
 Thesis

Identifying, documenting, and investigating breaking changes in software

ecosystems

Christoforos Papandreou

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2025

ii

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Identifying, documenting, and investigating breaking changes in software

ecosystems

Christoforos Papandreou

Supervisor

Dr. Eleni Constantinou

The Thesis was submitted in partial fulfillment of the requirements for obtaining a

degree in the Department of Computer Science of the University of Cyprus

 May 2025

iii

Acknowledgements

I would like to express my great gratitude towards my supervisor, Dr. Eleni Constantinou,

for giving me the chance to work on this topic and for guiding me through all the steps

needed for the making of this very thesis.

Additionally, I want to thank the people that are close to me and have supported me

emotionally when they felt that they needed to. I will always be grateful to you.

iv

Abstract

In the field of software evolution, dependency library updates may introduce changes

which interfere with client-dependency compatibility. Therefore, client developers could

possibly delay updating their dependency constraints and thus cause technical lag.

Technical lag represents a value that describes the outdatedness of a client’s dependency

constraints based on the time of its release. This thesis explores the interconnection

between three key variables of software evolution via setting these three research

questions: (1) Does release frequency affect the appearance of breaking changes? (2) Do

breaking changes affect technical lag? (3) Does release frequency influence technical lag?

To investigate the three RQs, this thesis builds upon the dataset of [4] and extends it with

more recent Maven Central Repository data, such as release dates and newer release

versions. Any unclear or invalid entries are filtered out of the expanded dataset with the

use of multiple scripts. Values for breaking changes between library updates were already

pre-calculated in [4], while release frequency, technical lag and version lag were all

calculated within this thesis.

Using the Spearman’s Rank Correlation test and the newly defined datasets, the three

RQs were explored, and they revealed some interesting results. They revealed that RQ1

and RQ2 had a statistically significant correlation, albeit it being weaker than expected,

while RQ3 showed no correlation between its two variables.

The findings indicate that despite the fact that an increase in library release frequency

leads to less added breaking changes in the code, several other factors matter for the

number of breaking changes in a library update. A similar conclusion can also be given

about the fact that updates which include more breaking changes are more likely to lead

their clients to higher levels of technical lag, but they are not the sole factor for this. As

for RQ3, there does not seem to be a direct connection between dependency release

frequency and client technical lag, which can also be an indication of multiple external

factors, such as developer behavior, affecting the relationship of the three key variables.

v

In conclusion, this thesis contributes to understanding that the connection between the

three key variables of software evolution is not as simple as it may seem and also proposes

future directions for further investigation in this field.

vi

Table Of Contents

1. Introduction .. 1

2. Related Work .. 3

 2.1 Studies on Technical Lag .. 3

 2.2 Studies on Breaking Changes .. 4

 2.3 Studies on Release Engineering ... 4

3. Background .. 6

 3.1 Maven Central Repository (MCR) ... 6

 3.2 Breaking Changes ... 7

 3.3 Technical (Time) Lag ... 9

 3.4 Version Lag .. 10

 3.5 Spearman's Rank Correlation Test .. 11

 3.6 Semantic Versioning (SemVer) ... 12

4. Methodology ... 13

 4.1 Initial Data Filtering ..13

 4.2 Answering RQ1: Release Frequency vs. Breaking Changes 14

 4.3 Answering RQ2: Breaking Changes vs. Technical Lag 15

vii

 4.4 Answering RQ3: Release Frequency vs. Technical Lag 16

 4.5 Applying the Spearman's Rank Test ... 17

5. Results ... 18

 5.1 RQ1 Results ... 18

 5.2 RQ2 Results ... 19

 5.3 RQ3 Results ... 21

6. Discussion .. 23

 6.1 Discussion of the Results .. 23

 6.2 Threats to Validity .. 25

 6.2.1 Internal Threats to Validity .. 25

 6.2.2 External Threats to Validity .. 25

 6.2.3 Construct Threats to Validity ... 25

 6.2.4 Conclusion Threats to Validity .. 26

7. Conclusion and Future Work ... 27

Bibliography ... 29

Appendix A .. A-1

1

Chapter 1

Introduction

Technological developments have made it more urgent for software to change and grow

in order to satisfy user and market expectations. For software systems to be maintained,

improved, secure as well as to be effective and functioning, these ongoing updates are

essential. [4] Many commonly used software libraries have undergone several revisions

and upgrades in recent years, all aimed at adding new features, addressing bugs,

enhancing security, or improving speed. The aforementioned changes, however, despite

their importance, often pose serious risks, particularly for systems and projects that rely

on them. [1, 4, 5, 8]

Keeping a project up-to-date with its dependencies should in theory be of vital

importance. When dependencies release a new version, developers must make a choice.

Either to use it or skip it. While an update often introduces new or improved features,

chances are that it will not be compatible with the project, due to the appearance of

breaking changes - changes that can cause build failures and runtime errors. [4, 5] As a

result, some developers may skip new dependency releases or choose to temporarily

ignore them. This leads to what is known as technical lag, a situation where dependency

outdatedness is present in a project, often depriving it from safety and effectiveness. [2,

6, 7, 9]

Technical lag, in definition, refers to the amount of time by which a client lags behind the

latest available version of a dependency at the moment of its own release. [7]. It reflects

on the challenge of balancing stability and the need to stay up-to-date. Over time, projects

with high technical lag may face problems with their compatibility with more recent

software or miss out on performance and security. [2, 3, 9]

The fear of breaking changes is one of - if not the most - important factors of technical

lag. [4, 6] Developers are often aware of future compatibility problems, however they

choose to ignore them whenever there are no apparent benefits of using a dependency

2

update. This interplay between release frequency, breaking changes, and technical lag is

at the heart of this thesis.

All three of these factors have been investigated previously. However, the relationship

between all three remains unclear, and this thesis aims at uncovering the potential

connections and correlations between these factors, guided by three main research

questions: (1) Does the release frequency relate to the appearance of breaking changes?

(2) Do breaking changes relate to technical lag? (3) How does the frequency of software

releases affect technical lag?

The dataset used in this thesis comes from the Maven Repository, a widely-used platform

for managing dependencies in Java-based projects [4]. Maven plays a key role in modern

software development by helping developers manage, share, and distribute software

libraries. With its extensive collection of library versions, detailed metadata, and a clear

timeline of past releases, Maven provides a valuable representation of how software

evolves over time. [4, 5] This makes it an ideal resource for studying real-world patterns

in how dependencies change and how projects respond to those changes.

By exploring these three questions, using statistical tests such as the Spearman’s Rank

Correlation test, this thesis aims to provide a clearer understanding of the connection

between the three variables. Furthermore, it should help developers make smarter

decisions about when to update and eventually lead to more polished software

ecosystems.

3

Chapter 2

Related Work

In recent years, several related studies have been published from which this thesis draws

inspiration and attempts to build upon. Many researchers have explored the concepts of

software evolution, technical lag, breaking changes and release frequency. However not

many have touched on the interconnection of all the previously mentioned metrics. This

thesis aims to investigate and find a clearer connection between all three.

2.1 Studies on Technical Lag

Zerouali et al. [9] explored the relationship between technical lag and breaking changes,

suggesting that technical lag results from developers postponing updates due to the fear

of breaking changes in newer versions of dependencies. However, by doing so, they

unintentionally put their libraries at risk, often making them vulnerable and insecure. This

thesis incorporates version lag into the analysis, providing a more complete interpretation

of technical lag. When version lag indicates that the skipped updates are insignificant,

despite a high technical lag value, it allows developers the benefit of the doubt,

acknowledging that their hesitation to update may not always be damaging to a project.

Decan et al. [2] completed a research on thousands of npm packages, questioning the

chronic trends of technical lag appearance within them, and finding that technical lag

increases over time. However, they also noted that when SemVer principles are met, the

values for technical lag tend to decrease.

Similarly, Stringer et al. [7] investigated the technical lag of multiple packages and

noticed that developers tend to prefer a more stable release rather than the uncertainty of

frequent updates.

While all the aforementioned studies investigate technical lag, this thesis aims to extend

on their work by correlating technical lag with breaking changes and release frequency

4

altogether using MCR packages and finding out how each of the attributes affect one

another.

2.2 Studies on Breaking Changes

Raemaekers et al. [5], conducted a research on breaking changes of the MCR and

suggested that they do not only appear in major releases, but also in minor and in patch

ones. This is due to many developers not following the SemVer principles, making

package maintenance complicated.

Similarly, Xavier et al. [8], discussed issues related to the incorrect use of SemVer

principles and later on Ochoa et al. [4] built upon these studies. They explored and

calculated breaking changes in MCR using the Maracas tool. They suggested that many

projects do not follow the SemVer principles, resulting in breaking changes in versions

that they should not appear. While Ochoa et al. [4] identifies and records the breaking

changes, this thesis explores their relationship with technical lag and release frequency,

thus extending their work.

Additionally, Robbes et al. [6] through their study, they found that breaking changes lead

to technical lag, more often than not, and that there is a direct connection between the

two.

What this thesis contributes to the previously mentioned studies on breaking changes is

the chance to not only investigate the connection between breaking changes and technical

lag, but to also incorporate information about release frequency as well in the equation.

2.3 Studies on Release Engineering

Xavier et al. [8] examined the correlation between release frequency and breaking

changes, and suggested that more frequent releases typically lead to the appearance of

more breaking changes.

5

This thesis contributes and extends Xavier et al.’s work by also correlating technical lag

with both the release frequency and the breaking changes, thus showcasing their effects

on the developers’ decision to not update as frequently as they should.

6

Chapter 3

Background

3.1 Maven Central Repository (MCR)

Maven Central Repository is a public repository which is widely used by Java developers.

It acts as a centralized hub where Java projects can be uploaded and downloaded. MCR

simplifies the downloading process of projects by requiring a specific file to exist within

them that declares all the dependencies of the project. This file is usually named

“pom.xml” and it follows the structure that can be identified in Figure 1.

Libraries in MCR are organized using a hierarchy/directory based system that separates

them firstly by group, then by artifact and lastly by version number, making the searching

process easier and quicker for the user.

Figure 1

Dependency section of the pom file of a library version

Apart from this structure, it is also possible that the dependency version can be set through

the “parent” section of the pom file, which allows child projects to automatically use

dependency versions defined in their parent project’s pom file.

7

3.2 Breaking changes

Breaking changes are modifications that are made to a software library, framework, or

API in comparison to its previous versions. These modifications are the cause of failure

of systems that depend on the libraries with the breaking changes. They disrupt backward

compatibility and are the explanation for a potentially unexpected behavior from the

libraries that depend on them.

Removing or renaming a method, class, or field that was previously exposed and used by

clients, or changes to method signatures, such as altering parameters, return types, or

visibility levels are all major types of breaking changes. Other types include instances

where the functionality or output of a method is altered in terms of prior expectations, or

through dependency changes, like replacing or removing components in which the client

systems rely on.

Figure 2

Library version using a string method return type for method “greet”

8

Figure 3

Library version using a void method return type for method “greet”

Figure 4

Project depending on the “Library” class

Looking at Figures 2, 3 and 4, an example of a breaking change can be identified if we

assume that Figures 2 and 3 are two different versions of the same library. In Figure 2,

the “greet” method is constructed with a return type of “string” and upon its calling by

the “main” method in the “Project” library in Figure 4, no errors would appear. The output

would appear as expected. However, if the “main” method was to call the “greet” method

in Figure 3, which is of type “void”, a compilation error would occur, as nothing is

returned back to the “main” method. This type of breaking change is known as a “method

return type change”.

9

Furthermore, with the possibility of updated libraries causing failures or unexpected

behavior to a client system, a plethora of developers choose to either not update their

dependencies at all, or postpone the updating until further notice. Henceforth, technical

lag appears in such cases.

3.3 Technical (time) lag

According to Zerouali et al [9], “technical lag captures the delay between versions of

software deployed in production and more recent compatible versions available

upstream”.

The technical lag of a client system with respect to a dependency is defined as a temporal

measure that estimates how outdated a dependency of the client is being used by the client

at the time of its release. It can be categorized into two cases:

Mathematically, for a client C dependent on a version V of a dependency:

Following the calculation of the technical lag that is caused to the client by its every

dependency, the overall technical lag of a single client is agreed to be the largest one that

emerges out of all its dependencies.

Zerouali et al. [9] proposes a formal framework for measuring technical lag. The term

“time lag” is used to define the temporal lag described above. Henceforth, in the thesis

the term “technical lag” will refer to the temporal definition of time lag, unless otherwise

stated.

10

3.4 Version Lag

Version lag is a measurement used as an alternative way of measuring a library’s lag. It

consists of three different lag categories, namely the major one, the minor and the patch.

A single unit is added to one of the categories for each of such later versions of a

dependency that were ignored by a client.

In cases where no technical lag appears for a client - dependency pair, the values for each

version lag category are also equal to zero.

However, if technical lag exists, for each major version ignored by the client, the major

type of version lag is incremented. That is also the case for every minor version and the

minor type of version lag, as well as every patch version and the patch type of version

lag.

Figure 5

Example of a dependency. Originally from [7]

As an example, in Figure 5, which appears in [7], the client version 4.1.0 depends on

version 1.0.9 of Project B. This precisely means that the major version lag of version 4.1.0

of the client would equal to 1, as the client depends on version 1.0.0 of Project B and the

major update 2.0.0 of the dependency was ignored. The minor version lag would also

equal 1, since the 1.1.0 update of project B was skipped. Finally, the patch version lag of

11

this version of project A would equal 3, as the versions 1.0.1, 1.0.2 and 2.0.1 of project B

were overlooked.

Two libraries may have the same technical lag, but that does not mean that the updates of

the dependencies which they ignored are of the same importance.

Therefore, version lag is a complementary metric of technical lag that provides a clearer

assessment of the actual impact of an outdated dependency by distinguishing whether the

skipped updates are bug fixes, added features or major breaking changes.

3.5 Spearman's Rank Correlation Test

The Spearman Rank Correlation Test is a statistical method used to determine the

strength and direction of a relationship between two variables which does not assume

any specific distribution of the data. It focuses on the ranks of the values rather than on

the raw numbers.

It works by ranking both variables from lowest to highest. For each pair of data points,

the difference between their ranks is calculated. The test then computes a correlation

based on these rank differences. A high positive correlation (close to +1) indicates that

as one variable increases, the other tends to increase as well. A high negative correlation

(close to -1) suggests that as one variable increases, the other tends to decrease. A

correlation near 0 means there is little to no relationship between the variables.

In terms of statistical hypothesis testing, the null hypothesis assumes that there is no

correlation between the two variables. Ultimately what will tell whether the coefficient

is significant is the p-value. A p-value lower than a chosen significance level (usually

0.05) indicates that the coefficient is statistically significant, supporting the idea that

there is a meaningful relationship between the variables, which did not happen by

chance. However, if the p-value is greater than 0.05, the null hypothesis is not rejected,

indicating that the observed correlation could be due to random chance.

12

3.6 Semantic Versioning (SemVer)

Semver versioning is used as a way of identifying the different versions of a library. It is

composed of three integer values separated by dots. The format that is used is

“MAJOR.MINOR.PATCH”. The major version integer is incremented when changes

that could break existing functionality appear in the new version. The minor version

integer is typically incremented when new features are added to the library that do not

break functionality and are backwards compatible. Finally, the patch integer is

incremented in the case where the libraries are updated for the purpose of bug fixes. A

good example of the correct use of semantic versioning would be version 1.0.4 of any

library evolving to 1.0.5 or even 1.1.0, if no breaking changes were added in the code.

In the latter case, the new version should be 2.0.0.

However, not all libraries in Maven use semantic versioning correctly, and this

introduces instances with obscure versioning, such as a really low major and minor

value alongside a really high patch value in libraries where breaking changes have

happened multiple times.

13

Chapter 4

Methodology

4.1 Initial Data filtering

This thesis extends the work done by Lina Ochoa et al. in [4], and therefore utilizes the

data in the replication package. The dataset consists of libraries found in the Maven

Central Repository before 2018 and includes data regarding the number of breaking

changes throughout multiple MCR packages as well as their dependencies and their

versioning numbers.

It must be mentioned that the breaking changes in the dataset have been identified and

counted by the Maracas (Metric-based Analyzer for Refactoring and Change Assessment

in Software) tool, which is a tool that provides detailed metrics for each breaking change

type by comparing different versions of a library’s API. Additional information about the

tool can be found in [4], where the use of it is explained in detail by Lina Ochoa et al. The

types of breaking changes that the Maracas tool can detect are listed in Figure 6.

Upon reviewing a file containing information about different versions of libraries, it was

noticed that some versions were missing from the dataset. These versions had been

released before 2018 and thus, it was decided that with the use of a script the missing

versions could be added. Moreover, since an expansion was made to the dataset, it was

decided that the most recent versions would be included as well in it. Later on, non

SemVer versions were removed from the dataset, in order to focus on the SemVer ones.

Additional scripts were also used to add useful information (release dates) to the dataset

and others were used to filter out invalid records, where multiple versions of the same

library claimed to have been released on the same date. The thought process and the

correct running order of the scripts are included in the README file of the GitHub

repository of this thesis, which can be found in Appendix A.

The information about the dependencies of each library in the dataset is a key component

that is used for the calculation of the technical lag and version lag, which is needed in

14

order to get the answer to the third research question of this thesis. The libraries that were

missing and were added via script are also important for the calculation of a more accurate

release frequency of the libraries.

Figure 6

Types of breaking changes

4.2 Answering RQ1: Does the release frequency relate to the appearance of

breaking changes?

To determine whether the release frequency of library versions relates to the appearance

of breaking changes, first, the release frequency was defined accordingly, to match the

pre-calculated breaking changes of a single library update from [4]. In this research

question, the release frequency equals the amount of versions released from the very first

release of a library up to the more recent release of a pair of consecutive versions, divided

by the time difference between the two, in months. Using datasets found in [4] and the

datasets that were expanded as mentioned in Section 4.1, the release frequency was

15

calculated and the breaking changes between pairs of consecutive versions of libraries

were retrieved.

Upon constructing the dataset, it was noticed that certain pre-calculated values of

breaking changes were invalid due to compatibility issues which occurred in [4]. As a

result, a decision was made to filter out all libraries which at any point of their evolution

we had failed to retrieve their breaking changes.

Therefore, after this procedure, the dataset was finalized. To explore and analyze the

relationship, this thesis has used the Spearman’s Rank Correlation Test in order to

measure the strength and the significance of the compared values.

4.3 Answering RQ2: Do breaking changes relate to technical lag?

To answer the second research question, the breaking changes values were retrieved from

RQ1 and the technical lag values, as well as the version lag values were retrieved from

RQ3. In cases of multiple dependencies per client, each dependency’s contribution to

technical lag was treated as a separate data point to isolate the direct impact of individual

dependency changes.

Thus, the dataset was complete, in order to assist in determining the effect that the

breaking changes that a library update introduced will have on the amount of technical

lag of a client that depends on it.

We then applied Spearman’s Rank Correlation Test to evaluate the strength and direction

of the relationship between the number of breaking changes and the amount of technical

lag. This type of analysis was chosen because it is reliable when investigating non-linear

relationships which, in this case, are likely to be monotonic.

Additionally, a secondary analysis was performed to investigate how breaking changes

relate to each type of version lag (major, minor, patch) to help contextualize the version-

skipping behavior of clients and its potential impact on the severity of updates.

16

4.4 Answering RQ3: How does the frequency of software releases affect technical

lag?

Using datasets that were available in [4], thousands of client – dependency pairs were

retrieved. Using a script that can be found in this thesis’ GitHub repository, the technical

lag was calculated as described in Section 3.3, and a slightly different approach was used

for the calculation of release frequency. In the case of RQ1, all library releases had to be

accounted, but in the case of RQ3, the relevant libraries were the ones released after the

release of their paired client. After the calculation of the newly defined release frequency,

it was discovered that some libraries claimed to have been released after a client that uses

them as dependencies, which is impossible. So, cases like these were assumed to be

invalid, and were therefore removed from the dataset. In addition to the technical lag, the

version lag of the client - dependency pairs is calculated in order to complement the

technical lag measurements. Cases where major updates were missed are considered more

significant than others where only minor or patch updates were missed. This is because

major updates signify vital changes to the dependency. For this reason, version lag

complements the time lag perfectly. For further understanding, it is agreed that a time lag

of 20 days caused by a missed patch update is less severe than another lag of 8 days that

was caused instead by a major update.

Moreover, upon refining the dataset in order to bypass the inaccuracies, the release

frequency and technical lag values can be related. For reasons explained in each

corresponding section, the Spearman's Rank Test statistic test was chosen for the

correlation.

Preferably, the release frequency used for this question should be computed over a more

relatively recent period, for instance, using the intermediate version releases happening

within a client’s prior and current releases, to better account for the update dynamics in

the short term. Unfortunately, this was not achievable because there was no dependency

data for earlier versions of many clients. Consequently, a different more general release

frequency was utilized based on the complete set of dependency versions that were

available since the client’s first release date. This method, while capturing the more

general update frequency of dependencies, does not account for the relative update

frequency in the short term that may impact client technical lag.

17

4.5 Applying the Spearman's Rank Test

In this thesis, the Spearman analysis was applied in order to determine the relationships

between the three main variables. Release frequency, breaking changes and technical lag.

It was specifically chosen because it does not assume normal distribution of the data and

it is ideal for examining monotonic relationships, which would be likely to appear. The

test also focuses on ranks rather than raw values, which makes it even more suitable for

the analysis.

For the first research question, the aim is to find out if an increase in the frequency of

releases of a library is also likely to result in less breaking changes. A positive correlation

coefficient would suggest that this is false, but a negative one would suggest that it is true,

assuming that the p-value is smaller than 0.05.

In regard to the second research question, the goal is to determine whether dependency

updates that contain more breaking changes and are used by clients tend to cause an

increase in the client’s technical and version lag. A positive coefficient would confirm

this hypothesis while a negative one would deny it, assuming the p-value is smaller than

0.05.

Lastly, in the case of the third research question, the test is used to analyze the impact that

the release frequency of a dependency library has on the technical lag of the clients. A

negative coefficient would suggest that the higher the release frequency of the

dependency is, the lower the technical lag of the client will be. A positive coefficient

would suggest the opposite. For the coefficient to be meaningful and statistically

significant, the p-value must always be within the range of 0 and 0.05.

18

Chapter 5

Results

5.1 RQ1 Results

The Spearman's rank correlation was conducted in order to answer RQ1. The test returned

a Spearman correlation coefficient of -0.197, with a p-value smaller than 0.05. This

suggests a statistically significant but weak monotonic negative relationship between

breaking changes and release frequency. Essentially this indicates that library versions

that are updated more frequently usually introduce fewer breaking changes. However,

further investigation would be needed in order to certify the validity of this claim, as the

relation is not very strong. This can be confirmed by the correlation plot in Figure 7.

Figure 7

Breaking Changes between a library update vs Release Frequency of the library

19

5.2 RQ2 Results

The Spearman's rank correlation was conducted in order to answer RQ2, the relationship

between dependency breaking changes and client technical lag. The test returned a

Spearman correlation coefficient of 0.102, with a p-value smaller than 0.05. This suggests

a statistically significant but fairly weak positive monotonic relationship between

breaking changes and technical lag. Clients using dependency updates with more

breaking changes tend to have higher technical lag, however the number of breaking

changes which appear in the dependencies does not always accurately determine the

amount of technical lag that the clients will end up with, as the increase in technical lag

is not proportionate. This can be confirmed by the plot in Figure 8.

Figure 8

Breaking Changes between a library update vs Technical Lag of a client using the updated dependency

To further contextualize the relationship between dependency breaking changes and

client outdatedness, another Spearman Correlation Test was applied on the dataset. In this

case, the variables in question were the breaking changes and the version lag. The

correlation of the breaking changes with the minor and major types of version lag proved

20

to be the most interesting. The correlation between the dependency breaking changes and

the minor version lag (Figure 9) returned a coefficient of 0.189 and a very small p-value,

suggesting that clients that choose to skip multiple minor updates are likely to end up

choosing a dependency version with a high number of breaking changes. At the same

time, the correlation with the major version lag (Figure 10) returned a coefficient of -

0.146 alongside a very small p-value again, implying that when more major updates are

skipped, the client developers usually end up choosing a less severe – in terms of breaking

changes – version of their dependency. Both the last two results are notable and their

explanation will be discussed in the next Chapter.

Figure 9

Breaking Changes between a library update vs Minor Version Lag of a client using the updated

dependency

21

Figure 10

Breaking Changes between a library update vs Major Version Lag of a client using the updated

dependency

5.3 RQ3 Results

The Spearman's rank correlation was conducted in order to answer RQ3, the relationship

between dependency release frequency and client technical lag. The test returned the plot

in Figure 11, alongside a correlation coefficient of 0.009 and a p-value of 0.599, which

suggests that there is no statistically significant monotonic or linear relationship between

the two variables, meaning that the frequency in which a dependency releases does not

have a direct linear effect on the amount of technical lag that it causes a client version to

obtain. This could be an indication of a more complex relationship between the two,

which would require more factors in order to understand it.

22

Figure 11

Technical Lag of a client using a dependency vs Release Frequency of the dependency

23

Chapter 6

Discussion

6.1 Discussion of the results

The results of the statistical analyses conducted for the research questions of this thesis

have revealed some interesting and complex relationships between the three main

variables.

Starting from the first question, we can understand that an increase of the release

frequency of a library could be an indication of less breaking changes between its

versions. However, it must be noted that their relationship is relatively weak in terms of

the correlation coefficient. One reason for this might be that the developers may focus on

constantly fixing minor bugs, which would increase release frequency and at the same

time not introduce many breaking changes. On the other hand, the releases might be less

frequent but more effective, in terms of dealing with more important issues of the code,

which would demand an increase in breaking changes. These two scenarios could be

cancelling each other out, and therefore prevent the relationship from being stronger.

Moreover, the complexity of a dependency having to be compatible with another and the

size of a library version update could complicate things even more. In conclusion, release

frequency is an important indicator of breaking changes, but it is definitely not the only

one.

As for the second question, the results of the analysis showed that there is a weak

correlation between the number of breaking changes of a dependency update and the

technical lag that it causes to its client. Updates that include more breaking changes

sometimes tend to increase their client’s technical lag. However, since the coefficient is

not high, there may be other factors which could affect the relationship. The developers

of the clients may delay their updates due to the fear of breaking changes, even if they are

of high amounts numerically, as they might not want to take any risks. Another reason

why the relationship is weak might be that the developers may choose to delay updates

due to resource limitations, and not because of a high number of breaking changes. While

24

breaking changes are an important factor of technical lag, ultimately the decision of the

clients’ developers changes based on their priorities. Furthermore, after a deeper analysis

was applied using the types of version lag, the fact that developers often choose updates

that introduce multiple breaking changes, after skipping many minor updates, suggests

that breaking changes tend to be more common in scenarios where clients have skipped

several minor versions. This pattern implies that updates following multiple minor

releases could be more disruptive. On the other hand, the fact that developers often choose

updates that introduce fewer breaking changes, after skipping many major updates

indicates that they may be more cautious in their updating behavior, choosing to select

their dependencies more carefully. These observations suggest that the types of versions

that were skipped also play a role in the relationship between breaking changes and

technical lag as well as in the developers’ updating behavior.

In the case of the third question, the results are more complex and not straightforward.

The Spearman analysis was unable to find a statistically significant direct correlation

between the two variables, release frequency and technical lag. This could indicate that

their relationship is non-linear and hides more complexity than expected, and thus it needs

further investigation. Alternatively, the complexity of the results could be attributed to

the way of calculating the release frequency, which would ideally be calculated as

explained in Section 4.4. Due to the lack of availability of dependency data for earlier

client versions, a more general release frequency measure was used, which may not fully

reflect the short-term update pressure a client faced.

While frequent dependency updates may reduce breaking changes, they do not directly

reduce clients’ technical lag, as they are not the only factor influencing it. For a more

complete view on the relationship between the three main variables, we would need to

explore additional factors such as developer behavior using machine learning models.

25

6.2 Threats to Validity

6.2.1 Internal threats to validity

As mentioned in previous chapters, this thesis uses the dataset found in [4] and therefore

any threats to validity that stand for the process of data collection of that study also stands

for this one. Moreover, adding to that threat, it can be said that after fetching the release

dates of the libraries that were relevant to this thesis, the internal threats were increased.

It was evident that some dates were inaccurate, as there were common release dates

amongst different versions of the same library. Therefore, any libraries that were

connected to such cases had to be excluded from the filtered dataset that was used to

answer the research questions.

Additionally, as mentioned in the Methodology and Discussion Chapters, the method

used to calculate release frequency in RQ3 could introduce some threats to validity. Due

to the lack of available dependency data for earlier versions of many clients, it was not

possible to calculate a short-term release frequency. Instead, a more generalized release

frequency was used, which may have weakened the relationship between release

frequency and technical lag.

6.2.2 External threats to validity

The dataset that was used to answer the three research questions set cannot represent all

of the libraries that have ever been created or uploaded on the internet. There are billions

of libraries available on various repositories of several programming languages

throughout the internet and generalizing the conclusion of this thesis for all the libraries

internet-wide would be an external threat to validity.

6.2.3 Construct threats to validity

Technical lag was an important factor for the purposes of this thesis. However, as

mentioned in Chapter 3, there are cases where a simple numeric value is not enough to

measure how outdated a library is. This is the reason for the inclusion of the version lag

26

measurement in the thesis, as it assists in forming a better picture for the outdatedness of

a library and in parallel challenges a construct threat to validity.

6.2.4 Conclusion threats to validity

This thesis challenges any conclusion threats to validity by choosing to verify the results

for each research question with the appropriate statistical tests based on the nature of each

question and the variables that it requires. In Chapter 4, the reasoning behind the choices

of statistical methods is briefly explained.

27

Chapter 7

Conclusion

7.1 Conclusion and Future Work

In conclusion, this thesis examined the relationships between dependency release

frequency, breaking changes and client technical lag, using data from both the MCR and

[4]. It addressed three research questions to better understand whether the frequency of

releases affects the appearance of breaking changes and client lag. It also examined the

effect that dependency updates which introduce breaking changes have on client lag.

The results revealed statistically significant but not very strong correlations for the first

two RQs. They showed that an increase in release frequency tends to help decrease the

number of breaking changes. At the same time, the thesis revealed that dependency

updates that introduce a high number of breaking changes could lead to an increased

technical lag of the clients that use them. Moreover, the results showed that the types of

dependency updates which a client decides to skip also play their role in the connection

of the two main variables of RQ2. However, no statistically significant linear relationship

between release frequency and technical lag was found in RQ3, which could mean that

their relationship is more complex and that it requires a non-linear analysis or a redefined

release frequency variable to be fully grasped.

The fact that the findings did not reveal any strong correlations for the first two RQs, and

also did not find any correlation at all for RQ3 suggests that there are multiple factors

influencing the relationship of the three variables, such as developer behavior, project

priorities, or risk management practices. This means that developer behavior cannot be

easily predicted by linear analyses.

Future work for this thesis may include analyzing the three RQs through non-linear

techniques in order to better understand the relationships which might be more complex

than they seem to be. Moreover, a way to measure or quantify different developer

behaviors based on several scenarios would help explain unexpected results throughout

28

all the relationships of the three variables. Additionally, future work could improve this

analysis by incorporating dependency data from earlier versions of clients, which could

lead to a more accurate correlation between the two variables of RQ3.

29

Bibliography

[1] Bavota, Gabriele, et al. "The impact of API change-and fault-proneness on the user

ratings of Android apps." IEEE Transactions on Software Engineering 41.4 (2014): 384–

407.

[2] Decan, A., T. Mens and E. Constantinou. "On the Evolution of Technical Lag in the

npm Package Dependency Network." 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME), Madrid, Spain, 2018, pp. 404–414. doi:

10.1109/ICSME.2018.00050

[3] Li, Zengyang, Paris Avgeriou, and Peng Liang. "A systematic mapping study on

technical debt and its management." Journal of Systems and Software 101 (2015): 193–

220.

[4] Ochoa, L., Degueule, T., Falleri, JR. et al. "Breaking bad? Semantic versioning and

impact of breaking changes in Maven Central." Empirical Software Engineering 27, 61

(2022). https://doi.org/10.1007/s10664-021-10052-y

[5] Raemaekers, S., A. van Deursen, and J. Visser. "Semantic versioning and impact of

breaking changes in the Maven repository." Journal of Systems and Software, Volume

129, 2017, Pages 140–158. https://doi.org/10.1016/j.jss.2016.04.008

[6] Robbes, Romain, Mircea Lungu, and David Röthlisberger. "How do developers react

to API deprecation? The case of a Smalltalk ecosystem." Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software Engineering

(FSE '12). Association for Computing Machinery, 2012.

https://doi.org/10.1145/2393596.2393662

[7] Stringer, J., A. Tahir, K. Blincoe and J. Dietrich. "Technical Lag of Dependencies in

Major Package Managers." 2020 27th Asia-Pacific Software Engineering Conference

(APSEC), Singapore, 2020, pp. 228–237. doi: 10.1109/APSEC51365.2020.00031.

30

[8] Xavier, L., A. Brito, A. Hora and M. T. Valente. "Historical and impact analysis of

API breaking changes: A large-scale study." 2017 IEEE 24th International Conference

on Software Analysis, Evolution and Reengineering (SANER), Klagenfurt, Austria, 2017,

pp. 138–147. doi: 10.1109/SANER.2017.7884616

[9] Zerouali, A., E. Constantinou, T. Mens, G. Robles, and J. González-Barahona. "An

Empirical Analysis of Technical Lag in npm Package Dependencies." (2018).

A-1

Appendix A

The GitHub link containing all related initial datasets and scripts to generate follow-up datasets:

https://github.com/cpapan02/CS401

