configuration 4

Figure 4.1: BCQ agent performance comparison across different configurations and strategies
on Sharpe Ratio reward function.

4.2.2 Analysis

Based on the results on Tables 4.1, 4.2 and the plots in Figure 4.1:

The results indicate notable trade-offs between risk and return across the four configurations.
Configuration 1 achieves the highest Sharpe Ratio, suggesting better risk-adjusted returns com-
pared to the others, despite its lower average and cumulative returns. This is likely due to its
significantly lower volatility compared to Configuration 2, which, while yielding higher average
and cumulative returns, suffers from higher risk, reflected in its lower Sharpe Ratio. Configura-
tion 3 performs the worst in terms of Sharpe Ratio and average monthly return, possibly due to
over-sampling actions without sufficient flexibility, leading to higher volatility. Configuration
4 shows a middle-ground performance, with improved cumulative returns over Configuration
1 but lower risk-adjusted returns, likely due to the reduced weight factor weakening the impact
of the Q-network constraints. Overall, Configuration 1 appears most balanced for risk-averse
strategies, while Configuration 2 may suit risk-tolerant investors seeking higher absolute returns
despite higher volatility.

The trained agent in Configuration 1 significantly outperforms both the HODL and random

45

strategies across all metrics, demonstrating superior risk-adjusted returns and cumulative per-

formance. With a positive Sharpe Ratio of 0.0095, the agent achieves better risk-adjusted returns

compared to the negative ratios of HODL and random, indicating more consistent profitability

relative to volatility. The agent also exhibits substantially higher average daily and monthly

returns compared to HODL and random, along with a much larger cumulative return. However,

the agent’s higher standard deviations in daily and monthly returns suggest greater volatility

than HODL, though comparable to the random strategy. Overall, the agent’s ability to generate

higher returns with a favorable Sharpe Ratio makes it a more effective strategy than passive

holding or random decision-making, despite its increased risk exposure.

4.2.3 Returns Reward Function Results

Metrics Config1 Config2 Config3 Config4
Sharpe Ratio 0.0083 0.0060 -0.0101 -0.0044
Avg Daily Return 0.101 0.118 -0.112 -0.064
Avg Monthly Return 3.299 4.032 -4.245 -2.501
Std Dev Daily Return 1.769 3.190 2.525 2.704
Std Dev Monthly Return ~ 6.134 15.549 10.339 11.760
Cumulative Return 16.574 12.181 -30.253 -19.824

Table 4.3: BCQ agent performance comparison across different configurations on Returns
reward function.

Metrics Config1 HODL Random
Sharpe Ratio 0.0083 -0.0089 0.0062
Avg Daily Return 0.101 0.003 0.026
Avg Monthly Return 3.299 0.054 0.784
Std Dev Daily Return 1.769 0.205 0.337
Std Dev Monthly Return ~ 6.134 1.185 1.533
Cumulative Return 16.574 0.171 5.085

Table 4.4: Best performing BCQ configuration compared to HODL and Random strategies on

Returns reward function.

46

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

—— Benchmark HODL 13T Benchmark HobL
1.30 4 Agent Portfolio Value Agent Portfolio Value
—— Random Action Portfolio Value 1.2 1 —— Random Actien Portfolio Value
125
1.20 4 11
- N WW“W o
2 1154 2 b
1.0
2 - H
© 1.10 L N]
>) =
MMW»\MM 04
1.05 4 =1
1.00 4 0.8 4
0.95
0.7 4
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
11
117 o S
%Wf T W“WFW
= ~
TN 1.0
ol pet Nt .
2 3 09
S 09 3
@ @
3 S
B B
08 0.8 4
0.7 4 079
—— Benchmark HODL —— Benchmark HODL
Agent Portfolio Value Agent Portfolio Value
06l Random Action Portfelio Value 06l Random Action Portfolio Value
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.2: BCQ agent performance comparison across different configurations and strategies
on Returns reward function.

4.2.4 Analysis

Based on the results on Tables 4.3, 4.4 and the plots in Figure 4.2:

The results demonstrate significant performance variations across the four BCQ configurations.
Configuration 1 achieves the highest Sharpe Ratio and cumulative return, suggesting a balanced
trade-off between exploration and exploitation with moderate action sampling and conservative
flexibility. Configuration 2 yields higher average daily and monthly returns but suffers from
elevated volatility, likely due to its higher action flexibility destabilizing returns. Configuration
3 performs poorly, with negative Sharpe Ratio and cumulative return, indicating that increas-
ing sampled actions without adjusting flexibility or A harms stability. Configuration 4 shows
marginally better risk-adjusted metrics than Configuration 3 but still under-performs Configu-
ration 1, highlighting the importance of a higher A\ in mitigating overestimation bias. Overall,
Configuration 1 strikes the best balance, while higher flexibility or reduced A introduces insta-

bility, and excessive action sampling degrades performance sharply.

The agent in Configuration 1 significantly outperforms both the HODL and Random strategies

across all metrics, demonstrating superior risk-adjusted returns and cumulative performance.

47

With a Sharpe Ratio of 0.0083, it surpasses both HODL and Random, indicating better return
per unit of risk. The agent also achieves substantially higher average daily and monthly returns
compared to HODL and Random. However, the agent exhibits higher volatility, as seen in its
larger standard deviations for daily and monthly returns, suggesting more aggressive trading
behavior. Despite this, its cumulative return vastly exceeds both benchmarks, highlighting its

ability to generate higher profits over time.

4.3 Discrete BCQ Results

The following hyper-parameters remained constant:
* Learning rate: 0.0003
* Number of critics: 2
* Discount factor v: 0.99
 Batch size: 128
* Target network update interval: 1000
The experiments were performed with the following configurations:
* Configuration 1: Regularization term 3: 0.01, Action Flexibility: 0.3
» Configuration 2: Regularization term /3: 0.01, Action Flexibility: 0.1
* Configuration 3: Regularization term /3: 0.01, Action Flexibility: 0.5

* Configuration 4: Regularization term 3: 0.05, Action Flexibility: 0.3

4.3.1 Sharpe Ratio Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio -0.0125 -0.0188 -0.0071 0.0006
Avg Daily Return -0.025 -0.010 -0.102 0.019
Avg Monthly Return -1.247 -0.332 -3.563 0.483
Std Dev Daily Return 0.596 0.201 3.106 1.805
Std Dev Monthly Return 1.872 0.949 14.593 6.836
Cumulative Return -7.530 -2.317 -30.606 -0.287

Table 4.5: Discrete BCQ agent performance comparison across different configurations on
Sharpe Ratio reward function.

48

Metrics Config4 HODL Random

Sharpe Ratio 0.0006 -0.0089 -0.0053
Avg Daily Return 0.019 0.003 0.005
Avg Monthly Return 0.483 0.054 0.101
Std Dev Daily Return 1.805 0.205 0.313
Std Dev Monthly Return ~ 6.836 1.185 1.525
Cumulative Return -0.287 0.171 0.358

Table 4.6: Best performing Discrete BCQ configuration compared to HODL and Random
strategies on Sharpe Ratio reward function.

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
1.09 4
/ A
1.075 ,«:E"."f\h a ‘,‘\ Ml “r‘
vy iy 4
M:"j\:w o ’;Q i 1.08 qw A
B » |
1050 1071 ! A AR MV\ e N
WW W eth i
o 1025 o 106 ooy M’V\W i
& a
2 2 W
2 1000 2105
2 E l
104
0.975
1.03 4
0.950 1" — Benchmark HODL —— Benchmark HODL
‘Agent Portfolio Value 1.02 4 Agent Portfolio Value
0.925 4 —— Random Action Portfolio Value —— Random Actien Portfolio Value
; ; ; T T T 101 +— ; ; : T T
0 1000 2000 3000 4000 5000 [} 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
166 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
11
WWM 1104
1.0 F”\
W Wew_ﬁm W
1.05 W
0.9 4
o o 1.00
& &
B B
gos]
2 =2 0951
£ £
07 0.90
064 — Benchmark HODL 0.85 1 —— Benchmark HODL
Agent Portfolio Value Agent Portfolio Value
—— Random Action Portfolio Value o080] — Random Action Portfolio Value
6 10‘00 20‘00 3060 40‘00 50‘00 6 10‘00 20‘00 BDIUO 40‘00 50‘00
Timesteps. Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.3: Discrete BCQ agent performance comparison across different configurations and
strategies on Sharpe Ratio reward function.

4.3.2 Analysis

Based on the results on Tables 4.5, 4.6 and the plots in Figure 4.3:

The results of the Discrete BCQ agent across the four configurations reveal notable variations in

performance, particularly in terms of risk-adjusted returns and volatility. Configuration 4 out-

49

performs the others, achieving a marginally positive Sharpe Ratio and the highest average daily
and monthly returns. This suggests that stronger regularization helps stabilize returns, though
the agent still exhibits high volatility. In contrast, Configuration 3 yields the worst performance,
with the lowest Sharpe Ratio, significant negative returns, and extreme volatility, indicating that
excessive action flexibility may lead to erratic decisions. Configurations 1 and 2 show interme-
diate results, with Configuration 2 (lower flexibility = 0.1) demonstrating better risk manage-
ment but still negative returns. Overall, the results highlight a trade-off between regularization
and flexibility: higher 5 (Configuration 4) improves stability, while excessive flexibility (Con-
figuration 3) exacerbates risk. However, even the best configuration achieves only negligible
positive returns, suggesting further tuning or alternative approaches may be needed for robust

performance.

The agent in Configuration 4 exhibits a marginally better risk-adjusted performance than both
the HODL and Random strategies, as indicated by its slightly positive Sharpe Ratio compared to
the negative ratios of HODL and Random. However, despite higher average daily and monthly
returns relative to the benchmarks, the agent suffers from significantly greater volatility, with
daily and monthly standard deviations far exceeding those of HODL and Random. This high
volatility likely contributed to its poor cumulative return, under-performing both HODL and
Random. While the agent demonstrates an ability to generate higher returns in the short term, its
excessive risk-taking leads to substantial draw downs, resulting in long-term under-performance

compared to passive and random strategies.

4.3.3 Returns Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio -0.0044 -0.0016 -0.0002 -0.0043
Avg Daily Return 0.002 0.000 0.013 -0.054
Avg Monthly Return 0.102 -0.794 -1.333 -2.490
Std Dev Daily Return 0.446 2.108 1.442 2.478
Std Dev Monthly Return ~ 2.616 5.175 3.397 13.530
Cumulative Return 0.055 -8.203 -0.942 -15.850

Table 4.7: Discrete BCQ agent performance comparison across different configurations on
Returns reward function.

50

Table 4.8: Best performing Discrete BCQ configuration compared to HODL and Random

Metrics Config3 HODL Random
Sharpe Ratio -0.0002 -0.0089 -0.0084
Avg Daily Return 0.013 0.003 0.001
Avg Monthly Return -1.333 0.054 -0.001
Std Dev Daily Return 1.442 0.205 0.255
Std Dev Monthly Return ~ 3.397 1.185 1.414
Cumulative Return -0.942 0.171 -0.090

strategies on Returns reward function.

Figure 4.4: Discrete BCQ agent performance comparison across different configurations and

1e6 Portfolio Value Benchmarks over Time

| !y
—— Benchmark HODL f

| —— Random Action Portfolio Value

Agent Portfolio Value ‘

2000 3000 4000 5000

Timesteps

0 1000

(a) Configuration 1

166 Portfolio Value Benchmarks over Time

—— Benchmark HODL
Agent Portfolio Value
—— Random Action Portfolio Value

2000 3000 4000 5000

Timesteps.

o 1000

(c) Configuration 3

strategies on Returns reward function.

4.3.4 Analysis

Value USD

Value USD

[y
o

o
©

o
®

e
<

Iy
o

o
©

o
®

o
3

1e6 Portfolio Value Benchmarks over Time

—— Benchmark HODL
Agent Portfolio Value
—— Random Action Portfolio Value

2000 3000 4000

Timesteps

0 1000

(b) Configuration 2

1e6 Portfolio Value Benchmarks over Time

5000

—— Benchmark HODL
Agent Portfolio Value
—— Random Action Portfolio Value

2000 3000 4000

Timesteps

o 1000

(d) Configuration 4

Based on the results on Tables 4.7, 4.8 and the plots in Figure 4.4:

The results of the Discrete BCQ offline RL agent across the four configurations reveal notable

differences in performance. Configuration 3, with a higher action flexibility and low regular-

5000

ization, achieved the best Sharpe Ratio and the highest average daily return, suggesting a better
risk-adjusted performance compared to the others. However, its average monthly return and
cumulative return were still negative, indicating overall losses. Configuration 2, with the low-
est action flexibility, showed moderate risk but poor cumulative returns, while Configuration 1,
with balanced settings, had the least volatility in daily returns and the best cumulative return, al-
beit still marginal. Configuration 4, with higher regularization, exhibited the worst performance
across most metrics, including the lowest average daily return and highest volatility, suggesting
that excessive regularization harms performance. Overall, lower action flexibility and moderate
regularization appear more stable, whereas higher flexibility may improve short-term returns

but not necessarily long-term profitability.

The agent in Configuration 3 exhibits mixed performance compared to the HODL and Random
benchmarks. While it achieves a marginally better Sharpe Ratio than both HODL and Random,
its higher standard deviations indicate significantly greater volatility. The agent’s average daily
return outperforms HODL and Random, but its negative average monthly return and cumulative
return are substantially worse than HODL and slightly worse than Random. This suggests that
while the agent may generate short-term gains, its high-risk strategy leads to poor consistency
and long-term under-performance compared to passive holding. The Random strategy, though
slightly worse in Sharpe Ratio and cumulative return, demonstrates lower volatility, making it
a less risky alternative. Overall, Configuration 3’s aggressive approach does not translate into

sustainable returns, highlighting potential flaws in its decision-making or risk management.

4.4 CQL Results

The following hyper-parameters remained constant:
* Actor learning rate: 0.001
* Critic learning rate: 0.0001
* Number of critics: 2
* Discount factor v: 0.999
 Batch size: 256
 Target network synchronization coefficiency: 0.08
The experiments were performed with the following configurations:
» Configuration 1: Conservative Weight a: 6, Sampled Actions: 25
* Configuration 2: Conservative Weight a: 1, Sampled Actions: 25

* Configuration 3: Conservative Weight a:: 10, Sampled Actions: 25

52

* Configuration 4: Conservative Weight a: 6, Sampled Actions: 40

4.4.1 Sharpe Ratio Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio -0.0071 -0.0030 -0.0008 -0.0056
Avg Daily Return -0.053 -0.004 -0.001 -0.024
Avg Monthly Return -2.394 -1.179 -0.572 -1.624
Std Dev Daily Return 1.667 2.431 3.075 1.416
Std Dev Monthly Return ~ 5.111 8.710 13.969 6.050
Cumulative Return -15.306 -13.203 -12.614 -9.702

Table 4.9: CQL agent performance comparison across different configurations on Sharpe
Ratio reward function.

Metrics Config3 HODL Random
Sharpe Ratio -0.0008 -0.0089 -0.0027
Avg Daily Return -0.001 0.003 0.008
Avg Monthly Return -0.572 0.054 0.219
Std Dev Daily Return 3.075 0.205 0.245
Std Dev Monthly Return ~ 13.969 1.185 1.113
Cumulative Return -12.614 0.171 1.658

Table 4.10: Best performing CQL configuration compared to HODL and Random strategies
on Sharpe Ratio reward function.

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

121
11
W Wm ST 114
P N, el
1.0+
a 3 10
2 2
E E
£ 094 £
0.9
0.8
—— Benchmark HODL 084 — Benchmark HODL
Agent Portfolio Value Agent Portfolio Value
—— Random Action Portfolio Value —— Random Actien Portfolio Value
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
127 —— Benchmark HODL 115 4 —— Benchmark HODL
Agent Portfolio Value Agent Portfolio Value
11 —— Random Action Portfolio Value —— Random Action Portfolio Value
) NW“MW 1107
104 1.05 1 Mﬂww L
. . (M\w ,fw
B B
@ 09 > 1001
E] E]
B E
0.95
0.8 4
090 1
0.7
0.85 1
061
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.5: CQL agent performance comparison across different configurations and strategies
on Sharpe Ratio reward function.

4.4.2 Analysis

Based on the results on Tables 4.9, 4.10 and the plots in Figure 4.5:

The results indicate that Configuration 3 achieves the best performance across most metrics,
including the highest Sharpe Ratio, the least negative average daily and monthly returns, and
the second-best cumulative return. However, it also exhibits the highest volatility in daily and
monthly returns, suggesting that a higher conservative weight reduces overestimation bias but
increases variance. Configuration 2 performs moderately, with a slightly worse Sharpe Ratio but
lower volatility than Configuration 3, indicating that a lower o may not sufficiently constrain
Q-values. Configuration 1 and Configuration 4 show mixed results: Configuration 4 improves
cumulative return over Configuration 1 due to more sampled actions reducing variance, but both
under-perform Configuration 3. Overall, a higher (Configuration 3) appears most effective for
risk-adjusted returns, though at the cost of increased volatility, while increasing sampled actions
(Configuration 4) helps stabilize returns but does not match the performance of an optimally
tuned o

The agent in Configuration 3 under-performs compared to both the HODL and Random strate-

54

gies across most metrics. While its Sharpe Ratio is slightly better than HODL and Random, it

still indicates poor risk-adjusted returns. The agent suffers from significantly higher volatility

and delivers negative average daily and monthly returns, contrasting with the positive returns

of both benchmarks. Most notably, its cumulative return is drastically worse than HODL and

Random, suggesting severe value erosion over time. While the agent may marginally mitigate

risk compared to HODL, its excessive volatility and consistent losses make it inferior to passive

or even random strategies in this evaluation.

4.4.3 Returns Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio -0.0003 0.0102 -0.0124 -0.0079
Avg Daily Return 0.011 0.058 -0.189 -0.056
Avg Monthly Return -0.121 1.029 -6.806 -1.400
Std Dev Daily Return 1.967 0.980 2.656 1.548

Std Dev Monthly Return ~ 6.267 1.631 10.137 8.632
Cumulative Return -3.855 13.483 -39.827 -12.205

Table 4.11: CQL agent performance comparison across different configurations on Returns

reward function.

Metrics Config2 HODL Random
Sharpe Ratio 0.0102 -0.0089 0.0018
Avg Daily Return 0.058 0.003 0.019
Avg Monthly Return 1.029 0.054 0.618
Std Dev Daily Return 0.980 0.205 0.348
Std Dev Monthly Return ~ 1.631 1.185 1.440
Cumulative Return 13.483 0.171 3.135

Table 4.12: Best performing CQL configuration compared to HODL and Random strategies

on Returns reward function.

55

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

—— Benchmark HODL
Agent Portfolio Value
—— Random Action Portfolio Value

- M 1.20 4
1

Value USD
Value USD

N AN pegltt.

0.85 1+ —— Benchmark HODL
Agent Portfolio Value

0.80 4 — Random Action Portfolio Value
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
114 1.10 - i
mw% I, MW}:— L Ane i WP
104 1.05 W :
I
09 1.00
o a
@ @
E B
205 2005
Ehe E
0.7 0.90 4
0.6 4+ —— Benchmark HODL 0.85 —— Benchmark HODL
Agent Portfolio Value Agent Portfolio Value
—— Random Action Portfolio Value —— Random Actien Portfolio Value
0.5 1 T T T T T T 0.80 1 T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.6: CQL agent performance comparison across different configurations and strategies
on Returns reward function.

4.4.4 Analysis

Based on the results on Tables 4.11, 4.12 and the plots in Figure 4.6:

The experimental results reveal significant performance differences across the four CQL con-
figurations. Configuration 2 outperforms the others, achieving the highest Sharpe ratio, aver-
age daily and monthly returns, and cumulative return, while maintaining the lowest daily and
monthly return volatility. This suggests that a lower conservative weight strikes an effective
balance between policy improvement and conservatism, avoiding the over-regularization seen
in Configurations 1, 3, and 4. In contrast, Configuration 3 performs the worst, with highly
negative returns and high volatility, indicating that excessive conservatism severely degrades
performance. Configuration 4 shows slightly better results than Configurations 1 and 3 but still
under-performs compared to Configuration 2, implying that increasing sampled actions alone
does not compensate for suboptimal . Configuration 1 exhibits moderate performance but suf-
fers from negative Sharpe ratios and cumulative returns, reinforcing that « = 6 may still be
too restrictive. Overall, these results highlight the critical role of o in CQL’s trade-off between

conservatism and policy optimization, with « = 1 emerging as the most effective choice in this

56

setting.

The agent in Configuration 2 outperforms both the HODL and Random strategies across most
metrics, demonstrating superior risk-adjusted returns and cumulative performance. With a Sharpe
Ratio of 0.0102, it surpasses HODL and Random, indicating better return per unit of risk. The
agent also achieves significantly higher average daily and monthly returns, as well as a sub-
stantially higher cumulative return. However, the agent exhibits higher volatility compared to
HODL and Random. While the Random strategy shows some competitive risk-adjusted returns,
the agent’s significantly higher cumulative and average returns suggest it is more effective at cap-
italizing on market opportunities, albeit with greater risk. HODL, as expected, under-performs

due to its passive nature.

4.5 Discrete CQL Results

The following hyper-parameters remained constant:
* Learning rate: 0.01
* Number of critics: 2
* Discount factor v: 0.99
 Batch size: 32
* Target network update interval: 3000
The experiments were performed with the following configurations:
+ Configuration 1: « value: 2
* Configuration 2: « value: 1
* Configuration 3: « value: 5

» Configuration 4: « value: 3

57

4.5.1 Sharpe Ratio Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio 0.0102 0.0028 0.0118 0.0120
Avg Daily Return 0.159 0.039 0.057 0.062
Avg Monthly Return 4.888 1.193 1.901 2.063
Std Dev Daily Return 2.239 0.888 0.570 0.625
Std Dev Monthly Return ~ 9.086 3.104 2.450 2.703
Cumulative Return 25.384 4.472 10.630 11.530

Table 4.13: Discrete CQL agent performance comparison across different configurations on

Sharpe Ratio reward function.

Metrics Config4 HODL Random
Sharpe Ratio 0.0120 -0.0089 0.0031
Avg Daily Return 0.062 0.003 0.018
Avg Monthly Return 2.063 0.054 0.607
Std Dev Daily Return 0.625 0.205 0.321
Std Dev Monthly Return ~ 2.703 1.185 1.477
Cumulative Return 11.530 0.171 3.630

Table 4.14: Best performing Discrete CQL configuration compared to HODL and Random

strategies on Sharpe Ratio reward function.

58

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

—— Benchmark HODL L1501 Benchmark HODL
1.4 Agent Portfolio Value Agent Portfolio Value
—— Random Action Portfolio Value L1254 Random Action Portfolio Value
137 1.100
1.075 4
o L2 a
2 a L
1.050 4 g
E 3 ‘F@’W»f’n
ER P N~ 2 g
%WW 1.025
1.0 4
1.000 4
0.9 0.975 1
0.8 1 T T T T T T 09307 T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
1.225 |
1204 — Benchmark HODL —— Benchmark HODL

Agent Portfolio Value Agent Portfolio Value

—— Random Action Portfolio Value 1:200 7' Random Action Portfolio Value

1154 1175 4

| W,

1150 4

11254

Value USD
I
=
5]
Value USD

NS 1100 W
1.05 4 L '\‘H “(‘“‘"’ W
‘y"‘/‘ N\ 1.075 1 /f‘\‘N oo "*LN \"}/ W‘WJ H\MM
vy
ol JM’ *w. ¥l vf Loso | W\m vl
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.7: Discrete CQL agent performance comparison across different configurations and
strategies on Sharpe Ratio reward function.

4.5.2 Analysis

Based on the results on Tables 4.13, 4.14 and the plots in Figure 4.7:

The results of the Discrete CQL offline RL agent with different o values reveal notable per-
formance variations. Configuration 4 achieved the highest Sharpe Ratio, indicating the best
risk-adjusted returns, closely followed by Configuration 3 and Configuration 1. Configuration
2 performed the worst across all metrics, suggesting that a lower « value may inadequately pe-
nalize out-of-distribution actions, leading to suboptimal policies. Notably, Configurations 3 and
4 exhibited lower daily and monthly return volatility compared to Configuration 1, implying bet-
ter stability despite slightly lower average returns. Configuration 1, while yielding the highest
average daily and monthly returns, also had the highest volatility, which likely contributed to its
lower Sharpe Ratio compared to Configurations 3 and 4. The cumulative returns further rein-
force this trend, with Configuration 1 leading but at the cost of higher risk, while Configurations
3 and 4 offered a more balanced trade-off between return and risk. Overall, an intermediate «

value (3 or 5) appears optimal for maximizing risk-adjusted performance in this setting.

The agent in Configuration 4 significantly outperforms both the HODL and Random strategies

59

across all key metrics. With a Sharpe Ratio of 0.0120, it demonstrates better risk-adjusted returns
compared to HODL and Random. The agent also achieves substantially higher average daily and
monthly returns than HODL and Random, though with greater volatility, as evidenced by higher
standard deviations in daily and monthly returns. Most notably, the agent’s cumulative return
vastly surpasses both benchmarks, highlighting its superior profitability over the tested period.
While the agent’s strategy is riskier than the passive HODL approach or a random strategy, its
significantly higher returns justify the additional volatility, making it the most effective strategy

among the three.

4.5.3 Returns Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio 0.0151 -0.0024 0.0137 0.0116
Avg Daily Return 0.202 -0.031 0.178 0.119
Avg Monthly Return 6.686 -2.759 5.824 3.884
Std Dev Daily Return 2.021 2.146 1.909 1.437
Std Dev Monthly Return ~ 9.935 4.696 8.964 6.114
Cumulative Return 39.746 -11.597 33.297 21.465

Table 4.15: Discrete CQL agent performance comparison across different configurations on
Returns reward function.

Metrics Config1l HODL Random
Sharpe Ratio 0.0151 -0.0089 0.0022
Avg Daily Return 0.202 0.003 0.019
Avg Monthly Return 6.686 0.054 0.655
Std Dev Daily Return 2.021 0.205 0.344
Std Dev Monthly Return ~ 9.935 1.185 1.454
Cumulative Return 39.746 0.171 3.308

Table 4.16: Best performing Discrete CQL configuration compared to HODL and Random
strategies on Returns reward function.

60

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

16| — Benchmark HoDL
. Agent Portfolio Value 11 “
—— Random Action Portfolio Value i -~ N " A
151 nte WWW
1.0
14
[=} a
2.5 2
H 13 : 09
B s
1.2
0.8
11 o
WWNW\W
T —— Benchmark HODL
1.0 4 0.7 7 Agent Portfolio Value
—— Random Action Portfolio Value
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
—— Benchmark HODL —— Benchmark HODL
154 Agent Portfolio Value Agent Portfolio Value
—— Random Action Portfolio Value 13— Random Action Portfolio Value
14
o 13 a 12
& &
E] E]
g g
3,1 E
B B
11
=~ U VN = N LA SN
NW«»@, (I e TN i L~
e g 1o Mgy
10 10 :
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.8: Discrete CQL agent performance comparison across different configurations and
strategies on Returns reward function.

4.5.4 Analysis

Based on the results on Tables 4.15, 4.16 and the plots in Figure 4.8:

The results of the Discrete CQL offline RL agent across the four configurations reveal notable
differences in performance based on the chosen « values. Configuration achieves the highest
Sharpe Ratio, average daily and monthly returns, as well as the highest cumulative return, sug-
gesting it strikes an effective balance between risk and reward. In contrast, Configuration 2
performs poorly, with negative Sharpe Ratio, average daily, and monthly returns, along with
a significant cumulative loss, indicating insufficient conservatism leading to unfavorable out-
comes. Configuration 3 shows competitive performance, with the second-highest Sharpe Ratio
and returns, but slightly lower than Configuration 1, suggesting that excessive conservatism may
slightly hinder returns. Configuration 4 demonstrates moderate performance, with lower returns
but the lowest standard deviations, implying better stability at the cost of reduced profitability.

Overall, Configuration 1 appears optimal, while Configuration 2 is clearly suboptimal.

The agent in Configuration 1 significantly outperforms both the HODL and Random strategies

across all metrics, demonstrating superior risk-adjusted returns and cumulative performance.

61

With a Sharpe Ratio of 0.0151, it surpasses HODL and Random, indicating better return per
unit of risk. The agent also achieves substantially higher average daily and monthly returns
compared to HODL and Random, albeit with greater volatility, as seen in the higher standard
deviations of daily and monthly returns. Most notably, the agent’s cumulative return vastly
exceeds both benchmarks, highlighting its ability to generate significant gains over time. While
the agent’s strategy introduces higher risk, its returns justify the increased volatility, making it

a more effective approach than passive holding or random decision-making.

4.6 IQL Results

The following hyper-parameters remained constant:

* Actor learning rate: 0.0003

* Critic learning rate: 0.0003

* Number of critics: 2

* Discount factor v: 0.99

* Batch size: 256

* Target network synchronization coefficiency: 0.005
The experiments were performed with the following configurations:

* Configuration 1: Expectile 7: 0.9

+ Configuration 2: Expectile 7: 0.5

* Configuration 3: Expectile 7: 0.7

* Configuration 4: Expectile 7: 0.95

62

4.6.1 Sharpe Ratio Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio -0.0084 0.0020 -0.0102 -0.0134
Avg Daily Return -0.134 0.070 -0.168 -0.170
Avg Monthly Return -4.743 1.856 -5.474 -6.526
Std Dev Daily Return 2.748 3.394 2.948 2.260

Std Dev Monthly Return ~ 13.411 15.277 14.770 7.345
Cumulative Return -30.569 -5.298 -37.070 -36.813

Table 4.17: IQL agent performance comparison across different configurations on Sharpe

Ratio reward function.

Metrics Config2 HODL Random
Sharpe Ratio 0.0020 -0.0089 -0.0022
Avg Daily Return 0.070 0.003 0.011
Avg Monthly Return 1.856 0.054 0.246
Std Dev Daily Return 3.394 0.205 0.373
Std Dev Monthly Return ~ 15.277 1.185 1.660
Cumulative Return -5.298 0.171 1.332

Table 4.18: Best performing IQL configuration compared to HODL and Random strategies on

Sharpe Ratio reward function.

63

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

0.9 4 0.9 1

Value USD
Value USD

0.8 4 0.8 4
0.7 4 074
—— Benchmark HODL —— Benchmark HODL
Agent Portfolio Value Agent Portfolio Value
067 —— Random Action Portfolio Value 0.6 — Random Actien Portfolio Value
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
11
11 AT
R R R A e e~ R
= = ST N
WWW Rerr RN {,‘—,.Avw !
1.0 104
0.9 4 0.9 4
o o
& &
E] E]
ERER E}
2 = 084
B B
0.7 4
0.7 4
0.6 1 —— Benchmark HODL —— Benchmark HODL
Agent Portfolio Value 0.6 Agent Portfolio Value
o054 Random Action Portfolio Value —— Random Actien Portfolio Value
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.9: IQL agent performance comparison across different configurations and strategies
on Sharpe Ratio reward function.

4.6.2 Analysis

Based on the results on Tables 4.17, 4.18 and the plots in Figure 4.9:

The results of the IQL offline RL agent across the four configurations reveal notable differences
in performance based on the expectile parameter. Configuration 2 stands out as the only setup
with positive Sharpe Ratio and average daily and monthly returns, suggesting it strikes a bet-
ter balance between risk and return compared to the others. In contrast, Configurations 1, 3,
and 4 all yield negative Sharpe Ratios and cumulative returns, with Configuration 4 exhibiting
the worst average monthly return despite having the lowest standard deviation in monthly re-
turns, indicating overly conservative or misaligned value estimation. Configuration 3 shows the
highest volatility in daily returns and poor cumulative returns, while Configuration 1 performs
marginally better but still suffers from negative returns. Overall, the results suggest that a mod-
erate expectile value aligns best with the Sharpe Ratio reward function, whereas higher 7 values

lead to suboptimal risk-adjusted returns.

The agent in Configuration 2 demonstrates a mixed performance compared to the HODL and

Random strategies. While it achieves a marginally positive Sharpe Ratio, outperforming both

64

HODL and Random, its higher average daily and monthly returns suggest better short-term
gains. However, the agent exhibits significantly higher volatility, with daily and monthly stan-
dard deviations far exceeding those of HODL and Random, indicating greater risk. Notably,
the agent’s cumulative return under-performs both benchmarks, suggesting that its aggressive
strategy may lead to substantial losses over time despite short-term advantages. Overall, while
the agent shows potential for higher returns, its risk-adjusted performance and long-term sus-

tainability are questionable compared to simpler strategies.

4.6.3 Returns Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio 0.0034 -0.0036 -0.0092 -0.0024
Avg Daily Return 0.076 -0.067 -0.166 -0.037
Avg Monthly Return 2.481 -2.798 -6.323 -3.137
Std Dev Daily Return 3.266 3.488 3.291 3.143
Std Dev Monthly Return ~ 14.220 17.323 15.964 13.976
Cumulative Return 0.947 -24.420 -39.887 -18.660

Table 4.19: IQL agent performance comparison across different configurations on Returns
reward function.

Metrics Config1l HODL Random
Sharpe Ratio 0.0034 -0.0089 -0.0018
Avg Daily Return 0.076 0.003 0.012
Avg Monthly Return 2.481 0.054 0.344
Std Dev Daily Return 3.266 0.205 0.346
Std Dev Monthly Return ~ 14.220 1.185 1.245
Cumulative Return 0.947 0.171 1.617

Table 4.20: Best performing IQL configuration compared to HODL and Random strategies on
Returns reward function.

65

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

114
114 A
/WWWWA 104
1.0
o q 09
& 5]
5 5
@ 09 @
2 2 084
B s
0.8 0.7
07| — Benchmark HoDL 0.6 4 — Benchmark HODL
Agent Portfolio Value Agent Portfolio Value
—— Random Action Portfolio Value —— Random Action Portfolio Value
T T T T T T 0.5 T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
124 124
11
e N IS 117 [E e !
Y e O ~ e S N
104 o et e e
1.0
2 094 2
E E]
E} Y 0.9
= 0.8 E
B B
07 081
067" Benchmark HODL 0777 Benchmark HODL
Agent Portfolio Value Agent Portfolio Value
0.5 —— Random Action Portfolio Value 0.6 1 —— Random Actien Portfolio Value
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.10: IQL agent performance comparison across different configurations and strategies
on Returns reward function.

4.6.4 Analysis

Based on the results on Tables 4.19, 4.20 and the plots in Figure 4.10:

The results indicate that Configuration 1 performs significantly better than the other config-
urations across most metrics, achieving the highest Sharpe Ratio, positive average daily and
monthly returns, and the highest cumulative return. This suggests that a higher expectile value
effectively balances risk and return, as evidenced by its lower standard deviation in monthly
returns compared to Configurations 2 and 3. In contrast, Configurations 2 and 3 yield negative
returns and Sharpe Ratios, with Configuration 3 performing the worst in terms of average and
cumulative returns, likely due to insufficient optimism in value estimation. Configuration 4
shows slightly better risk-adjusted returns than Configurations 2 and 3 but still under-performs
compared to Configuration 1, suggesting that an overly aggressive expectile value may lead to
suboptimal policy extraction. Overall, Configuration 1 strikes the best trade-off, demonstrating

robustness in both return generation and risk management.

The agent in Configuration 1 demonstrates a mixed performance compared to the HODL and

Random strategies. While it achieves a higher Sharpe Ratio than both HODL and Random, sug-

66

gesting marginally better risk-adjusted returns, its high volatility indicates significantly greater
risk. The agent also outperforms HODL in average daily and monthly returns, but its cumula-
tive return lags behind the Random strategy, which benefited from higher volatility and chance.
Overall, the agent’s aggressive approach yields higher returns than HODL but with substantially
more risk, while the Random strategy, despite its lack of sophistication, achieved the highest cu-

mulative return, likely due to favorable market fluctuations.

4.7 BEAR Results

The following hyper-parameters remained constant:
* Actor learning rate: 0.004
* Critic learning rate: 0.0003
* Number of critics: 2
* Discount factor v: 0.99
 Batch size: 128
* Target network synchronization coefficiency: 0.005
* Warm-up steps: 8000
* Gaussian kernel sigma: 1
The experiments were performed with the following configurations:
» Configuration 1: Action Samples: 6, Kernel: Laplacian
* Configuration 2: Action Samples: 6, Kernel: Gaussian
» Configuration 3: Action Samples: 3, Kernel: Laplacian

* Configuration 4: Action Samples: 10, Kernel: Gaussian

67

4.7.1 Sharpe Ratio Reward Function Results

Metrics

Config1 Config 2

Config3 Config 4

Sharpe Ratio

Avg Daily Return

Avg Monthly Return

Std Dev Daily Return
Std Dev Monthly Return

Cumulative Return

0.0022 0.0053 -0.0017 0.0161
0.060 0.126 0.002 0.336
2.379 4.681 -0.640 10.416
3.955 3.818 2.147 3.414
21.062 20.007 6.994 17.554
-6.894 7.161 -8.096 69.339

Table 4.21: BEAR agent performance comparison across different configurations on Sharpe

Ratio reward function.

Metrics Config4 HODL Random
Sharpe Ratio 0.0161 -0.0089 -0.0079
Avg Daily Return 0.336 0.003 0.000
Avg Monthly Return 10.416 0.054 -0.195
Std Dev Daily Return 3.414 0.205 0.346
Std Dev Monthly Return ~ 17.554 1.185 1.516

Cumulative Return

69.339 0.171 -0.982

Table 4.22: Best performing BEAR configuration compared to HODL and Random strategies

on Sharpe Ratio reward function.

68

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

—— Benchmark HODL
124 Agent Portfolio Value
119 el —— Random Action Portfolio Value
Rl i S R
R R i
104 /%wwmf
=) o 10+
3 0o 3
v @
g 09
I 2
0.8 4
0.74
—— Benchmark HODL 071
06 Agent Portfolio Value :
—— Random Action Portfolio Value
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
2.0
—— Benchmark HODL
115 Agent Portfolio Value
184 — Random Action Portfolio Value
1104
105 | W&W e TR
N 164
2 10014 2
B E]
El ERt
§ 0.951]
0.90 1 12
0.85 1 PP e N S, (S | S S S
—— Benchmark HODL 104 | e il
0.80 4 Agent Portfolio Value)
—— Random Action Portfolio Value
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.11: BEAR agent performance comparison across different configurations and strate-
gies on Sharpe Ratio reward function.

4.7.2 Analysis

Based on the results on Tables 4.21, 4.22 and the plots in Figure 4.11:

The results demonstrate significant performance variations across the four configurations. Con-
figuration 4 outperforms the others, achieving the highest Sharpe Ratio, cumulative return, and
average returns, suggesting that a higher number of action samples combined with a Gaussian
kernel improves stability and profitability. Configuration 2 also performs reasonably well, with
positive Sharpe Ratio and cumulative return, indicating that the Gaussian kernel may be more
effective than the Laplacian for this task. In contrast, Configuration 1 yields mixed results, with
a near-zero Sharpe Ratio and negative cumulative return, while Configuration 3 performs the
worst, with a negative Sharpe Ratio and the lowest returns, suggesting insufficient exploration
due to fewer action samples. Notably, Configurations 1 and 2 exhibit higher volatility compared
to Configuration 3, but the latter’s lower risk does not compensate for its poor returns. Over-
all, the results highlight the importance of kernel selection and sufficient action sampling, with
Configuration 4 emerging as the most effective.

The agent in Configuration 4 significantly outperforms both the HODL and Random strategies

69

across all metrics. With a positive Sharpe Ratio, it demonstrates better risk-adjusted returns
compared to the negative ratios of HODL and Random, indicating superior performance relative
to volatility. The agent also achieves substantially higher average daily and monthly returns
compared to HODL and Random, highlighting its ability to generate consistent profits. While
its daily and monthly return volatility is higher than the benchmarks, this is justified by its
significantly higher cumulative return versus HODL and Random. Overall, the agent’s strategy
delivers stronger returns with acceptable risk, whereas HODL and Random strategies either
under-perform or yield losses.

4.7.3 Returns Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio 0.0113 -0.0019 0.0031 0.0109
Avg Daily Return 0.292 -0.011 0.077 0.213
Avg Monthly Return 9.382 -2.112 3.566 6.949
Std Dev Daily Return 4.133 2.840 4.163 3.125
Std Dev Monthly Return ~ 21.393 10.897 22.616 15.036
Cumulative Return 41.400 -15.002 -4.497 34.450

Table 4.23: BEAR agent performance comparison across different configurations on Returns
reward function.

Metrics Config1l HODL Random
Sharpe Ratio 0.0113 -0.0089 -0.0052
Avg Daily Return 0.292 0.003 0.006
Avg Monthly Return 9.382 0.054 0.052
Std Dev Daily Return 4.133 0.205 0.329
Std Dev Monthly Return ~ 21.393 1.185 1.378
Cumulative Return 41.400 0.171 0.238

Table 4.24: Best performing BEAR configuration compared to HODL and Random strategies
on Returns reward function.

70

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

—— Benchmark HODL 131 —— Benchmark HODL
164 Agent Portfolio Value Agent Portfolio Value
) —— Random Action Portfolio Value 1.2 —— Random Action Portfolio Value
1.4 114
" " ﬂMMMW
3121 2 1o
2 2
B s
R I R s N I I 094
1.0 4 i
0.8
0.8
0.7
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
ey —— Benchmark HODL
1.1 o o wl 157 Agent Portfolio Value
A TWWIW L — Random Action Portfolio Value
14+
1.0
13-
2 0o 2
E E]
3 f 1.2
£ 0.8 B
114
A e e ML |
Vol o o yoi
0.7 104
—— Benchmark HODL
0.6 Agent Portfolio Value 0.9 1
—— Random Action Portfolio Value
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.12: BEAR agent performance comparison across different configurations and strate-
gies on Returns reward function.

4.7.4 Analysis

Based on the results on Tables 4.23, 4.24 and the plots in Figure 4.12:

The results demonstrate notable performance differences across the four BEAR offline RL con-
figurations. Configuration 1 achieves the highest Sharpe Ratio, average daily and monthly re-
turns, and cumulative return, suggesting robust performance with balanced risk-adjusted re-
wards. However, it also exhibits the highest volatility, indicating greater risk. Configuration 2
performs poorly, with negative Sharpe Ratio, average returns, and cumulative return, but shows
the lowest volatility, implying overly conservative actions. Configuration 3 yields modest re-
turns but struggles with cumulative return and high volatility, likely due to insufficient action
sampling. Configuration 4 strikes a balance, delivering strong Sharpe Ratio, solid returns, and
cumulative return, with moderate volatility, suggesting that increasing action samples with a
Gaussian kernel can mitigate risk while maintaining performance. Overall, Configurations 1
and 4 are the most effective, with Configuration 1 favoring returns despite higher risk, and Con-
figuration 4 offering a more stable alternative. The Gaussian kernel appears less effective with

fewer samples but improves with more, while the Laplacian kernel benefits from intermediate

71

sampling.

The agent in Configuration 1 significantly outperforms both the HODL and Random strategies
across all metrics, demonstrating superior risk-adjusted returns and cumulative performance.
With a positive Sharpe Ratio compared to negative values for HODL and Random, the agent
achieves better returns per unit of risk. It also exhibits substantially higher average daily and
monthly returns versus the near-zero returns of the benchmarks. However, the agent’s strategy
comes with significantly higher volatility, as seen in the elevated standard deviations of daily and
monthly returns, suggesting a more aggressive approach. Despite this, the agent’s cumulative
return vastly surpasses HODL and Random, indicating strong overall performance, albeit with
greater risk. In contrast, the passive and random strategies deliver minimal returns with lower

volatility, reflecting their lack of active decision-making.

4.8 TD3+BC Results

The following hyper-parameters remained constant:
 Actor learning rate: 0.0001
* Critic learning rate: 0.0001
* Number of critics: 2
* Discount factor v: 0.99
 Batch size: 256
* Target network synchronization coefficiency: 0.005
* Actor update interval: 2
The experiments were performed with the following configurations:

* Configuration 1: Std dev for target noise: 0.1, Clipping range for target noise: 0.3, «

value: 0.5

* Configuration 2: Std dev for target noise: 0.05, Clipping range for target noise: 0.2, «

value: 0.8

* Configuration 3: Std dev for target noise: 0.2, Clipping range for target noise: 0.4, «

value: 0.2

+ Configuration 4: Std dev for target noise: 0.2, Clipping range for target noise: 0.5, o
value: 2.5

72

4.8.1 Sharpe Ratio Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio 0.0044 -0.0106 -0.0066 0.0009
Avg Daily Return 0.100 -0.138 -0.089 0.012
Avg Monthly Return 3.449 -5.315 -4.117 0.403
Std Dev Daily Return 3.506 2.755 2.700 3.630
Std Dev Monthly Return ~ 16.390 12.537 10.426 18.469
Cumulative Return 4.378 -35.804 -26.510 -9.529

Table 4.25: TD3+BC agent performance comparison across different configurations on Sharpe
Ratio reward function.

Metrics Config1 HODL Random
Sharpe Ratio 0.0044 -0.0089 -0.011
Avg Daily Return 0.100 0.003 -0.007
Avg Monthly Return 3.449 0.054 -0.421
Std Dev Daily Return 3.506 0.205 0.383
Std Dev Monthly Return ~ 16.390 1.185 1.924
Cumulative Return 4.378 0.171 -2.876

Table 4.26: Best performing TD3+BC configuration compared to HODL and Random strate-
gies on Sharpe Ratio reward function.

73

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

12
114
M"““’W
114
MWW I 104
NN ~
Lol Y7 Do T
8 g o9
5 5
2 0s g
g g o8
0.8 074
oy | — Benchmark HooL —— Benchmark HODL
g Agent Portfolio Value 0.6 1 Agent Portfolio Value
—— Random Action Portfolio Value —— Random Action Portfolio Value
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
12
114
™ Nwﬂfw\ Mwﬁ
ST
[- 1.0
1.0
2 2
LI g 09
2 2
)]
- 0.8 ~ oo
071 0.7
—— Benchmark HODL —— Benchmark HODL
Agent Portfolio Value Agent Portfolio Value
0.6 - —— Random Action Portfolio Value 067" Random Action Portfolio Value
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.13: TD3+BC agent performance comparison across different configurations and
strategies on Sharpe Ratio reward function.

4.8.2 Analysis

Based on the results on Tables 4.25, 4.26 and the plots in Figure 4.13:

The results indicate notable performance differences across the four configurations of the TD3+BC
agent. Configuration 1 achieves the highest Sharpe Ratio and cumulative return, suggesting a
balanced trade-off between exploration (via target noise) and policy regularization (via o). Con-
figuration 2 performs poorly, with negative Sharpe Ratio and cumulative return, likely due to
excessive conservatism from high o and insufficient exploration from low noise. Configura-
tion 3 shows marginally better but still subpar results compared to Configuration 1, with higher
volatility, indicating that increased noise without proper regularization harms stability. Config-
uration 4 yields near-neutral Sharpe Ratio but suffers from high return volatility and negative cu-
mulative returns, suggesting that overly aggressive policy constraints destabilize performance.
Overall, Configuration 1 strikes the best balance, while extreme settings (Configurations 2 and

4) degrade performance.

The agent in Configuration 1 significantly outperforms both the HODL and Random strategies

across all metrics. With a positive Sharpe Ratio of 0.0044, it demonstrates better risk-adjusted

74

returns compared to HODL and Random, which both yield negative ratios. The agent also
achieves substantially higher average daily and monthly returns versus HODL and Random,
highlighting its ability to generate consistent profits. While its daily and monthly return volatility
is higher than the benchmarks, this is justified by its superior cumulative return of 4.378%,
vastly exceeding HODL and Random. Overall, the agent’s strategy delivers stronger returns
with acceptable risk, whereas HODL preserves capital with minimal growth, and Random leads

to significant losses.

4.8.3 Returns Reward Function Results

Metrics Config1l Config2 Config3 Config4
Sharpe Ratio -0.0003 0.0032 -0.0065 -0.0132
Avg Daily Return -0.001 0.092 -0.126 -0.228
Avg Monthly Return -0.561 2.810 -4.506 -7.238
Std Dev Daily Return 3.651 3.489 3.283 3.001
Std Dev Monthly Return ~ 17.996 16.543 15.704 14.329
Cumulative Return -14.991 -0.184 -31.004 -44.863

Table 4.27: TD3+BC agent performance comparison across different configurations on Re-
turns reward function.

Metrics Config2 HODL Random
Sharpe Ratio 0.0032 -0.0089 -0.0097
Avg Daily Return 0.092 0.003 -0.002
Avg Monthly Return 2.810 0.054 -0.247
Std Dev Daily Return 3.489 0.205 0.334
Std Dev Monthly Return ~ 16.543 1.185 1.490
Cumulative Return -0.184 0.171 -1.624

Table 4.28: Best performing TD3+BC configuration compared to HODL and Random strate-
gies on Returns reward function.

75

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

2 —— Benchmark HODL
Agent Portfolio Value 11
114 [—— Random Action Portfolio Value B
"P&WWW WWWW]
e - N e)
W ‘-r.#——y./'\,W A
10 10
2 0o 2
> 2 09
2 2
2 08| 2
0.8
0.7
0.7 | — Benchmark HoDL
0.6 Agent Portfolio Value
—— Random Action Portfolio Value
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
1.2
114 R
MMW
11
WWWV’ 1.0
1.0 4
0.9
o a
2 03+ B
o @ 0.8
E E
£ 08 s
0.7
0.7
0.6
064 Benchmark HODL —— Benchmark HODL
: Agent Portfolio Value 0.5 1 Agent Portfolio Value
—— Random Action Portfolio Value —— Random Actien Portfolio Value
0.5 4
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.14: TD3+BC agent performance comparison across different configurations and
strategies on Returns reward function.

4.8.4 Analysis

Based on the results on Tables 4.27, 4.28 and the plots in Figure 4.14:

The results of the TD3+BC agent across the four configurations reveal notable differences in
performance. Configuration 2 outperforms the others, achieving the highest Sharpe Ratio, pos-
itive average daily and monthly returns, and the lowest cumulative loss. This suggests that
moderate noise and a stronger behavioral cloning component (higher «) help stabilize learning
and improve returns. In contrast, Configurations 1, 3, and 4 exhibit negative Sharpe Ratios and
cumulative returns, with Configuration 4 performing the worst, indicating that excessive BC
weighting or aggressive target noise destabilizes the policy. Interestingly, higher noise settings
reduce return volatility, but this comes at the cost of significantly poorer returns, likely due to

overly conservative actions.

The agent in Configuration 2 demonstrates a mixed performance compared to the HODL and
Random strategies. While it achieves a marginally positive Sharpe Ratio and higher average
daily and monthly returns than both benchmarks, its cumulative return under-performs HODL

but significantly surpasses the Random strategy. The agent exhibits much higher volatility,

76

with daily and monthly return standard deviations far exceeding those of HODL and Random,
indicating greater risk. Although the agent generates higher returns on average, its risk-adjusted
performance is only slightly better than the benchmarks, which both show negative values. This
suggests that while the agent is more active and potentially profitable in the short term, its high
volatility and negative cumulative return raise concerns about long-term consistency compared
to the passive HODL strategy. The Random strategy performs the worst across all metrics, as

expected.

4.9 DT Results

The following hyper-parameters remained constant:
* Learning rate: 0.0001
* Discount factor v: 0.99
* Batch size: 32
* Warm-up steps: 10000
The experiments were performed with the following configurations:
* Configuration 1: Context Size: 20, Attention Heads: 1, Layers: 3
* Configuration 2: Context Size: 50, Attention Heads: 2, Layers: 3
» Configuration 3: Context Size: 128, Attention Heads: 1, Layers: 3

» Configuration 4: Context Size: 128, Attention Heads: 4, Layers: 4

4.9.1 Sharpe Ratio Reward Function Results

Metrics Config1 Config2 Config3 Config4
Sharpe Ratio -0.0091 -0.0037 -0.006 -0.0106
Avg Daily Return 0.007 0.006 0.008 -0.011
Avg Monthly Return 0.179 0.166 0.218 -0.453
Std Dev Daily Return 0.119 0.668 0.193 0.461
Std Dev Monthly Return ~ 0.614 2.541 0.924 1.773
Cumulative Return 1.147 -1.102 0.991 -3.748

Table 4.29: DT agent performance comparison across different configurations on Sharpe
Ratio reward function.

77

Metrics Config1l HODL Random

Sharpe Ratio -0.0091 -0.0089 -0.0041
Avg Daily Return 0.007 0.003 0.008
Avg Monthly Return 0.179 0.054 0.150
Std Dev Daily Return 0.119 0.205 0.291
Std Dev Monthly Return ~ 0.614 1.185 1.473
Cumulative Return 1.147 0.171 0.970

Table 4.30: Best performing DT configuration compared to HODL and Random strategies on
Sharpe Ratio reward function.

1e6 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time

—— Benchmark HODL
Agent Portfolio Value
—— Random Action Portfolio Value

1.08 I j‘a‘r“ 1 ‘J}E{/}k
107 yﬂ ‘ ‘Wm l‘lb1 :j Al %W»ﬁ//“\ f\w\mﬁ/’
1

A
1.05 4
1.00 4

1.04 4 ‘ 0.98

Value USD
Value USD

—— Benchmark HODL
Agent Portfolio Value
1.03 1 0:96 1" Random Action Portfolio Value
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
166 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
110 §
—— Benchmark HODL
1.09 Agent Portfolio Value i
. —— Random Action Portfolio Value 1.08 4] ‘A
1.08 4)j Lo
1.06 Y‘/\
‘m i ‘W
o a
2 1.07 2 1.04
]]
2 2
E ‘fb g
1.06 N\ M "' h‘ 102
‘M 1001
05 \ —— Benchmark HODL
0.98 Agent Portfolio Value
—— Random Action Portfolio Value
1.04 4
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps. Timesteps
(c) Configuration 3 (d) Configuration 4

Figure 4.15: DT agent performance comparison across different configurations and strategies
on Sharpe Ratio reward function.

4.9.2 Analysis

Based on the results on Tables 4.29, 4.30 and the plots in Figure 4.15:

The results indicate that none of the Decision Transformer configurations achieved a positive

Sharpe Ratio, suggesting poor risk-adjusted performance across all experiments. Configuration

78

2 performed slightly better in terms of Sharpe Ratio and had lower volatility in daily returns
compared to Configurations 1 and 3, though its cumulative return was negative. Configuration
3 achieved the highest average daily and monthly returns but still suffered from suboptimal
risk-adjusted returns. Configuration 4, with the largest context size, most attention heads, and
deepest architecture, performed the worst, exhibiting the lowest Sharpe Ratio, negative average
returns, and the highest cumulative loss, likely due to overfitting or instability from increased
complexity. Overall, the results suggest that increasing model capacity does not necessarily
improve performance, and a moderate context size with additional attention heads may offer a
better balance, though further tuning is needed to achieve positive risk-adjusted returns. The
high standard deviations in returns, particularly for Configurations 2 and 4, indicate significant

volatility, which aligns with their poor Sharpe Ratios.

The agent in Configuration 1 demonstrates mixed performance compared to the HODL and Ran-
dom strategies. While it achieves a slightly lower Sharpe Ratio than HODL and significantly
under-performs the Random strategy, it delivers higher average daily and monthly returns than
HODL but slightly lower than the Random strategy. Notably, the agent exhibits lower volatil-
ity in daily and monthly returns compared to both HODL and Random, suggesting better risk
management. Additionally, the agent’s cumulative return significantly outperforms HODL and
slightly exceeds the Random strategy, indicating stronger long-term growth despite its subop-
timal risk-adjusted returns. Overall, the agent balances return and risk better than HODL but
lags behind the Random strategy in Sharpe Ratio, highlighting a trade-off between volatility and

absolute returns.

4.9.3 Returns Reward Function Results

Metrics Config1 Config2 Config3 Config4
Sharpe Ratio -0.0197 -0.0098 0.0008 -0.0058
Avg Daily Return -0.008 -0.005 0.021 0.008
Avg Monthly Return -0.337 -0.183 0.781 0.196
Std Dev Daily Return 0.195 0.401 0.521 0.172
Std Dev Monthly Return ~ 1.020 1.646 2.100 0.789
Cumulative Return -2.321 -2.363 2.704 1.268

Table 4.31: DT agent performance comparison across different configurations on Returns
reward function.

79

Metrics Config3 HODL Random

Sharpe Ratio 0.0008 -0.0089 -0.0053
Avg Daily Return 0.021 0.003 0.006
Avg Monthly Return 0.781 0.054 0.161
Std Dev Daily Return 0.521 0.205 0.245
Std Dev Monthly Return ~ 2.100 1.185 1.398
Cumulative Return 2.704 0.171 0.834

Table 4.32: Best performing DT configuration compared to HODL and Random strategies on
Returns reward function.

1e6 Portfolio Value Benchmarks over Time Portfolio Value Benchmarks over Time

—— Benchmark HODL

Gl LT (L WA
.Mm s «r;fW

1:05: J\ Ml (*'("\Wr

Value USD
=
o
-

Value USD

1.03 4 M h“k’rﬂ\x —— Benchmark HODL
1.00 4 Agent Portfolio Value
102 —— Random Actien Portfolio Value
0 1000 2000 3000 4000 5000 [} 1000 2000 3000 4000 5000
Timesteps Timesteps
(a) Configuration 1 (b) Configuration 2
166 Portfolio Value Benchmarks over Time 1e6 Portfolio Value Benchmarks over Time
115 | — Benchmark HoDL 109

Agent Portfolio Value
—— Random Action Portfolio Value

Mg R W (i

—— Benchmark HODL
1.02 4] Agent Portfolio Value
—— Random Action Portfolio Value

Value USD
Value USD

o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000

(c) Configuration 3 (d) Configuration 4

Figure 4.16: DT agent performance comparison across different configurations and strategies
on Returns reward function.

4.9.4 Analysis

Based on the results on Tables 4.31, 4.32 and the plots in Figure 4.16:

The results of the Decision Transformer agent across the four configurations reveal notable dif-

ferences in performance. Configuration 3 stands out as the best-performing setup, achieving

80

the highest Sharpe Ratio, average daily and monthly returns, and cumulative return. However,
it also exhibits the highest volatility, with the largest standard deviations in daily and monthly
returns, suggesting a trade-off between risk and reward. In contrast, Configuration 1 performs
the worst, with negative Sharpe Ratios, returns, and cumulative returns, though it has lower
volatility than Configurations 2 and 3. Configuration 2 shows slight improvements but still
under-performs compared to Configuration 3. Configuration 4 delivers moderate performance,
with positive but lower returns than Configuration 3 and significantly reduced volatility, indi-
cating that increasing model complexity does not necessarily translate to better returns. Overall,
Configuration 3 strikes the best balance for the returns-based reward function, while Configu-
ration 4 may be preferable if lower risk is prioritized. The results suggest that context size plays
a critical role in performance, while the impact of attention heads and layers is less straightfor-

ward.

The agent in Configuration 3 significantly outperforms both the HODL and random strategies
across all metrics, demonstrating superior risk-adjusted returns and cumulative performance.
With a Sharpe Ratio of 0.0008, it surpasses HODL and random, indicating better return per
unit of risk. The agent also achieves substantially higher average daily and monthly returns
compared to HODL and random, albeit with greater volatility, as reflected in higher standard
deviations. Most notably, the agent’s cumulative return dwarfs both benchmarks, suggesting
strong compounding growth over time. While the agent’s strategy is riskier, its higher returns
justify the additional volatility, making it a more effective approach than passive holding or

random trading.

4.10 Comparison Between Algorithms

4.10.1 Sharpe Ratio Reward Function

Metrics BCQ D-BCQ CQL D-CQL IQL BEAR TD3+BC DT
Sharpe Ratio 0.0095 0.0006 -0.0008 0.0120 0.0020 0.0161 0.0044 -0.0091
Avg Daily Return 0.035 0.019 -0.001 0.062 0070 0336 0.100 0.007
Avg Monthly Return 0.851 0483 -0.572 2.063 1.856 10.416 3.449 0.179
Std Dev Daily Return 0.608 1.805 3.075 0.625 3394 3414 3506 0.119
Std Dev Monthly Return 1.951 6.836 13.969 2.703 15277 17.554 16390 0.614
Cumulative Return 8.733 -0.287 -12.614 11.530 -5.298 69.339 4.378 1.147

Table 4.33: Comparison of best performing configuration of each algorithm on Sharpe Ratio
reward function.

81

4.10.1.1 Analysis

Based on the results on Table 4.33:

The results reveal significant variations in performance across the eight offline RL algorithms for
portfolio optimization using the Sharpe Ratio reward function. BEAR emerges as the strongest
performer, achieving the highest Sharpe Ratio, average daily and monthly returns, and cumu-
lative return, but it also exhibits the highest volatility, with daily and monthly standard devia-
tions of 3.414 and 17.554, respectively. This suggests BEAR takes on substantial risk for its
out-sized returns. Discrete CQL strikes a better risk-return balance, with a competitive Sharpe
Ratio, moderate returns, and significantly lower volatility, making it a more stable alternative.
BCQ and TD3+BC deliver modest but relatively stable returns, while IQL shows higher aver-
age returns but suffers from extreme volatility and negative cumulative returns, indicating poor
consistency. Discrete BCQ and CQL under-perform, with near-zero or negative Sharpe Ratios,
while DT is the most conservative, with minimal returns and the lowest volatility but a negative
Sharpe Ratio, suggesting excessive risk aversion. Overall, BEAR is the highest-risk, highest-
reward option, whereas Discrete CQL offers a more balanced approach, and DT is the safest but

least profitable.

4.10.2 Returns Reward Function

Metrics BCQ D-BCQ CQL D-CQL IQL BEAR TD3+BC DT

Sharpe Ratio 0.0083 -0.0002 0.0102 0.0151 0.0034 0.0113 0.0032 0.0008
Avg Daily Return 0.101 0.013 0.058 0202 0076 0292 0.092 0.021
Avg Monthly Return 3299 -1333 1.029 6.686 2481 9382 2810 0.781
Std Dev Daily Return 1.769 1.442 0980 2.021 3266 4.133 3489 0.521
Std Dev Monthly Return ~ 6.134 3.397 1.631 9935 14220 21393 16.543 2.100
Cumulative Return 16.574 -0.942 13.483 39.746 0.947 41.400 -0.184 2.704

Table 4.34: Comparison of best performing configuration of each algorithm on Returns re-
ward function.

4.10.2.1 Analysis

Based on the results on Table 4.34:

Discrete CQL and BEAR emerge as the top performers in terms of cumulative returns and av-
erage monthly returns, suggesting their effectiveness in capturing profitable opportunities in

the crypto market. However, BEAR’s high volatility indicates aggressive risk-taking, whereas

82

Discrete CQL balances return and risk more effectively. CQL also shows promise with a com-
petitive Sharpe Ratio and the lowest daily volatility, making it suitable for risk-averse strategies.
In contrast, BCQ and IQL deliver moderate but stable returns, while TD3+BC and Discrete BCQ
under-perform, with negative cumulative returns in some cases. DT exhibits the lowest volatility
but also the weakest returns, highlighting a trade-off between safety and profitability. Overall,
D-CQL stands out as the most balanced algorithm, while BEAR’s high-risk, high-reward ap-
proach may appeal to aggressive investors. The results underscore the importance of aligning
algorithm choice with risk tolerance and return objectives in dynamic crypto markets.

4.10.3 Reward Function Comparison

The comparison between the Sharpe ratio and returns reward functions reveals notable differ-
ences in algorithm performance. When optimizing for the Sharpe ratio, BEAR achieves the
highest Sharpe ratio and cumulative return, but with high volatility. In contrast, when optimiz-
ing for raw returns, BEAR still performs well but with a lower Sharpe ratio and slightly reduced
cumulative return, suggesting that the Sharpe ratio reward function better balances risk and re-
turn for this algorithm. Discrete CQL shows consistent improvement with the returns reward
function, achieving a higher Sharpe ratio and significantly better cumulative return. Notably,
DT performs poorly with the Sharpe ratio reward but marginally improves with returns reward,
indicating its sensitivity to the reward function. Overall, the Sharpe ratio reward tends to pro-
duce more stable returns, while the returns reward can lead to higher absolute performance but
with greater volatility. BEAR stands out as the strongest performer across both reward func-
tions, though its advantage is more pronounced under Sharpe ratio optimization. The differences
between the two reward functions are illustrated in the following bar charts (Figure 4.17) and
heatmap (Figure 4.18).

83

swmay
oney adieys mmm
uoIouNy piemay

HUInEY
oney adieys mmm
uondUNg piemay

swinay .
oney adieys mmm
uoIUNg plemay

& o
<& P o
X ol o 3
& & & AN 2 o <
— . —- — 1 to
roeg
q]
c
m
r o
r 09
uinjay aARe|INWN)
wyioby
o
& A Lo o
X o &
© i B & o ey < O‘.%v
0
rt
lz s
=
o
rE
rt
winay Ajleqd A2q pis
wyiloby
o
& ® Lo O
d 5 -1
& & & IR &P Foid
-_— - — [oo
r S00
roto
rsTo
r0z0
rSTo
r0g0
- GEQ

uimay Ajieq bay

anjen

Swimay .
oney adieys mmm
uonoung piemasy

HUINEN
oney adieys mmm
uonRouUng piemay

Swinisy .
oney adieys mmm
uonoung piemay

.
o
S
anjen

roz

winyzy A|yuop AQ pIs
wiuoby

ro

;
-
anjen

uinay Ajyauol bay
wuoby
L L
RS £ .w,% o & s

F0T00—

r §00'0—

F 0000

r S000

F 0100

r 8100

oljey adieys

84

Bar charts comparing the two reward functions for each metric and algorithm

Figure 4.17

Performance Difference: Returns Reward vs. Sharpe Ratio Reward

Sharpe Ratio - -0.00 -0.00 0.01 0.00 0.00 -0.00 -0.00 0.01
Avg Daily Return - 0.07 -0.01 0.06 0.14 0.01 -0.04 -0.01 0.01
Avg Monthly Return — 2.45 -1.82 1.60 4.62 0.62 -1.03 -0.64 0.60
v
=]
[T}
=
Std Dev Daily Return - 116 0.36 -2.10 1.40 0.13 0.72 -0.02 0.40
Std Dev Monthly Return - 4.18 -3.44 -12.34 7.23 -1.06 3.84 0.15 1.49
Cumulative Return - 7.84 -0.66 6.25 -4.56 1.56
I I i i i
é_‘o %00 o & &
hv]
Algorithm

20

10

-10

Difference (Returns - Sharpe)

Figure 4.18: Heatmap comparing the performance of algorithms under the two reward func-
tions. Color encoding: red indicates higher values under the Returns reward, blue indicates
higher values under the Sharpe Ratio reward.

5 Discussion

5.1 Conclusion e 86
5.2 Future Work e 87

5.1 Conclusion

In summary, most of the evaluated reinforcement learning algorithms struggled to discover an
optimal trading strategy capable of delivering strong risk-adjusted returns. Among the tested
approaches, BEAR and Discrete CQL demonstrated the most promising performance, while
others failed to achieve consistent profitability. This limitation is evident from the fact that none
of the trained agents attained a Sharpe Ratio exceeding 1.0, the threshold generally considered

acceptable for a viable trading strategy.

The primary constraint likely stems from the limited feature space of the dataset. While OHLCV
data provides a foundational representation of market dynamics, cryptocurrencies are influenced
by a multitude of exogenous factors beyond raw price movements. A richer dataset incorporating

the following features could significantly enhance model performance:
* Technical indicators to capture momentum and volatility regimes
* On-chain metrics to gauge network health

* Sentiment and social media signals (e.g., Twitter/Reddit sentiment, Google Trends) to

quantify market psychology

* Macro-financial factors (e.g., Bitcoin dominance, correlation with traditional assets) to

assess broader market conditions

Another critical factor hindering the discovery of an optimal strategy arises from the mismatch
between discrete action spaces and the continuous nature of most reinforcement learning algo-
rithms, compounded by the unique volatility of cryptocurrency markets. While our experiments
employed a simplified discrete action space (e.g., fixed buy/sell amounts of $500), the majority
of offline RL algorithms (excluding Discrete BCQ and Discrete CQL) are inherently designed
for continuous action spaces, which better accommodate nuanced position sizing and dynamic

risk management.

Cryptocurrency markets demand far greater flexibility than rigid, fixed-quantity actions can pro-
vide. For instance, during extreme volatility events (e.g., flash crashes or rapid bullish rallies),
the ability to liquidate 100% of holdings or scale positions proportionally to confidence levels is

essential to mitigate losses or capitalize on momentum. A discrete framework forces the agent

86

into suboptimal decisions, such as holding a fixed position during a market downturn due to

insufficient granularity in risk-off actions.

5.2 Future Work

The findings of this study reveal critical limitations and opportunities for advancing RL-based

cryptocurrency trading strategies.

Enriching the Dataset: A natural next step involves recreating the experiments with an en-
riched dataset that extends beyond basic OHLCV data to incorporate technical indicators, on-
chain metrics, and sentiment features. Furthermore, since we observed improvements from

transitioning from daily to hourly data, a next step would be to try even larger volumes of data.

Changing the Action Space: Transitioning from discrete to purely continuous action spaces,
could enable more nuanced position sizing and dynamic risk management, particularly vital
in cryptocurrency markets where the ability to partially liquidate holdings or scale positions

proportionally to market conditions can significantly impact risk-adjusted returns.

Improving Evaluation Framework: Migrating to a Gymnasium Environment [47] would pro-
vide more rigorous tracking of agent performance through metrics like cumulative reward. Such
an environment could also incorporate realistic market friction by modeling transaction costs,
slippage, and liquidity constraints, factors often overlooked in academic simulations but critical

for real-world deployment.

Hybrid Approach: Future research should explore hybrid architectures combining offline RL
with online fine-tuning mechanisms to adapt to sudden market regime shifts, as well as ensemble

methods that dynamically weight sub-policies based on prevailing volatility conditions.

Alternative Reward Functions: Our experiments demonstrated that the choice of reward func-
tion significantly impacts performance, underscoring its critical role in reinforcement learning.
Future work should explore more sophisticated reward functions, such as the Omega Ratio,
Sortino Ratio, Drawdown-Based Rewards, or CVaR, to better capture the nuances of portfolio
optimization. Additionally, combining these metrics (e.g., via a weighted sum) could provide
a powerful way to balance competing objectives like returns, risk, and turnover. This approach
would allow for more flexible and adaptive optimization strategies tailored to specific investor

preferences.

87

BIBLIOGRAPHY

[1] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7, no. 1, pp. 77-91,
1952.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https://www.bitcoin.org/
bitcoin.pdf, 2008, (cit. on pp. 1, 7).

[3] A. Gunjan and S. Bhattacharyya, “A brief review of portfolio optimization techniques,”
Artificial Intelligence Review, vol. 56, pp. 1-40, 09 2022.

[4] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning:
Tutorial, review, and perspectives on open problems,” 2020. [Online]. Available:
https://arxiv.org/abs/2005.01643

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. ~ MIT Press, 2016, http:
//www.deeplearningbook.org.

[6] Sutton and Barto, Reinforcement learning: An introduction. The MIT Press, 2018.

[7] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning without
exploration,” 2019. [Online]. Available: https://arxiv.org/abs/1812.02900

[8] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error in
actor-critic methods,” 2018. [Online]. Available: https://arxiv.org/abs/1802.09477

[9] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau, “Benchmarking batch deep
reinforcement learning algorithms,” 2019. [Online]. Available: https://arxiv.org/abs/1910.
01708

[10] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
g-learning,” 2015. [Online]. Available: https://arxiv.org/abs/1509.06461

[11] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative g-learning for offline
reinforcement learning,” 2020. [Online]. Available: https://arxiv.org/abs/2006.04779

[12] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep
energy-based policies,” 2017. [Online]. Available: https://arxiv.org/abs/1702.08165

[13] W. Dabney, M. Rowland, M. Bellemare, and R. Munos, “Distributional reinforcement
learning with quantile regression,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, Apr. 2018. [Online]. Available: https://ojs.aaai.org/index.php/
AAAl/article/view/11791

[14] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning with implicit
g-learning,” 2021. [Online]. Available: https://arxiv.org/abs/2110.06169

88

https://www.bitcoin.org/bitcoin.pdf
https://www.bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/2005.01643
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1812.02900
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1910.01708
https://arxiv.org/abs/1910.01708
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/1702.08165
https://ojs.aaai.org/index.php/AAAI/article/view/11791
https://ojs.aaai.org/index.php/AAAI/article/view/11791
https://arxiv.org/abs/2110.06169

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Peters and S. Schaal, “Reinforcement learning by reward-weighted regression for
operational space control,” in Proceedings of the 24th International Conference on
Machine Learning, ser. ICML ’07. New York, NY, USA: Association for Computing
Machinery, 2007, p. 745-750. [Online]. Available: https://doi.org/10.1145/1273496.
1273590

Q. Wang, J. Xiong, L. Han, p. sun, H. Liu, and T. Zhang, “Exponentially weighted imitation
learning for batched historical data,” in Advances in Neural Information Processing Sys-
tems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds., vol. 31. Curran Associates, Inc., 2018. [Online]. Available: https://proceedings.
neurips.cc/paper_files/paper/2018/file/4aec1b3435c52abbdf8334eale7141e0-Paper.pdf

X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning,” 2019. [Online]. Available:
https://arxiv.org/abs/1910.00177

A. Nair, A. Gupta, M. Dalal, and S. Levine, “Awac: Accelerating online reinforcement
learning with offline datasets,” 2021. [Online]. Available: https://arxiv.org/abs/2006.
09359

R. Koenker and G. Bassett Jr, “Regression quantiles,” Econometrica: journal of the Econo-
metric Society, pp. 33-50, 1978.

R. Koenker and K. F. Hallock, “Quantile regression,” Journal of Economic Perspectives,
vol. 15, no. 4, p. 143—-156, December 2001. [Online]. Available: https://www.acaweb.
org/articles?1d=10.1257/jep.15.4.143

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets
for deep data-driven reinforcement learning,” 2021. [Online]. Available: https:
//arxiv.org/abs/2004.07219

A. Kumar, J. Fu, G. Tucker, and S. Levine, “Stabilizing off-policy g-learning via
bootstrapping error reduction,” 2019. [Online]. Available: https://arxiv.org/abs/1906.
00949

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. Smola, “A kernel two-
sample test,” J. Mach. Learn. Res., vol. 13, no. 1, p. 723-773, Mar. 2012.

S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforcement learning,”
2021. [Online]. Available: https://arxiv.org/abs/2106.06860

P. Henderson, R. Islam, P. Bachman, J. Pinecau, D. Precup, and D. Meger, “Deep
reinforcement learning that matters,” 2019. [Online]. Available: https://arxiv.org/abs/
1709.06560

89

https://doi.org/10.1145/1273496.1273590
https://doi.org/10.1145/1273496.1273590
https://proceedings.neurips.cc/paper_files/paper/2018/file/4aec1b3435c52abbdf8334ea0e7141e0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/4aec1b3435c52abbdf8334ea0e7141e0-Paper.pdf
https://arxiv.org/abs/1910.00177
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359
https://www.aeaweb.org/articles?id=10.1257/jep.15.4.143
https://www.aeaweb.org/articles?id=10.1257/jep.15.4.143
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/1906.00949
https://arxiv.org/abs/1906.00949
https://arxiv.org/abs/2106.06860
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry,
“Implementation matters in deep policy gradients: A case study on ppo and trpo,” 2020.
[Online]. Available: https://arxiv.org/abs/2005.12729

H. Furuta, T. Kozuno, T. Matsushima, Y. Matsuo, and S. S. Gu, “Co-adaptation of
algorithmic and implementational innovations in inference-based deep reinforcement
learning,” 2021. [Online]. Available: https://arxiv.org/abs/2103.17258

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error in
actor-critic methods,” 2018. [Online]. Available: https://arxiv.org/abs/1802.09477

D. A. Pomerleau, “Efficient training of artificial neural networks for autonomous naviga-

tion,” Neural Computation, vol. 3, no. 1, pp. 88-97, 1991.
L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and

I. Mordatch, “Decision transformer: Reinforcement learning via sequence modeling,”
2021. [Online]. Available: https://arxiv.org/abs/2106.01345

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,” 2020. [Online].
Available: https://arxiv.org/abs/2005.14165

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever,
“Zero-shot text-to-image generation,” in Proceedings of the 38th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila and
T. Zhang, Eds., vol. 139. PMLR, 18-24 Jul 2021, pp. 8821-8831. [Online]. Available:
https://proceedings.mlr.press/v139/ramesh21a.html

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023. [Online]. Available:
https://arxiv.org/abs/1706.03762

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language un-
derstanding by generative pre-training,” https://www.cs.ubc.ca/~amuham01/LING530/
papers/radford2018improving.pdf, 2018, unpublished manuscript.

H. Yang, X.-Y. Liu, S. Zhong, and A. Walid, “Deep reinforcement learning for automated
stock trading: An ensemble strategy,” September 2020, available at SSRN: https://ssrn.
com/abstract=3690996 or http://dx.doi.org/10.2139/ssrn.3690996.

V. Konda and V. Gao, “Actor-critic algorithms,” Neural Information Processing Systems,
01 2000.

90

https://arxiv.org/abs/2005.12729
https://arxiv.org/abs/2103.17258
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/2106.01345
https://arxiv.org/abs/2005.14165
https://proceedings.mlr.press/v139/ramesh21a.html
https://arxiv.org/abs/1706.03762
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://ssrn.com/abstract=3690996
https://ssrn.com/abstract=3690996
http://dx.doi.org/10.2139/ssrn.3690996

[37] Z. Liang, H. Chen, J. Zhu, K. Jiang, and Y. Li, “Adversarial deep reinforcement learning
in portfolio management,” 2018. [Online]. Available: https://arxiv.org/abs/1808.09940

[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” 2017. [Online]. Available: https://arxiv.org/abs/1707.06347

[39] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” 2016.
[Online]. Available: https://arxiv.org/abs/1602.01783

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” 2019. [Online].
Available: https://arxiv.org/abs/1509.02971

[41] G. Lucarelli and M. Borrotti, “A deep g-learning portfolio management framework for the
cryptocurrency market,” Neural Computing and Applications, vol. 32, pp. 17229-17 244,
2020. [Online]. Available: https://doi.org/10.1007/s00521-020-05359-8

[42] T. Cui, S. Ding, H. Jin, and Y. Zhang, “Portfolio constructions in cryptocurrency market:
A cvar-based deep reinforcement learning approach,” Economic Modelling, vol. 119,
p. 106078, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0264999322003157

[43] T. Nagler, L. Schneider, B. Bischl, and M. Feurer, “Reshuffling resampling splits
can improve generalization of hyperparameter optimization,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.15393

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[45] T. Seno and M. Imai, “d3rlpy: An offline deep reinforcement learning library,” 2022.
[Online]. Available: https://arxiv.org/abs/2111.03788

[46] Intel Corporation, “Intel Xeon Gold 6226R Processor Specifications,” https://www.intel.
com/content/www/us/en/products/sku/199347/intel-xeon- gold-6226r-processor-22m-
cache-2-90-ghz/specifications.html, 2020, accessed: 2025-05-17.

[47] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. D. Cola, T. Deleu, M. Goulao,
A. Kallinteris, M. Krimmel, A. KG, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai,
H. Tan, and O. G. Younis, “Gymnasium: A standard interface for reinforcement learning
environments,” 2024. [Online]. Available: https://arxiv.org/abs/2407.17032

91

https://arxiv.org/abs/1808.09940
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1509.02971
https://doi.org/10.1007/s00521-020-05359-8
https://www.sciencedirect.com/science/article/pii/S0264999322003157
https://www.sciencedirect.com/science/article/pii/S0264999322003157
https://arxiv.org/abs/2405.15393
https://arxiv.org/abs/2111.03788
https://www.intel.com/content/www/us/en/products/sku/199347/intel-xeon-gold-6226r-processor-22m-cache-2-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/199347/intel-xeon-gold-6226r-processor-22m-cache-2-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/199347/intel-xeon-gold-6226r-processor-22m-cache-2-90-ghz/specifications.html
https://arxiv.org/abs/2407.17032

APPENDICES

92

APPENDIX 1

Guide on Reproducing the Experiments

Reproducing the experiments on the HPC is a seamless procedure:

1. Open the Portfolio_Optimization.py file with a text editor, go to the main function and
manually set the hyper-parameters of each algorithm (like the example in Listing 3.4).
We opted for a manual approach since the hyper-parameters are too many to pass them as

command line arguments.

2. Open the batch file with a text editor. Go to lines 6 and 7 and change the error and output

paths to your own:

6. #SBATCH --error=/home/ciosifO1/output/error.out
7. #SBATCH --output=/home/ciosif01/output/output.out

Also in line 9 change the email address to your own to receive updates regarding your

submitted jobs:

9. #SBATCH --mail-user=ciosifOlQ@ucy.ac.cy

Finally in line 19, you can change basic parameters like the reward function and number

of training epochs:

19. python3 Portfolio_Optimization.py -a $1 -w 168 -bd 1000000 -b
500 -s 500 -r sharpe -e 20

To view all available arguments execute in a terminal the following command:

$ python3 Portfolio_Optimization.py --help

3. To submit the jobs run the batch_script.sh by running the following:

$./batch_script.sh

This is going to train and evaluate all eight algorithms with the specified hyper-parameter

combination.

4. The trained models will appear under the automatically created directory /d3rlpy logs.
The metrics and graphs will appear under the /stats logs directory.

93

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Goals of the Study
	Methodology
	Document Organization

	Background Knowledge
	Portfolio Optimization Definition
	Introduction to Cryptocurrencies
	Reinforcement Learning
	Essential Elements of Reinforcement Learning
	Policy
	Reward Signal
	Value Function
	Environment Model
	Markov Decision Process

	Tabular Solution Methods
	Dynamic Programming
	Monte Carlo Methods
	Temporal-Difference Learning
	On-Policy SARSA
	Off-Policy Q-Learning

	Approximate Solution Methods
	Hyper-Parameters

	Offline Reinforcement Learning
	Offline RL Workflow
	Offline RL Challenges
	Batch Constrained Q-Learning
	Motivation
	Main Idea
	Key Components of BCQ
	Algorithm Overview
	Hyper-parameters

	Discrete BCQ
	Algorithm Overview
	Hyper-parameters

	Conservative Q-Learning
	Motivation
	Main Idea
	Algorithm Overview
	Hyper-parameters

	Implicit Q-Learning
	Motivation
	Main Idea
	Expectile Regression
	Algorithm Overview
	Hyper-parameters

	Bootstrapping Error Accumulation Reduction
	Motivation
	Main Idea
	Algorithm Overview
	Hyper-Parameters

	Temporal Difference Learning 3 with Behavioral Cloning
	Motivation
	Main Idea
	Behavioral Cloning
	Algorithm Overview
	Hyper-Parameters

	Decision Transformer
	Motivation
	Main Idea
	Transformers
	Trajectory representation
	Hyper-Parameters

	Algorithm Classification

	Related Work

	Methodology and Implementation
	Dataset Characteristics
	Dataset Pre-Processing
	MDP Model for Portfolio Optimization
	Dataset Augmentation
	Actions Generation
	Rewards Generation

	Python Implementation
	Dataset Handling with MDPDataset
	Action Encoding for Discrete and Continuous Algorithms
	Training Process

	Algorithm Evaluation and Analysis
	Evaluation Framework
	Metrics
	Experimental Setup
	Hardware Specifications
	Experiment Methodology

	BCQ Results
	Sharpe Ratio Reward Function Results
	Analysis
	Returns Reward Function Results
	Analysis

	Discrete BCQ Results
	Sharpe Ratio Reward Function Results
	Analysis
	Returns Reward Function Results
	Analysis

	CQL Results
	Sharpe Ratio Reward Function Results
	Analysis
	Returns Reward Function Results
	Analysis

	Discrete CQL Results
	Sharpe Ratio Reward Function Results
	Analysis
	Returns Reward Function Results
	Analysis

	IQL Results
	Sharpe Ratio Reward Function Results
	Analysis
	Returns Reward Function Results
	Analysis

	BEAR Results
	Sharpe Ratio Reward Function Results
	Analysis
	Returns Reward Function Results
	Analysis

	TD3+BC Results
	Sharpe Ratio Reward Function Results
	Analysis
	Returns Reward Function Results
	Analysis

	DT Results
	Sharpe Ratio Reward Function Results
	Analysis
	Returns Reward Function Results
	Analysis

	Comparison Between Algorithms
	Sharpe Ratio Reward Function
	Analysis

	Returns Reward Function
	Analysis

	Reward Function Comparison

	Discussion
	Conclusion
	Future Work

	BIBLIOGRAPHY
	APPENDICES
	Guide on Reproducing the Experiments

