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Abstract 

This study investigates the potential correlations between motion data collected 

from 9-axis IMU sensors strategically placed on athletes with a focus on 

applications in athletic performance and rehabilitation. By leveraging 

accelerometer, gyroscope, and magnetometer data, the study aims to extract key 

biomechanical parameters, such as torso rotation angles and stride-specific 

metrics, to provide deeper insights into movement efficiency and asymmetries. A 

particular emphasis is placed on the use of IMU sensors for running analysis, 

enabling the detection of peak rotation per stride and other gait-related 

characteristics. The proposed methodologies integrate signal processing and data 

analysis techniques to enhance motion assessment, offering valuable applications 

for performance optimization in athletes and rehabilitation strategies for individuals 

recovering from injuries. The findings contribute to the growing field of wearable 

motion tracking and have practical applications in enhancing athletic performance 

and optimizing rehabilitation protocols. 
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CHAPTER 1: INTRODUCTION 

1.1  BACKGROUND 

Understanding human motion is fundamental in sports science and rehabilitation, 

as it provides critical insights into movement efficiency, performance optimization, 

and injury prevention. Analyzing biomechanical patterns allows researchers, 

coaches, and clinicians to assess an athlete’s technique, identify potential 

asymmetries, and tailor interventions that enhance performance and reduce injury 

risk. In rehabilitation, motion analysis is equally essential for tracking progress, 

designing personalized recovery programs, and ensuring proper movement 

mechanics post-injury. 

Running is one of the most popular forms of exercise, enjoyed by millions 

worldwide for its health benefits and simplicity. However, running is also associated 

with a high prevalence of injuries, often resulting from biomechanical inefficiencies, 

overtraining, or poor technique. Understanding and analyzing a runner's 

biomechanics, such as stride patterns and acceleration variability, is crucial for 

optimizing performance and preventing injuries. Traditionally, such analysis 

required sophisticated laboratory equipment, such as motion capture systems and 

force plates, which are expensive, bulky, and inaccessible to most individuals. 

Traditionally, motion capture (MoCap) systems, such as optical marker-based 

setups, have been widely used for movement analysis. These systems offer high 

precision but come with significant limitations, including high costs, complex setup 

requirements, and limited portability. The dependency on laboratory environments 

also restricts their usability in real-world scenarios, making them less practical for 

continuous monitoring of athletic performance and rehabilitation progress outside 

controlled settings. 

Recent advancements in wearable sensor technology have revolutionized motion 

analysis, providing a more practical and accessible alternative to traditional 

systems. Inertial measurement unit (IMU) sensors, which combine accelerometers, 

gyroscopes, and magnetometers, enable real-time, non-invasive motion tracking in 



diverse environments. Their small size, affordability, and ability to capture 

movement outside laboratory settings make them particularly attractive for sports 

performance analysis and clinical rehabilitation. 

IMUs are lightweight, portable devices capable of measuring acceleration, angular 

velocity, and orientation in three-dimensional space. By attaching an IMU to a 

runner's body, it is possible to gather detailed insights into their movement patterns 

during real-world activities outside the laboratory. Despite their potential, 

challenges remain in accurately processing and interpreting the data from IMUs to 

extract meaningful metrics like stride rate, step variability, and fatigue indicators. 

By leveraging IMU-based motion capture, researchers and practitioners can gain 

deeper insights into movement mechanics without the constraints of optical MoCap 

systems. This thesis addresses these challenges by focusing on the analysis of 

IMU data strategically placed on the runners (with emphasis on the back). The 

study will investigate the accuracy, reliability, and practical implications of using 

IMU sensors to extract biomechanical metrics. Ultimately, the findings will 

contribute to the growing field of wearable motion tracking, demonstrating how 

IMU-based gait analysis can enhance training protocols and clinical assessments. 

 

1.2 MOTIVATION 

The motivation for this study stems from the growing need for accessible and 

reliable methods to assess running biomechanics outside of laboratory 

environments. While traditional motion capture systems provide precise data, their 

limitations in terms of cost, setup complexity, and lack of portability make them 

impractical for widespread use in sports training and rehabilitation. Athletes, 

coaches, and clinicians require tools that can deliver real-time, actionable insights 

into movement mechanics in natural training conditions. 

Wearable technology, particularly IMU sensors, has the potential to bridge this gap 

by enabling continuous, real-world motion analysis. However, despite their 

advantages, challenges remain in accurately processing and interpreting IMU data 



for meaningful biomechanical insights. The need for improved algorithms, validated 

measurement techniques, and reliable interpretation methods is crucial to 

unlocking the full potential of IMUs in sports science and rehabilitation. 

By focusing on IMU placement on the back, this study aims to develop and validate 

methods for extracting essential biomechanical metrics. These insights can help 

athletes optimize performance, reduce injury risk, and support rehabilitation efforts 

by providing objective, data-driven feedback. Additionally, the findings can 

contribute to the broader field of wearable motion tracking, helping refine IMU-

based gait analysis for both research and practical applications. 

 

 

 

 

 

1.3 RESEARCH OBJECTIVES 

The primary objective of this dissertation is to develοp and validate a framework for 

analyzing stride metrics and variability in runners using data collected from an IMU 

sensor mounted on the back. Specifically, the research aims to: 

1. Identify and preprocess the key signals from the IMU sensor, including 

acceleration and angular velocity. 

2. Develop algorithms for detecting stride-related events, such as step peaks 

and intervals, with high accuracy. 

3. Extract meaningful metrics, including stride rate, step rate, and stride 

variability, ground contact time, vertical oscillation etc., from the processed 

data. 



4. Validate the extracted metrics against ground-truth data or established 

benchmarks to ensure reliability. 

5. Explore the potential of these metrics to detect biomechanical inefficiencies, 

fatigue, or other patterns relevant to running performance and injury 

prevention. 

1.4 METHODOLOGY 

The methodology is designed to ensure accurate data collection, processing, and 

interpretation. The key components of the methodology include: 

1. Participants: A cohort of runners with varying experience levels will be 

recruited to ensure a diverse dataset. Participants will perform running trials 

under controlled and real-world conditions. 

2. IMU Sensor Placement: IMU sensors will be strategically placed on the 

participants, with an emphasis on the upper back, to capture torso rotation 

and other biomechanical parameters. 

3. Data Collection Protocol: Running trials will be conducted on both a 

treadmill. Data will be recorded at a sampling rate of 104 Hz with 

Movesense’s IMU sensor. 

4. Data Preprocessing: Raw IMU data will undergo filtering techniques such 

as low-pass filtering and sensor fusion algorithms to reduce noise and 

enhance signal quality. 

5. Feature Extraction: Key biomechanical parameters, including stride rate, 

step variability, and torso rotation angles, will be extracted using signal 

processing and statistical analysis. 

6. Validation and Comparison: IMU-derived metrics will be primarily 

evaluated against data from Garmin devices to assess accuracy and 

reliability.  

7. Analysis and Interpretation: The extracted metrics be analyzed to identify 

patterns, correlations with performance metrics, and potential indicators of 

fatigue or injury risk. 



By following this methodology, the study aims to establish a framework for utilizing 

IMU sensors in motion analysis, ensuring reliability and applicability in both 

athletes performance optimization and their rehabilitation. 

 

1.5 WHY MOVEMENT MATTERS IN SPORTS 

Understanding how athletes move is essential for optimizing performance and 

preventing injuries. Coaches, trainers, and medical professionals use movement 

analysis to: 

 Refine technique and improve overall athletic performance 

 Identify potential injury risks before they become serious 

 Develop personalized and more effective training programs 

Traditionally, motion capture systems in laboratories such as multi-camera setups 

have been the go-to method for collecting detailed movement data. However, 

these systems come with significant limitations: 

 High costs, often unaffordable for most teams 

 Limited usability in real-world settings like games or regular practices 

 The need for trained technical staff to οperate and interpret the data 

This is where wearable sensors are transforming the field. Portable, affordable, 

and easy to use, they bring high-quality movement analysis directly to the field or 

gym, making sports science more accessible than ever before. 

 

 

1.6 DOCUMENT ORGANIZATION 

This dissertation is organized into several chapters to provide a comprehensive 

exploration of the topic: 



The rest of this thesis is split into six chapters. Table reports the content of each 

chapter 

1 Introduction – Provides an overview of the research 

problem, motivation, objectives, and structure of the 

dissertation. 

2 Literature Review – Summarizes existing studies on 

running biomechanics, IMU technology, and related 

algorithms, highlighting gaps in current research. 

 

3 Methodology – Details the experimental setup, data 

collection process, preprocessing techniques, and 

algorithms used to analyze IMU data. 

 

4 

 

Results and Analysis – Presents the findings, including 

extracted metrics, visualizations, and validation results, 

with a discussion of their implications 

5 

 

Discussion – Interprets the results in the context of the 

research questions and discusses their significance, 

limitations, and potential applications. 

6 Conclusion and Future Work – Summarizes the key 

contributions of the research and suggests directions for 

future investigations. 

 

 

 

 

 



CHAPTER 2: LITERATURE REVIEW 

2.1 INTRODUCTION 

Running biomechanics and performance analysis have significantly evolved with 

the integration of wearable sensor technology, particularly Inertial Measurement 

Units (IMUs). IMUs provide critical data on an athlete’s movement, enabling 

researchers to analyze gait patterns, running efficiency, and injury risk factors. This 

chapter reviews existing literature on IMU-based running biοmechanics analysis, 

discussing the components of IMU sensors, their applications, and gaps in current 

research. 

 

2.2 IMU TECHNOLOGY IN RUNNING BIOMECHANICS 

IMUs are widely used in biomechanics research, offering a non-intrusive, portable 

solution for motion tracking. A standard 9-axis IMU consists of three core sensors: 

an accelerometer, a gyroscope, and a magnetometer. These sensors work 

together to estimate orientation, movement patterns, and other biomechanical 

parameters. Below is a detailed overview of each component and its role in motion 

analysis. 

 

2.2.1 ACCELEROMETER (3-AXIS) 

An accelerometer measures linear acceleration along the X, Y, and Z axes, 

typically recorded in meters per second squared (m/s²) or G-forces. By detecting 

changes in velocity, accelerometers can estimate orientation , displacement. 

 

Key Applications: 

 Measuring linear movement and vibrations 

 Short-term motion tracking, including step detection and impact forces 

2.2.2 GYROSCOPE (3-AXIS) 



A gyroscope measures angular velocity around the X, Y, and Z axes, recorded in 

radians per second. Compared to an accelerometer, a gyroscope provides more 

accurate data on orientation changes, particularly for dynamic movements. 

Key Applications: 

 Measuring rotational velοcity 

 Tracking angular displacement and stability 

 Enhancing motion analysis in high-speed movements, such as running and 

sprinting 

2.2.3 MAGNETOMETER (3-AXIS) 

A magnetometer measures the Earth's magnetic field along three axes, providing 

absolute orientation relative to the geomagnetic field. It functions as a digital 

compass, helping to correct drift in gyroscope readings when combined with 

accelerometer and gyroscope data. 

Key Applications: 

 Determining heading direction 

 Compensating for drift in gyroscope measurements 

 Improving orientation tracking accuracy in sensor fusion algorithms 

2.3 IMU-BASED RUNNING PERFORMANCE ANALYSIS 

When combined with additional data sources such as GPS and heart rate, inertial 

measurement units (IMUs) provide valuable insights into an athlete’s running 

mechanics. Over the years, running biomechanics studies have leveraged IMU 

sensors to analyze key performance metrics, helping coaches, researchers, and 

athletes optimize technique and prevent injuries. Some of the most relevant 

parameters include: 

 Cadence and stride length: These fundamental metrics provide insight into 

an athlete’s running efficiency. Higher cadence with shorter stride length is 

often linked to reduced impact forces and lower injury risk. 



 Ground contact time (GCT): The duration a foot remains in contact with the 

ground during each stride, influencing running economy. Shorter GCT is 

generally associated with more efficient running mechanics and better 

performance. 

 Trunk lean: The degree of forward or backward tilt of the torso, affecting 

running efficiency, propulsion, and injury risk. 

 Torso rotation: The rotational movement of the upper body, which 

contributes to balance, coordination, and overall energy efficiency. 

Excessive or insufficient rotation may indicate biomechanical inefficiencies. 

 Vertical oscillation: The magnitude of upward and downward movement 

during running. While some degree of oscillation is natural, excessive 

movement can indicate wasted energy and reduced efficiency. 

 Vertical ratio: The ratio of vertical oscillation to stride length, helping assess 

energy efficiency and optimal running mechanics. 

 Backpath trajectory: The movement pattern of the runner’s back during the 

gait cycle, providing insights into stability, posture, and asymmetries. 

Studies utilizing IMUs have demonstrated their effectiveness in identifying 

variations in these parameters across different running speeds, surfaces, and 

fatigue levels. Additionally, IMU data has been used to detect asymmetries that 

may indicate underlying weaknesses or potential injury risks. However, despite the 

wealth of data IMUs provide, current research still lacks comprehensive correlation 

analysis between these parameters and long-term performance outcomes. 

Moreover, there is limited focus on how interconnected motion patterns influence 

overall running efficiency, leaving room for further exploration in this area. 

2.4 IMPORTANCE OF POSTURE AND REAL TIME FEEDBACK  

Proper running posture plays a crucial role in both performance optimization and 

injury prevention. IMU-based motion analysis allows for continuous monitoring of 

key biomechanical aspects such as torsο rotation, pelvic tilt, and limb coordination, 



providing valuable feedback for athletes and coaches. Some key applications 

include: 

 Form correction: Identifying inefficiencies in running mechanics and helping 

athletes make adjustments to reduce injury risk and improve efficiency. 

 Real-time feedback: Wearable devices with IMU sensors enable immediate 

data visualization, allowing for in-session coaching and real time 

corrections. 

 Post-session analysis: Detailed biomechanical reports help athletes track 

progress over time, enabling long-term improvement strategies tailored to 

individual needs. 

Integrating real-time feedback into training programs has been shown to enhance 

learning and adaptation. By providing instant insight, runners can develop better 

movement patterns, reduce excessive energy expenditure, and minimize injuries. 

2.5 RESEARCH GAPS AND FUTURE DIRECTIONS  

Despite advancements in IMU-based motion analysis, several challenges remain 

that need to be addressed to maximize the potential of this technology: 

 Sensor drift and calibration: Long-term use of IMUs is affected by drift, 

requiring advanced sensor fusion algorithms (Kalman filters, machine 

learning models) to maintain accuracy over extended periods. 

 Validation against gold-standard methods: While IMUs provide a practical 

alternative to lab-based motion capture systems, more studies are needed 

to ensure their reliability and accuracy, especially for complex movement 

patterns. 

 Machine learning integration: AI-driven models could significantly enhance 

real-time analysis, enabling automated gait classification, early injury 

prediction, and personalized training recommendations. 

 Interconnected motion patterns: Many studies focus on individual metrics 

rather than examining how multiple movement patterns interact. Future 



research should explore how factors such as torso rotation, ground contact 

time, and vertical oscillation collectively influence performance and injury 

risk. 

 Field-based applications: Most IMU studies are conducted in controlled 

environments, limiting their applicability to real-world conditions. More 

research is needed to validate IMU performance during outdoor running 

across various terrains and environmental factors. 

Addressing these research gaps will help improve the accuracy, usability, and 

effectiveness of IMU-based analysis, ultimately leading to more refined training 

strategies and injury prevention protocols for runners of all levels. 

2.6 REVIEW OF RELEVANT STUDIES 

Recent advancements in wearable sensor technology have enabled researchers to 

study human movement in real-world environments with a high degree of precision. 

Among these technologies, Inertial Measurement Units (IMUs) have gained 

popularity due to their portability, cost-effectiveness, and ability to provide high-

resolution motion data across multiple axes. This section presents a review of 

selected empirical studies that utilize IMU sensors to analyze running 

biomechanics, enhance athletic performance, and contribute to injury prevention 

strategies. 

One of the foundational studies in this field was conducted by Reenalda et al. 

(2016), who employed a single 9-axis IMU placed on the lower back to analyze gait 

asymmetries in recreational runners. Their system monitored ground contact time 

(GCT), stride frequency, and trunk motion to infer fatigue-related changes in 

running form. While the study demonstrated the feasibility of long-term monitoring 

using wearable sensors, it lacked real-time feedback capabilities, limiting its 

practical application in coaching and training settings.  



Reference: 

https://www.sciencedirect.com/science/article/abs/pii/S0966636216000394?via%3

Dihub 

A more complex sensor arrangement was proposed by Lee et al. (2020), who used 

multiple IMUs placed on both ankles and the trunk to measure vertical oscillation, 

cadence, and stride length. Their system was validated against a high-fidelity 

optical motion capture system, yielding correlation coefficients above 0.90 for most 

parameters. Despite its accuracy, the approach required extensive calibration and 

was not well suited for field use by coaches or athletes  

Reference: https://www.mdpi.com/1424-8220/20/13/3700 

Similarly, Falbriard et al. (2018) explored the agreement between IMU-derived 

parameters and traditional lab-based motion capture techniques. Their setup, 

involving sensors on the feet and lower back, accurately estimated contact time, 

flight time, and vertical stiffness. However, like many studies in the field, their 

analysis focused primarily on lower-limb kinematics and neglected rotational 

metrics such as torsο rotation and trunk lean elements that are crucial for 

comprehensive performance evaluation 

Reference: https://www.mdpi.com/1424-8220/18/8/2491 

 

 

 

 

 

 

 

 

TABLE 2.6.1 

https://www.mdpi.com/1424-8220/18/8/2491


Study 
Sensor 

Setup 

Parameters 

Analyzed 

Validation 

Method 
Key Findings Limitations 

Reenalda 

et al. 

(2016) 

9-axis IMU 

on lower 

back 

GCT, stride 

frequency, 

trunk 

motion 

Internal 

consistency 

checks 

Detected 

gait 

asymmetries 

linked to 

fatigue 

No real-

time 

feedback; 

limited to 

one sensor 

Lee et al. 

(2020) 

IMUs on 

ankles and 

trunk 

Cadence, 

stride 

length, 

vertical 

oscillation 

Optical 

motion 

capture 

system 

High 

correlation 

with gold-

standard 

system 

Complex 

calibration; 

limited field 

use 

Falbriard 

et al. 

(2018) 
 

3 IMUs 

(feet and 

lower 

back) 
 

Contact 

time, flight 

time, 

vertical 

stiffness 
 

Force 

plates & 

MoCap 
 

Accurate 

spatio-

temporal 

data in 

running 
 

No 

rotational 

metrics 

considered 

 
 

 

 

These studies collectively underscore the growing relevance of IMU-based 

systems in sports science and biomechanics. However, they also expose several 

important limitations: most are constrained to offline processing, focus primarily on 

lower-limb kinematics, and rarely incorporate upper-body metrics or rotational 

dynamics. Furthermore, few offer real-time feedback systems, which are essential 

for meaningful intervention in training contexts. 

 



CHAPTER 3: METHODOLOGY 

This chapter outlines the methods employed in this study, including details on the 

participants, sensor placement, data collection procedures, and the calculation of 

biomechanical metrics. Each section provides a comprehensive explanation of the 

methodology to ensure reproducibility and clarity. 

3.1 PARTICIPANTS 

The study was conducted with a single athlete participant, selected based on their 

active involvement in high-intensity sports and overall physical fitness. While the 

original intent was to include a larger cohort, time limitations and testing constraints 

necessitated a focused, individual case study approach. This allowed for a detailed 

examination of the athlete’s movement patterns and the practical application of 

wearable sensor technology in a real-world setting. 

3.2 ETHICAL CONSIDERATIONS 

Ethical considerations were very important in this study. The participant was clearly 

informed about the purpose of the study, the procedures, and any possible risks or 

benefits. Written consent was given before the study began, and the participant 

was told they could stop at any time without any consequences. 

3.3 SENSOR PLACEMENT AND DATA COLLECTION 

3.3.1 SENSOR PLACEMENT 

To capture relevant biomechanical data, 9-axis Inertial Measurement Units (IMUs) 

were strategically placed on specific parts of each athlete’s body. These sensors 

were chosen for their ability to measure acceleration, angular velοcity, and 

magnetic field data across three axes. The placement sites included: 

 Lower Back: Positioned at the lower region to monitor overall body 

movement and posture. 



 Upper Back: Positioned between the shoulder blades to capture upper torso 

movement, shoulder alignment, and trunk rotation during running. 

 Shins: Placed on the anterior aspect of both shins to capture lower leg 

dynamics. 

 Feet: Mounted on the shoe to record foot placement, ground interaction, and 

stride mechanics. 

The placement of IMUs was carefully standardized across all participants to ensure 

consistency in data collection. 

3.3.2 DATA COLLECTION PROCESS 

Data collection was conducted in a controlled indoor environment to minimize 

external influences such as weather or uneven surfaces. Participant performed a 

series of running sessions that included core and lateral movements, which are 

commonly encountered in sports performance. 

The IMUs recorded data at a sampling rate of 104 Hz, providing high-resolution 

measurements for analysis. Each activity lasted approximately 5 minutes, ensuring 

sufficient data for accurate metric calculations. Participant was given enough rest 

between activities to prevent fatigue from influencing performance or sensor 

readings. 

3.4 METRICS CALCULATION 

The biomechanical data collected from the IMUs were processed to calculate four 

key metrics: Back Trajectory, Mean Stride , Ground Contact Time (GCT), Vertical 

Oscillation, Trunk Lean, and Torso Rotation. These metrics provide insights into 

movement patterns, efficiency, and potential injury risks. 

3.4.1 GROUND CONTACT TIME (GCT) 



Definition: Ground Contact Time refers to the duration each foot spends in contact 

with the ground during a stride. It is an important indicator of running efficiency. 

GCT calculation:  

 

The GCT was derived from accelerometer signals recorded by the IMUs attached 

to the upper back. Peaks in vertical acceleration were used to identify ground 

contact and takeoff event 



 

3.4.2 VERTICAL OSCILLATION  

 

Definition: Vertical Oscillation measures the up-and-down movement of an 

athlete’s torso during running. Excessive oscillation may indicate inefficiencies in 

movement patterns. 



Vertical oscillation calculation:

 



 

The height was estimated using accelerometer data from the IMU placed on the 

upper back. The average vertical displacement over time was calculated for each 

activity. 



 

3.4.3 CADENCE 

 

Cadence refers to the number of steps a person takes per minute while running. It 

is a key parameter in gait analysis and running efficiency. 

 

• Mathematical Equation: 

 

 



This gives cadence in steps per minute. 

3.4.4 STRIDE LENGTH 

 

Stride length is the distance covered in one full stride (two steps). It reflects how far 

a person moves forward with each stride. 

• Python Code: 

Assuming total distance and cadence be available, stride length can be computed 

by dividing distance by the total number of steps taken. 

• Mathematical Representation: 

Let D be the total distance (in meters), C be the cadence (steps per minute), and T 

be the time duration in minutes. Then: 

  Stride Length = D / (C × T) 

This gives stride length in meters per step. 

 

3.4.5 VERTICAL RATIO 

 Definition: The vertical ratio is the ratio of vertical oscillation to stride length, 

helping calculating energy efficiency and optimal running mechanics. 

 

Calculation Formula: 

 



3.4.6 TRUNK LEAN 

Definition: Trunk Lean refers to the angle of forward or backward tilt in an athlete’s 

torso during movement. Proper trunk lean is critical for maintaining balance and 

optimizing force application. 

Trunk Lean Estimation 

Python Code: Combines accelerometer and gyroscope readings to estimate 

forward/backward tilt using a complementary filter.(see table of 3.4.7,which 

includes both trunk lean and torso rotation) 

 

 

3.4.7 Torso Rotation 

Definition: Torso Rotation refers to the rotational movement in an athlete’s torso 

during dynamic activities such as running or turning. Excessive or asymmetrical 

rotation can indicate inefficiencies or potential injury risks 



Calculation Formula:

 



 

 

3.4.8 BACK TRAJECTORY 

 Definition: Back trajectory is plotted using the acceleration in the x-direction 

against the acceleration in the y-direction (accZ), which corresponds to the 

y-axis in the IMU. This plot helps visualize the movement pattern of the 

runner's back during the gait cycle, providing insights into stability, posture, 

and any asymmetries present in their running form. By analyzing this 

trajectory, researchers can identify deviations that may indicate 

biomechanical inefficiencies or potential injury risks 



 

3.4.9 SPEED 

 

Speed refers to how fast a person is moving forward, typically measured in 

kilometers per hour (km/h). It is a critical parameter in gait and performance 

analysis. 

• Python Code: 

Speed can be estimated using either total distance over time, or indirectly through 

cadence and stride length (since steps × length = distance). 

• Mathematical Representation: 

If D is the total distance in meters and T is the time duration in seconds: 

  Speed = D / T 

Or, using cadence (C in steps per minute) and stride length (SL in meters per 

step): 

  Speed = (C × SL) / 60 



This gives speed in meters per second. 

3.5 SUMMARY 

This study describes a clear and repeatable method for analyzing human 

movement using wearable sensors. High-resolution 9-axis IMUs were placed on 

key parts of the body pecifically the upper and lower back, thighs, shins, and feet  

to collect detailed movement data during running and side-to-side movements. 

Focusing on just one athlete made it possible to study their movements closely 

without having to deal with differences between multiple people. 

The data was recorded indoors at a sampling rate of 104 Hz, which was high 

enough to capture quick movements accurately. The test activities were planned to 

collect enough useful data while keeping the athlete comfortable and minimizing 

fatigue. 

Several movement-related measurements were taken from the IMU data. These 

included ground contact time (to evaluate stride efficiency), vertical movement (to 

estimate energy use), cadence and stride length (to study walking and running 

patterns), and vertical ratio (to assess running efficiency). Posture and rotation 

were tracked through trunk lean and torso rotation, while the path of the back 

during motion helped to see if movements were symmetrical. Speed was 

measured using both time and distance, as well as stride-based calculations. 

To improve the accuracy of measurements related to orientation like trunk lean and 

torso rotation a complementary filter was used, combining data from both the 

accelerometer and gyroscope. 

In summary, this method offers a reliable way to study athletic movement and spot 

any inefficiencies or risks of injury. It shows how wearable sensors can be 

effectively used in sports science when placed correctly and used with a structured 

testing approach. 



Chapter 4: Signal Processing and Algorithm Development 

This chapter outlines the algorithms and signal processing strategies applied to the 

IMU data to extract accurate biomechanical insights from raw signals. Focus is 

placed on preprocessing, stride segmentation, parameter extraction, and the 

validation of the system using Garmin wearable data. While real-time feedback is 

not yet integrated, it is discussed in the context of future development. 

4.1 RAW DATA PREPROCESSING PIPELINE 

The first stage in transforming raw IMU signals into meaningful biomechanical 

information is data preprocessing. The IMUs used in this study captured high-

frequency acceleration and angular velocity, but raw data typically includes noise, 

bias, and drift due to sensor limitations and environmental factors. 

To address these challenges, the signals were smoothed using a fourth-order 

Butterworth low-pass filter with a cut-off frequency relevant to the movement we 

aim to extract, which is appropriate for human movement frequencies. This filtering 

process maintains meaningful motion data while reducing high-frequency artifacts. 

Unlike some approaches that rely on sensor fusion algorithms like Madgwick or 

Mahony filters, this work prioritized signal fidelity over estimated orientation, which 

was not necessary for the parameters of interest such as ground contact time or 

vertical oscillation. 

4.2 STRIDE SEGMENTATION TECHNIQUES 

Precise stride segmentation is essential for analyzing running mechanics. In this 

study, a method was used to divide motion data into separate stride events. 

This approach utilized peak detection on vertical acceleration and angular velocity 

from the gyroscope to identify the start and end of each stride. Thresholds were 



calculated dynamically from signal percentiles to adapt to different movement 

intensities across participants and trials. 

Unlike machine learning-based segmentation models which can be powerful but 

require large training datasets and are often unsuitable for real-time use the 

method used here proved effective in detecting stride events with sufficient 

accuracy and minimal computational overhead. 

4.3 BIOMECHANICAL PARAMETER EXTRACTION 

Following stride segmentation, several key metrics were extracted: ground contact 

time, vertical oscillation, cadence, stride length, trunk lean, torso rotation, and back 

trajectory. These metrics were chosen for their relevance to running efficiency, 

injury risk, and training optimization. 

Each parameter was calculated using custom scripts in Python, relying on time-

domain signal analysis and peak detection strategies. Integration, detrending, and 

filtering techniques were used where appropriate, especially for vertical 

displacement and rotation metrics. The algorithm flow ensured consistency and 

comparability across different activities and athletes. 

4.4 SYSTEM VALIDATION USING GARMIN DEVICES 

To check the accuracy of the extracted metrics, results from the custom IMU 

system were compared with readings from Garmin watch. Although Garmin does 

not provide raw IMU data, its processed output (including cadence, vertical 

oscillation, and stride length) serves as a useful reference standard due to its wide 

use in sports and recreational running. 

The validation process revealed strong agreement for cadence and stride length, 

with high correlation coefficients. Vertical oscillation showed moderate alignment, 

likely due to differences in sensor location (Garmin devices retrieve data from 

different positions) and smoothing algorithms. 



This comparison demonstrated that a single IMU on the upper back can provide 

comparable insights to commercial devices, with the added benefit of raw data 

access and customizable analytics. 

4.5 FUTURE PLAN: REAL-TIME FEEDBACK SYSTEM 

While the current scripts operate in offline mode, future development will focus on 

integrating real-time feedback for athletes. This would allow runners to receive 

immediate tips about their posture, symmetry, or exhaustion related changes while 

they train. 

Such feedback could be implemented via a mobile app or wearable interface, using 

edge-optimized code running directly on the IMU or a smartphone. This 

enhancement would significantly improve the practicality of the system in real world 

coaching and rehabilitation overview. 

 

 

 

 

 

 

 

 



CHAPTER 5: EXPERIMENTAL RESULTS AND VALIDATION 

5.1 PARTICIPANT PROFILE 

This study was conducted using data from a single experienced male runner, aged 

27, with a height of 1.80 meters. The participant regularly runs at a performance 

level appropriate for competitive amateur athletes and was familiar with treadmill-

based environments. His physiological fitness level, running experience, and 

biomechanical awareness made him an ideal case study subject for testing the 

accuracy and practicality of the analysis system developed in this project. 

All data were collected during a controlled treadmill run, with the athlete 

maintaining a steady pace throughout the session. The IMU sensor was positioned 

on the upper back and raw acceleration and gyroscope data were recorded at 104 

Hz. The participant also wore a Garmin watch, which provided comparable 

biomechanical metrics for validation purposes. 

5.2 TEMPORAL PARAMETERS 

The Ground Contact Time (GCT) was measured using dynamic thresholding of 

vertical acceleration data (AccZ). A percentile-based threshold was used to detect 

foot contact phases. Only contact events between 150 ms and 400 ms were 

considered valid to exclude noise and outliers. 

The average GCT calculated by the IMU system was 280.15 ms, which aligns 

closely with the Garmin-reported value of 283 ms. This similar result shows the 

system’s ability to detect temporal gait events with high accuracy. The consistency 

of GCT values over the course of the run also confirmed stable running technique 

and low stride variability in this athlete. 

The stride rate was also extracted by analyzing intervals between peaks in the total 

acceleration magnitude. The athlete maintained a mean stride rate of 177.21 steps 



per minute, which is typical for runners at a faster pace (approximately equivalent 

to a 5-minute per kilometer speed). The high stride frequency is consistent with 

performance training and reflects an efficient rate, especially for treadmill 

conditions. 

5.3 SPATIAL METRICS AND OSCILLATION 

Vertical oscillation was computed using the filtered AccZ signal, integrating twice to 

estimate displacement, and correcting for drift using a Kalman filter. Only 

oscillation values between 6 cm and 14 cm were considered valid to exclude noise 

and outliers . 

The average vertical oscillation over 54 valid events was 8.07 cm, which closely 

matches Garmin’s estimate of 8.31 cm. This confirms that the system can track 

vertical motion with a high degree of agreement with commercial-grade systems, 

despite differences in sensor location and internal processing. 

A detailed analysis of spatial posture and trunk motion was also conducted using 

gyroscope data. The lateral bend (roll) exhibited a full range of motion of 40.1 

degrees, with a symmetry score of 97.7%, indicating nearly identical motion on 

both sides of the body. Similarly, forward/backward bending (pitch) showed a 

range of 40.2 degrees with 94.1% symmetry. These values suggest the athlete 

maintained excellent postural control throughout the run, with balanced 

engagement of left and right musculature. 

Torso rotation was monitored through the yaw axis and presented smooth 

oscillations, showing no signs of asymmetry. This high degree of motion symmetry 

and control is typically associated with experienced runners and reflects optimized 

running mechanics. 

 

5.4 FATIGUE TRENDS AND VARIABILITY 



Although the session was not explicitly designed as a fatigue test, stride 

consistency and trajectory of the back patterns were monitored across time 

windows to observe any signs of form degradation. The data was divided into 

segments to monitor trends over the run. 

Stride variability remained low, but a gradual increase in stride time variability and 

vertical oscillation amplitude was observed toward the second half of the session. 

This shift likely shows the effect of fatigue, although it did not cause any big 

change in form. These early signs would likely go unnoticed by eye but can be 

captured effectively through sensor-based monitoring. 

Back path trajectory plots, created by graphing filtered AccX against AccZ, showed 

consistent elliptical patterns in early windows, transitioning to slightly more irregular 

forms near the end of the session. These small changes suggest a gradual decline 

in trunk coordination, which aligns with the observed increase in oscillation and 

stride variability. The system's ability to detect these minor shifts highlights its 

potential for fatigue monitoring and technique in real time. 

5.4.1 STRIDE TIME VARIABILITY 

Stride intervals, calculated from peak-to-peak timing of total acceleration 

magnitude, were used to monitor consistency. At the beginning of the session, 

stride timing was extremely stable, with minimal variation between consecutive 

steps. However, as the session progressed, the standard deviation of stride timing 

increased, particularly after the second half of the running sessions. This increase 

in stride time variability though subtle indicates a growing inconsistency muscle 

fatigue. 

In trained runners, consistent stride timing is associated with efficiency and 

reduced injury risk. As the central nervous system becomes taxed, the ability to 

precisely control timing decreases. From a performance perspective, small 



changes in timing may not immediately affect speed but can lead to less efficient 

force application and eventually reduced economy of motion. 

5.4.2 GROUND CONTACT TIME (GCT) 

Ground Contact Time (GCT) was seen across all valid detected steps during the 

session. At the beginning of the run, the athlete maintained an average GCT of 

approximately 280 ms. As the run progressed, a subtle upward drift in GCT values 

was observed, particularly in the final third of the session. 

An increase in GCT is a commonly reported indicator of fatigue. As muscles 

fatigue, the runner typically spends more time in contact with the ground due to 

slower force production. While small increases in GCT are expected during longer 

runs, longer ground contact times can signal declining running economy and may 

be associated with higher joint loads. Athletes with persistently elevated GCT are 

also more prone to overuse injuries, especially at the bottom half of the body. Also, 

shorter GCT is often linked to better performance, especially in sprinters and short-

distance runners, but this must be balanced with proper impact absorption. If GCT 

becomes too short due to poor control, injury risk may increase due to higher 

ground reaction forces. 

In this case, the athlete’s GCT profile remained well-controlled, with only mild 

increases. This reflects a well-developed base of neuromuscular endurance but 

also shows the IMU’s ability to detect small shifts that might go unnoticed visually 

or through conventional coaching. 

5.4.3 VERTICAL OSCILLATION AMPLITUDE 

Vertical oscillation was calculated through double integration of the filtered AccZ 

signal, with valid values falling between 6 and 14 cm. At the start of the run, the 

athlete displayed an average vertical displacement of approximately 8.07 cm. Over 

time, especially in the final minutes of the session, the vertical oscillation range 

increased slightly and became more variable between steps. 



While some vertical motion is natural and even necessary for forward force, 

excessive vertical oscillation is often considered biomechanically inefficient. It 

reflects a change in movement strategy where more energy is used for upward 

motion rather than forward movement. From a performance perspective, increased 

vertical oscillation under fatigue indicates reduced running economy and possibly a 

breakdown in core stability. 

This change, although small, aligned with other fatigue indicators like GCT and 

stride variability. It suggests that the athlete’s running form became slightly less 

efficient under continuous load, even without an observable drop in pace or visible 

breakdown in posture. Detecting such shifts can be valuable for optimizing training 

volumes and adjusting technique to minimize energy waste. 

5.4.4 BACK PATH TRAJECTORY IRREGULARITY 

Back path trajectories were visualized by plotting filtered forward acceleration 

(AccX) against vertical acceleration (AccZ). In early windows, these plots showed 

smooth, elliptical shapes that reflected stable and coordinated trunk movement. As 

the run progressed, the ellipses began to deform slightly, becoming less 

symmetrical and more erratic in later windows. 

These shape changes suggest a subtle decline in trunk control. Trunk control is 

essential not only for energy transfer and balance but also for injury prevention. In 

many athletes, reduced trunk coordination under fatigue can lead to overuse of the 

hip and knee joints, contributing to unwanted conditions. 

5.4.5 TRUNK LEAN 

 

Trunk lean was estimated using the sensor's pitch data, calculated through a 

complementary filter that combined gyroscope and accelerometer information. 

Over the course of the session, the athlete maintained an average forward trunk 



lean, an indicator typically associated with efficient running mechanics. Trunk lean 

remained consistent through most of the run. 

Trunk lean plays a critical role in forward propulsion and running economy. A 

moderate forward lean allows for more efficient energy transfer during the stance 

phase, helping the runner generate momentum while minimizing braking forces. 

However, deviations in trunk angle either too upright or excessively forward can 

negatively impact stride mechanics and joint loading. 

A reduction in trunk lean during prolonged running can indicate core fatigue or 

decreased engagement of the hip extensors and glutes. In this session, the small 

reduction observed was not extreme, but it may suggest the early onset of fatigue-

related postural compensation. If left unchecked over multiple sessions, this 

pattern could contribute to increased loading on the spine or knees.  

5.4.6 TORSO ROTATION 

Torso rotation was measured by integrating the gyroscope's Z-axis (yaw) signal 

over time. At the beginning of the session, the athlete demonstrated smooth, 

symmetrical rotation patterns. As the session progressed, torso rotation remained 

generally stable, but minor increases in asymmetry were detected during the final 

third of the run. 

Torso rotation is closely linked to core stability and arm swing synchronization. A 

balanced rotation pattern helps facilitate smooth leg movement and efficient stride 

propulsion. When fatigue sets in, runners may start to compensate with 

exaggerated or uneven upper-body motion.  

Injury risk increases when torso rotation becomes asymmetric or erratic, as it may 

lead to imbalanced loading through the spine, hips, and knees. For example, over-

rotation on one side can contribute to pelvic tilt or lower back strain. From a 

performance view of point, symmetrical torso rotation conserves energy and 

contributes to better running economy. 



Although the changes in this session were small, the IMU system was sensitive 

enough to detect subtle shifts. This suggests that real-time monitoring of torso 

movement could be a valuable tool for runners and coaches to maintain symmetry 

and detect fatigue-related form breakdowns before they escalate. 

5.5 SYSTEM VALIDATION 

To evaluate the system's reliability, the IMU-derived metrics were compared 

directly with those reported by the Garmin Forerunner device. The cadence 

correlation between systems was strong, with only a 2-step per minute difference. 

Vertical oscillation also showed strong agreement, differing by just 0.24 cm, a 

negligible amount considering the distinct sensor locations. 

Ground Contact Time was especially well-aligned, with a difference of just 2.85 ms 

between the IMU and Garmin systems. This small discrepancy confirms that the 

event detection logic in the custom system is functioning at a professional level, 

capable of producing data comparable to established commercial products. 

While the Garmin system does not report trunk lean or bend metrics, the IMU’s 

ability to capture lateral and forward/backward bend symmetry adds a new kind of 

insight not available in many consumer-grade wearables. This kind of postural 

monitoring could be highly valuable in applications involving injury rehabilitation, 

performance and coaching feedback. 

 

5.6 SUMMARY 

This chapter demonstrated that a single-sensor IMU system can extract a wide 

range of biomechanical metrics with a high degree of accuracy. The athlete’s data 

showed clear agreement with Garmin measurements for cadence, vertical 

oscillation, and GCT, with only minor variation due to sensor position and filtering 

differences. 



Beyond these standard metrics, the IMU system also provided insights into posture 

symmetry and motion consistency, revealing excellent balance and control in both 

lateral and forward motion planes. Fatigue related trends were detected through 

stride timing variability and motion path irregularity, showing the system’s potential 

for real-time fatigue detection and feedback. 

Even with just one participant, this study provided strong support for the systems 

accuracy, reliability, and potential for use in sports performance analysis. The next 

chapter will explore how these findings can be applied in broader contexts and 

propose directions for future work. 

 

 

 

 

 

 

 

 

 



CHAPTER 6: DISCUSSION AND PRACTICAL IMPLICATIONS 

6.1 TECHNOLOGICAL ADVANCEMENTS OVER EXISTING SYSTEMS 

One of the most important outcomes of this project is demonstrating how wearable 

IMU sensors serve as a practical and effective alternative to traditional lab-based 

motion capture systems. High-end optical systems are widely regarded as the gold 

standard due to their exceptional accuracy and detailed kinematic tracking. 

However, they come with drawbacks, including high costs and specialized facilities 

and trained staff, and the restriction of data collection to controlled indoor 

environments. These limitations reduce their applicability for regular athletic 

training or rehabilitation sessions in naturalistic or outdoor settings. 

Compared to traditional lab setups, the IMU-based system used in this study is 

much more portable, affordable, and easy to use, which makes it great for regular 

use outside the lab. Thanks to their small size and wireless features, modern IMUs 

can collect data during real-world running whether on tracks, roads, or trails giving 

a more realistic view of how athletes perform. 

Placing several sensors on key parts of the body like the lower back, legs, and feet 

helps gather detailed info on both lower and upper body movement. This setup 

also helps reduce common IMU issues like sensor drift or soft tissue movement by 

allowing different sensors to check and correct each other’s data. Because of this, 

the system gives more accurate results than setups using only one sensor. 

Even though IMUs aren’t as precise as optical motion capture systems, the small 

drop in accuracy is balanced out by how flexible, easy to use, and practical they 

are. This makes IMU systems a solid choice for regular training checks, long-term 

monitoring, or making quick changes during workouts or rehab sessions. 

 



6.2 BIOMECHANICAL INSIGHTS FOR PERFORMANCE OPTIMIZATION 

The system captures a wide range of biomechanical data like torso rotation, trunk 

lean, ground contact time, and vertical movement which can give athletes and 

coaches useful insights to improve performance. These measurements help show 

how efficient a runner’s form is and can even signal early signs of fatigue, making 

them valuable for guiding training choices. 

For example, the participant showed a consistent forward lean during running, 

which matches what’s commonly seen in sports science a slight forward lean can 

help improve power and reduce energy use. On the other hand, leaning too far 

forward may lead to bad technique and a higher risk of injury. Keeping track of this 

over time can help spot changes caused by tiredness or poor form. 

Balanced torso rotation also plays an important role, as it helps muscles work 

evenly and keeps running smooth. If the system detects any imbalance or uneven 

twisting, it might point to developing muscle issues or changes in movement that 

need attention. 

The system also picked up on changes in stride and vertical movement that hinted 

at fatigue setting in, even before it was noticeable by just watching. Too much up-

and-down motion usually means energy is being wasted, so spotting that in real-

time can help runners fix their form like adjusting posture or pace to stay more 

efficient for longer. 

By tracking things like stride consistency and vertical movement, the system gives 

customized feedback that can make training more effective and help prevent 

injuries. For example, if a runner shows a lot of variation in their steps, it might be a 

sign they need strength or coordination exercises to improve stability. 

 

6.3 CLINICAL APPLICATIONS IN INJURY PREVENTION 



Besides helping athletes perform better, this system can also help prevent injuries 

and support recovery. Running injuries often come from repeated stress and small 

inefficiencies in how the body moves. Spotting changes in things like trunk control 

or ground contact time early on can help catch problems before they turn into 

injuries. 

For example, if someone starts spending more time on the ground with each step, 

it could mean they’re getting tired or losing power which can put extra strain on 

joints like the knees or ankles. Also, if the trunk becomes less stable, it might show 

weakness in the core or tired muscles, which could lead to injuries like stress 

fractures or IT band problems. 

Although real-time feedback wasn’t used in this study, the system’s ability to detect 

small changes in movement shows potential for future injury prevention. Getting 

live alerts during training could help athletes fix their form on the spot and avoid 

long-term issues. 

In rehab, these sensors give doctors a way to objectively track how a patient is 

recovering like checking gait symmetry and how weight is being distributed. This 

makes therapy more personal and helps decide when it’s safe to return to sport. 

 

6.4 LIMITATIONS AND BOUNDARY CONDITIONS 

Even though the system has many strengths, there are some things users need to 

watch out for to keep the data accurate. 

One big issue is where the sensors are placed. Even small shifts in where they’re 

attached especially on the back or legs can mess with the data. That’s why it’s 

important to follow clear instructions for putting the sensors on and to train users 

properly. 



The environment can also affect the measurements. The part of the IMU that relies 

on magnetism can get thrown off by metal objects or electronics nearby. This can 

mess up direction and orientation readings unless you use good filtering methods 

and recalibrate regularly. 

Also, IMUs can drift over time when calculating motion, leading to small errors that 

add up. Filtering methods like complementary or Kalman filters help with this, but 

they need to be tuned carefully and might cause some delay. 

This system works best in controlled environments. In busy, unpredictable, or 

magnetically noisy places, data quality might go down. So, results should always 

be considered in the context of where and how the data was collected. 

Future improvements could focus on better sensor fusion, adding other tools like 

GPS or pressure sensors, and making it easier to calibrate and mount the sensors 

properly. 

 

6.5 PRACTICAL CHALLENGES AND USER FEEDBACK 

While the system looks promising, there are a few real-world challenges to 

consider if it’s going to be used widely. 

First, getting users to wear the sensors properly can be tough. Athletes need to 

place them correctly every time, which means instructions must be simple and the 

gear must be comfortable. Some early feedback showed that bulky or annoying 

sensors could make people stop using them. 

Second, even though the system gathers useful data, it’s still tricky to turn that into 

simple advice that athletes and coaches can easily understand. There’s a need for 

dashboards or alerts that explain what the data means without being too technical. 



Third, battery life and wireless connections can be limiting, especially during long 

workouts. Making sensors more energy-efficient and improving connectivity would 

help in more demanding environments. 

Lastly, gathering feedback from users’ athletes, coaches, and doctors is really 

important. Their input during testing can help improve the system and make sure it 

meets real needs. 

Tackling these issues alongside technical upgrades will help turn this research tool 

into something people can actually use in training and rehab. 

 

 

 

6.6 GENERALIZATION TO OTHER SPORTS AND ACTIVITIES 

Even though this system was designed for running, it could be adapted for many 

other sports and activities. For example, it could be useful in walking rehab, 

cycling, skiing, or court sports like basketball or tennis as long as the system is 

adjusted for the needs of each activity. 

In walking rehab, the focus might be on step timing and symmetry. In skiing, it 

could track turns and body stability. Changing the analysis logic to fit each sport 

would make the system more versatile. 

Also, giving feedback tailored to each sport like warning a football player about 

cutting movements or checking for fatigue in rowers could make this system a 

helpful tool in many different areas. A future version could have plug-ins for 

different sports while keeping the same base system. 

6.7 INTEGRATION WITH MACHINE LEARNING MODELS 



Right now, the system uses rule-based signal processing, but adding machine 

learning (ML) could make it much more powerful. ML could help detect patterns, 

predict performance, or spot early signs of fatigue or injury. 

For example, models like decision trees, SVMs, or deep learning networks could 

be trained on labeled data to automatically spot phases of movement or detect 

unusual behavior. Unsupervised ML could also group similar movement styles or 

uncover hidden patterns. 

But for ML to work well, you need a lot of good data and strong validation 

especially in health-related areas. The results also must be easy to understand. If 

the system does real-time predictions, it needs to run efficiently, either on the 

device or on a connected phone or cloud service. 

In the future, combining standard processing with smart ML models could lead to a 

more accurate and adaptable system that works in real-time. But it’s important that 

it stays understandable and trustworthy for users. 

 

 

 

 

 

 



CHAPTER 7: CONCLUSION AND FUTURE DIRECTIONS 

 

7.1 KEY CONTRIBUTIONS TO WEARABLE BIOMECHANICS 

This project successfully demonstrated that it is possible to develop a practical, 

affordable, and portable wearable system capable of accurately tracking key 

running biomechanics using a minimal sensor setup. By placing a single 9-axis 

IMU sensor on the upper back, we effectively captured crucial performance and 

movement parameters such as ground contact time, vertical oscillation, trunk lean, 

and torso rotation. The strong correlation between our measurements and those 

obtained from commercial-grade devices validates the reliability and accuracy of 

the system. 

Beyond simply capturing metrics, the study provided insights into how these 

biomechanical variables evolve throughout a running session. Small changes in 

stride dynamics, posture, and oscillation patterns were detected as early indicators 

of fatigue and inefficiency. These findings highlight the potential of wearable IMU 

systems not only as monitoring tools but also as early-warning mechanisms that 

can guide athletes and coaches in making informed adjustments to training 

regimens, ultimately enhancing performance and reducing injury risk. 

Additionally, the multi-sensor approach explored here enriches the biomechanical 

profile, improving data robustness and revealing a better understanding of running 

mechanics in naturalistic environments. This work contributes to the field of 

wearable biomechanics by advancing practical solutions that balance accuracy, 

usability, and affordability. 

 

7.2 PRACTICAL IMPLEMENTATION GUIDELINES 



To maximize the utility and reliability of the system in real-world settings, the 

following practical recommendations are provided based on experimental findings 

and user experience considerations: 

 Sensor Placement: Attach the main IMU sensor securely to the upper back 

using a strap to minimize motion artifacts.  

 Sampling Rate: Employ a sampling frequency of at least 104 Hz to ensure 

the capture of detailed motion characteristic of running biomechanics. 

 Signal Processing: Implement filtering techniques to remove sensor noise 

and correct for drift inherent in IMU measurements. Regular calibration 

before each session is essential for maintaining data integrity. 

 Consistency: Ensure consistent sensor placement across sessions to 

reduce variability. Detailed protocols and training for users can improve 

repeatability. 

 Metric Monitoring: Utilize normative ranges for key parameters to detect 

deviations indicating fatigue, not optimal form, or emerging injury risks. 

 User Training: Educate athletes, coaches, and clinicians on analysing data 

outputs and integrating feedback into training or rehabilitation programs 

effectively. 

By adhering to these guidelines, users can unleash the full potential of the 

wearable system for daily monitoring, long-term tracking, and informed decision-

making. 

 

7.3 FUTURE RESEARCH TRAJECTORIES 

Building upon the foundational work presented, several promising avenues for 

future exploration emerge: 

 Real-Time Feedback Systems: Developing a fully integrated mobile 

application that delivers instant feedback based on live IMU data could 



revolutionize on the run technique correction. Such systems would leverage 

fast  processing and user friendly interfaces potentially incorporating audio 

or haptic alerts to help runners maintain optimal form and prevent injury. 

 Advanced Machine Learning Applications: Incorporating machine learning 

algorithms to analyze large datasets could enable automatic classification of 

running styles, detection of abnormal movement patterns, and early 

prediction of injury risks. These models could adapt to individual athletes’ 

baselines and provide personalized coaching recommendations. 

 Multimodal Sensor Fusion: Integrating IMU data with complementary 

sensing technologies such as electromyography (EMG) for muscle activity, 

plantar pressure insoles, or GPS for spatial context would offer a richer and 

more nuanced biomechanical assessment. This multimodal approach could 

improve the precision of gait analysis and support comprehensive 

performance diagnostics. 

 Longitudinal and Population-Based Studies: Conducting extended studies 

involving diverse populations over multiple months or years can reveal how 

biomechanical parameters correlate with training adaptations, injury 

occurrences, and performance progression. 

 Customization and User-Centered Design: Future research should also 

explore ergonomic sensor designs and personalized mounting solutions to 

enhance comfort. Engaging end-users in iterative design processes will 

ensure that wearable systems meet real-world demands and preferences. 

 Clinical Translation: Expanding applications into clinical rehabilitation, 

including post-injury monitoring and therapy optimization, could bridge 

sports science and healthcare, improving patient outcomes through 

objective, continuous biomechanical assessment. 

Collectively, these research directions emphasize the vast potential for advancing 

wearable biomechanics technology from prototype systems to comprehensive, 

intelligent platforms that empower athletes, coaches, and clinicians alike. 



7.4 BROADER IMPACT AND SOCIETAL RELEVANCE 

Wearable IMU-based biomechanics systems aren’t just useful for professional 

athletes or medical patients they can benefit everyday people too. Because these 

systems are affordable and easy to use, they make it possible for recreational 

runners, gym-goers, and even older adults to track their movements and improve 

their physical health. 

This kind of technology can help people exercise more safely, avoid common 

overuse injuries, and stay active for longer, which supports overall public health. 

On a larger scale, all the data collected from regular users could be used to 

improve city planning like designing better sidewalks and parks or to help sports 

organizations understand injury patterns and improve training guidelines. 

From a cost perspective, using wearable sensors more widely could help cut 

healthcare costs by catching movement problems early, before they become 

serious. This fits well with the current trend in healthcare, which focuses more on 

preventing problems rather than just treating them. 

Of course, as more people use this kind of tech, it’s important to handle their 

personal data responsibly. Protecting user privacy and being transparent about 

how data is used will be key to building trust and making sure these systems are 

used in a fair and ethical way. 

 

7.5 SUMMARY OF KEY TAKEAWAYS 

To conclude, this thesis has demonstrated that: 

 Wearable 9-axis IMU sensors can provide accurate, reliable, and practical 

measurements of running biomechanics. 



 A minimal sensor setup, combined with effective signal processing and 

validated metrics, offers meaningful insights into athlete performance and 

fatigue. 

 The system’s portability and affordability position it as a valuable tool for 

diverse users from professional athletes to rehabilitation patients. 

 Addressing practical challenges related to sensor placement, data 

interpretation, and user engagement is critical. 

 Future developments in real-time feedback, multimodal sensing, and 

machine learning promise to transform biomechanical monitoring into a 

more accessible and powerful resource. 

 The broader societal impact of such wearable technology spans health 

promotion, injury prevention, and cost reduction in healthcare. 

These conclusions provide a strong foundation for continued innovation in 

wearable biomechanics, fostering improved athletic performance and injury 

prevention through accessible technology. 

 

7.6 LIMITATIONS AND CRITICAL REFLECTIONS 

While the developed wearable system demonstrated promising results in 

measuring and interpreting running biomechanics, several limitations must be 

known to highlight areas for future refinement. 

Firstly, despite implementing calibration and filtering techniques, IMU-based 

systems are inherently prone to drift particularly during longer runs or high-intensity 

sessions. These factors can create noise for measurements if not carefully 

managed. 

Secondly, while the system’s performance was benchmarked against commercially 

available devices, it did not include lab equipment such as optical motion capture 



systems or force plates for all metrics. This restricts the level of validation and may 

leave some parameters subject to interpretation bias. 

Finally, user experience aspects such as long-term comfort, battery performance, 

and real-world robustness (different enviroments) were not extensively tested. 

Addressing these practical concerns will be crucial for widespread adoption and 

daily use. 

These limitations provide important context for interpreting the findings and serve 

as a guide for future system optimization and broader evaluation studies. 

 

7.7 FINAL REFLECTION AND OUTLOOKS 

This project is more than just a technical study it’s a step toward making 

biomechanical feedback available to everyone. By proving that even a simple, 

lightweight IMU sensor setup can give useful and reliable information, it opens the 

door for athletes, therapists, and regular users to better understand and improve 

how they move. 

As people become more focused on health and fitness, and technology becomes 

more a part of everyday life, wearable biomechanics could become an important 

tool for staying healthy, avoiding injuries, and learning how to move properly. The 

lines between sports science, healthcare, and consumer gadgets are starting to 

blur, and systems like this one could help connect them. 

In the future, as sensor designs get better, apps become easier to use, and 

analytics get smarter, these tools will be even more powerful. We’re heading 

toward a time when real-time movement tracking is just part of everyday life 

helping people stay safe, move more efficiently, and feel more confident in their 

bodies. 
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