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Summary

Despite the rise of memory-safe languages, C remains indispensable, and with it, persis-

tent heap-based use-after-free (UAF) vulnerabilities. These bugs exploit dangling point-

ers: when an object is deallocated but still referenced, attackers can hijack freed mem-

ory. Process-wide defenses incur prohibitive runtime overhead. Thus, we introduce safe

blocks, an abstraction that lets developers annotate security-critical regions for focused

temporal-safety enforcement, avoiding global performance penalties.

Inside each safe block, allocations are routed to an isolated safe heap, whose per-

missions are enforced via Intel’s Memory Protection Keys (MPK), preventing any access

outside annotated regions. A mark-and-sweep garbage collector (GC) reclaims objects

only after they have been explicitly freed and proven unreachable, eliminating dangling

pointers within safe blocks. Outside these regions, our system defers to the standard allo-

cator with zero GC overhead.

Our prototype, implemented as an LD_PRELOAD library using mimalloc, requires

minimal changes to existing code. Through empirical evaluation on real-world bench-

marks, we demonstrate the feasibility and characterize the performance trade-offs of safe

blocks, paving the way for targeted optimizations and practical adoption in legacy C sys-

tems.
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Chapter 1

Introduction

1.1 Motivation

Memory-unsafe languages such as C and C++ are widely-used [59], forming the back-

bone of critical software infrastructure, including web browsers, kernels and network

applications. There has been a great cause for concern and significant research regarding

the security of these applications [58]. More specifically, there has been an emphasis on

use-after-free (UAF) exploits [49]. UAF is a kind temporal memory corruption bug of

very high importance. It has been consistently ranked by the MITRE organization in the

last six years as one of the top ten most dangerous software errors [43, 45–48, 50].

When a UAF exploit is executed successfully, it can allow an attacker to alter the

control flow of the target process. Several real-world examples highlight the severity of

such vulnerabilities, such as the following. One critical bug in Firefox’s CSS animation

timeline was exploited in the wild to escape the browser sandbox [21]. A race condition

in Google Chrome enabled unsandboxed code execution through seemingly legitimate

JavaScript API calls [12]. In the Linux kernel, a UAF vulnerability was leveraged to

escalate privileges [64]. A high-severity bug was also discovered in the JSON parser

of Google’s protobuf library [24]. Additionally, Adobe Reader suffered from a flaw in

processing format event actions, which could be exploited to execute arbitrary code [44].

The proposed solution to guarantee temporal safety, is the usage of memory safe lan-

guages such as Rust. In recent years, Rust has been gaining a lot of traction [52,63] for its

safety [5,11], but also for having speed comparable to that of C [15,65]. However, simply

rewriting all C code to Rust is unfeasible, which is why translating C to Rust is being

explored as an option [19, 35]. Unfortunately, this has not yet reached a mature level. We

are in need of a more immediate solution.

Dealing with use-after-free bugs is notoriously difficult due to their temporal nature.

They certainly will happen, and detecting them is tough. Especially since a significant
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portion of them is non-deterministic [13]. Static detection methods fail to capture the

most complex bugs [13], while exploit defenses, despite being able to achieve temporal

safety, always introduce a large overhead [58]. More recent techniques [1, 20] started

using ideas derived from older concepts such as Garbage-Collection, a form of automatic

memory management in which temporal safety is guaranteed.

We argue that applying defenses to the whole binary is excessive, that instead we need

to safeguard only sections of it. Specifically, sections that deal with user input, since those

are the most critical ones in term of security [14]. We consider a new approach, suggesting

the usage of safe blocks, where in such blocks we guarantee complete temporal safety.

1 void foo ( char * u s e r _ i n p u t ) {

2 b a r ( ) ;

3 s a f e {

4 char * r e t v a l = p a r s e ( u s e r _ i n p u t ) ;

5 p r o c e s s ( r e t v a l ) ;

6 }

7 baz ( ) ;

8 }

Listing 1.1: Safe block showcase

Listing 1.1, presents a proof-of-concept illustrating our proposed scheme. In this ex-

ample, the functions parse and process are executed within the safe block, ensuring

that no use-after-free bug can occur during their execution. This safety is achieved by

creating a dedicated safe heap for safe blocks and prohibiting access to it from outside

these blocks by utilizing Intel’s Memory Protection Keys (MPK) [17]. To then guarantee

temporal safety, we apply Garbage-Collection techniques only within the specified safe

blocks.

Following prior work on use-after-free defenses [1, 13, 20], our focus is limited to

heap-based use-after-free vulnerabilities. These are not only the most prevalent in real-

world exploits, but also the most challenging to defend against [13].

1.2 Contributions

• Safe-Block Abstraction: We introduce and formalize the concept of “safe blocks”,

allowing developers to mark critical code regions for targeted temporal safety en-

forcement.

• Prototype Implementation: We design and implement a runtime system that lever-

ages Intel’s Memory Protection Keys and scoped garbage-collection to isolate and

protect marked blocks from use-after-free errors.
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• Practicality and Usability: We test the integration of our prototype with existing

projects to assess how feasible and straightforward it is to adopt our approach.

• Evaluation and Analysis: We empirically evaluate the performance overhead of safe

blocks across real-world C applications.

All source code and documentation for this project are publicly available here.

1.3 Thesis structure

In the subsequent chapters of this thesis, we present the necessary background concepts,

and the methodology underlying this work. Chapter 2 introduces foundational termi-

nology and examines the nature of use-after-free vulnerabilities within memory-unsafe

systems. Additionally, this chapter provides an overview of Intel’s Memory Protection

Keys mechanism and describes the essential garbage collection techniques employed in

our approach. Readers already familiar with these topics may choose to omit this chapter.

Chapter 3 introduces the design and theoretical foundations of safe blocks, the central

abstraction proposed in this thesis. Chapters 4 and 5 form the technical core of the work,

detailing the implementation of safe blocks and how they can be used by a developer.

Chapter 5 presents an empirical evaluation of the proposed solution, assessing its security

guarantees and performance overhead, as well as our attempts to integrate our system with

large and popular C projects. Following this, Chapter 6 discusses the limitations of the

current prototype, proposes avenues for improvement, and outlines directions for future

research toward broader and more practical enforcement of temporal memory safety. The

thesis concludes with Chapter 7, which positions our work within the existing literature,

and Chapter 8, which summarizes our findings and contributions.
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Chapter 2

Background

2.1 Memory Safety

Memory safety refers to the property of a program that ensures all memory accesses are

well-defined, meaning that reads and writes occur only within the boundaries of valid,

allocated memory regions. Violations of memory safety are the root cause of a wide

range of critical software bugs and security vulnerabilities [58]. These violations can be

broadly categorized into two groups: spatial and temporal errors.

• Spatial safety: ensures that memory accesses remain within the bounds of the ob-

ject being accessed. Violations include buffer overflows, out-of-bounds reads, and

writes, where a pointer accesses memory beyond its allocated extent.

• Temporal safety: guarantees that pointers only access memory that is still valid,

that is, memory that has neither been deallocated nor reused. Violations include

use-after-free, use-after-return, and double-free bugs.

Both C and C++ are memory-unsafe, meaning they do not provide spatial or temporal

safety. As explained before, temporal safety is far more difficult to ensure without causing

significant overhead [13, 58] and has increasingly become more severe [20, 34].

2.1.1 Use-After-Free

A use-after-free (UAF) occurs when a program continues to access memory through a

pointer after that memory has already been deallocated (freed). This typically arises in

heap-allocated data structures, although this is also possible with stack-allocated data as

well. UAF bugs violate temporal memory safety because the pointer in use no longer

refers to a valid object. Even though the memory might still be mapped and accessible, its

ownership has been relinquished, and future reuse by the program or attacker-controlled

inputs, can lead to corrupted state or control flow hijacking.
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A use-after-free exploit occurs when:

1. Memory is allocated.

2. Later that memory is freed while still having a dangling pointer to it, meaning a

pointer that no longer points to valid memory.

3. An attacker is now able to legally allocate data in said free region.

4. The program attempts to incorrectly reuse the initial references, that are now point-

ing to attacker controlled data.

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3
4 t y p e d e f void (* fp ) ( ) ; // define function pointer type

5 void foo ( void ) { p r i n t f ( " foo \ n " ) ; }
6
7 i n t main ( void ) {
8 fp * f o o _ p t r ;
9

10 f o o _ p t r = ma l lo c ( s i z e o f ( fp ) ) ;
11 * f o o _ p t r = foo ;
12
13 f r e e ( f o o _ p t r ) ; // memory is freed

14
15 (* f o o _ p t r ) ( ) ; // dangling pointer reused

16 re turn 0 ;
17 }

Listing 2.1: Example of use-after-free

Explanation of listing 2.1: After foo_ptr is freed, the memory it points to, becomes

invalid. Reusing foo_ptr to invoke a function, now results either in a call to foo or in a

segmentation fault.

Use-After-Reallocate

While a basic use-after-free may cause a program crash, it becomes significantly more

dangerous when the freed memory is reallocated before reuse. This is known as a use-

after-reallocate. In such cases, an attacker may intentionally trigger memory allocations

(via input for example) that reclaim the previously freed region, populating it with crafted

data (such as fake object layouts or function pointers). This transforms the use-after-free

into a powerful arbitrary read/write or control-flow hijacking primitive. For instance, if a

virtual function pointer is overwritten and then later invoked via a dangling pointer, the
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attacker can redirect execution to code of their choosing, thus bypassing potential sand-

boxing and memory-protection defenses.

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3
4 t y p e d e f void (* fp ) ( ) ; // define function pointer type

5 void foo ( void ) { p r i n t f ( " foo \ n " ) ; }
6 void b a r ( void ) { p r i n t f ( " b a r \ n " ) ; }
7
8 i n t main ( void ) {
9 fp * f o o _ p t r , * b a r _ p t r ;

10
11 f o o _ p t r = ma l lo c ( s i z e o f ( fp ) ) ;
12 * f o o _ p t r = foo ;
13
14 f r e e ( f o o _ p t r ) ; // memory is freed

15 b a r _ p t r = ma l lo c ( s i z e o f ( fp ) ) ; // reallocated to a new pointer

16 * b a r _ p t r = b a r ; // new content written

17
18 (* f o o _ p t r ) ( ) ; // dangling pointer reused

19 re turn 0 ;
20 }

Listing 2.2: Example of use-after-reallocate

Figure 2.1 is a visual representation of the use-after-free example in Listing 2.2: After

foo_ptr is freed, the memory it pointed to becomes invalid. Since we are using the

standard glibc allocator (ptmalloc), which uses a first-fit algorithm and both allocations

are of the same size, the second malloc will always return the now invalid region that

is still pointed to by foo_ptr. When the same memory is reallocated to bar_ptr, the

function pointer inside is overwritten with bar. Reusing foo_ptr to invoke a function

now results in a call to bar, demonstrating the danger of temporal memory violations

when reallocation occurs. In real-world scenarios, such bugs could allow an attacker to

overwrite function pointers with malicious payloads.

12



(a) Allocation of foo_ptr, assigned to foo. (b) foo_ptr becomes a dangling pointer.

(c) Memory is now owned by bar_ptr, as-

signed to bar.

(d) Dereferncing foo_ptr outputs "bar". This

is a temporal memory safety violation.

Figure 2.1: Overview of UAF bug across four steps.

2.1.2 Double-Free

A double-free vulnerability occurs when a program calls free() more than once on the

same memory address. This results in corruption of the program’s internal memory man-

agement data structures, which are used by the allocator to track allocated and freed mem-

ory regions. Such corruption can cause unpredictable behavior, including program crashes

or more severe consequences. In more advanced exploits, a double-free may result in ex-

ecution of arbitrary code [31, 42].

2.2 Intel’s Memory Protection Keys

Intel’s Memory Protection Keys, also known as Protection Keys for Userspace (PKU), is

a hardware feature available on modern x86_64 processors that provides a mechanism for
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enforcing page-based protections, but without requiring modification of the page tables

when an application changes protection domains. It works by dedicating 4 previously

reserved bits in each page table entry (PTE) to encode a protection key (pkey), allowing

memory pages to be grouped into up to 16 protection domains [17].

Access rights for each domain are managed by a special per-core, per-thread register

called PKRU (Protection Key Rights Register). This 32-bit register contains two bits-

Access Disable (AD) and Write Disable (WD) for each of the 16 pkeys, defining whether

read or write access is permitted for a given domain. Since PKRU is a user-accessible

CPU register, it can be updated in user space via two dedicated instructions: RDPKRU

to read and WRPKRU to write. Notably, these instructions are low-latency, requiring no

system calls, no page table changes, no TLB flushes, and no inter-core synchronization.

To initialize and manage protection keys, the Linux kernel (since version 4.6) provides

system calls such as pkey_alloc(), pkey_free(), and pkey_mprotect(), along with

glibc support for runtime access via pkey_get() and pkey_set() [25].

The thread-level granularity, combined with the efficiency of in-process updates given

from MPK, has motivated its adoption in a number of in-process isolation frameworks [6,

33, 54, 60].
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1 # d e f i n e _GNU_SOURCE
2 # i n c l u d e < s t d i o . h>
3 # i n c l u d e < s y s / mman . h>
4 # i n c l u d e < u n i s t d . h>
5
6 i n t main ( void ) {
7 i n t pkey , * buf ;
8 buf = mmap(NULL, g e t p a g e s i z e ( ) , PROT_READ | PROT_WRITE ,

MAP_ANONYMOUS | MAP_PRIVATE , −1 , 0 ) ;
9

10 * buf = 0 x100 ;
11 p r i n t f ( " buf a t add r : %p c o n t a i n s : %d \ n " , buf , * buf ) ;
12
13 pkey = p k e y _ a l l o c ( 0 , 0 ) ;
14 p k e y _ m p r o t e c t ( buf , g e t p a g e s i z e ( ) , PROT_READ | PROT_WRITE , pkey ) ;
15
16 p k e y _ s e t ( pkey , PKEY_DISABLE_ACCESS) ;
17
18 p r i n t f ( " a b o u t t o r e a d buf a g a i n . . . \ n " ) ;
19 /* This will crash, because we have disallowed access. */

20 p r i n t f ( " buf c o n t a i n s : %d \ n " , * buf ) ;
21
22 p k e y _ f r e e ( pkey ) ;
23 }

Listing 2.3: Example of pkeys on Linux

Explanation of Listing 2.3: A memory page is initially allocated using mmap, and

associated with a protection key via pkey_mprotect, and then access is disabled through

that key with pkey_set. Writing and accessing the page at lines 10 and 11 respectively

is allowed, but the subsequent attempt to read from the now protected memory region

at line 20 will cause the program to crash. Demonstrating the enforcement of access

restrictions imposed by the protection key, independent of the initial mmap read/write per-

missions. It is important to note that pkey_alloc and pkey_mprotect are system calls,

while pkey_set (and pkey_get) are user-level functions providing fast, per-thread con-

trol over memory access rights after the initial key assignment.

2.3 LD_PRELOAD

The LD_PRELOAD mechanism in Unix-like operating systems provides a means to se-

lectively load shared libraries before others during the dynamic linking process at run-

time [39]. By setting the LD_PRELOAD environment variable, users can specify a list

of shared libraries that the dynamic linker (ld.so) will load prior to the standard system
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libraries or application-specific libraries. This preloading behavior allows for the inter-

ception and overriding of symbols (functions and variables) provided by other libraries.

Consequently, LD_PRELOAD is frequently employed for debugging, profiling, and the

implementation of custom library wrappers or extensions without requiring modifications

to the target executable [1, 4, 26].

1 # d e f i n e _GNU_SOURCE
2 # i n c l u d e < d l f c n . h>
3 # i n c l u d e < s t d l i b . h>
4
5 t y p e d e f void *(* _ m a l l o c _ t ) ( s i z e _ t ) ;
6 s t a t i c _ m a l l o c _ t _ma l loc = NULL;
7
8 void * ma l l oc ( s i z e _ t s i z e ) {
9 i f ( ! _ma l loc ) {

10 _mal loc = ( _ m a l l o c _ t ) dlsym (RTLD_NEXT, " ma l l oc " ) ;
11 }
12 foo ( ) ;
13
14 void * add r = _mal loc ( s i z e ) ;
15
16 b a r ( add r ) ;
17 re turn add r ;
18 }

Listing 2.4: Example of LD_PRELOAD

Explanation of Listing 2.4: This is a malloc hook where a custom implementation of

the malloc function is defined using the LD_PRELOAD mechanism to intercept dynamic

memory allocations at runtime. By leveraging the dlsym function with the RTLD_NEXT

flag, it retrieves the original malloc implementation from the dynamic linker. Functions

foo and bar could be used for any means desired, such as logging or additional work,

before or after actually calling the real malloc. Calling the original hooked function is

optional. This pattern is commonly used for memory profiling, debugging, or runtime

analysis without modifying the original source code. Notably, the hooked function must

avoid any operation that could itself invoke malloc, directly or indirectly, to prevent

infinite recursion.

2.4 Garbage Collection

Garbage collection (GC) is a form of automatic memory management that inherently ad-

dresses the problem of temporal memory safety. A garbage collector prevents the creation

of dangling pointers, since an object is freed by the collector iff the object is provably
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unreachable from any active part of the program [30, 62]. Thus, use-after-free, use-after-

reallocate, and double-free errors are not possible. However, these safety guarantees come

at the expense of increased memory overhead and runtime performance costs, which vary

depending on the specific GC strategy employed [30].

For languages such as C/C++ the usage of conservative collection is necessary [9,30].

A collector is conservative, when it receives no assistance from the compiler or runtime

system. Consequently, we must treat each contiguous pointer-sized and aligned sequence

of bytes as a possible pointer value, called an ambiguous pointer. It is up to the collector

to distinguish whether an ambiguous pointer is truly a heap pointer. In addition, the

safety of conservative collection is vulnerable due to hidden pointers, which can arise

from compiler optimizations [8] or from pointer arithmetic such as in XOR lists. To avoid

this issue, much like previous work [1,20], in our usage of GC techniques, we will look to

deallocate only memory that has been requested to be freed by the programmer. In other

words, we will be treating the developers’ free calls, as a hint to the memory that should

be deallocated.

2.4.1 Mark-Sweep

Mark-sweep collection is one of the four fundamental approaches to GC schemes [30].

As an indirect collection algorithm, it first determines which objects are still reachable by

the program and then reclaims all others. The algorithm operates in two phases:

1. Mark: Shown in Algorithm 1. Traverse the graph of objects, starting from the

roots (registers, stack, global variables) which might point to heap objects. Mark

and recursively follow each heap object found until there is no object left. By the

end of this process, we will have marked every reachable heap object.

2. Sweep: Shown in Algorithm 2. Parse every object in the heap, any unmarked object

is considered garbage and will be deallocated.
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Algorithm 1: Mark-sweep: marking

1 Function mark_from_roots():
2 initialise(worklist);

3 foreach f ld ∈ roots do
4 re f ←∗ f ld;

5 if re f ̸= null∧¬is_marked(re f ) then
6 set_marked(re f );

7 add(worklist,re f );

8 mark();

9 Function initialise(worklist):
10 worklist← /0;

11 Function mark():
12 while ¬is_empty(worklist) do
13 re f ← remove(worklist) ; // re f is marked

14 foreach f ld ∈ pointers(re f ) do
15 child←∗ f ld;

16 if child ̸= null∧¬is_marked(child) then
17 set_marked(child);

18 add(worklist,child);

Algorithm 2: Mark-sweep: sweeping

1 Function sweep(start, end):
2 scan← start;

3 while scan < end do
4 if is_marked(scan) then
5 unset_marked(scan);

6 else
7 free(scan);

8 scan← next_object(scan);

Figure 2.2 illustrates the state of a mark-sweep garbage collector during the mark

phase. The figure presents a simplified object graph alongside a mark stack, which serves

as the work list for traversal. Objects currently on the stack (gray objects) are scheduled

for further processing, indicating that their references have not yet been fully explored.

Objects that have already been marked and removed from the stack are considered fully

processed (black object), while any object not yet encountered remains unmarked (white
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mark stack

Roots

A B C

Figure 2.2: A simplified object graph during the mark phase of mark-sweep collection.

objects). In this example, nodes A, B, and C have not been reached and are still un-

marked. Once the traversal completes, all reachable objects will have been marked, and

any remaining unmarked object, such as C in this case, will be considered unreachable

and collected as garbage. The algorithm ensures correctness by maintaining an important

invariant: no black (fully processed) object should reference a white (unmarked) one at

any point during the traversal. This guarantees that any object still reachable will eventu-

ally be discovered and marked, preventing accidental collection of live data.
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Chapter 3

Architecture

3.1 Overview

We describe a memory management system composed of a memory allocator and a cus-

tom garbage collector, which operates exclusively within safe blocks. A safe block is a

code region explicitly marked for temporal safety by the programmer. The goal of this

system is not to detect use-after-free bugs, but to prevent them entirely by eliminating the

possibility of dangling pointers within these blocks. Manual free calls inside safe blocks

are treated as deallocation requests or hints. The system will only fulfill such a request if

the targeted object is proven to be unreachable, meaning no remaining references to the

object exist.

All allocations outside safe blocks are handled by the standard allocator and are ex-

cluded from garbage collection. To guarantee temporal safety within safe blocks without

requiring scans of memory used by unsafe code, we must enforce a strict separation be-

tween memory allocated inside safe blocks and that used elsewhere. This isolation ensures

unsafe code cannot hold references to any safe objects. Meaning, that unsafe code has no

read or write permissions to objects allocated in safe blocks.

Our current prototype is limited to uniprocessor (single-threaded) processes. To use

the memory management system, the target application only needs to include a simple

header file provided by our library, which introduces no external dependencies. Develop-

ers specify the desired safe blocks directly in the source code. Importantly, no changes

to the application’s build process are required. The system is integrated at runtime by

loading our library via the LD_PRELOAD mechanism.

Our memory management system is built around the following core components:

1. Heap isolation: A dedicated heap is created for allocations within safe blocks,

while also ensuring memory separation from unsafe code.

2. Metadata bookkeeping: The system tracks metadata for all allocations in the safe
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heap, enabling precise reachability analysis.

3. Garbage collection: A mark-sweep collector is used to reclaim unreachable mem-

ory that has been requested to be freed within the safe heap.

4. Runtime environment: Initializes and coordinates the components above, man-

aging their interactions and ensuring correct enforcement of memory safety within

safe blocks.

Kernel

Stack

Data

Safe Heap

Default Heap

Text

Bookkeeper 
Metadata

(a) During unsafe mode.

Figure 3.1: Comparison of memory layout outside and within a safe block (Part 1).

Figure 3.1 provides a simplified illustration of a process image. In unsafe mode

(shown in subfigure 3.1a), the safe heap is locked and cannot be accessed. In contrast,

during safe mode (when executing inside a safe block, as shown in subfigure 3.1b) the

safe heap is unlocked. At this point, we use the portion of the stack that corresponds to

our safe block along with global variables as roots, in order to initialize the mark stack,

and then apply the mark-sweep algorithm to traverse and process the safe heap.
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(b) During safe block execution.

Figure 3.1: Comparison of memory layout outside and within a safe block (Part 2).
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3.2 Heap Isolation

A straightforward and effective approach to isolating distinct memory regions, used in

similar isolation techniques [6,33], is to create a separate, dedicated heap. This safe heap

is reserved exclusively for memory allocated within safe blocks. Access to it is enforced

using Intel’s Memory Protection Keys, ensuring that any code outside of a safe block

cannot read from or write to this memory region.

Programs using safe blocks operate in one of two modes: safe mode, when executing

within a safe block, and unsafe mode, when outside. In safe mode, all allocations are

handled by the custom memory management system, meaning calls to malloc (direct or

indirect) return pointers into the safe heap. Code in safe mode retains full access to both

the safe heap and the standard (unsafe) heap.

In contrast, when in unsafe mode, allocations are served by the standard allocator,

and the program is prevented from accessing the safe heap. Any attempt to read from or

write to safe memory in unsafe mode results in a segmentation fault, enforcing strict heap

isolation.

3.3 Metadata Bookkeeping

To accurately manage memory within the safe heap, our system maintains metadata for

each safe allocated object. This metadata includes the object’s address, size, and whether

it has been marked for deallocation. The bookkeeping system supports both insertion and

removal of entries: newly allocated objects are added to the metadata store, and once an

object is confirmed unreachable and reclaimed, its entry is removed.

3.4 Garbage Collection

To ensure temporal safety, our system must eliminate the possibility of dangling point-

ers. To achieve this, we implement a custom garbage collector based on the mark-sweep

algorithm.

Garbage collection begins by identifying the set of root references. In our system,

the roots include the portion of the stack used within the current safe block (from the

entry point of the safe block up to the current stack pointer), as well as global variables.

Importantly, global variables are not limited to those in the target binary, but also include

those in all dynamically linked libraries. We do not scan processor registers for root

references, for reasons discussed in Chapter 4. We run the collector once the programmer

has requested enough times for objects to be deallocated.
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Once the roots are identified, the marking phase traverses all reachable objects starting

from these roots. After marking, the sweeping phase examines each object in the safe

heap. An object is considered eligible for reclamation only if it is unreachable and the

program has explicitly requested its deallocation.

Since our collector is conservative, we introduce an additional safeguard: an object

must be identified as unreachable across multiple collection cycles before it is actually

freed. This reduces the risk of prematurely collecting memory due to false negatives in

reachability analysis.

3.5 Runtime environment

The runtime environment is responsible for integrating and orchestrating the various com-

ponents of our memory management system. It ensures proper initialization, coordina-

tion, and enforcement of the system’s temporal safety guarantees.

At startup, the runtime redirects all memory allocation functions (such as malloc

and its variants) to custom handlers. It initializes the isolated safe heap and sets up the

metadata bookkeeping subsystem.

During execution, the runtime performs sanity checks to ensure that memory permis-

sions are correctly applied. It transparently routes allocation requests to the appropriate

heap, directing them to the safe heap when in a safe block, and to the standard heap

otherwise.

The runtime also provides the necessary entry and exit mechanisms for safe blocks,

enabling code to transition between safe and unsafe modes. It communicates with the

bookkeeping system at runtime to register new safe objects. It also informs the garbage

collector about deallocation requests made by the programmer, along with the current

location of the safe stack segment in use by the safe block.

3.6 Threat Model

We consider an attacker model in which the adversary can influence the program’s mem-

ory behavior, specifically by crafting inputs that cause the allocation of memory and ac-

cessing memory that has already been freed. The attacker’s goal is to escalate control

over the program, for instance by hijacking its control flow.

24



Chapter 4

Implementation

In this chapter, we provide a detailed explanation of the concepts introduced at a high level

in Chapter 3. Our system is designed to run using LD_PRELOAD, allowing us to intercept

standard dynamic memory allocation functions such as malloc, free, and related calls.

As a result, our own memory management components cannot directly or indirectly rely

on these functions for dynamic memory allocation.

4.1 Heap Isolation

To maintain two logically and physically separate heaps, we utilize the mimalloc alloca-

tor [16,41]. With mimalloc, standard allocation functions such as malloc and its variants

are internally redirected to use mimalloc’s backend, rather than the default glibc alloca-

tor. For example, a call to malloc(size) is resolved by mimalloc as a call to mi_malloc,

which in turn resolves to mi_heap_malloc(mi_prim_get_default_heap(), size).

Mimalloc exposes an API that allows allocations to be made within a user-defined

heap using functions such as mi_heap_malloc [40]. This is essential for our design: by

explicitly specifying the target heap, we avoid the problem of infinite recursion that would

occur if our memory management system tried to directly use hooked allocation functions

internally. However, indirect calls still remain an issue.

To create a dedicated heap for safe blocks, we first allocate a separate memory region

manually using mmap. Specifically, we reserve a 4 GiB memory page. In order to later be

able to isolate this region, we allocate a protection key using pkey_alloc, and apply it to

the memory region via pkey_mprotect.

Once the memory region is prepared, we create a custom mimalloc heap backed ex-

clusively by this memory. This is done by calling mi_manage_os_memory_ex to register

the memory region with mimalloc, followed by mi_heap_new_in_arena to create a new

heap that operates within the specified arena.
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It is important to ensure proper alignment of the memory region passed to mimalloc.

To meet this requirement, we provide a fixed hint address, 0x300000000000, during the

mmap call to increase the likelihood of obtaining an aligned and non-conflicting region.

4.2 Metadata Bookkeeping

The bookkeeper is responsible for tracking all currently allocated safe objects. To do this,

it relies on custom data structures, which themselves require dynamic memory. These

internal allocations are served using the isolated heap established in the previous step.

Since the primary goal of our current prototype is to validate the core idea rather than

optimize performance, we use a simple linear array to store metadata for each safe object.

The metadata associated with each object includes: a) Heap address (starting pointer of

the object), b) object size, c) flag indicating whether the programmer has requested the

object to be freed, d) counter tracking how many times the object was found unreachable.

During initialization, the bookkeeper is provided with the base address and size of the

safe heap. This information is used not only to perform internal allocations, but also for

bounds checking later during garbage collection.

The bookkeeper exposes a function, bookkeeper_add, which is invoked by the run-

time environment whenever a new safe object is allocated. But also maintains an inter-

nal bookkeeper_del_entry function to delete an entry after it’s been reclaimed by the

garbage collector.

4.3 Garbage Collection

4.3.1 Handling free Requests

Rather than immediately returning memory to the allocator when free(ptr) is called,

our implementation records a “free request” on the corresponding heap object and de-

fers actual deallocation until after a full garbage-collection (GC) cycle. Our function,

bookkeeper_request_free(ptr) performs the following steps: If the given ptr is

NULL, do nothing and simply return – this is done to match standard free semantics.

Otherwise, increment a global counter of pending free requests and locate the object’s en-

try in our metadata, and set its requested_free flag. Lastly, every threshold requests,

invoke trace_roots() followed by sweep() (mark-sweep algorithm).

Running the mark-sweep algorithm is very expensive, ideally we would run it only

when necessary, but delaying it for too long might lead to heap fragmentation and thus

resulting in worse performance [7].
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4.3.2 Root Tracking

Our mark-sweep GC must begin by identifying the set of root pointers-addresses known

to hold references into the safe heap. We handle two categories:

Global and Static Data

To discover all writable data regions in the main program and dynamically loaded li-

braries, we use dl_iterate_phdr. This function will walk through the list of our appli-

cation’s shared objects. It takes as an argument, a user callback which will be called once

for each object, until all shared objects have been processed. For each shared object’s pro-

gram headers we skip segments that are not both loadable (PT_LOAD) and writable (PF_W)

since data could only be found in a loadable and writable segment [36]. We also compute

each segment’s start and end addresses by adding the object’s base load address to the

segment’s virtual address and memory size. Then, we need to align both boundaries to

machine-word (uintptr_t) alignment using clang builtins [38]. In the end, we append

the resulting "region" to an array of global data segments.

It is important that we skip segments that belong to our runtime library, since we do

not want to pollute the roots with our references.

Once all regions are collected, trace_roots() iterates over each region, scanning

the words within for candidate pointers. On later collection cycles, we repeat this process

since we do not know whether a new shared object has been added, or an old one has been

closed.

Stack Data

In addition to global data, we scan a “safe stack” region provided by our runtime envi-

ronment, ranging from safe_stack->top down to safe_stack->bottom. This region

includes local variables and caller-saved registers that may contain heap references. We

avoid manually inspecting each register because, by the time our functions execute, rel-

evant values will have already been pushed onto the stack. Moreover, since we perform

multiple passes to detect unreachable objects, it’s unnecessary to track registers explicitly.

Attempting to do so would also introduce significant architecture-specific complexity.

4.3.3 The Mark Phase

After initializing an empty worklist, trace_roots() pushes every heap object referenced

by words in the global and stack regions onto this worklist. It then enters the main mark

loop:

• Pop an object entry from the worklist.
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• Compute its payload region by stripping any tag bits (UNTAG()) and aligning its

base address up and end address down to uintptr_t boundaries.

• Call mark_from_region(worklist, start, end), which scans each word in

the given memory region. For each word, if its value (addr) falls outside the safe

heap’s address range, ignore it and continue to the next one. Otherwise, search the

metadata allocation table to find which object contains addr. If that object is not

yet marked, mark it and then push it onto the worklist. An object is marked by

setting its low-bit (addr |= 0x1). Since the object’s address is word-aligned, its

least significant bit is never set.

• Repeat until the worklist is empty.

This conservative scan treats any word that happens to fall within a live object’s ad-

dress range as a potential pointer.

4.3.4 The Sweep Phase

Once marking completes, the sweep() function iterates over every entry in the metadata

allocation table:

• If the entry carries the mark bit, clear it (preparing for the next GC cycle).

• Otherwise, if the entry was requested for free and has remained unreachable for at

least a small threshold of GC cycles, it is deemed garbage. We then call mi_free()

on its address and remove the entry from the table.

• Objects not yet requested for free or still within the unreachable threshold have their

unreachable_cnt incremented and are retained.

In summary, our implementation defers frees, conservatively scans both global and

stack roots, uses a simple bit-marked worklist for tracing, and reclaims only objects that

are both unreachable and explicitly requested for freeing. This design keeps the collector

straightforward and avoids any additional per-object pointer metadata.

4.4 Runtime Environment

4.4.1 Runtime Environment Initialization and Teardown

The runtime environment is responsible for orchestrating three core modules: the heap-

isolation, the bookkeeper, and the garbage collector. All of the user-visible allocation

functions (malloc, calloc, realloc, and free) are hooked via a constructor so that

every dynamic allocation passes through our framework.
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Constructor (hook_init)

We annotate hook_init with __attribute__((constructor)), ensuring it executes

before main() and before any user allocations occur. First, to prevent recursion during

startup, we set a global INITIALIZING = true and stash the default mimalloc heap in

tmp_heap; any hooked calls during this phase are forwarded to mi_heap_malloc(tmp_heap,

...), a choice motivated by considerations discussed in Section 4.5. Next, we resolve the

original allocator symbols using dlsym(RTLD_NEXT), retrieving real versions of malloc,

calloc, realloc, and free, which are stored in function pointers. We then create the

safe heap by calling create_safe_heap(&safe_heap) and temporarily grant it read-

/write permissions via pkey_set_perm(..., RDWR). This is necessary step, even though

we are theoretically still in an unsafe state, due to constraints explained in Section 4.5. Af-

terward, we initialize the bookkeeper by invoking bookkeeper_init(safe_heap.heap,

...), which registers the heap’s base address and size. Finally, we complete initializa-

tion by clearing tmp_heap, revoking access to the safe heap with pkey_set_perm(...,

NO_ACCESS), and setting INITIALIZING = false. At this point, all subsequent user al-

locations are routed through our hooks and enforced by the safe-heap’s permission model.

Destructor (hook_exit)

We annotate hook_exit with __attribute__((destructor)), ensuring it executes

automatically when the runtime shared object is unloaded. The teardown process mir-

rors the initialization steps in reverse. First, we re-enable read/write access to the safe

heap (pkey_set_perm(..., RDWR)) to allow final cleanup without triggering protection

faults. If debugging is enabled, we optionally dump internal state via bookkeeper_dump().

Next, we call bookkeeper_exit() to release or flush any remaining metadata. Finally,

we destroy the safe heap using destroy_safe_heap(&safe_heap), which unmaps the

memory region and releases its associated pkey.

Sanity Checks and Safe-Block Delimiters

To ensure that the safe heap protections are never accidentally violated, we implement

two sanity-check routines: safe_block_sanity_check() asserts that, when inside a

designated “safe block,” the heap’s pkey permissions are RDWR and that the stack-bottom

pointer is nonzero. While unsafe_block_sanity_check() ensures that, outside of any

safe block, the safe heap pkey is NO_ACCESS.

Code regions that legitimately allocate or free memory from the safe heap must bracket

these operations with enter_safe_block(...) and exit_safe_block(). When enter-

ing the safe block the current stack’s bottom is stored, in_safe_block = true is set, and
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read/write (RDWR) permissions are granted to the safe heap. When the operation is com-

plete, exiting the safe block resets the stack markers, the in_safe_block flag is cleared,

and access to the safe heap is revoked using pkey_set_perm(..., NO_ACCESS). Ad-

ditionally, within a safe block, functions set_exempt() and unset_exempt() can be

invoked to allow selective allocations to bypass the safe heap. This could be useful for

handling large or special-purpose objects. The important motivation and details for this

exemption mechanism are discussed in Section 4.5.

The functions detailed above are not meant to be used directly by the developer but

via wrappers given in the header file.

Hook Structure: malloc, calloc, realloc, free

Each allocation hook follows this general pattern:

1. Initialization bypass: If INITIALIZING is true, immediately forward to the mi-

malloc functions on tmp_heap and then return.

2. Safe block path: Perform safe_block_sanity_check(). After, if exempt is set,

call the original glibc allocation and then return. Otherwise, allocate in the safe

heap and record the allocation with bookkeeper_add().

3. Unsafe block path: Perform unsafe_block_sanity_check(). Then, temporar-

ily enable RDWR on the safe heap. Call the original glibc allocation. And finally

restore NO_ACCESS. We analyze the necessity of briefly disabling and enabling the

permissions of our safe heap during unsafe allocation in section 4.5.

Free hook and Stack Capture In the free hook, when in a safe block and exempt is

unset, we capture the current stack pointer (via inline assembly on rsp), align it down,

and pass it, along with the pointer being freed, into bookkeeper_request_free(...).

This allows the garbage collector to include the precise stack-root region during the next

GC cycle.

Together, these mechanisms makeup our memory management system.

4.4.2 API: safe_blocks.h

This header exposes the lightweight API that application developers include to bracket

sections of code that annotate safe blocks. All symbols are declared weak, so that simply

including this header in a project does not force additional link-time dependencies. Calls

to any of these functions will only be emitted if the corresponding hook library is actually

loaded at runtime.
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Weak Hook Declarations

• enter_safe_block(void *safe_stack_bottom);

• exit_safe_block(void);

• set_exempt(void);

• unset_exempt(void);

Each of these is marked with __attribute__((weak)), meaning that if the hook

library is not present, the application will still link cleanly. Calls are guarded by a simple

‘if (enter_safe_block) . . . ‘ test so that no undefined-symbol errors occur at runtime.

Safe block Macros The provided header defines three main macros, each serving as a

wrapper around the runtime functions just mentioned. Since they are weak symbols, each

macro checks that its corresponding function/symbol is defined before using it.

ENTER_SAFE_BLOCK Ensures the entry of a safe block. It expands to code that first cap-

tures the caller’s current frame address via __builtin_frame_address(0) [23].

And then, calls enter_safe_block(...) with that address (marking the bottom

of the stack for root scanning).

EXIT_SAFE_BLOCK Ensures the exit of a safe block. It expands to code that calls exit_safe_block

to revoke safe-heap access and clear the stack markers.

EXEMPT(foo ) Wraps an arbitrary statement or block foo so that, set_exempt is called

immediately before foo, and unset_exempt is called immediately after. This al-

lows a single allocation or free to bypass the safe heap logic within a safe block

region. We show and discuss the usage of this macro in section 4.5.

Usage Pattern In client code, one simply writes:

ENTER_SAFE_BLOCK;

// any malloc/calloc/realloc/free here will go through

// the isolated heap, bookkeeper, and GC

EXIT_SAFE_BLOCK;

If a particular call must not use the safe heap, the developer can write:

ENTER_SAFE_BLOCK;

EXEMPT(ptr = malloc(huge_size));

// ptr is allocated via the original glibc malloc, not the safe heap

EXIT_SAFE_BLOCK;
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Link-Time Simplicity Because all APIs are weak and guarded, integrating our runtime

simply requires linking against the shared library with the LD_PRELOAD mechanism. If

the library is missing, the macros compile to no-ops (semantically) and all calls fall back

to the normal allocation routines without error.

This header thus provides a zero-overhead, opt-in mechanism for developers to iso-

late and manage memory within critical sections of their code, while remaining entirely

transparent if the runtime is absent.

4.5 Issues Encountered

4.5.1 Temporary Heap and Permissions During Initialization

During the execution of the hook_init constructor, we perform critical setup for the

runtime environment, including installation of hooks, creation of the safe heap, and ini-

tialization of the bookkeeper module. At this early stage, however, the system is in a

transitional state: our hooks may not be fully installed, internal heap structures may be

incomplete, and proper isolation through permission enforcement has not yet been fully

established.

Despite our intention to avoid dynamic memory usage during this phase, it is difficult

to guarantee that no allocations occur, especially if linked libraries or lower-level runtime

components implicitly call malloc, calloc, or similar routines. To account for this,

we route all allocations during initialization to a temporary heap, provided by mimalloc’s

default heap interface. Since these allocations are internal and not programmer-controlled,

there is no need to register or track them with the bookkeeper.

Additionally, we temporarily grant RDWR permissions to the safe heap region during

initialization. Although execution begins in an unsafe context, mimalloc may need to

manipulate internal heap metadata (e.g., during heap creation or resizing). These updates

can involve direct access to memory within our isolated heap region. Therefore, enabling

read/write access ensures that mimalloc can safely complete its operations during setup

without triggering protection faults.

Once all subsystems are correctly initialized, the runtime revokes all access to the safe

heap (by setting it to NO_ACCESS) and marks the end of the initialization phase by clearing

the INITIALIZING flag.

4.5.2 Permission Toggling in Unsafe Allocation Paths

Even when operating outside of a safe block (unsafe execution context) we still need to

temporarily enable RDWR permissions on the safe heap region. At first glance, this might
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seem unnecessary, as all allocations in this context are routed to the default (unsafe) heap,

and the safe heap is not intended to be involved.

However, mimalloc’s internal behavior introduces complication. Despite targeting a

separate heap, mimalloc may still perform global or shared metadata updates that affect

memory mappings residing within the safe heap’s address space.

To prevent faults during these operations, we temporarily grant RDWR permissions on

the safe heap immediately before calling the underlying allocation function in the unsafe

path. Once the allocation is complete and control returns, we promptly restore the safe

heap’s permissions to NO_ACCESS to maintain isolation guarantees. This brief window of

read/write access is tightly scoped and essential for compatibility with mimalloc’s inter-

nals.

4.5.3 Handling Stateful Library Functions

In our design, any allocation performed inside a ENTER_SAFE_BLOCK. . .EXIT_SAFE_BLOCK

region is placed on the isolated safe heap, and later reclaimed by the garbage collector

only if explicitly requested. However, certain standard library routines like printf, fprintf,

puts, etc., maintain their own internal buffers across multiple calls. If such a “stateful

function” is first invoked inside a safe block, its buffer lives on the safe heap. A later

invocation in an unsafe context will attempt to touch or free that same buffer while the

pages are marked NO_ACCESS, leading to a segmentation fault.

Root Cause

When a stateful function like printf allocates its I/O buffer, it stores the buffer pointer

in one or more internal fields (e.g. stdout->_IO_buf_base). All subsequent calls reuse

that pointer/buffer. Thus, a program such as:

ENTER_SAFE_BLOCK;

printf("first call\n"); // buffer on safe heap

EXIT_SAFE_BLOCK;

printf("second call\n"); // reuses buffer -> segfault

will fault because the second call runs with the safe-heap region protected against

writes.

Methods Considered

1. PURGE on Exit One idea was to explicitly purge a stateful function’s buffers at the

end of each safe block. That is, wrap the call as

PURGE(printf("..."));
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so that upon exit we would (a) free the buffer and then (b) locate and nullify every internal

pointer to it. In principle the collector can chase all root pointers and zero them out,

forcing the library to allocate a fresh buffer on the unsafe heap. However, even for a single

printf instance we observed seven distinct internal pointers in glibc’s data structures.

Zeroing each one at every exit is both complex and potentially expensive, especially if

many stateful calls occur.

2. EXEMPT An alternative is to mark specific call sites so that all allocations they

perform go directly to the unsafe heap. Using a macro such as

EXEMPT(printf("..."));

the collector simply bypasses the safe heap for that invocation and any sub-allocations it

triggers. This avoids pointer chasing and nullifying entirely.

3. Automatic Hooking of Known Stateful Routines A more aggressive approach is to

intercept printf, fprintf, puts, and other known stateful functions (much like we hook

malloc and such), forcing all their allocations into the unsafe heap unconditionally. While

this would relieve developers of per-call annotations, it risks hidden behavior changes if

new or obscure stateful routines are missed.

Final Solution

We chose the EXEMPT pattern as the cleanest trade-off between performance, correctness,

and developer control. It offers simplicity, as the implementation only needs to check

a single exempt flag during allocation hooks without requiring additional logic at safe

block exits. It also delivers strong performance by avoiding costly pointer-chasing or

buffer-zeroing at runtime. Lastly, it provides precision, allowing developers to explicitly

mark only those calls that must not interact with the safe heap.

In practice, one writes:

ENTER_SAFE_BLOCK;

EXEMPT(printf("stateful call\n"));

EXIT_SAFE_BLOCK;

printf("unsafe next call\n");

and the first printf and its internal buffer are allocated on the unsafe heap, avoiding

any later faults. This pattern has proven sufficient for GNU Coreutils’ use of printf/fclose

and similar buffered-I/O routines.

By giving developers explicit but lightweight control over stateful functions, we main-

tain both the safety guarantees of our isolated heap and the performance characteristics of

standard library I/O.
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Chapter 5

Evaluation

In this chapter, we evaluate our prototype across three key dimensions:

• Correctness: We verify that safe blocks function as intended, effectively preventing

use-after-free (UAF) vulnerabilities within protected regions.

• Practicality and Usability: We assess how easily our prototype can be integrated

into existing codebases and whether the adoption process is feasible for real-world

projects.

• Performance: We measure the runtime overhead introduced by our system and ex-

plore how various tunable parameters impact performance.

5.1 Experimental Setup

All evaluations were conducted on an Intel system with a Tiger Lake 11th Gen Intel®

CoreTM i7-1185G7 @ 3.00 GHz CPU [29], equipped with 16 GiB of DDR4 RAM. Ex-

periments were run inside an Arch Linux Docker container, hosted on a system running

LMDE 6 "Faye" with Linux kernel version 6.1. We also used the latest mimalloc version

of 2.2.3-1.

5.2 Correctness

To evaluate correctness, we tested our prototype using several toy examples of use-after-

free (UAF) bugs. In each case, we enclosed the vulnerable code within a safe block to

determine whether our mechanism could successfully prevent the bug. One such example

is shown in Listing 5.1 along with its visual representation in Figure 5.1, which is a

rewritten version of the original buggy code presented in Listing 2.2. As expected, no

UAF occurred during execution.
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Specifically, the object pointed to by foo_ptr was not actually reclaimed by the

free() call at line 16. We ran the program using a debug build of our prototype, which

logs internal information such as the set of references identified during the mark-sweep

process. The logs confirmed that the heap object was still reachable through a reference

on the safe stack, and thus was not collected, demonstrating that our system correctly

prevents UAFs in protected regions.

1 # i n c l u d e " s a f e _ b l o c k s . h "
2 # i n c l u d e < s t d i o . h>
3 # i n c l u d e < s t d l i b . h>
4
5 t y p e d e f void (* fp ) ( ) ; // define function pointer type

6 void foo ( void ) { p r i n t f ( " foo \ n " ) ; }
7 void b a r ( void ) { p r i n t f ( " b a r \ n " ) ; }
8
9 i n t main ( void ) {

10 ENTER_SAFE_BLOCK ;
11 fp * f o o _ p t r , * b a r _ p t r ;
12
13 f o o _ p t r = ma l lo c ( s i z e o f ( fp ) ) ;
14 * f o o _ p t r = foo ;
15
16 f r e e ( f o o _ p t r ) ; // memory is requested to be freed

17 b a r _ p t r = ma l lo c ( s i z e o f ( fp ) ) ;
18 * b a r _ p t r = b a r ;
19
20 (* f o o _ p t r ) ( ) ;
21 EXIT_SAFE_BLOCK ;
22 re turn 0 ;
23 }

Listing 5.1: Example of a use-after-free bug enclosed in a safe block
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(a) Allocation of foo_ptr, assigned to foo. (b) foo_ptr is still the owner of that memory.

(c) Different memory is now owned by

bar_ptr, assigned to bar.

(d) Dereferncing foo_ptr outputs "foo". Our

safe block ensured temporal safety.

Figure 5.1: Overview of how a safe block prevents a UAF bug across four steps.

5.3 Practicality and Usability

To assess the practicality and usability of our prototype in real-world scenarios, we under-

took the integration of safe blocks into a selection of widely-used C projects: nginx [51],

lexbor [10], jq [18], libxml2 [61], llhttp [28], gnu-coreutils [55] and ncat [37].

In each case, we manually inserted our safe blocks in various sections of the source code.

Specifically, functions responsible for processing user input.

Integration at the build level of each project was fully successful, facilitated by the use

of weak symbols and the LD_PRELOAD mechanism. However, runtime integration posed

substantial challenges. The inherent complexity and maturity of these software systems

introduced numerous difficulties, including compatibility issues, subtle runtime behav-

iors, and performance regressions. These challenges indicate that, while the prototype is
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promising in terms of minimal build-time disruption, further engineering effort is required

to ensure seamless operation in production-grade software. A more detailed discussion of

these limitations and potential future improvements is provided in Chapter 6.

Moreover, during our integration efforts, we observed that nearly all of the projects

mentioned above employed their own internal mechanisms for managing temporal mem-

ory safety. While a detailed analysis of each project’s memory management strategy is

beyond the scope of this thesis, it is important to note that these mechanisms frequently

conflicted with the semantics and expectations of our safe blocks. By "design," we refer

to the explicit, project-specific code responsible for managing dynamic memory alloca-

tion, deallocation, and reuse. These incompatibilities posed additional challenges during

integration and highlight a broader issue regarding the coexistence of custom memory

management schemes with external temporal safety frameworks. We elaborate on these

findings and their implications in Chapter 6.

5.4 Performance

5.4.1 Experiment

Given the aforementioned challenges in modifying the source code of large, preexisting

projects, we opted to evaluate performance using a simpler, self-contained example that

exercises our prototype in a meaningful way. This approach enables us to conduct a

controlled comparison without the complexities introduced by integrating with full-scale

software systems.

It is important to note that, in this evaluation, we wrap the entirety of the library usage

within a safe block. In doing so, we effectively apply our temporal safety enforcement

across all memory allocations performed by the library, thereby providing an overestima-

tion of the potential performance overhead introduced by safe blocks.

For this experiment, we selected json-c [32], a lightweight JSON parsing library

written in C that is used in several large projects such as sway [57], thunderbird [3] and

libelf [2]. We developed a simple and small benchmark program using json-c, shown in

Listing 5.2, to measure the performance impact of our system. The program parses the

JSON data of a given file, and then simply prints it out, within a safe block.
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1 # i n c l u d e " s a f e _ b l o c k s . h "
2 # i n c l u d e < j son −c / j s o n . h>
3 # i n c l u d e < s t d i o . h>
4 # i n c l u d e < s t d l i b . h>
5
6 char * r e a d _ f i l e ( char * f i l e n a m e ) { . . . }
7
8 i n t main ( i n t argc , char * a rgv [ ] )
9 {

10 char * d a t a = r e a d _ f i l e ( a rgv [ 1 ] ) ;
11 ENTER_SAFE_BLOCK ;
12 s t r u c t j s o n _ o b j e c t * p a r s e d _ j s o n = j s o n _ t o k e n e r _ p a r s e ( d a t a ) ;
13
14 EXEMPT( p r i n t f ( "%s \ n " , j s o n _ o b j e c t _ t o _ j s o n _ s t r i n g ( p a r s e d _ j s o n ) ) ) ;
15
16 j s o n _ o b j e c t _ p u t ( p a r s e d _ j s o n ) ; // parser cleanup

17 EXIT_SAFE_BLOCK ;
18 f r e e ( d a t a ) ;
19 re turn 0 ;
20 }

Listing 5.2: Simple JSON parser

To quantify the overhead of safe blocks, we selected two large JSON datasets from

Hugging Face [22, 53]. From each dataset, we extracted the first 1 000, 5 000, and 10 000

lines, yielding six test inputs: lt-1k, lt-5k, lt-10k, md-1k, md-5k, and md-10k.

As described in Chapter 4, our runtime offers a configurable threshold parameter: after

every threshold calls to free(), the mark-sweep collector is invoked. To characterize

performance, we tested thresholds of 10, 50, 100, 200, 400, 500, and 1 000 on each input,

and we also measured a baseline build (the unmodified parser without any safe blocks).

Each configuration, including the baseline, was executed ten times to reduce variance,

and we report the mean wall-clock time as recorded by GNU time [56].

5.4.2 Results

Figure 5.2 and Table 5.1 report the absolute runtimes for each configuration. The unmod-

ified baseline parser completes in negligibly small time, whereas enabling safe blocks

incurs substantial overhead. At the most aggressive collection setting (threshold 10),

parsing the largest inputs exceeds 1 000s, even at threshold 1 000, runtimes remain but

close to 15s.

To better quantify the performance impact of safe blocks, Figure 5.3 and Table 5.2
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present the slowdown ratio, defined as

Overhead Ratio =
safeBlocksTime

baselineTime
.

For clarity, we grouped results from the two datasets by input size (e.g., combining lt-1k

and md-1k into a single 1k-line input category). The results reveal substantial overhead:

at the most aggressive garbage-collection setting (threshold 10), the slowdown reaches

approximately 1 014x for 1 000-line inputs and peaks at roughly 57 112x for 10 000-line

inputs. Even at the most relaxed threshold (1 000), the overhead remains non-negligible,

ranging from 10x to 719x depending on input size.
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Figure 5.2: Y-axis is the absolute parsing times (mean wall-clock seconds) for each input

size and the X-axis is the GC threshold. Lower thresholds trigger more frequent collec-

tion, leading to higher runtimes.
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Threshold lt-1k lt-5k lt-10k md-1k md-5k md-10k

Baseline 0.001 0.003 0.010 0.001 0.003 0.030

10 1.042 142.106 1154.781 0.986 151.328 1129.684

50 0.190 26.468 211.139 0.199 30.522 243.117

100 0.091 13.483 103.540 0.091 13.131 107.128

200 0.050 6.466 51.882 0.050 6.460 53.975

400 0.030 3.085 25.964 0.030 3.190 25.443

500 0.031 3.973 29.233 0.020 2.760 22.951

1000 0.010 1.641 14.470 0.010 1.628 14.305

Table 5.1: Mean parsing time (seconds) measured with GNU time, across six inputs and

GC thresholds.
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Figure 5.3: Y-axis is the slowdown ratio (safe blocks vs. baseline) on a logarithmic scale.

And the X-axis is threshold parameter. Each dotted line corresponds to a different input

size (1k, 5k, 10k lines).
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Threshold 1k 5k 10k

10 1 014.0 29 343.4 57 111.6

50 194.5 5 699.0 11 356.4

100 91.0 2 661.4 5 266.7

200 50.0 1 292.6 2 646.4

400 30.0 311.5 1 285.2

500 25.5 673.3 1 304.6

1000 10.0 326.9 719.4

Table 5.2: Average slowdown ratio across GC thresholds and input sizes.

As Table 5.3 illustrates, only a fraction of the free() requests were actually satisfied.

This behavior stems from our mark-sweep policy, which only reclaims objects that are

both explicitly freed and provably unreachable. In our small benchmark programs, many

pointers remain in scope on the safe stack for the duration of execution, so the collector

considers those objects still live and defers their reclamation. In larger or more complex

applications, references would naturally go out of scope or be overwritten, allowing the

collector to satisfy a greater proportion of free requests.

Size md lt

Free Requests Actual Frees Free Requests Actual Frees

1k 2 411 603 2 411 403

5k 12 011 3 003 12 011 2 003

10k 24 011 6 003 24 011 4 003

Table 5.3: Comparison of free() requests and actual frees by input size and dataset.

5.4.3 Final Observations

Overall, our evaluation demonstrates that the current safe blocks prototype incurs pro-

hibitive performance overhead. This outcome is expected, as our primary objective was

to validate the feasibility of the safe blocks abstraction rather than to optimize runtime

efficiency. The literature on garbage collection offers numerous techniques for reducing

overhead, ranging from generational and incremental collectors to parallel and concur-

rent algorithms, that could be adapted to improve performance in future iterations of our

system [30]. This is discussed in more detail in Chapter 6.

42



Chapter 6

Discussion

6.1 Limitations

Despite demonstrating the feasibility of safe blocks, our current prototype has several

important limitations:

6.1.1 Uniprocessor Design

The prototype assumes a uniprocessor execution model and does not support multithreaded

applications. Extending temporal-safety enforcement to concurrent or parallel code would

require careful synchronization of the safe heap, the safe stack, and the garbage collector.

6.1.2 High Runtime Overhead

As shown in Chapter 5, invoking the mark-sweep collector even infrequently imposes

significant performance penalties. While research on advanced garbage-collection tech-

niques (e.g., generational, incremental, and concurrent collectors) provides many paths to

optimization [30], integrating these techniques into our framework remains future work.

6.1.3 Integration Complexity

Each large C codebase typically implements its own memory-management conventions

and temporal-safety mechanisms. These project-specific designs often conflict with the

assumptions of safe blocks, making seamless integration into existing, mature codebases

extremely difficult.
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6.1.4 Data Isolation Boundary

Currently, objects allocated within a safe block remain quarantined in the safe heap and

cannot be safely returned to “unsafe” code. In practice, many applications must transfer

data (e.g., parsed input buffers) from the protected region back into the main program.

Supporting controlled sharing of safe-heap objects across the safe-block boundary will

require a well-defined transfer protocol or copy mechanism.

6.1.5 Hardware Dependency

Our implementation relies on Intel’s Memory Protection Keys (MPK) for enforcing ac-

cess rights. Porting safe blocks to processors without MPK or to other architectures will

necessitate an alternative isolation mechanism.

6.1.6 LD_PRELOAD Approach

While convenient for prototyping, using LD_PRELOAD to interpose on memory al-

locators can break when applications statically link their allocators or employ custom

memory-management libraries. A more robust implementation would involve compiler

intervention (such as an LLVM pass).

6.2 Future Work

6.2.1 Performance Optimization

Improving the runtime performance of our current prototype is a natural direction for fu-

ture work. This includes optimizing the internal data structures used for metadata track-

ing and reachability analysis. For instance, the two-level pointer lookup tree employed by

Boehm-GC [27] provides fast, space-efficient metadata access. Additionally, reducing the

overhead of frequent mark-sweep invocations, either by batching or by lazily triggering

collections, could substantially improve real-world performance.

6.2.2 Concurrent and Parallel Execution

At present, safe blocks are restricted to single-threaded programs. Extending support to

multithreaded applications presents both conceptual and engineering challenges. Not only

must safe blocks coordinate concurrent access to the safe heap and stack, but the garbage

collector itself must become concurrent to avoid long stop-the-world pauses. Because

MPK pkeys use a per-thread PKRU register to manage access rights, this design naturally
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extends to multithreaded contexts, enabling efficient, thread-local enforcement of heap

isolation.

6.2.3 Garbage Collector Integration

Rather than building and maintaining a custom garbage collector, a more pragmatic ap-

proach may be to integrate an existing mature collector such as Boehm-GC [27] into the

safe blocks framework. This would allow us to take advantage of decades of optimization

work, including generational, incremental, and parallel collection techniques. However,

compatibility layers may be needed to enforce isolation semantics and safe block bound-

aries within Boehm’s architecture.

6.2.4 Cross-Boundary Data Transfer

As discussed in Section 6.1, safe blocks currently do not allow values allocated within

the safe heap to be accessed from outside. Many practical applications require returning

processed data from the safe context to the host program. A future version of the system

could support this through deep copying of the "returned" data into the standard heap.

6.2.5 Compiler-Level Instrumentation

While our use of LD_PRELOAD offers a convenient way of using our library, it struggles

in the case of static linking, custom allocators, or nonstandard linking behavior. Further-

more, usage of dynamic hooks can introduce infinite-recursion hazards that complicate

the implementation. A more robust solution would involve building an LLVM compiler

pass that automatically instruments memory allocations and function boundaries to insert

and manage safe blocks.

6.2.6 Evaluation on Real-World Applications

Finally, applying safe blocks to larger, real-world C programs would be an essential step

to evaluate practical utility. This would test not only performance and compatibility, but

also the ability of the model to integrate with various coding styles, memory idioms,

and modular designs. Gathering empirical feedback from such case studies would likely

uncover both previously unseen limitations and new optimization opportunities.
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Chapter 7

Related Work

7.1 Temporal-Safety

MarkUs and Minesweeper [1, 20] are both very close to our work. Both rely on track-

ing dangling pointers. MarkUs using LD_PRELOAD runs programs with the Boehm-GC

collector [27] to eliminate dangling pointers, treating free() calls as hints/requests. By

delaying reclamation until the total size of “to-be-freed” objects exceeds a configurable

fraction of the heap, MarkUs achieves an average overhead of only 1.1x (max 2x) on

SPEC CPU2006. It also unmaps pages for very large objects to avoid large delays. Adapt-

ing Boehm-GC to operate strictly within safe blocks, rather than across the entire process,

could help us achieve even lower overhead. MineSweeper retains freed allocations in a

quarantine. Using linear sweeps of memory, it makes sure that no item is released from

the quarantine unless it has no dangling pointers to it.

7.2 In-Process Isolation

Hardware-assisted in-process isolation techniques leverage Intel’s Memory Protection

Keys to segregate “safe” and “unsafe” heaps. PKRU-Safe [33] and TRust [6] both parti-

tion the address space and use PKRU permissions to enforce temporal-safety policies at

page granularity. Unlike our approach, these systems do not integrate garbage collection,

instead relying on explicit deallocation and fault isolation for safety. Yet they are a good

example of handling two different program contexts.
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Chapter 8

Conclusion

In this work, we introduced safe blocks, a novel mechanism for enforcing temporal

memory safety in C applications by confining security-critical regions to an isolated “safe

heap.” Within this heap, temporal safety is provided by a mark-and-sweep garbage collec-

tor. Our prototype, implemented as an LD_PRELOAD library using mimalloc and enforced

at runtime via MPK, demonstrates that the safe blocks abstraction is both feasible and

worthy of further exploration.

Using a simple benchmark based on the json-c parser and two large JSON datasets,

we measured the performance overhead of safe blocks across various garbage collection

thresholds. Although our current prototype incurs substantial slowdowns, prior work has

shown that garbage collection in C can be highly performant [1,27]; the challenge here is

primarily one of optimization.

However, our integration experiments with large real-world C projects (e.g., nginx,

libxml2, jq) exposed significant obstacles arising from project-specific memory man-

agement conventions. These findings raise important questions about the practicality of

deploying temporal safety defenses in large, mature codebases.

We have identified several key directions for future work, including concurrent and

parallel execution, robust compiler passes for automatic instrumentation, and mechanisms

for controlled data transfer across safe block boundaries. Addressing these areas will be

essential to evolve safe blocks from a proof-of-concept into a production-ready framework

capable of protecting large, multithreaded C applications with acceptable performance.

In summary, safe blocks offer a promising, targeted approach to temporal memory

safety in C. By enabling developers to isolate and protect only the most critical code re-

gions, our abstraction lays the groundwork for practical, incremental adoption of memory

safe practices in memory unsafe systems, striking a balance between security and perfor-

mance.
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