
i

Undergraduate Thesis

FRONT-END INTERFACE FOR A DISTRIBUTED STORAGE SYSTEM

USING LARAVEL

Antreas Panagi

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2025

ii

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Front-End Interface for a Distributed Storage System Using Laravel

Antreas Panagi

Supervising Professor

Dr. Chryssis Georgiou

Thesis submitted in partial fulfilment of the requirements for the award of degree of

Bachelor's in Computer Science from the University of Cyprus

May 2025

iii

Acknowledgments

I would like to express my deep gratitude to those who supported me in the eteraty of the

project. Foremost amongst those to whom I am thankful are my family. They have given

me their constant encouragement and understanding during the most trying moments of

my work. I am especially grateful to my supervising professor, Dr. Chryssis Georgiou,

for his expert guidance, insightful feedback, and continuous motivation. His constructive

advice shaped my approach to problem solving and pushed me to maintain high academic

standards. I would also like to thank Algolysis, the company that provided the real-world

context and requirements for this platform. Their cooperation provided me a rare chance

to get theoretical and technical knowledge to better understand the nature of software

development challenges in industrial contexts. Finally, I would like to acknowledge my

friends and fellow students who offered helpful insights and a supportive environment

throughout this process. The willingness of these people to discuss ideas and share

experiences greatly contributed to getting this project completed.

iv

Abstract

This thesis focuses on the development of a web-based platform with Laravel devoted to

simplifying file operations and collaboration in multi-user environments. Developed

through collaboration with Algolysis, a Cypriot-based SME company, the system solves

real-world issues such as secure file sharing, user-specific permissions for folder, files,

and simple folder and file operations along with a smooth user interface.

The platform was constructed using the Laravel framework. The modular structure

allows for maintainable development. Additionally, it works perfectly with MySQL

through the use of strong Object Relational Mapping (ORM) tools and migration

mechanisms. It is equipped with a responsive dashboard to list files and folders, detailed

access permissions, dynamic shared folders, and file uploads for multiple-user

collaboration scenarios. Further, grid and list view options were developed, providing

users with choices for navigation.

When finally completed, testing was done to ascertain the platform's robustness under

various workloads. The system met the goals for stability and usability. This document

ends with a discussion on the limitations of the platform, possible future enhancements,

and considerations for embracing the Laravel ecosystem for similar large-scale

deployments.

v

Contents

 Chapter 1 Introduction………………………………………………………….. ..1

1.1 Motivation and Purpose of the Work 1

1.2 Development Methodology and Timeline 2

1.3 Organization of the Document 5

Chapter 2 Distributed Shared Memory (DSM)…………………………………..6

2.1 Overview of Distributed Shared Memory and Consistency 6

2.2 Dynamic Membership and Reconfiguration Protocols 7

2.3 Large Objects and Fragmentation in Shared Memory 8

2.4 Combining Dynamic Reconfiguration with Fragmentation 11

Chapter 3 Platform Description …………………………………………... 13

3.1 Requirements and General Overview 13

3.1.1 Functional Requirements 14

3.1.2 Non-Functional Requirements 15

3.2 User Categories 16

3.3 Platform Constraints 17

3.4 Architectural Overview 19

3.5 Development Tools 21

3.5.1 Laravel (PHP Framework) 21

3.5.2 Bootstrap (Front-End Framework) 23

3.5.3 Alpine.js (JavaScript Library for Interactivity) 24

3.5.4 MySQL (Database Management System) 25

3.5.5 XAMPP (Development Server Environment) 26

3.6 Security Considerations 27

3.7 Database Structure 28

Chapter 4 Implemented Platform ……………………………………………... 32

4.1 Existing Development 32

4.1.1 Login 33

4.1.2 Dashboard 35

4.1.3 User Profile 36

4.2 Main Page 37

vi

4.2.1 List View 38

4.2.2 Grid View 39

4.3 Uploading Files 39

4.4 Actions 43

4.4.1 Rename 44

4.4.2 Delete 45

4.4.3 Download 46

4.4.4 Share 46

4.4.5 Info 49

4.5 Navigation 50

4.6 Messages 52

Chapter 5 Implementation……………………………………………………... 53

5.1 Project Folder Layout 53

5.2 Key Libraries and Dependencies 54

5.3 Illustrative Code Snippets 54

5.3.1 Routing 54

5.3.2 Controllers and Eloquent Models 55

5.3.3 MySQL and Database Migrations 57

5.3.4 Laravel Query Builder 58

5.3.5 Bootstrap and Alpine.js for Front End Interactions 58

Chapter 6 Conclusion……………………………………………………………… 60

6.1 Summary of Achievements 60

6.2 Lessons Learned 61

6.3 Limitations and Future Work 62

6.4 Final Remarks 63

R e f e r e n c e s ………………………………………………………………….. 64

A p e n d i x A………………….……..…………………………….…………… Α-1

-

A p e n d i x B………………….……..…………………………….…………… Α-5

1

Chapter 1

Introduction

1.1 Motivation and Purpose of the Work 1

1.2 Development Methodology and Timeline 2

1.3 Organization of the Document 5

1.1 Motivation and Purpose of the Work

Generation and storage of data take place across a mountain range of platforms in the

current digital era. It is estimated that the world will generate about 181 ZB of data in

2025 [17]. This growth of digital information indeed holds the need for quick systems

that store, administer, and retrieve that very data. Organizations are acquiring an

increasing number of documents, presentations, and all sorts of files that need to be

handled securely and systematically. The interest for this work arises from the

challenges brought on by this digital proliferation. Without an established management

system, files become scattered on personal systems or cloud services, thereby increasing

the efforts to maintain consistency, avoid data loss, and ensure that only authorized users

can easily obtain the information they desire.

The storage system under examination in this thesis is designed to execute completely

in a distributed mode, consistent with the principles of Distributed Shared Memory

(DSM) [12]. As opposed to usual centralized systems relying on a single point of

control, within this architecture storage responsibility is divided across different nodes,

benefiting from enhanced resilience, scalability, and fault tolerance. One of the

advantages of distributed storage is eliminating single points of failure, data can still be

accessed even if one or more nodes go down. The decentralized structure also improves

security by spreading out the attack surface and allows for more flexible maintenance,

as updates can be installed in increments to nodes.

2

The foundation of this project is the collaborative research between the research team

of Professor C. Georgiou and the Algolysis team to develop a backend service for

Distributed Shared Memory (DSM). The backend service provides strong consistency

and high concurrency for file operations.

The main motivation for this thesis was to develop a frontend platform that brings the

benefits of distributed storage to a usable interface. The interface should be as intuitive

as other popular cloud-based programs, so simple users could easily use the main

features of the platform, files navigation, uploading, renaming, sharing and storing files

without needing to understand the complexities of the distributed backend system.

To achieve this, Laravel [15] was selected as the web application framework due to its

solid combination of security features, Model-View-Controller (MVC) pattern, built-in

user authentication, flexible routing, middleware support, and Blade templating engine.

Laravel offers an ideal environment to develop scalable, secure, and easy to maintain

web applications with the performance and degree of customization required to

integrate into the distributed backend.

The objective of this thesis, therefore, was to develop and implement a complete front-

end interface on Laravel that was easy to use, which interacts with DSM backend using

APIs flawlessly.

1.2 Development Methodology and Timeline

The process of development of the file management platform was very structured,

balancing planning with iterative refinement. The very first step involved requirements

analysis, both functional and non-functional. Functional requirements denote the main

platform features, such as user authentication, uploading and downloading files, and

creation and organisation of folders. Non-functional requirements specify that qualities

to expect of the system, such as security, usability, performance, and scalability. These

were gathered through discussion with the company.

With the requirements ready, the project proceeded along an iterative path to

development strategy, inspired by Agile processes [13]. Rather than adopting strict

Waterfall methodology whose phases must be completed fully before another can be

3

commenced, Agile process considers developing the system incrementally in cycles,

continually revisiting and refining the work. These iterations have been defined such

that each should deliver only a subset of features that may be reviewed and tested, and

this enabled feedback response to be done very early in time. This methodology ensured

we were always open to accommodating any changes to requirements or select areas of

the design that can be improved considering how the team came to view them during

the development.

Project planning and tool selection were quite critical to the development procedure.

The source-code version control was given into use with Git [18], allowing multiple

programmers to work together on the same set of code and make changes in it while

tracking them with time. This feature proved to be extremely useful in the iteration

process when multiple new features were added, conflicts with existing features would

arise, and in such cases, version-control history would help resolve the conflicts by

allowing one to locate the last changed file or code.

Testing and quality assurance were a constant in the methodology. While a new feature

was developed during each development iteration, it was tested at various levels. Unit

testing would take place to confirm that fine-grained pieces work as intended: for

example, tests to store a newly uploaded file for various file types and sizes or tests to

ensure the function performing permission checks properly prevents unauthorized

access to files. Besides unit testing, integration tests would verify that various system

components interact with one another, an example here would be uploading a file

through the web interface, then checking that the file is listed for the user with correct

metadata in the database, and the file can be downloaded intact.

The project timeline stretched over the period of an academic year and was divided into

separate phases and milestones. The first phase, from September through November,

involved learning Laravel and all supporting technologies: Livewire [19], Alpine.js [8],

and Bootstrap [7]. The period also covered research into Database design practices as

well as User Interface development. In October and November, requirements

engineering were done along with the study and review of all the technologies. It

covered aspects like the features to be in the system, user roles of the system, technical

constraints where feedback was received from the company. The next step in December

4

and January related to prototyping. A functional prototype was created that supports the

basic authentication, navigating directories, and uploading files as a proof of concept of

the proposed system architecture.

Key activities from January to March opened with developments in expanding the

platform’s functionality. Core features were established in this period, namely, grid and

list views for the flexible browsing of files, sharing options where permissions rights

can be effectively managed and extensive user-interface enhancements. In the period of

development, the testing continued, ensuring stability and usability. However, a final

exhaustive testing and quality assurance were performed in April, including debugging

and performance tuning, and Cross-Site Request Forgery (CSRF) protection verification

as well. The other phase in April and May was cantered on the composition of the thesis

document.

Through this phased schedule combining iterative development, preliminary testing,

and progressive feature integration, the project was able to produce a stable and feature-

packed Laravel-based file management system within the expected timeline. Below in

Figure 1.1 is a Gantt Chart demonstrating the project timeline.

Figure 1.1 – Timeline Gantt Chart

5

1.3 Organization of the Document

This thesis consists of six chapters, including this one, with each chapter discussing an

essential element of the research, design, and development journey of the project.

Chapter 2 discusses the theoretical foundation of Distributed Shared Memory (DSM)

systems, encompassing static and dynamic DSM protocols, consistency models, and

large fragmented data object handling in a distributed environment. This background

sets the stage for the research context in the design of the platform.

Chapter 3 describes the requirements and design of the file management platform, user

roles, system constraints, architectural design, development tools, and database schema.

Chapter 4 introduces the user interface of the implemented platform, explicating

primary features such as login, dashboard, file upload, file/folder actions, and

navigation.

Chapter 5 provides details about the underlying technology stack and the

implementation style. It describes how the back end was developed using Laravel, the

front end was crafted with Bootstrap and Alpine.js and illustrates some coding

approaches encountered in key areas.

Lastly, Chapter 6 summarizes the outcomes of the project, discusses some lessons

learned, evaluates the limitations of the results, and suggests potential future works to

extend or enhance the current platform

The thesis concludes with references and a comprehensive appendix, including user

documentation and a technical dictionary.

6

Chapter 2:

Distributed Shared Memory

2.1 Overview of Distributed Shared Memory and Consistency 6

2.2 Dynamic Membership and Reconfiguration Protocols 7

2.3 Large Objects and Fragmentation in Shared Memory 8

2.4 Combining Dynamic Reconfiguration with Fragmentation 11

2.1 Overview of Distributed Shared Memory and Consistency

Distributed Shared Memory (DSM) [12] provides the abstraction of a single coherent

memory space to applications running on multiple networked nodes. Each data object in

a DSM is replicated on a collection of servers, and clients perform reads and writes on

these objects as if they were single-copy memory locations. The challenge is to keep all

replicas consistent in the face of concurrent accesses and failures. The strongest

consistency model typically sought is atomic consistency, also known as linearizability

[14], which ensures that operations appear to execute indivisibly and in some global order

consistent with real time. In practical terms, linearizability gives the illusion that there is

a single copy of each object that all processes read and write, even though, behind the

scenes, there may be many replicas.

One conventional approach to maintaining atomic consistency in DSM is the Lynch and

Shvartsman algorithm [3], which uses a linearizable read/write register with quorums of

replica servers. The algorithm ensures that every operation (either a read or write)

involves contacting a quorum (usually a majority) of replicas. Each write operation

receives a new, monotonically increasing timestamp (or tag) and is propagated with the

new value to a quorum of servers. Each read operation then requests a quorum of servers

for the value with the highest seen timestamp. Because any two quorum sets share at least

one server, a read will always see the most recent write – the overlapping replica will

yield the most current value if there was a newer write. This way, the Lynch and

Shvartsman algorithm uses versioned writes and intersection of quorums to achieve a

single-copy illusion consistency: all clients observe changes in one global order,

7

regardless of failures or latencies of messages. The result is a strongly consistent, highly

available memory service whose replicated data enjoys the properties of an atomic

variable.

2.2 Dynamic Membership and Reconfiguration Protocols

A DSM that operates in a dynamic network must handle membership changes (servers

joining or leaving) transparently, without sacrificing consistency. Naively, one could stop

the world and use consensus to agree on each new membership configuration. However,

stopping application operations during reconfiguration is undesirable, and repeatedly

invoking consensus can become a bottleneck. Newer research explored how

to reconfigure distributed shared memory efficiently, allowing reads and writes to

progress concurrently with membership changes.

 One notable approach is RAMBO, which stands for Reconfigurable Atomic Memory for

Basic Objects [20]. RAMBO introduces the idea of dividing time into epochs or

configurations, each with its own set of replicas and quorum system, and uses an

agreement protocol to move from one configuration to the next in a controlled way [4].

Readers and writers in RAMBO must sometimes wait during reconfiguration events,

since a new configuration must intersect with the old one to avoid losing the most recent

writes. While RAMBO guarantees atomicity across configuration changes, it does so at

the cost of coordination delays when installing a new configuration.

 An alternative approach is exemplified by the DynaStore algorithm [21], which

implements a dynamic multi-writer/multi-reader atomic memory by incorporating

reconfiguration logic into the read and write protocols themselves. DynaStore organizes

the sequence of configurations into a directed acyclic graph (DAG), where each node

represents a configuration and edges represent transitions following reconfiguration

proposals [4]. While DynaStore allows reads and writes to proceed without global

consensus during membership changes, it assumes that the rate of reconfiguration is not

unbounded to guarantee termination.

Ares is a more recent protocol designed to overcome these limitations and provide

efficient reconfiguration in distributed shared memory. Ares (Adaptive, Reconfigurable,

Erasure-coded, Atomic Storage) [6] distinguishes itself from earlier solutions in several

key ways. First, unlike RAMBO and DynaStore which are purely replication-based (each

server stores a full copy of the data), Ares employs erasure coding [2] to replicate data

8

more efficiently, providing fault-tolerance equivalent to replication but at a fraction of the

storage cost.

Secondly, Ares was the first algorithm to allow dynamic reconfiguration in an erasure-

coded storage system. It separates the concerns of reconfiguration and read/write

operations through a modular design. In fact, Ares’ architecture consists of three

components: (i) a reconfiguration protocol, (ii) a read/write protocol, and (iii) a set of data

access primitives for interacting with the coded fragments. This modular approach means

that the system can introduce new configurations concurrently with ongoing reads and

writes, without service interruption. Ares ensures that configuration changes are applied

in a linear order, maintaining a prefix property on the configuration sequence. Every new

configuration is conceptually an extension of the previous configuration sequence, which

prevents the kind of incomplete or diverging reconfiguration histories that could occur in

earlier systems. This property simplifies the reconfiguration process and guarantees that

the system state converges smoothly as membership changes

2.3 Large Objects and Fragmentation in Shared Memory

Early DSM algorithms assumed that each data object is a small unit (for example a single

word or database record). If an application needs to share a large file or a huge array, one

straightforward approach is to treat the entire file as one atomic object. This, however, is

extremely inefficient. Every update would send the entire file over the network, and

concurrency would suffer because two clients cannot update different parts of the file

independently each update concerns the whole object. A logical step is to fragment large

objects into smaller pieces that can be updated and stored separately. For example, a

10 MB file might be split into 100 blocks of 100 KB each, distributed across different

servers. This raises the question: can we allow operations on individual blocks while still

providing a strong consistency guarantee on the file as a whole?

Simply chopping a file into independent blocks and treating each block as a separate

atomic register does not automatically yield a consistent file object in the linearizability

sense. The difficulty is in preserving a meaningful order of operations on the entire file

when different blocks may be written concurrently. If we simply make each block write

linearizable on its own, we still need to define what it means for the whole file operation

history to be linearizable. There needs to be a single global ordering of file level

9

operations consistent with the ordering constraints of block operations. This leads to the

notion of fragmented consistency.

Fragmented linearizability is a consistency criterion defined to capture exactly this

situation [1]. It extends linearizability to composite objects composed of multiple

fragments. In a nutshell, a fragmented object can be seen as a list (or set) of smaller

objects (fragments), and an operation on the fragmented object may involve one or many

of its fragments. Fragmented linearizability requires that there is a global order of all

operations on all fragments such that each fragment’s sub-sequence is consistent with that

fragment’s linearizability, and moreover, operations that logically pertain to the same

high-level operation on the whole object are grouped appropriately in the order.

Intuitively, if two writes happen on different blocks of the file, a fragmented

linearizability guarantee will ensure that from the perspective of the file, it appears as if

those two writes happened in some order (even if concurrent) and that any read of the

whole file will see the result of either both writes or neither (depending on timing), not a

partial mix that violates a sensible version of the file.

In practice, implementing a fragmented linearizable object often means adding a form

of coordination or versioning at the higher level. One approach is to treat a write to the

file as a transactional group of writes to blocks, which must all be serialized as one atomic

operation relative to other file writes. However, that can reintroduce the serialization

bottleneck we tried to avoid. A more flexible approach, introduced by Fernández Anta et

al. [1], is to allow truly independent block operations while carefully restricting what a

“read” of the whole file can observe. Specifically, they introduce coverable fragmented

objects, which combine the idea of fragmentation with a newer consistency concept

called coverability.

Coverability is a consistency guarantee that augments linearizability for versioned

objects [5]. In a coverable object, every value is associated with a version number (or

timestamp). Reads return the latest version and value, and writes are required to specify

the version they intend to extend. A write in a coverable object will only take effect if it

is writing “on top of” the current version of the object, if the object has advanced to a

newer version in the meantime, the write is aborted. This mechanism prevents a write

from overwriting a value that it did not know about effectively disallowing blind writes

that would cover a more recent update. In the context of a file, coverability ensures value

10

continuity: if a file has evolved to version 5, any write that was based on version 4 will

be refused once version 5 is in place, so we never accidentally revert or lose the data from

version 5. Instead, that write would realize it was stale and could be retried or treated as

a no-op. Coverability thus suits use-cases like files where we prefer to append or update

in order, rather than allow older writes to clobber newer content.

By combining fragmentation and coverability, we can attain a very robust model for large

objects. Each block of a file can be stored as an atomic, linearizable register that is also

versioned (coverable). The file as a whole is a linked structure of blocks. A write to the

file may result in creating a new block or updating an existing block; this will be done

with knowledge of the current file version. If another client concurrently writes elsewhere

in the file, the two sets of block operations can occur in parallel. Each will either succeed

entirely, advancing the file to a new version, or will be prevented from interfering with a

concurrent update that beat it. The result is that the file’s consistency (in terms of keeping

all its pieces in sync as one object) is preserved, while allowing a high degree of

concurrency on different fragments. Recent research prototypes have demonstrated that

this approach can significantly boost throughput for operations on large objects. For

instance, Anta et al. [1] implement a distributed file by representing it as a linked list of

coverable blocks and show that concurrent writes to different blocks proceed without

blocking each other, which reduces overall latency and improves bandwidth utilization.

A concrete system embodying these ideas is CoBFS (Coverable Block File System) [1].

CoBFS is a prototype distributed file system where each file is implemented as a

fragmented object: an ordered list of blocks, each block being a coverable linearizable

sub-object. CoBFS employs a modular architecture with two layers. The upper layer is

the Fragmentation Module (FM), which handles dividing a file into blocks, naming them,

and reassembling them for reads. The FM uses techniques like rolling hashes and

sequence matching to identify how to split file data and to detect changes efficiently. The

lower layer is the Distributed Shared Memory Module (DSMM), which provides the

actual read/write operations on individual blocks, treating each block as a tiny object in a

distributed shared memory. The DSMM in the original CoBFS was built on a static set of

servers running an optimized variant of the ABD protocol for coverable objects. This

yields a coverable, linearizable fragmented object implementation: the file can be read or

11

written and will behave like a single versioned object that clients modify in a linearizable

fashion.

2.4 Combining Dynamic Reconfiguration with Fragmentation

The two lines of research discussed above, dynamic membership and large-object

fragmentation, were largely developed in parallel but combining them is essential for real-

world DSM systems. A storage service in a volatile environment must reconfigure to

replace failing servers or to incorporate new ones. At the same time, it must handle

increasingly large data with high throughput. The state-of-the-art solution that unifies

these aspects is presented by Georgiou et al. [2], which shows an algorithm to integrate a

dynamic reconfigurable storage layer with a fragmented, coverable object layer. This

effort builds upon the previously described CoBFS and the Ares dynamic atomic storage

algorithm to create a new system sometimes referred to as Fragmented Ares or CoAresF.

In the design of Georgiou et al., the DSM module is extended to support reconfigurations

on the fly, like Ares does, but now each operation could involve multiple blocks. One of

the main challenges was ensuring that the versioning logic (coverability) and

the fragmentation ordering work correctly even as servers are added or removed. In their

dynamic system, called CoAresF, they maintain the property that every new configuration

of servers knows about the latest version of each block from the previous configuration

(achieved by quorum overlaps and transfer of metadata). Additionally, they modify the

Ares algorithm to handle versioned writes. The result is a coverable atomic memory that

is reconfigurable and that supports large, fragmented objects.

 By integrating fragmentation with reconfiguration, CoAresF addresses practical hurdles.

For example, consider a file being actively appended by many clients while

simultaneously some storage servers crash and new ones are brought in. With only

fragmentation the system could handle the concurrent appends but would halt if enough

servers crashed. With only dynamic reconfiguration the system could survive crashes but

would serialize writes to the file or transfer entire file contents on each write, becoming

a bottleneck. The combined approach can do both: seamlessly migrate blocks to new

servers while allowing different parts of the file to be updated and read in parallel.

In summary, a Dynamic Fragmented DSM combines the strengths of dynamic

reconfiguration protocols with the advantages of fragmented, coverable objects. The key

ideas of Ares have been married with the key ideas of CoBFS splitting objects for

12

concurrency and using versioned writes for safety. This makes distributed shared

memory practical for modern systems, which demand both fault-tolerance in dynamic

environments and high throughput for large data. Notably, CoAresF is utilized in the

backend of our platform, providing a robust and efficient foundation for handling

dynamic, large-scale distributed shared memory operations.

13

Chapter 3

Platform Description

3.1 Requirements and General Overview 13

3.1.1 Functional Requirements 14

3.1.2 Non-Functional Requirements 15

3.2 User Categories 16

3.3 Platform Constraints 17

3.4 Architectural Overview 19

3.5 Development Tools 21

3.5.1 Laravel (PHP Framework) 21

3.5.2 Bootstrap (Front-End Framework) 23

3.5.3 Alpine.js (JavaScript Library for Interactivity) 24

3.5.4 MySQL (Database Management System) 25

3.5.5 XAMPP (Development Server Environment) 26

3.6 Security Considerations 27

3.7 Database Structure 28

This chapter provides an overview of the front-end system requirements, user classes, and

technical basis. We begin with enumerating the functional and non-functional

requirements, assumptions and constraints, followed by the description of how various

classes of users utilize the system. We then delve into the top-level architecture,

describing the client side as well as server-side features. Lastly, we look at the core tools

and technologies used and we explain how each contributes to security, efficiency and to

creating a manageable solution.

3.1 Requirements and General Overview

In this section we list the requirements of the desire system and describe its general

functioning and design. The system is designed as a web-based environment where end-

users are able to perform necessary operations with a browser. To meet these

requirements, the application is built with cutting-edge web technologies: front-end

14

development using the Laravel framework (a PHP web framework) [15], user interface is

built using Bootstrap for responsive UI [7], and client-side interaction is supported by

Alpine.js [8]. Data storage takes place in a MySQL relational database [9], and the

application is built and tested in a local server environment with XAMPP [10]. By

leveraging this technology stack, the design should fulfill all functional requirements and

possess a great degree of security, performance, and usability.

3.1.1 Functional Requirements

Functional requirements of the system specify the particular things users should be able

to do within the web-based interface. The platform will be a front-end web application

built on Laravel and should present a secure, responsive, and user-friendly interface for

managing files and folders.

Users should be able to login using correct credentials and, once validated, see their own

personal directory of files. The user interface should allow users to upload new files, make

new directories, access nested directories, rename existing directories or files, and delete

them. These should send with the backend so updates are always reflected in all nodes

participating in the distributed system.

The system needs to have two browsing modes to be shown: a list view with information

details about each file, and a grid view that shows items in a tile format. The system needs

to provide the ability to switch between the two modes without causing any inconvenience

to the user.

With regards to file sharing, the application must provide the users with the ability to

share folders or files. Users should have the ability to select other registered users and

grant them read-only or read-and-write access.

Feedback upon user activity is crucial. When the user uploads a file, creates a directory,

or performs any other operation, the system must respond with the appropriate message

of success or failure of the operation. If there is an issue, like uploading a file that already

exists or doesn't have permissions, the platform needs to specify the issue clearly through

alerts or modal dialogs. The app should also guide users through steps of conflict

resolution, such as giving users the choice to rename or overwrite when duplicates are

found.

15

The site should also handle user sessions correctly. Authenticated users alone should be

able to access the system, and permissions should be checked before a file operation

should be allowed. Additionally, file properties such as file size, last modification date,

and ownership details should be available in the user interface.

In short, the platform must offer an end-to-end, sophisticated file management experience

through a Laravel interface. It must enable secure login, easy file browsing and editing,

access-sharing with roles, clear and consistent feedback, and transparent integration with

the distributed storage backend. All these aspects must be implemented in such a way that

it provides ease of use even to those who possess minimal technical knowledge.

3.1.2 Non-Functional Requirements

Apart from the above features, the system also needs to fulfill various non-functional

requirements to ensure that the system is robust, secure, and friendly for the users. Among

these, security is an extremely critical non-functional requirement. The platform must

protect user data from unauthorized access. The system must safely store all user

credentials and ensure secure authentication and session handling. Data validation needs

to be carried out at all times during the application in order to prevent malicious input,

and the system needs to be designed so that typical web threats such as injection attacks

and cross-site scripting are circumvented. These requirements are discussed further in

more detail in Section 3.6, but it is emphasized at the requirements level that the

application must adhere to best practice so that data is kept confidential and integrity is

preserved.

Another significant non-functional requirement is usability and responsiveness. The

system's interface should be simple and easy to use for users. This is accomplished by

having a straightforward layout and displaying content in a logical manner. Bootstrap

helps meet this requirement by providing a responsive design [15]. Design consistency

and accessibility are also considered, and the app becomes easy to use for a large number

of users. Responsiveness of the platform isn't only layout, but performance as well. Pages

need to load within a reasonable time period, and the interface needs to respond quickly

to user input. Using Alpine.js for small interactive behaviour assists with giving a

responsive user experience without the overhead of a heavy front-end framework [8].

16

Performance and scalability constitute another non-functional requirement. The

application must handle numerous simultaneous users acting on the system without

unacceptable loss of response time. The load is kept low for now but the design is scalable.

The Laravel architecture and the concurrent transaction feature of MySQL guarantee that

the system would be able to take increases in data volume or user base to some degree.

For instance, Laravel's efficient database abstraction (ORM) and query optimization

together with proper indexing in the MySQL database ensure the performance is tolerable

for usual queries. In case of a need, the system may be hosted on a more sophisticated

server or horizontally scaled. Therefore, although end-of-scaleability is not an initial

requirement, the design makes it possible in the future.

Lastly, extensibility and maintainability are also crucial considerations. The system is

designed upon the principles of the Model-View-Controller architecture (as described in

Section 3.4), which intrinsically supports separation of concerns. This means that any

developers that come afterward could modify or add to one area of the system without

frightening the rest of the system-this makes it easier to maintain. It should be well

documented, and strict adherence to a coding standard should be enforced so that it is

easy to understand. Since these are popular frameworks and tools, a new developer having

a good grasp on these technologies will take only some time to be effective. In essence,

the non-functional requirements like, security, usability, performance, and

maintainability-have heavily influenced the system design decisions, so that the delivered

system is not merely functional but one that gives room for reliability and efficiency when

it comes to operation.

3.2 User Categories

A crucial element in shaping this platform was the decision to designate specific user

types based on each individual’s relationship to any given file or folder. In the system’s

simplest form, there are two primary categories of users: the owner and the shared user.

Defining these roles at the outset helped standardize access control, making it intuitive

for the owner to control distribution and for the shared user to understand their privileges.

The first category is the owner, who is the individual responsible for uploading or creating

a file or folder. By default, the owner holds full permissions over that item, including the

ability to rename, delete, download, or share it with other users. In practice, the owner

17

acts as the ultimate authority for that content. The system ensures that owners can manage

their materials effectively without interference. Any subsequent activities, such as

renaming or removing the file, must pass through checks confirming that the request is

issued by the recognized owner.

The second category is the shared user, who has been granted access to view or edit a file

that belongs to someone else. In actual practice, the owner can share an item either with

read only or read write privileges, depending on the needs of the collaboration. A shared

user with read only rights can see and download the content but cannot rename or delete

it. By contrast, a shared user with read write access can partake in more comprehensive

editing actions like renaming files. The rationale behind this distinction was rooted in real

world scenarios, where certain files might need open collaboration like a shared text

document while others must remain protected from change, such as archived data or

official documents.

Having a pre-established set of user roles and permissions benefited the platform in

several ways. First, it offered an open hierarchy of ownership so that there is no ambiguity

about who really "controls" any resource. Second, it limited disruptive behavior to a small

set of authorized users. Shared users lacking write access cannot inadvertently delete or

corrupt data beyond retrieval, at the same time, owners remain free to grant more robust

permissions where close collaboration is desired. Third, this architecture kept the system

easy enough for typical use cases uploading and sharing sets of documents with

colleagues or team members while still adhering to stricter access restrictions.

Finally, this arrangement promoted a more fluid user experience. Owners viewing their

own content see the full suite of management tools at their disposal rename, move, delete,

share whereas shared users only see the features their assigned privilege level permits.

This contextual interface design makes it less likely that a user misinterprets their

capabilities. By distinguishing owner privileges from those of shared users up front, the

platform preserves clarity in how each item can be used or distributed.

3.3 Platform Constraints

Every software system must operate under some platform limitations that include the

environment requirements, compatibility matters, and other restrictions by virtue of

technologies employed. Platform limitations for this web-based program are primarily

18

driven by the requirement to host a Laravel program and a MySQL database. First and

foremost, the server environment must include support for PHP (the language upon which

Laravel is founded) at the required version. XAMPP development logically means that

the system is run on an Apache web server with PHP and MariaDB/MySQL installed [9].

A limitation thus is that the deployment environment should have an Apache (or similar)

web server and MySQL or MariaDB [16] database installed. Should the system be moved

from the development machine to a production server, a LAMP stack (Linux, Apache,

MySQL, PHP) or WAMP stack (Windows, Apache, MySQL, PHP) would need to be used

to duplicate the XAMPP environment.

Resource constraints are also considered. Since the application is run on a web server, the

server must have sufficient resources CPU, memory, and disk space to run the application

logic and the data stored. Since Laravel is a full-featured framework, it uses more memory

than a plain PHP script, so the server must have sufficient RAM to run the framework

overhead as well as concurrent usage. The database will store perhaps all persistent data

so disk space is a constraint based on expected data size. If the system will be storing

images or files uploaded by users, then additional storage must be planned for, or an

external storage service must be integrated. For now the data size is small, so a standard

development machine with a few gigabytes of free space is sufficient. However, the

design anticipates that if usage grows, the site can switch to a higher capacity server or

scale out through load balancing.

Another platform limitation is related to network connectivity. In XAMPP development,

the application will be locally addressable (via http://localhost/). To use productively, the

server must be network-visible to the target user group this could mean hosting on an

intranet or on the public internet. Performance and response times experienced by users

will be at the mercy of network conditions. If deployed publicly, the system should be

accessed over HTTPS for security, meaning there will be a need to configure SSL/TLS

certificates on the server side.

Finally, compatibility limitations can include having specific versions of frameworks or

libraries included. For example, the version of Laravel being utilized might have to be

compatible with the PHP version on the server. Similarly, the MySQL version should be

a version that is compatible with Laravel. XAMPP's package comes with MariaDB which

is an alternative to MySQL, and Laravel treats it precisely the same as MySQL. So, one

19

of the constraints implied is that the database system, if not MySQL, must be MariaDB

or another supported SQL database. It would not be feasible to utilize a completely

different type of database without altering the design, as the system relies on a relational

schema. In general, building within these constraints has affected the implementation and

ensures that the system will operate consistently in its intended environment.

3.4 Architectural Overview

The system is deployed with a multi-tier design that separates the client interface, server-

side application logic, and database. At a top-level perspective, it follows the classic three-

tier web application pattern: the presentation tier (front-end user interface within the

browser), the application tier (backend logic on the web server), and the data tier

(database). Particularly, this architecture is implemented on the server side by using the

Laravel framework, which enforces the Model-View-Controller (MVC) architectural

pattern. MVC is a software design pattern that organizes program logic into three

interacting components the Model, the View, and the Controller in order to isolate

concerns and enable modular development [11]. By employing MVC in Laravel, the

system retains data handling separation, UI, and control flow tidily within the codebase.

In MVC architecture, Controllers are the pieces of the system responsible for dealing with

incoming requests from users. Whenever a user takes some action on the system that

triggers an HTTP request towards the application within Laravel, an inbuilt router within

Laravel delegates every request URL to a specific controller and action. The controller is

where the request enters on the server, it processes the input of the user, applies the

necessary business rules or logic, and then determines the response. One of the

responsibilities of the controller is that it has to talk to the Model layer. In Laravel, Models

are representations of data entities. In such a case, a model includes the data as well as

business rules or logic regarding that data. For instance, there exists a User model for

users of the system. The controller can ask the model to retrieve certain records, or to

insert/update records by virtue of user requests. Laravel's ORM (Eloquent) simplifies

these interactions by translating model operations into underlying database queries

automatically.

While the View component is responsible for showing data to the user. Views, in a web

application, are usually HTML templates filled with dynamic information. A templating

20

engine (Blade) is used by Laravel to help produce HTML pages. Once data is gathered

by a controller, it passes such data to a view. The view template now integrates the data

into a presentation that the client can understand usually HTML, CSS, and JavaScript that

will be sent back to the user's web browser. The separation between these points here is

significant: models don't concern themselves with how data is represented, and views

don't concern themselves with fetching and processing data each does what it needs to

do.

By adhering to the MVC pattern, the system's architecture is more maintainable and

scalable. One advantage is that multiple developers are able to work on different

components simultaneously with little overlap. In addition, if how data is displayed needs

to change that can be done within the view layer without modifying the underlying data

retrieval in the model or controller. Conversely, if we alter the database schema or rules

of business, the changes occur in models and controllers, and the views are comparatively

unchanged. Modularity of this type is a simple benefit of the MVC design [11].

Another note on the architectural overview is where client-side script (Alpine.js) comes

into play. The HTML views rendered often include JavaScript to add more interactivity

after page load. This isn't a violation of the MVC pattern rather, it remains within the

View layer since client-side scripting is presentation logic. An example of this is a view

with an Alpine.js component for a collapsible menu or dynamically changing form fields.

Alpine.js is executing within the browser to handle these interactive elements, but from

the server's perspective, it's just a component of the view being presented. Server-side

controllers are still the primary handlers for any significant actions. When asynchronous

interactions are necessary, the architecture can employ AJAX requests or Laravel's API

routes that still reach controllers and maybe output JSON data, which front-end

JavaScript can subsequently use to refresh the page without a full reload. This is a

variation of MVC as a client-server interaction where client-side script functions as a

miniature controller on the client, yet any persistent updates go through controllers and

models in the server.

Security and session management are included in the structure. Laravel includes

middleware (an encapsulating layer around controllers) which can be considered part of

the architectural scheme. Middleware can trap requests before they hit a controller, for

example, there can be one that authenticates a user or checks if the user is an administrator

21

before allowing access to certain controllers. This means that the architecture also

contains layered security checking: requests go through authentication checks, then

controllers, then possibly models, and finally render a view. Sessions and authentication

status are handled in the server-side. This maintains MVC flow in sync with the user login

status and role. For instance, an admin controller might be protected by an "admin"

middleware so that if a non-admin user somehow attempts to access it, the request gets

denied early.

In short, the system's architectural description is that of a healthy MVC web application.

This is heavily influenced by the utilization of Laravel, as it provides a climate where

architecture is controllers, models, and views. The layered approach provides a clear flow:

requests from the browser reach routes and controllers, controllers invoke models to

handle data, and controllers send views back to the browser. The database is abstracted

by models, and the front-end is served cleanly via views. This design not only meets the

current needs but also serves a good basis for the implementation of future changes or

system extensions.

3.5 Development Tools

The development of the system utilized a collection of modern tools and frameworks that

were all chosen for their suitability to deliver what the project required and simplify the

implementation. It is here that the key technologies and pieces of software used are

described, and how they all collaborate to finish up the system. Through the use of

established libraries and tools such as Laravel, Bootstrap, Alpine.js, MySQL, and

XAMPP, the project takes advantage of proven solutions rather than rewriting

fundamentals from scratch. Every tool or framework is discussed below along with the

justification for why it has been utilized in this project.

3.5.1 Laravel (PHP Framework)

Laravel was used as the primary back-end framework of this project. Laravel is an open-

source PHP web application framework featuring expressive syntax and an extensive

collection of features that speed up the development of web systems by far [6]. Laravel

is an implementation of MVC and provides beautiful separation of concerns as described

above. Laravel accommodates most activities in web applications such as routing

(mapping from code to URLs), form handling and validation, session management, and

22

user authentication into it. This premium set of functionality resulted in much boilerplate

code not having to be written from scratch, for example, setting up a secure authentication

system was more a matter of an configuring Laravel's authentication module rather than

coding all the authentication code by hand.

One of the strongest arguments in favour of Laravel is its Eloquent ORM for database

interactions. Eloquent allows developers to interact with database records using model

classes in PHP instead of writing raw SQL queries. Not only does this speed up

development, but it also reduces the chance of SQL errors and adds security by design.

In Eloquent, Laravel itself handles parameter binding in queries, which keeps SQL

injection attacks under control. The package also has a database migration system, which

was used to define the database schema in PHP and manage its versioning. It made

incrementally developing the database design over the course of development and quickly

rebuilding the database structure easy to do.

Laravel's focus on developers paid off with this project, as it kept the code clean and

readable. For example, routing is simply defined and in a natural manner, and models and

controllers have convention so that code becomes self-documenting. Documentation for

the framework is complete and up-to-date, which proved to be beneficial whenever

implementation assistance was required. A further justification why Laravel suited our

needs is because it features an extensive ecosystem and community. There are many

packages that can be utilized to enhance functionality in Laravel, something that could be

called on if needed. While these weren't necessarily used throughout this project, knowing

that this capability was open to providing additional functionality brought reassurance

that the framework would be able to accommodate future requirements as well.

Laravel was the foundation of the server-side application due to its robust infrastructure,

built-in features, security benefits, and extensive community. It offered the capability of

compliance with industry best practices standards as a box. Laravel's usage reduced the

development time for complex features to a large degree and assisted in maintaining the

application code clean and maintainable.

23

3.5.2 Bootstrap (Front-End Framework)

Bootstrap has been utilized as the front-end CSS framework in order to design a

responsive and consistent user interface. Bootstrap is the most used HTML, CSS, and JS

framework to develop responsive projects on the web [7]. It was initially created by

Twitter, providing a complete set of pre-styled components (e.g., navigation bars, buttons,

forms, modals.) and a grid layout. Bootstrap was employed as responsive design was

required and it was desired to speed up the process of CSS designing. Rather than defining

all the styles manually, the pre-defined styles offered by Bootstrap gave the application a

new and standardized look with reduced efforts.

The use of Bootstrap actually improved the usability and accessibility of the interface.

Bootstrap comes with in-built styles that give sufficient contrast and readable font, which

assisted in putting in place basic accessibility guidelines. The components were utilized

wherever possible to ensure that there is a consistent look and feel across the application.

Another advantage of Bootstrap is that it is cross-browser compatible. Web browsers

would process HTML/CSS in certain situations differently, yet Bootstrap styles get

normalized and get tested on prominent browsers. That reduced the odds of encountering

browse specific layout errors while coding. Furthermore, Bootstrap being standard means

there were ample templates and samples already present for reference. During

development, if there was a particular interface pattern that needed to be achieved, there

would be examples that one could look up in the Bootstrap documentation or community

forums that could be used and adapted to our application. This ultimately saved much

front-end development time as well as the assurance that the UI follows established

patterns.

It's also interesting that Bootstrap's class and component usage is fully compatible with

Laravel's Blade templating. We could create dynamic content on the server side and wrap

it in Bootstrap classes without any conflict. Bootstrap is so flexible that we can extend or

override some styles via a different CSS file to customize appearances, but Bootstrap met

most requirements. In short, Bootstrap was a necessary front-end component of the

application that gave a professional appearance and good responsive quality to the

application while being developer-time-saving friendly because of its good pre-defined

styles and components.

24

3.5.3 Alpine.js (JavaScript Library for Interactivity)

Adding client-side interactivity Alpine.js was utilized. Alpine.js is a lightweight

JavaScript framework enabling developers to create interactive behaviors directly in the

HTML markup [8]. One may consider it a very minimalistic alternative to some bulkier

frameworks that provide reactivity and component-based functionality, albeit with the

least amount of resources. The thought behind choosing Alpine.js was the kind of

interactions required for this project: pretty simple UI behaviors (show/hide element,

toggle class, slightly enhancing forms) that do not call for the full-blown single-page

application framework.

It does this by adding special HTML attributes to various elements that declare behaviors.

In this case, Laravel would be rendering pages on the server (Blade templates), and Alpine

would be taking over to make those pages interactive as soon as they are loaded in the

browser. The potential experience gain comes when you avoid a full page reload for a

little interaction and also when you give immediate feedback to a user action.

One of the uses of Alpine.js here was for form input and validation feedback on the client

side. While Laravel can handle solid validation on the server side, Alpine enables the

client-side validation mechanism that provides users with instant feedback while they are

filling out the form. In addition, it is easy to keep the code in the HTML-template, which

is convenient for Alpine. There is also a usage for dynamic UI components such as

modals.

Alpine.js is not interfering with Laravel or Bootstrap, rather, it serves as an excellent

compliment for them. Alpine is scoped to the browser and impacts primarily the View

layer of our MVC architecture. It is so minuscule in footprint that it neither significantly

slows down page loads nor puts a strain on the client's device. This was important because

we wanted the client side to be as light as possible with most of the logic existing on the

server while offering a few cool JS-aided front-end features to the user. Moreover,

Alpine.js has no requirement for a build step, it can simply be dropped into the <script>

tag anywhere and used right away.

To sum up, Alpine.js turned out to be a great solution for delivering interactivity in the

app. It offered the required dynamism to the user interface and was just simple enough

and light enough for us. The alternative of heavier front-end frameworks would have felt

25

quite out of place and out of scope with the actual project, and seemingly contrary to the

desire for clarity and lean simplicity in the codebase.

3.5.4 MySQL (Database Management System)

MySQL was chosen as the database management system for storing data of this project.

MySQL, in fact, is a widely used open-source RDBMS based on which almost all

successful web applications are dependent on [9]. MySQL tables store all of the persistent

data for the system such as user data, content records, and any transactional logs in the

system. Of course, with structured data needing a relational path (foreign key) binding

two or more entities, practically a relational kind of database is the most natural choice to

make. MySQL fits in quite well with Laravel, thanks to the Eloquent ORM and database

query builder previously mentioned.

One such reason for choosing MySQL has been its maturity and support: Being in

existence for decades, it has passed the test of time in numerous production instances,

including big ones. These imply that elements of common requirements such as indexing,

complex querying, transactions, and concurrency are all taken care of in a robust way.

For example, the system uses MySQL to enforce data integrity via constraints. These

relational features, which MySQL offers, ensure data consistency in the database even

when multiple operations are being performed. Also, given that the project might involve

very frequent read operations of data, MySQL is well optimized in terms of performance

for both read-heavy and write-heavy operations-a fact contributed to by the query engine

and the use of indexes.

Weighing expertise and tooling, too, went into the decision for MySQL. Various tools can

be used to manage the MySQL database, from command-line clients to GUI management

applications such as phpMyAdmin (a popular case, since it comes bundled with XAMPP).

Throughout the development phase, it helped to inspect the database, run queries, and

undertake basic administrative tasks such as backups. Laravel migrations and query

logging ensured the MySQL interactions were correct, but it was very good to be able to

verify data in MySQL independently.

To conclude, MySQL served for data persistence within the project. Being known as "the

world's most popular open source database," this title is truly deserved, It offered a stable,

fast, and secure repository for our application data [9]. Also, using MySQL meant

26

aligning ourselves with industry standards for web application development, supporting

database scaling or future maintenance through community and enterprise know-how.

Laravel and MySQL made transitioning from data models in code to actual database

records very smooth.

3.5.5 XAMPP (Development Server Environment)

XAMPP was used as the development server environment for installing and testing the

system. XAMPP is a free and open-source cross-platform web server solution stack

package that comes preconfigured with the Apache HTTP Server, the PHP interpreter,

and MariaDB, accompanied by other tools such as Perl and phpMyAdmin [10]. Putting

it simply, XAMPP took care of installing all the server components required for running

a web application right onto the development machines with a single click, locally

creating a platform for the web application.

The ease of XAMPP got everything running fast. Just one installation set up Apache, PHP,

and MySQL with consistent configuration instead of installing each separately and

manually configuring them. It has a control panel from which all services can be started

and stopped simply. The control panel was used to run Apache and MySQL, which

basically hosted the Laravel application and database. Since XAMPP is cross-platform, it

could be run on Windows, Linux, or macOS, making it work on any machine.

The interface, phpMyAdmin, being a MySQL interface running within a web browser,

also came bundled with XAMPP, it was helpful during the development phase having

manual inspection of tables, test queries, and import/export in existence. For example,

with phpMyAdmin, after migrations via Laravel created the schema, the presence of the

tables and columns was checked to be set properly. It also allowed an indirect way of

debugging, able to peek at the data stored after certain operations. Even though Laravel

comes with database seeding tools, sometimes we wanted to get a bunch of sample data

solidly in one go just so you can test a page and do so a lot faster via phpMyAdmin.

Though most often seen as a development tool, a XAMPP setup gives you an experience

near production. It should be noted that XAMPP is not meant to be run standalone as

production, if set so, it would defeat the openness that was intended with development.

However, in development, XAMPP is great because of simplicity and being feature

complete. In the end, XAMPP set up the environment to develop and test on an integrated

27

fashion by bundling all needed services, tools, and so on. It allowed us to concentrate on

writing the application rather than environment setup and ensured that testing conditions

locally were as close as possible to target on deployment, thereby increasing the precision

of our development and testing efforts.

3.6 Security Considerations

Security has been a key priority and protection techniques were developed to defend the

application and its data from threats. Some of the major security issues such as

authentication, authorization, data security, and common web vulnerabilities are

discussed with the aim of maintaining confidentiality, integrity, and availability of the

system and the relevant information.

The system requires users to log into it for authentication and authorization for most

functions, particularly for any that modify data. For safe login and session management,

Laravel's built-in authentication module was used. User passwords are never stored in

plain text, rather, before being stored, the password hashes are created using a strong one-

way hashing algorithm called bcrypt. Bcrypt is recommended because it is

computationally expensive to invert, and it includes a salt as well as a configurable "work

factor" that can be adjusted over time to maintain security with the advent of faster

hardware. Therefore, even in the unlikely event of an attacker reading the user database,

the attacker cannot easily ascertain the actual password. Moreover, Laravel's

authentication system uses encrypted cookies to maintain the session in a secure fashion

and also uses the "remember me" functionality securely.

Other ways we have prevented against some common Web-Based Vulnerabilities were

the following. On SQL Injection, the use of prepared statements and Eloquent ORM

inherently guards against SQL injection by escaping inputs properly. Therefore, nowhere

in the application do we concatenate unchecked user input into raw SQL queries. To be

sure, the controllers do not directly work with raw queries but call only Eloquent model

functions or the query builder provided by Laravel, both of whom parameterize the

queries under the hood. Hence, the user-supplied data is never cast to execution inside the

database, thus avoiding injection attacks. By default, Laravel's Blade templates escape

output variables to HTML, meaning if a user were to insert a script tag as an input, it

would render as text on the page instead of executing. Steps were taken to guarantee that

28

our code does not circumvent this built-in escaping. This method also prevents malicious

content uploaded by one user from impacting the view of another user.

Cross-site Request Forgery (CSRF) was a further issue considered, but luckily Laravel

automatically provides CSRF protection for forms and routes. Every form generated for

user actions contains a hidden CSRF token field, and Laravel's middleware rejects all

POST, PUT, and DELETE requests that do not provide a valid token. This token is bound

to a session of a user so that no valid request could be forged by an attacker claiming to

be an authenticated user without token knowledge. By this defense, the system prevents

the exploitation of CSRF attacks wherein attackers may convince a logged-in user's

browser to execute further unintended requests. Only forms from our application carrying

this token will be considered valid on the server.

In the end, security considerations were taken into account during system design. The

system handles risks of a wide variety by trusting widely accepted frameworks, following

best practices in password hashing, and input validation. We understand that security

entails continuous evolution with new threats, so the system's architecture and

implementation are thought of as a solid base for secure web applications.

3.7 Database Structure

The system's database structure, designed using the relational model, reflects the logical

organization of data as required by the application. The schema was normalized to the

highest possible level of normalization using MySQL RDBMS to avoid redundant data

and to enforce referential integrity between distinct entities. The design process first

considers the main entities (tables) to be involved in satisfying the system's requirements,

considers the relationships between these entities (one-to-one, one-to-many, many-to-

many as appropriate), and finally defines the attributes (columns) of each entity along

with their data types and constraints.

On a more high-level, higher importance was given to the tables representative of key

domain concepts: for example, a users table exists to hold user account details, while

another table named dsm_directory_items stores the files and folders that users create and

interact with within. The users table has fields such as id, which is unique for each user

(primary key), name, display_name, email, passwordHash, and creation/update

timestamps for the account. Assigning unique identifiers to users would give other tables

29

the ability to reference those users by foreign key, and this is essential in the relationship

of data. Figure 3.1 shows the table of users, along with all of its values and fields, as

represented in phpMyAdmin.

Figure 3.1 – users Table

The dsm_directory_items table holds the primary data that the application manages. Each

item has its own id (primary key) and fields representing its content or properties.

Importantly, it contains a foreign key that associates it with a user in the users table

(user_id). This establishes a one-to-many relationship: one user can have many items, but

each record is tied to a single user. We enforce this relationship using a foreign key

constraint in MySQL, so that a record cannot exist without a valid user. If a user were

deleted, the foreign key constraint would cascade to delete the related records.

Additionally, all items have a parent_id which point to the id of the folder that contains

the file or folder depending of the type of the item, the root directory of each user has a

value of null. There is also a type field which can have either “dir” or “file” as its values.

Also there is a name field and a path that displays the entire directory path to the item.

For files there is a file_size field that shows the size of the file in bytes and a mime_type

field that shows the type of file. Lastly as all other tables timestamp columns (created_at

and updated_at) are included, a convention that Laravel supports automatically. These

timestamps are useful for both application logic (showing when something was last

modified) and for maintenance (debugging and auditing changes over time). In Figure 3.2

the table dsm_directory_items is visible with all its fields and some values.

In addition to the main two tables, the schema also includes a pivot table named user_file

which is useful for the sharing functionality of the platform. The table’s fields include a

unique id(primary key) and 2 foreign keys: user_id and file_id from users and

dsm_directory_items respectively. There is also a Boolean field canWrite which decides

if the shared user will have read only or read-write access. Lastly, there is a directory field

which always has the value /shared and timestamps. Using this table the platform can

decide to whom to display the shared file (user_id), which file is it (file_id) and the

30

permission that the user has (canWrite). The user will be able to locate this file in the

root/shared directory. The table user_file is shown below in Figure 3.3.

Figure 3.2 – dsm_directory_items Table

Figure 3.3 – user_file Table

To ensure data integrity and valid data, various constraints are placed at different levels:

NOT NULL fields can not be left blank when it is a required field; UNIQUE makes sure

no two records exist for accounts or other unique entities.

The database schema was implemented using Laravel's migration files, which literally are

executable blueprints of schema. This approach enables the schema definition to be

versioned alongside the code and move into different environments or rolled back if

needed. Each migration creates a table or modifies an existing one according to the design

intentions.

In short, the database design of the system is a relational schema that is shaped to the data

requirements of the application while focusing on referential integrity, consistency of

data, and supporting queries of the application. Thus, the distribution favors the

application in storing, retrieving, and managing the data while keeping the operations

31

consistent in terms of accurate data. The end result is a schema that is sturdy and forward-

looking, capable of extending with another set of tables or even relationships should the

system grow, with no need to undertake a major redesign of the existing structure.

32

Chapter 4

Implemented Platform

4.1 Existing Development 32

4.1.1 Login 33

4.1.2 Dashboard 35

4.1.3 User Profile 36

4.2 Main Page 37

4.2.1 List View 38

4.2.2 Grid View 39

4.3 Uploading Files 39

4.4 Actions 43

4.4.1 Rename 44

4.4.2 Delete 45

4.4.3 Download 46

4.4.4 Share 46

4.4.5 Info 49

4.5 Navigation 50

4.6 Messages 52

This chapter presents the developed platform with all of its functionality. After a

comprehensive design process and careful requirements analysis, the implementation of

the file management system took the form of a Laravel web application with a distributed

shared memory backend. The following chapter shows the various pages of the platform,

like the login and dashboard page, navigation and all of the possible actions that the user

can complete.

4.1 Existing Development

The following section presents all of the functionality that was already implemented by

the Algolysis team and required no further additional development. Basically, everything

33

that has to do with user authentication, the dashboard page and the user profile page were

implemented by the Algolysis team using Laravel.

4.1.1 Login

When users first arrive at the platform’s web address, they encounter a Login Page

featuring a simple form requesting a Username and Password. Upon pressing “Login,”

the platform verifies these credentials against the internal database. If valid, the user is

redirected to the Main Page; otherwise, an error message indicates that the credentials are

incorrect or missing. Once the system confirms the username and password match, an

active user session is created. This session tracks the user’s identification (e.g., user ID),

ensuring that subsequent navigation and requests occur under the appropriate permissions

(owner, shared access, etc.). This login mechanism is managed by the application’s

authentication layer in Laravel, which securely stores session data and rejects

unauthorized attempts to access the platform.

If the username is unrecognized or the password does not match, an error banner appears

near the top of the login form, prompting the user to recheck the entered data, as shown

in Figure 4.1.

When either the username or password field is blank, a short instructional message asks

the user to fill in the missing input before attempting to log in again. Figure 4.2 shows the

instructional message when the email field while a similar message appears for when the

password field is empty.

When a user presses the “Forgot your password?” link, the website redirects them to a

new page to reset their password (Figure 4.3).

Users that don’t have an account can press the “Create an Account” option located at the

bottom of the sign in page, there the users will have to fill a form that requires their full

name, email, password and a repetition of the password, also there are two checkboxes

that ask the users if they want to receive community emails which is not mandatory and

to agree to the terms, conditions and fees. (Figure 4.4)

34

Figure 4.1 – Invalid Credentials Response

Figure 4.2 – Missing Email Response

35

Figure 4.3 – Forgot Password Page

Figure 4.4 – Create an Account Page

4.1.2 Dashboard

When the user presses the “dashboard” button, shown in Figure 4.5, it redirects them to a

simple page with a welcoming message, displayed in Figure 4.6.

Figure 4.5 – Dashboard Button

36

Figure 4.6 – Dashboard Page

4.1.3 User Profile

When the user presses the “profile”, shown in Figure 4.7 button they are redirected in a

page where they can see and modify their information, update their password or manage

their browser session.

Figure 4.7 – Profile Button

The first section that appears is the “Profile Information” section (Figure 4.8), which

allows the user to see and update their account's profile information like name and email

address.

37

Figure 4.8 – Profile Information Section

The next section is the “Update Password” section (Figure 4.9), which allows the user to

update their password by inserting their old password, new password and reconfirming

their new password. There is also a message that recommends the user to use a long and

random password for security.

Figure 4.9 – Update Password Section

Lastly, the “Browser Sessions” section appears (Figure 4.10). This field allows the user

to manage and logout their active sessions on other browsers and devices, once clicked

the platform requires the user to enter their password for security reasons.

Figure 4.10 – Browser Sessions Section

4.2 Main Page

The following functionality, starting from this section until the end of the chapter was not

yet implemented by the Algolysis team and they required our help to develop it. After

38

successful authentication, users arrive at the Main Page. This central interface includes a

consistent, horizontal header placed at the top. The header includes navigation tools, a

toggle to switch between List View and Grid View and a “New button that lets users

upload files and create folders. Below the navigation bar, the folder or file items in the

current directory are displayed. Depending on the chosen layout, items appear in List or

Grid format. Folders are denoted by folder icons, while files typically show type specific

icons.

4.2.1 List View

In List View, each entry (folder or file) occupies one row within a table like format,

displaying the following, Name which shows an icon and the name of the item, for folders,

clicking the name navigates inside that folder. Type which indicates whether the item is a

Folder or File. Size which is left blank for folders and files show their size. Permissions

that show the user’s current access level (owner, read write, read only). Also Created At

and Updated At display the Date time stamps for the item’s creation and most recent

update. Lastly, Actions that display 3 dots which when clicked a dropped down appears

that provides operations like rename, delete, download and share. In Figure 4.11 appears

the root directory of a user in list view.

Figure 4.11 – List View

39

4.2.2 Grid View

In Grid View, items are displayed as separate “tiles” each containing a folder or type

specific file icon near the top centre, the item’s name is located under the icon, truncated

if long. There is a 3-dot button in the tile’s corner, which when pressed reveals a context

menu (rename, download, share, delete and info). Grid View can be more visually

appealing and a more intuitive approach for users who prefer icons over a table layout. In

Figure 4.12 appears the root directory of a user in grid view. The files and folders in grid

and list view are fetched from the server through the Storage::disk('dsm')-

>directories($currentPath, false, true) API which brings all the files and folders in a

specific directory, in turn allowing us to update the database with the latest items.

Figure 4.12 – Grid View

4.3 Uploading Files

Selecting the “New” button from the navigation bar triggers a modal window where users

can select files from their local machine (Figure 4.13). The modal contains a section

showing the current directory that the user is located, the uploaded files and folders will

be created automatically inside that directory, unless the user decides to change the

directory which can be done by clicking that section and choosing the desired directory

path. Underneath it there is the “New Folder” section in which the user can type the

desired name of the folder or path that the user wants the files to be located. The uploaded

file is store in the DSM through the use of APIs that allow the front-end to interact with

the back-end. More specifically, for uploading files we use the following API in the code

40

Storage::disk('dsm')->put($path, $file) that allows a specific file ($file) to be stored in a

specific directory ($path) in the servers. Additionally if we want to create a new folder or

directory we use the Storage::disk('dsm')->makeDirectory($newDir) API which creates

a new directory inside the servers.

Figure 4.13 – Upload Modal

In the centre of the modal there is a drag and drop section to insert the files or alternatively

the user can click on it, which will open the local file explorer and the user can decide

which files to upload, as shown in Figure 4.14. After selecting the desired files, they will

appear under the drag and drop section and by filling also the folder name, a completely

filled modal will look like Figure 4.15.

At the bottom of the modal there is an Upload button which will upload the selected files

in the desired directory. If the user chooses to create an Empty Folder, they can just write

the name of the folder inside the “New Folder” section and simply just press upload

without selecting any files, as shown in Figure 4.16. In Figure 4.17 we can see the user’s

empty root directory before uploading any files, while in Figure 4.18 we observe the result

of uploading the previous files in the root directory and in Figure 4.19 inside

/screenshots/favourite.

41

Figure 4.14 – File Explorer Pop Up

Figure 4.15 – Filled Modal

42

Figure 4.16 – Creation Of Empty Folder

Figure 4.17 – Before Uploading

43

Figure 4.18 – After Uploading Root Directory

Figure 4.19 – After Uploading Inside Folder

4.4 Actions

A major component of the platform is the ability to perform various management actions

on files and folders. These features ensure users can handle daily file related tasks

smoothly. In Figure 4.20 we can see the two actions for folders in list view, Rename and

Delete and in Figure 4.21 we can see the actions for files in list view, which are, Rename,

Download, Share and Delete.

Figure 4.20 – Folder Actions

44

Figure 4.21 – File Actions

4.4.1 Rename

The “Rename” option is found under the Actions dropdown in each row. Selecting it

replaces the item’s name cell with an inline textbox (Figure 4.22).

Figure 4.22 – Inline Textbox

The users can then change the name of the item and on pressing Enter or clicking away,

the system updates the name on the server, and the row reverts to normal display.

Figure 4.23 shows a user that changed the name of a folder from emptyfolder to empty

and when the user presses the enter button, the result appears in Figure 4.24. The rename

action is achieve through the use of the following API Storage::disk('dsm')-

>rename($request->input('old_path'), $request->input('new_name')) that notifies the

servers to change the path and the name of the file.

Figure 4.23 – Renaming Of Folder

45

Figure 4.24 – Result of Rename Action

4.4.2 Delete

Users can delete a file or folder via the “Delete” entry in the item’s action menu. Once

pressed, a confirmation popup (Figure 4.25) ensures the user wants to proceed.

Figure 4.25 – Delete Confirmation Modal

Confirming removal, updates the view instantly, removing the item from the interface and

the server. The results of the delete action appear in Figure 4.26. It also, updates the

servers to remove the item through the use of Storage::disk('dsm')-

>deleteDirectory($path) or Storage::disk('dsm')->delete($path) API which delete either

an entire directory or a specific file.

Figure 4.26 – Result Of Deletion

46

4.4.3 Download

Download is available for files only, when this option is pressed it triggers the browser’s

default download mechanism. Allowing the users to store the file inside their machine.

The result of pressing the download button appears in Figure 4.27. This is achieved

through the Storage::disk('dsm')->download($fullPath) API that requests from the

servers the specific file in order for the user to be able to download it.

Figure 4.27 – Result Of Downloading

4.4.4 Share

Owners can share files with other users. When Pressing “Share” a modal opens

(Figure 4.28) and the sharer may enter the recipient’s email. The owner can also decide

which permissions to allow the other user. Having read-write access will allow the user

to have the ability to rename or download the file while read access gives them the ability

to only download the file. In Figure 4.29 we observe a filled in modal with the email

field set as superadmin@algolysis.com that has been givem write access.

Once shared, the item shows up under the recipient’s “Shared” folder, which if it doesn’t

exist is created automatically and appears at the top of the list or grid view. In Figure 4.30

we see the root directory of a user before having a file shared to them, while in

Figure 4.31 we see the root directory right after having a file shared to them, a shared

folder has appeared at the top of the page. Once clicked it redirects the user inside the

shared directory, where all of their shared files will be located. In Figure 4.32 we can see

an example of a shared file with read/write permissions where as in Figure 4.33 the exact

same file has only read permission. This changes the permissible actions from Rename

and Download to only Download. Sharing does not require the use of APIs since the front-

end doesn’t need to interact with the back-end, it only needs to update the database, more

specifically the user_file pivot table, which stores the id of the files being shared, the id

mailto:superadmin@algolysis.com

47

of the users that the files are being shared to and the permissions of said users, either read-

only or read-write.

When the user presses the share button again on the same file, the same modal appears

again but at the lower part of the modal a list of all the users that the current file is being

shared to appears, displaying their email and their permissions (Figure 4.34).

Figure 4.28 – Empty Share Modal

Figure 4.29 – Filled Shared Modal

48

Figure 4.30 – Recipient Before Sharing

Figure 4.31 – Recipient After Sharing

Figure 4.32 – Inside Shared Folder With Read Write Permission

49

Figure 4.33 – Inside Shared Folder With Read Permission

Figure 4.34 – Share Modal After Sharing

4.4.5 Info

In Grid View, the action button has the exact same actions as in List View with one

addition, the “Info” option (Figure 4.35) which provides a brief overview of the item’s

properties, such as file size, type, creation date, last update date, and owner identity,

basically the same information which appears in the List View’s columns. This

information appears in a pop up without needing to navigate away from the current folder

(Figure 4.36).

50

Figure 4.35 – Action Button In Grid View

Figure 4.36 – Info Modal

4.5 Navigation

Multiple methods of navigation help users efficiently move through the directory

structure and quickly locate their files. Firstly, there is a Back Arrow button in the header

that takes the user up one level in the directory hierarchy, effectively returning them to

the folder where they came from (Figure 4.37).

Figure 4.37 – Back Arrow

There is also a Breadcrumb Trail where a series of clickable links ([root] > screenshots

> favourite > emptyfolder) appears near the top of the page. Each link corresponds to an

ancestor folder in the path. This approach enables direct jumping to any parent folder

51

rather than requiring repeated presses of the back arrow. In Figure 4.38 appears a snapshot

of a user being navigated to the root directory by pressing it, while being in the “favourite”

directory.

Figure 4.38 – Breadcrumb Trail pressed

To navigate deeper into a folder in both List and Grid views, the user must press the folder

name or icon and the displayed contents then update to reflect the chosen subdirectory,

and the breadcrumb adapts accordingly. In figure 4.39 we can see a folder with a blue

colour name, indicating a link, also when the mouse hovers over the name it appears

clickable which makes it easier for user to understand how to use the platform.

Figure 4.39 – Folders Are Linked To Their Directories

Lastly there is a file explorer button on the side bar on the left (Figure 4.40) that

immediately brings the user to their top level directory, saving time. These navigation

techniques, combined with clear icons and layout, provide a user-friendly environment

that makes file browsing, uploading, and management straightforward, even for those less

experienced with web based storage solutions.

Figure 4.40 – File Explorer Button

52

4.6 Messages

When a user performs an action, the user receives a message at the top of the platform

informing the user whether the action was completed successful or whether something

went wrong with the server and the action could not be completed. In the following

example, we have a user that tried to rename a file. In Figure 4.41 is the success response

message that the user receives when everything goes smoothly. While, in Figure 4.42 is

the fail response message when something goes wrong.

Figure 4.41 – Success Response Message

Figure 4.41 – Fail Response Message

53

Chapter 5

Implementation

5.1 Project Folder Layout 53

5.2 Key Libraries and Dependencies 54

5.3 Illustrative Code Snippets 54

5.3.1 Routing 54

5.3.2 Controllers and Eloquent Models 55

5.3.3 MySQL and Database Migrations 57

5.3.4 Laravel Query Builder 58

5.3.5 Bootstrap and Alpine.js for Front End Interactions 58

Following the overall platform overview, this chapter deals with the details of the system

development process. It outlines how the proposed features and designs were turned into

code. Special focus is given to how the application of Laravel's MVC framework enabled

modularity, reusability, and maintainability during implementation. We discuss how

routing, models and controllers were implemented, showing also the database migrations

that enabled the platform's specific structure and how Laravel Query Builder helped us

interact with said database through the code. Finally, we talk about Bootstrap and

Alpine.js that helped make the platform more responsive and easier to use.

5.1 Project Folder Layout

The application keeps the classic Laravel directory tree, so anyone who has opened a

Laravel project before will feel at home:

• app – Holds the application’s “brains”:

o Http (controllers, middleware, form-request classes)

o Models (the Eloquent models that “speak” to the database)

o Providers (service-provider classes that bootstrap features such as events,

policies, queues, etc.).

• bootstrap – A couple of small files that spin the framework up and wire every

dependency together.

54

• config – One file per concern. Changing a value here tweaks behaviour without

touching code.

• database – Migration scripts (schema changes) and seeders (sample or mandatory

data).

• public – The only folder the web server can see. index.php is the single entry

point; everything else (images, compiled CSS/JS, favicons) lives here too.

• resources – Uncompiled assets: Blade views, language strings, and the raw SCSS

/ JS that will later be compiled.

• routes – All URL definitions. Each route simply maps an HTTP verb + URI to a

controller action.

Laravel, like most modern PHP frameworks, enforces MVC (Model–View–Controller).

The model represents data and business rules, the view renders HTML (or JSON, etc.) for

the user, and the controller sits in the middle translating incoming requests into model

operations and selecting the right view for the response.

5.2 Key Libraries and Dependencies

Laravel ships with – and encourages – a set of helper libraries that make development

faster, safer, and cleaner:

• Blade – Laravel’s ultra-light template engine. It lets you embed plain PHP inside

HTML. At runtime every Blade file is compiled down to vanilla PHP, so there is

almost zero overhead.

• Middleware – Mini-filters that intercept every request or response. Perfect place

for auth checks, CORS headers, logging, or tweaking the request before it reaches

the real controller.

• Laravel Query Builder – A fluent, secure, chainable way to build SQL that is

resistant to SQL-injection and easy to read.

5.3 Illustrative Code Snippets

5.3.1 Routing

One of the fundamental components provided by Laravel is its routing system, which

maps URL endpoints to the code that handles them. The routing mechanism ensures that

55

incoming requests are directed to the correct controller or component along with any

required parameters, in the most efficient manner. All web routes are defined in a central

file (routes/web.php), which Laravel automatically loads via the

App\Providers\RouteServiceProvider. The route definitions clearly list the HTTP

method, the URI, and the controller (or action) responsible for each application feature.

Following in Figure 5.1 some routes used for by the platform are displayed.

Figure 5.1 – web.php Code

5.3.2 Controllers and Eloquent Models

At the center of the platform's data layer is Laravel's Eloquent ORM, which presents a

high-level, object-oriented abstraction of the backing relational database (MySQL [13] in

this implementation). With Eloquent, every database table is mirrored in the Laravel

application by a Model class, which wraps not just the table schema but also any business

logic or relationships inherent in that data. This means that developers interact with

database records through model objects and methods rather than direct SQL queries. The

Model classes define the data structure and enforce relationships and constraints at the

application level. For example, in Figure 5.2 is what DsmDirectoryItem looks like, which

is a model for the items (folder and files):

56

Figure 5.2 – DsmDirectoryItem Code

The FileManagerController orchestrates the logic for listing, sharing, deleting, and

renaming items, returning a Blade view or JSON response. For instance, in Figure 5.3 we

observe the code to share a file:

Figure 5.3 – FileManagerController Code For Sharing Functionality

57

The code validates that the user has given the email to whom the user wants to share a

file with and that it has correctly fetched the file_id of the file that will be shared. Then

through the User table it finds the desired User by using the users email. Then it finds the

file in the DsmDirectoryItem table by using the file’s file_id and it checks wether the user

has been given read or read/write access. Then we create an entry in the user_file table

with the user_id and file_id, we also set the variable canWrite to the permissions of the

user, always set the directory to the shared folder and add the time values for updated_at

and created_at.

5.3.3 MySQL and Database Migrations

Laravel’s migration system, was used to define the database schema in PHP and version

control it. For instance, a table to store the pivot table user_file for sharing appears as

follows (Figure 5.4).

Figure 5.4 – user_file Pivot Table Migration Code

58

Here when we push the migration it creates a table with the following values: user_id,

file_id, canWrite, directory and we have foreign keys that link to users and

dsm_directory_items tables.

5.3.4 Laravel Query Builder

Following in Figure 5.5 an Eloquent example showing a code snippet that queries all files

that are in the user_file pivot table, returning an Eloquent collection for further

processing. This will be used to identify which files are currently being shared.

Figure 5.5 – Sample Eloquent Code

5.3.5 Bootstrap and Alpine.js for Front End Interactions

For front-end behaviour and presentation, the platform leverages Bootstrap and Alpine.js,

two technologies that complement the Laravel ecosystem by providing UI consistency

and client-side lightweight interactivity. Bootstrap is a widely used CSS framework that

includes a rich collection of pre-styled styles and components for web interfaces. The

reason to adopt Bootstrap is the need for a responsive, consistent look-and-feel

throughout the application with not much effort going into custom CSS. Bootstrap

handles the presentation layer, and Alpine.js is added to handle client-side behavior in a

lightweight way. Alpine.js is a "rugged, minimal" JavaScript library that allows

developers to add reactive and declarative behavior directly within their HTML markup.

It can be thought of as a lightweight framework, with much less overhead cost and

complexity than other frameworks. The motivation for using Alpine.js in this platform is

to leave a gap for small-scale interactivity that does not need a complete round-trip to the

server via Livewire. After Figure 5.9 a code snippet showing the actions toggle button

which on clicking shows all the available actions for folders.

59

Figure 5.9 – Code Snippet For Bootstrap and Alpine.js

60

Chapter 6

Conclusion

6.1 Summary of Achievements 60

6.2 Lessons Learned 61

6.3 Limitations and Future Work 62

6.4 Final Remarks 63

 6.1 Summary of Achievements

This thesis set out to conceptualize, develop, and evaluate a distributed web platform that

would manage files and directories and emphasize user experience, security, and

scalability. The technology foundation revolved around the Laravel framework and was

supplemented with concepts borrowed from distributed shared memory (DSM) systems

and object-based storage (CoBFS). These paradigms were reflected in both the software

architecture and concurrency, access control, and data persistence strategy of the system.

The process of development centred around a user-focused design philosophy. Much time

was spent building an intuitive and interactive user interface that allowed seamless

directory and subdirectory navigation. The users were provided with the ability to upload

new files and transfer existing files, rename existing items, delete existing data, and

retrieve comprehensive metadata for folders and files. Since it was understood that user

interests vary greatly, the platform brought in both list and grid views to navigate through.

This visual variability accommodated different workflows and accessibility requirements,

maximizing the platform's flexibility to accommodate different groups of users.

Our primary concern was that the core functionality should be robust and scalable. The

choice for the Model-View-Controller pattern in Laravel was made on architectural

beauty as well as on maturity of the existing framework that allows reusing solutions to

a variety of commonly seen problems in web applications-such as session management:

where stateful user interactions and authentications come into play. These became the

grounds for more complicated flows, whereby files and directories can be renamed,

downloaded, deleted, or shared, always with very high integrity and traceability on the

data.

61

Security and dependability had also been augmented through the embracing of certain

best practices and technologies. CSRF tokens were applied against forms and state-

changing requests to prevent abuse of commands. User credentials were hashed in some

secure manner to minimize password exposure or brute-force attacks. Read and write

access was very finely locked down throughout the platform, and shared resources

respected the level of access that the owners had defined. The distributed system concepts

from DSM and object-based storage in particular informed the design for how to keep

consistency in the presence of concurrent user actions and hence indicate a path towards

horizontal scale-out across numerous nodes in the future.

One other of the key achievements is the transparent integration between the frontend

based on Laravel and the backend built by Algolysis' research team that offers a DSM

service. The frontend interacts with the backend only through an array of APIs so that all

the operations of a user, whether browsing directories, downloading or uploading files,

renaming objects, or deleting can be routed to the backend through the APIs. This

architecture maintains the frontend lightweight and user-friendly while offloading the

heavyweight distributed consistency and concurrency control to the backend engine.

Clearly defined API endpoints enable modularity, scalability, and a clear separation of

concerns, thus enhancing maintainability and supporting future growth. Regardless of

whether it's dealing with a single node or a distributed multi-node environment, the

frontend is kept unaware of the data storage logic behind it, using these APIs to execute

operations securely and effectively.

Together, these accomplishments provided a working prototype that effectively

demonstrates how existing concepts in distributed computing can be put into alignment

with a high-end web application suite. The platform design and implementation

compromise on ease of use versus technical sophistication to deliver a safe, extensible

mechanism for shared directory and file management.

6.2 Lessons Learned

The development of a distributed platform to facilitate concurrent access and sharing of

resources came with an abundance of valuable lessons, from issues technical to more

broad principles of software engineering.

Making Laravel the starting point was the most obvious of decisions. As it followed the

MVC principle, it was able to separate concerns cleanly and encapsulate business logic.

62

The introduction of Eloquent ORM eliminated the necessity to write raw SQL which is

cumbersome and error-prone and instead gave a cleaner way of dealing with data access.

Middleware security policies and HTTP request preprocessing made for an elegant

implementation, while addressing the entire session and authentication needed for rapid

development of secure, stateful UIs.

A second significant takeaway represented the essential value in maintaining good,

adaptive user interfaces. The list view and grid view implementations illustrated the

technical side of conditional rendering and state management, while user interface design-

related factors influence productivity and satisfaction, hence the platform was able to

entertain more interaction types and usage models with multiple modes of interaction

supported.

Moreover, the iterative and cooperative style of development was a significant factor in

the project's success. Regular communication with the company, along with continuous

code review and testing, ensured a culture of continuous improvement. With an agile

philosophy of incrementally adding features, testing them with user feedback, and

iterating on the design, there was guaranteed alignment of the platform to the company's

needs.

6.3 Limitations and Future Work

Some built-in limitations were encountered along the way, either during development or

marketed as points of improvement down the line. The system has mostly been

benchmarked with small-size datasets. While touted as theoretically scalable in design,

the actual deployment into a high-traffic, multi-node production setup would call for extra

complexity layers. The areas ripe for further enhancements include distributed caching

mechanisms, more advanced load-balancing solutions, and data replication strategies for

fault tolerance and availability at scale.

In the security realm, well-defined for the current scale, there lays a big opportunity for

higher-order augmentation. Complete RBAC, SSO support, enterprise-grade auditing,

and logging facilities have all been cited as being high-value additions. These

improvements not only enhance the platform's security position but also start to force the

platform into levels of compliance and regulation demanded on the enterprise level.

63

Another constraint involves a lack of offline use and caching. Some existing distributed

applications benefit from having the capability to queue operations or cache data locally

if the user's network connection is unstable or does not exist. Offering offline

synchronization, in addition to advanced conflict resolution strategies, would be greatly

enhanced for usability in real-world scenarios where connectivity cannot be guaranteed.

Future evolution could also introduce additional features such as data versioning, which

would allow users to revert back to previous states when inadvertently altering or deleting

files. Increased monitoring and telemetry would provide real-time insight into usage

patterns, performance bottlenecks, and concurrency hotspots, which would inform both

users and administrators. Finally, the application of machine learning algorithms could

make tagging and classifying uploaded content automatic, allowing for more advanced

search and organization features.

6.4 Final Remarks

The platforms construction and deployment represent a telling case of the convergence of

novel web frameworks, distributed storage methods, and people-oriented design towards

the development of a usable, secure, and scalable application. The facility to compose

Laravel's flexible toolbox with familiar distributed computing concepts is a definitive sign

of the viability of merging popular web development technologies and frontier systems

design.

The approach of iterative prototyping, comprehensive testing, and high modularity focus

taken in this project has not only yielded a viable prototype but also a flexible template

for further development. With ongoing changes in the distributed computing

environment, particularly with cloud computing and decentralized paradigms, this

platform is set for further refinement and development.

Hence, this project serves as a reminder that achieving the goal of an efficient distributed

system centred around the user requires more than just technical know-how. It requires a

deliberate balancing act among software engineering best practices, sound knowledge of

distributed systems theory, and constant interaction with and feedback from the users.

Keeping these in mind, the platform serves as the basis over which scalable, fault-tolerant,

and user-friendly solutions can be implemented to address the pressing data management

problems in today's digital landscape.

64

References

[1] A. F. Anta, C. Georgiou, T. Hadjistasi, N. Nicolaou “Fragmented Objects: Boosting

Concurrency of Shared Large Objects,” Proc. of the 28th International Colloquium on

Structural Information and Communication Complexity (SIROCCO 2021), pp. 106-126,

Wroclaw, Poland, Online, 2021.

[2] C. Georgiou, N. Nicolaou, and A. Trigeorgi, “Fragmented ARES: Dynamic Storage

for Large Objects”, Proc. of the 36th International Symposium on Distributed

Computing (DISC 2022), pp. 25:1-25:24, Augusta, GA, USA, 2022.

[3] Lynch, N. and Shvartsman, A. Robust emulation of shared memory using dynamic

quorum-acknowledged broadcasts. In Symposium on Fault-Tolerant Computing. IEEE,

1997.

[4] P. Musial, N. Nicolaou, and A. A. Shvartsman, “Implementing Distributed Shared

Memory for Dynamic Networks,” Commun. ACM, 2014.

[5] N. Nicolaou, A. Fernandez Anta, and C. Georgiou. Coverability: Consistent

versioning in asynchronous, fail-prone, message-passing environments. In Proc. of

IEEE NCA 2016.

[6] Nicolas Nicolaou, Viveck Cadambe, N. Prakash, Andria Trigeorgi, Kishori M.

Konwar, Muriel Medard, and Nancy Lynch. ARES: Adaptive, Reconfigurable, Erasure

coded, Atomic Storage. ACM Transactions on Programming Languages and Systems

(TOPLAS), 2022.

[7] Bootstrap Documentation – Introduction to Bootstrap (Responsive Front-end

Framework). [Online]. Available: https://getbootstrap.com/docs.

[8] Alpine.js – Alpine.js Official Website (Lightweight JavaScript Framework).

[Online]. Available: https://alpinejs.dev.

[9] Oracle Corporation, “MySQL: Understanding What It Is and How It’s Used,”

Oracle.com, 2023. [Online]. Available: https://www.oracle.com/mysql/what-is-mysql/.

[10] “XAMPP,” Wikipedia, The Free Encyclopedia. [Online]. Available:

https://en.wikipedia.org/wiki/XAMPP.

[11] “Model–View–Controller (MVC),” Wikipedia, The Free Encyclopedia. [Online].

Available: https://en.wikipedia.org/wiki/Model–view–controller.

[12] “Distributed shared memory”, Wikipedia, The Free Encyclopedia. [Online].

Available: https://en.wikipedia.org/wiki/Distributed_shared_memory.

https://en.wikipedia.org/wiki/Model–view–controller
https://en.wikipedia.org/wiki/Distributed_shared_memory

65

[13] “Agile software development”, Wikipedia, The Free Encyclopedia. [Online].

Available: https://en.wikipedia.org/wiki/Agile_software_development

[14] “Linearizability”, JEPSEN. [Online].

Available: https://jepsen.io/consistency/models/linearizable

[15] Laravel Documentation – Laravel: The PHP Framework for Web Artisans.

[Online]. Available: https://laravel.com/docs.

[16] “MariaDB”, Wikipedia, The Free Encyclopedia. [Online].

Available: https://en.wikipedia.org/wiki/MariaDB

[17] “Amount of Data Created Daily (2025) “, Exploding Topics. [Online].

Available: https://explodingtopics.com/blog/data-generated-per-day

[18] Git Documentation – Git Official Website [Online].

Available: https://git-scm.com/doc

[19] Livewire Documentation – Laravel-Livewire Official Website [Online].

Available: https://laravel-livewire.com/docs/2.x/quickstart

[20] Gilbert, S., Lynch, N. and Shvartsman, A. RAMBO: A robust, reconfigurable

atomic memory service for dynamic networks. Distributed Computing 23, 4, (Dec.

2010), 225–272.

[21] Aguilera, M.K., Keidar, I., Malkhi, D. and Shraer, A. Dynamic atomic storage

without consensus. JACM 58 (Apr. 2011), 7:1–7:32

- 1 -

Annex A

This appendix presents the user manual for the distributed file management platform.

Login

To access the web platform, the user must open a modern web browser and navigate to

the designated URL provided by the organization or administrator. The login page is the

first screen presented. Users must possess valid credentials issued by the administrator

to gain access.

1. Enter your email and password in the respective fields.

2. Click the Login button to proceed.

Navigation Menu

The navigation menu is located at the top left of every page within the web platform. It

provides quick access to the primary sections:

• Dashboard

• My Profile

• File Manager

The navigation bar remains consistent across all views to ensure an intuitive and

seamless user experience.

Home Page

Upon successful login, users are directed to the Dashboard page. Here, a brief overview

of the system and recent updates may be displayed (depending on administrator

configuration). Users can then proceed to the File Manager to begin interacting with

files and directories.

File Manager

The File Manager serves as the core of the platform, allowing users to manage their files

and directories efficiently.

- 2 -

Browsing and Navigating

The main panel displays the contents of the current directory, including subfolders and

files. Users can navigate into subdirectories by clicking on folder names. A breadcrumb

navigation system appears at the top, allowing users to move back to parent directories

easily.

Users can choose between List View and Grid View by clicking a toggle button on the

top right. The List View provides detailed metadata for each item (such as size,

permissions, and creation date), while the Grid View presents a visual, tile-based layout.

Uploading Files

To upload files:

1. Click the New button located in the upper right corner of the File Manager

interface.

2. Select the desired files using the provided file picker or drag-and-drop them into

the upload area.

3. Optionally, specify the target directory or create a new folder.

4. Click Upload to initiate the process.

Creating Folders

To create a new folder:

1. In the upload modal, enter the desired folder name in the “New Folder” section.

2. Optionally, select any files that you want to add to the folder.

3. Click Upload.

Renaming Items

To rename a file or folder:

1. Click the three dots menu on the right side of the item.

2. Select Rename.

3. Enter the new name and press enter.

Deleting Items

- 3 -

To delete a file or folder:

1. Click the three dots on the right side of the item.

2. Select Delete.

3. Confirm the deletion in the pop-up modal.

Please note that deleted items cannot be recovered.

Download Files

To download a folder:

1. Click the three dots on the right side of the item.

2. Select Download.

The file will automatically get downloaded on your device.

Sharing Files

Users can share files with other registered users:

1. Click the three dots menu next to the file.

2. Select Share.

3. In the sharing modal, enter the recipient’s email.

4. Optionally, grant write permissions by enabling the "Can Write" switch,

otherwise the user will only have read access.

5. Click Submit.

The recipient will immediately gain access to the shared file in their Shared directory.

Viewing Item Information

For detailed information about a file or folder in the Grid view:

1. Click the three dots menu next to the item.

2. Select Info.

3. A modal will appear showing the item's name, type, size, permissions, creation

date, last updated date etc.

Account Settings

To change your name or email:

- 4 -

1. Click on the “My Profile” option in the navigation bar.

2. Go to the “Profile Information” section put your desired information on the

Name and Email fields.

3. Click Save.

To change your password

1. Click on the “My Profile” option in the navigation bar.

2. Go to the “Update Password” section.

3. Enter your current password, your new password and reconfirm your new

password.

4. Click Save.

- 5 -

Annex B

This appendix presents a dictionary of some technical terms found in the paper.

Agile

A software development approach that emphasizes incremental delivery, collaboration,

and flexibility in responding to changes.

Alpine.js

A lightweight JavaScript library used to add interactive features to web pages without

requiring large frameworks.

API (Application Programming Interface)

A set of rules and tools that allows different software systems to communicate with each

other.

Apache

An open-source web server software that delivers web content to users' browsers.

Authentication

The process of verifying the identity of a user or system.

Authorization

The process of determining what actions or resources a verified user is allowed to

access.

Back-end

The server-side part of a web application where data processing, business logic, and

database interactions occur.

Blade

Laravel’s built-in templating engine used to create dynamic web pages.

Bootstrap

A popular front-end framework that helps design responsive, mobile-friendly web

pages.

Client-side

Refers to operations that are performed in the user's web browser rather than on the

server.

COBFS (Coverable Block File System)

A system that manages data storage in blocks, supporting version control and

consistency.

- 6 -

Controller

In MVC architecture, the component that processes user requests, works with models,

and selects the correct views.

CRUD (Create, Read, Update, Delete)

The four basic operations for managing data in an application.

CSRF (Cross-Site Request Forgery)

A type of web security vulnerability where unauthorized commands are transmitted

from a user that the web app trusts.

Database Migration

The process of managing database schema changes over time using version control.

DAG (Directed Acyclic Graph)

A graph data structure used to represent processes or data that flow in one direction

without cycles.

Data Integrity

Ensuring the accuracy and consistency of data over its lifecycle.

Distributed Shared Memory (DSM)

A method for sharing memory across multiple networked computers, making them

appear as a single memory space.

Dynamic Reconfiguration

The ability of a system to change its structure or behaviour without stopping operations.

Eloquent

Laravel’s built-in ORM (Object-Relational Mapping) system for working with

databases using PHP objects.

Encryption

The process of converting data into a coded format to prevent unauthorized access.

Front-end

The part of a web application that users interact with, typically built using HTML, CSS,

and JavaScript.

Git

A version control system used to track changes in code during software development.

HTTPS (Hypertext Transfer Protocol Secure)

A secure version of HTTP, which encrypts data exchanged between a user’s browser

and the server.

- 7 -

JSON (JavaScript Object Notation)

A lightweight data format commonly used for exchanging data between servers and web

applications.

Laravel

An open-source PHP framework designed for building web applications using the MVC

architecture.

Livewire

A Laravel package that allows creating dynamic interfaces without writing much

JavaScript.

MariaDB

An open-source relational database management system, often used as a drop-in

replacement for MySQL.

Metadata

Data that provides information about other data, such as file size, creation date, or

permissions.

Middleware

Software that acts as a bridge between different parts of an application, often used for

handling requests and responses.

Model

In MVC architecture, the component that handles data and business logic.

MVC (Model-View-Controller)

A software design pattern that separates an application into three interconnected

components: Model, View, and Controller.

MySQL

A widely used relational database management system for storing and managing data.

ORM (Object-Relational Mapping)

A technique that allows developers to interact with databases using object-oriented

programming concepts.

PHP (Hypertext Preprocessor)

A popular scripting language used for web development and creating dynamic web

pages.

phpMyAdmin

A web-based tool for managing MySQL and MariaDB databases.

- 8 -

RBAC (Role-Based Access Control)

A method for restricting system access based on a user’s role.

Responsive Design

An approach to web design that ensures web pages look good on all devices, from

phones to desktops.

Router

A system that maps incoming web requests to specific code or controller actions.

Scalability

The ability of a system to handle increasing amounts of work or data without

performance loss.

Session Management

The process of managing user sessions in web applications, including login status and

activity tracking.

SQL (Structured Query Language)

A language used to communicate with relational databases.

SSL/TLS (Secure Sockets Layer/Transport Layer Security)

Protocols that provide secure communication over a computer network.

Unit Testing

A software testing method where individual components of an application are tested in

isolation.

User Interface (UI)

The part of a software application that users interact with directly.

Version Control

A system for managing changes to software code over time.

View

In MVC architecture, the component responsible for presenting data to the user.

XAMPP

An open-source package that provides an easy-to-install Apache server, PHP, and

MySQL environment for development.

