Exploration Of Memory Safety In Rust

Andreas Aristides
Department of Computer Science

University of Cyprus
May 29, 2025

Abstract

This thesis aims to investigate and present the mechanisms that allow for
a high level of memory safety in Rust programs. This includes a high level
overview of the various programming paradigms the language offers such as
ownership and borrowing, as well as a more in-depth analysis of the disassem-
bled binaries the rustc compiler produces.

To do this low level analysis we will be using tools such as objdump and
GDB. We will focus mainly on how they prevent various common bugs found
in other low level languages like C or C++. This includes spatial memory
safety bugs such as integer overflows, buffer overflows, type confusion and
temporal memory safety bugs like dangling pointers and use after free.

We will use simple binary patching/modification using radare2 to insert
these bugs back into our compiled executable, as a way to show how easy it is
to tamper with these memory safety guarantees post compilation if we have
access to the compiled binary.

Finally, we provide a static disassembler and analysis tool for the terminal,
using python and its capstone bindings that will allow us to better analyze

executables where the source code is not available.

Acknowledgements

I would like to express my gratitude to my supervisor Dr. Elias Athanasopoulos,
for giving me the opportunity to work on this project, as well as, providing me
with direction and ideas throughout. Furthermore, I would like to thank Dr. Haris
Volos for providing valuable comments that helped improve and revise this work.
This project has proved instrumental in enhancing my understanding of reverse

engineering, which will surely prove extremely useful in the future.

Contents

1 Introduction

2 Important Rust Concepts

2.1 Immutability As Default Behavior
2.2 Ownership
2.3 Borrowing
2.4 Structs and Methodso
2.5 Traits
2.6 Generics e
2.7 Lifetimes
2.8 Panicking
2.9 Unsafe Rust
3 Methodology
3.1 Compiler and Setup
3.2 Binary Analysis Tooling
3.2.1 Static Analysis o
3.2.2 Dynamic Analysiso
3.3 Compiler Tricks
3.3.1 Function Name Mangling
3.3.2 Function In-lining
3.3.3 Dead Code Elimination
3.3.4 Frame Pointer Omission

4.1 Integer Overflow

4.3

3.3.5 Linking

Spatial Memory Safety

4.2 Buffer Overflowso
4.2.1 Arrays
422 Vectors.o
Type Confusion
4.3.1 Composition Instead of Inheritance
432 Enums
4.3.3 Struct Type Confusion
4.3.4 Trait Objects

15
18
19
20
20
22
22

23
23
23
23
23
24
24
26
27
28
29

5 Temporal Memory Safety

5.1 Dangling Pointers . .
5.2 Use After Free

6 Creating A Rust Disassembler
6.1 Constructing A Control Flow Graph
6.2 Detecting Integer Overflows
6.3 Detecting Index Out Of Bounds
6.4 Array Allocation Detection

6.5 Relocation Validation
7 Future Work
8 Conclusion
9 References

10 Appendix

63
63
65

67
67
69
71
71
72

73

74

75

76

1 Introduction

All programming languages have faced challenges in preventing a variety of issues
regarding memory management and safety. This has resulted in a multitude of
bugs and vulnerabilities, that have been exploited by malicious actors, often leading
to catastrophic consequences. In order to prevent these issues, different groups of
languages have followed certain approaches. In general we notice that there is a
trade off between performance and memory safety.

The first group is lower level systems programming languages, like C/C++ where
all responsibility for ensuring correct memory management and safety falls on the
programmer with certain compiler and OS level features adding additional safeties
to common issues and bugs (stack canaries, address space layout randomization -
ASLR, data execution prevention - DEP, etc). This allows the programmer to have
full control over the program, allowing for more fine-tuned optimizations and better
overall performance but at the same time can introduce a large degree of human
error, often causing a variety of bugs and vulnerabilities.

Another group is languages that run using a heavy runtime environment such as
Java, C# and others that have garbage collectors and other memory management
features like Python and JavaScript. These often perform constant checks for these
types of memory safety violations and automatically handle garbage collection dur-
ing runtime, albeit at a significant performance cost, making them inadequate for
use cases where both performance and memory safety are priorities.

The third group we can identify and will be focusing on, is one which contains
languages that through a strict syntax and compiler level checks can guide the
programmer from completely avoiding such issues. This ensures that with minimal
overhead at runtime most of the common memory safety bugs can be prevented,
allowing a high degree of performance and memory safety.

In this thesis we will be exploring the various security features of one of the
languages belonging to the latter group, Rust. These features are either a result of
the strict syntax enforced by the Rust compiler or by LLVM extending all the way
to the assembly level. This paper aims to provide a solid basis for understanding,
analyzing, reverse engineering, patching and debugging Rust binaries. Such skills are
especially valuable in scenarios where source code is unavailable, yet it is necessary

to determine the presence of bugs without being able to rely on code signatures.

2 Important Rust Concepts

In order to understand the lower level details let’s first go through the various
concepts and features that Rust as a programming language follows. Some of these
features are used to provide enhanced memory safety at runtime and some are

concepts applied at compile time.

2.1 Immutability As Default Behavior

Rust by default will treat all variables as immutable. This means that once assigned
they cannot be modified, unless you explicitly allow them to be modifiable. This
makes the programmer more mindful of when a variable should be mutable or not

and allows for more aggressive optimization.

Listing 1: Immutability

fn main() {
let x = 5;
println! ("x = {x}");

X = 6;

{x}");

println! ("x
}

//this will not even compile

//it will instead throw error[E0384]: cannot assign twice to immutable variable ¢

X(

To create mutable variables you must use the mut keyword during variable declara-

tion.

Listing 2: Mutable variable

fn main() {
let mut x = 5;
println! ("x = {x}");
X = 6;
println! ("x = {x}");
}

Rust also has constants which are slightly different as they must always have a type
annotation and must be initialized during their declaration and be known at compile

time.

Listing 3: Constants

const HI: u32 = 1234;

2.2 Ownership

To prevent the use of a garbage collector, Rust ensures safe memory access using
a compiler level feature called ownership. By defining a strict set of rules that are
enforced at compile time, the programmer does not have to worry about manually
allocating or deallocating memory. Furthermore there is no performance overhead

which is usually associated with having a garbage collector which periodically frees

unused memory or does so in an unpredictable and often inefficient manner.

Ownership rules

1. Each value in Rust has an owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

To ensure this, scalar primitive types will always be copied, creating a new owner

and value. For example when passing a value into a function.

Rust Primitive Types

Type Category

Possible types

Info

Signed integers

i8, i16, i32, i64, i128, isize

(pointer size)

Unsigned inte- | u8, ul6, u32, u64, ul28, |-

gers usize (pointer size)

Floating point £32, 64 -

Character char Unicode scalar values (4
bytes each)

Boolean bool True or false (1 byte)

Unit type () Only possible value is an

empty tuple: ()

This is also the case for non scalar statically allocated types such as arrays, tuples

or structs, which contain only the previously types. In the following code when

the array is passed as an argument, it is simply copied while the original array is
not invalidated and can still be used. If this was C for example you would just be

passing a reference to the original array not a copy.

Listing 4: Array copying

fn main() {
let arr: [u8; 4] = [Oxef, Oxbe, Oxad, Oxdel;
let result = reverse_array(arr);
println! ("Original array: {:?}", arr);
println! ("Result array: {:?}", result)
}
#[inline(never)] // will explain this in a later section
fn reverse_array(mut arr: [u8; 4]) -> [u8; 4] {
arr.reverse();

arr

In the above example we pass a mutable copy, however in the case where a copy is
immutable, the compiler might optimize things and just pass a reference instead.
This can happen even with the lowest level of optimization. Furthermore, in the
above example we are passing a very small array that can fit into a register and
that can be easily passed from one function to another. However, when we expand
the array size, let’s say to 64 bytes, we will notice the use of memcpy function from
glibc to perform the copy. This function takes 3 integer values, usually rsi for the
source address, rdi for the destination address and rdx for the size of the buffer and
copies from one buffer to the other.

In all the above cases we can see how all values with known size at compile time
are copied to ensure that there can only be one owner at a time of each data and
that the values are always in scope.

However, in the case of dynamically allocated objects, which do not have a known
size at compile time and are allocated on the heap different rules apply.

Let’s take for example a Vec (vector) object which is represented by 3 values on
the stack (static) and a variable length buffer on the heap.

In the below example we have a vector vl which has a pointer to the underlying
data on the heap, as well as metadata in the form of length and capacity, which

represent the currently used size and maximum size allocated to the buffer.

Stack

vi

pointer | Oxabcd Heap
length |5 » 0 |30
capacity | 8 1 |24

2 |38

3 (20

4 |51

5

6

7

In this case while we can simply copy the values of the stack, allocating new space
on the heap would be extremely expensive and inefficient. Moreover, a myriad of
bugs can occur if we had two pointers to the same heap data, so we cannot copy
the heap pointer either. In the following example we can see how a second reference
would be created to the same data without copying the heap buffer. Nevertheless
this wouldn’t be valid in Rust as it would violate the ownership rule stating that

each value has only one owner.

10

Stack

vl
pointer | Oxabcd
length |5
capacity | 8

v2
pointer | Oxabed
length |5
capacity | 8

Yy

Heap
0 |30
1 |24
2 |38
3 (20
4 |51
5
6
7

The following code will not compile due to the ownership rules, as we cannot have

both v1 and v2 referencing the same value.

Listing 5: Reference invalidation

let vl = vec![1, 2, 3, 4, 5];

let v2 = v1; //move

println! ("Vector 1 {:7}", v1);
println! ("Vector 2 {:7}", v2);

This is simply done by invalidating the original v1 reference after we assign v2
v1l, meaning it cannot be used further unless we reassign a value to vl. What

invalidated is essentially the pointer stored in vl. The assignment of v2 = vl

18

18

called as a move in Rust terminology, as it not only performs a shallow copy of the

data structure but invalidates the original value.

Below we illustrate how moving works:

11

Stack

Heap

3 0 |30

1 |24

2 |38

” 3 |20

pointer | Oxabcd 4 |5
length |5 S
capacity | 8 6
7

In addition, reassigning a dynamic object will immediately free up the memory used

by the previous object to prevent any memory leaks.

Listing 6: Reassignment

let mut v1 = vec![1, 2, 3, 4, 5];
vl = vec![30, 24, 38, 20, 51];//original vl goes out of scope

12

Heap

Stack

V1

pointer | Oxabcd

length |5

capacity | 5

Heap
> 0 |30
1 (24
2 |38
3 |20
4 |51

Memory cleanup happens every time a variable goes out of scope or is reassigned.
Freeing memory is done through the allocator’s drop function, which you can think
of as equivalent to the free function in C. This function is called automatically for

all types which either implement the Drop trait or have parts of it that do.

13

In case we needed to create a full/deep copy of the vector, the Vec struct imple-

ments a method called clone which does exactly that. For example:

Listing 7: Clone

let vl = vec![1, 2, 3, 4, 5];
let v2 = vl.clone();
println! ("{:7}", v1);
println! ("{:7}", v2);

If we inspected the memory through gdb we would see this layout:

Stack

Heap
» » 0 |1
pointer | Oxabcd 12
length |5 2 |3
capacity | 5 3 |4
4 |5

Heap
2 » 0 |1
pointer | Oxbcde 12
length |5 2|3
capacity | 5 3 |4
4 |5

The behavior of copying statically allocated values or moving and dropping dynamic
ones also applies when passing such values as function parameters. This means that
when we pass a dynamically sized value to a function the original value is invalidated
and ownership of that value is transferred to the function and needs to be returned
to the caller function if we wish to use it again. This also means that a value local

to a function must be returned or will be automatically dropped.

14

2.3 Borrowing

Now knowing the rules of ownership, let’s say we wanted a function that calculates

the difference between the capacity and the length of a Vec. For example:

Listing 8: Function with move

fn main() {
let v: Vec<u64> = vec![1,2,3,4,5];
let (remaining, v) = calculate_available_space(v);
println! ("{:?}", v);

println! ("{}", remaining);

fn calculate_available_space(v: Vec<u64>) -> (usize, Vec<u64>){

return (v.capacity() - v.len(), v)

As you can see above we have to move the value, essentially invalidating v in main
and then we have to pass it back when returning from the function. This is quite
problematic as it complicates such a simple operation and also performs unnecessary
moving.

To solve this issue we can provide a reference to the vector instead of moving
it into function scope. This essentially means we pass a pointer which points back
to the original value without invalidating it or taking ownership. This reference is

guaranteed at compile time to be pointing at a value.

Listing 9: Function with reference

fn main() {
let v: Vec<u64> = vec![1,2,3,4,5];
let remaining = calculate_available_space(&v); //prefix object to
reference with &
println! ("{:?}", v);

println! ("{}", remaining);

fn calculate_available_space(v: &Vec<u64>) -> usize{
return v.capacity() - v.len()

}// only reference goes out of scope here, original vector is not dropped

This action of creating a reference to an object is called borrowing. Borrowed
values cannot be modified. Attempting to modify a borrowed value using a normal

reference results in compile time errors. Example:

15

Listing 10: Borrowed value modification

fn main() {
let v: Vec<u64> = vec![1,2,3,4,5];
push_values (&v) ;

println! ("{:?7}", v);

fn push_values(v: &Vec<u64>){
v.push(6); //‘v¢ is a ‘&‘ reference, so the data it refers to cannot be
borrowed as mutable

v.push(7);

References function the same as other variables, meaning they are immutable by
default and in addition the values they refer to cannot be modified. To change this

we can alter the above code in the following way:

Listing 11: Mutable references

fn main() {
//the original vale must be mutable to create a mutable reference
let mut v: Vec<u64> = vec![1,2,3,4,5];
push_values(&mut v); //creating a mutable reference

println! ("{:?}", v);

fn push_values(v: &mut Vec<u64>){
v.push(6);//automatic dereferencing

(*v) .push(7);//manual dereferencing

You will notice that we have to define the vector as mutable if we need to create
a mutable reference for it. Moreover, we define a mutable reference to something
using the combination of the ampersand operator and the mut keyword (&mut).

Something to note is that despite v inside push_values being a reference and not
the actual Vec object we can still call the methods defined for Vec on it. We can
also use a C style syntax to manually dereference the mutable reference using the
dereference (*) operator but that is discouraged.

Another relevant point to mention is that we can only have one mutable reference

to a value at a time. For example this code will not compile:

16

Listing 12: Double mutable references

fn main() {
let mut v: Vec<u64> = vec![1,2,3,4,5];
let refl = &mut v;
let ref2 = &mut v;
println! ("{:7}", refl);
println! ("{:7}", ref2);

}//error[E0499] : cannot borrow ‘v‘ as mutable more than once at a time

In addition to the above restriction, Rust also prevents the concurrent existence of

one mutable reference and immutable references. The following will not compile:

Listing 13: Concurrent mutable anb immutable reference

fn main() {
let mut v: Vec<u64> = vec![1,2,3,4,5];
let refl & v;
let ref2 &mut v;
println! ("{:7}", refl);
println! ("{:7}", ref2);

}// error[E0502]: cannot borrow ‘v‘ as mutable because it is also borrowed as

immutable

One big difference between a borrowed value and ownership, is that the reference
only lives until the last time it is used. For example, we can still perform the above

operation if we just reorder a few lines of code.

Listing 14: Correct ordering of references

fn main() {
let mut v: Vec<u64> = vec![1,2,3,4,5];
let refil & v;
let ref2 = & v; //second immutable reference - valid

println! ("{:?} {:7}", refl, ref2);//refl and ref2 only live up until here

let ref3 = &mut v;
println! ("{:?}", ref3);//ref3 lives up until here

Borrowing Rules

1. You can only have one mutable reference or multiple immutable references

concurrently.

2. References must always point to a valid value.

17

In addition to normal references, Rust provides a way to reference a contiguous
part of memory in a collection (array, Vec etc). This gives more flexibility to the
programmer when we want to either have a read only view of a specific part of the

collection or a mutable reference to it.

Listing 15: Slices

let mut v = vec![0, 1, 2, 3, 4, 5];

let slice = &v[2..4]; //immutable slice
println! ("Slice: {:7}", slice);

let slice = &mut v[0..5]; //mutable slice
slice[0] = 10;

println! ("Mutable slice: {:7}", slice);

2.4 Structs and Methods

There are many cases where we want to group related data fields under one variable,
one way to do this is to define a tuple. However, to have a reproducible data structure
we can define our own custom types using the struct keyword.

For example if we wanted to define the position of a point in 3D space we can

create a struct for that:

Listing 16: Struct definition

struct Position {
x: f64,
y: f64,
z: f64
}
fn main O{
let posl = Position{x: 1.0, y: 2.0, z: 3.0};
println! ("{}, {}, {}", posl.x, posl.y, posl.z);
}

This not only allows us to group related data but define useful functionality for the
type by defining methods. Methods are just functions that are implemented for a
specific type and have a reference to that type as its first parameter. This happens
with the self keyword and the reference/borrow operator (&).

For example using the Position struct from before we can define method imple-

mentations as such:

Listing 17: Method definition

18

impl Position {
// calculate the distance between 2 positions
fn distance(&self, other: &Position) —-> f64 {
((self.x - other.x).powi(2) +
(self.y - other.y).powi(2) +
(self.z - other.z).powi(2)).sqrt()

3

fn main O{

let posl Position{x: 1.0, y: 2.0, z: 3.0};
let pos2 = Position{x: 1.0, y: 2.0, z: 5.0};
println! ("{}", posl.distance(&pos2));

2.5 Traits

As we have seen before we can define custom types using the struct keyword and
have them implement methods specific to that type. However, what if we wanted to
have shared behavior between multiple different types. In most languages we would
use the concept of inheritance to achieve that.

Rust does this a bit differently, instead of allowing types to inherit from a parent
type it allows types to implement specific traits. For example a type can implement
traits to define the behavior of arithmetic operators (4, —, *, /, %). You can also
implement traits for formatting your output using Display and Debug traits. We
also have traits for defining comparison and sort order.

Moreover, traits such as Copy determine if a type is to be moved or copied and
traits such as Drop (defines behavior when a type goes out of scope) or Deref (defines
if a type can be dereferenced). In addition the implicit Sized trait defines if a type
has a constant size known at compile time.

Other than these built-in traits we can also define our own traits to share behavior

across types. For example:

Listing 18: Custom Trait Definition

trait Animal {
fn speak(&self);
}
struct Dog;
impl Animal for Dog {
fn speak(&self) {
println! ("Woof!");

19

3
struct Cat;
impl Animal for Cat {

fn speak(&self) {

println! ("Meow!");

Here we define a trait Animal and every type that implements this trait must define

speak().

2.6 Generics

Rust provides a concept called generics, which allows parameterizing types in structs,
enums, and functions. This enables defining a single, flexible implementation that
can operate on multiple types. Additionally, generic type parameters can be re-

stricted to types that implement specific traits, this is known as a trait bound.

Listing 19: Defining a generic struct

struct Point<T> {
x: T,
y: T,
z: T,

2.7 Lifetimes

As we know each value in Rust has a scope, in Rust terms this is called a lifetime.
Let’s say we define a function that returns a borrowed reference, in order to ensure
that there are no dangling references or memory leaks in our program, the compiler
needs to know how long that reference can live for.

Let’s take the following example, we have a struct which represents a Cube. We
want a function that takes 2 borrowed references and returns the biggest one by

using their volume.

Listing 20: Returning Borrowed Reference

fn biggest(a: &Cube, b: &Cube)->&Cube{
let volume_a = a.height * a.width * a.depth;
let volume_b = b.height * b.width * b.depth;
if volume_a > volume_b {

return a;

20

} else {

return b;

If you are unfamiliar with Rust, this seems fine. However, when attempting to com-
pile this we get an error: "this function’s return type contains a borrowed
value, but the signature does not say whether it is borrowed from ‘a‘
‘b”. Why does this happen?

If you consider the borrowing rules described previously, this becomes more clear.
The borrow checker keeps track of all references to a value and their scopes, so it
can determine when that value can be dropped. Because our function can return
two separate references it cannot know which one is returned and so it cannot guess
how long that reference will live to know when to drop the value.

To solve this issue Rust uses the concept of lifetimes. By specifying the scope of
our two references as relative to the returned reference scope it can correctly validate
which references a value has and drop that value when all references and its owner
goes out of scope. To do this Rust has a special symbol called the lifetime specifier

> which is followed by a lifetime name. Let’s use it to fix our above function:

Listing 21: Lifetime Specifiers

fn biggest<’l>(a: &’1 Cube , b: &’1 Cube)->&’1 Cube{ ... }

This codes compiles and now the borrow checker knows that the returned reference
will live as long as the passed parameters. Because a and b use the same lifetime
specifier, it also restricts returned reference to the shortest lifetime of the two. To

demonstrate:

Listing 22: Shortest Lifetime

let a: Cube = Cube::new(1,1,1);
let biggest: &Cube;

{
let b: Cube = Cube::new(2,2,2);
biggest = Cube::biggest(&a, &b);
println! ("{:7}", biggest); //valid
}

let a: Cube = Cube::new(1,1,1);
let biggest: &Cube;
{
let b: Cube = Cube::new(2,2,2);

21

or

biggest = Cube::biggest(&a, &b);

}
println! ("{:?}", biggest); //invalid

As you can see the second example is invalid, because b does not live as long as a.
This helps avoid the case where b is returned but is out of scope, which would lead

to a dangling pointer and potentially a use after free.

2.8 Panicking

When we have an error that our program cannot recover from safely, Rust performs
what is called a panic. This can be thought as an exception in other languages. In
simple terms, Rust will call a function that will display a message and then perform
certain actions depending on how the binary is compiled. Panics can either cause
an abort, meaning just exiting the program or they can perform what is called an
unwind.

Unwinding means going through the stack and releasing memory before exiting.
More often than not, the most optimal way is to just abort and then the operating
system will handle memory cleanup. However, as Rust is a systems programming
language the second option is very useful for embedded systems or for creating your
own operating systems as well. We will see panicking in more detail through our

various examples.

2.9 Unsafe Rust

Because of the strict rules Rust has it often prevents valid, memory safe code from
being compiled. To circumvent this Rust provides a block level keyword unsafe
which allows specific operations inside that block which are not allowed in normal
Rust.

These operations are:

1. Dereference a raw pointer.

2. Call an unsafe function or method.

3. Access or modify a mutable static variable.
4. Implement an unsafe trait.

5. Access fields of a union.

In this paper we will avoid using unsafe keyword and focus more on compiled Rust

code which is considered safe.

22

3 Methodology

Now that we have a basic understanding of Rust’s memory safety features and other
constructs, let’s go through the tooling and setup that we will be using to analyze
our binaries. Furthermore, we will go through some compiler tips to ease our binary

analysis.

3.1 Compiler and Setup

We will be using the rustc compiler which at the time of writing I have worked
with version 1.81.0, however some of the basic features of Rust are unlikely to
change. What will most likely differ in other versions is the underlying optimizations
performed by LLVM and some compiler level attributes as described in [1]. All

binaries will be compiled on a x86-64 linux machine, in ELF format.

Listing 23: Check your version

$ rustc --version --verbose

rustc 1.81.0 (eeb90cdal 2024-09-04)

binary: rustc

commit-hash: eeb90cdal969383£56a2637cbd3037bdf598841c
commit-date: 2024-09-04

host: x86_64-unknown-linux-gnu

release: 1.81.0

LLVM version: 18.1.7

3.2 Binary Analysis Tooling
3.2.1 Static Analysis

For static analysis we will be using readelf, objdump, radare2 (needs to be installed)
and we will develop a simple recursive disassembler using the Capstone bindings for

python [11] and lief [12] to highlight some of our points.

3.2.2 Dynamic Analysis

For dynamic analysis, we will mainly use gdb to add simple software breakpoints
and easily monitor the different memory segments. You should also add this line
in your .gdbinit config file to disable ASLR inside gdb, making our analysis more

consistent between runs.

Listing 24: .gdbinit disable ASLR

23

set disable-randomization on

3.3 Compiler Tricks

While analyzing I have noticed that the compiler performs certain optimizations
and dead code elimination even on the lowest optimization level. To prevent this
there are a few compiler attributes or arguments that you can use to prevent this

behavior.

3.3.1 Function Name Mangling

To prevent name conflicts during the linking process, the compiler will encode func-
tion names in a unique way, which follows a C++ like name mangling scheme by
default (referred to as legacy). However, other types of name mangling are available
such as v0 or hashed.

This can be controlled with the following compiler flag:

Listing 25: Example: using v0 name mangling

$ rustc -C symbol-mangling-version=v0 test.rs

For our analysis name mangling can become an issue, as searching for the functions
in static or dynamic analysis tools becomes more difficult. One way to prevent this

we can mark certain important functions with the compiler attribute # [no_mangle].

Listing 26: Example: no_mangle attribute

fn print_mangled() {
println! ("Hello from print_mangled");
}
#[no_mangle]
fn print_demangled (){
println! ("Hello from demangled");

Viewing the disassembly:

Listing 27: Example: function names

$ rustc name_mangling.rs --emit=obj -o name_mangling.o

$ objdump -d name_mangling.o

0000000000000000 <_ZN13name_manglingl3print_mangled17h471bd33cc92611fakE>
0000000000000000 <print_demangled>

24

0000000000000000 <_ZN13name_mangling4maini7hllafaa7b09a718e2E>
0000000000000000 <main>

Notice how there are two main functions. One defined in our module name_mangling
and the default main called by the Rust runtime.

As such we cannot use #[no_mangle] on main as it would conflict with the Rust
main.

We can use rustfilt to demangle a name to view how it can be referred to when

analysing in programs such as gdb (for example when setting breakpoints).

Listing 28: Demangled names using rustfilt

$ rustfilt _ZNi3name_mangling4maini7hilafaa7b09a718e2E

name_mangling: :main

We can see that functions are namespaced using the source file name. However,
when using the no_mangle attribute, the namespace is removed.
In my experience, using —demangle attribute for nm or objdump is good enough

for most cases.

Listing 29: Demangled names using nm

$ nm --demangle=rust name_mangling.o | grep -i ’T ’
0000000000000000 T main
0000000000000000 T print_demangled

0000000000000000 t name_mangling::print_mangled

0000000000000000 t name_mangling::main

0000000000000000 T std::rt::lang_start

0000000000000000 t std::rt::lang start::{{closure}}

0000000000000000 t std::sys::backtrace::__rust_begin_short_backtrace
0000000000000000 t core::fmt::Arguments: :new_const

0000000000000000 t core: :ops::function: :FnOnce: :call_once{{vtable.shim}}
0000000000000000 t core::ops::function::FnOnce::call_once
0000000000000000 t core::ops::function::FnOnce::call_once
0000000000000000 t core: :ptr::drop_in_place<std::rt::lang start<()>::{{closure}}>
0000000000000000 t <() as std::process::Termination>: :report

We can also refer to the demangled name when setting breakpoints in gdb. You
can also set your disassembly to use demangled names by adding this line in your
.gdbinit:

Listing 30: Disassembly config

set print asm-demangle on

25

3.3.2 Function In-lining

Sometimes as programmers, we write functions that perform a very small task trying
to keep or code nicely organized and simple. However, on the binary level this can
be costly as using a function means that we have to go through the whole calling
convention process. This can lead to worse performance on the final executable.

To prevent this the Rust optimizer will instead of calling a function, do what
is called an inline, meaning eliminating the whole calling process and embedding
the callee function’s code in the caller’s. This happens without any knowledge from
the programmer on the compiler level using some heuristics to determine which
functions are suitable for inlining.

Because of this, when analyzing I noticed that some functions were completely
eliminated making disassembly and analysis impossible, as we cannot differentiate
the inlined code without prior knowledge of what it contains.

To avoid and control this behavior we can use the #[inline(never)] or
#[inline(always)] function attribute.

Take for example this Rust snippet:

Listing 31: Example: inline always attribute

#[inline(always)]
fn add3(a: i64, b: i64, c: i64) -> i64{

return a + b + c;

fn main() {
println! ("{}", add3(1, 2, 3));

When compiled this produces an executable without the add3 function. Which you

can check with the following command:

Listing 32: Inlined add3 fnction

$ nm --demangle=rust function_inlining | grep add3

If we instead add the attribute #[inline(never)] we get this output:

Listing 33: Non-inlined add3 fnction

$ nm --demangle=rust function_inlining | grep add3
0000000000007020 t function_inlining::add3

26

3.3.3 Dead Code Elimination

By default Rust will perform dead code elimination when compiling. This means
that unused functions will be eliminated from the final executable. The default
behavior during the compilation process when detecting these unused names is to

throw a warning. For example this code:

Listing 34: Example: Unused function

fn add3(a: u64, b: ub4, c: ubd)->ub4d{
return a + b + c;

}
fn mul3(a: u64, b: ub4, c: ubd)->ub4{

return a * b * c;

}

fn main(){
add3(1,2,3);

}

Will throw a warning but will compile.

Listing 35: Example: inline always attribute

$ rustc unused.rs
warning: function ‘mul3‘ is never used
--> unused.rs:5:4
I
5 | fn mul3(a: u6b4, b: u64, c: ubd)->ubi4{

note: ‘#[warn(dead_code)]‘ on by default

warning: 1 warning emitted

To prevent this warning we can add #! [allow(unused)] linter hint at the start of
our file, this will silence all warnings but will still perform unused variable and dead
code elimination.

Instead, we can use the 1link-dead-code codegen flag when compiling:

Listing 36: Example: link-dead-code

$ rustc unused.rs -C link-dead-code=y
$ nm --demangle=rust unused | grep mul3
0000000000012d00 T unused: :mul3

This will prevent elimination of unused functions from the final executable.

27

3.3.4 Frame Pointer Omission

Another optimization is the omission of usage of the frame pointer or base pointer
(rbp register in our case). This happens in many languages and essentially removes
the need of establishing a frame pointer and then having to save that pointer on
the stack of the callee each time a new function is called. This happens because
we already know the stack frame size at compile time and as such we can index all
values on a stack frame using the stack pointer.

For example, let’s examine the disassembly of the previous add3 function:

Listing 37: Frame pointer omission

0000000000006d10 <frame_pointer_omission::add3>:

6d10: 48 83 ec 18 sub $0x18,%rsp
6d14: 48 89 54 24 08 mov rdx,0x8()rsp)
6d19: 48 01 £f7 add %rsi,frdi

6dlc: 48 89 7c 24 10 mov %rdi,0x10 (%rsp)
6d52: 48 83 c4 18 add $0x18, %rsp
6d56: c3 ret

We can see that the stack frame is established by subtracting from the stack pointer
(rsp) and then destroyed by adding to the stack pointer (rsp), because the stack
grows downwards. We also can see that we move values on the frame using an offset
from the rsp.

This optimization depends on the target architecture for the binary, however it

can be controlled using the Codegen flag force-frame-pointers=y.

Listing 38: Force frame pointers

$ rustc frame_pointer_omission.rs -C force-frame-pointers=y

This is the disassembly for the same function with the inclusion of frame pointer:

Listing 39: Frame pointer inclusion

0000000000006d30 <frame_pointer_omission::add3>:

6d430: 55 push Yrbp

6d31: 48 89 eb mov %rsp,Arbp

6d34: 48 83 ec 20 sub $0x20,%rsp

6d38: 48 89 55 f0 mov /rdx,-0x10(%rbp)
6d72: 48 83 c4 20 add $0x20, %irsp

6d76: 5d pop %rbp

28

6d77: c3 ret

As we can see we have the addition of a push and pop instruction for the rbp, but the
rest of the stack is still initialized with a sub and destroyed with an add instruction.
We can also see that the variables on the stack are indexed from the rbp register

instead.

3.3.5 Linking

By default Rust will statically link the standard library, creating large binaries. This
also happens at the highest optimization level. You can control this with various
flags, (such as codegen flag prefer-dynamic) to dynamically link the libraries. This
requires additional configuration though, so to keep things simple we will avoid doing

that for this paper.

29

4 Spatial Memory Safety

In this section, we will explore how Rust prevents common spatial memory safety
bugs and vulnerabilities. Additionally, we will attempt to reintroduce some of these
issues through binary patching, both to validate our assumptions and to demonstrate
the potential impact of lacking a strong low-level understanding of the programs we
rely on.

For the sake of displaying common control flow bugs, we will use the following
function which spawns a shell as our target function. We will have to compile our
code with dead code elimination disabled so this function is always included in the
final binary. Normally you would have to have arbitrary read bugs to construct a
ROP chain to spawn a shell or have NX-bit disabled.

Listing 40: Spawn shell Function

use std::arch::asm;

fn spawn_shell() {
/* execve syscall
rax = 0x3b

rdi = pointer to null terminated command string

rsi = argv (set to null)
rdx = env values (set to null)
*/
unsafe {
asm! (
"xor rsi, rsi",
"push rsi", //push null value to stack
"mov rdi, 0x68732f2f6e69622f", // /bin//sh
"push rdi", // push command on stack
"push rsp",
"pop rdi", //get a pointer to command string
"mov rax, 0x000000000000003b", //syscall code 0x3b
"syscall",
options(noreturn)
Uk
}

4.1 Integer Overflow

As we know, when performing operations between two integers, such as addition,

subtraction, multiplication or signed division there is a possibility that we exceed

30

the highest value allowed by that type. This causes the result to wrap around, often
causing inconsistent and dangerous behavior. This is called an integer overflow.

Let’s take for example this simple function:

Listing 41: Integer Overflow

#[inline (never)]

fn add(a: u8, b: u8) -> u8{
return a + b;

}

fn main(){

println! ("{}", add(255, 2));

Here we perform a simple addition for two u8 values which can contain values
between 0-255. However, adding 255 and 2 the result will overflow the allowed

values for the u8 type. When we run the program we get the following result:

Listing 42: Integer Overflow panic

$./addition

thread ’main’ panicked at addition.rs:3:12:

attempt to add with overflow

note: run with ‘RUST_BACKTRACE=1‘ environment variable to display a backtrace

As we can see we caused a panic, meaning our program terminated abnormally. We
can expand the stack trace by running with RUST_BACKTRACE=1:

Listing 43: Integer Overflow panic with stack trace

$ RUST_BACKTRACE=1 ./addition

thread ’main’ panicked at addition.rs:3:12:

attempt to add with overflow

stack backtrace:

0: rust_begin_unwind

at /rustc/eeb90cdal969383£56a2637cbd3037bdf598841c/library/std/src/panicking.rs
:665:5

1: core::panicking::panic_fmt

at /rustc/eeb90cdal969383£56a2637cbd3037bdf598841c/library/core/src/panicking.rs
:74:14

2: core::panicking::panic_const::panic_const_add_overflow

at /rustc/eeb90cdal1969383£56a2637cbd3037bdf598841c/library/core/src/panicking.rs
:181:21

3: addition::add

4: addition::main

31

5: core::ops::function: :FnOnce::call_once
note: Some details are omitted, run with ‘RUST_BACKTRACE=full‘ for a verbose

backtrace.

We can see that from our add (), a function called panic_const_add_overflow() is
being called, which is responsible for sending an overflow panic message to the next
function panic_fmt (). This function is responsible for formatting the message and
displaying it. Then, because it was compiled with the unwind option by default, we
will actually perform an unwind, which we can see using RUST_BACKTRACE=FULL.
Unwinding is beyond our scope.

Now let’s examine the assembly for our add function and try to understand the

underlying logic:

Listing 44: Integer Overflow Assembly

$ objdump --disassemble=’addition::add’ --demangle=rust addition
0000000000007020 <addition::add>:

7027: 00 c8 add %cl,%al # addition of two args

7029: 88 44 24 07 mov %al,0x7(%rsp) # save result on stack
702d: 0f 92 cO setb Jal

7030: a8 01 test $0x1,%al

7032: 75 06 jne 703a <addition::add+0xla>

7039: c3 ret

703a: 48 8d 3d 47 c5 04 00 lea 0x4cb47(Yrip),%rdi # 53588 <
__do_global_dtors_aux_fini_array_entry+0x38>

7041: 48 8d 05 08 fd ff ff lea -0x2f8(Y%rip),%rax # 6d50 <core::panicking::
panic_const::panic_const_add_overflow>

7048: ff dO call #%rax

Let’s first understand how an integer overflow works in x86. In x86, we have a
special register called eflags (32-bit) or rflags (64-bit) where each bit represents a
specific state of the cpu at any given point. When performing an integer addition,
subtraction, multiplication or signed division (idiv), if the resulting operation causes
an overflow, the special flags register will set the carry flag (CF).

For example this is the status of the eflags register after running instruction
0x7027:

Listing 45: GDB eflags inspect

(gdb) i r
eflags 0x213 [CF AF IF]

32

As you can see this indicates that there was an overflow as the carry flag is set.
Then the next instruction setb %al (set if below), will set the least significant bit
of the al register to 1 if the CF is set.

Then, it runs test $0x1, %al which performs a bitwise AND between the two
operands and then instead of storing the result it sets specific flags. First of all, it
resets flags in the rflags register that are responsible for arithmetic ops. Secondly,
it sets the zero flag (ZF) if the result of the AND operation is 0. In simpler terms,
if ZF=0 it means that an overflow has occured and ZF=1, means that no overflow

has occured. In our program, we can see that ZF is not set.

Listing 46: GDB ZF

eflags 0x202 [IF]

In the next instruction jne, if ZF is not set we jump to the specified address. The
next three instructions are such that we resolve to the correct panic function and
call it. In addition to the above, if our add was between two signed integers we
would be using instructions such as seto (set if overflow), which interact with the
OF (overflow flag) for signed overflows instead.

Furthermore, other than addition overflow checks, the Rust compiler can emit
checks for subtraction, multiplication and signed division. Signed division is a special
case where overflow can only occur in a very specific set of operands. One operand
must the the minimum allowed value of that integer type and the other operand
must be -1. This happens because in 2’s complement representation integers are
asymmetric, meaning there is one more value allowed in the negative range than the
positive range.

In summary the triplet of instructions seth, test and jne allows us to test if an
integer overflow has occured and panic. However, this might not be the most de-
sirable way to deal with overflows as it causes our program to crash in an implicit
manner which the programmer might be unaware of. In higher levels of optimiza-
tion, starting from 01 integer overflow checks are opt-in, meaning they are disabled
by default. This can be controlled using Codegen flag overflow-checks, to re-
enable this behavior even on higher optimization levels. In addition, rust provides
different methods to handle overflowing behavior in different ways (checked_add (),
wrapping add(), overflowing add(), saturating add()).

If we were to maliciously modify this program’s overflow checks it would be easy
to do so by patching test $0x1, %al to test $0x0, %al essentially always setting the
ZF and bypassing the jne instruction.

For example, I patched the previous function using radare2 as such:

33

Listing 47: Test Instruction Bypass

0000000000007020 <addition::add>:

7027: 00 c8 add %cl,%al

7029: 88 44 24 07 mov %4al,0x7 (%rsp)

702d: 0f 92 cO setb Yal

7030: a8 00 test $0x0,%al # result will always be 0
7032: 75 06 jne 703a <addition::add+0xla>

$./addition_bypass
1

Another way to patch the program to bypass the check is to create a trampoline in
the panic section that redirects control flow back to normal if an overflow occurs. It
is also useful to note that for each addition the Rust compiler will emit a seperate
panic section. So we could overwrite each of those sections with the corresponding

trampoline jump back to normal control flow.

Listing 48: Panic Trampoline

0000000000007020 <addition::add>:

702d: 0f 92 cO setb Jal

7030: a8 01 test $0x1,%al
7032: 75 06 jne 703a <addition::add+0xla>
703a: eb £f8 jmp 7034 <addition::add+0x14> # go back

$./addition_trampoline
1

We can also patch the panic section of the function to call whatever function we
want. If I include the spawn_shell function mentioned previously in the binary and

patch this instruction with the 5 byte call instruction such as seen in this example:

Listing 49: Control Flow Redirection

0000000000016510 <addition::add>:

16517: 00 c8 add %hecl,hal

16519: 88 44 24 07 mov %al,0x7 (Yrsp)
1651d: 0Of 92 cO setb Jal

34

16520: a8 01 test $0x1,%al
16522: 75 06 jne 1652a <addition::add+0Oxla>

1652a: e8 41 ff ff ff call 16470 <addition::spawn_shell>

An integer overflow will now allow me to spawn a shell:

Listing 50: New Shell

$./addition_control_flow
$ exit # new shell
$

4.2 Buffer Overflows

Another class of bugs that appears commonly in lower level languages is a buffer
overflow. This bug allows an attacker to arbitrarily write (buffer overwrite) data
outside of a defined buffer.

This happens usually when an attacker is allowed to access a buffer using an
index without first validating if the index is within the limits of buffer. If the
buffer is on the stack, that can be used to overwrite the return address and take
over control flow of a program. An attacker can also overwrite important data,
such as a pointer that the function might attempt to use and cause a segmentation
fault. Moreover, although less frequently used nowadays you can overwrite the value
holding a function pointer allowing an attacker to change control flow. If the buffer
is on the heap we can overwrite important values, corrupting the memory allocator

in different ways and causing a variety of other bugs.

4.2.1 Arrays

In languages like C, when accessing an element in an array what actually happens
is just simple pointer arithmetic. By taking the pointer where the array starts from
and adding the index number times the size of the elements the array is holding we
find the element we are looking for. This memory access however, does not have

any validations by itself.

target address = base pointer + (index X sizeof(7"))

To prevent this, Rust adds a simple validation, that has minimal performance over-
head at compile time. When this validation fails, the program will panic and crash.

Let’s take this program as an example:

35

Listing 51: Changing Value At Index

use std::env;

fn main() {
let args: Vec<_> = env::args().collect();
if args.len() < 2 {
println! ("Missing index argument");
return;
}

array_changing(args[1] .parse() .unwrap()) ;

fn array_changing(index: usize) {

let arr: [u64; 8] = [

Oxaaaaaaaaaaaaaaaa, Oxbbbbbbbbbbbbbbbb,

Oxaaaaaaaaaaaaaaaa, Oxbbbbbbbbbbbbbbbb,

Oxaaaaaaaaaaaaaaaa, Oxbbbbbbbbbbbbbbbb,

Oxaaaaaaaaaaaaaaaa, Oxbbbbbbbbbbbbbbbb] ;

let new_arr = change_element(arr, index, Oxcccccccccccccccec);
println! ("{:?}", arr);

println! ("{:?}", new_arr);

fn change_element (mut array: [u64; 8], index: usize, new_value: u64) -> [u64;8]{
array[index] = new_value;

return array;

Inspecting the disassembly for change_element reveals a few interesting things.

Listing 52: Disassembly change_element

000000000000b0b0 <array_index::change_element>:

bOb4: 48 89 Oc 24 mov frcx, (Yrsp) #4th argument (new_value)

bOb8: 48 89 54 24 08 mov 4rdx,0x8(Yrsp) #3rd argument (index)

bObd: 48 89 74 24 10 mov %4rsi,0x10(%rsp) #2nd argument (pointer to the
param array - mutable)

bOc2: 48 89 7c 24 18 mov Jrdi,0x18(%rsp) #lst argument (pointer to the
new_arr)

bOc7: 48 89 7c 24 20 mov %4rdi,0x20(%rsp) # another new_arr pointer

bOcc: 48 83 fa 08 cmp $0x8,%rdx # performs a simple subtraction (rdx

- 0x8) and modifies rflags
b0d0: 73 2b jae bOfd <array_index::change_element+0x4d> # jump

if above or equal to panic

36

b0d2: 48 8b 74 24 10 mov 0x10(%rsp),%rsi # source pointer for memcpy (

param array)

b0d7: 48 8b 7c 24 18 mov 0x18(Yrsp),%rdi # destination pointer for
memcpy (new_arr)

bOdc: 48 8b 44 24 08 mov 0x8(Yrsp),%rax # get the index to change

bOel: 48 8b Oc 24 mov (%rsp),%krcx # new_value

bOe5: 48 89 Oc c6 mov %hrex, (hrsi,%rax,8) # set the value in array to
new_value

b0e9: ba 40 00 00 00 mov $0x40,%edx # number of bytes to copy for
memcpy (64 bytes)

bOee: e8 65 af ff ff call 6058 <memcpy@plt>

b0f3: 48 8b 44 24 20 mov 0x20(%rsp),%rax # new_arr pointer

b0f8: 48 83 c4 28 add $0x28,%rsp # deallocate stack

bOfc: «c3 ret

panic section of function

bOfd: 48 8b 7c 24 08 mov 0x8 (%rsp) ,%rdi

b102: 48 8d 15 57 d4 04 00 lea 0x4d457 (%rip),’%rdx # 58560 <
__do_global_dtors_aux_fini_array_entry+0Oxl1a8>

b109: 48 8d 05 30 c7 ff ff lea -0x38d0(%rip),’%rax # 7840 <core::
panicking: :panic_bounds_check>

b110: Dbe 08 00 00 00 mov $0x8, hesi

b115: £f 4O call xYrax

As we can see, based on the linux x86 ABI calling convention, our function takes 4
integer arguments despite only having 3 of them defined. This happens because an
array of integers follows a copy behavior instead of a move. So the calling function
creates two buffers on its stack to hold the arrays and passes a pointer for each of
those buffers.

This means that inside the stack frame of array_changing() if we inspect the

memory after finishing calling the function we can see 3 seperate buffers.

e The original immutable buffer arr.
e A mutable copy of the original buffer, passed by reference in rsi.
e A new buffer (new_arr), containing the data after modification passed by ref-

erence in rdi.

Listing 53: array_changing Stack Frame After change_element

(gdb) x/49gx $rsp+0x8

original array

Ox7fffff££d9d8: Oxaaaaaaaaaaaaaaaa Oxbbbbbbbbbbbbbbbb
Ox7fffffffd9e8: Oxaaaaaaaaaaaaaaaa Oxbbbbbbbbbbbbbbbb

37

Ox7fffff£f£fd9f8: Oxaaaaaaaaaaaaaaaa Oxbbbbbbbbbbbbbbbb
Ox7fffffffda08: Oxaaaaaaaaaaaaaaaa Oxbbbbbbbbbbbbbbbb
new array

Ox7fffffffdal8: Oxaaaaaaaaaaaaaaaa Oxbbbbbbbbbbbbbbbb
Ox7fffffffda28: Oxaaaaaaaaaaaaaaaa Oxbbbbbbbbbbbbbbbb
Ox7fffffffda38: Oxaaaaaaaaaaaaaaaa Oxccccccccececccccecc
Ox7fffffffdad8: Oxaaaaaaaaaaaaaaaa Oxbbbbbbbbbbbbbbbb
mutable copy of original array

Ox7fffffffdaf8: Oxaaaaaaaaaaaaaaaa Oxbbbbbbbbbbbbbbbb
O0x7fffff£f£fdb08: Oxaaaaaaaaaaaaaaaa Oxbbbbbbbbbbbbbbbb
Ox7fffffffdb18: Oxaaaaaaaaaaaaaaaa Oxccccccccccccccece
Ox7fffff£f£fdb28: Oxaaaaaaaaaaaaaaaa Oxbbbbbbbbbbbbbbbb

It is notable that the same way integer overflows have a panic section to setup a
panic call, when accessing array elements by index we also have a panic call to
core: :panicking: :panic_bounds_check(). When I select an index equal to 8 or

greater my function will panic and unwind.

Listing 54: Panic Index Out Of Bounds

$ RUST_BACKTRACE=1 ./array_index 8

thread ’main’ panicked at array_index.rs:21:5:
index out of bounds: the len is 8 but the index is 8

stack backtrace:

0: rust_begin_unwind

/rustc/eeb90cdal1969383£56a2637cbd3037bdf598841c/library/std/src/panicking.rs
:665:5

at

1: core::panicking::panic_fmt
at /rustc/eeb90cdal1969383£56a2637cbd3037bdf598841c/library/core/src/panicking.rs
:74:14
2: core::panicking: :panic_bounds_check
/rustc/eeb90cdal1969383£56a2637cbd3037bdf598841c/library/core/src/panicking.rs
:1276:5

at

array_index::change_element
array_index::array_changing

array_index::main

D O W

core::ops::function: :FnOnce::call_once
note: Some details are omitted, run with ‘RUST_BACKTRACE=full‘ for a verbose

backtrace.

Let’s examine the disassembly of change_element () to better understand the bounds

check added by the compiler.

Listing 55: Array Overflow Bounds Check

38

bOcc: 48 83 fa 08 cmp $0x8,%rdx # performs a simple subtraction (rdx
- 0x8) and modifies rflags
b0d0: 73 2b jae bOfd <array_index::change_element+0x4d> # if
CF is set don’t jump

As a safety feature Rust does not allow us to pass function arguments or locals
using unsized types. As such, we always know the array size at compile time. This
allows the function to perform a very simple bounds check using 2 instructions.
First a compare, subtracting from the provided index the size of the buffer, if index
is smaller than the buffer size then the carry flag (CF) is set. Then a jae (jump
if above or equal) instruction to the panic section, which jumps if CF = 0, which
means that index was greater than the buffer so no unsigned overflow occured when
rdx - 0x8.

Same as the integer overflow example, we can easily patch the static check of
cmp by modifying the last byte which specifies the length of the buffer. We should
be careful to use an instruction with the exact same length as the existing one, or
we can cause the rest of the instructions to fall out of alignment or be overwritten.

Before we patch this instruction, something significant to note is that it uses the
83 opcode. This opcode allows comparison between a 64-bit register and an 8-bit
immediate value. To perform this operation, the CPU uses sign extension, which
means it extends the 8-bit immediate value to 64 bits by filling the higher bits with
the most significant bit of the immediate.

This means that if we were to replace the 0x8 buffer length with 0xff, this would
sign extend to Oxffffffffffffffff. This means we would get the maximum 64-bit
value, so basically any index provided would be within bounds and that would allow
us to arbitrarily write 64-bits anywhere after the start of the array.

If the cmp was with a different opcode that doesn’t perform sign extension we
would be more restricted, however in most cases if we set the immediate value to it’s
maximum allowed value we can still overwrite a multitude of values on the stack,
including the return address.

This is what our cmp instruction looks like after patching:

Listing 56: Comparison patching

bOcc: 48 83 fa ff cmp 0 0 i o Y A o
b0d0: 73 2b jae b0fd <array_index::change_element+0x4d>

This means that we can now easily cause a segfault if we provide an index that

causes our write to fall outside the mapped stack segment.

39

Listing 57: Segfault By Write To Unallocated Space

$./array_index_patched 100000

Segmentation fault (core dumped)

Now to demonstrate the potential of a control flow attack, let’s modify our existing
code to include spawn_shell () function from the start of this chapter and also allow
the user to pass the value to overwrite the array with. This will allow us to modify

the return address to point back to spawn_shell.

Listing 58: Control Flow Overwrite

use std::env;

use std::arch::asm;
#[allow(unused)]

fn spawn_shell() {

}
fn main() {
let args: Vec<_> = env::args().collect();

array_changing(args[1] .parse() .unwrap(), args[2].parse() .unwrap());

fn array_changing(index: usize, new_value: u64) {

let arr: [u64; 8] = [

Oxaaaaaaaaaaaaaaaa, Oxbbbbbbbbbbbbbbbb,
Oxaaaaaaaaaaaaaaaa, Oxbbbbbbbbbbbbbbbb,
Oxaaaaaaaaaaaaaaaa, Oxbbbbbbbbbbbbbbbb,
Oxaaaaaaaaaaaaaaaa, Oxbbbbbbbbbbbbbbbb] ;

let new_arr = change_element(arr, index, new_value);
println! ("{:?}", arr);

println! ("{:?}", new_arr);

fn change_element (mut array: [u64; 8], index: usize, new_value: u64) -> [u64;8]{
array[index] = new_value;

return array;

After compiling we patch the bounds check again with 0xff, then we need to run
the executable in gdb with ASLR off as described previously. Then we need to figure
out these things:

1. The location of the stored return pointer (rip) in array_changing() that we

40

will overwrite. To do this simply set a breakpoint to that function and inspect

the stack frame using info frame.

2. The value of rsi that is passed into change element (), as that is the pointer

to the start of the buffer that we are overwriting.

3. How many 8 byte words are between the two above addresses to determine

our index.

4. The address of spawn_shell() to determine our new_value.

In my specific case this is what i get:
1. Saved registers: rip at 0x7fffffffdad8

2. rsi = Ox7fffffffda78

(saved rip - rsi) _ Ox7fffffffdad8 — Ox7fffffffda78 0x60
0x8 B 0x8 ~ 0x8

= 0xc =12

4. 0x555555569a90 = 93824992320144
This is the final result when I run the program with these inputs:

Listing 59: Buffer Overflow Exploit

(gdb) r 12 93824992320144

Starting program: ./array_modify_patched 12 93824992320144

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[12297829382473034410, 13527612320720337851, 12297829382473034410,
13527612320720337851, 12297829382473034410, 13527612320720337851,
12297829382473034410, 13527612320720337851]

[12297829382473034410, 13527612320720337851, 12297829382473034410,
13527612320720337851, 12297829382473034410, 13527612320720337851,
12297829382473034410, 13527612320720337851]

process 51176 is executing new program: /bin/sh

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

$

Another case to consider is when we are using a mutable reference in Rust to pass

the array to our function. For example:

41

Listing 60: Passing Array Using A Mutable Reference

fn array_changing(index: usize, new_value: u64) {
let arr: [u64; 8] = [...];
let mut new_arr = arr;

change_element (&mut new_arr, index, new_value);

fn change_element(array: &mut[u64; 8], index: usize, new_value: u64){

array[index] = new_value;

The main difference in our above code is that array_changing() does not need to
create a third array, to pass as a mutable copy to change_element (). Instead it will
move the 8 immediate values onto the stack and then just do a single memcpy at
let mut new arr = arr;, to pass a mutable reference to change element(). To

confirm:

Listing 61: Array Instantiation

0000000000015d80 <array_modify_by_ref::array_changing>:
15d80: 48 81 ec 58 01 00 00 sub $0x158,%rsp # allocate stack space

15d487: 48 89 7c 24 08 mov %rdi,0x8(%rsp) # 1st arg, index
15d8c: 48 89 74 24 10 mov %rsi,0x10(%rsp) # 2nd arg, new_value
15d91: 48 b8 aa aa aa aa aa aa aa aa movabs $0xaaaaaaaaaaaaaaaa,’rax
15d9b: 48 89 44 24 18 mov Yrax,0x18(Y%rsp) # arr start

. # skipping ahead
15dfa: 48 b8 bb bb bb bb bb bb bb bb movabs $0xbbbbbbbbbbbbbbbb,%rax

15e04: 48 89 44 24 50 mov %rax,0x50(%rsp) # arr end

15e09: 48 8d 7c 24 58 lea 0x58(Yrsp),%rdi # get new_arr pointer
15e0e: 48 8d 74 24 18 lea 0x18(Yrsp),%rsi # get arr pointer

15e13: ba 40 00 00 00 mov $0x40,%edx # number of bytes to copy = 64
15e18: e8 3b 92 ff ff call £058 <memcpy@plt>

15e1d: 48 8b 74 24 08 mov 0x8(%rsp) ,%rsi # 2nd arg index

15e22: 48 8b 54 24 10 mov 0x10(%rsp),%rdx # 3rd arg new_vale

15e27: 48 8d 7c 24 58 lea 0x58(%rsp),%rdi # 1st arg new_arr pointer
15e2c: e8 1f 01 00 00 call 15f50 <array_modify_by_ref::change_element>

As we are using a reference to an array with fixed size, the compiler knows the size of

the array. This is more evident when inspecting the disassembly of change_element:

Listing 62: Fixed Size Reference

0000000000015£50 <array_modify_by_ref::change_element>:

42

156f50: 48 83 ec 18 sub $0x18,%rsp # 24 byte stack

156f54: 48 89 3c 24 mov 4rdi, (Yrsp) # 1st arg mutable ref

156f58: 48 89 74 24 08 mov %4rsi,0x8(%rsp) # 2nd arg index

15f5d: 48 89 54 24 10 mov %4rdx,0x10(%rsp) # 3rd arg new_value

15£62: 48 83 fe 08 cmp $0x8,%rsi # known array length of 8

15f66: 73 17 jae 156£f7f <array_modify_by_ref::change_element+0
x2f>

15f68: 48 8b 04 24 mov (%rsp) ,%rax

15f6¢c: 48 8b 4c 24 08 mov 0x8 (%rsp) , hrex

15f71: 48 8b 54 24 10 mov 0x10 (%rsp) ,%rdx

15f76: 48 89 14 c8 mov %rdx, (hrax,%rcx,8) # set new_value

16f7a: 48 83 c4 18 add $0x18,%rsp

15f7e: c3 ret

16f7f: 48 8b 7c 24 08 mov 0x8(Yrsp),%rdi # prepare and panic

This is essentially the same case as our previous example, but without creating and
passing a copy. We could easily patch cmp $0x8, Y%rsi using Oxff as before and it
would perform the same.

A slightly more interesting case arises when we use a slice instead. With a slice
the compiler cannot know the limits of the array that are being passed in at compile

time, so how does it check this? Let’s take the same example and modify it slightly:

Listing 63: Passing A Mutable Slice

fn change_element (array: &mut[u64], index: usize, new_value: u64){

array[index] = new_value;

The only difference is in the parameter type, it is now defined as a mutable slice. Our
reference doesn’t have a known size at compile time. Let’s inspect the disassembly

of change _element():

Listing 64: Mutable Slice Disassembly

0000000000015£50 <array_modify_by_slice::change_element>:

156f50: 48 83 ec 28 sub $0x28,%rsp # 40 byte stack

15f54: 48 89 7c 24 08 mov %4rdi,0x8(Yrsp) # lst arg pointer to slice

15f59: 48 89 74 24 10 mov %rsi,0x10(%rsp) # 2nd arg slice length

15f5e: 48 89 54 24 18 mov Y%rdx,0x18(Y%rsp) # 3rd arg index

156f63: 48 89 4c 24 20 mov Jrcx,0x20(%rsp) # 4th arg new_value

156f68: 48 39 f2 cmp /rsi,j%rdx # compare index to slice length (rdx
- rsi)

15f6b: 73 18 jae 15£85 <array_modify_by_slice::change_element+0

x35> # panic jump

43

156f6d: 48 8b 44 24 08 mov 0x8(Yrsp) ,%rax

15£72: 48 8b 4c 24 18 mov 0x18 (%rsp) ,%rex

16£77: 48 8b 54 24 20 mov 0x20 (%rsp) ,%rdx

15f7c: 48 89 14 c8 mov Y%rdx, (bhrax,%hrcx,8) # set new_value
15£80: 48 83 c4 28 add $0x28,%rsp

15£84: c3 ret

156f85: 48 8b 74 24 10 mov 0x10(%rsp),%rsi # prepare and panic

As we can see, it passes in the length of the slice as an additional argument. Then
instead of performing a compare against an immediate it will just perform a compare
against that value to determine overflow. The instruction cmp %rsi, %rdxis 3 bytes
long, this means that we are more restricted if we wanted to patch it to create a buffer
overflow bug. Luckily, we can use another 3 byte compare for that: cmp $0xff,
%d1l. This will allow us to perform an overflow as long as the least significant byte

of our index is less than OxfI.

Listing 65: Patching Dynamic cmp

15£68: 80 fa ff cmp $0xff,%dl # patched instruction

$./array_modify_by_slice_patched 255 0

thread ’main’ panicked at array_modify_by_slice.rs:43:5:

index out of bounds: the len is 8 but the index is 255

note: run with ‘RUST_BACKTRACE=1‘ environment variable to display a backtrace
$./array_modify_by_slice_patched 256 0

[12297829382473034410, ...]

[12297829382473034410, ...]

Let’s perform a simple buffer overflow exploit to overwrite the return address to our

shellcode function following these steps:

1. Determine the address of the slice to new_arr.
2. Determine the address of the return value on array_changing().
3. Determine the index required to overwrite return value.

4. Use spawn_shell() address as our new_value.
In my case:
1. rdi = Ox7fff£f££d9b8

2. Saved registers: rip at 0Ox7fffffffdab8

3.

saved rip —array address Ox7fffffffdab8 — Ox7fffffffdob8
0x8 B 0x8 B

32

44

4. spawn_shell () address = 0x555555569a90 = 93824992320144

Listing 66: Slice Buffer Overflow Exploit

(gdb) r 32 93824992320144

Starting program: ./array_modify_by_slice_patched 32 93824992320144
[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1lib/x86_64-linux-gnu/libthread_db.so.1".
[12297829382473034410, ...]

[12297829382473034410, ...]

process 18520 is executing new program: /bin/sh

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib/x86_64-linux-gnu/libthread_db.so.1".
$ exit #new shell

4.2.2 Vectors

A very common data structure that is used in Rust is Vec (vector). As described
in the beginning, a vector is simply a dynamic array whose elements are stored on
the heap. A vector will keep 3 values on the stack to control the dynamic array, the
current length, the capacity and the pointer to the heap allocated buffer. Strings
are also vectors but specifically for UTF-8 characters.

There are a few different ways to allocate a vector, each with different impli-
cations on the underlying data structures and initialization code. For example the
new function creates an empty vector that does not perform any heap allocation but

instead just initializes the data structure in a specific way.

Listing 67: New Vector

pub const fn new() -> Self
00000000000073e0 <alloc::vec::Vec<T>::new>:

73e0: 48 89 f8 mov %rdi,Yrax # pointer to Vec struct

73e3: 48 c7 07 00 00 00 00 movqg $0x0, (%rdi) # capacity = O

73ea: b9 08 00 00 00 mov $0x8, %hecx

73ef: 48 89 4f 08 mov %4rcx,0x8()rdi) # heap pointer = 0x8 (used by
allocator)

73f3: 48 c7 47 10 00 00 00 movg $0x0,0x10(%rdi) # set length to O
73fa: 00
73fb: <c3 ret

By using new() to initialize a vector and then modifying it by a push() call, I was
able to determine that a Vec struct is stored in this order on the stack using 64-bit

integers: capacity, heap pointer, length. As we can see this function does not really

45

perform any heap allocation yet. This is the sample code used to analyze this be-

havior:

Listing 68: New Vector + Modification

fn main() {
let mut vl = create_empty_vector();
v1l.push(Oxaaaaaaaaaaaaaaaa) ;
println! ("{:?}", v1);
println! ("{}", vi.len());
println! ("{}", vl.capacity());

fn create_empty_vector() -> Vec<u64>{
let v: Vec<u64> = Vec::new();

return v;

Now let’s examine how it allocates and pushes a single value via push():

Listing 69: Vector Push

pub fn push(&mut self, value: T)
0000000000007b90 <alloc::vec: :Vec<T,A>::push>:

Tbac: 48 8b 00 mov (Yrax) ,%irax # get capacity

Tobaf: 48 89 44 24 20 mov %rax,0x20(%rsp) # store capacity

Tbb4: 48 8b 44 24 18 mov 0x18(%rsp),’%rax # get length

7bb9: 48 3b 44 24 20 cmp 0x20(Y%rsp),%rax # compare capacity - length

Tbbe: 74 02 je Tbc2 <alloc::vec::Vec<T,A>::push+0x32> # if ZF
=1, jump to allocation

7bcO: eb Oc jmp Tbce <alloc::vec::Vec<T,A>::push+0x3e> # else
just push value

Tbc2: 48 8b 7c 24 08 mov 0x8(Yrsp),%rdi # pointer to vec

Tbc7: e8 14 0e 00 00 call 89e0 <alloc::raw_vec::RawVec<T,A>::grow_one> #

allocator function, increase capacity by 1

Tbcc: eb 3e jmp 7cOc <alloc::vec: :Vec<T,A>::push+0x7c>

Tbce: 48 8b 44 24 08 mov 0x8(Yrsp),%rax # get pointer to vec

Tbd3: 48 8b 4c 24 18 mov 0x18(%rsp),’%rcx # get length

7bd8: 48 8b 74 24 10 mov 0x10(%rsp),%rsi # new value

7bdd: 48 8b 50 08 mov 0x8(%rax),%rdx # get heap pointer

Tbel: 48 89 34 ca mov %rsi, (hrdx,%rcx,8) # set new value at (rdx +
rcx * 8)

Tbe5: 48 83 c1 01 add $0x1,%rcx # increase length

Tbe9: 48 89 48 10 mov %hrcx,0x10(%rax) # set new length

46

Tbed: 48 83 c4 38 add $0x38,%rsp # deallocate
Tbfl: c3 ret

7cOc: eb cO jmp Tbce <alloc::vec::Vec<T,A>::push+0x3e> #

continue normal execution

From the method signature we can deduce that the push() function is very simple.
It takes a pointer to the vec structure and the new value to push. However, when
pushing a new value it must first determine if there is enough space allocated for
the value to be pushed. This is done by comparing the length to the capacity, if
they are equal (ZF = 1) it will call to the allocator to extend the capacity held by
the vector.

Now that we understand the basics of this data structure, let’s see how Rust
prevents us from accessing elements outside of its buffer. To do so let’s consider the
same type of program as the one with the array. We define a vector with some fixed

values and give the user the ability to modify any value by an index they specify.

Listing 70: Vector Modify

fn print_vector(v: &Vec<u64>){
println! ("Elements: {:7}", v);
println! ("Capacity: {}", v.capacity());
println! ("Heap Pointer: {:p}", v.as_ptr(Q));
println! ("Length: {}", v.len());

fn main O
let args: Vec<_> = env::args().collect();
if args.len() < 3 {
println! ("Missing arguments") ;
return;
}
let mut v: Vec<u64> = vec![...];
change_element (&mut v, args[1].parse() .unwrap(), args[2].parse() .unwrap())

print_vector (&v);

fn change_element(v: &mut Vec<u64>, index: usize, value: u64) {

v[index] = value;

Let’s run the program and examine how it deals with an out of bounds access:

47

Listing 71: Vector Out of Bounds Access

$ RUST_BACKTRACE=1 ./vector_modify 10 0

thread ’main’ panicked at vector_modify.rs:45:6:

index out of bounds: the len is 8 but the index is 10

stack backtrace:

0: rust_begin_unwind

at /rustc/eeb90cdal1969383£56a2637cbd3037bdf598841c/library/std/src/panicking.rs
:665:5

1: core::panicking::panic_fmt

at /rustc/eeb90cdal969383£56a2637cbd3037bdf598841c/library/core/src/panicking.rs
:74:14

2: core::panicking: :panic_bounds_check

at /rustc/eeb90cdal1969383£56a2637cbd3037bdf598841c/library/core/src/panicking.rs

:276:5

<usize as core::slice::index::SliceIndex<[T]>>::index_mut

<alloc::vec::Vec<T,A> as core::ops::index::IndexMut<I>>::index_mut

vector_modify::change_element

vector_modify: :main

N o o W

core::ops::function::FnOnce::call_once
note: Some details are omitted, run with ‘RUST_BACKTRACE=full‘ for a verbose

backtrace.

As we can see it follows very similar behavior as the array examples. It even calls the
same panic_bounds_check() function. We can see that we are implicitly calling a
trait method by using the indexing operator [|. This method is called index mut (),
for the trait IndexMut which is implemented for the Vec type. In addition, that
method is calling another trait method index mut (), for the trait S1iceIndex which
is implemented for the type usize, which represents the type of our index. Now let’s

examine the disassembly and try to understand how it detects the overflow.

Listing 72: Vector Overflow Detection

000000000000af90 <<usize as core::slice::index::SliceIndex<[T]>>::index_mut>:

af94: 48 89 7c 24 08 mov J%rdi,0x8(%rsp) # 1st arg = index

af99: 48 89 74 24 10 mov 4rsi,0x10(%rsp) # 2nd arg = heap pointer

af9e: 48 89 54 24 18 mov 4rdx,0x18(%rsp) # 3rd arg = vector length
afa8: 48 39 d7 cmp %rdx,%rdi # compare index vs length

afab: 73 16 jae afc3 <<usize as core::slice::index::Slicelndex

<[T]>>::index_mut+0x33> # jmp to panic if above or equal

afad: 48 8b 44 24 10 mov 0x10(%rsp),%rax # get heap pointer
afb2: 48 8b 4c 24 08 mov 0x8(Yrsp),%rcx # get index
afb7: 48 cl1 el 03 shl $0x3,%rcx # shift left index (effectively

48

multiplying by 8 because usize = 8 bytes)

afbb: 48 01 c8 add %rcx,firax # add new offset to heap pointer to
calculate final address

afbe: 48 83 c4 28 add $0x28,%rsp # deallocate

afc2: «c3 ret

afc3: 48 8b 54 24 20 mov 0x20(%rsp),%rdx # panic section

afd2: 48 8d 05 67 c8 ff ff lea -0x3799(%rip),%rax # 7840 <core::
panicking: :panic_bounds_check>

afd9: f£f dO call xYrax

000000000000b180 <<alloc::vec::Vec<T,A> as core::ops::index::IndexMut<I>>::

index_mut>:

blcb: e8 cO0 fd ff ff call af90 <<usize as core::slice::index::Slicelndex
<[T]>>::index_mut>

bild4: «c3 ret

000000000000b940 <vector_modify::change_element>:

rdi = vector, rsi = index, rdx = value

b94c: e8 2f £8 ff ff call b180 <<alloc::vec::Vec<T,A> as core::ops::
index: :IndexMut<I>>::index_mut> # calculates and returns the address based on

the index for mutability

b951: 48 8b 14 24 mov (Y%rsp) ,%rdx # get new value
b955: 48 89 10 mov Y%rdx, (rax) # set value at index
b958: 58 pop hrax

b959: 3 ret

As we can see index mut() for Slicelndex is not that different from indexing an
array. Except the modification is not performed here, it just calculates the heap
address of where the index provided is pointing and returns it to be modified inside
of change element ().

Now, to validate our theory, let’s patch cmp %rdx, %rdi in index mut() with
cmp %rsi, %rdi. By swapping rdx (the length) with rsi (the heap pointer), which
contains a significantly larger value, we can vastly extend the amount of memory we
can index. This type of modification would be tricky to detect and validate, without

knowing the semantic meaning of each register in this function.

Listing 73: Index Check Patch

15¢28: 48 39 f7 cmp Jrsi,%rdi # patched
$./vector_modify_patched 30000 O

Segmentation fault (core dumped)

49

As you can see by specifying a large enough index we can cause the program to
crash because it attempts to write in an unmapped memory segment. However, this
can also be used to change a return address as the stack is usually placed after the

heap when mapped into memory. To do this let’s follow these steps in gdb:
1. Find the location of the return address on the change element () stack.
2. Find the pointer to our heap buffer.
3. Calculate the difference in 8 byte steps.
4. Modify the return address to return to spawn_shell().

In order for this exploit to work you would need to know the location of the heap
buffer before providing the index. However as we are in gdb we can keep this

consistent across runs. These are the values I get:
1. change_element () Saved registers: rip at Ox7fffffffdaa8
2. index_mut () heap buffer pointer: rsi = 0x55555564cb80

3.

saved rip — heap pointer

0x8
Ox7fffffffdaa8 — 0x55555564chb80

0x8
0x2aaaaa9b0£f28

0x8
= 0x555555361e5 = 5864061886949

index =

4. value = spawn_shell() address: 0x555555569fc0 = 93824992321472

Listing 74: Heap Overflow Exploit

(gdb) r 5864061886949 93824992321472

process 45888 is executing new program: /bin/sh

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
$ exit # new shell

20

4.3 Type Confusion

In many languages a common bug that exists is called type confusion. When this
bug occurs an object of one type is treated as another type. This can often lead to
memory corruption. The most common example would be a C++ class which has
two derived classes. When that class is downcasted to either of those two derived
types, the programmer must ensure that the object is of the type that is being
downcasted to. If not, then an object of one type is being treated as another in
the subsequent code. This means that you could be calling functions of one type on
another, overwriting member fields which can cause out of bounds access, overwrite
heap pointers, return addresses etc.

While downcasting is the most common way to cause a type confusion bug in
many languages, it’s not the only way. We can say that any casting operation (for
example, a raw memory buffer being casted to some type in C) could potentially
lead to a type confusion bug. This means any operation which attempts to resolve a
variable to some type can cause type confusion. So how does Rust prevent unchecked

casting?

4.3.1 Composition Instead of Inheritance

Regarding downcasting, Rust uses a composition concept instead of an inheritance
concept. This means that one type does not inherit from another, so directly down-
casting between custom types is impossible in safe Rust. Instead, each type can
implement any number of traits and using generics one can pass the Trait as a
generic argument, indicating that a function for example can accept any type which

implements a specific trait. For example:

Listing 75: Trait Argument

fn gen_print_type<T: Typename>(item: T) {
item.print_type(;

This function takes any type T, which implements the trait Typename. This trait
has a print_type() function which simply prints the type the object belongs to.
Now taking this concept at the binary level you might think that print_type()
is dynamically dispatched at runtime, meaning call it through a function pointer.
However, this doesn’t happen. What happens with generics instead is a process
called monomorphization. The compiler instead of generating a gen print_type()
that can call the print_type() function for any type by dynamically resolving the

type at runtime, will instead generate a static implementation for all types that

51

call gen print_type() at compile time. We can confirm this by examining our

disassembly and our binary:

Listing 76: Monomorphized Functions

70al: e8 9a ff ff ff call 7040 <generics::gen_print_type>
70a6: e8 cb ff ff ff call 7070 <generics::gen_print_type>
$ nm generics | grep gen_print_type

0000000000007040 t _ZN8genericsl4gen_print_typel7h802022397db455beE
0000000000007070 t _ZN8genericsl4gen_print_typel7hc99d0a2be9609642E

We are calling gen_print_type() for 2 different types and as we can see 2 separate
gen print_type() are created, encoded with a different symbol for each type, if kept
mangled. This way Rust can create abstractions that avoid the usage of inheritance

or vtables.

4.3.2 Enums

Another common Rust construct in Rust that could be potentially unsafe is enums.
Rust enums can not only indicate a category (variant) but can also contain data

inside each variant. These enums are also called tagged unions. Example:

Listing 77: Rust Enum

enum Shape {
Rectangle(f64, £64),
Circle(f64)

This means that at runtime a Shape can be either a Rectangle or a Circle. So how
does Rust handle this to prevent various type confusion bugs?

Rust simply prevents this issue by forcing us to wrap any usage of an instance
of this enum in a match or if let statement. If we do not follow this the program

does not compile.

Listing 78: Match Statement

fn area(shape: Shape) -> f64 {
match shape {
Shape: :Rectangle(w, h) => w * h,
Shape::Circle(r) => 3.14 * r * r,

52

As you can see this area function first checks which variant of Shape is used to
determine the corresponding fields. The match statement forces us to provide a

case for each variant in our enum.

Listing 79: If Let Statement

fn rectangle_area(shape: Shape) -> f64 {
//destructure rectangle into its components
if let Shape::Rectangle(w, h) = shape {
return w * h

3

return 0.0;

In the if let clause we are not required to check for every variant of the enum,
allowing for more concise syntax.
As we can see Rust checks which variant is being used at runtime to determine

which code block to run. So how does it do this at a binary level?

Listing 80: Match Statement Disassembly

0000000000008070 <enums::main>: # initialization logic
8070: 48 81 ec 08 01 00 00 sub $0x108,%rsp

8077: f£2 0f 10 05 89 1f 04 00 movsd 0x41£f89(Yrip),%xmm0 # 4a008 <_fini+0
x19c>

807f: £f2 0f 11 44 24 10 movsd %xmmO,0x10(%rsp)

8085: f2 Of 10 05 83 1f 04 00 movsd 0x41f83(Y%rip),%xmm0 # 42010 <_fini+0
xl1lad>

808d: f2 Of 11 44 24 18 movsd %xmmO,0x18(%rsp)
8093: 48 c7 44 24 08 00 00 00 00 movqg $0x0,0x8(%rsp) # discriminant for
Rectangle

0000000000008020 <enums: :area>:

8020: 48 89 7c 24 f0 mov %rdi,-0x10(%rsp)

8025: 48 83 3f 00 cmpq $0x0, (Yrdi) # check discriminant
8029: 75 17 jne 8042 <enums::area+0x22>

removed instructions rectangle area logic

8040: eb 20 jmp 8062 <enums::area+0x42>

removed instructions circle area logic
8062: f2 0f 10 44 24 f£8 movsd -0x8(%rsp) , %xmmO
8068: c3 ret

Rust allocates enough space on the stack to hold the largest variant of an enum,
along with an additional value called a discriminant. The discriminant indicates at

runtime which variant of the enum is currently in use. By default, the discriminant is

23

an auto-incrementing integer starting from 0, assigned to each variant in declaration
order. For example, if the first variant is Rectangle, it receives the discriminant 0.

As we can see the area function checks the discriminant against an immediate
of 0 and then performs a conditional jump, to run the logic for the rectangle area
calculation or the circle area calculation respectively.

In this case we can cause a type confusion via binary patching in two ways:

1. Modify the cmp instruction to use 0x1 as the immediate instead, reversing the

logic.

2. Modify the instruction which sets the discriminant to be a different value.

Listing 81: Compare Patching

0000000000008020 <enums: :area>:

8025: 48 83 3f 01 cmpg $0x1, (irdi) # reversed logic
$./enums_patched_cmp

Rectangle area 314

Circle area 0.00...06949219738536166

Listing 82: Discriminant Patching

0000000000008070 <enums: :main>:

using Circle Discriminant for Rectangle

8093: 48 c7 44 24 08 01 00 00 00 movq $0x1,0x8(%rsp)
using Rectangle Discriminant for Circle

80aa: 48 c7 44 24 20 00 00 00 00 movqg $0x0,0x20(%rsp)
$./enums_patched_discr

Rectangle area 314

Circle area 0.00...6899583356507424

As you can see for Rectangle(10.0, 5.0) and Shape::Circle(10.0) our output for the
area is completely wrong but it does not cause further issues in this example. Be-
cause the enum acts as a tagged union, each variant takes the same space on the
stack. Meaning we cannot cause an overflow bug using this.

Nevertheless, let’s consider that our Circle has some padding bytes to be the
same length as Rectangle, those bytes are not zeroed during initialization and could
contain any value. If we are getting the area of the circle using the incorrect calcula-
tion it means that those padding bytes are used as an operand in our multiplication.
Then if we know the input to the multiplication we can reverse the operation via

division and get the data stored on the padding bytes.

o4

If we know the other operand in the calculation, we can invert the operation
(e.g., via division) and recover the uninitialized data. If this padding happens to
contain a heap pointer, a vtable, or other leaked metadata, it could potentially be
used to bypass ASLR. Similarly, sensitive data such as private keys or passwords

could leak through such unintended memory reads.

4.3.3 Struct Type Confusion

When working with complex types such as structs, we need to understand some
basic calling convention logic. In the Linux x86 ABI, there are 2 registers that can
be used as return values rax (1st return value) and rdx (2nd return value). This
means that if our complex type can be contained in these two registers, the callee
function just has to set the values in those registers and return.

In addition, this is affected by how expensive each instruction is, so sometimes
even if the return values can be stored in 2 registers, it is easier and more direct to
return them using a reference.

Let’s take for example this simple program which has 2 types with their respective

instantiation functions and let’s inspect the disassembly for them:

Listing 83: Structs

struct TestShort {
a: usize,
b: usize
}
impl TestShort {
fn new() -> Self{
TestShort{a: 0, b: 0}

}
}
struct Test {
a: usize,
b: usize,
c: usize
}
impl Test{
fn new() -> Self{
Test{a: 0, b: 0, c: 0}
}
}

fn main (){
let ts = TestShort::new();
println! ("{}, {}", ts.a, ts.b);

95

let tl1 = Test::new();
println! ("{}, {}, {}", tl.a, tl.b, tl.c);

Disassembling;:

Listing 84: Instantiation Disassembly

0000000000007020 <test_passing::TestShort: :new>:

7020: 31 cO xor Yeax,keax # Os rax (by zero extension)
7022: 89 c2 mov feax,kedx # Os rdx (by zero extension)
7024: 48 89 dO mov %rdx,Yrax # redundant (optimization issue)
7027: c3 ret

0000000000007050 <test_passing::main>:

7057: e8 c4 ff ff ff call 7020 <test_passing::TestShort: :new>
705c: 48 89 04 24 mov jrax, (Y%rsp) # set ts.a =0
7060: 48 89 54 24 08 mov %rdx,0x8(%rsp) # set ts.b = 0

0000000000007030 <test_passing::Test::new>:

7030: 48 89 f8 mov %rdi,%rax # return value = ref to tl

7033: 48 c7 07 00 00 00 00 movg $0x0,(%rdi) # set tl.a = 0

703a: 48 c7 47 08 00 00 00 00 movq $0x0,0x8(%rdi) # set tl.b = 0

7042: 48 c7 47 10 00 00 00 00 movq $0x0,0x10(%rdi) # set tl.c = 0
704a: c3 ret

0000000000007050 <test_passing::main>:

71la: 48 8d bc 24 80 00 00 00 lea 0x80(%rsp),%rdi
7122: e8 09 ff ff ff call 7030 <test_passing::Test::new>

As we can see with the TestShort struct, we can directly pass the two integers
through registers, set them to 0, then return and save them on the stack where the
TestShort instance is stored.

However, in the case of the Test struct, we instead pass a reference to the Test
instance through rdi (first argument). This reference is then used along with an
8 byte step to store each individual value directly on the caller’s stack. Tuples
behave similarly so without any other debug information of a value’s type we cannot
differentiate between the two.

As we can see even though Test: :new() uses offsets to set values the same way
an array would, the compiler does not need to emit any checks for that as these
accesses happen by using a property name and not an index.

Let’s consider this example, we have a system which logs interactions between

users. Users are represented with different structs depending on the source of the

26

user data. For example:

Listing 85: Logging Example

struct SimpleUser {
username: String,
password: String

X

impl SimpleUser {
fn email_request (&self){

println! ("User {} wishes to send email to:", self.username);

X
struct FullUser {
username: String,
email: String,
password: String
3
impl FullUser{
fn display_email(&self) {

println! ("User {} with email {}", self.username, self.email);

}
fn main (Of{
let su = SimpleUser{username: "test".to_string(), password: "12345678".
to_string()};
let fu = FullUser{username: "test2".to_string(), email: "testQ@test.com".
to_string(), password: "test1234".to_string()};
su.email_request();

fu.display_email();

In Rust, all methods of a type take a reference to an instance of the type (&self)
as the first argument. In the ABI this would translate to the rdi register. Let’s
consider we have access to modify the machine code for this functionality, if we
were able to pass in a reference to a SimpleUser to display email() instead of
a FullUser, this would cause a type confusion bug. As we know, accessing fields
in structs happens with an offset from the reference pointer, so self.email would
translate to accessing from the 9th (inclusive) to the 16th (exclusive) bytes of the
struct buffer. If instead, the reference passed is of type SimpleUser, what would be
accessed and displayed would instead be the password.

So to create this type confusion bug in our machine code we would have to patch

the value of rdi before the function call to contain the incorrect reference.

o7

Listing 86: Reference Type Confusion

#before change

82ab: 48 8d 7c 24 60 lea 0x60(%rsp),%rdi

82aa: e8 71 fd ff ff call 8020 <pointer_confusion2::FullUser::
display_email>

#after change

82a5: 48 8d 7c 24 00 lea 0x0 (%rsp) ,%hrdi

82aa: e8 71 fd ff ff call 8020 <pointer_confusion2::FullUser::
display_email>

$./pointer_confusion2_patched

User test wishes to send email to:

User test with email 12345678 # password leak

As you can see this type of bug allows us to create overread bugs and there would
be no way to validate this at runtime. In addition to that, we can create buffer
overflows if the methods are modifying member fields of our structs or many other

memory corruption bugs.

4.3.4 Trait Objects

Trait objects are special types in Rust which allow for dynamic dispatch of functions
based on the type of the object. A trait object is comprised of a pointer to an
instance of a type and another pointer to a table (vtable) containing the addresses
of the methods implemented for that type. This is also called a fat pointer and it is
especially useful when we want to hold a collection of different types.

Let’s take for example a very simple program with 2 structs which implement

the same trait:

Listing 87: Trait Object Definition

trait Animal {
fn speak(&self);
3
struct Dog;
impl Animal for Dog {
fn speak(&self) {
println! ("Woof!");

b
fn main() {
let dog = Dog;
let dyn_dog: &dyn Animal = &dog;
dyn_dog.speak() ;

o8

As we can see, we use a combination of & dyn TraitName to define a trait object.
This essentially says that we have created a dynamic type which implements the

Animal trait. If we were to examine the disassembly of main we get this:

Listing 88: Dynamic Dispatch

0000000000007040 <trait_obj::main>:

7046: ff 15 bc cb5 04 00 call *0x4cb5c(Yrip) # 535a8 <

__do_global_dtors_aux_fini_array_entry+0x70>

As we can see our program is loading addresses using relative offsets to the current
instruction. The disassembler can resolve these addresses easily because they are
relative to rip, so it uses the virtual address of the next instruction + the offset
to calculate the actual address. Then it does the call by first dereferencing rax,
essentially looking up the address to branch to at 0x535a8.

If we examine what is stored at 0x535a8 we can see that it is a function pointer

to the speak method for Dog:

Listing 89: Function Pointer

$ objdump -s -j ’.data.rel.ro’ --start-address=0x535a8 --stop-address=0x535b0
trait_obj

Contents of section .data.rel.ro:

535a8 e06£0000 00000000 # little endian

$ nm -C trait_obj | grep speak

0000000000006fe0 t <trait_obj::Dog as trait_obj::Animal>::speak

One thing to note is that even though we are using a unit struct (zero sized) the
trait object still needs to contain a data pointer so it takes some offset from the
stack frame.

Expanding our previous example let’s add a Cat struct and initialize an array of

Animal trait objects and call speak on each of them.

Listing 90: Collection Of Trait Objects

// skipping Dog and Animal definitions
struct Cat;
impl Animal for Cat {

fn speak(&self) {

println! ("Meow!");

29

}

fn main() {
let dog
let cat

Dog;
Cat;
let animals: [&dyn Animal; 2] = [&dog, &cat];

for i in O..animals.len() {

animals[i] .speak();

Now let’s inspect our disassembly for main and try to understand how dynamic

dispatch happens in this case:

Listing 91: Dynamic Dispatch Analysis

7130: 48 83 ec 58 sub $0x58,%rsp # Allocate stack 88 bytes

7134: 48 8d 44 24 16 lea 0x16(%rsp),%rax # get a pointer to some value
on the stack

7139: 48 89 44 24 18 mov ‘Y%rax,0x18(Y%rsp) # store data pointer for Dog

713e: 48 8d 05 33 c4 04 00 1lea 0x4c433(rip),%rax # 53578 <
__do_global_dtors_aux_fini_array_entry+0x58> vtable pointer

7145: 48 89 44 24 20 mov %rax,0x20(%rsp) # store vtable pointer for Dog

714a: 48 8d 44 24 17 lea O0x17(%rsp),%rax # get a pointer to some value
on the stack

714f: 48 89 44 24 28 mov Jrax,0x28(Y%rsp) # store pointer for Cat

7154: 48 8d 05 3d c4 04 00 lea 0Ox4c43d(%rip),%rax # 53598 <

__do_global_dtors_aux_fini_array_entry+0x78> vtable pointer

715b: 48 89 44 24 30 mov %4rax,0x30(%rsp) # store vtable pointer for Dog

7iba: 48 8b 38 mov (%rax),hrdi # get &self as first argument for
speak

7ibd: 48 8b 40 08 mov 0x8(Yrax),%rax # get vtable pointer

Ticl: f£f 50 18 call *0x18(%rax) # call fourth entry in vtable

pointer (each entry is 8 bytes)

As we can see during initialization it stores two pointers per trait object, one for
the trait object’s data and another for the vtable of the corresponding type. Then
inside that vtable function speak is the fourth entry (each entry is 8 bytes).

There is no further validation as to which function is called during runtime, so we
could patch the binary to either write the wrong vtable pointer during trait object
initialization or overwrite the entry of the vtable of one type to have the function of
the other. The former would create a type confusion bug for a specific trait object,

while the latter would create a global type confusion bug for all trait objects of that

type.

60

Let’s attempt to patch the initialization vtable pointer:

Listing 92: Initialization Vtable Overwrite

pre patch

713e: 48 8d 05 33 c4 04 00 1lea 0x4c433(%rip),%rax # 53578 <
__do_global_dtors_aux_fini_array_entry+0x58>

after patch

713e: 48 8d 05 53 c4 04 00 1lea 0x4c453(Yrip),%rax # 53598 <
__do_global_dtors_aux_fini_array_entry+0x78>

$./trait_obj2_ptr

Meow!

Meow!

As we can see we are calling the Cat speak function on the Dog struct.

Now to overwrite the vtable globally for all Dogs we need to find the correspond-
ing entry in .rela.dyn section of our binary, which is responsible for resolving and
writing the corresponding address at the .data.rel.ro section vtable during load-
ing.

To do so we must find the address of the entry to overwrite it:

Listing 93: Relocation Table Entry

$ readelf -r trait_obj2_vtable | nl -v -2 | grep 53590

8 000000053590 000000000008 R_X86_64_RELATIVE 70d0

$ readelf -SW trait_obj2_vtable | grep ’.rela.dyn’

[10] .rela.dyn RELA 0000000000000£ff0 000ff0 003f48 18 A 6 0 8

As we can see from above our entry is the 8th entry (0 indexed) in the .rela.dyn
table. This table starts at offset 0xf£0 of the file and each entry is 24 bytes long.

The last 8 bytes contain the relocation value.

RelocationEntryAddress

= RelocationSectionOffset + (RelocationIndex X EntrySize) + 0x10
= 0x£ff0 + (0x8 x 0x18) + 0x10

= 0xff0 + 0xcO + 0x10

= [0x10¢0]

Now after overwriting the relocation entry every call to the Dog speak is replaced
with the Cat speak.

In our examples, we do not have any data stored in our types. However, if we

61

had fields and methods to read or write them, introducing this type confusion bug

could lead to buffer overflows, overreads, and other serious vulnerabilities.

62

5 Temporal Memory Safety

Attempting to access or modify any memory after it has been freed by the memory
allocator, can cause a whole class of bugs which fall under the category of temporal
bugs. Rust completely prevents these types of bugs by preventing compilation of
invalid programs, using the set of rules described before which fall under the vali-
dations performed by the borrow checker. As most of these validations are applied

at compile time, the final executable does not contain any additional validations.

5.1 Dangling Pointers

As we know each value in Rust has an owner and each owner exists within a scope.
As soon as the owner goes out of scope the value is dropped.

On the binary level, for stack allocated objects this doesn’t mean anything.
The object will continue to exist on the stack until the stack frame is deallocated.
However, Rust has the concept of smart pointers, such as Box<T> which will handle
their own heap allocation and deallocation implicitly. Let’s take for example the

following function:

Listing 94: Box and Scope

fn dangle() -> Box<u64>{
let mut boxl: Box<u64> = Box::new(Oxaaaaaaaaaaaaaaaa);
{
let box2: Box<u64> = Box::new(Ox1111111111111111);
*boxl = *boxl + *box2;
} # here box2 is automatically dropped

return boxl;

As you can see we create two Boxes one which is returned and another which has

a limited scope. If we examine the disassembly we’ll find that a specific function is

called:

Listing 95: Drop

781f: 48 8d 7c 24 60 lea 0x60(%rsp),%rdi # get a pointer to the box2
pointer
7824: e8 c7 f9 ff ff call 7210 <core::ptr::drop_in_place<alloc::boxed::

Box<u64>>> # drop box2

As we can see a generic function called drop_in_place() is used. This is the signa-

ture for it, in the Rust standard library reference:

63

Listing 96: drop_in_place

pub unsafe fn drop_in_place<T: ?7Sized>(to_drop: *mut T)

As we can see it’s a generic function which can take a mutable raw pointer to
any type, even unsized (7Sized removes the trait bound) ones such as trait objects
and deallocates the memory that is pointed to by them. This function in turn
calls the drop method of the Drop trait, core: :ops: :drop: :Drop: :drop (), which
determines if there are any underlying fields to the pointer provided so that they
can also be dropped. Then it calls core::alloc::Allocator::deallocate() trait
method, which is implemented by alloc::alloc::Global, which acts as a thin
wrapper over glibc’s memory allocator.

Now, if we take what we've learned from swapping pointers to cause type con-
fusion, we can also swap pointers here to create a dangling pointer. To do this we
simply swap the box2 pointer that is passed into drop_in_place() with the box1
pointer. Then we return the box1 pointer that has been dropped, while the box2

pointer will live indefinitely causing a memory leak.

Listing 97: Patching Pointer To Drop

#before patch

781f: 48 8d 7c 24 60 lea 0x60(%rsp),%rdi

7824: e8 e7 f9 ff ff call 7210 <core::ptr::drop_in_place<alloc::boxed::
Box<u64>>>

#after patch

781f: 48 8d 7c 24 58 lea 0x58(%rsp),%rdi # swapped with address of boxl
pointer

7824: e8 e7 f9 ff ff call 7210 <core::ptr::drop_in_place<alloc::boxed::
Box<u64>>>

In my example, I simply print the pointer after returning and exit. Here is the

output:

Listing 98: Dangling Pointer Output

$./dangling pointer_patched
55fefeb604
free(): double free detected in tcache 2

Aborted (core dumped)

As we can see the returned pointer is eventually dropped, causing an error in glibc
implementation of free, due to a double free. You can learn more about the specifics

of how this works in [9].

64

Using this simple patch we have created a precondition for another bug to exist,

a use after free.

5.2 Use After Free

A wuse after free bug occurs when a value that has been deallocated or freed is used
in subsequent calls. This can lead to undefined behavior which is often exploitable.

Take for example the following program:

Listing 99: Program To Patch

fn do_stuff() -> String {
let longest = find_longest();
let some_secret = String::from("SECRET");
println! ("longest: {}", longest);
return some_secret;
}
fn find_longest() -> String {
let s1: String = String::from("asdfasd");
let s2: String = String::from("asdf");
if si1.len() >= s2.len() {
return sl
} else {

return s2

Inside of find longest () we define two strings and return the longest of the two.
The string that is not returned (s2) is then dropped using drop_in_place(). Subse-
quently, sl is then printed but before that another string allocation occurs for some
secret value. But what if we swap the pointer to be dropped with (s1)?

When the memory allocator frees space, it does not set the bytes to 0 or anything
it just marks the previously used space as unused. Afterwards, it might reuse the
freed space to perform another allocation.

So, if we were to drop sl inside find longest (), some_secret will be allocated
at the same spot where s1 lived. Consequently, when sl is printed we will be leaking
the value of some_secret.

To create this bug we patch the value of rdi register that is passed to drop_in_place()

as the pointer to drop, with the address that contains s2. For example:

Listing 100: Patch For Use After Free

before patch

65

810a: 48 8d 7c 24 38 lea 0x38(%rsp),%rdi #$rsp + 0x38, holds the struct
for s2

810f: e8 6¢c f2 ff ff call 7380 <core::ptr::drop_in_place<alloc::string::
String>>

after patch

810a: 48 8d 7c 24 20 lea 0x20(%rsp),%rdi #$rsp + 0x20, holds the struct
for si

810f: e8 6¢c f2 ff ff call 7380 <core::ptr::drop_in_place<alloc::string::
String>>

After running the program with the patch:

Listing 101: Use After Free Exploit

$./leak_secret_vuln
longest: SECRET
free(): double free detected in tcache 2

Aborted (core dumped)

As we can see we leak the value of our secret and then the program crashes because

it attempts to drop sl again.

66

6 Creating A Rust Disassembler

In this section we will explore how to create a disassembler for Rust ELF binaries
using python, we aim to create a tool that will be easily expandable to provide
analysis for Rust binaries. We will be using two main libraries for this: LIEF
(Library to Instrument Executable Formats) and Capstone. LIEF provides a highly
advanced interface for parsing various executable file formats, analyzing them and
even modifying them. We will be focusing exclusively on its ELF functionality for
this project. Capstone is a disassembly framework, which will allow us to extract
semantic meaning from machine code. In addition, we will be using Textual to create
an interactive Ul for our tool. All code will be added in the Appendix, along with

versioning.

6.1 Constructing A Control Flow Graph

Normally, when creating a static disassembler, the process begins by identifying all
executable sections of the binary. From there, you can choose between two primary
disassembly strategies: linear sweep or recursive traversal.

In a linear sweep approach, the disassembler processes each section sequentially,
disassembling every byte. This guarantees full code coverage and it is a fairly simple
approach. Issues arise though as it can misinterpret inline data, make it hard to
detect function boundaries, and it often struggles with code obfuscation.

To address these issues, a recursive traversal approach is often preferred. It starts
from known entry points (like the program’s main or other symbols) and follows
control flow instructions such as branches and calls to explore reachable code paths.
This method helps build control flow graphs (CFGs) and better separates code from
data. Its effectiveness improves when supplemented with symbol information, such
as function names or debugging metadata, if available.

LIEF adopts a hybrid strategy, offering a high-level interface for accessing func-
tions within an executable. This works well even for stripped binaries, where symbol
tables are unavailable. However, LIEF does not automatically build control flow
graphs, this must be done manually.

In my approach, I iterate over all functions identified by LIEF, along with ad-
ditional PLT stubs that I extract by analyzing the .plt and .plt.got sections. I
construct a dictionary (hash table) using each function’s virtual address as the key
and associate it with an object of a custom class called ElfFunction.

Inside each ElfFunction, I perform both linear and recursive disassembly, iden-
tifying call instructions. Using the combined results of both disassembly methods,

I generate a set of target addresses that each function calls and store it within the

67

ElfFunction object. This approach has a limitation though, we can only analyze
calls with an immediate target.

To enhance my control flow graph, I attempt to resolve indirect calls as well.
These calls can happen either by directly calling the value stored in a register (reg-
ister operand) or by dereferencing a register value that points to a specific address
(memory operand). In order to allow code to be position independent, modern
compilers will use a RIP relative offset to do both of the mentioned approaches.

Consider this example instruction:

Listing 102: Indirect Call

15ebc: ff 15 3e f7 0d 00 call #*0xdf73e(%rip) # £5600 <_GLOBAL_OFFSET_TABLE_+0
x418>

As we can see this is a call instruction using a memory operand, that is provided by
an offset from RIP. The target address to dereference is 0x£5600 which lives in the

.got and it is calculated as such:
virtual address+instruction length+offset = 0x15ebc + 0x6 + 0xdf7e3 = 0xf5600

This example demonstrates how code from two different executables (in this case
between my code and the standard library) is linked at compile time. To ensure
correct resolution at runtime, a relocation entry is placed in the .rela.dyn section.
This entry instructs the dynamic linker to populate the appropriate .got entry with
the correct virtual address at load time. This mechanism supports both statically
and dynamically linked objects.

By examining the relocation entries in .rela.dyn [10], we can determine the des-
tination of an indirect call: if the relocation resolves to a symbol within the binary,
we can use its virtual address; if it refers to a symbol in a shared object, we can still
recover the symbolic name from the dynamic symbol table (.dynsym). Using the
calculated pointer (.got entry), we can retrieve this information during analysis.

For the purpose of control flow graph (CFG) construction, we include only the
statically linked relocations, since those correspond to code that is available within
the binary. However, dynamically linked symbols can still be valuable for annotating
disassembly output, providing symbolic context even when the actual code is located
in external shared libraries.

Our approach has a notable limitation: it currently only resolves indirect calls

that use RIP-relative addressing. As a result, calls like the following are not resolved:

Listing 103: Non RIP Relative Call

68

15fa9: 48 8d 05 dO bf ff ff 1lea -0x4030(%rip),’%rax # 11£f80 <core::
panicking: :panic_bounds_check>

15fb0: be 08 00 00 00 mov $0x8, %esi

16fb5: ff dO call xjrax

In this example, the function is called via the rax register, which holds the RIP-
relative address 0x11£80. To resolve such calls, we add an additional heuristic:
when we detect a call instruction using a register or memory operand that is not
RIP-relative, we backtrack within the basic block to determine whether the register
was previously set using a RIP-relative address.

This heuristic works in some cases but has two key limitations:

1. The instruction that sets the register might not be present in the current basic

block, making it unreachable through local backtracking.

2. The register might be set through an instruction that does not use RIP-relative

addressing, in which case the target cannot be resolved through this method.

Both cases would require much more advanced analysis techniques, such as symbolic
execution and data flow tracking to enhance the possibility that the address can be
resolved in static analysis. This is beyond the scope of this project however.

Now with the constructed control flow graph we can easily search a function
and find it along with which functions call it. Furthermore, we add a few analysis

functions which can be controlled by the analysis tab in our UL

6.2 Detecting Integer Overflows

One of the memory safety features we discussed during our analysis is integer over-
flow detection. It would be useful to be able to detect these checks in our binaries,
one way to do so would be to check if the function calls a panic function for integer
overflow (addition, subtraction, multiplication or signed division panic). However,
we would like to be able to do this even when symbols have been stripped. In ad-
dition, we would like to categorize the integer overflow checks depending on which
operation they correspond to and if they are signed or unsigned.

To perform this analysis, the tool maintains a list of candidate checks identified
across the function. It iterates through each basic block within the function’s recur-
sive disassembly. For each instruction in a block, it checks whether the instruction
performs an arithmetic operation such as add, sub, or mul, and verifies that the
instruction’s address has not already been recorded as part of a known check.

If such an arithmetic operation is found, the analysis then creates a sliding win-

dow over the next four to six instructions. Within this window, it looks for specific

69

patterns indicative of overflow checks. If a setb or seto instruction is encountered,
it indicates an unsigned or signed overflow check respectively. Alternatively, en-
countering a test instruction implies that a conditional jump (usually jne) is likely
to follow. Once a conditional jump instruction is reached, the analysis records the
sequence of instructions leading up to and including the jump as a potential overflow
checking block. The analysis becomes even more nuanced depending on the type of
arithmetic operation and may appear in multiple forms depending on operand types
and sizes.

For idiv (signed division), it performs a completely different heuristic. If an
idiv is found, it backtracks to see if before the division there was checks if the
divisor is -1 and the dividend is the minimum value for the given signed integer
type, as this is the only case where a division overflow can occur.

False positives can also arise, as this pattern of checks typically involving a
combination of set, test, and a conditional jump, is commonly used for other
runtime validations. These include checks for pointer alignment or bounds checking
on array indices, which follow similar instruction sequences.

To make analysis even more accurate we would have to check the conditional
jump target and determine if it is calling one of the panic functions for integer
overflow. For stripped binaries this would be very difficult. A potential solution
to this would be to create a database of the standard library functions and check

against that to determine the type of panic that is being called.

70

6.3 Detecting Index Out Of Bounds

To detect bounds checks that correspond to potential buffer overflows, I implemented
a function that analyzes recursively disassembled code blocks for a specific control
flow pattern. The function searches for a cmp instruction followed immediately by
a jae (jump if above or equal). This instruction sequence is typically emitted when
comparing an index against a length before accessing a buffer. If the index is out of
bounds, execution branches to a panic handler.

After identifying this pattern, I follow the target of the jae instruction and exam-
ine the basic block at that address. To reduce false positives, I apply two constraints:
the block must be relatively short (no more than five instructions), and it must end
with an indirect call. This is characteristic of the panic handling code generated for
panic bounds_check(), which calls the statically linked panic function indirectly.

Finally, I validate that the expected arguments to panic_bounds_check() are
being prepared before the call. The panic handler expects three arguments: index,
length, and metadata, which are passed in rdi, rsi, and rdx respectively. I inspect
the instructions in the block to confirm that each of these registers is written to.
Only if all three arguments are set do I mark the original cmp and jae as part of
a buffer overflow check. This combination of instruction pattern matching, control
flow analysis, and argument validation provides a conservative but effective method

for statically detecting bounds checks in compiled binaries.

6.4 Array Allocation Detection

The goal of this analysis is to detect array like allocations on the stack, characterized
by contiguous mov instructions that store values of the same size to memory locations
relative to the stack pointer. Specifically, we target sequences of at least three such
instructions as indicative of an array. It is important to note that this detection
strategy may also capture other stack allocated data structures such as structs,
tuples, and enums.

To implement this detection, a heuristic is employed that tracks candidate array
initializations. A set of allocation objects is maintained, each recording the list of
relevant instructions, the size of each element written, and the virtual address range
of the sequence. The analysis iterates over each basic block within a function and
maintains a set of registers that temporarily hold effective addresses derived from
the stack pointer (rsp). If an instruction computes an address from rsp, usually
through a lea, the destination register is stored as an alias of rsp. If that register is
subsequently overwritten with an unrelated value, it is removed from the alias set

to maintain correctness.

71

When the analysis encounters a mov that writes to a memory location relative
to rsp or one of its aliases and if this instruction is not already part of a previously
recorded array allocation, we begin a forward scan to detect a contiguous sequence
of similar instructions. This scan collects instructions into a list as long as they
continue writing to the stack using mov operations with consistent memory operand
sizes and stride (an instruction’s rsp offset must be entry size bytes from the previous
allocation instruction). If two or more non qualifying instructions are seen in a row,
or if the displacement pattern is non contiguous (e.g., misaligned offsets like 0x8,
0x18, 0x10), the scan terminates early. Once three or more qualifying instructions
are found, the sequence is recorded as an array like allocation.

This heuristic has certain limitations. It deliberately excludes vectorized (SIMD)
instructions, which could otherwise represent valid bulk memory operations. Addi-
tionally, stack allocation patterns with irregular offsets may be incorrectly excluded
due to the strict stride check. Finally, the heuristic focuses solely on explicit mov-
based initializations and does not yet account for memory initialization via standard
library functions such as memcpy or memset, which may be used in optimized or

inlined forms.

6.5 Relocation Validation

In the earlier section on type confusion in trait objects, I described how an attacker
could maliciously patch a vtable entry to point to a function of a different type.
While there is no foolproof method to detect such tampering, one basic approach is
to validate relocation entries against the actual contents of the relocated addresses
(typically located in .got). This check is feasible because rustc pre-initializes these
entries with the expected virtual addresses during compilation. By comparing the
values written at these locations to the relocation addends, it is possible to detect
discrepancies that may indicate tampering. However, this technique has limitations:
if an attacker also overwrites the pre-initialized value in .got, the manipulation

would go undetected.

72

7 Future Work

While this work has explored many of Rust’s language constructs, several areas
remain for further investigation. These include functional programming concepts
such as iterators, closures and higher level functions, as well as a deeper exploration
of how Rust enforces memory safety and prevents race conditions in multithreaded
environments through its concurrency primitives (e.g., Arc, Mutex, etc.). Moreover,
it would be interesting to get a further look into the various output formatting
macros (eg. println!()) and if they could be manipulated to create format string
bugs to leak additional data.

Additionally, the disassembly and analysis tool developed as part of this research
could be extended with more advanced analysis features to provide deeper semantic
insights into compiled code. Integrating a symbolic execution engine could enable
better data flow analysis and assist in uncovering subtle bugs. Improvements could
also be made to better support builds at various levels of optimization.

Another valuable direction would be the creation of a function signature database
covering various standard library functions across different optimization levels, com-
piler versions, and target architectures. This would aid in the identification of key
standard library functions even in stripped binaries, enabling more powerful reverse

engineering and automated analysis.

73

8 Conclusion

In this work, we explored a wide range of Rust’s language constructs and examined
how they translate into low-level machine code. By analyzing the corresponding
assembly output, we provided insight into how high-level Rust abstractions operate
under the hood, empowering developers to make more informed decisions about the
performance and safety of their code.

We demonstrated that, although Rust enforces strong memory safety guarantees
at compile time, vulnerabilities can still be introduced post compilation through bi-
nary patching. By injecting common classes of bugs such as integer overflows, buffer
overflows, type confusion and use-after-free we illustrated how such artificial flaws
can be exploited, emphasizing the need for rigorous analysis of binaries. This is be-
coming particularly important in an age where supply chain attacks are increasingly
prevalent.

This work also provides practical guidance for using industry standard reverse
engineering tools to inspect, patch, and evaluate the memory safety of Rust binaries
without access to source code. Such capabilities are vital for verifying the integrity
and safety of third-party libraries or applications.

Finally, we introduced several techniques for building tools aimed at validating
and analyzing compiled executables. These approaches lay the foundation for future

research into automated fuzzing, symbolic execution and vulnerability detection.

74

9

References

References

1]

(6]

7]

8]

[11]
[12]

[13]

Rust Compiler Attributes: https://doc.rust-lang.org/reference/
attributes.html

The Rust Book: https://doc.rust-lang.org/book/

Symbol Mangling: https://doc.rust-lang.org/rustc/symbol-mangling/
index.html

Rust Standard Library: https://doc.rust-lang.org/std/index.html

Linux System Calls: https://chromium.googlesource.com/chromiumos/

docs/+/master/constants/syscalls.md
x86 Instruction Reference: https://shell-storm.org/x86doc/

High Level Explanation of x86 Instructions: https://en.wikibooks.org/
wiki/X86_Assembly/X86_Instructions

Linux x86 ABI: https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.
pdf

Glibc PTMalloc Internals https://intranautic.com/posts/
glibc-ptmalloc-internals/

ELF Relocations https://refspecs.linuxbase.org/elf/gabid+/ch4.
reloc.html

Capstone Disassembly Framework https://www.capstone-engine.org/
LIEF : Library to Instrument Executable Formats https://lief.re/

Validating Memory Safety in Rust Binaries https://elathan.github.io/
papers/eurosec24.pdf

75

https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rustc/symbol-mangling/index.html
https://doc.rust-lang.org/rustc/symbol-mangling/index.html
https://doc.rust-lang.org/std/index.html
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md
https://shell-storm.org/x86doc/
https://en.wikibooks.org/wiki/X86_Assembly/X86_Instructions
https://en.wikibooks.org/wiki/X86_Assembly/X86_Instructions
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://intranautic.com/posts/glibc-ptmalloc-internals/
https://intranautic.com/posts/glibc-ptmalloc-internals/
https://refspecs.linuxbase.org/elf/gabi4+/ch4.reloc.html
https://refspecs.linuxbase.org/elf/gabi4+/ch4.reloc.html
https://www.capstone-engine.org/
https://lief.re/
https://elathan.github.io/papers/eurosec24.pdf
https://elathan.github.io/papers/eurosec24.pdf

10 Appendix

This section includes the code for the disassembly and analysis tool. The tool is split
into a frontend part (disassembler.py, styles.css), which is mostly responsible for dis-
playing the data and analysis using python Textual. The backend part is defined by
extended_elf_binary.py and analysis.py. The entry point script is disassembler.py.

These are the versions of python and libraries used:

Listing 104: Python Versions

$ python --version

Python 3.10.12

$ pip show lief

Name: lief

Version: 0.16.2

Summary: Library to instrument executable formats
Home-page: https://lief-project.github.io/
Author-email: Romain Thomas <contact@lief.re>
License: Apache License 2.0

$ pip show capstone

Name: capstone

Version: 5.0.3

Summary: Capstone disassembly engine

Home-page: https://www.capstone-engine.org
Author: Nguyen Anh Quynh

Author-email: aquynh@gmail.com

$ pip show textual

Name: textual

Version: 3.2.0

Summary: Modern Text User Interface framework
Home-page: https://github.com/Textualize/textual
Author: Will McGugan

Author-email: will@textualize.io

License: MIT

Requires: markdown-it-py, platformdirs, rich, typing-extensions
$ pip show rust-demangler

Name: rust-demangler

Version: 1.0

Summary: A package for demangling Rust symbols
Home-page: https://github.com/teambiOs/rust_demangler
Author: biOs

Author-email: amritabiOsl@example.com

License: UNKNOWN

Listing 105: extended_elf_binary.py

76

from lief import ELF, Function
from rust_demangler import demangle

import re

from typing import Optional, Literal
from capstone import *

from capstone.x86 import x*

from capstone.x86_const import x*
from analysis import *

#create my own group sets as .groups is slow

RET_GRP = {X86_INS_RETF, X86_INS_RETFQ, X86_INS_RET}
CALL_GRP = {X86_INS_CALL, X86_INS_LCALL}
JMP_GRP = {X86_INS_JMP, X86_INS_LJMP}

JMP_COND_GRP {X86_INS_JAE ,X86_INS_JA ,X86_INS_JBE,X86_INS_JB,X86_INS_JCXZ,
X86_INS_JECXZ ,X86_INS_JE ,X86_INS_JGE ,X86_INS_JG,X86_INS_JLE,

X86_INS_JL ,X86_INS_JNE,X86_INS_JNO,X86_INS_JNP ,bX86_INS_JNS,X86_INS_JO,X86_INS_JP,
X86_INS_JRCXZ, X86_INS_JS}

MOV_GRP {X86_INS_MOV, X86_INS_MOVABS}

class ExtendedElf:

filename: str

binary: ELF.Binary

cfg: dict[int, ’ElfFunction’]
md: Cs

_integer_overflow_summary:
_buffer_overflow_summary:

_relocation_validation:

IntegerOverflowSummary

BufferOverflowSummary

RelocationValidation

_array_initialization_summary:

ArrayInitializationSummary

def __init__(self, filename: str) -> None:
self .binary = ELF.parse(filename)
self.filename = filename
self.md = Cs(CS_ARCH_X86, CS_MODE_64)
self .md.syntax = CS_OPT_SYNTAX_ATT
self .md.detail = True
self._add_plt_symbols ()
self._add_plt_got_symbols ()

plt_sections {self .binary.get_section(’.plt’).virtual_address, self.

binary.get_section(’.plt.got’).virtual_address}

#remove plt sections

self .cfg {func.address: ElfFunction(func, self.binary, self.md) for func

in self.binary.functions
if func.address not in plt_sections or (func.address in

)1)

plt_sections and func.name
}

_integer_overflow_summary

self.
self. _buffer_overflow_summary
self.
self

None

None

_relocation_validation None

._array_initialization_summary None

def _add_plt_symbols(self) -> None:

plt

self .binary.get_section(’.plt’)

{reloc.address:
if reloc.type ELF.Relocation.TYPE.X86_64_JUMP_SLOT}
ELF.Symbol ()
name f"_plt"

plt.virtual_address

relocs reloc for reloc in self.binary.pltgot_relocations

plt_symbol

plt_symbol.

plt_symbol.value

plt_symbol.size = plt.entry_size # only the first entry

77

plt_symbol.type = ELF.Symbol.TYPE.FUNC
self .binary.add_symtab_symbol (plt_symbol)
for offset in range (0, plt.size, plt.entry_size):
code = plt.content[offset: offset + plt.entry_size]
for instr in self.md.disasm(code, plt.virtual_address + offset):

RIP relative jmp instruction

if instr.id in JMP_GRP and instr.operands[0].type == X86_0P_MEM
and instr.operands [0].mem.base == X86_REG_RIP:
address_ptr = instr.address + instr.size + instr.operands[0].

mem.disp
if address_ptr in relocs:

new_symbol = ELF.Symbol ()

new_symbol .name = f"{relocs[address_ptr].symbol.
demangled_name}@plt"

new_symbol.value = plt.virtual_address + offset

new_symbol.size = plt.entry_size

new_symbol.type = ELF.Symbol.TYPE.FUNC

self .binary.add_symtab_symbol (new_symbol)

break

def _add_plt_got_symbols(self) -> None:

plt_got = self.binary.get_section(’.plt.got’)

relocs = {reloc.address: reloc for reloc in self.binary.
dynamic_relocations if reloc.type == ELF.Relocation.TYPE.
X86_64_GLOB_DAT}

plt_got_symbol = ELF.Symbol ()

plt_got_symbol.name = f"_plt_got"

plt_got_symbol.value = plt_got.virtual_address

plt_got_symbol.size = plt_got.entry_size # only the first entry

plt_got_symbol.type = ELF.Symbol.TYPE.FUNC

self .binary.add_symtab_symbol(plt_got_symbol)

for offset in range(0, plt_got.size, plt_got.entry_size):
code = plt_got.content[offset: offset + plt_got.entry_size]
for instr in self.md.disasm(code, plt_got.virtual_address + offset):

RIP relative jmp instruction

if instr.id in JMP_GRP and instr.operands[0].type == X86_0P_MEM
and instr.operands [0].mem.base == X86_REG_RIP:
address_ptr = instr.address + instr.size + instr.operands[0].

mem.disp
if address_ptr in relocs:
new_symbol = ELF.Symbol ()
new_symbol.name = f"{relocs[address_ptr].symbol.
demangled_name}@plt_got"
new_symbol.value = plt_got.virtual_address + offset
new_symbol.size = plt_got.entry_size
new_symbol.type = ELF.Symbol.TYPE.FUNC
self .binary.add_symtab_symbol (new_symbol)
break

@property

def integer_overflow_summary(self) -> IntegerOverflowSummary:
return self._integer_overflow_summary

@property

def buffer_overflow_summary(self) -> BufferOverflowSummary:

return self._buffer_overflow_summary

@property

78

def relocation_validation(self) -> RelocationValidation:

return self._relocation_validation

@property
def array_initialization_summary(self) -> ArrayInitializationSummary:

return self._array_initialization_summary

def validate_relocations(self) -> None:
invalid: dict[int, ELF.Relocation] = {} # store invalid relocations with
found value: relocation
for relocation in self.binary.relocations:
if relocation.type == ELF.Relocation.TYPE.X86_64_RELATIVE and
relocation.addend != O:
if self.binary.has_section_with_va(relocation.address):
the value that is contained at the address to relocate
compiled_value = int.from_bytes(self.binary.
get_content_from_virtual_address(relocation.address, 8),
byteorder=’1little’)
if compiled_value != relocation.addend:
invalid[compiled_value] = relocation

self._relocation_validation = RelocationValidation(invalid)

def detect_array_allocations(self) -> None:
for func in self.cfg.values():
func.check_for_array_inits ()
self . _array_initialization_summary = ArraylnitializationSummary.
combine_summaries ([func.array_initialization_summary for func in self.

cfg.values ()1)

def detect_integer_overflow_checks(self) -> None:
for func in self.cfg.values():
func.check_for_integer_overflows ()
self._integer_overflow_summary = IntegerOverflowSummary.combine_summaries

([func.integer_overflow_summary for func in self.cfg.values()])

def detect_buffer_overflow_checks(self) -> None:
for func in self.cfg.values():
func.check_for_buffer_overflows ()
self._buffer_overflow_summary = BufferOverflowSummary.combine_summaries ([

func.buffer_overflow_summary for func in self.cfg.values()])

wrapper class to help keep El1f Symbols
class ElfFunction:
func: Function
binary: ELF.Binary
md: Cs
linear_disas: list[CsInsn]
recursive_disas: dict[int, list[CsInsn]]
name_or_addr: str
linear_disas: list[CsInsn]
linear_calls: set[int]
recursive_disas: dict[int, list[CsInsn]]
recursive_calls: set[int]
all_calls: set[int]
integer_overflow_checks: dict[int, IntegerOverflowCheck]
buffer_overflow_checks: dict[int, list[CsInsn]]

array_inits: dict[int, list[CsInsn]]

79

def

__init__(self, generic_function: Function, binary: ELF.Binary, md: Cs):
self.func = generic_function # executable format agnostic
self .binary = binary
self .md = md
rust_demangle = ""
self.linear_disas: Optional[list[CsInsn]] = None
self .recursive_disas: Optional[dict[int, list[CsInsn]]] = None
for symbol in binary.symbols:
if symbol.value == self.func.address:
rust_demangle = ElfFunction.demangle_rust (symbol)
break
sec = binary.section_from_virtual_address(self.func.address)
if self.func.name in [’_init’, ’_fini’]:
self.func.size = sec.size # _init and _fini don’t have defined size so
take section size
start_offset = self.func.address - sec.virtual_address
end_offset = self.func.address + self.func.size - sec.virtual_address
self .bytes = sec.content[start_offset: end_offset]
self .name_or_addr = f"(Ox{self.func.address:x})"
if rust_demangle:
self .name_or_addr += f" {rust_demanglel}"
elif self.func.name:
self .name_or_addr += f" {self.func.namel}"
self.generate_linear_disas ()
self.generate_recursive_disas ()
self.find_linear_calls ()
self.find_recursive_calls ()
self.all_calls = self.linear_calls | self.recursive_calls
self.integer_overflow_checks: dict[int, IntegerOverflowCheck] = {}
self._integer_overflow_summary: IntegerOverflowSummary = None
self .buffer_overflow_checks: dict[int, list[CsInsn]] {}

self. _buffer_overflow_summary: BufferOverflowSummary = None

self.array_inits: list[ArrayAlloc] = []

self. _array_initialization_summary: ArrayInitializationSummary = None

@property

def

array_initialization_summary(self) -> ArrayInitializationSummary:
if self._array_initialization_summary is None:
self._array_initialization_summary = ArrayInitializationSummary(self.
array_inits)

return self._array_initialization_summary

@property

def

buffer_overflow_summary(self) -> BufferOverflowSummary:
if self._buffer_overflow_summary is None:
self. _buffer_overflow_summary = BufferOverflowSummary (self.
buffer_overflow_checks)

return self._buffer_overflow_summary

@property

def

def

integer_overflow_summary (self) -> IntegerOverflowSummary:
if self._integer_overflow_summary is None:
self._integer_overflow_summary = IntegerOverflowSummary(self.
integer_overflow_checks.values())

return self._integer_overflow_summary

writes_to_rsp_mem(self, insn: CsInsn, rsp_aliases: set[int]) -> bool:

for op in insn.operands:

80

if op.type !'= X86_0P_MEM:

continue

mem = oOp.mem

if mem.base != X86_REG_RSP and mem.base not in rsp_aliases and mem.
index != X86_REG_INVALID:
continue

if op.access & CS_AC_WRITE:
return True

return False

def stores_rsp_offset(self, insn: CsInsn) -> bool:

if insn.id == X86_INS_LEA and X86_REG_RSP in insn.regs_access () [0]:
for op in insn.operands:
if (op.access & CS_AC_READ) and op.mem.index == X86_REG_RSP:

return True
else:
return False

return False

def get_instruction_mem_op(self, insn: CsInsn) -> X860p | None:
for op in insn.operands:
if op.type == X86_0P_MEM:
return op

return None

def check_for_array_inits(self)-> None:
for block in self.recursive_disas.values():
regs_storing_rsp = set() #store regs with rsp offset values
for i in range (0, len(block)):
if register stores rsp offset
if self.stores_rsp_offset(block[i]):
op_write = None
for op in block[i].operands:
if op.access & CS_AC_WRITE:
op_write = op
if op_write:
regs_storing_rsp.add(op_write.reg)
if register is overwritten within block with non rsp value
elif any(reg in regs_storing_rsp for reg in block[i].regs_access ()
[11):
for reg in block[i].regs_access () [1]:
if reg in regs_storing_rsp:
regs_storing_rsp.discard(reg) # delete reg if
overwrriten
if data is moved to the stack
elif (block[i].id in MOV_GRP and not any(init.start <= block[il.
address <= init.end for init in self.array_inits)
and self.writes_to_rsp_mem(block[i], regs_storing_rsp)):
#get mem operand
mem_op = self.get_instruction_mem_op(block[i])
if not mem_op:
continue # skip this
temp_inits = [block[i]]
entry_size = mem_op.size
no_mov_counter = 0
for j in range(i + 1, len(block)):
#at least two continuous instructions must be moves to the

stack

81

if no_mov_counter >= 2:
break
insn = block[j]
instruction must write to an rsp offset
if insn.id not in MOV_GRP or not self.writes_to_rsp_mem(
insn, regs_storing_rsp):
no_mov_counter += 1
continue
mem_op = self.get_instruction_mem_op (insn)
#instruction must have a mem op and the correct entry size
if not mem_op or mem_op.size != entry_size:
no_mov_counter += 1
continue
prev_disp = self.get_instruction_mem_op(temp_inits[-1]).
mem.disp
#instruction must be writing in the next rsp offset
if abs(mem_op.mem.disp - prev_disp) != entry_size:
break
temp_inits.append(block[j])

no_mov_counter = 0

if buffer has at least 3 same size entries
if len(temp_inits) >= 3:
self.array_inits.append (ArrayAlloc(temp_inits [0].address,

temp_inits[-1].address, entry_size, temp_inits))

def check_for_buffer_overflows(self) -> None:
for block in self.recursive_disas.values():

for i in range (0, len(block) - 1):

if block[i].id == X86_INS_CMP and block[i+1].id == X86_INS_JAE and
block[i+1].operands [0].type == X86_0P_IMM:
target_block = self.recursive_disas[block[i+1].operands[0].imm
]

if indirect jump at the end
if target_block[-1].id in CALL_GRP and len(target_block) <= 5
and target_block[-1].operands[0].type !'= X86_0P_IMM:
it must set 3 registers rdi, rsi, rdx
if self._validate_panic_bounds_check_args_passing(
target_block):
self .buffer_overflow_checks[block[i].address] = blockl[

i: i+ 2]

validate if rdi, rsi, rdx are prepared before panic call

def _validate_panic_bounds_check_args_passing(self, instructions: list[CsInsn

1) -> bool:

rdi_set = False
rsi_set = False
rdx_set = False

for instr in instructions[:-1]:
if set(instr.regs_access()[1]) & {X86_REG_RDI, X86_REG_EDI}:

rdi_set = True

elif set(instr.regs_access()[1]) & {X86_REG_RSI, X86_REG_ESI}:
rsi_set = True

elif set(instr.regs_access () [1]) & {X86_REG_RDX, X86_REG_EDX}:
rdx_set = True

if rdi_set and rsi_set and rdx_set:
return True

return False

82

def check_for_integer_overflows (self) -> None:
if self.integer_overflow_checks:
return
self._addition_overflow ()
self._subtraction_overflow ()
self. _multiplication_overflow()

self._division_overflow ()

def _addition_overflow(self) -> None:
for block in self.recursive_disas.values():
for i in range (0, len(block)):
ins = block[il]
if ins.id == X86_INS_ADD and ins.address not in self.
integer_overflow_checks:
set_reg = X86_REG_INVALID
found_test = False
sign = IntegerOverflowCheck.Sign.UNSIGNED
#create a window of instructions of up to 5 instructions
for j in range(i + 1, min(i + 6, len(block))):
next_ins = block[j]
if next_ins.reg_read(X86_REG_EFLAGS) and not set_reg:

if next_ins.id == X86_INS_SETB:
set_reg = next_ins.regs_access () [1]1[0] # first reg
written
sign = IntegerOverflowCheck.Sign.UNSIGNED
elif next_ins.id == X86_INS_SETO:
set_reg = next_ins.regs_access () [1]1[0] # first reg
written

sign = IntegerOverflowCheck.Sign.SIGNED
elif next_ins.reg_write (X86_REG_EFLAGS) and not found_test

if next_ins.id == X86_INS_TEST and next_ins.

regs_access () [0] [0] == set_reg:
found_test = True

if conditional jump
elif next_ins.id in JMP_COND_GRP:
if next_ins.id == X86_INS_JB and sign ==
IntegerOverflowCheck.Sign.UNSIGNED:
self.integer_overflow_checks [ins.address] =
IntegerOverflowCheck (sign,
IntegerOverflowCheck.Operation.ADDITION, block
[i: j+11)
elif next_ins.id == X86_INS_JO and sign ==
IntegerOverflowCheck.Sign.SIGNED:
self.integer_overflow_checks [ins.address] =
IntegerOverflowCheck (sign,
IntegerOverflowCheck.Operation.ADDITION, block
[i: j+11)
elif next_ins.id == X86_INS_JNE and found_test:
self.integer_overflow_checks[ins.address] =
IntegerOverflowCheck (sign,
IntegerOverflowCheck.Operation.ADDITION, block
[i: j+11)
break

def _subtraction_overflow(self) -> None:

for block in self.recursive_disas.values():

83

for i in range (0, len(block)):
ins = block[i]
if ins.id == X86_INS_SUB and ins.address not in self.
integer_overflow_checks:
sub is always followed by a mov that stores the result
next_instr = block[i+1]
if next_instr.id != X86_INS_MOV:
break # skip
set_reg = X86_REG_INVALID
found_cmp = False
found_test = False
sign = IntegerOverflowCheck.Sign.UNSIGNED
#create a window of instructions of up to 4 instructions
for j in range(i + 2, min(i+6, len(block))):
next_ins = block[j]
if another move is found skip
if next_ins.id == X86_INS_MOV:
break

check for sets

if next_ins.id == X86_INS_SETB:
set_reg = next_ins.regs_access () [1]1[0] # first reg
written
sign = IntegerOverflowCheck.Sign.UNSIGNED
elif next_ins.id == X86_INS_SETO:
set_reg = next_ins.regs_access () [1][0] # first reg
written

sign = IntegerOverflowCheck.Sign.SIGNED

check for comp

elif next_ins.id == X86_INS_CMP and not found_cmp:
found_cmp = True
sign = IntegerOverflowCheck.Sign.UNSIGNED # sometimes

setb is replaced with cmp for unsigned sub

elif next_ins.id == X86_INS_TEST and next_ins.regs_access
() [0][0] == set_reg:
found_test = True

check for conditional jump
elif next_ins.id in JMP_COND_GRP:
if next_ins.id == X86_INS_JB and sign ==
IntegerOverflowCheck.Sign.UNSIGNED and found_cmp:
self.integer_overflow_checks [ins.address] =
IntegerOverflowCheck (sign,
IntegerOverflowCheck.Operation.SUBTRACTION,
block[i: j+11)
elif next_ins.id == X86_INS_JO and sign ==
IntegerOverflowCheck.Sign.SIGNED and set_reg:
self.integer_overflow_checks [ins.address] =
IntegerOverflowCheck (sign,
IntegerOverflowCheck.Operation.SUBTRACTION,
block[i: j+11)
elif next_ins.id == X86_INS_JNE and found_test:
self.integer_overflow_checks[ins.address] =
IntegerOverflowCheck (sign,
IntegerOverflowCheck.Operation.SUBTRACTION,
block [i: j+11)
break

def _multiplication_overflow(self) -> None:

for block in self.recursive_disas.values():

84

for i in range (0, len(block)):

ins = block[il]
if ins.id in {X86_INS_MUL, X86_INS_IMUL} and ins.address not in
self.integer_overflow_checks:
sign = IntegerOverflowCheck.Sign.UNSIGNED if ins.id ==
X86_INS_MUL else IntegerOverflowCheck.Sign.SIGNED
next_instructions = block[i + 1: min(i + 5, len(block))] #

instruction window
if len(next_instructions) < 3:

break

elif (len(next_instructions) >=

3 and

next_instructions [0]

next_instructions [1]

.id in MOV_GRP and
.id in {X86_INS_SETB,

X86_INS_SETO}

and
.id in {X86_INS_JB, X86_INS_J0}):
IntegerOverflowCheck(

next_instructions [2]

self.integer_overflow_checks [ins]

IntegerOverflowCheck.Operation.MULTIPLICATION,
block[i: i + 4])

elif (len(next_instructions) >= 4 and

.id in MOV_GRP and

in {X86_INS_SETB,

sign,

next_instructions [0]
next_instructions [1].id X86_INS_SETO}
and
next_instructions [2].id == X86_INS_TEST and
X86_INS_JNE):

self.integer_overflow_checks [ins]

next_instructions [3].id

IntegerOverflowCheck (

sign, IntegerOverflowCheck.Operation.MULTIPLICATION,
block[i: i + 5])
def _division_overflow(self) -> None:

we use linear for this to make things simpler

for i in range(0, len(self.linear_disas)):

self.linear_disas[i]

X86_INS_IDIV and ins.address not in self.

ins

if ins.id
integer_overflow_checks:

sign = IntegerOverflowCheck.Sign.SIGNED # only signed division can

overflow

minus_one_cmp False #check if we find a -1 compare

min_int_imm = False # check if we find a min_int immediate

last_conditional_jump 0 # store the index of the last
conditional jump

this time we backtrack

-1, -1):

self.linear_disas[j]

for j in range (i - 1,

next_ins

if next_ins.id == X86_INS_CMP and not minus_one_cmp:

for operand in next_ins.operands:

X86_0P_IMM:

if operand.type
#16, 32, 64 bit

if operand.size > 1 and operand.imm == -1:
minus_one_cmp = True #found a -1 cmp
break

#8 bit

elif operand.size == 1 and operand.imm == 255:

minus_one_cmp True #8bit -1 255
break
if next_ins.id in (X86_INS_CMP,

and not min_int_imm:

X86_INS_MOV, X86_INS_MOVABS)

for operand in next_ins.operands:

if operand.type == X86_0P_IMM and abs(operand.imm) in

85

(0x80, 0x8000, 0x80000000, 0x8000000000000000) :
min_int_imm = True #found a min int mov or cmp
break
if next_ins.id in JMP_COND_GRP and not (minus_one_cmp and
min_int_imm):
last_conditional_jump = j
if minus_one_cmp and min_int_imm and last_conditional_jump: #
overflow found
self.integer_overflow_checks [next_ins.address] =
IntegerOverflowCheck(sign, IntegerOverflowCheck.
Operation.DIVISION, self.linear_disasl[j:
last_conditional_jumpl)

break

def generate_linear_disas(self) -> list[CsInsn]:
self.linear_disas = list ()
self.linear_disas = [instr for instr in self.md.disasm(self.bytes, self.
func.address)]

return self.linear_disas

def generate_recursive_disas(self) -> dict[int, list[CsInsn]]:
self .recursive_disas = dict()
blocks = {}
self._generate_block_disas(blocks, self.func.address)
self .recursive_disas = blocks

return self.recursive_disas

def _generate_block_disas(self, blocks: dict, start_addr: int) -> None:
if start_addr in blocks or start_addr < self.func.address or start_addr >=
(self.func.address + len(self.bytes)):
return
blocks[start_addr] = []
byte_offset = 0
relative_address = start_addr - self.func.address
for instr in self.md.disasm(self.bytes[relative_address:], start_addr):
if not instr:
return
blocks[start_addr].append(instr)
byte_offset += instr.size
conditional jump
if instr.id in JMP_COND_GRP:
#op_find has a bug avoid using it, just get the first and only

operand
jump_operand = instr.operands [0]
jump_destination = self.get_target_address(jump_operand, instr,

blocks [start_addr][:-1]1)
self._generate_block_disas(blocks, jump_destination)
if direct jump
elif instr.id == X86_INS_JMP:
#op_find has a bug avoid using it, just get the first and only

operand
jump_operand = instr.operands [0]
jump_destination = self.get_target_address(jump_operand, instr,

blocks[start_addr][:-1])
self._generate_block_disas(blocks, jump_destination)
return
elif instr.id in CALL_GRP:

self._generate_block_disas(blocks, start_addr=instr.address+instr.

86

size)
return
elif instr.id in RET_GRP:

return

iterate backwards over a block of instructions to find where the reg was
last set
def back_track(self, block: list[CsInsn], reg: int) -> int:
address = 0
if not block:
return address
for instr in reversed(block):
if reg in instr.regs_access () [1]:
other_operand = None

for operand in instr.operands:

if operand.type != X86_0P_REG or (operand.type == X86_0P_REG
and operand.reg != reg):
other_operand = operand
break

if not other_operand:

break

if other_operand.type == X86_0P_IMM:
address = other_operand.imm

elif other_operand.type == X86_0P_REG and other_operand.reg ==
X86_REG_RIP:
address = instr.address + instr.size

elif other_operand.type == X86_0P_MEM and other_operand.mem.base
== X86_REG_RIP and other_operand.mem.index == X86_REG_INVALID:
address = instr.address + instr.size + other_operand.mem.disp

break #if you can’t resolve just exit on first assignment

return address

def find_linear_calls(self) -> set[int]:
self.linear_calls = set ()
for i in range(0, len(self.linear_disas)):
instr = self.linear_disas[i]
if instr.id == X86_INS_CALL:
operand = instr.operands [0]
target_address = self.get_target_address(operand, instr, self.
linear_disas[:i])
if not (target_address is None or target_address == 0):
self.linear_calls.add(target_address)

return self.linear_calls

def find_recursive_calls(self) -> set[int]:
self .recursive_calls = set ()
for block in self.recursive_disas.values():
for i in range (0, len(block)):
instr = block[i]

if instr.id == X86_INS_CALL:
operand = instr.operands [0]
target_address = self.get_target_address(operand, instr, block
[:il)
if not (target_address is None or target_address == 0):

self .recursive_calls.add(target_address)

return self.recursive_calls

def resolve_address(self, address: int) -> int:

87

def

def

def

validate pointer
if not self.binary.has_section_with_va(address):

return O

section = self.binary.section_from_virtual_address(address, skip_nobits=
False)

content = section.content

target_address = content[address - section.virtual_address: address -

section.virtual_address + 8]
int_target_address = int.from_bytes(target_address, byteorder=’little’)
validate dereferenced pointer
if not self.binary.has_section_with_va(int_target_address):

return O

return int_target_address

get_target_address(self, operand: X860pValue, instr: CsInsn, block: list[
CsInsn] = None) -> int:
target_address = 0
if operand.type == X86_0P_MEM:
mem_operand = operand.mem

if rip we can calculate the target address easily

if mem_operand.base == X86_REG_RIP and mem_operand.index ==
X86_REG_INVALID:
address_ptr = instr.address + instr.size + mem_operand.disp
target_address = self.resolve_address (address_ptr)

if other register we need to backtrack and figure out if we can
resolve the address within the block
elif mem_operand.index == X86_REG_INVALID:

address_ptr = self.back_track(block, mem_operand.base)

target_address = self.resolve_address (address_ptr)
elif operand.type == X86_0P_IMM:
target_address = operand.imm
elif operand.type == X86_0P_REG:
reg_operand = operand.reg
target_address = self.back_track(block, reg_operand)

return target_address

get_disas(self, mode: Literal[’linear’, ’recursive’]) -> str:
if mode == ’linear’:
if not self.linear_disas:
return ’Missing linear disassembly’
return self.format_instructions(self.linear_disas)
elif mode == ’recursive’:
if not self.recursive_disas:
return ’Missing recursive disassembly’
combine blocks
seen = set()
instr_list = []
for address, instructions in sorted(self.recursive_disas.items()):
for instr in instructions:
if instr.address not in seen:
seen.add (instr.address)
instr_list.append(instr)
return self.format_instructions(instr_list)

return "Invalid mode"

format_instructions(self, instr_list: 1list[CsInsn]) -> str:
disas = ""
function_symbols = [symbol for symbol in self.binary.symbols if symbol.

88

is_function]

for i in range(0, len(imnstr_list)):

instr = instr_list[i]
comment = ""
address = 0

#call via rip or immediate
if function_symbols and instr.id in CALL_GRP:
operand = instr.operands [0]
if operand.type == X86_0P_IMM:
address = operand.imm
elif operand.type == X86_0P_REG:
reg_operand = operand.reg
address = self.back_track(instr_list[0:i], reg_operand)
#memory op via RIP
for operand in instr.operands:
if operand.type == X86_0P_MEM:
mem_operand = operand.mem
#if rip relative
if mem_operand.base == X86_REG_RIP and mem_operand.index ==
X86_REG_INVALID:
address_ptr = instr.address + instr.size + mem_operand.
disp
address = self.resolve_address (address_ptr)
if address:
for symbol in function_symbols:

if symbol.value <= address < symbol.value + symbol.size:

offset = address - symbol.value
demangled_func_name = ElfFunction.demangle_rust (symbol)
final_name = demangled_func_name if demangled_func_name

else symbol.name
comment = f"# Ox{address:x} <{f’{final_namel}+Ox{offset:x}’
if offset else final_namel}>"
break
for relocation in self.binary.relocations:

if dynamic library symbol

if relocation.type == ELF.Relocation.TYPE.X86_64_GLOB_DAT and
address == relocation.address:
comment = f"# Ox{address:x} <{relocation.symbol.

demangled_name}>"
break
if relative relocation
if relocation.type == ELF.Relocation.TYPE.X86_64_RELATIVE and
address == relocation.address and relocation.addend in
function_symbols:
demangled_func_name = ElfFunction.demangle_rust(
function_symbols[relocation.addend])
final_name = demangled_func_name if demangled_func_name
else symbol.name
comment = f"# Ox{relocation.addend:x} <{final_namel}>"
break
disas += ElfFunction.format_instr(instr, comment) + "\n"

return disas

def __str__(self):
func_str = f"Function Name: {self.name_or_addr}\n"
func_str += f"Address: Ox{self.func.address:x}, Size: Ox{self.func.size:x
F\n"

func_str += f"Linear Disassembly: {len(self.linear_disas)} instructions\n"

89

func_str += f"Recursive Disassembly: {len(self.recursive_disas)} basic
blocks\n"
func_str += f"Linear Calls: {len(self.linear_calls)} calls\n"
func_str += f"Recursive Calls: {len(self.recursive_calls)} calls\n"
if self._integer_overflow_summary:
func_str += str(self._integer_overflow_summary)
if self._buffer_overflow_summary:
func_str += str(self._buffer_overflow_summary)
if self._array_initialization_summary:
func_str += str(self._array_initialization_summary)

return func_str

@classmethod
def format_instr(cls, instr: CsInsn, comment: str = "") -> str:
formatted = f"Ox{instr.address:012x}: {instr.mnemonic:<12} {instr.op_str

:<16} {comment}"

return formatted

@classmethod
def demangle_rust(cls, symbol: ELF.Symbol) -> str:
rust_demangle = ""
if symbol.is_function:
elf_symbol = symbol
clean up legacy rust demangling for easier printing
if elf_symbol.name.startswith("_Z"):
rust_demangle = demangle(elf_symbol.name)
rust_demangle = re.sub(r"::h[0-9a-f]1{16}$", "", rust_demangle)

return rust_demangle

Listing 106: analysis.py

from enum import Enum
from dataclasses import dataclass
from lief import ELF

from capstone import CsInsn

class ArrayInitializationSummary:

arrays: list[’ArrayAlloc’]

def __init__(self, arrays: list[’ArrayAlloc’]) -> None:

self .arrays = arrays

def __str__(self) -> str:
if not self.arrays:
return ""
summary = f"Detected array definitions {len(self.arrays)}\n"
for array_init in self.arrays:
summary += f"Array Initialized At: Ox{array_init.start:x} - O0x{
array_init.end:x}, entry size: {array_init.size}, length: {len(
array_init.instructions)}\n"

return summary

@classmethod

def combine_summaries(cls, summaries: list[’ArrayInitializationSummary’]) ->
ArrayInitializationSummary’:
combined = cls ([])
for summary in summaries:

combined.arrays.extend (summary.arrays)

90

return combined

@dataclass

class ArrayAlloc:

start: int # the first instruction address

end:

int #the last instruction address

size: int #entry size

instructions: list[CsInsn]

class RelocationValidation:

invalid_relocations: dict[int, ELF.Relocation]

def

def

__init__(self, invalid_relocations: dict[int, ELF.Relocationl]):
self.invalid_relocations = invalid_relocations
__str__(self) -> str:

if not self.invalid_relocations:
return "Relocations Are Valid"
text = f"Invalid relocations found: {len(self.invalid_relocations)}\n"
for found_value, reloc in self.invalid_relocations.items():
text += f"At Ox{reloc.address:x}: Expected: Ox{found_value:x} Found: O
x{reloc.addend:x}\n"

return text

class IntegerOverflowSummary:

add_overflow: int

sub_
mul_

div_

overflow: int
overflow: int

overflow: int

signed_overflow: int

unsigned_overflow: int

start_addresses: list

def

def

__init__(self, checks: list[’IntegerOverflowCheck’]) -> None:
self.add_overflow = 0
self.sub_overflow = 0
self .mul_overflow = 0
0

self.div_overflow =

self.signed_overflow = 0
self .unsigned_overflow = 0
self.start_addresses = []

for check in checks:

self .start_addresses.append(check.instructions [0].address)

if check.sign == IntegerOverflowCheck.Sign.SIGNED:
self .signed_overflow += 1

elif check.sign == IntegerOverflowCheck.Sign.UNSIGNED:
self.unsigned_overflow += 1

if check.operation == IntegerOverflowCheck.Operation.ADDITION:
self.add_overflow += 1

elif check.operation == IntegerOverflowCheck.Operation.SUBTRACTION:
self.sub_overflow += 1

elif check.operation == IntegerOverflowCheck.Operation.MULTIPLICATION:
self .mul_overflow += 1

elif check.operation == IntegerOverflowCheck.Operation.DIVISION:

self.div_overflow += 1

__str__(self) -> str:

summary_str = ""

91

if not self.start_addresses:
return ""

summary_str += f"Signed Integer overflow checks detected: {self.
signed_overflow}\n"

summary_str += f"Unsigned Integer overflow checks detected: {self.
unsigned_overflow}\n"

summary_str += f"Integer Addition overflow checks: {self.add_overflow}\n"

summary_str += f"Integer Subtraction overflow checks: {self.sub_overflowl}\
"

summary_str += f"Integer Multiplication overflow checks: {self.
mul_overflow}\n"

summary_str += f"Integer Division overflow checks: {self.div_overflow}\n"

summary_str += "Integer Overflow Checks Starting At: \n"

for address in sorted(self.start_addresses):
summary_str += f"Ox{address:x}\n"

return summary_str

@classmethod
def combine_summaries(cls, summaries: list[’IntegerOverflowSummary’]) -> ’
IntegerOverflowSummary’:
’>?2Summary for the whole ELF file’’’
combined = cls(checks=[])
for summary in summaries:
combined.start_addresses.extend (summary.start_addresses)
combined.add_overflow += summary.add_overflow
combined.sub_overflow += summary.sub_overflow
combined.mul_overflow += summary.mul_overflow
combined.div_overflow += summary.div_overflow
combined.signed_overflow += summary.signed_overflow
combined.unsigned_overflow += summary.unsigned_overflow

return combined

@dataclass
class IntegerOverflowCheck:
class Sign(Enum):
SIGNED = "Signed"
UNSIGNED = "Unsigned"

class Operation (Enum):
ADDITION = "Addition"
SUBTRACTION = "Subtraction"
MULTIPLICATION = "Multiplication"
DIVISION = "Division"

sign: Sign
operation: Operation

instructions: list[CsInsn]

class BufferOverflowSummary:
count: int

start_addresses: list
def __init__(self, overflow_checks: dict[int, list[CsInsn]]) -> None:
self.count = len(overflow_checks)

self.start_addresses = overflow_checks

def __str__(self) -> str:

summary_str = ""

92

if not self.start_addresses:
return ""
summary_str += f"Detected {self.count} buffer overflows checks\n"
for address in self.start_addresses:
summary_str += f"Ox{address:x}\n"

return summary_str

@classmethod
def combine_summaries(cls, summaries: list[’BufferOverflowSummary’]) =-> ~’
BufferOverflowSummary’:
combined = cls([])
for summary in summaries:
combined.start_addresses.extend (summary.start_addresses)
combined.count += summary.count

return combined

Listing 107: disassembler.py

from lief.ELF import Segment

from textual.app import App, ComposeResult
from textual.widgets import x*

from textual.containers import =

import configparser

from pathlib import Path

from functools import partial

from textual.css.query import NoMatches
from rich.text import Text

from rich.style import Style

from textual.widgets.selection_list import Selection

from extended_elf_binary import *

config = configparser.ConfigParser ()

config.read(’config.ini’)

class InteractiveDisas (App):
CSS_PATH = ’styles.css’

def __init__(self):
super () . __init__ ()
self.disas_mode = ’linear’
self.title = ’Rust Interactive Disassembler’
self.current_function = 0
self.elf: ExtendedElf = None

def compose(self) -> ComposeResult:
yield Header ()
loading = LoadingIndicator (id=’loader’)
loading.display=False
yield loading
with TabbedContent (initial=’load-binary’, id=’tabs’):
with TabPane("Load Binary", id="load-binary"):
with Horizontal():
with VerticalScroll():
yield DirectoryTree(config[’workspace’][’root_dir’])
yield TabPane("File Summary", id=’file-summary’, disabled=True)
with TabPane ("Functions", id=’functions’, disabled=True):
with Horizontal():
with VerticalGroup():

93

yield Static("Function Summary", shrink=False, id=’
function-summary’, markup=False)
yield Input("", placeholder="Search...", type=’text’,
compact=True,
max_length=80, tooltip=’Shows results that
contain input’,
id=’extended-search’)
with VerticalGroup():
with HorizontalGroup():
yield Label("Linear")
yield Switch(value=False, id=’disas-mode’, animate=
False,
tooltip=’Choose if the displayed
disassembly is linear or recursive’)
yield Label("Recursive")
yield Label("Disassembly", markup=False, id=’disassembly-
label?’)
with VerticalScroll():
yield Static("Select a function to generate
disassembly.", expand=True, markup=True, id=’disas
?)
with TabPane("Analysis", id=’analysis’, disabled=True):
yield Label(’Select Analysis To Perform’, id=’analysis-label’)
yield SelectionList (

Selection(’Detect Integer Overflow Checks’, ’integer-overflow-
check’),

Selection(’Detect Buffer Overflow Checks’, ’buffer-overflow-
check’),

Selection(’Detect Array Allocations’, ’detect-array-

allocations’),
Selection(’Validate Relocation Entries’, ’validate-relocations
),
compact=True,
id=’analysis-selections’)
yield Label(’Analysis Summary’, id=’analysis-summary-label’)
with VerticalScroll():
yield Static(expand=True, id=’analysis-summary’)
yield Footer ()

def on_selection_list_selection_toggled(self, event: SelectionlList.
SelectionToggled) -> None:
if event.selection_list.id == ’analysis-selections’:
selected = event.selection_list.selected
analysis_summary = self.query_exactly_one(’#analysis-summary’, Static)
analysis_text = ""
for selection in selected:
if selection == ’integer-overflow-check’:
self.elf.detect_integer_overflow_checks ()
if self.elf.integer_overflow_summary:
analysis_text += str(self.elf.integer_overflow_summary)
elif selection == ’buffer-overflow-check’:
self.elf.detect_buffer_overflow_checks ()
if self.elf.buffer_overflow_summary:
analysis_text += str(self.elf.buffer_overflow_summary)
elif selection == ’detect-array-allocations’:
self.elf.detect_array_allocations ()
if self.elf.array_initialization_summary:

analysis_text += str(self.elf.array_initialization_summary

94

)
elif selection == ’validate-relocations’:
self.elf.validate_relocations ()
if self.elf.relocation_validation:
analysis_text += str(self.elf.relocation_validation)

analysis_summary.update (analysis_text)

def on_directory_tree_file_selected(self, event: DirectoryTree.FileSelected)
-> None:
with open(event.path, ’rb’) as f:

#elf magic number

if f.read(4) == b’\x7f\x45\x4c\x46°:
self .filename = event.path
selections = self.query_exactly_one(’#analysis-selections’,

SelectionList)
selections.deselect_all ()

self.analyse_binary(event.path)

def analyse_binary(self, filepath: str) -> None:
tabs = self.query_exactly_one(’#tabs’, TabbedContent)
tabs.display=False
loader = self.query_exactly_one(’#loader’, LoadinglIndicator)
loader .display=True
self.call_later(lambda: self.run_worker (partial(self.analyze_elf, filepath

), exclusive=True, thread=True))

def analyze_elf (self, filepath: str) -> None:
self.elf = ExtendedElf (filepath)
self.call_from_thread(self.on_elf_analyzed)

async def on_elf_analyzed(self) -> None:
loader = self.query_one(’#loader’, LoadingIndicator)
tabs = self.query_one(’#tabs’, TabbedContent)
loader .display = False
tabs.display = True
await self.mount_elf_summary ()

await self.mount_function_trees ()

async def mount_elf_summary(self) -> None:
file_summary = VerticalScroll(id=’elf-summary’)
try:
old_elf_summary = self.query_exactly_one(’#elf-summary’,
VerticalScroll)
if old_elf_summary:
await old_elf_summary.remove ()
except NoMatches:
pass
file_summary_tab = self.query_exactly_one(’#file-summary’, TabPane)
await file_summary_tab.mount(file_summary)
await file_summary.mount (Label (f"FILENAME: {Path(self.elf.filename) .namel}"
, markup=False, classes=’summary-label’))
first_row = Horizontal(Vertical(Label ("ELF Header:", markup=False, classes
=’summary-label’), self.elf_header()),
Vertical (Label("Info:", markup=False, classes=’
summary-label’), self.general_info()))
await file_summary.mount(first_row)
second_row = Vertical(self.section_headers_label(), self.section_headers ()

)

95

def

def

def

def

await file_summary.mount (second_row)
third_row = Horizontal(Vertical(Label("Program Headers:", markup=False,
classes=’summary-label’), self.program_headers()),
Vertical (Label ("Segment to section mapping:",
markup=False, classes=’summary-label’), self.
segment _to_section()))

await file_summary.mount (third_row)

segment_to_section(self) -> TextArea:
segment_to_section_text = TextArea(text="", read_only=True)
text = nn

counter = 0

for segment in self.elf.binary.segments:
text += f"{counter:02} "
for section in segment.sections:
text += f"{section.name} "
counter += 1
text += "\n"
segment_to_section_text.load_text (text)

return segment_to_section_text

program_headers (self) -> TextArea:
program_headers_text = TextArea(text="", read_only=True)
text = ""
text += f"{’Type’:<14} {’0ffset’:<8} {’Virtual Address’:<18} {’Physical
Address ’:<18} {’File Size’:<10} {’Memory Size’:<12} {’Flags’:<5} {’
Align’:<6}\n"
for segment in self.elf.binary.segments:
flags = ""
if segment.flags & Segment.FLAGS.R:
flags += "R"
if segment.flags & Segment.FLAGS.W:
flags += "W"
if segment.flags & Segment.FLAGS.X:
flags += "X"
text += f"{segment.type.name:<14} Ox{segment.file_offset:06x} Ox{
segment .virtual_address:016x} Ox{segment.physical_address:016x} Ox
{segment .physical_size:08x} Ox{segment.virtual_size:010x} {flags
:<6} Ox{segment.alignment:04x}\n"
program_headers_text.load_text (text)

return program_headers_text

section_headers_label (self) -> Label:

label_text = "Section headers: \n"

label_text += £"{’[Nr]’:<5} {’Name’:<17} {’Type’:<14} {’Address’:<14} {°’
0ff ’:<8} {’Size’:<8} {’ES’:<5} {’Flg’:<4} {’Lk’:<3} {’Inf’:<4} {’Al
Y2}

sections_label = Label(label_text, markup=False, classes=’summary—label’)

return sections_label

section_headers(self) -> TextArea:

section_headers_text = TextArea(text="", read_only=True)
text = ""
count = 0

flags_def = ELF.Section.FLAGS
important_flags = {"A": flags_def.ALLOC.name, "I": flags_def.INFO_LINK.

name,
"E": flags_def .EXECINSTR.name, "W": flags_def.WRITE.

96

name ,
"T": flags_def.TLS.name, "M": flags_def.MERGE.name,
"S": flags_def.STRINGS.name
}
for section in self.elf.binary.sections:
flags = ’’.join([flag.name [0] for flag in section.flags_list])
text += f"[{count:>2}] {section.name:<18} {section.type.name:<14} 0x{
section.virtual_address:012x} Ox{section.file_offset:06x} Ox{
section.size:06x} Ox{section.entry_size:03x} {flags:<4} {section.
1link:03} {section.information:04} {section.alignment:02}\n"
count += 1
section_headers_text.load_text (text)
section_headers_text.with_tooltip(f"Flags: {important_flagsl}")

return section_headers_text

def general_info(self) -> TextArea:
general_info_text = TextArea(text="", read_only=True)
text = ""
text += f"Functions detected: {len(self.elf.binary.functions)}\n"
text += ("Stripped\n" if not self.elf.binary.has_section(’.symtab’) else "
Not stripped\n")
text += f"Program image base: Ox{self.elf.binary.imagebase:x}\n"
text += f"Interpreter: {self.elf.binary.interpreter}\n"
text += f"Position Independent Executable (PIE): {self.elf.binary.is_piel}\
n"
if self.elf.binary.libraries:
count = 1
text += "Libraries: \n"
for library in self.elf.binary.libraries:
text += f"{count}. {library}\n"
count += 1
general_info_text.load_text (text)

return general_info_text

def elf_header(self) -> TextArea:

elf_header_text_area = TextArea(text="", read_only=True)
header = self.elf.binary.header
text = ""

text += f"Header Size: {header.header_sizel}\n"

text += f"Header type: {header.identity_class.namel}\n"

text += f"Version: {header.identity_version.namel}\n"

text += f"EntryPoint: Ox{header.entrypoint:x}\n"

text += f"File Type: {header.file_type.namel}\n"

text += f"ABI: {header.identity_os_abi.namel}\n"

text += f"ABI version: {header.identity_abi_version}\n"

text += f"Endianness: {header.identity_data.name}\n"

text += f"Architecture: {header.machine_type.namel}\n"

text += f"Section count: {header.numberof_sectionsl}\n"

text += f"Section header offset: Ox{header.section_header_offset:x}\n"
text += f"Section header size: {header.section_header_size}\n"

text += f"Segment count: {header.numberof_segments}\n"

text += f"Program header offset: Ox{header.program_header_offset:x}\n"

text += f"Program header size: {header.program_header_size}\n"

elf_header_text_area.load_text (text)

return elf_header_text_area

async def mount_function_trees(self) -> None:

97

trees = self.construct_function_trees()
try:
old_tree_list = self.query_one("#function-tree-1list", VerticalScroll)
if old_tree_list:
await old_tree_list.remove ()
except NoMatches:
pass
new_tree_list = VerticalScroll (xtrees, id="function-tree-list")
self .mount (new_tree_list, after="#extended-search")
summary_tab = self.query_exactly_one("#file-summary", TabPane)
summary_tab.disabled = False
func_tab = self.query_exactly_one("#functions", TabPane)
func_tab.disabled = False
analysis_tab = self.query_exactly_one("#analysis", TabPane)

analysis_tab.disabled = False

def on_switch_changed(self, event: Switch.Changed) -> None:
if event.control.id == ’disas-mode’:
if event.control.value:
self .disas_mode = ’recursive’
else:
self.disas_mode = ’linear’

self . _update_disassembly(self.current_function)

def on_input_changed(self, event: Input.Changed) -> None:
if event.control.id == ’extended-search’:
if not event.value:
self._show_functions ()
else:
keep_list = []
for address, fn in self.elf.cfg.items():
if event.value in fn.name_or_addr:
keep_list.append(address)
include calls in search
for call in fn.all_calls:
if call in self.elf.cfg and event.value in self.elf.cfgl
call] .name_or_addr:
keep_list.append(address)
self._hide_functions (keep_list)

def on_tree_node_selected(self, event: Tree.NodeSelected) -> None:
address = event.node.data
self. _update_disassembly (address)

self . _update_function_summary (address)

def _hide_functions(self, keep_list: list[str]) -> Nomne:
function_trees = self.query(’.function-tree’)
for function_tree in function_trees:
if function_tree.root.children[0].data not in (keep_list):
function_tree.display = False
else:

function_tree.display = True

def _show_functions(self) -> None:
function_trees = self.query(’.function-tree’)
for function_tree in function_trees:

function_tree.display=True

98

def _update_function_summary(self, address: int) -> None:
summary = self.query_one (’#function-summary’, Static)
text = str(self.elf.cfgladdress])

summary .update (text)

def _update_disassembly(self, address: int) -> None:

disas = self.query_one(’#disas’, Static)

label = self.query_one(’#disassembly-label’, Label)

if address:
label.update(f"Disassembly of {self.elf.cfgladdress].name_or_addr}")
self.current_function = address
raw_text = self.elf.cfgladdress].get_disas(self.disas_mode)
colored_text = Text(raw_text)
colored_text.highlight_words([’call ’, ’callq ’], style=Style(color=’

red’)) #calls

colored_text.highlight_words([’ jmp ’, ’ jmpq ’, ’ jne ’, ’ je ’, ’ jo

>
3

’ jae ’, ’ ja ’, ? jbe ’, ’ jb ’, 7 jge
>, 2 jle ’, ’ jg 1,
style=Style(color=’green’))#jmps
disas.update(colored_text)
else:

disas.update(’Missing Function Disassembly’)

def construct_function_trees(self) -> list[Treel:
trees = []
counter = 0
for address in sorted(self.elf.cfg.keys()):
tree = Tree(’’, classes=’function-tree’)
tree.show_root = False
if not self.elf.cfgladdress].all_calls:
tree.root.add_leaf (label=f"{counter}. {self.elf.cfgladdress].
name_or_addr}", data=address)
else:
parent = tree.root.add(label=f"{counter}. {self.elf.cfgladdress].
name_or_addr}", data=address)
for child_address in self.elf.cfgl[address].all_calls:
if child_address in self.elf.cfg:
parent.add_leaf (label=self.elf.cfglchild_address].
name_or_addr , data=child_address)
trees.append(tree)
counter += 1

return trees

def main ():
disas = InteractiveDisas ()

disas.run()

) > .

if __name__ __main_ _

main ()

Listing 108: styles.css

#extended-search {
width: 100%;
margin: 0 1 1 1;

99

. summary -label {

padding: 0 2;

#function-tree-list {
width: 100%;
margin-left: 1;
margin-right: 1;

}

Tree {
min-height: 1;
height: auto;
overflow-x: hidden;

}

#disas {
background: #lelele;
color: white;
padding: 1;

}

#analysis-summary {
background: #lelele;
color: white;

padding: 1;

#function-summary {
width: 100%;
background: #lelele;
color: white;

margin: 1 1 1 1;

100

	Introduction
	Important Rust Concepts
	Immutability As Default Behavior
	Ownership
	Borrowing
	Structs and Methods
	Traits
	Generics
	Lifetimes
	Panicking
	Unsafe Rust

	Methodology
	Compiler and Setup
	Binary Analysis Tooling
	Static Analysis
	Dynamic Analysis

	Compiler Tricks
	Function Name Mangling
	Function In-lining
	Dead Code Elimination
	Frame Pointer Omission
	Linking

	Spatial Memory Safety
	Integer Overflow
	Buffer Overflows
	Arrays
	Vectors

	Type Confusion
	Composition Instead of Inheritance
	Enums
	Struct Type Confusion
	Trait Objects

	Temporal Memory Safety
	Dangling Pointers
	Use After Free

	Creating A Rust Disassembler
	Constructing A Control Flow Graph
	Detecting Integer Overflows
	Detecting Index Out Of Bounds
	Array Allocation Detection
	Relocation Validation

	Future Work
	Conclusion
	References
	Appendix

