

i

Individual Thesis

IMPROVEMENTS AND EXPERIMENTAL EVALUATION OF TASK

ALLOCATION FOR MULTI-AGENT SYSTEMS

Alexis Andreou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

June 2025

ii

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

Improvements and experimental evaluation of task allocation for multi-agent systems

Alexis Andreou

Supervising Professor:

Dr Yiannis Dimopoulos

The Individual Thesis was submitted in partial fulfillment of the requirements for the degree

of Computer Science of the Department of Computer Science of the University of Cyprus.

iii

 Abstract

This thesis focuses on the centralized approach to interdependent task allocation in

cooperative multi-agent systems, particularly in scenarios such as wildfire detection using

autonomous drones. While much prior research has emphasized decentralized coalition

formation—the framework proposed by Douae Ahmadoun (2022) on the doctoral research of

at the University of Paris, titled: Ahmadoun, D. (2022). Interdependent Task Allocation via

Coalition Formation for Cooperative Multi-Agent Systems. PhD Thesis, University of Paris

[3]—this work pivots to the design, implementation, and experimental evaluation of

centralized solutions using Answer Set Programming (ASP) via Clingo.

By leveragingg the expressive power and computational effectiveness of Clingo, this thesis

presents an ASP formulation of the centralised variation of the coalition formation model by

Ahmadoun (2022), that explicitly accounts for task interdependencied, resource constraints,

and environmental uncertainties. Extensive experiments are conducted to evaluate

performance in terms of solution quality, computational efficiency, and scalability.

In addition to implementing the centralized models, this thesis also explores and attempts

targeted improvements to the previously proposed decentralized approach [3], assessing their

relative strengths and limitations.

The results demonstrate the efficacy of centralized ASP-based methods in producing

high-quality task allocations under complex constraints, offering a strong baseline for

comparison with decentralized solutions. Future directions include the integration of

learning-based adaptations, real-world validation, and further refinement of both centralized

and decentralized frameworks.

iv

Table of Contents

CHAPTER 1: Introduction ... 1

1.1 Background and Motivation ... 1

1.2 Research Problem ... 2

1.3 Objectives .. 2

1.4 Research Contributions ... 3

1.5 Source Attribution and Original Contributions .. 3

CHAPTER 2: Literature Review ... 5

2.1 Agents .. 5

2.2 Multi-Agent Systems ... 7

2.3 Tasks in Multi-Agent Systems .. 8

2.4 Multi-Agent Task Allocation ... 9

2.5 Coalition Formation ... 10

CHAPTER 3: Constraint Satisfaction and Answer Set Programming 13

3.1 Introduction .. 13
3.2 Constraint Satisfaction Problems (CSP) ... 13

3.2.1 Definition ... 13
3.2.2 Introduction to MiniZinc .. 14

3.3 Answer Set Programming (ASP) .. 15
3.3.1 Introduction to Clingo .. 17
3.3.2 Application in Thesis ... 18

CHAPTER 4: Problem Definition and Methodology .. 19

4.1 Problem Definition .. 19
4.1.1 Research Context and Motivation .. 19
4.1.2 Formal Problem Statement ... 19
4.1.3 Challenges Addressed ... 21
4.1.4 Research Objectives .. 21

4.2 System Model ... 22
4.2.1 Agent ... 22
4.2.2 Task ... 23
4.2.3 Mission and Scenario .. 25
4.2.3.1 Mission Definition ... 26
4.2.3.2 Scenario Structure .. 27
4.2.4 Team and Coalition .. 28
4.2.4.1 Team Definition .. 28
4.2.4.2 Coalition Definition ... 28

4.3 Methodological Approach .. 29
4.3.1 Constraint Satisfaction Problem (CSP) .. 29
4.3.1.1 MiniZinc Model Description .. 29
4.3.1.2 Python Integration & Data Feeding .. 32
4.3.1.3 Advantages of the CSP Approach .. 33
4.3.1.4 Limitations Identified .. 33

v

4.3.2 Answer Set Programming (ASP) ... 34
4.3.2.1 Overview of ASP Implementation ... 34
4.3.2.2 Evaluation of ASP with Clingo ... 41
4.3.2.3 Summary .. 42
4.3.3 Feasible Interdependent Coalition Structure Anytime Method (FICSAM) 42
4.3.3.1 FICSAM Overview ... 42
4.3.3.2 Message Protocol ... 44
4.3.4 Improved Feasible Interdependent Coalition Structure Anytime Method (IFICSAM) 45
4.3.5 Additional Experimental Evaluation .. 46
4.3.6 Summary ... 48

4.4 Implementation Details ... 48
4.4.1 Programming Language and Libraries .. 49
4.4.2 Optimization and Solving Tools ... 49
4.4.3 Software Architecture ... 49

4.5 Summary .. 51

CHAPTER 5: Experimental Results and Evaluation .. 53

5.1 Objectives of the Evaluation .. 53

5.2 Experimental Setup ... 53
5.2.1 Environment and Infustructure .. 53
5.2.2 Scenario Configuration .. 54
5.2.3 Experimental Variables ... 54
5.2.4 Evaluated Algorithms .. 55

5.3 Evaluation Metrics ... 55
5.3.1 Feasibility Rate .. 55
5.3.2 Global Utility .. 56
5.3.3 Execution Time .. 56
5.3.4 Number of Messages Exchanged ... 56
5.3.5 Number of Iterations (Rounds) ... 57

5.4 Experimental Results .. 57
5.4.1 Feasibility Analysis .. 57
5.4.2 Coalition Utility and Solution Quality ... 59
5.4.3 Scalability and Execution Time .. 60
5.4.4 Communication Overhead .. 61
5.4.5 Number of Iterations ... 63

5.5 Discussion .. 65

5.6 Summary .. 67

CHAPTER 6: Conclusion and Future Work ... 69

6.1 Summary and Key findings ... 69

6.2 Key Findings .. 70

6.3 Limitations .. 70

6.4 Future Work .. 71

Bibliography .. 73

APPENDIX ... 75

Appendix A: Python Code for Clingo Data Generation. .. 75

CHAPTER 1: Introduction

1.1 Background and Motivation

Multi-agent systems have attracted a of lot of interest in many areas such as disaster

management, defence, autonomous robotics and enviromental monitoring. Particularly in

real-time, high-risk situations, the growing dependence on autonomous agents, such as

drones, has created new difficulties in organising and maximising their activities. Task

distribution is one of the main difficulties in these systems since it guarantees that several

agents mutually achieve activities in the most efficient and effective way.

Traditional task allocation methods often assume task independence, where each task can be

assigned to an agent without considering dependencies on other tasks. However, real-world

scenarios often involve interdependent tasks, meaning that the execution of one task can be

influenced by another. In applications such as wildfire detection and monitoring, drones must

coordinate their actions, share data, and optimize coverage based on environmental

conditions, fuel constraints, resources and position of agents and tasks.

While current centralised task allocation methods including Answer Set Programming

(Clingo) and constraint programming (MiniZinc) have great optimisation potential, they have

limited scatability capacities. Therefore, distributed tasks is essential to allow drones working

in dynamic surroundings to enable adaptive, fault-tolerant, and real-time decision-making.

Emphasising autonomous drone cooperation in fire detection and monitoring missions, this

dissertation experiment the scalability of centralized methods and the distributed coalition

building method for multi-agent task allocation proposed by Douae Ahmadoun [3]. The

suggested approach guarantees that drones dynamically create coalitions, adapt to

environmental constraints, and maximise objective in a dispersed way.

2

1.2 Research Problem

The challenge of interdependent task allocation in cooperative multi-agent systems requires

an efficient method for allocating tasks among autonomous agents while taking into

consideration a variety of dependencies including:

o Resource limitation: Agents may not have the required resources to execute tasks.

o Dynamic coalition formation: Agents have to self-organise into the best possible

groups according to task priorities and available resources.

o Spatial Constraints: The allocation must consider coverage optimization to avoid

unnecessary searching.

Due to high computational complexity and requirment for a global knowledge of the

problem, traditional centralized task allocation approaches have difficulty meeting these

limitations. While centralized methods such as Answer Set Programming and Constraint

programming can provide optimal solutions, they are not the best approach for dynamic

problems where real-time adaptability and efficiency is crucial. This thesis contrasts the

decentralized coalition formation method proposed by Ahmadoun [3]—where agents

autonomously communicate via message passing to allocate tasks—with a centralized

approach implemented using Answer Set Programming. While Ahmadoun’s method enables

agents to dynamically form coalitions based on their capabilities, location, and resource

availability—offering scalability, fault tolerance, and adaptability to real-time conditions—it

does not guarantee optimal task allocation. In contrast, the centralized approach developed in

this thesis aims to achieve higher-quality solutions through global optimization, enabling a

direct comparison of performance, scalability, and allocation quality between the two

paradigms.

1.3 Objectives

The main objective of this thesis is to develop and evaluate a centralized approach for

interdependent task allocation in multi-agent systems using Answer Set Programming (ASP)

with Clingo. The focus is on implementing scalable ASP models capable of handling large-

scale problem instances while maintaining solution quality. Additionally, the thesis aims to

contrast this centralized approach with the decentralized method (FICSAM) proposed by

Ahmadoun [3], and to explore potential improvements to the decentralized method in terms

3

of allocation quality. To validate the proposed work, a series of experiments are conducted to

assess scalability, efficiency, and the utility of solutions in realistic task allocation scenarios.

1.4 Research Contributions

This research contributes to the field of multi-agent task allocation by implementing a

centralized coalition formation model using Answer Set Programming with Clingo, aimed at

efficiently handling interdependent tasks. The study emphasizes the advantages of Clingo

over MiniZinc [3] for solving large-scale, complex allocation problems due to its enhanced

computational performance and scalability. Furthermore, it provides a comparative analysis

between the centralized Clingo-based method and the decentralized approach proposed by

Ahmadoun, highlighting the strengths and limitations of each. Through extensive simulations

in drone-based task allocation scenarios, the thesis demonstrates how the centralized method

improves solution quality and responsiveness under real-world constraints.

1.5 Source Attribution and Original Contributions

The decentralized task allocation methods implemented in this thesis—specifically the

FICSAM (Feasible Interdependent Coalition Structure Anytime Method) and IFICSAM

(Improved FICSAM) algorithms—are based on the doctoral research of Douae Ahmadoun at

the University of Paris, titled:

Ahmadoun, D. (2022). Interdependent Task Allocation via Coalition Formation for

Cooperative Multi-Agent Systems. PhD Thesis, University of Paris.

The architecture, class structure, token-based communication protocol, and core decision-

making logic for agent coordination were adapted from this source. The class diagram used in

this thesis was also derived directly from Ahmadoun’s original framework.

However, significant components of this work are original and were developed from scratch.

This includes the centralized model implemented in Clingo, which were designed

independently to benchmark the performance of the decentralized approaches. Furthermore,

the utility function, data structures for agent-task modeling, and all experimental scenarios,

automation scripts, and result visualizations were designed specifically for this thesis.

4

Additionally, enhancements and new prototypes were introduced in Section 3.3.5 reflecting

contributions that tried to improve the functionality and performance of the original

decentralized algorithmic base.

Where appropriate, in-text citations and footnotes reference the original source. This

separation ensures transparency in methodology and guards against unintentional attribution

errors.

5

CHAPTER 2: Literature Review

2.1 Agents

Agent is an autonomous entity that recognize its environment, makes decisions, and executes

actions to achieve specific goals. Artificial intelligence, robotic, and distrinuted systems use

agents, which can be either physical (e.g. robot, drone) or virtual (e.g. software bot, simulated

entities [16].

In multi-agent systems, multiple agents interact with each other, either cooperatively or

competitively, to complete complex tasks. Unlike traditional computational models where a

central entity governs decision-making, agents in MAS operate independently, communicate

via message-passing, and dynamically adapt to their surroundings [3, 22].

An agent perceives its environment through sensors, collecting relevant data to complete its

tasks. For drones involved in forest-fire detection, perception typically involves gathering

real-time information through sensors, such as thermal cameras, optical cameras, and

environmental sensors. Through this perception, drones collect the necessary data for

detecting a fire. After perceiving its enviroment, agents process this infromations to make

decisions autonomously. This decision-making capability distinguishes agents from tradional

remote-controlled systems. Autonomy is when the agent analyze sensor data, internal states

(e.g. battery status, computing reousrces), and task requirments. The agent then calculates

how to allocate its resources optimally, whether to continue its current activity, form or join a

coalition, or to alter its actions.

Agents perform certain actions based on thesis decision. For drones detecting a forest-fire,

these may be flying to specific coordinates, searching areas for thermal signatures, indicating

fires discovered, joining or leaving coalitions, or transmitting information ot other drones or a

ground station. The success of a drone agent is its ability to respond fast and react to dynamic

circumstances, most significant in tracking forest fires where swift raction time could be a

major factor in determining the effectiveness and efficiency of efforts to fight fire.

6

Figure 2.1: Simple representation of an agent

Within the larger structure of multi-agent systems, agents rely on continuous interaction and

collaboration to optimize performance. By exchanging messages and dynamically adjusting

their coalitions, drones can rapidly adapt to environmental changes such as new fire

detections, shifting wind patterns, and agent failures or limitations [8]. Such adaptability

makes multi-agent systems particularly suitable for complex and unpredictable environments,

including wildfire detection and management, disaster response, and emergency services.

Figure 2.2: Communication flow between agents

7

In this dissertation, agents are modeled as autonomous drones that perform wildfire detection

and monitoring. Each drone functions as an intelligent agent, equipped with sensors,

communication modules, and decision-making algorithms to scan forests, detect fire

outbreaks, and report their findings to emergency response systems.

2.2 Multi-Agent Systems

A multi-agent system consists of a group of autonomous agents interacting and collaborating

within a shared environment to achieve specific objectives or solve problems [22]. Unlike

traditional computational systems where a single centralized entity controls and directs task

execution, MAS distributes decision-making capabilities across multiple independent entities,

allowing each agent to operate autonomously yet in coordination with others [8].

MAS are used in application such as disaster management, surveillance, environmental

monitoring, and defence that call for a high coordination and flexibility. Decentralisation,

flexibility, fault tolerance and scalability are the characteristics of MAS that makes it so

popular. When there is no single centralized controller, each agent acts locally and

collaborates with others to achieve global efficiency. This is known as decentralisation. When

MAS is implemented in real-world settings with multiple agents and tasks, its decentralised

structure effectively scales by lowering the computational complexity and communication

problems that are typical of centralised approaches [22]. The felxibility of multi-agent

systems also lies to the fact that agents can adjust dynamically to the changes in enviroments,

resource limitations, and unexpected events.

Multi-agents systems’ most important feature is the ability of agents to communicate and

interact with each other. Agents communicate with other agents using messages, exchanging

information such as status of ongoing tasks. Agent communication follows a message-passing

protocol with the goal of maintaining low communication overhead so that agents are able to

coordinate their activities effectively while retaining autonomy. Typical message types in

drone-based systems include task allocation updates, coalition formation proposals, resource

availability notifications, and real-time environmental updates [19].

This distributed communication enables drones to form coalitions dynamically. A coalition is

a temporary formation of agents that cooperate to obtain a specific collective objective.

8

2.3 Tasks in Multi-Agent Systems

Tasks in MAS represent the specific actions agents must complete to accomplish their overall

objectives [7]. In any MAS cooperative framework, tasks define agents behaviour, and the

objectives that the system must complete. In cooperative environments, agents share a

common global goal, which is divided into separate tasks. Each task usually has particular

requirements, and constraints that affect how and by which agent it can be completed [9].

Depending on the application context, tasks may differ based on the environment. For

instance, tasks might be just collecting environmental data or scanning an area, or they could

be as complex as cooperatively moving objects or jointly monitoring a dynamic area. All

these tasks require capabilities in the executing agents, which include sensory accuracy,

processing power, mechanical attributes, or communication capabilities. For instance,

imagine surveillance missions requiring drones with high-resolution thermal cameras and

enough battery life to monitor a large area for extended periods of time. On the other hand,

cooperative missions may require agents with mechanical arms and enough strength,

requiring specific coordination between multiple agents to successfully accomplish the task

[7].

To ensure efficient coordination among agents, efficient task allocation is crucial in ensuring

the capability of agents is matched with the task’s requirements. Task allocation addresses

this challenge by assigning agents to appropriate tasks according to their abilities,

availability, resources, and the current context of operation [19]. Proper task allocation

significantly improves system efficiency, enhances resource utilization, and maximizes

overall mission performance.

However, there are scenarios where the available agents may not meet the existing tasks’

requirements, resulting in infeasible assignments. For example, when there are numerous

surveillance tasks but few drones with suitable sensing capabilities and sufficient battery life,

some tasks will remain unassigned. This infeasibility emphasises the importance of balancing

agent availability with task requirements. When feasible, agents dynamically reassign their

assignments to identify task distributions that maximize an objective [9].

Performance in multi-agent task allocation is typically quantified using a measure known as

utility. Utility is a numerical representation of the effectiveness or efficiency of a particular

9

assignment of agents to tasks [20]. Each potential agent-task allocation is mapped to a

numerical score by utility functions, which show how well that arrangement achieves system

objectives. This quantitative measure allows the system to compare and evaluate task

allocations alternately in a structured way, guiding agents to optimal or near-optimal

solutions.

Overall, tasks are core components of MAS, specifying the actions agents have to perform

collectively. Proper task allocation that cautiously balances agent capability with task

requirements, supported by properly defines utility metrics, goes a long way towards the

performance and reliability of MAS, especially in dynamic, time-constrained applications.

2.4 Multi-Agent Task Allocation

Multi-agent task allocation (MATA) is a fundamental problem in artificial intelligence and

robotics, where a group of autonomous agents collaboratively assign themselves to a set of

tasks to optimize overall system performance. The problem is common in domains such as

disaster response, surveillance, logistics, and industrial automation [7]. The challenge in

multi-agent task allocation arises from various constraints, including task dependencies,

resource limitations, and communication overhead among agents [9].

Early approaches to task allocation were centralized, using optimization techniques such as

mixed-integer programming and constraint satisfaction to achieve globally optimal solutions

[17]. While these centralized approaches provide strong guarantees on solution quality, they

often suffer from scalability issues and communication bottlenecks in large-scale multi-agent

systems. To address this, decentralized and distributed methods have gained popularity,

enabling agents to make local decisions while coordinating their actions through negotiation

or auction-based mechanisms [11].

Auction-based allocation has been a widely studied approach, where agents bid for tasks

based on their capabilities and availability, leading to efficient task distribution with minimal

communication overhead [11]. However, these methods often assume independent tasks,

whereas real-world scenarios frequently involve interdependencies that require cooperative

execution strategies [19]. To handle such dependencies, coalition formation techniques have

been explored, where agents dynamically form groups to execute complex, interdependent

tasks [15].

10

Coalition-based task allocation enables multiple agents to work together on a given task by

using their collective capabilities. This is particularly useful in heterogeneous agent teams

where different agents may possess unique skills or resources required for task completion

[21]. Various models for coalition formation have been proposed, including negotiation-

based and distributed constraint satisfaction approaches, which allow agents to iteratively

adjust their task commitments based on utility maximization principles [12].

Another key aspect of multi-agent task allocation is robustness and fault tolerance. In

dynamic environments, failures are inevitable, and an efficient allocation mechanism should

be resilient to agent dropouts or task changes. To ensure continued task execution, modern

approaches often incorporate self-adaptive behaviors that allow agents to autonomously

reallocate tasks when disruptions occur. These capabilities are particularly important in real-

world scenarios such as search-and-rescue operations, where environmental conditions and

agent availability can change unexpectedly.

Recent advances have also explored Answer Set Programming (ASP) and constraint

programming for solving MATA problems. Tools such as Clingo and MiniZinc provide

powerful optimization capabilities, allowing for the formal modeling of task dependencies

and constraints [7]. However, these centralized approaches struggle with scalability in large

multi-agent environments. Decentralized methods that allow agents to locally compute task

allocations while maintaining global coordination are becoming more viable, offering a

balance between computational efficiency and solution quality [15].

Given the growing complexity of multi-agent systems, ongoing research continues to explore

hybrid approaches that combine optimization techniques with decentralized coordination

strategies. By using advances in artificial intelligence and distributed computing, multi-agent

task allocation is evolving toward more adaptive, scalable, and autonomous frameworks

capable of handling real-world challenges.

2.5 Coalition Formation

Coalition formation is defined as the temporary grouping of agents into coalitions to

accomplish complex tasks, which would otherwise be unfeasible for a single agent due to

their resource requirements or the necessity for diverse capabilities [18]. This concept is

11

essential in multi-agent systems where tasks often demand multiple agents with

complementary skills to collaborate effectively.

Initially developed within the field of game theory, coalition formation has traditionally

focused on rational agents seeking to maximize their own individual utilities through strategic

coalitions [18,19]. Early solutions to coalition formation were primarily centralized and

computationally intensive, often exhibiting exponential complexity with respect to the

number of agents involved, thus limiting their applicability in real-world scenarios [19].

However, recent advancements in Distributed Artificial Intelligence (DAI) have significantly

improved coalition formation approaches by emphasizing decentralized algorithms that

distribute computational loads among agents, thus enhancing efficiency and scalability

[1,19]. Such decentralized solutions are especially beneficial in cooperative multi-agent

environments where agents collaboratively pursue common global goals rather than focusing

solely on individual benefits.

In fully cooperative multi-agent systems—such as the drone-based wildfire detection scenario

addressed in this dissertation—agents seek to form coalitions to maximize overall system

utility rather than their individual utilities [2]. Here, utility represents the global effectiveness

and efficiency of task execution achieved by the coalition structure. The coalition formation

process involves dynamically assigning agents to coalitions, each responsible for a specific

task. Consequently, each task is managed by its respective coalition, consisting of agents

whose combined capabilities and resources satisfy the task’s specific requirements [19].

Formally, coalition formation in cooperative multi-agent systems typically involves two main

phases:

The first phase, known as coalition structure generation, determines the distribution of agents

into coalitions. This step aims to identify optimal or near-optimal agent groupings that can

collectively fulfill task requirements. The goal here is to form coalitions that maximize the

global utility, considering constraints like agent capabilities, resources, communication

overhead, and task complexity [15]. The second phase, known as coalition execution,

involves coalitions carrying out their allocated tasks. Agents within coalitions coordinate

closely, exchanging information, reallocating subtasks as necessary, and adapting

dynamically to real-time conditions to optimize their collective performance. The

12

performance of each coalition directly influences the utility of the overall coalition structure

[1].

Coalition formation is particularly suitable for modeling complex task allocation problems,

especially when individual tasks require a precise combination of diverse capabilities and

coordinated resources. In drone-based wildfire monitoring scenarios, coalition formation

facilitates effective collaboration among drones with varied capabilities such as thermal

imaging, extended flight endurance, communication relay functions, and accurate

localization. Drones dynamically form coalitions based on real-time data to optimize

coverage, responsiveness, and overall operational efficiency.

Therefore, the coalition formation paradigm provides a robust and flexible framework for

addressing task allocation challenges in cooperative multi-agent environments. By leveraging

decentralized coalition formation methods, multi-agent systems such as drone fleets deployed

for wildfire monitoring can dynamically adapt and maintain effective cooperation even in

highly dynamic and unpredictable operational contexts.

13

CHAPTER 3: Constraint Satisfaction and Answer Set

Programming

3.1 Introduction

In this chapter, we introduce two declarative programming paradigms used extensively in this

thesis to model and solve coalition formation problems: Constraint Satisfaction Problems

(CSPs) and Answer Set Programming (ASP). These approaches are used to implement and

evaluate centralized versions of the coalition assignment problem, where the objective is to

find optimal or feasible task-agent assignments under a set of constraints.

The tools used for these models are MiniZinc, a high-level modeling language for CSPs, and

Clingo, a solver for ASP. This chapter explains the core concepts behind these paradigms,

highlights their differences, and illustrates how they were applied in the context of multi-

agent task allocation.

3.2 Constraint Satisfaction Problems (CSP)

3.2.1 Definition

Constraint Satisfaction Problems (CSPs) represent a powerful class of combinatorial

problems characterized by a set of variables, each of which must be assigned a value from a

finite domain, subject to a collection of constraints. A formal CSP is defined as a triple

(𝑋, 𝐷, 𝐶) where:

• 𝑋 = {𝑥!, 𝑥", … , 𝑥#} is a set of variables.

• 𝐷 = {𝐷!, 𝐷", … , 𝐷#}assigns each variable 𝑥$ a finite domain 𝐷$ of values it can take.

• 𝐶 = {𝑐!, 𝑐", … , 𝑐%} is a set of constraints that define allowable combinations of values

for subsets of variables.

A solution to a CSP is an assignment of values to all variables such that all constraints are

simultaneously satisfied. In many applications, including the one addressed in this thesis,

CSPs are extended with an objective function to form a Constraint Optimization Problem

14

(COP), where the goal is not only to find a feasible solution, but one that maximizes (or

minimizes) a given utility measure.

CSPs are well-suited for problems where explicit constraints govern feasibility, and the

objective can be described arithmetically or logically. They are widely used in scheduling,

planning, resource allocation, and configuration problems.

3.2.2 Introduction to MiniZinc

MiniZinc is a high-level, solver-agnostic modeling language used to define constraint

satisfaction and optimization problems. In the context of this thesis, it was employed to

model the centralized version of the coalition formation problem for drone-based task

allocation, allowing precise encoding of constraints and the definition of objective functions

over agent-task assignments.

Below is a representative example directly inspired by the real implementation.

Example 1: Resource Constraint for Task Feasibility

% Resource A for single tasks
constraint forall(j in tasks) (
 sum(i in agents where agents_resA[i])(assignment[i] == j) >= tasks_resA[j]
);

This constraint ensures that for each task j, the total number of agents assigned who possess

resource A is at least the required amount tasks_resA[j].

Example 2: Logical Constraint Involving Neighboring Tasks

(nb_tasks < 5 /\ exists(k in tasks)(
 (tasks_nearest[j] == k /\
 (sum(i in agents where agents_resA[i]) (assignment[i] == j) +
 sum(i in agents where agents_resA[i]) (assignment[i] == k)) >=
 tasks_resA[j] + tasks_resA[k] + 1)
))
\/
(nb_tasks >= 5 /\ exists(k, l in tasks)(
 (tasks_nearest[j] == k /\ tasks_nearest_sd[j] == l /\
 (sum(i in agents where agents_resA[i]) (assignment[i] == j) +
 sum(i in agents where agents_resA[i]) (assignment[i] == k) +

15

 sum(i in agents where agents_resA[i]) (assignment[i] == l)) >=
 tasks_resA[j] + tasks_resA[k] + tasks_resA[l] + 1)
))

This complex logical constraint activates different conditions depending on the number of

tasks in the instance. For smaller task sets (less than 5), it ensures that a task and its nearest

neighbor collectively receive enough resource A. For larger configurations, it ensures that a

task and its two closest neighboring tasks together meet the cumulative resource requirement.

Objective Function: Maximizing Autonomy Utility

var float: obj_value =
 sum(i in agents)(autonomy[i]) * (1 - abs(assignment[i] - i) / num_tasks);

solve maximize obj_value;

This objective function aims to maximize the overall utility of the structure. It rewards agent-

task assignments where agents are allocated tasks with spatial or index proximity (simulating

reduced travel or logical alignment), scaled by their autonomy level. This encourages

strategic grouping of more capable agents near demanding tasks.

3.3 Answer Set Programming (ASP)

Answer Set Programming (ASP) is a form of declarative programming used to solve complex

search and reasoning problems, especially those involving combinatorics, constraints, and

logic-based conditions. ASP differs from traditional imperative or procedural programming

by allowing the programmer to describe the problem using logic-based rules, and letting the

solver compute the solutions (known as "answer sets").

An ASP program defines:

• Facts: Ground truths, e.g., agent(a1).

• Rules: Conditions that generate conclusions from facts, e.g., can_assign(A,T) :-

agent(A), task(T), suitable(A,T).

• Constraints: Rules that eliminate undesired solutions, e.g., :- assigned(A,T1),
assigned(A,T2), T1 != T2.

16

• Optimization Directives: Instructions to maximize or minimize a function , e.g.,

#maximize { U,A,T : utility(A,T,U) }.

The most commonly used ASP solver today is Clingo, which was used in this thesis for

centralized coalition structure generation.

In the context of this thesis, Answer Set Programming (ASP) was employed as a centralized

approach to model and solve the coalition formation problem. Specifically, ASP was used to

encode the assignment of agents to tasks under a rich set of domain constraints, such as

autonomy levels, resource availability, and task requirements. This modeling allowed the

problem to be expressed declaratively using logic-based rules, while the Clingo solver

computed valid coalitions that maximized overall utility.

To represent the problem in ASP, a series of logical facts were used to define the basic

elements of the system: agents, tasks, their positions, and their capabilities. For instance, each

agent was described with facts indicating its autonomy, its available resources A and B, and

its position in a 2D space. Similarly, each task was described by its location and a set of

requirements, including minimum and maximum autonomy thresholds, minimum agent

count, and required resources.

Building on this foundation, a set of rules was defined to describe valid assignments. A key

rule ensured that each agent could be assigned to at most one task, thus maintaining

exclusivity in agent-task relationships. Additional rules captured relationships such as

distance between agents and tasks, enabling reasoning over spatial feasibility.

Crucially, constraints were introduced to enforce task feasibility. For example, one constraint

ensured that a task could not be assigned unless it received a sufficient number of agents.

Others required that the sum of the assigned agents’ resources met the task’s demands, and

that at least one agent in a coalition possessed the autonomy necessary to complete the task

safely. These constraints were written in ASP’s expressive syntax and eliminated invalid

configurations from the solution space.

To guide the solver toward high-quality solutions, a utility function was encoded using ASP’s

#maximize directive. This function typically rewarded coalitions composed of highly

17

autonomous agents with sufficient resources, thus aligning solution quality with the real-

world goal of maximizing operational effectiveness.

Overall, ASP provided a flexible and powerful framework for representing coalition

formation as a logical problem. Its ability to declaratively express constraints and compute

optimal solutions made it ideal for benchmarking the performance of the decentralized

methods developed later in the thesis. Although ASP does not scale as well as heuristic

approaches for large problem instances, its strength lies in producing exact, interpretable

results for moderate configurations—offering a valuable baseline for evaluation.

3.3.1 Introduction to Clingo

To solve the answer set programs defined in this thesis, we employed Clingo, a state-of-the-

art solver for Answer Set Programming. Developed by the Potassco group at the University

of Potsdam, Clingo integrates both a grounder (Gringo) and a solver (based on the Conflict-

Driven Clause Learning paradigm) into a single tool. It enables users to define logic-based

models using a declarative syntax and computes one or more answer sets that represent

solutions satisfying all program rules and constraints.

Here is a simple Clingo program:

agent(a1; a2).
task(t1; t2).

% Only one assignment per agent
{ assigned(A,T) : task(T) } = 1 :- agent(A).

% Constraint: avoid same task for both agents
:- assigned(a1,T), assigned(a2,T).

#show assigned/2.

This program models two agents and two tasks. Each agent is assigned to exactly one task,

and the second constraint ensures that a₁ and a₂ are assigned to different tasks. This results in

one valid assignment: for example, assigned(a1,t1) and assigned(a2,t2).

Clingo operates in two main stages. First, it grounds the logic program by expanding

variables into concrete instances based on the input facts. This step transforms abstract rules

18

into a propositional form that can be processed by the solver. Then, in the second stage, the

solver searches for stable models that satisfy all constraints and rules. These answer sets

represent complete and consistent sets of literals that fulfill the program logic.

One of Clingo’s key features is its support for optimization statements. These allow

developers to not only find feasible solutions, but also to guide the solver to maximize or

minimize an objective function. In this thesis, Clingo was used to maximize the total utility of

agent-task assignments, ensuring that solutions were not only valid but also desirable in terms

of performance.

3.3.2 Application in Thesis

The Clingo models used in this project were written as .lp files and executed through Python

scripts that parsed the output. The models included sections to define agent and task data,

assignment rules, resource and autonomy constraints, and optimization criteria. Once

executed, Clingo returned the highest-utility coalition structure among all feasible

configurations. This centralized formulation was important to establish a performance

baseline against which the decentralized algorithms, FICSAM and IFICSAM [3], could be

rigorously compared.

Clingo was chosen for its expressiveness, solver performance, and its ability to handle logical

dependencies that would be cumbersome in constraint-based systems like CSPs. However, as

the number of agents and tasks increased, the grounding size and search space also expanded

rapidly. This limited the practical scalability of Clingo in very large problem instances.

Nevertheless, for medium-sized configurations, Clingo produced globally optimal coalition

structures that served as a benchmark for evaluating the performance of decentralized

methods such as FICSAM and IFICSAM.

In summary, Clingo proved to be a powerful tool for modeling and solving the centralized

coalition formation problem. Its logical syntax, combined with optimization capabilities,

allowed for concise and readable problem encodings and enabled the generation of high-

quality solutions for evaluation and comparison purposes.

19

CHAPTER 4: Problem Definition and Methodology

4.1 Problem Definition

4.1.1 Research Context and Motivation

Wildfires pose significant environmental, economic, and social threats, causing widespread

damage, loss of natural resources, and endangerment to human life. Early and time effiecent

detection of wildfires is essential, but traditional detection methods frequently have issues

with coverage, responsivness, and adaptability to quickly shifting conditions.

Unmanned aerial vehicles (UAVs), commonly known as drones, have emerged as promising

solution for wildfire monitoring due to their flexibility, rapid deployment, capabilities, and

suitability for operation in inaccessible areas. Despite these advantages, effective wildfire

detection and monitoring using drones require careful coordination among multiple agents,

especially when covering large areas and dynamically changing environmental conditions.

Efficient management and allocation of tasks among agents, ensuring optimal utilization of

resources, coverage, and response times, present significant research challenges.

4.1.2 Formal Problem Statement

This dissertation explores the challenge of task allocation and coalition formation within

cooperative drone-based wildfire detection systems, building upon the framework introduced

by Ahmadoun in [3]. The problem can be formally defined as follows:

Consider a set of autonomous agents 𝐴 = {𝑎!, 𝑎", … , 𝑎#}, representing drones equipped with

various sensors, communication capabilities, and computational resources. Each agent 𝑎$ has

a set of specific capabilities defined by:

• Resources (e.g. battery life)

• Sensor types (e.g. thermal imaging, optical sensors).

• Communication range.

• Computational resources for decision-making.

20

These drones are deployed within a spatial region 𝑅 partitioned into distinct areas requiring

continuous monitoring for wildfire detection. A set of monitoring tasks 𝑇 = {𝑡!, 𝑡", … , 𝑡#} are

identified, each task 𝑡& characterized by specific requirements such as:

• Area to be covered (geographic coordinates).

• Required resources.

• Number and types of drones required for successful execution.

Given these definitions, the coalition formation problem involves dynamically grouping

subsets of agents into coalitions 𝐶' ⊆ 𝐴 to perform specific tasks 𝑡&. Each coalition 𝐶' is

characterized by the combined capabilities of its member drones, which must satisfy the task

requirements. A valid coalition structure 𝑆 is thus defined as:

𝑆 = {(𝐶' , 𝑡&)|𝐶' ⊆ 𝐴, 𝑡& ∈ 𝑇, 𝐶' 	𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠	𝑟𝑒𝑞𝑢𝑖𝑟𝑚𝑒𝑛𝑡𝑠	𝑜𝑓	𝑡&

The primary objective is to generate and continuously refine coalition structures S to

optimize a predefined global utility function 𝑈(𝑆), representing the overall system

performance. Formally, the goal is to find the coalition structure 𝑆∗ that maximizes global

utility:

𝑆∗ = 𝑎𝑟𝑔	𝑚𝑎𝑥	𝑈(𝑆)

subject to constraints:

• Capability Constraints: Each coalition must collectively fulfill all capability

requirements of its assigned task.

• Resource Constraints: Agents have limited resources such as battery and

computational power.

• Communication Constraints: Coalition formations and adjustments must minimize

communication overhead.

• Real-time Constraints: Task allocation and coalition formation must adapt

dynamically to real-time changes (e.g., evolving fire locations, agent failures).

21

4.1.3 Challenges Addressed

This research specifically addresses several critical challenges inherent to the described

scenario:

• Scalability: As the number of agents and tasks grows, computational complexity

increases exponentially. Traditional centralized coalition formation approaches

struggle with real-time task allocation in such cases.

• Communication Overhead: High-frequency information exchange among agents

can lead to significant delays and inefficient resource usage, negatively impacting

real-time decision-making.

• Dynamic Adaptability: The system must respond swiftly and effectively to

unexpected events such as the sudden spread of wildfires, drone failures, or

environmental changes.

• Efficiency: In real-life scenarios the system must provide with time efficient

solution

4.1.4 Research Objectives

The primary objective of this research is to design, implement, and evaluate a centralized

coalition formation model using Answer Set Programming (ASP) with Clingo, specifically

aimed at solving the interdependent task allocation problem in cooperative multi-agent

systems. The focus is on modeling complex constraints and optimizing utility for agent-task

assignments in scenarios such as wildfire detection and monitoring.

A key aspect of this study is the contrast between the newly implemented ASP-based Clingo

models and existing centralized models developed using MiniZinc [3], a constraint

satisfaction problem (CSP) modeling language. This comparison highlights the trade-offs

between logic-based and constraint-based approaches in terms of expressiveness,

performance, and scalability.

Additionally, the thesis conducts a comparative evaluation against the decentralized coalition

formation method known as FICSAM, originally proposed by Ahmadoun (2022) [3]. While

the decentralized method itself was not developed in this thesis, targeted improvements are

explored to enhance its solution quality. The specific research objectives are to:

22

• Implement centralized coalition formation models using ASP (Clingo) and evaluate

their effectiveness.

• Compare the ASP (Clingo) implementation with MiniZinc-based models to assess

differences in performance, scalability, and solution quality.

• Investigate the scalability of the Clingo-based approach on large-scale, interdependent

task allocation scenarios.

• Evaluate and contrast centralized and decentralized methods in terms of utility,

efficiency, and adaptability.

• Explore improvements to the decentralized FICSAM algorithm to enhance its

practical utility in dynamic environments.

4.2 System Model

4.2.1 Agent

In the drone-based wildfire detection scenario considered in this study [3], each agent

represents an autonomous drone capable of performing pecific tasks based on its reousrces

and capabilities. Formally, we define our agent set as:

𝐴 = {𝑎!, 𝑎", … , 𝑎#}

Each agent 𝑎$ is uniquely characterized by a set of attributes extracted directly from the

Python implementation [3].

𝑎$ =< 𝑖𝑑, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠_𝑎, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠_𝑏 >

These attributes explicitly describe drone capabilities and resource constrains as follows:

• id: A unique identifier for each drone agent

• position: The current geographical location of the drone, representanted by

coordinates (𝑥, 𝑦) in the operational area

• autonomy: Represents the drone’s battery life or operational endurance, crucial

for task feasibility

• resources_a & resources_b: Specific resource capabilities that each drone

carries, which are required for task execution

23

These attributes are instantiated in the Agent class contructor as follows:

class Agent(AgentBase):
 def __init__(self, id, position, autonomy, resources_a, resources_b):
 super().__init__(id)
 self.position = position
 self.autonomy = autonomy
 self.resources_a = resources_a
 self.resources_b = resources_b

Example 4.1 (Drone Agent Characteristics)

Consider a set of five drone agents:	

𝐴 = {𝑎!, 𝑎", 𝑎), 𝑎*, 𝑎+}

These drones are scattered over a square grid of 10 km side length within a forest area. Each

drone is characterized by its autonomy, position, and resources type. Table 4.1 summarizes

their respective characteristics.

Table 4.1: Drone Agent Characteristics

Attribute Domain (𝐷') 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓

Autonomy [0,10] 8 4 6 4 7

Position [0,10]" (0,0) (5, 4) (2, 8) (9, 1) (3, 5)

Resource {𝐴, 𝐵, 𝐴𝐵} A AB B AB A

This agent model was adopted from prior work [3] and integrated into the experimental

model without modification, serving as the foundation for the centralized and decentralized

coalition formation evaluations presented in this thesis.

4.2.2 Task

Tasks in the context of this study represent distinct wildfire detection and monitoring

responsibilities that must be executed cooperatively by drone coalitions. These tasks are

designed to simulate real-world operational demands in which multiple drones must

24

coordinate based on location, resource availability, and endurance constraints. The set of

tasks is formally defined as:

𝑇 = {𝑡!, 𝑡", … , 𝑡%}

Each task 𝑡& is characterized by a set of attributes determining the requirments and

constrains agents must satisfy to execute the task. Based on Python implementation

(task.py), each task 𝑡& is represented as:

𝑡& =< 𝑖𝑑, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,min_autonomy,max_autonomy,max_distance,

resources_a, resources_b,min_agents >

Where the task attributes are defined as follows:

• id: Unique identifer of the task.

• position: Geographic coordinates where the task is located.

• min_autonomy: Minimum battery autonomy required for an agent to participate

in the task.

• max_autonomy: Maximum battery autonomy to perform the task.

• max_distance: Maximum allowable distance from an agent’s position to the task

location.

• resources_a: Quantity of resource type A required.

• resources_b: Quantity of resource type B required.

• min_agents: Minimum number of agents required to execute the task.

These attributes are instantiated in the Task class constructor:

class Task(TaskBase):
def __init__(self, id, position, min_autonomy=0, max_autonomy=0,
max_distance=float("inf"), resources_a=0,resources_b=0, min_agents=0):
 super().__init__(id)
 self.position = position
 self.min_autonomy = min_autonomy
 self.max_autonomy = max_autonomy
 self.max_distance = max_distance
 self.resources_a = resources_a
 self.resources_b = resources_b

25

 self.min_agents = min_agents

Example 4.2 (Task Characteristics)

Consider a set of four tasks:	

𝑇 = {𝑡!, 𝑡", 𝑡), 𝑡*}

These tasks are scattered over a square grid of 10 km side length within a forest area. Each

task is characterized by its attributes. Table 3.2 summarizes their respective characteristics.

Table 4.2: Tasks Characteristics

Attribute Domain (𝐷') 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒

Position [0,10]" (2,3) (5.2, 4.7) (1.5, 8) (0, 2.7)

Min. autonomy [0,100] 50 70 60 40

Max. autonomy [0,100] 90 100 85 70

Max. distance [0,∞) 5 3 7 10

Resource A ℕ 2 1 4 1

Resource B ℕ 0 2 1 1

Min. agents required ℕ 2 3 4 1

Like before, the task model was adopted from prior research [3] and incorporated into this

thesis without modification. It provided the necessary structure for defining task requirements

such as autonomy, resources, spatial constraints, and agent participation thresholds—forming

the basis for both the centralized and decentralized coalition formation experiments

conducted herein.

4.2.3 Mission and Scenario

In this system, a mission defined as a set of tasks that need to be performed in an

environment, while a scenario joins the mission together with a group of agents that are

26

spread in a spatial grid. The scenario simulates simulates actual scenarios in which a group of

drones need to self-organize and form coalition to complete the defined mission.

4.2.3.1 Mission Definition

A mission 𝑀 is formally defines as a set of tasks 𝑇 = {𝑡!, 𝑡", … , 𝑡%}, generated procedurally

with randomized but realistic constraints. Each task represents a discrete wildfire assignment,

localized withing a 2D grid area of size 𝑔𝑟𝑖𝑑 × 𝑔𝑟𝑖𝑑.

In the implementation (mission.py), the Mission class is respnsible for initializing these

tasks via the method:

def create_tasks(self, nb_tasks, nb_agents, grid):

This method:

• Randomly places each task in a unique position on the grid.

• Assigns autonomy requirements (min_autonomy, max_autonomy) within

reasonable bounds.

• Randomizes resource requirements (resources_a, resources_b) based on the

number of agents and tasks.

• Sets the minimum number of agents required to complete each task.

Formally, each mission 𝑀 is defined as:

𝑀 = {𝑡& =	< 𝑝𝑜𝑠& , min𝑎& , 𝑚𝑎𝑥𝑎& , 𝑟𝑒𝑠𝐴& , 𝑟𝑒𝑠𝐵& , min_𝑎𝑔𝑒𝑛𝑡𝑠& > |	j = 1…m}	

Where:

• 𝑝𝑜𝑠&: spatial location of the task 𝑡& in the grid

• 𝑚𝑖𝑛𝑎& , 𝑚𝑎𝑥𝑎&: required autonomy range

• 𝑟𝑒𝑠𝐴& , 𝑟𝑒𝑎𝐵&: required amounts of reasource A and B

• min_𝑎𝑔𝑒𝑛𝑡𝑠&: minimum number of agents needed

This task generation method is bounded by grid size and number of agents, ensuring that the

generated mission is both feasible and diverse.

27

4.2.3.2 Scenario Structure

A scenario 𝑆 brings together:

1. A mission 𝑀with a defined number of tasks,

2. A team of agents 𝐴 = {𝑎!, … , 𝑎#} deployed on the grid.

The scenario simulates the environment in which the agents must coordinate to complete all

tasks in the mission, foarming coalition dynamically.

This is in the Scenario class, which creates agents and tasks:

def create_scenario(self):
 tasks = self.mission.create_tasks(self.nb_tasks, self.nb_agents, self.grid)
 agents = self.team.create_agents(self.nb_agents, self.grid, tasks)
 agents = self.team.initialize_agents(self.mission.tasks)
 return agents, tasks

Example 4.3 (Scenario)

Lets us consider an example scenario with data from Table 3.1 and 3.2:

Figure 3.3: Spatial Scenario Deployment of Agents and Tasks

28

4.2.4 Team and Coalition

A team refers to the entire set of drone agents initialized for a mission, while a coalition

refers to a temporary, task-specific subgroup of these agents formed to collaborativelly

complete a given task.

4.2.4.1 Team Definition

Let the full team of agents denoted as:

𝐴 = {𝑎!, 𝑎", … , 𝑎#}

Agents are distributed randomly in the operational area and made aware of the existing

mission tasks. This prepares them to participate in coalition formation, where each agent

decided locally whether it can contribute to a task.

4.2.4.2 Coalition Definition

A coalition 𝐶' ⊆ 𝐴 is a dynamic, task-specific group of agents assigned to work

collaboratively on a single task 𝑡& ∈ 𝑇. Each coalition is constructes based on constraints

defined in the task model (Section 3.2.2).

Formally, for a task	𝑡&, the coalition 𝐶& must satisfy:

• ∑ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠_𝑎(𝑎$) ≥ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠_𝑎h𝑡&i1!∈3"

• ∑ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠_𝑏(𝑎$) ≥ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠_𝑏h𝑡&i1!∈3"

• ∃𝑎$ ∈ 𝐶& 	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦(𝑎$) ≥ max_𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦(𝑡&)

• ∀𝑎$ ∈ 𝐶& , 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦(𝑎$) ≥ min_𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦(𝑡&)

• m𝐶&m ≥ min_𝑎𝑔𝑒𝑛𝑡𝑠(𝑡&)

Coalitions are dynamic and may be modified over time as agents reassess the utility of the

global coalition structure and react to environmental changes. This is core to the anytime

decentralized formation strategy described in later sections.

29

4.3 Methodological Approach

To address the task allocation problem under interdependent constraints, this thesis explores

both centralized and decentralized computational paradigms. The centralized methodologies

involve formal modeling approaches based on Constraint Satisfaction Problems (CSP) and

Answer Set Programming (ASP), providing structured and globally optimized solutions. In

contrast, the decentralized methodology builds on the previously developed agent-based

anytime system known as FICSAM [3], in which autonomous agents iteratively form feasible

coalitions based on local information and dynamic interactions. This dual approach enables a

comprehensive evaluation of the trade-offs between optimality, scalability, and

responsiveness in interdependent multi-agent task allocation.

4.3.1 Constraint Satisfaction Problem (CSP)

The initial formulation of the coalition formation problem was approached as a Constraint

Satisfaction Problem (CSP), modeled using the MiniZinc language. The baseline model—

originally developed in prior work [3]—was extended and refined as part of this thesis.

Modifications included the addition of new constraints, refinement of variable definitions,

and integration of additional solver back-ends to evaluate performance across a broader

spectrum.

The objective was to assign each agent to at most one task while satisfying key feasibility

constraints such as autonomy limits, resource availability, and spatial proximity to tasks. This

formulation reflects a centralized optimization strategy, where the entire problem is solved

globally using constraint reasoning.

Solvers used in this study included CBC, Gecode, Chuffed, and others, each offering unique

performance characteristics that enabled a more comprehensive evaluation of the model's

scalability and efficiency. The MiniZinc-based CSP implementation provided a valuable

foundation and comparison point for the more expressive ASP-based models and the

decentralized FICSAM method discussed in subsequent sections.

4.3.1.1 MiniZinc Model Description

The CSP model used in this study is defined in model_centralized.mzn, which consists of:

30

Agents and Tasks Parameters:

• nb_agents, nb_tasks: The number of agents and tasks.

• Arrays like agents_autonomy, agents_resA, agents_resB, and distances encode

agent capabilities and spatial constraints.

• Task-specific requirments are captured via tasks_autonomy_min, tasks_resA,

tasks_reasB, tasks_agents_min, etc.

array[agents] of int : agents_autonomy;
array[agents] of bool : agents_resA;
array[tasks] of int : tasks_autonomy_min;
array[tasks, agents] of int: distances;

Decision Variable: Each agent is assigned to a task or none (0 means no assignment).

array[agents] of var tasks0: assignment;

Constraints:

• C0: Ensure the required agents to execute the task

• C1: Each agent is mono-task (assigned to at most one task).

• C2–C4: Enforce minimal autonomy, at least one highly autonomous agent per

task, and maximum distance limits.

• C5–C7: Ensure agents with resources A/B meet task requirements.

• C8: Each task must receive the minimum required number of agents.

% C0
constraint nb_agents >= sum(j in tasks)(tasks_agents_min[j]);

% C2: Minimal autonomy
constraint forall (j in tasks) (
 forall (i in agents)
 (assignment[i] == j -> agents_autonomy[i] >= tasks_autonomy_min[j]));

% C3: Autonomy threshold for one agent at least
constraint forall (j in tasks) (
 tasks_agents_min[j] > 0 -> (exists(i in agents)(assignment[i] == j /\
agents_autonomy[i] >= tasks_autonomy_one[j]))
);

31

% C4: Maximal distance
constraint forall (j in tasks) (
 forall (i in agents)
 (assignment[i] == j -> distances[j, i] <= tasks_distance_max[j])
);

% C5: Resources A for single tasks
constraint forall (j in tasks) (
 sum(i in agents where agents_resA[i])(assignment[i] == j) >= tasks_resA[j]
);

% C5': Resources A for single tasks
constraint forall (j in tasks where j mod 2 == 1) (
 (sum(i in agents where agents_resA[i])(assignment[i] == j) mod 2) == 1
);

% C6: Resources B for single tasks
constraint forall (j in tasks) (
 sum(i in agents where agents_resB[i])(assignment[i] == j) >= tasks_resB[j]
);

% C7: Resources A for couples of nearest tasks
constraint forall (j in tasks where tasks_resA[j] > 0) (
 (nb_tasks < 5 /\ exists(k in tasks)
 (tasks_nearest[j] == k /\
 (sum(i in agents where agents_resA[i]) (assignment[i] == j) +
 sum(i in agents where agents_resA[i]) (assignment[i] == k)) >=
 tasks_resA[j] + tasks_resA[k] + 1))
 \/ (nb_tasks >= 5 /\ exists(k, l in tasks)
 (tasks_nearest[j] == k /\ tasks_nearest_sd[j] == l /\
 (sum(i in agents where agents_resA[i]) (assignment[i] == j) +
 sum(i in agents where agents_resA[i]) (assignment[i] == k) +
 sum(i in agents where agents_resA[i]) (assignment[i] == l)) >=
 tasks_resA[j] + tasks_resA[k] + tasks_resA[l] + 1))
);

% C8: Minimal number of agents
constraint forall (j in tasks) (
 sum(i in agents)(assignment[i] == j) >= tasks_agents_min[j]
);

Objective Function: The obj variable computes a weighted utility based on autonomy

margins, distance constraints, resource coverage, and agent participation.

32

obj = (count([exists(j in tasks)(assignment[i] == j /\ agents_autonomy[i] >=
tasks_autonomy_min[j] + margin_autonomy_min) | i in agents]) +
 count([exists(j in tasks)(assignment[i] == j /\ distances[j, i] <=
tasks_distance_max[j] - margin_distance_max) | i in agents]) +
 count([agents_resA[i] /\ assignment[i] != 0 | i in agents]) +
 count([agents_resB[i] /\ assignment[i] != 0 | i in agents]) +
 2*count([assignment[i] != 0 | i in agents])
) * nb_tasks +
 (count([count([assignment[i] == j /\ agents_autonomy[i] >=
tasks_autonomy_one[j] | i in agents]) >= tasks_agents_min[j] | j in tasks]) +
 count([count([assignment[i] == j | i in agents]) >= tasks_agents_min[j] +
margin_nb_agents | j in tasks])
) * nb_agents;

Solver mode: The problem is solved to find the maximum utility using:

solve maximize obj;

4.3.1.2 Python Integration & Data Feeding

The model is fed through a JSON data file, data_centralized.json, which maps directly

to MiniZinc’s parameters. An example is:

{
 "nb_agents": 5,
 "nb_tasks": 2,
 "agents_autonomy": [1, 10, 9, 4, 8],
 "agents_resA": [true, true, true, true, true],
 "agents_resB": [true, false, false, false, true],
 ...
}

Python uses the minizinc-python API to load the model and inject data:

import minizinc

 solver = minizinc.Solver.lookup(MYSOLVER)
 model = minizinc.Model("model_centralized.mzn")
 instance = minizinc.Instance(solver, model)
 instance.add_file("centralized.json")

The result includes agent-task assignments, objective utility, and feasibility.

33

4.3.1.3 Advantages of the CSP Approach

The MiniZinc-based modeling approach adopted in this thesis offers several distinct

advantages, particularly in the context of centralized coalition formation. Its declarative

syntax and solver independence make it well-suited for experimenting with complex

constraint formulations.

• Declarative and Structured: MiniZinc allows the problem to be expressed in a high-

level, human-readable format, separating the logic of the problem from the solving

strategy. This clarity is especially useful for representing coalition feasibility

constraints and inter-agent dependencies in a structured and maintainable way.

• Modular Objective Design: The modularity of MiniZinc models enables rapid

experimentation with different objective functions. Utility definitions and coalition

preferences can be adjusted independently of the constraint logic, facilitating the

exploration of alternative optimization policies without restructuring the model.

• Solver Agnostic: One of MiniZinc’s major strengths is its compatibility with a variety

of constraint solvers, including Gecode, Chuffed, and CBC. This flexibility allows

researchers to switch solvers depending on performance needs or to validate solution

robustness across different solving paradigms.

Together, these features make MiniZinc a powerful and flexible tool for prototyping and

evaluating centralized coalition formation strategies in multi-agent systems.

4.3.1.4 Limitations Identified

Despite its strengths, the use of MiniZinc in coalition formation also presents several

limitations, particularly when transitioning to large-scale or decentralized environments.

• Scalability: One of the primary limitations of MiniZinc lies in its computational

scalability. As the number of agents and tasks increases, the complexity of the

constraint satisfaction problem grows exponentially. This results in significantly

longer solve times, especially in configurations with dense interdependencies or

numerous feasible coalitions. For real-time or large-scale applications, this becomes a

critical bottleneck.

34

• Rigid Logic for Dynamic Reasoning: Although MiniZinc supports rich constraint

modeling, it lacks native support for dynamic or stateful reasoning. Modeling

behaviors such as iterative improvement, agent negotiation, or sequential decision-

making—which are common in multi-agent systems—can be cumbersome and

unintuitive. For example, expressing token-passing protocols or adaptive coalition

adjustments requires artificial encodings or external control logic, which are more

naturally expressed in logic programming frameworks like ASP or procedural

systems.

• Global Solving Paradigm: MiniZinc is inherently centralized. It requires complete

knowledge of all agents, tasks, and constraints at the outset and solves the entire

problem in one global optimization step. While this is effective for finding optimal

solutions, it is unsuitable for settings where decentralized agents must make decisions

based on partial knowledge or under real-time constraints. This limitation makes

MiniZinc less applicable in scenarios demanding anytime behavior, adaptivity, or

distributed coordination.

In summary, while MiniZinc excels at clearly modeling and solving centralized coalition

problems, its limitations in scalability, dynamic reasoning, and decentralized execution

highlight the need for complementary approaches in broader multi-agent system contexts.

4.3.2 Answer Set Programming (ASP)

To address the limitations of Constraint Satisfaction Problems (CSP) in scaling to large

instances, this thesis explored an alternative centralized methodology using Answer Set

Programming (ASP). ASP is a form of declarative programming oriented toward difficult

combinatorial search problems, well-suited for knowledge representation and reasoning tasks.

The ASP-based method was implemented using the Clingo solver, which combines a high-

performance grounder and solver for logic programs under stable model semantics.

4.3.2.1 Overview of ASP Implementation

The ASP approach uses logic rules and constraints to describe the valid configurations of

agent-task assignments. Each agent is assigned to at most one task, and multiple global and

local feasibility conditions must be satisfied to form a valid coalition structure.

35

The ASP model is divided into three main components:

1. Logic rules and constraints (model_centralized.lp)

2. Problem instance data (centralized_data.lp, generated by Python)

3. ASP solving interface (myclingo.py)

ASP Logic Model (model_centralized.lp)

The ASP model defines the search space and constraints as follows:

Assignment Rule:

{ assignment(A,T) : task(T) } :- agent(A).
:- assignment(A,T1), assignment(A,T2), T1 != T2.

Each agent may be assigned to one task (or none, if allowed). The second line ensures

uniqueness by disallowing multiple task assignments for a single agent.

Constrains:

C0: Global minimum agents requirement

total_min_agents(Sum) :- Sum = #sum { M, T : tasks_agents_min(T, M) }.
:- nb_agents(N), total_min_agents(Sum), Sum > N.

This constraint checks whether the total number of available agents is enough to cover the

minimum required agents for all tasks. If the required sum is greater than the available

agents, the answer set is invalid.

C2: Autonomy and Distance Constraints

:- assignment(A,T), agents_autonomy(A,X), tasks_autonomy_min(T,Y), X < Y.
:- assignment(A,T), distance(T,A,D), tasks_distance_max(T,MaxD), D > MaxD.

• Line 1: An agent cannot be assigned to a task if its autonomy is less than the task’s

minimum autonomy requirement.

• Line 2: An agent cannot be assigned to a task if it is too far from the task’s location

(exceeds MaxD).

36

C3: At least one highly autonomous agent per task.

:- tasks_agents_min(T, N), N > 0, #count { A : assignment(A,T),
agents_autonomy(A,X), tasks_autonomy_one(T,Y), X >= Y } < 1.

If a task requires at least one highly autonomous agent (above a secondary threshold), and the

task is assigned any agents, then at least one must satisfy that higher autonomy level.

C5 & C6: Resource Constraints

:- tasks_resA(T,R), R > #count { A : assignment(A,T), agents_resA(A) }.
:- tasks_resB(T,R), R > #count { A : assignment(A,T), agents_resB(A) }.
:- tasks_agents_min(T,N), N > #count { A : assignment(A,T) }.

• Each task has a resource requirement.

• If fewer agents with resource A or B are assigned than required, the solution is

invalid.

C5': For every odd task, the number of Resource A agents must be odd.

count_resA(J, Count) :- task(J), Count = #count { I : assignment(I,J),
agents_resA(I) }.
:- oddTask(J), count_resA(J, Count), not odd(Count).

For tasks with an odd index, the number of agents assigned to that task with resource A must

also be odd.

C7: Resources A for couples of nearest tasks

% Case 1: For nb_tasks < 5.
valid_nearest_pair(T) :-
 tasks_nearest(T, K),
 count_resA(T, S1), count_resA(K, S2),
 tasks_resA(T, R1), tasks_resA(K, R2),
 S1 + S2 >= R1 + R2 + 1.
:- nb_tasks(NT), NT < 5, tasks_resA(T, R), R > 0, not valid_nearest_pair(T).

% Case 2: For nb_tasks >= 5.
valid_nearest_triple(T) :-
 tasks_nearest(T, K), tasks_nearest_sd(T, L),
 count_resA(T, S1), count_resA(K, S2), count_resA(L, S3),
 tasks_resA(T, R1), tasks_resA(K, R2), tasks_resA(L, R3),

37

 S1 + S2 + S3 >= R1 + R2 + R3 + 1.
:- nb_tasks(NT), NT >= 5, tasks_resA(T, R), R > 0, not valid_nearest_triple(T).

If the number of tasks is less than 5, a task and its closest neighbor must collectively have

enough resource A agents to exceed the combined requirement by at least one unit. If there

are five or more tasks, the resource requirement is extended to include two nearest neighbors.

Their combined assigned resource A agents must exceed the total requirement by at least one.

Objective Function: The goal is to maximize a utility score composed of two parts: agent-

level and task-level satisfaction.

Agent-Level Compenents:

• High autonomy

• Distance compliance

• Possession of required resources

• Total assignments

Task-Level Components:

• Tasks having at least one high-autonomy agent

• Tasks that exceed the minimum agent requirment

Then objective value is computed and the program is solved:

% --- Objective Function ---

%%%%% Agent-Level Counts %%%%%

obj_autonomy(S1) :-
 S1 = #count { A : agent(A), task(T), assignment(A,T),
 agents_autonomy(A,X), tasks_autonomy_min(T,Y), X >= Y + 2 }.

obj_distance(S2) :-
 S2 = #count { A : agent(A), task(T), assignment(A,T),
 distance(T,A,D), tasks_distance_max(T,MaxD), D <= MaxD - 20 }.

obj_resA(S3) :-
 S3 = #count { A : agent(A), task(T), assignment(A,T), agents_resA(A) }.

38

obj_resB(S4) :-
 S4 = #count { A : agent(A), task(T), assignment(A,T), agents_resB(A) }.

obj_assignment(S5) :-
 S5 = #count { A : agent(A), task(T), assignment(A,T) }.

obj_part1(P1) :-
 obj_autonomy(S1), obj_distance(S2), obj_resA(S3), obj_resB(S4),
obj_assignment(S5),
 P1 = S1 + S2 + S3 + S4 + (2 * S5).

%%%%% Task-Level Counts %%%%%

% Helper: high autonomy condition per task.
high_autonomy_ok(T) :-
 task(T),
 tasks_agents_min(T,R), R > 0,
 #count { A : agent(A), assignment(A,T), agents_autonomy(A,X),
tasks_autonomy_one(T,O), X >= O } >= R.

obj_task1(S6) :-
 S6 = #count { T : task(T), high_autonomy_ok(T) }.

% Helper: total agents condition per task.
enough_agents(T) :-
 task(T),
 tasks_agents_min(T,R),
 margin_nb_agents(MNB),
 #count { A : agent(A), assignment(A,T) } >= R + MNB.

obj_task2(S7) :-
 S7 = #count { T : task(T), enough_agents(T) }.

obj_tasks(P2) :-
 obj_task1(S6), obj_task2(S7),
 P2 = S6 + S7.

%%%%% Final Objective %%%%%

obj_value(N) :-
 obj_part1(P1), obj_tasks(P2),
 nb_tasks(NT), nb_agents(NA),
 N = (P1 * NT) + (P2 * NA).

39

#maximize { N : obj_value(N) }.

Data Generation (centralized_data.lp)

The problem-specific data for each scenario is encoded dynamically in the

centralized_data.lp file. This includes all agent and task attributes, such as this example

for 5 agents and 2 tasks:

agent(1..5).
task(1..2).
nb_agents(5).
nb_tasks(2).
margin_autonomy_min(2).
margin_distance_max(20).
margin_nb_agents(1).
agents_autonomy(1, 1).
agents_resA(1).
agents_resB(1).
agents_autonomy(2, 10).
agents_resA(2).
agents_autonomy(3, 9).
agents_resA(3).
agents_autonomy(4, 4).
agents_resA(4).
agents_autonomy(5, 8).
agents_resA(5).
agents_resB(5).
distance(1,1,20).
distance(1,2,12).
distance(1,3,73).
distance(1,4,83).
distance(1,5,70).
distance(2,1,15).
distance(2,2,23).
distance(2,3,77).
distance(2,4,103).
distance(2,5,75).
tasks_autonomy_min(1,2).
tasks_autonomy_one(1,5).
tasks_distance_max(1,140).
tasks_agents_min(1,1).
tasks_resA(1,0).
tasks_resB(1,0).

40

tasks_nearest(1,2).
tasks_nearest_sd(1,1).
tasks_autonomy_min(2,1).
tasks_autonomy_one(2,2).
tasks_distance_max(2,132).
tasks_agents_min(2,1).
tasks_resA(2,0).
tasks_resB(2,0).
tasks_nearest(2,1).
tasks_nearest_sd(2,2).
oddTask(1).
odd(1).
odd(3).

Python Integration (myclingo.py)

To implement the centralized coalition formation approach, a full pipeline was developed

using Answer Set Programming (ASP) with Clingo. The process involves three major

components:

1. Data Generation: A Python script was created to dynamically convert agent and task

instances into ASP facts. These facts capture agent attributes (e.g., autonomy,

resources), task requirements (e.g., autonomy bounds, resource needs), and relational

data such as distances between agents and tasks. The script also precomputes the

nearest and second-nearest task for each task, which can assist the ASP model with

neighborhood reasoning. The resulting facts are saved into a .lp file used as input for

Clingo.

2. ASP Solver Integration: The Clingo solver is invoked using a Python wrapper. It

loads both the static ASP logic (model_centralized.lp) and the problem-specific

data file. The solver is configured with a parallel optimization strategy and a custom

on_model callback, which extracts each computed answer set during solving. A

timeout is used to ensure the solver does not run indefinitely on complex instances.

3. ASP Output Parsing: Once a solution is found, a custom parser processes the output

atoms (symbols). It reconstructs the assignment of agents to tasks and extracts the

optimized objective value. The output is normalized to a utility score between 0 and 1,

facilitating comparison across problem sizes and methods.

41

This modular setup allows flexible experimentation with various problem instances and ASP

encodings. The full implementation of these components is provided in the Appendix (see

Appendix A).

4.3.2.2 Evaluation of ASP with Clingo

Answer Set Programming (ASP), particularly through the Clingo solver, offers a powerful

and expressive framework for solving combinatorial and logic-based problems. One of its

primary advantages is its high expressiveness: it allows complex constraints and

interdependencies to be encoded in a concise and readable manner. This expressiveness is

especially beneficial in coalition formation scenarios, where rules involving resources,

autonomy, and task feasibility must be tightly enforced. Additionally, Clingo supports built-

in optimization capabilities through directives such as #maximize, which allow the model to

search directly for utility-optimal solutions without the need for external scoring logic.

Another key benefit of Clingo is its relative scalability compared to traditional Constraint

Satisfaction Problem (CSP) approaches. While CSP solvers often suffer from performance

degradation as the number of agents and tasks increases, Clingo manages larger problem

instances more efficiently by leveraging advanced techniques such as constraint propagation

and the Vmtf (Variable Move-To-Front) heuristic for decision-making during the solving

phase.

However, the use of Clingo also comes with limitations. One notable drawback is the

grounding bottleneck: as problem size increases, the time required to ground the abstract ASP

rules into concrete instances can grow significantly, sometimes becoming a limiting factor

before the solving phase even begins. Moreover, while Clingo provides support for various

language extensions, it is not inherently designed to handle real-time dynamics, asynchronous

agent behavior, or probabilistic conditions. Incorporating such features often requires non-

trivial workarounds or external integration with other systems, limiting its applicability in

dynamic and real-world environments where decisions must adapt over time.

In summary, Clingo is a highly expressive and efficient tool for modeling centralized

coalition formation problems, especially when optimality and clear logical structure are

priorities. Nevertheless, its limitations in handling scalability and real-time adaptability must

be considered when choosing it for complex multi-agent applications.

42

4.3.2.3 Summary

In summary, ASP with Clingo serves as a powerful centralized solution for coalition

formation problems, particularly when the scenario involves strict combinatorial constraints

and the solution space can be exhaustively explored. Its integration into this study

demonstrated strong performance in moderate-sized problem instances, often outperforming

classical CSP in both runtime and utility optimization.

4.3.3 Feasible Interdependent Coalition Structure Anytime Method (FICSAM)

To address the challenges of dynamic, decentralized, and efficient task allocation among

drone agents, this dissertation employs the Feasible Interdependent Coalition Structure

Anytime Method (FICSAM), originally proposed in the doctoral [3]. FICSAM enables agents

to collaboratively and iteratively construct feasible coalition structures through a distributed

message-passing protocol, without relying on centralized control.

To further improve coalition quality, this study also applies the enhanced method known as

IFICSAM (Improved FICSAM), originally introduced in prior work [3], which incorporates

dynamic local optimization strategies based on utility-driven decision-making. Together,

FICSAM and IFICSAM represent the core decentralized methodologies leveraged in this

research for coalition formation under interdependent constraints.

4.3.3.1 FICSAM Overview

FICSAM is a decentralized, anytime method where each agent maintains its view of the

current coalition structure, evaluates feasibility, and collaborativelly updates the structure by

passing a token among agents.

Each agent takes turns modifying the structure based on the feasibility validation.

This process continues until convergence is reached or until no further improvments are

possible.

FICSAM Algorithms Steps:

1. Initialization:

Each agent initializes its local state, including:

43

• A list of available tasks.

• Knowledge of potential teammates.

• An initial coalition structure (typically empty or randomly seeded).

2. First Round – Feasibility Search:

Each agent performs a feasibility check:

• If the current coalition structure is invalid, the agent invokes a centralized CSP solver

(global_csp) to construct a new feasible structure.

• If successful, the agent broadcasts this structure to others using an AnytimeMessage.

3. Token Passing:

After evaluating or updating the structure, the agent passes control to the next agent via a

TokenMessage. The selection of the next agent can follow either a predefined order (e.g.,

nearest-neighbor) or a randomized scheme.

5. Convergence Check:

Agents monitor how long the coalition structure has remained unchanged (using an internal

counter). If no changes occur across all agents for a certain number of rounds, they broadcast

a StopMessage, which halts the process and finalizes the structure.

6. Finalization:

All agents adopt the final coalition structure and return a success or failure status.

Example 4.4 FICSAM execution example

To better understand the operation of the system by Ahmadoun [3] , we present a step-by-step

execution of the FICSAM algorithm on a small but representative scenario.

We consider a multi-agent setting involving four agents: a₁, a₂, a₃, and a₄, and two tasks: t₁

and t₂. The agents and tasks are configured with different properties to reflect realistic

constraints. The positions, autonomy levels, and resource capabilities of the agents are as

follows: agent a₁ is located at (0,0), with autonomy 10, possessing one unit of resource A; a₂

is located at (3,3), autonomy 5, and holds one unit of resource B; a₃ is positioned at (1,2),

autonomy 7, with a unit of resource A available; and a₄ is placed at (5,3), autonomy 8, with

one unit of resource A.

44

On the task side, t₁ is situated at (3,0) and requires a minimum of one agent, a minimum

autonomy of 3, a maximum distance of 4, and at least one unit of resource A. t₂, positioned at

(4,4), requires two agents, with minimum autonomy of 7 and maximum distance from the

agent 10, and at least one unit of resource A and B.

Initially, the system enters the first stage governed by the FICSAM [3] procedure. In this

phase, agents sequentially receive the token and attempt to build a feasible coalition structure

without aiming to optimize utility. The process halts once a feasible structure is found.

Agent a₁ receives the token first and attempts to join task t₁, creating a preliminary structure

S = {t₁: [a₁]} with u_global(S) = 0.45. Although the agent meets the task requirments the

coalition is infeasible. The token is then passed to a₂, who joins t₁, forming S = {t₁: [a₁, a₂]}.

The structure’s global utility is evaluated as u_global(S) = 0.55. This becomes the current

best solution (S_max), and the token is passed to a₃.

Agent a₃ attempts to contribute by selecting task t₂. a₃ joins t₂, forming S = {t₁: [a₁, a₂], t₂:

[a₃,]}. The structure is infeasible but meets all the requirements of t₁. The utility improves

slightly to u_global(S) = 0.65, so S_max is updated accordingly.

Finally, agent a₄ receives the token and looks for a feasible coalition structure. As it knows

all the information from all the agents, it finds one, for example S = {t₁: [a₁], t₂: [a₃, a₄]} with

global utility of u_global(S) = 0.7. Both coalitions now satisfy their corresponding task

constraints, including autonomy levels, resource requirements, and the number of agents.

FICSAM terminates at this point, and the structure is shared among the agents using

StopMessage.

4.3.3.2 Message Protocol

Three types of structured messages coordinate agent communication:

Message Type Purpose Triggered When

TokenMessage Passes control to another

agent to modify the structure

After decision/update

45

AnytimeMessage Shares an improved feasible

found during an agent’s

decision process

After successful local

improvement

StopMessage Signals termination when

convergence is detected

(success or failure)

When no further

improvments are possible

All messages are derived from the base Message class, containg sender and receiver fields.

4.3.4 Improved Feasible Interdependent Coalition Structure Anytime Method (IFICSAM)

The Improved Feasible Interdependent Coalition Structure Anytime Method (IFICSAM)

extends the FICSAM procedure by incorporating a second phase aimed at improving the

utility of an already feasible coalition structure. Once a valid structure has been established in

round 1 (via FICSAM), agents enter an anytime improvement loop in subsequent rounds,

attempting to locally adjust the coalition composition to maximize the global utility u_global.

Unlike the first phase, which prioritizes feasibility, this phase focuses on incremental utility

optimization while maintaining feasibility. The IFICSAM model supports various

improvement strategies through replacements or swaps between single or groups of agents.

Improvements are broadcast to other agents using AnytimeMessages. If no further

improvement is detected after all agents have taken their turn, a StopMessage is issued to

conclude the process.

Example 4.5 IFICSAM execution example

Following the successful identification of a feasible coalition structure in the first phase

(example 4.4), the system transitions into the second stage, governed by the Improved

Feasible Interdependent Coalition Structure Anytime Method (IFICSAM). This stage aims to

enhance the quality of the solution by incrementally improving the global utility of the

coalition structure found in FICSAM.

Unlike the feasibility-focused first round, IFICSAM assumes that a feasible solution has

already been reached and initiates a utility-driven optimization process. Each agent receives

the token again and, in turn, evaluates potential improvements to the current structure. Agents

46

explore local modifications such as moving to another task, swapping with another agent, or

reassigning coalitions, provided that the resulting structure remains feasible. If a local change

increases the overall utility, the agent updates the structure and informs the other agents

through an AnytimeMessage.

We continue with the same scenario involving agents a₁, a₂, a₃, and a₄, and tasks t₁ and t₂, as

defined in the previous section. The structure produced by FICSAM was: S = {t₁: [a₁], t₂: [a₃,

a₄]}. This configuration was feasible and yielded a global utility of u_global(S) = 0.7. It now

serves as the baseline for the improvement phase.

The token first returns to agent a₁, who is currently part of t₁. Agent a₁ analyzes whether

relocating to another task or initiating a swap could lead to an increase in global utility.

However, moving to t₂ would decrease the utility to 0.55. Then it tries swapping with a₃, the

new structure is S = {t₁: [a₃], t₂: [a₁, a₄]} with u_global(S) = 0.75 which is greater than the

previous one. Return from the improvement step a₁ checks if the the structure is still feasible.

As it is, and informs a₃ and a₄.

Agent a₃ receives the token and begins its decision-making process based on the current

coalition structure. Since a feasible structure has already been identified and shared, a₃

evaluates whether any further improvement can be made. However, after attempting local

optimization using the selected improvement strategy, no better configuration is found. As a

result, a₃ retains the existing coalition structure.

Recognizing that no changes have occurred during its turn, a₃ passes the token to agent a₄. At

this stage, all agents are informed of the current best-known configuration. With no further

improvements detected, the process concludes, and the system finalizes an improved and

feasible coalition structure: S = {t₁: [a₃], t₂: [a₁, a₄]}

4.3.5 Additional Experimental Evaluation

To further investigate the performance limits of decentralized coalition improvement in

IFICSAM, several experimental variations of the original improvement functions were

developed and tested. These prototypes aimed to address observed utility plateaus and

decision latency that emerged in larger or more interdependent task allocation scenarios.

While none of the experimental methods outperformed the original approaches in terms of

47

utility or stability, they offered valuable insights into the complexity and scalability trade-offs

in decentralized coalition formation.

Baseline Methods:

The baseline implementations included improve_csp() and improve_greedy(). These

functions respectively applied a local CSP-based search over agent subsets and a greedy

heuristic that evaluated task switching and one-to-one swaps to improve global utility. These

methods served as the reference for evaluating all subsequent experimental enhancements.

Greedy Extension: improve_greedy2

To make the greedy search more robust, a revised method was introduced under the name

improve_greedy2. This version implemented an iterative improvement loop where agents

explored task switches and agent swaps until no further utility gain was detected. Despite its

exhaustive behavior, the method often stagnated due to local optima and yielded no

significant improvement over the original greedy baseline.

CSP Extensions

Three alternative CSP-based improvement strategies were developed:

• improve_csp_new: This variant introduced a utility caching system and an adaptive

iteration cap per task, aiming to avoid redundant evaluations and fine-tune coalition

construction dynamically. Although computationally efficient, the utility gains

remained comparable to the baseline.

• improve_csp2: This approach applied a beam search mechanism to restrict the search

to the top-k scoring agent subsets for each task. It improved performance speed but

did not yield better coalition quality.

• improve_csp3: Based on the best subset beam strategy, this method explored near-

optimal subsets for each task independently using a beam width of 10. It aimed to

balance exploration depth and breadth but showed no measurable advantage over the

original CSP implementation in practice.

Conclusion

48

Although these experimental prototypes did not outperform the baseline methods in practice,

they highlighted key bottlenecks and trade-offs in decentralized utility-driven coalition

formation. The findings suggest that local search enhancements, even with added complexity

or parallelization, may quickly plateau in utility due to the decentralized and interdependent

nature of the problem. Future directions may benefit from hybridizing these techniques or

integrating learning-based heuristics to guide coalition restructuring more effectively.

4.3.6 Summary

The Feasible Interdependent Coalition Structure Anytime Method (FICSAM) is a

decentralized protocol designed [3] to find a feasible task allocation among multiple

autonomous agents. In its basic form, FICSAM focuses solely on feasibility, ensuring that all

task requirements are met by forming appropriate coalitions without pursuing further

optimization. Agents collaborate minimally, exchanging only essential information through

token passing, anytime updates if a feasible structure is found, and termination signals once

convergence is detected. This approach offers very high scalability with low communication

overhead.

The improved version, IFICSAM, extends the basic method by introducing local optimization

strategies. In IFICSAM, agents not only aim for feasibility but also iteratively seek to

improve the global coalition structure. They apply methods such as greedy reassignment,

coalition reformation through combinations, and constraint satisfaction programming (CSP)

techniques. Whenever an agent finds a structure that improves the overall utility, it broadcasts

the new structure to its teammates. While IFICSAM introduces slightly more communication

compared to the basic FICSAM, it significantly enhances the quality of the final coalition

structures. Both methods are suitable for large-scale, dynamic environments, with FICSAM

prioritizing speed and minimal overhead, and IFICSAM balancing scalability with coalition

quality through adaptive improvements.

4.4 Implementation Details

While the foundational FICSAM and IFICSAM algorithms were adopted from prior work

[3], this thesis integrated them into a broader evaluation framework and extended their logic

with experimental modifications. This section describes the main technologies, frameworks,

and design choices used to implement and extend the system.

49

4.4.1 Programming Language and Libraries

The core implementation was developed in Python 3, leveraging its rich ecosystem for multi-

agent system development, constraint solving, and rapid prototyping. Key Python libraries

used include:

• NumPy: for numerical operations, matrix handling, and efficient calculations (used

for agent positioning and disntance computations).

• Matplotlib: for visualizing agent-task scenarios and results during simulation

analysis

• MiniZinc/Clingo Python API: to interface Python code with the MiniZinc/Clingo

solver for constraint satisfaction problem (CSP) modeling

4.4.2 Optimization and Solving Tools

Two external optimization tools were integrated to model and solve parts of the problem:

• MiniZinc Solver: Used during feasibility checking, where agents use CSP models

(model_globalcsp.mzn, model_cspnode.mzn) to validate coalition structures.

o MiniZinc models express task requirements (resources, autonomy) as logical

constraints.

o Agents invoke MiniZinc via Python during improvement steps if CSP-based

refinement is needed.

• Clingo (ASP Solver): Used for experimental centralized comparisons. The

centralized models (model_centralized.lp, centralized_data.lp) were solved

using Clingo to produce optimal coalition structures against which decentralized

methods (FICSAM/IFICSAM) were evaluated.

Both solvers were configured to run locally with standard default settings, ensuring

reproducibility.

4.4.3 Software Architecture

The system was organized into modular components following object-oriented principles.

The architectural foundation, including the relationships between core classes such as Agent,

50

Task, Structure, and message types (TokenMessage, AnytimeMessage, StopMessage), was

directly adopted from the original implementation developed by Ahmadoun [3].

This architecture defines a clear separation between algorithm-related and application-related

components, as illustrated in Figure 3.4. Agents inherit behavior from AgentBase, which

handles token passing, structure evaluation, and improvement methods. Tasks extend

TaskBase, encapsulating requirements such as autonomy, resource needs, and agent count.

Communication is achieved through structured message passing among agents.

Although the class structure remained unchanged, this thesis integrated the architecture into a

new evaluation framework, modifying internal logic—especially in improvement functions—

to experiment with alternative coalition formation strategies. The original design served as a

stable and extensible base for both centralized and decentralized evaluations performed in

this work.

51

Figure 3.4: Object relation scheme (figure from [3])

4.5 Summary

This chapter presented the formal definition of the decentralized task allocation and coalition

formation problem in the context of wildfire detection using drone agents. It described the

core components of the adopted system [3], including agents, tasks, missions, teams, and

coalition structures, offering a clear understanding of the environment and the operational

logic governing agent behavior.

The chapter also introduced the methodological foundations upon which this work is built.

Specifically, it discussed the use of Constraint Satisfaction Problems (CSP) and Answer Set

Programming (ASP) as centralized modeling techniques for optimal coalition generation. In

52

the decentralized domain, the Feasible Interdependent Coalition Structure Anytime Method

(FICSAM) and its improved version, IFICSAM, were adopted from the original system [3]

and used as the foundation for experimentation and evaluation.

Implementation details were then outlined, highlighting the integration of Python, MiniZinc,

and Clingo. These technologies collectively supported the development of a robust,

extensible, experimental platform for coalition formation.

The next chapter presents the experimental evaluation, comparing the performance,

efficiency, and scalability of the centralized and decentralized approaches under a variety of

simulated problem configurations.

53

CHAPTER 5: Experimental Results and Evaluation

5.1 Objectives of the Evaluation

The primary objective of this experimental evaluation is to assess the performance,

scalability, and effectiveness of the proposed decentralized coalition formation methods,

FICSAM and IFCSAM, in the context of wilflife monitoring using drone agents.

The evaluation aims to systematically investigate the following aspects:

• Feasibility Achievement: To determine the ability of centralized methods, FICSAM

and IFCSAM to find feasible coalition strctures that satisfy task requirments under

different agent and task configurations.

• Coalition Structure Quality: To measure the final global achieved by different

methods, reflecting the efficiency and optimality of the task allocation.

• Scalability with Problem size: To evaluate how the computational time evolve as the

number of agents and tasks increases.

• Communication Overhead: To quantify the number of messages exchanged during

coalition formation, highligthing the communication efficiency of the decentralized

approach compared to centralized baselines.

• Comparison Against Centralized Solvers: To constrast the decentralized methos

with conventional centralized optimization techniques, such as those implemented

with MiniZinc (Gecode, Coin-BC, Chuffed solvers) and Answer Set Programming

(Clingo), particularly in terms of solutions quality and execution time.

Through these objectives, the evaluation verifies the key advantages of the suggested

methodologies – scalability, flexibility, and real-time responsiveness – while identifying

points where trade-offs occur, such as between solution quality and communication effort.

5.2 Experimental Setup

5.2.1 Environment and Infustructure

All experiments were executed on a server equipped with the following specifications:

54

• Operating System: Ubuntu 22.04.5 LTS (GNU/Linux 5.15.0-131-generic x86_64)

• CPU: Multi-core Intel Xeon Processor

• RAM: 15GB

• Python Version: 3.10.12

• MiniZinc Solver Version: 2.6.4

• Clingo ASP Solver Version: 5.5

The server environment provided sufficient computational power to conduct large-scale

experiments involving up to 100 agents and 20 tasks.

5.2.2 Scenario Configuration

The operational environment was modeled in a grid, where both agents and tasks were

randomly placed.

Each agent was initialized with randomly generated attributes, including:

• Remaining battery autonomy

• Resources of type A and/or B

• Communication capabilities

Each task was randomly generated with:

• A specific location on the grid

• Minimum and maximum autonomy requirements

• Resource requirements for A and B

• Minimum number of agents required

The mission generator (mission.py) ensured diversity among task difficulty levels,

simulating a range of simple to complex wildfire monitoring missions.

5.2.3 Experimental Variables

To comprehensively evaluate the system's performance, the following parameters were

varied:

• Number of Agents: 5, 10, 20, 50, 100

55

• Number of Tasks: 2, 5, 10, 20

• Test Repetitions: Each configuration was tested 100 times (controlled by the

parameter d in launch.sh and main.py) to ensure statistical reliability.

A constraint was enforced such that the number of agents was always at least twice the

number of tasks to maintain feasible scenarios.

5.2.4 Evaluated Algorithms

The following methods were tested across all experimental configurations:

• FICSAM (noimprove): Basic decentralized feasible coalition formation

• IFICSAM (greedy/csp): Decentralized coalition formation with one-to-one and best

subset improvements

• Centralized Approaches:

o MiniZinc Gecode Solver

o MiniZinc Chuffed Solver

o MiniZinc Coin-BC Solver

o Clingo ASP Solver

o ORTools CSP Solver

These algorithms were automatically executed using the provided launch.sh script and

managed via the main.py controller.

5.3 Evaluation Metrics

To evaluate the performance and efficiency of the proposed decentralized coalition formation

methods, a set of key evaluation metrics was defined. These metrics allow a detailed

comparison between decentralized methods (FICSAM, IFICSAM) and centralized solvers

across various problem sizes and scenarios.

The following metrics were systematically measured and recorded during the experiments:

5.3.1 Feasibility Rate

56

The feasibility rate measures the proportion of runs in which a feasible coalition structure

satisfying all task requirements was successfully found. A run was considered successful if

no task was left unassigned or infeasible due to resource, autonomy, or agent number

constraints.

This metric reflects the fundamental ability of each method to solve the coalition formation

problem under different levels of complexity.

5.3.2 Global Utility

The global utility quantifies the quality of the final coalition structure.

Utility is computed as a function of:

• How well the agents collectively satisfy the task requirements.

• How efficiently resources (battery, sensors) are utilized.

• How balanced and compact the coalitions are.

Higher utility values indicate better task fulfillment, more efficient use of agent capabilities,

and higher cooperation effectiveness.

5.3.3 Execution Time

Execution time measures the total time taken by each method to reach a final coalition

structure, starting from the initial agent-task setup.

This includes:

• Time spent on feasibility checking.

• Time spent on improvements

• Communication and decision-making delays.

Execution time was measured in seconds using system clocks (time.process_time() and

time.time() functions).

This metric highlights the scalability and real-time suitability of the algorithms, particularly

when comparing decentralized vs centralized approaches.

5.3.4 Number of Messages Exchanged

57

Since communication overhead is a critical factor in decentralized systems, the total number

of messages exchanged among agents was recorded.

Each sent message was counted, allowing analysis of:

• The communication cost required for convergence.

• The efficiency of FICSAM (minimal communication) vs IFICSAM (slightly higher

due to improvements).

Lower message counts indicate higher communication efficiency, which is crucial for large

multi-agent deployments.

5.3.5 Number of Iterations (Rounds)

In addition to message count, the number of rounds—representing complete iterations of

decision-making across the agent network—was measured. Each round captures the full cycle

in which agents sequentially process incoming information, evaluate the current coalition

structure, and perform potential updates based on feasibility or improvement strategies.

A lower number of rounds generally indicates faster convergence and lower decision latency

in the decentralized process. This metric helps evaluate the responsiveness of each method,

with fewer iterations implying quicker agreement on a feasible or optimal structure.

The measured values reflect the behavior of both baseline and improved methods across

problem sizes, offering insight into the efficiency and reactivity of the decentralized

coordination mechanism.

5.4 Experimental Results

This section presents and analyzes the resukts of the experimental evaluation conducted to

assess the feasibility, utility, scalability, and communication overhead of the proposed

coalition formation methods.

The evaluation focuses not only on raw performance figures byt also on understanding why

performance varies across methods as the problem size increases.

5.4.1 Feasibility Analysis

58

The first metric evaluated was the ability of each method to find a feasible solution -i.e., a

valid coalition structure where all tasks are assigned to agent groups satisfying their resource

and autonomy requirements. For all settings with 5-20 agents, all methods were able to find

feasible solutions with a 100% success rate. With more agents and tasks, however, there were

subtle differences.

FICSAM, which prioritizes feasibility but does not include structural optimization, began to

show small declines in performance. In larger configurations, particularly with 50 agents and

10 or more tasks, the feasibility success rate for FICSAM dropped. This drop can be

attributed to its reliance on random initialization and limited structural exploration during the

token-passing process. If agents converge prematurely or form coalitions that block each

other, the system may settle in a dead-end configuration without discovering a feasible one.

In contrast, IFICSAM maintained a high feasibility success rate across the majority of tested

configurations. This is due to its improvement strategies—such as greedy task reassignment

and CSP-based coalition refinement—which allow agents to escape suboptimal

configurations by attempting to reallocate themselves when better options are detected.

All centralized solvers—including MiniZinc (Gecode, Chuffed, Coin-BC), Clingo, and

ORTools—maintained a perfect feasibility rate throughout, as expected. These solvers

operate globally on the full problem specification and explore the complete search space,

which guarantees that if a feasible solution exists, it will be found.

59

Figure 5.1: Feasibility rate by problem size across methods.

5.4.2 Coalition Utility and Solution Quality

In addition to feasibility, the quality of the final coalition structure is a critical performance

indicator. This was evaluated using the system’s global utility function, which accounts for

how well each task's requirements are met and how efficiently agent capabilities are used.

For smaller problem instances, both FICSAM and IFICSAM achieved good utility scores,

often close to those of centralized solvers. However, as the number of agents and tasks

increased, the utility of decentralized methods—particularly FICSAM—began to decline.

This decline is explained by the limited search behavior of FICSAM. While it ensures

feasibility, it does not attempt to optimize the coalition configuration once a feasible solution

is found. As the search space grows, the probability of landing on a suboptimal but feasible

configuration increases. Since FICSAM agents do not explore alternatives unless explicitly

guided to do so, they miss potential improvements that a centralized solver would find.

In contrast, IFICSAM addresses this limitation through embedded improvement strategies.

When an agent holds the token, it evaluates its coalition assignments and attempts to locally

optimize them using procedures like improve_greedy() or improve_csp(). This results in

higher utility values even in large-scale problems. Nonetheless, due to the decentralized and

60

local nature of these improvements, IFICSAM may still fall short of the global optima

achieved by centralized solvers, especially in complex configurations with high inter-task

dependencies.

Centralized solvers, especially Clingo, Chuffed, and Coin-BC, consistently produced the

highest utility values. They operate with full knowledge of the problem and perform complete

search and optimization over all agent-task assignments. However, this performance comes at

the cost of significantly higher computation time and resource usage, as discussed in the next

subsection.

Figure 5.2: Average utility of each method per scenario.

5.4.3 Scalability and Execution Time

Execution time was another key metric, particularly relevant for real-time deployment

scenarios. As expected, decentralized methods scaled much more gracefully than centralized

ones. FICSAM and IFICSAM completed in under one minute for configurations below 20

agents and 5 tasks, but for larger problem the execution time increased dramatically.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5,2 10,2 10,5 20,2 20,5 20,10 50,5 50,10 100,2

U
til

ity

Problem size

Average Utility

FICSAM IFICSAM ONE-TO-MANY GECODE CHUFFED COIN-BC CLINGO OR-TOOLS

61

In contrast, the centralized solvers began to experience severe slowdowns as the number of

agents and tasks increased. Gecode, Chuffed, and Clingo took several minutes to solve large

problem instances, and in some cases, failed to return results within practical time limits. This

dramatic growth in execution time stems from the exponential increase in the number of

agent-task assignments and constraints that centralized solvers must process. Unlike

decentralized agents, which only reason about their local state and a subset of tasks,

centralized methods must encode and search the entire problem space in one monolithic

operation.

Therefore, while centralized methods may achieve marginally higher utility, they become

impractical for large-scale or time-sensitive missions.

Figure 5.3: Average execution time across problem sizes.

5.4.4 Communication Overhead

In decentralized coalition formation, communication cost plays a critical role in evaluating

the practicality of the method—especially in real-world systems where bandwidth, latency, or

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5,2 10,2 10,5 20,2 20,5 20,10 50,5 50,10 100,2

Ti
m

e
(s

)

Problem size

Average Time

FICSAM IFICSAM ONE-TO-MANY GECODE CHUFFED COIN-BC CLINGO OR-TOOLS

62

energy consumption may be constrained. This subsection analyzes the number of messages

exchanged between agents for each method across different problem sizes.

The experimental results, visualized in Figure 4.4, show that FICSAM consistently exhibits

the lowest communication overhead across all scenarios. This is expected, as FICSAM uses a

simple token-passing mechanism without any improvement-based messaging. Each agent

receives the token once per cycle and performs only a feasibility check before passing the

token to the next agent. As a result, the number of messages increases linearly with the

number of agents and tasks, but at a relatively low slope.

In contrast, IFICSAM introduces significantly higher communication costs, particularly in

larger scenarios. This increase is due to the use of AnytimeMessages, which are broadcast to

all known agents every time an agent discovers an improved feasible structure. These

broadcasts are critical for enabling utility optimization but result in a larger number of total

messages—especially when agent configurations are highly dynamic or task dependencies

are complex. The chart shows that in scenarios like 100 agents and 2 tasks, IFICSAM can

generate over 1,200 messages, more than five times the message count of FICSAM for the

same setting.

The CSP-based method, which incorporates constraint-satisfaction improvements, also shows

elevated message counts—similar to IFICSAM. While it can improve solution quality by

suggesting better coalitions, this comes at the cost of additional synchronization and

messaging steps between agents.

This trade-off between utility optimization and communication is crucial. IFICSAM and CSP

variants achieve higher utility (as shown in Figure 4.2), but they require substantially more

inter-agent communication to do so. In real-world multi-agent drone systems, this could

translate to increased battery consumption, potential delays due to network congestion, or

synchronization issues if communication is not fully reliable.

The results clearly demonstrate that:

• FICSAM is best suited for low-bandwidth or energy-limited environments where

feasibility is the priority.

63

• IFICSAM and CSP (one-to-many) variants are better suited for high-performance

networks where solution quality is more critical than message minimization.

Overall, the communication overhead analysis confirms that while message volume increases

with optimization complexity, the decentralized protocols still remain scalable and

manageable under most deployment conditions.

Figure 5.4: Number of messages exchanged by method and problem size.

5.4.5 Number of Iterations

An important performance metric in evaluating decentralized and centralized coalition

formation methods is the number of iterations required to reach a final solution. In

decentralized methods like FICSAM and IFICSAM, an iteration corresponds to a full round

of agent decision-making, while for the centralized CSP-based solver, each invocation counts

as one iteration. However, due to the significantly higher computational effort required per

CSP iteration, the CSP results in the chart are scaled down by a factor of 10 (denoted as

CSP/10) to enable visual comparison.

0

200

400

600

800

1000

1200

5,2 10,2 10,5 20,2 20,5 20,10 50,5 50,10 100,2

N
um

be
r o

f m
es

sa
ge

s

Problem size

Number of messages exchanged

FICSAM IFICSAM ONE-TO-MANY

64

The results reveal several key patterns:

• Low Complexity Settings (5–20 agents):

For smaller problem sizes (e.g., 5,2 and 10,2), all methods—FICSAM, IFICSAM, and

CSP—require a minimal number of iterations, typically fewer than 10. The marginal

differences in iteration count at this scale suggest that task dependencies and resource

constraints are easily satisfied without extensive coordination or search.

• Moderate Configurations (20,5 and 20,10):

As the number of agents and tasks increases, FICSAM begins to show a clear

advantage over IFICSAM. While IFICSAM requires more iterations due to its

improvement strategy. In contrast, the CSP solver begins to show a steeper increase in

iteration count (even after scaling), indicating the growing cost of searching the full

configuration space.

• High Complexity Settings (50–100 agents):

In larger scenarios (50,5; 50,10; and 100,2), the difference becomes more pronounced.

The CSP solver, despite being globally optimal, demonstrates a steep rise in iteration

count, exceeding 18000 in the case of the (50,10) configuration (scaled to ~1800

actual invocations). This highlights the scalability limitations of centralized

approaches when applied to large, interdependent problems.

65

Figure 5.4: Number of iterations by method and problem size.

5.5 Discussion

The experimental results demonstrate clear differences between decentralized and centralized

approaches to coalition formation, both in terms of behavior and performance. While

centralized solvers generally achieve higher-quality solutions and faster execution for small

problems, their scalability quickly deteriorates. Conversely, decentralized methods like

FICSAM and IFICSAM are built for distributed deployment, offering greater flexibility and

system-wide resilience—but not without trade-offs as problem size increases.

Decentralized Methods: Strong Scalability with Practical Limits

FICSAM and IFICSAM show strong conceptual scalability since they avoid the global

optimization bottleneck of centralized solvers. However, as the number of agents and tasks

grows, especially beyond 20 agents and 10 tasks, performance degrades both in terms of

execution time and utility. This degradation is rooted in several factors:

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5,2 10,2 10,5 20,2 20,5 20,10 50,5 50,10 100,2

N
um

be
r o

f i
te

ra
tio

ns

Problem size

Number of Iterations

FICSAM IFICSAM ONE-TO-MANY/10

66

1. Local View and Decentralized Decisions: Each agent only operates based on its

own knowledge and the information shared through token-passing and message

exchanges. As more agents and tasks are added, it becomes harder for agents to

collectively converge to a globally efficient coalition structure, especially without

centralized oversight.

2. Limited Structure Exploration (FICSAM): FICSAM prioritizes feasibility over

utility and does not optimize coalition quality once a structure is found. This leads

to early convergence on feasible but suboptimal structures, especially in dense

problem spaces with many overlapping agent capabilities and complex task

dependencies.

3. Improvement Trade-offs (IFICSAM): IFICSAM attempts to overcome

FICSAM’s limitations by enabling agents to improve their assignments using

greedy or CSP-based refinements. While this results in better utility, it comes at a

cost: more computational work per agent, longer convergence times, and more

message traffic. In large configurations, the gains in utility are often offset by

longer runtimes, and the local improvements may still fall short of finding global

optima.

4. Message Processing and Token Circulation: As the number of agents increases,

the number of token passes required for full structure updates grows. Even though

the message count remains reasonable, the decision time per agent increases,

especially when running local CSPs in improvement steps. This results in total

execution times reaching or exceeding one minute for large cases.

Centralized Methods: High Utility, Low Scalability

Centralized solvers like Gecode, Clingo, and ORTools excel at finding high-utility, globally

optimal solutions—but only for small to medium problem sizes. Their performance rapidly

collapses in larger settings due to:

1. Global Constraint Explosion: The number of combinations of agents, tasks, and

constraints grows exponentially, causing solvers to either slow down dramatically

or run out of resources.

2. Monolithic Processing Bottleneck: Since all reasoning occurs at a single point

(the solver), centralized methods do not benefit from parallel agent-based

67

distribution, making them impractical for real-time scenarios or large, dynamic

networks.

Nevertheless, these solvers serve as useful benchmarks: they show what the best-case utility

looks like in theory and allow us to evaluate how close decentralized methods can get under

realistic constraints.

Practical Implications

From a deployment standpoint, the trade-off is clear:

If the application involves a small number of agents and strict requirements for optimal

coalition formation, centralized methods may be preferable—assuming the problem can be

solved fast enough.

If the application involves real-time responsiveness, distributed agents (e.g., autonomous

drones), and scalability to dozens of agents and tasks, decentralized methods like FICSAM

and IFICSAM are far more practical—even if they sometimes sacrifice a few percentage

points of utility.

In real-world wildfire detection, the system’s ability to quickly adapt, maintain autonomy,

and distribute computation is far more important than absolute optimality. This makes

decentralized approaches, especially those like IFICSAM that balance feasibility and quality,

highly suitable for such critical, time-sensitive missions.

5.6 Summary

This chapter provided a comprehensive experimental comparison of decentralized and

centralized coalition formation algorithms for multi-agent task allocation in wildfire detection

scenarios. The comparison aimed at four most significant factors: feasibility success, solution

quality, scalability, and communication overhead.

The results show that even though centralized methods always give the best solution, their

scalability in terms of computation effort is very bad. In contrast, decentralized methods such

as FICSAM and IFICSAM give an effective practical alternative, maintaining high feasibility

rates alongside acceptable utility even when dealing with large instances. Utility is sacrificed

68

to some extent by epanding the number og agents as well as tasks but is largely countered by

local improvement techniques employed by IFCSAM.

In summary, the experiments support the argument that at any time, decentralized coalition

formation strategies reach a practical compromise between solution quality and system

scalability—optimally making them well-fitted for distributed, dynamic applications like

real-time wildfire monitoring using autonomous drones.

69

CHAPTER 6: Conclusion and Future Work

6.1 Summary and Key findings

This thesis extended prior work [3] on the problem of decentralized task assignment and

coalition formation among autonomous drone agents in wildfire detection. The main

objective was to assess and improve the scalability and effectiveness of multi-agent

coordination under constraints related to resources, autonomy, and agent-task dependencies.

To support this, the Feasible Interdependent Coalition Structure Anytime Method (FICSAM),

originally proposed in [3], was adopted and integrated into the system. FICSAM is a

decentralized algorithm that enables agents to collaboratively form feasible coalition

structures through local decision-making and asynchronous message passing. It ensures

feasibility by design and is suitable for dynamic environments due to its anytime nature.

To enhance solution quality beyond feasibility, an improved variant named IFICSAM was

implemented. This version includes local optimization mechanisms such as greedy

reassignment and CSP-based refinement. IFICSAM agents evaluate and potentially refine

their coalition assignments when they hold the token, aiming to increase global utility while

maintaining feasibility.

The thesis included extensive empirical testing across a range of problem sizes and agent-task

configurations. These experiments demonstrated the behavior and performance of both

FICSAM and IFICSAM, particularly in terms of feasibility, utility, and convergence.

Comparisons with centralized solvers such as MiniZinc, Clingo, and ORTools highlighted the

scalability benefits and practical robustness of the decentralized methods.

Overall, the contributions of this thesis provide further insight into scalable, decentralized

coalition formation and support the development of cooperative drone systems capable of

operating effectively under real-world constraints.

70

6.2 Key Findings

The experimental evaluation of FICSAM and IFICSAM, compared against established

centralized solvers, revealed several important insights into the behavior, strengths, and

limitations of decentralized coalition formation in multi-agent systems.

First, both FICSAM and IFICSAM consistently achieved high feasibility success rates, even

as the number of agents and tasks increased. While centralized methods always produced

feasible solutions—as expected due to their complete global search—FICSAM and IFICSAM

also demonstrated reliability, with IFICSAM achieving 100% feasibility in all tested

scenarios.

Second, solution quality, as measured by the global utility of the final coalition structure,

remained competitive in smaller problem instances. As the problem scale increased, the

utility achieved by decentralized methods declined modestly compared to centralized solvers.

However, IFICSAM's improvement strategies significantly narrowed the gap, often achieving

utility within 45-50% of centralized optimal values while avoiding their computational

burden.

Third, scalability emerged as a central advantage of the proposed approach. FICSAM and

IFICSAM maintained acceptable performance in scenarios involving up to 100 agents and 20

tasks—where centralized methods often failed to return results within reasonable time limits.

This confirms that decentralized, agent-driven algorithms are better suited for real-time

applications, such as distributed drone coordination in wildfire monitoring.

Finally, the system demonstrated strong communication efficiency. Although IFICSAM

introduced additional messages due to its improvement mechanism, the overall message and

token counts remained scalable, and the fully distributed nature of decision-making avoided

bottlenecks inherent in centralized approaches.

6.3 Limitations

While the proposed system demonstrated promising results in terms of feasibility, scalability,

and communication efficiency, several limitations were identified during the course of

development and experimentation.

71

The first and most prominent limitation lies in the quality of the final solution produced by

the decentralized methods, particularly FICSAM. Since agents make decisions based on

limited local knowledge and without global optimization, the resulting coalition structures are

often feasible but not globally optimal. Although IFICSAM improves upon this by

introducing local refinement techniques, these strategies are still constrained by the agent's

partial view of the overall system and lack of coordination beyond pairwise coalition

changes.

Second, execution time scalability, while significantly better than centralized solvers, was

not linear. In larger scenarios—such as those involving 50 or more agents and highly

interdependent tasks—both FICSAM and IFICSAM showed a noticeable increase in

convergence time. This is due in part to the growing size of coalition structures, which

increases the number of feasibility checks and local improvement iterations required for each

agent.

A third limitation involves communication overhead. Although decentralized

communication avoids a central bottleneck, the propagation of AnytimeMessages in

IFICSAM can lead to message floods in dense agent-task environments. While this is

mitigated by convergence rules and message pruning, it remains a factor to consider in real-

time systems where bandwidth is limited.

Additionally, the system currently assumes perfect communication and synchronization

among agents, which may not hold in real-world deployments involving physical drones.

Network latency, dropped messages, and inconsistent state updates could impact convergence

and correctness. Integrating asynchronous fault-tolerant mechanisms is a necessary step for

deployment in practical settings.

Despite these limitations, the system provides a strong foundation for practical deployment

and future research, as discussed in the next section.

6.4 Future Work

Building on the foundation established in this thesis, several avenues for future work can be

pursued to enhance the system’s performance, robustness, and applicability in real-world

deployments.

72

A primary direction involves the development of smarter agent decision strategies. Currently,

IFICSAM relies on greedy or CSP-based local improvements, which are effective but still

limited in scope. Future versions could integrate learning-based approaches, such as

reinforcement learning, allowing agents to adapt their behavior over time based on past

coalition outcomes. This could enable agents to prioritize certain coalition configurations or

avoid repeated failure patterns in highly constrained environments.

Another promising enhancement would be the implementation of adaptive token-passing

strategies. In the current design, the token is passed either randomly or based on distance.

Incorporating heuristics that prioritize agents with high-impact tasks or critical resources

could accelerate convergence and improve structure quality. Similarly, introducing priority

queues or leader-based decision cycles might reduce redundant computation and improve

overall efficiency.

In terms of communication, the system would benefit from message compression, filtering,

and prioritization. Particularly in IFICSAM, where AnytimeMessages are frequently

broadcast, mechanisms for limiting unnecessary updates and avoiding message duplication

could further reduce bandwidth usage and speed up decision propagation.

Another significant direction for future development is real-world deployment and testing.

While the current system was evaluated in simulation, integrating it with a physical drone

platform—such as ROS-enabled UAVs—would introduce real-world complexities like

network latency, partial observability, and asynchronous failures. Implementing the system in

a distributed drone testbed would provide valuable insights into its robustness and operational

limits.

Finally, exploring hybrid architectures that combine the scalability of decentralized methods

with periodic centralized optimization could offer the best of both worlds. For example,

agents could operate autonomously during most of the mission, but occasionally synchronize

with a base station for global re-optimization when bandwidth or conditions allow.

Together, these extensions would significantly enhance the practical value of the system and

push the boundaries of what decentralized coalition formation can achieve in real-time,

distributed environments.

73

Bibliography

1. Abdallah, S., Lesser, V., & Jennings, N. R. (2004). Coalition formation in cooperative
multi-agent systems. Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, 1416–1417.

2. Aumann, R. J., & Dreze, J. H. (1974). Cooperative games with coalition structures.
International Journal of Game Theory, 3(4), 217–237.

3. Ahmadoun, D. (2022). Interdependent Task Allocation via Coalition Formation for
Cooperative Multi-Agent Systems. PhD Thesis, University of Paris.

4. Casbeer, D. W., Beard, R. W., McLain, T. W., Li, S. M., & Mehra, R. K. (2006).
Forest fire monitoring with multiple small UAVs. Proceedings of the American
Control Conference, Minneapolis, Minnesota, USA, 3530–3535.

5. Casbeer, D. W., Kingston, D. B., Beard, R. W., & McLain, T. W. (2006). Cooperative
forest fire surveillance using a team of small unmanned air vehicles. International
Journal of Systems Science, 37(6), 351–360.

6. Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley Professional.

7. Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial
intelligence. Addison-Wesley.

8. Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task
allocation in multi-robot systems. The International Journal of Robotics Research,
23(9), 939–954.

9. Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A Roadmap of Agent
Research and Development. Autonomous Agents and Multi-Agent Systems, 1(1), 7–
38.

10. Korsah, G. A., Stentz, A., & Dias, M. B. (2013). A comprehensive taxonomy for
multi-robot task allocation. The International Journal of Robotics Research, 32(12),
1495–1512.

11. Kumar, V., & Michael, N. (2012). Opportunities and challenges with autonomous
micro aerial vehicles. The International Journal of Robotics Research, 31(11), 1279–
1291.

12. Lagoudakis, M. G., Spirakis, P. G., & Stamatopoulos, T. (2005). Auction-based multi-
robot routing. Robotics and Autonomous Systems, 52(1), 1–14.

13. Macarthur, H., Crane, C., & Armstrong, A. (2011). A decentralized approach to
multi-agent task assignment using distributed constraint satisfaction. Autonomous
Agents and Multi-Agent Systems, 22(2), 225–256.

14. Nunes, E., & Gini, M. (2017). Multi-robot auctions for allocation of tasks with
temporal constraints. Autonomous Robots, 41(3), 539–562.

15. Parker, L. E. (1998). ALLIANCE: An architecture for fault-tolerant multi-robot
cooperation. IEEE Transactions on Robotics and Automation, 14(2), 220–240.

16. Rahwan, T., & Jennings, N. R. (2008). Coalition structure generation: A survey.
Artificial Intelligence, 32(4), 297–328.

17. Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.).
Pearson.

18. Sandholm, T., & Lesser, V. (1997). Coalitions among computationally bounded
agents. Artificial Intelligence, 94(1–2), 99–137.

74

19. Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999).
Coalition structure generation with worst-case guarantees. Artificial Intelligence,
111(1–2), 209–238.

20. Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition
formation. Artificial Intelligence, 101(1–2), 165–200.

21. Shoham, Y., & Leyton-Brown, K. (2008). Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press.

22. Vig, L., & Adams, J. A. (2006). Multi-robot coalition formation. IEEE Transactions
on Robotics, 22(4), 637–649.

23. Wooldridge, M. (2009). An Introduction to MultiAgent Systems. John Wiley & Sons.

75

APPENDIX

Appendix A: Python Code for Clingo Data Generation.

def generate_clingo_data(tasks, agents,
filename="application/dir_clingo/centralized_data.lp"):
 data = []

 # Define agents and tasks
 data.append(f"agent(1..{len(agents)}).")
 data.append(f"task(1..{len(tasks)}).")

 # Problem Parameters
 data.append(f"nb_agents({len(agents)}).")
 data.append(f"nb_tasks({len(tasks)}).")
 data.append("margin_autonomy_min(2).")
 data.append("margin_distance_max(20).")
 data.append("margin_nb_agents(1).")

 # Agent Attributes
 for i, agent in enumerate(agents, start=1):
 data.append(f"agents_autonomy({i}, {agent.autonomy}).")
 if agent.resources_a:
 data.append(f"agents_resA({i}).")
 if agent.resources_b:
 data.append(f"agents_resB({i}).")

 # Compute distances between tasks and agents
 for t_idx, task in enumerate(tasks, start=1):
 for a_idx, agent in enumerate(agents, start=1):
 dist = calculate_distance(task.position, agent.position)
 data.append(f"distance({t_idx},{a_idx},{dist}).")

 # Compute nearest and second-nearest tasks
 task_distances = {i+1: [] for i in range(len(tasks))}
 for t1 in range(len(tasks)):
 for t2 in range(len(tasks)):
 if t1 != t2:
 dist = calculate_distance(tasks[t1].position, tasks[t2].position)
 task_distances[t1+1].append((t2+1, dist))

 tasks_nearest = {}
 tasks_nearest_sd = {}

76

 for t, dists in task_distances.items():
 dists.sort(key=lambda x: x[1]) # Sort by distance
 tasks_nearest[t] = dists[0][0] if len(dists) > 0 else t # Nearest task
 tasks_nearest_sd[t] = dists[1][0] if len(dists) > 1 else t # Second-
nearest task

 # Task Attributes
 for i, task in enumerate(tasks, start=1):
 data.append(f"tasks_autonomy_min({i},{task.min_autonomy}).")
 data.append(f"tasks_autonomy_one({i},{task.max_autonomy}).")
 data.append(f"tasks_distance_max({i},{task.max_distance}).")
 data.append(f"tasks_agents_min({i},{task.min_agents}).")
 data.append(f"tasks_resA({i},{task.resources_a}).")
 data.append(f"tasks_resB({i},{task.resources_b}).")
 data.append(f"tasks_nearest({i},{tasks_nearest[i]}).")
 data.append(f"tasks_nearest_sd({i},{tasks_nearest_sd[i]}).")

 # Dynamically add oddTask/1 for tasks with an odd index
 for j in range(1, len(tasks)+1):
 if j % 2 == 1:
 data.append(f"oddTask({j}).")

 # Dynamically add odd/1 facts for odd numbers up to a bound (e.g., the number
of agents)
 max_possible_count = len(agents)
 for num in range(1, max_possible_count):
 if num % 2 == 1:
 data.append(f"odd({num}).")

 # Write to file
 with open(filename, "w") as file:
 file.write("\n".join(data))
def clingo_centralized_cop(tasks, agents, all_solutions=False):
 print("\n\n############# CENTRALIZED START\n")

 # Initialize the Clingo control object with desired options.
 ctl = clingo.Control(["--parallel=4", "--opt-mode=opt"])
 ctl.configuration.solver.heuristic = "Vmtf"

 # Load your ASP files.
 ctl.load("model_centralized.lp")
 ctl.load("centralized_data.lp")

 # Ground the base part.

77

 ctl.ground([("base", [])])

 solution_structure = None
 solution_obj_value = None
 models = []

 # Custom on_model callback to process models.
 def on_model(model):
 nonlocal solution_structure, solution_obj_value
 atoms = model.symbols(shown=True)
 sol, obj = parse_atoms(atoms, tasks, agents)
 models.append((sol, obj))
 solution_structure = sol
 solution_obj_value = obj

 # Start solving asynchronously.
 handle = ctl.solve(async_=True, on_model=on_model)

 # Wait for up to 600 seconds (10 minutes).
 if not handle.wait(10):
 handle.cancel()

 print("############# CENTRALIZED END\n")
 return solution_structure, solution_obj_value
def parse_atoms(atoms, tasks, agents):
 """
 Parses Clingo symbols from the solution and builds the structure.
 Returns a tuple (structure, obj_value) similar to your original parser.
 """
 assignment_by_agent = {}
 obj_value = None

 # atoms is a list of clingo.Symbol objects.
 for sym in atoms:
 if sym.name == "assignment" and len(sym.arguments) >= 2:
 a_index = sym.arguments[0].number
 t_index = sym.arguments[1].number
 assignment_by_agent[a_index] = t_index
 elif sym.name == "obj_value" and sym.arguments:
 try:
 obj_value = float(sym.arguments[0].number)
 except Exception:
 obj_value = None

78

 # Build the structure mapping each task to a list of agents.
 structure = {t: [] for t in tasks}
 for a_idx in range(1, len(agents) + 1):
 if a_idx in assignment_by_agent:
 t_index = assignment_by_agent[a_idx]
 if t_index == 0:
 continue # No assignment
 task_obj = tasks[t_index - 1]
 structure[task_obj].append(agents[a_idx - 1])

 if all(len(v) == 0 for v in structure.values()):
 structure = False

 # Normalize objective value similarly to your original function.
 if obj_value is not None:
 obj_value = round(obj_value / (8 * len(agents) * len(tasks)), 4)
 return structure, obj_value

