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Summary 

This thesis, titled "Data-driven Deep Reinforcement Learning for Agriculture" explores 

the application of advanced Artificial Intelligence (AI) techniques to optimize greenhouse 

management, specifically focusing on Deep Reinforcement Learning (DRL) methods. The 

research is motivated by the critical need to enhance food production in the face of a growing 

global population and the challenges posed by climate change. Greenhouses play a pivotal 

role in providing a controlled environment for crop cultivation, but their management 

involves complex decision-making to balance resource use and crop yield. 

Greenhouses provide a stable environment for crop production, essential for meeting the food 

demands of an expected global population of nearly 10 billion by 2050. However, managing 

the greenhouse environment to optimize crop yield while minimizing resource use is 

challenging. Traditional methods rely heavily on human decision-making, which can be 

inefficient and lead to resource wastage. AI, particularly DRL, offers a solution by 

automating and optimizing these processes through continuous learning and adaptation based 

on real-time data from sensors. 

The thesis builds on the Autonomous Greenhouse Challenge (AGC) 2nd Edition, an 

international competition aimed at improving greenhouse vegetable production using AI. The 

competition tasked teams with developing AI algorithms to manage virtual greenhouses, 

balancing tomato yield and resource use. Data from this challenge, including environmental 

parameters and crop conditions, provides the foundation for this research. 

The primary contribution of this thesis is the development of a deep reinforcement learning 

framework to optimize greenhouse operations. This involves creating an environment 

simulator based on historical data from the AGC. The simulator uses regression models to 

predict the impact of various actions on greenhouse conditions and crop parameters, enabling 

the training and evaluation of DRL algorithms without real-world trials. 

The research focuses on two advanced DRL algorithms: Proximal Policy Optimization 

(PPO) and REINFORCE. These algorithms dynamically learn and optimize greenhouse 
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management strategies. PPO is known for its stability and efficiency, while REINFORCE, a 

policy gradient method, directly optimizes the policy function. Both algorithms are evaluated 

for their effectiveness in maximizing tomato yield and minimizing resource use. 

The methodology involves several key steps, including data preprocessing, which entails 

cleaning and normalizing the dataset, handling missing values, and performing feature 

engineering to ensure the data is suitable for training models. An environment simulator is 

then developed using regression-based predictive models to simulate the greenhouse 

environment, predicting future states based on current conditions and actions. The DRL 

algorithms, PPO and REINFORCE, are implemented to train agents that interact with the 

environment simulator, learning optimal strategies to maximize rewards such as crop yield 

and quality. 

The effectiveness of the DRL algorithms is evaluated through empirical testing within the 

simulated environment. The results indicate that DRL can significantly improve greenhouse 

management, leading to better crop yields and more efficient resource use compared to 

traditional methods. This research demonstrates the potential of DRL in transforming 

greenhouse agriculture by reducing reliance on human intervention and enhancing the 

sustainability and profitability of food production. The framework developed in this thesis 

can be adapted for other agricultural settings or broader domains requiring complex 

environmental control and resource management. 

In conclusion, this thesis successfully applies DRL to greenhouse management and suggests 

future work could explore integrating additional environmental variables, testing other DRL 

algorithms, and applying the framework to different crops or agricultural environments. This 

research advances the field of AI in agriculture, providing a scalable approach to automating 

and optimizing food production systems. 
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Introduction 

 

 1.1  Problem Overview        1 
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  1.3  Contribution        3 

 

 

1.1  Problem Overview 

Greenhouses are pivotal for providing healthy and fresh food for our increasing global 

population, which is expected to reach nearly 10 billion by 2050. They play an important role 

in the quality and productivity of our food supply. The main benefit that comes with 

greenhouses is that they are irrespective of external weather, this means that they are 

unaffected by seasonal changes and unexpected weather conditions which have been getting 

worse due to climate change. This allows cultivation of crops throughout the year and ensures 

a steady supply of food. 

However, the management of resources and climate control presents significant challenges. 

Bad control of these components can lead to wasteful practices and inefficient crop 

production. Thus, we cannot depend entirely on human decision making but we need a 

reliable system that will produce more crops with better quality using less resources. 

To address these issues, Artificial Intelligence (AI) and advanced technologies can monitor 

with the help of sensors and optimize environmental parameters like temperature, humidity, 

CO2 levels and soil moisture, ensuring plant growth conditions with minimal resources like 

water, nutrients and energy[1]. This way, decision support systems can analyze data from 
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sensors and provide recommendations about which actions the farmers should make, or even 

develop systems that are fully automated and independent from human interaction. 

There have been many attempts to integrate Artificial Intelligence (AI) into greenhouses[2]. 

In these attempts the aim was to make an AI system which minimizes resource use and 

maximizes crop yield and quality while handling the greenhouse management. Therefore, 

there have been numerous competitions around the world regarding AI in agriculture and one 

of them was the Autonomous Greenhouse Challenge (AGC) – 2nd Edition[3]. 

1.2  Autonomous Greenhouse Challenge (AGC) 2nd Edition 

The Autonomous Greenhouses 2nd Edition, hosted by Wageningen University & Research 

(WUR), was an international competition aimed at advancing greenhouse vegetable 

production through the use of artificial intelligence (AI). The hackathon was held from 

December 2019 to May 2020, with 21 participating teams. The teams were tasked with 

developing AI algorithms to manage virtual greenhouses, balancing tomato yield and 

resource usage like energy and water to maximize profit.  

The dataset for the challenge was created by collecting data from a six-month cherry tomato 

production period in high-tech glasshouse compartments at WUR’s research center in 

Bleiswijk, the Netherlands. The top 5 teams were selected for the growing experiment: 

AICU, DIGILOG, IUA.CAAS, The Automators, and Automatoes. 

The selected teams implemented their AI strategies in real greenhouses at WUR's facilities 

in Bleiswijk, the Netherlands, over a six-month period that had actual cherry tomato crops. 

These teams remotely managed various greenhouse conditions such as temperature, light 

levels, CO2 concentrations, and cultivation-related parameters like plant density and stem 

density. The goal of the competition was to optimize the net profit of grown cherry tomato 

crops using minimal resources (water, energy, CO2, nutrients) while maximizing crop 

production and quality. 

During the growing experiment, the AI algorithms could adjust greenhouse set points based 

on real-time data from the greenhouse environment. At the end of the competition, the net 
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profit of each team was assessed and used to evaluate the teams. The winning team, 

Automatoes, achieved the highest net profit of €6.86 per square meter. 

1.3  Contribution 

This thesis contributes to the field of greenhouse agriculture and artificial intelligence by 

advancing the capabilities of automated systems to manage greenhouse environments more 

effectively. Given the critical role that greenhouses play in food production amidst growing 

global demands and climatic challenges, the necessity for improved automation and decision-

making systems is evident. My research directly addresses this need by implementing a deep 

reinforcement learning-based framework capable of simulating and optimizing greenhouse 

operations to enhance crop yield and resource efficiency. 

My work extends the current understanding of AI applications in greenhouse management 

by developing a sophisticated environment simulator. This simulator uses historical data 

from the Autonomous Greenhouse Challenge to recreate the dynamic conditions of a real 

greenhouse. By integrating detailed regression models that predict the impact of various 

environmental parameters and management actions, the simulator provides a robust platform 

for testing and refining AI-driven strategies without the need for live trials. 

The core of my contribution lies in the application of two advanced deep reinforcement 

learning algorithms, Proximal Policy Optimization (PPO) and REINFORCE. Unlike 

traditional approaches that might rely on static decision rules or supervised learning models, 

these algorithms offer a dynamic learning capability. They adapt and optimize decision-

making processes based on the simulated feedback, enabling continuous improvement in 

strategies aimed at maximizing tomato yield and minimizing resource use. 

Furthermore, I have empirically evaluated the effectiveness of these algorithms within the 

simulated environment. By plotting the cumulative rewards during both training phases and 

post-training evaluations in controlled test scenarios, the research assesses the practical 

viability of each algorithm. This not only demonstrates which algorithm performs better 

under specific conditions but also provides insights into how different strategies can be 

adjusted to improve greenhouse management. 
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The practical implications of this research are significant. By proving that deep reinforcement 

learning can effectively optimize greenhouse environments in simulation, this work paves 

the way for real-world applications where such AI systems can manage actual greenhouses. 

This contributes to reducing the reliance on human intervention, decreasing resource 

wastage, and potentially improving the overall profitability and sustainability of greenhouse 

agriculture. 

Finally, my research contributes to both academic knowledge and practical applications by 

detailing the processes and methodologies involved in setting up, training, and evaluating AI 

systems within an agricultural context. It offers a comprehensive framework that other 

researchers and practitioners can replicate or adapt for similar challenges in different 

agricultural settings or even broader domains where environmental control and resource 

management are critical. This thesis not only advances the technical knowledge in applying 

AI to solve real-world problems in sustainable agriculture but also demonstrates a scalable 

approach to deploying intelligent systems in environments that are typically challenging to 

automate. 
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2.1  Data Preprocessing  

Data preprocessing involves the preparation and transformation of raw data into a suitable 

format for the training of a model. It is a critical step for the functioning and performance of 

my regressor models. This process includes the cleaning of data, getting rid of irrelevant 

features, handling missing values, removing outliers, normalizing and encoding. A thorough 

data preprocessing can help reduce model overfitting, improve model accuracy and help the 

model generalize for potential new unseen data.  



6 
 

2.1.1  Min max scaling  

Min max scaling is a very common normalizing technique in data preprocessing for the main 

reason that it scales all features to the range of [α, β], typically [0, 1]. This can be really 

helpful for data analyzation to get a better understanding of each feature’s distribution and 

for outlier detection. Additionally, it helps the models come to a faster convergence because 

the weight adjustments during training will be smaller. 

The formula for the min max scaling Is: 

X′ = 𝛼 +
X − Xmin ×  (𝛽 − 𝛼)

Xmax − Xmin
, 

where X is the feature being scaled, [α, β] is the new range of the scaled feature X’ and Xmin 

and Xmax are the minimum and maximum values of the feature X. 

2.1.2  Interpolation  

Interpolation is a mathematical technique used to estimate unknown values that fall within 

the range of a set of known data points. It is a popular technique in the data processing field 

to produce new data points within the range of a set of known data points. By applying 

interpolation, it passes through known points and computes the new values with an 

interpolating function. 

The most common interpolating function is linear interpolation that assumes the change from 

one value to another is linear, for example in time series or other sequences that follow a 

linear pattern. The linear interpolation is described by the formula: 

𝑦 = 𝑦1 + 
(x − x1)(y2 − y1)

(x2 − x1)
, 

where (x1, y1) and (x2, y2) are known data points and y is the interpolated value at a new 

point x. 
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Interpolation is a good method to fill gaps in data or smooth the existing data, but it must be 

used carefully as it assumes that the unknown data points between two known ones can 

calculated with the chosen interpolated function, which in reality may not be true. 

2.1.3  IQR  

The Interquartile Range (IQR) is a measure of statistical dispersion, representing the 

difference between the 25th (Q1) and 75th (Q3) percentiles of the data. This way, it captures 

the middle 50% of the data, which constitutes the summary of the data’s distribution without 

being influenced by the outliers. 

The IQR is described by the simple formula: 

IQR = 𝑄3 − 𝑄1, 

where values below 𝑄1 − 1.5 × 𝐼𝑄𝑅 and above 𝑄3 + 1.5 × 𝐼𝑄𝑅 are 

considered outliers.  

The IQR is a popular technique because it is less sensitive to extreme outliers than other 

dispersion measures and also it does not assume a specific distribution of the data making it 

a versatile took for summarizing data and identifying outliers. Thus, IQR is a powerful tool 

for statistical analysis and for data preprocessing before training machine learning 

algorithms. 

2.2  Machine Learning  

Machine Learning (ML) falls under the broad category of AI, and it involves the study of 

algorithms and statistical models that computer systems perform without explicit 

instructions, relying on patterns and inference derived from data. Machine Learning first 

appeared back in the mid-20th century but has just recently gained popularity due to its rapid 

evolution which was caused by the increased computational power and expansion of data 

availability over the years. It includes a variety of techniques that are categorized to 

supervised learning, unsupervised learning and reinforcement learning. 
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2.2.1  Supervised Learning  

Supervised learning is a category of ML techniques for models that learn to make predictions 

with a dataset that the expected output is known (labelled data), hence the name supervised. 

Therefore, supervised learning can be used only when both the input and output are known, 

and the model is trying to find a relationship between them. The algorithms tend to be 

relatively fast and very effective because they utilize all the information available to them 

and they try to minimize the error between the expected and the model output. However, it 

is up to us to prevent the models from overfitting to the training dataset or get stuck to a local 

minimum of the error function. This approach is primarily used to solve two types of 

problems: classification and regression. 

2.2.1.1  Regression  

Regression is a statistical method that belongs to the supervised learning category, and it 

involves fitting a line or curve that best captures the relationship between input and output 

values to predict a continuous dependent variable. The objective of the fitting is to minimize 

the loss function that we define by adjusting the parameters (weights). The fitting process 

continues until it reaches convergence, i.e. minimal difference of loss function between 

iterations or other criterion that we have set. 

2.2.1.2  Cross Validation  

Cross Validation is a popular evaluation technique that indicates the effectiveness of machine 

learning models, primarily the ones that use supervised learning algorithms. It ensures that 

the model does not overfit to the training set, but it can generalize to new unseen data. It 

involves dividing the data to k folds (k is set by us), where the model is trained on the k-1 

subsets and the remaining set is used as the test set. This process is repeated k times so that 

each subset serves as a test set only once.  

CV can be really helpful in cases where the dataset is too small and splitting the data to 

training and testing sets may be complicated and there is not enough data for a validation set 

or when bad splits might lead to overfitting. Therefore, in these cases, CV provides a more 

reliable estimate of model performance. 
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2.2.1.3  Metrics for Evaluation  

To evaluate the performance of a machine learning model that uses a supervised learning 

algorithm, we calculate some metrics that indicate how good the predictions were in respect 

to the expected outputs.  

For Regression Models, common metrics are: 

1. Mean Absolute Error (MAE): This measures the average magnitude of the errors 

in a set of predictions, without considering their direction. It’s the average over the test 

sample of the absolute differences between prediction and actual observation where all 

individual differences have equal weight. It is described by the formula:  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦′

𝑖
|

𝑛

𝑖=1

 

2. Mean Squared Error (MSE): MSE is a measure of the quality of an estimator which 

is always non-negative, and values closer to zero are better. It's calculated as the average of 

the squares of the errors, i.e. the average squared difference between the estimated values 

and what is estimated described as:  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦′

𝑖
)2

𝑛

𝑖=1

 

3. Root Mean Squared Error (RMSE): RMSE is the square root of the mean of the 

squared errors. RMSE is a good measure of how accurately the model predicts the response, 

and it is the most appropriate when large errors are particularly undesirable. It is basically 

the root of the MSE metric:  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦′

𝑖
)2

𝑛

𝑖=1

 

4. R-squared (Coefficient of Determination): This metric provides an indication of 

goodness of fit and therefore a measure of how well unseen samples are likely to be predicted 

by the model, through the proportion of variance explained. The formula is: 
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𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦′

𝑖
)2𝑛

𝑖=1

∑ (𝑦𝑖 − ȳ𝑖)2𝑛
𝑖=1

, 

where ȳ is the mean of the actual values y.  

R-squared values vary from 0 to 1, where:  

• 0 indicates that the model explains none of the variability of the response data 

around its mean. 

• 1 indicates that the model explains all the variability of the response data 

around its mean. 

Higher R-squared value means that it is a better fit and that the model can account for the 

variation in the dependent variable using the independent variables. For example, if the R-

squared score is 0.80 it means that 80% of the variance in the dependent variable (output) is 

predictable from the independent variables (input). Therefore, an R-squared score close to 1 

means it has a high level of correlation between the model’s predictions and the actual data. 

This metric is very useful for model comparison on the same dataset where the model with 

the highest R-squared score fits the dataset better than the others. However, R-squared can 

be misleading if there are outliers in the dataset or if the model is overfitted. 

Comparing metrics:  

The R-squared score is scale-independent whereas the other metrics are affected by the scale 

of each feature because for example an MSE or MAE that have a score of 100 can be 

considered either very high or very low, depending on the scale of the dataset. 

However, R-squared should not be the only metric we take for our models because the 

variance around certain values might be very little. In this scenario, if there is a high 

concentration around a certain value and the model predicts values that are not far off the 

expected output then the MSE and MAE could be relatively low, but the R-squared score 

might be low indicating that the model does not explain much of the variance but simply 

because there isn’t much variance to explain. 
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MAE is often used when the distribution of errors is uniform or when large outliers are likely 

but should not dominate the error metric. MSE and RMSE are used when large errors are 

particularly undesirable and should be heavily punished (squared). Thus, if the distribution 

is expected to be gaussian, RMSE and MSE might be more appropriate because a few large 

errors can dominate the overall error metric, much like how a few large deviations from the 

mean significantly affect the shape and characteristics of a Gaussian distribution.  

2.2.2  Reinforcement Learning  

Reinforcement Learning (RL)[4] is an area of ML just like supervised learning. Unlike 

supervised learning, the model does not have the correct answers, but the model agent 

interacts with an environment though actions and it gets immediate feedback which can be 

either positive or negative.  

During training, the agent in each timestep decides what action it will take based on the 

current state of the environment, then the environment changes its state accordingly if needed 

and provides the agent with a reward. After receiving it, the agent updates its policy based 

on the reward and the new state of the environment.  

Concluding, RL is an autonomous, self-teaching system that essentially learns through trial 

and error. The goal of the agent is to learn the optimal policy through experience that will 

maximize the total reward in the specific environment through many interactions. 

2.2.2.1  Offline Reinforcement Learning  

Offline Reinforcement Learning(RL)[5], also known as Batch Reinforcement Learning, is a 

variant of RL that effectively leverages large, previously collected datasets for large-scale 

real-world applications. The fact that it uses static datasets means that it does not perform 

any interaction and exploration as opposed to the online RL. The advantage of using offline 

RL on a fixed dataset is that it mitigates potential risks and costs by not requiring any 

additional exploration and does not require collecting new data. 

Since the dataset is fixed and the interaction with the greenhouses is impossible, online RL 

can not be applied. Instead, offline RL is a good approach to this problem since it does not 

require any more data collection or real-time experimentation with the greenhouses, it is 
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designed for dynamic decision making tasks and it can learn policies that consider long-term 

consequences. 

2.2.2.2  Deep Reinforcement Learning  

Deep Reinforcement Learning (DRL)[6] combines two powerful areas in Machine Learning, 

Deep Learning and RL. Deep Learning is used in DRL to approximate functions such as the 

policy of choosing an action and the value function which estimates future rewards. DRL is 

more suitable than traditional RL for complex situations where the state spaces are high-

dimensional (for example input from sensors) or when the action space is continuous and not 

limited and traditional RL methods cannot handle them. 

However DRL requires large amounts of data and significant computational power for 

training so that it performs well and does not overfit. This means that the agent needs to 

extensively interact with the environment which might not be possible and very costly. In 

addition, DRL is more prone to overfit due to the lack of diversity in the environment or if 

the model it too complex. 

There are three main approaches in which DRL algorithms approach learning: 

1. Value-Based methods which focus on optimizing the value function. 

2. Policy-Based methods that directly optimize the policy function, which methods are 

useful for continuous action spaces. 

3. Actor-Critic methods which combine features of both policy-based and value-based 

methods. 

2.2.2.3  Model-based Reinforcement Learning  

Model-based reinforcement learning (RL)[7] is a subset of reinforcement learning techniques 

where the agent explicitly constructs a model of the environment which works as an 

environment simulator. Basically, the model learns how the environment responds to actions 

taken by the agent which includes: 

• State transitioning: A model that predicts the changes on the state of the 

environment based on the actions and the previous state of the environment. 
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• Reward function: A model that predicts the reward received for the agent’s 

action on a given state. 

The primary advantage of model-based RL over model-free RL is that it requires fewer 

interactions with the actual environment to learn policies, whereas model-free need extensive 

interaction with it during training which can be costly and sometimes infeasible. 

For model-based RL methods, sufficient initial interactions with the actual environment are 

typically necessary for the environment simulator to be built. Once it is built, the algorithms 

can interact solely with the environment simulator as it has inherited the actual environment’s 

behaviour, making the process more efficient and less costly. However, it is crucial that the 

simulator is correctly representing the environment so that the policies learned are also 

effective when applied to the actual environment. 

2.3  Previous work  

Before I started developing my own model for the AGC 2nd Edition dataset, I have done 

research on implementations from past papers on the subject to help me structure my own 

methodology and get some inspiration. 

Deep Reinforcement Learning for Agriculture: Principles and Use (2022)[8]:  

In this paper, the objective was to train a DRL agent to mimic the teams’ actions with Deep 

Q-Network on the AGC 2nd Edition dataset. Thus, an assumption was made that the teams 

have performed the best possible actions for each timestep. 

For each team there is a dataset of 47,000 rows, since there are 5 teams the agent was trained 

for 5 episodes. In each episode there were 47,000 timesteps where the agent had to guess the 

action taken by the according team at the current timestep. If the prediction was equal to the 

team’s action, then a positive reward was given to the agent, otherwise a punishment was 

given instead. Rewards and punishments were calculated by the difference of the prediction 

and actual action at the current timestep. 

This approach utilizes popular DRL methods and has a straightforward reward function, but 

the agent cannot overcome the teams’ performance because it tries to mimic them. 
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Data-driven Deep Reinforcement Learning for Agriculture – CYENS Internship report 

(2022)[9]:  

Garazhian’s goal in his work was to outperform the winning team of the AGC 2nd Edition 

dataset by enhancing production levels, but completely ignoring the cost and the amount of 

the resources the algorithm uses. For the experiments many offline RL algorithms were used 

to train the model and then they were compared based on the percentage of improvement of 

the reward function over the winning team. 

For the training, the extracted data used was the GreenhouseClimate.csv which included 

various parameters of the greenhouse that were captured by sensors with a 5-minute interval 

and the CropParameters.csv that consisted of weekly crop parameters which indicated the 

growth of the stem. In the data preprocessing, the raw data from the sensors was averaged 

and aggregated to match the weekly data of the crop parameters. For the evaluation of 

models, the data for the winning team (“Automatoes”) was excluded from the training set. 

The input for the RL algorithms was separated to two sets of action and state. The criteria for 

this separation is if a factor was directly under our control then the factor is considered action, 

otherwise it is considered as part of the state. Additionally, set points were completely 

excluded from the data since realized points were included. 

As for the reward, Garazhian encountered the problem of reward sparsity. Lab results of the 

tomatoes and their quality testing were gathered every two weeks. Therefore, including these 

in the reward function would delay learning, hinder exploration and potentially have even 

less samples because it is difficult to delegate reward to a series of actions. The solution to 

this problem was to consider including crop parameters to the reward function as they are 

associated with the crop’s wellness, and they are highly correlated with the tomato’s quantity 

and quality but also have a 1-week interval instead of 2. 

The results of his work have shown 4-5% improvement in cumulative weighted rewards (over 

16 timesteps) compared to the best-performing team. However, it is questionable if the 

prediction of the crop parameters is valid, if the weights of the reward function are correct 

and if the algorithms had overfit to the small weekly dataset. 
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Deep reinforcement learning for improving competitive cycling performance (2022)[10]:  

This paper is about developing a model with AI algorithm that recommends actions to the 

competitive cyclists that will correct their posture while cycling. For this system, a 

combination of model-based RL and DRL. 

For the creation of the dataset, sensors were placed on cyclists’ back creating a dataset of 14 

different bicycle rides varying in duration, parameters of the cyclist (age, weight and height), 

bike parameters and many other factors. For practical reasons, recommendations could not 

take place every second, so the dataset was scaled down to every 5 seconds by averaging.  

After gathering all the data needed, the data was processed, new features were added, and all 

features were analysed as to how correlated they were with the speed of the cyclist. Once it 

was decided which features would be used, regressor models were built to predict target 

variables such as speed and heart rate and other target variables. 

The environment simulator consists of multiple predictive models and when the agent takes 

an action it creates the next state. Based on the state, the environment gives the appropriate 

reward which allows for the model to train and learn the optimal observation-action pair. The 

goal of the agent is to optimize the ride’s average speed without straining the cyclist. 

From this work, I have inherited the idea of creating an environment simulator and using 

model-based RL methods with a DRL agent for policy learning. 
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3.1  Methodology  

Methodology Introduction:   

The main purpose of this research is to develop an advanced decision-making system for 

greenhouse management based on DRL and model-based RL. Several studies have explored 

the application of DRL in agricultural settings, particularly focusing on irrigation scheduling 

to enhance water use efficiency[11]. The primary function of this system is to maximize the 

production of tomato crops under controlled environments and to outperform human-

operated systems in terms of efficiency and output. The basic approach consists of building 

an environment simulator, which is a virtual environment where different DRL models can 

interact during the training process and simulation. This type of environment can be allowed 

in discrete action spaces of any complexity. 

Data Preprocessing for Environment Simulator:   

The first step in the development of an effective environment simulator is to prepare the 

necessary data. In the current study, the dataset for the Autonomous Greenhouse Challenge 

has been cleaned, preprocessed, and analysed to ensure that the data collected is both relevant 

and accurate for the simulation. The preprocessing of the data included the cleaning of the 

information collected, removal of missing values, and correction of anomalies through 

interpolation. The process was vital since a complete and relevant dataset helps in generating 

accurate models through the simulation. Feature engineering was another critical aspect of 

this process, and it involves the creation of new variables based on selected factors. All the 

new variables were numerical in nature and were added to provide a better perspective on 

the flow of time and simulate the seasonality. 

Creation of the Environment Simulator:  

This imitates the actual conditions within a greenhouse utilizing the pre-compiled data, thus 

allowing for the training and optimizing of the decision-making processes of the RL agents. 

Two regression models were included in the simulator, one for forecasting future states of 

the greenhouse’s environment, and the other for future crop parameter value. The models 

receive current state and action from the agent and provide predictions. This component is 

crucial to the simulator as it enables it to accurately recreate the impact of various actions on 

the health of crops and resource utilization. This was then combined into a DRL setup that 
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allowed RL agents to engage with the dynamic and responsive virtual environment. This 

inclusion is a significant step in training the agents in varying conditions while at the same 

time experiencing real-time decision-making within a simulated setting. 

Training and Evaluation of DRL Models:  

In the experiments two main DRL algorithms were utilized, Proximal Policy Optimization 

(PPO) and REINFORCE. PPO is stable and efficient in optimizing policy networks that 

determine the course of action based on the state of the environment. On the other hand, 

REINFORCE provides a different approach to learning, focusing on policy gradients and, as 

such, allows study into RL learning behaviour under the same conditions. Training is carried 

out with the simulator to provide feedback in the form of rewards based on the performance 

impacts on yield or resource use. Both algorithms were evaluated by plotting the cumulative 

rewards during training, as well as during policy assessments in a post-training test 

environment. 

Results Comparison:  

This theoretical effectiveness of PPO over REINFORCE was further explored through a 

comparative analysis to examine which of the two alternatives positively influenced 

optimized greenhouse management. The comparative analysis was vital in determining the 

more efficient learning and decision-making algorithm within the simulated environment, 

and theoretically, it is PPO. 

3.2  Data Overview  

The data from the AGC 2nd Edition contains a folder for each team, a folder named 

“Weather”, which has data about the weather outdoors and it was collected by the weather 

station, a folder named “Reference” that included data represented by a group of Dutch 

commercial growers and was used to compare with the AI-controlled compartments and a 

pdf named “Economics”. The pdf explained how the overall profit is calculated by giving 

crops a price estimate based on the tomato’s category (A full price, B half price and the 

Unsellable category) and deducting the costs of the resources consumed. As the outdoor 

conditions were mutual to all, but also irrelevant to the performance of each team, the 

“Weather” folder was ignored as well as the “Reference” folder and worked only with the 
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teams’ folders. Furthermore, the pdf was not taken into account since the goal of this thesis 

is to improve crop’s production and quality and not to maximize the net profit. Inside each 

team’s folder there are the following csv files: 

• CropParameters: Contains characteristics of the crop that were observed such as 

stem growth, stem thickness etc. 

• Resources: Includes data about the resources used daily in the greenhouse such as 

water, electricity and CO2. 

• GreenhouseClimate: Indoor climate, status of actuators and irrigation 

• Production: how many kg per m2 crop production of class A (valued with full price) 

and class B (valued with half price) and other parameters about the crop harvested. 

• TomQuality: Assessment of tomatoes based on different parameters like flavour, 

weight, acid etc. 

• LabAnalysis: Results from lab tests on tomatoes. 

• GrodanSens: Metrics from sensors for slab water content, slab temperature and 

electrical conductivity. 

Since the goal of the thesis is just to improve crop production and quality and not to minimize 

resources cost, the Resources csv file will not be used for now but it could be used in future 

work. Moreover, Production csv file is useful to calculate net worth which also doesn’t align 

with the thesis’ goal. TomQuality and LabAnalysis were too sparse to include to my dataset 

since their record interval was 2 weeks. Lastly, in the GrodanSens csv file there are some 

metrics of the water which are independent of the greenhouse and our main focus is to create 

an AI system for an automated greenhouse. Thus, the only csv files that were used for the 

final dataset are GreenhouseClimate and CropParameters. 

The GreenhouseClimate.csv consists of 50 features and 47810 entries. The entries have a 5-

minute interval and the competition took 24 weeks, by doing the calculations this should 

indeed give over 47k rows of raw data. This dataset has been separated to states and actions, 

the actions are the parameters that were completely under our control (and served as actions) 

and the rest were considered as part of the state. This way we avoid overfitting and we can 

proceed with RL.  
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The CropParameters.csv contains five crop characteristics out of which three are used in the 

reward function: Stem thickness, Stem growth and Cumulative number of new trusses on the 

stem. All three parameters are correlated with the plant’s health and quality and tomato 

quantity. Unfortunately, there are only 24 records of these parameters as they were taken 

weekly. The two features that were not included in the reward function were registered by 

the teams and for most weeks there were no changes in the values. 

Both GreenhouseClimate.csv and CropParameters.csv dataset descriptions can be found in 

the Appendix A. 

3.3  Data Preprocessing  

Data Preprocessing is a crucial part for building the regressor models for the environment 

simulator. It directly impacts the accuracy and efficiency of the predictive models. It is 

important that the environment simulator must not only be predictive but reliable too, making 

data preprocessing an indispensable part of the process. Preprocessing for State Prediction 

model in Appendix B1 and for Crop Parameters Prediction model in Appendix B2. 

3.3.1  Data Cleaning  

The first step of data preprocessing is cleaning the data. This involves handling missing 

values and dealing with errors and outliers in the data. After a thorough review of the 

GreenhouseClimate.csv, it was observed that there was a set of records had missing values 

across all features, so they were removed immediately. The rest of the missing values have 

been filled with the Interpolation method that is described in section 2.1.2. The reason why 

Interpolation was applied is due to the fact that the data in the GreenhouseClimate.csv is a 

timeseries of greenhouse parameters that were recorded every 5 minutes. Thus, it is safe to 

assume that the relation between sequential values is linear and an easy way to fill these gaps 

was with a linear interpolation function.  

Another method that could potentially be used to fill the gaps was by taking the average of 

neighboring values. However, in cases where there are many sequential values missing in a 

feature, averaging can be problematic for two reasons. The first reason is that if there are a 

lot of sequential values missing, then the averaging method would take two datapoints that 

are far from each other and produce a value that would not be realistic. The second reason is 
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that averaging would assign the same value to all the sequential missing values which may 

not accurately represent the variability of the data. 

After the filling of the missing values, a post-interpolation cleaning was done to ensure that 

the calculated values were in the correct format that was expected for each feature. For 

example, some features had percentage values and others had binary values. 

As for addressing the errors and outliers, a methodical approach was adopted to mitigate their 

impact on the model’s performance. Firstly, with the help of Interquartile Range (IQR) 

method in section 2.1.3, datapoints that deviate significantly from the central tendency of the 

data were pinpointed. By calculating the 75th percentile (Q3) and the 25th percentile (Q1) of 

the data, outliers were identified as any datapoints lying beyond 3 times the IQR above Q3 

or below Q1. A smaller factor than 3 was not as effective because it would change the 

variance of the data a little too much. Instead of deleting the outliers, which could lead to a 

loss of valuable information and could mess up the sequence of the timeseries, a less 

aggressive adjustment was applied: 

𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄1 − 3 × 𝐼𝑄𝑅 

𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄3 + 3 × 𝐼𝑄𝑅 

By defining these bounds, the outliers that exceeded them were adjusted by being assigned 

the corresponding upper or lower bound value.   

This method proved effective for managing outliers in the dataset, as it allowed for 

adjustments without distorting the underlying variance and patterns, which is crucial for 

building a reliable and accurate environment simulator. 

3.3.2  Data Reduction   

The purpose of this step is to reduce the volume of data in the GreenhouseClimate.csv, 

without changing the integrity and variance of the original data. There are many reasons to 

why the data of this dataset was reduced:  

 

a. The GreenhouseClimate.csv, as already mentioned, has 5-minute intervals between 

records which results to having over 47,000 rows of data for each team, whereas 
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CropParameters.csv has 1-week intervals and only 24 rows and some rows even have 

missing values. This would cause the problem of having sparse rewards and would 

be difficult to merge 24 rows with 47,000. 

b. Recording every 5 minutes in a greenhouse is redundant since there cannot be much 

change in during those 5 minutes for the parameters to change significantly. 

c. Raw data from sensors is often prone to containing outliers due to sensor 

malfunctions, environmental inference, or other anomalies that could interfere with 

the measuring of data. Thus, reducing the data with averaging could smoothen the 

data and reduce outliers. 

d. Less data means faster and more meaningful learning for the environment 

simulator model, requiring less computational resources. 

For these reasons, it was decided to reduce the GreenhouseClimate.csv dataset, but not over-

reduce it because that would lead to underfitting and poor performance. Therefore, instead 

of having 5-minute intervals between records, the data was aggregated by averaging 12 

sequential values to create each new record, resulting in hourly intervals. The final dataset 

had around 4000 entries for each team, and this is verified by multiplying 24 weeks with 168 

hour per week and this gives us around 4000 hours. 

3.3.3  Data Expansion  

Unfortunately, CropParameters.csv has only 24 records which are weekly for each team. 

Down sampling GreenhouseClimate.csv to weekly records is not a good practice since this 

would leave us with a very small dataset to train the environment simulator. 

Since CropParameters.csv contains parameters that contribute to the reward function, leaving 

the dataset as is would cause a credit assignment problem because one reward would 

correspond to 168 actions (168 hours per week). To avoid having this problem, the dataset 

was merged to the GreenhouseClimate.csv by attaching the values of CropParameters.csv to 

the records with the same timestep and then interpolated all the missing values between every 

known datapoint with linear Interpolation (2.1.2). 
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Since the parameters indicate how much a plant grows, it is safe to assume that the relation 

between sequential values of the parameters is linear. 

3.3.4  Data Transformation  

The next step of data preprocessing is to transform the data by normalizing it. Normalization 

is important for regression models as many of them assume that all features are numerically 

equivalent in scale and if they are not the model might not treat all features fairly. Some 

models even require normalization as a prerequisite for them to perform properly like for 

example Support Vector Machines.  Moreover, many regression model algorithms converge 

faster on normalized datasets for the reason that the weight updates tend to be smaller and 

the oscillations narrower. 

Before proceeding with the normalization, it was decided that the 5 separate datasets, one for 

each team, are merged. By doing that, the normalization would be the same for all teams and 

specifically in the Min Max scaling, the maximum normalized value would be assigned to 

the maximum value of all datasets as well as for the minimum too. So the 5 datasets were 

merged vertically and a new csv file was created called lens.csv that contains the row index 

of the end of each team’s dataset in the new merged dataset. 

The normalization technique chosen was Min-Max scaling (2.1.1) and the new fixed range 

of the normalized dataset is [0, 1]. One of the pros of using Min-Max scaling is that the range 

is fixed within boundaries that we set, providing a better understanding of the scale between 

different variables. This allows us to recognize when a value is at its maximum or minimum, 

but also in the case of crop parameters if it has even surpassed the dataset’s maximum. 

Another pro is that Min Max scaling is independent of the data’s distribution which was an 

important since the features had different distributions. 

Another normalization technique that had been experimented with is Zero Mean scaling 

(standardization), which did not yield as effective results. One of the reasons the Zero Mean 

scaling was not as efficient could be because it works better with data that approximate a 

normal distribution. Additionally, the other method was preferred for the fact that Zero Mean 

scaling did not have set the normalized data to a fixed range and some values could even 

become negative and that would make the problem more complicated. 
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The distribution of the data can be shown in the following plots: 
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Figure 3.1: Data Distributions for every feature 

 

From the plots it is observed that some features follow gaussian distribution such as Tair and 

EC_drain_PC but many other features are skewed, others are binary, others are flat and etc. 
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Therefore, each feature has its own distribution, and many do not follow normal distribution, 

thus Zero Mean scaling was not effective for this problem. 

3.3.5  Feature Engineering  

This process involves creating new features or transforming existing ones to uncover patterns 

in the data that may not be immediately apparent. It has the power to significantly influence 

the accuracy of regression models by providing additional context to the model or by making 

the relationships between input and output more explicit. 

Looking at the GreenhouseClimate.csv, there was no data for the time of the day the records 

were made. Even though there is a ‘Time’ column, it is just an indicator for the timestep each 

record was made, and it was only useful for merging the CropParameters.csv with the  

GreenhousClimate.csv. Hence, a feature associating the hour of the day that the raw data was 

taken would be really beneficial for the model because performing some actions at a specific 

time of the day could have a better impact rather than another time. 

To create this feature, a new column ‘hour’ was added to the existing dataset of each team 

and it counted from 0 to 23 to reflect on the 24 hours that a day has. This way the model 

could associate a specific hour value to certain actions and find a relationship between the 

hour of the day and the effectiveness of these actions. 

3.4  Definition of actions, state and reward  

To implement any RL model, actions, state and reward need to be defined first since the RL 

agent chooses an action each timestep on a current state and then it receives the new state 

and a feedback from the environment which can be either positive or negative. In the 

GreenhouseClimate.csv, there are multiple greenhouse parameters from which some of them 

are completely under human control and some are influenced by other parameters and 

environmental factors. That being said, it was decided that parameters under the teams’ 

control will be declared as actions and the rest as state. 

Here is the list of state parameters:  

• Tair: No control of greenhouse temperature  

• Rhair: No control of greenhouse humidity 
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• CO2air: Depends from co2_dos 

• HumDef: similar to Rhair 

• PipeLow: No control of the temperature in the rail pipes 

• PipeGrow: No control of the temperature in the crop pipes 

• Tot_PAR: Total inside PAR depends on various factors such as outdoor PAR, cover 

transmissivity, the operation and transmissivity of energy and blackout screens, and 

the PAR output from artificial lighting sources like LEDs and HPS lamps that are not 

all under the teams’ control. 

• Tot_PAR_Lamps: Par sum from HPS and LED lamps depends on the lamps 

• EC_drain_PC: Result of several actions taken previously, Electrical Conductivity of 

the drainage water suggests either the efficiency of nutrient use or potential issues 

like over-fertilization. 

• pH_drain_PC: Represents the pH level of the drainage water in a greenhouse 

indicator of the current condition of the water's acidity. 

Also, all realized points are considered part of the state because these values represent the 

actual measurements or outcomes resulting from the actions (setpoints) implemented in the 

greenhouse environment. 

List of actions: 

• VentLee: Open and close Leeward vents  

• Ventwind: Open and close Windward vents 

• AssimLight: Switch on and off HPS lamps 

• EnScr: Open and close energy curtain 

• BlackScr: Open and close black curtain 

• co2_dos: Adjust the CO2 concentration in the greenhouse with dosages 

• Water_sup: Reflects the total irrigation time 

• Cum_irr: Cumulative number of litres of irrigation  

Additionally, all setpoints are considered actions because setpoints are predetermined values 

to which a system is intended to control. 
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Therefore, one action is considered a set of values for each of these parameters chosen by the 

agent for the environment simulator. 

As for the reward, since the Stem_elong, Stem_thick and Cum_trusses align with the crop’s 

wellness and tomato quality and quantity, a reward function is needed that involves the three 

parameters. Since high values for these parameters indicate that the crop is growing, the goal 

is to maximize these values. Consequently, the reward function can simply be the weighted 

sum of the three. 

The following table represents the final values (unnormalized) of the crop parameters for 

each team: 

Teams: Automatoes AICU Digilog IUACAAS TheAutomators 

Stem_elong 26.8 14 33.7 36.3 32.2 

Stem_thick 8.8 9.8 9.6 9.3 9.6 

Cum_trusses 22.6 22 21.5 21.7 22.2 

Figure 3.2: Crop parameter values of the last record for each team 

 

Knowing that the winner of the competition was the team ‘Automatoes’, it is evident that 

Cum_trusses had a significant impact for the team’s success since it is the only parameter 

that the ‘Automatoes’ recorded the highest value compared to all other teams. Ergo, the 

weight of this parameter should be higher than the other two. 

Recall that the features are normalized with Min Max scaling to the fixed range of [0, 1]. 

Inspired by the reward function of the paper (Garazhian, 2023)[9], the reward function is a 

weighted sum but not of the three parameters but of the difference between the new value 

and the value before the action was applied. The reason is that this gives clearer feedback for 

the model’s action but also because the reward function can take negative values too since 

the crop could shrink and that can be taken as a punishment. 

 The weights for the differences of Stem_elong, Stem_thick and Cum_trusses are 0.2, 0.2 

and 0.6 respectively. The purpose of assigning these specific values to the weights is that the 
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weights sum up to 1 and the difference of Cum_trusses had the biggest weight. In the 

environment simulator, the crop parameters are clipped to match the range of [0, 2], where 

values over 1 mean that they are over the highest value in the teams’ dataset and 2 is the 

double of the maximum value. Based on this fact, by summing up the weights up to 1 means 

that the output of the reward function is within the range of [-2, 2] and the cumulative reward 

is also within these bounds. 

In conclusion the reward function is described by the formula:  

𝑟𝑒𝑤𝑎𝑟𝑑 = 0.2(𝑆𝑡𝑒𝑚_𝑒𝑙𝑜𝑛𝑔′ − 𝑆𝑡𝑒𝑚_𝑒𝑙𝑜𝑛𝑔) +  0.2(𝑆𝑡𝑒𝑚_𝑡ℎ𝑖𝑐𝑘′ − 𝑆𝑡𝑒𝑚_𝑡ℎ𝑖𝑐𝑘)  

+  0.6(𝐶𝑢𝑚_𝑡𝑟𝑢𝑠𝑠𝑒𝑠′ − 𝐶𝑢𝑚_𝑡𝑟𝑢𝑠𝑠𝑒𝑠)  

3.5  Environment Simulator  

The environment simulator is a crucial component for the model-based RL system, 

particularly in this project where only an offline dataset was provided and no direct access to 

the greenhouses was possible, which can be very constraining.  An accurate simulator ensures 

that the policies being learned with it are viable and effective in real greenhouses conditions, 

thus it is important that it reflects the dynamics of a real greenhouse. 

3.5.1  Regression-based Predictive Models  

Regression-based predictive models are particularly suited for implementing the 

environment simulator in the context of greenhouse management. This choice is driven by 

the nature of the data involved which consists of continuous numerical values that describe 

various environmental conditions within the greenhouse. 

In the model-based RL system, regression models play a pivotal role by predicting the next 

state of the greenhouse environment and key crop parameters. The accuracy of these 

predictions directly impacts the effectiveness of the environment simulator to mirror real 

greenhouse conditions. 

The first step before building the model is to do feature selection. The model is expected to 

predict many parameters, the removal of features must be done carefully since a feature can 

be unrelatable for most parameters, but it could possess a strong relationship with a select 

few. It was observed that many set points had nearly identical values with the realized points 
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Besides having both set points and realized points could potentially be redundant, it could 

also cause confusion to the model and allow it to focus on the other parameters. This could 

also lead to overfitting as it would not generalize since the actions would be closely related 

to state parameters that the model was trying to predict. To examine the relationship between 

set points and realized points, a correlation map was plotted: 
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Figure 3.3: Correlation map for setpoints and realized points 

 

Set points are found on the y axis and realized points on the x axis. It is evident that indeed 

the set point parameters are highly correlated to the corresponding realized point parameters 

shown as red in the correlation map. However, there is one exception which is 
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t_grow_min_sp that has only 0.42 correlation with t_grow_min_vip. Thus, it was decided to 

remove realized points from the state except t_grow_min_vip and keep all the set points as 

actions. The reason why set points were chosen rather than realized points is for the fact that 

by having more actions gives more flexibility to the agent to learn and experiment. In 

addition, the realized points are only dependent from the set points so keeping them as part 

of the state could potentially create false relationships between other parameters. 

After testing the models without the realized points, the performance improved dramatically 

and the model was simplified without losing any valuable information. 

3.5.1.1  State Prediction Regression Models  

The objective of this model (Appendix B3) is to predict the next state parameters based on 

the action parameters and the current state parameters, i.e. the input of the model is the action 

and the current state, and the output is the next state. 

𝑨𝒄𝒕𝒊𝒐𝒏[𝒕] + 𝑺𝒕𝒂𝒕𝒆[𝒕] => 𝑺𝒕𝒂𝒕𝒆[𝒕 + 𝟏], where 𝒕 is the timestep. 

The input dataset X is ready from the data processing step since a record contains both action 

and state, but we need to create the expected output dataset Y that will contain the 

corresponding expected next state for each record in X which is basically next record’s values 

that are part of the state and not the action. As already mentioned, the dataset is a merge of 

all 5 teams’ datasets with lens.csv containing the indexes of which row each team sequence 

ends. 

Iterating through the lens.csv indexes in the X dataset, for each team’s sequence called 

current_sequence (a subset of X), a copy of the sequence containing only the columns that 

are involved in the state set is made called current_targets and then it is shifted by one 

timestep, thus creating the expected next state for each record of the current_sequence. 

After shifting the current_targets, the last row becomes Nan, thereby it is dropped. As for the 

current_sequence, the last row does not have an expected output since it is the end of the 

sequence, so the last row is dropped here too. 
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At the end of this process, we have 5 current_targets for each team that are merged to a new 

dataset Y to match the input dataset X and now that both X and Y are created, the model 

training can begin. 

Since the dataset is small and having a separate validation set would mean less data for 

training, the models were trained and evaluated with the 10-fold CV method (2.2.1.2). With 

the CV method, a model is trained from scratch with each fold and then the average of each 

metric is provided for evaluation.  

The type of models that CV was applied to were: 

• Random Forest Regressor 

• Multi-Output Gradient Boosting Regressor  

• Multi-Output Support Vector Regressor 

• K-Nearest Neighbors Regressor 

• Linear Regressor 

• Elastic Net 

And the metrics used to compare these types of models are: 

• MAE 

• MSE 

• RMSE 

• R2 

After evaluating the types of models, the 10 models, that were trained with CV, of the best 

performing type of model were saved and used in the environment simulator for predicting 

the next state. 

3.5.1.2  Crop Parameters Prediction Regression Model  

The objective of this model (Appendix B4) is to predict the next values of the crop 

parameters based on the action parameters the current state parameters and the current crop 

parameter values. So the input is the action, current state and the current crop parameters and 

the output is the next crop parameter values. 
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𝑨𝒄𝒕𝒊𝒐𝒏[𝒕] + 𝑺𝒕𝒂𝒕𝒆[𝒕]  + 𝑪𝒓𝒐𝒑 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔[𝒕] => 𝑪𝒓𝒐𝒑 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔[𝒕 + 𝟏],  

where 𝒕 is the timestep. 

The reason why the State and Crop Parameters prediction models were not combined to 

one as follows: 

𝑨𝒄𝒕𝒊𝒐𝒏[𝒕] + 𝑺𝒕𝒂𝒕𝒆[𝒕]  + 𝑪𝒓𝒐𝒑 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔[𝒕] => 𝑪𝒓𝒐𝒑 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔[𝒕 + 𝟏] +

𝑺𝒕𝒂𝒕𝒆[𝒕 + 𝟏]  

is because the next state (State[t+1]) has no relation to the current values of the crop 

parameters (Crop Parameters[t]). By combining these models, it would potentially create 

false relationships between the current crop parameters and the next state which would be 

wrong and not realistic. Creating false dynamics between parameters would lead to the 

failure of reflecting real greenhouse conditions which is the main goal of an environment 

simulator. 

The input dataset X is the same with the dataset of the other model’s X dataset but it also 

includes the interpolated crop parameters as mentioned in the Data Expansion section 

(3.3.3). As for the Y dataset, it now includes the expected next crop parameters, not the 

expected next state of the next record. In this case, the methodology for creating the Y 

dataset is the same as the State Prediction Regression Model but instead of current_targets 

being the state parameters shifted by one timestep, it is now the crop parameters shifted by 

one timestep. The last row is also dropped on both current_targets and current_sequence 

(subset of X) and by merging the current_targets the Y dataset is created. 

Same as the State Prediction Regression Model, CV was used for model training and the 

model types trained were: 

For the model training, CV was used for the same model types as for the State Prediction 

Regression Model and evaluated with the same metrics. 

After evaluating the types of models, the 10 models, that were trained with CV, of the best 

performing type of model were saved and used in the environment simulator for predicting 

the next crop parameters. 
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3.5.2  Creation of tf_agents py_environment  

The creation of the environment simulator, tf_agents py_environment is explored serving 

as the foundation for implementing the environment simulator (Appendix B5). The library 

is specifically designed to support the dynamic and efficient execution of reinforcement 

learning methods. Additionally, it is modular and friendly to TensorFlow, making it possible 

to integrate the simulator model with the framework and leverage the TensorFlow 

environment for better data transmission and processing methods. The library is ideal for 

developing complex reinforcement learning models and methods because such frameworks 

require strong data flow and computation efficiencies. Furthermore, the library comes with 

various available algorithms and environments making it possible to use preexisting 

components in the development process. Subsequently, the tf_agents library is designed with 

a compilation of custom environments that ensure the environment requirements can be met 

with little effort in the customization. Hence, the tf_agents library is robust and flexible for 

creating the simulator. 

3.5.2.1  Initialization   

The creation of a TensorFlow Agents (tf_agents) PyEnvironment[12] involves defining the 

environment's action and observation specifications, setting boundaries for these 

specifications, and initializing the environment's state along with the crop parameters which 

are expected to increase during training. In our case, the environment is designed to simulate 

a greenhouse system, where various parameters are controlled, some directly by the agent as 

they are part of the action and some indirectly as part of the state. 

The action specification defines what actions the agent can take within the environment. 

The specifications involve the greenhouse parameters that are considered as part of the action 

as discussed in the 3.4 section. So, every action is considered a selection of values by the 

agent for each action parameter within the set boundaries in the specifications. The 

boundaries for each parameter are set to [0, 1] and this is because knowing that the data was 

normalized with Min Max scaling (2.1.1), the values in the normalized dataset are in the 

range of [0, 1] where 0 is the minimum and 1 the maximum. Since the goal for the 

environment simulator is to mimic the behavior of the real greenhouse environment, these 

boundaries were chosen to ensure that the simulated greenhouse environment remains within 



40 
 

realistic and manageable ranges. This also prevents the generation of unrealistically large or 

small values during simulation while maintaining consistency with the dataset. 

As for the observation specification, it involves the parameters that are part of the state as 

discussed in the 3.4 section and just like the action specifications, the set of parameters is 

bounded in the range of [0, 1] for the same exact reason. 

After defining the specifications, the environment’s state and crop parameters are initialized 

using the reset() function which is also used at the start of each new episode. Specifically, 

the function initializes some environment variables and sets the greenhouse environment’s 

initial state and initial crop parameter values, i.e. stem elongation, stem thickness, and 

cumulative trusses, to values near the minimum observed in the dataset. By setting the crop 

parameters near their lower bounds, the increase in cumulative reward in the subsequent 

iterations becomes more evident and easier to discriminate. In terms of learner’s experience, 

the selected initial configuration makes the agent more attuned to its perceptions concerning 

the ramifications its actions have on the environment, which considerably speeds up 

knowledge acquisition. Moreover, beginning from the same source state and crop parameter 

values as the teams did, it promotes comparison and carries over the continuity of past 

experiments to the present study. Having this base configuration, we can evaluate the 

learner’s performance against benchmarks from previous studies. In addition, initializing the 

crop parameters from their minimum or near-minimum limits presumes a vast potential for 

growth from the very beginning, as the system boundary is uniform.  

 Additionally, other variables in the class are initialized to enable managing the overall 

operation of the environment. Some of the most notable variables are the weights of the 

reward function, that determine which crop parameter is more important in the reward 

calculation, the timestep counter, which is initialized to 0, the list of cumulative reward of 

each episode, which will be plotted after the end of the training and the file path for the 

models. Once the model path is initialized, the predictive models developed which are 

referenced in section 3.5.1 are loaded to memory. 

3.5.2.2  Updating State   

In this section, we discuss the mechanism through which the environment updates its state in 
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response to an action taken by the agent, a crucial aspect of the simulation's dynamic nature. 

As detailed in section 3.5.1.1, the system employs an ensemble of 10 models, that were 

trained with CV, to predict the subsequent state of the environment. Each model in this 

ensemble is designed to take the current state and the agent's recent action as inputs and 

output a predicted new state. 

Given the inherent uncertainties and complexities of predicting environmental responses, the 

ensemble method enhances the robustness and accuracy of the state prediction. Instead of 

relying on a single model's output, which may be prone to specific biases or errors, the 

ensemble approach aggregates the predictions from all 10 models. This is achieved by 

averaging the outputs for each state parameter across the models. For example, if the state 

parameters include factors such as temperature, velocity, and position, each model will 

provide a prediction for these variables, and the average of these predictions will form the 

composite new state. 

The averaging process helps in smoothing out anomalies and reducing the influence of any 

single model's potential predictive inaccuracies. The resulting averaged parameters are then 

compiled into a unified state vector, which is fed back into the environment simulator. This 

updated state vector provides a more reliable and stable basis for the environment, reflecting 

the collective inference of multiple predictive insights, and thus supports the agent in making 

more informed decisions in the subsequent steps. 

This method not only leverages the strengths of multiple predictive models but also mitigates 

their individual weaknesses, ensuring that the environment's evolution is both realistic and 

grounded in a comprehensive analytical approach. The use of an ensemble also aligns with 

best practices in machine learning, where model averaging is known to improve prediction 

performance over using single models. 

Once the new state is predicted, the state parameters are clipped to [0, 1] as the observation 

specifications require and the hour feature is increased modularly by 1/24 so it is also within 

the bounds of [0, 1] and a dictionary is created that includes the predicted state and the new 

hour. This dictionary replaces the old state dictionary with the update method, thus updating 

the state successfully for the next timestep. 
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3.5.2.3  Updating Crop Parameters  

Besides updating the state of the environment, the simulator needs to update the crop 

parameters too, which are key targets that the agent aims to optimize through its actions. 

which the agent aims to maximize with its actions. Similarly with the state updating, the 

environment needs to predict the new crop parameters first with the ensemble of 10 models 

as described in the section 3.5.1.2.  

After obtaining the averaged predicted crop parameters, the values are clipped to [0, 2]. The 

reason why the crop parameters are clipped to fit in this specific range is because it doesn’t 

make sense for the stem to shrink more than the minimum values of the whole dataset which 

is 0 since the dataset was normalized with Min Max scaling. As for the upper bound, it is set 

to 2 because by setting the upper limit to 2, the model allows for the possibility of the crops 

achieving up to double the maximum value observed in the dataset. This setting not only 

enables the agent to potentially outperform the existing benchmarks but also remains within 

realistic growth expectations under optimal but achievable greenhouse conditions. This 

strategic clipping ensures that the crop parameters remain within a feasible range, fostering 

both realism in simulation behavior and ambition in the agent's performance objectives. 

The predicted crop parameters are then used to calculate the differences between the 

predicted and the old crop parameters for the reward function and then a dictionary is created 

with the predicted crop parameters and the differences. This new dictionary of crop 

parameters will replace the old, thus updating them so the model can move on to calculate 

the reward for the current timestep. 

3.5.2.4  Calculate Reward  

The environment besides updating its state, it is also responsible to provide immediate 

feedback for the agent’s action. By updating the crop parameters and taking the differences 

from their old values, the environment is able to calculate the immediate reward for each 

timestep and the cumulative reward of the episode. 

The computation of the immediate reward is fundamental because it guides the agent’s 

learning process, influencing how it adjusts its actions to maximize future rewards. By 



43 
 

assigning a numerical value to each action's outcome, the reward helps the agent discern 

beneficial actions from detrimental ones within the context of the given environment. 

Furthermore, the environment also computes the cumulative reward, which is the total reward 

accumulated over an episode. Plotting this cumulative reward is extremely useful for several 

reasons. One good reason is that the cumulative reward provides a straightforward metric to 

evaluate the agent's performance over time. By observing the total rewards per episode, it 

can be determined if the agent’s attempts to maximize rewards are getting better as the 

episodes go on, worse or neither. Moreover, plotting the cumulative reward can help detect 

issues in the learning algorithm, too high or too low learning rates and inadequate 

exploration. Finally, this method helps identify when the learning process is converging to 

optimal policy and determine if the number of episodes was sufficient or not. 

The reward function is viewed in the appendix where each crop parameter difference is first 

multiplied with its corresponding weight and then summed giving a scalar value. This value 

is then added to the cumulative reward variable and then returned to the agent as a reward. 

Both the immediate and cumulative rewards are within the range of [-2, 2] for the reason 

discussed in the section 3.4.  

3.5.2.5  Step function  

In the implementation of a reinforcement learning environment using tf_agents, the step 

function is a core component that dictates the progression of each timestep and ultimately, 

each episode within the environment. This function is invoked whenever the agent takes an 

action, and its execution represents a single iteration of the agent-environment interaction 

loop. 

The function begins by receiving an action, which the agent decides based on its current 

policy. The action is assumed to be a dictionary where keys correspond to the defined action 

specifications. 

The environment simulator in the step function first updates the crop parameters based on 

the agent’s action and the current state. Next, the simulator updates its state after considering 

the action's impact which also is assumed to be a dictionary where keys correspond to the 

defined observation specifications. 
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Once the timestep is finished, the timestep class variable is incremented and if this variable 

does not exceed 4000 timesteps, then the environment simulator returns the state and the 

reward calculated. Otherwise, if the timestep is over 4000, then the cumulative reward of the 

episode is appended to the list of cumulative rewards and the episode ends returning the last 

state and reward to the agent. The reason why 4000 is the timestep limit is because the dataset 

of teams, after it was aggregated to hourly recordings, had 4000 records each (24 weeks 

multiplied by 168 hours weekly). Hence, one episode is set to 4000 timesteps to match the 

duration of the teams’ experiment for future comparison.  

3.6  Agent  

The agent operates within a TensorFlow Agents (tf_agents) framework designed to mimic a 

complex greenhouse. The primary role of the agent is to optimize the crop growth parameters, 

by taking appropriate actions based on the state of the environment. Through continuous 

interaction with the environment simulator described in section 3.5, the agent learns by 

receiving immediate feedback in the form of rewards that evaluate the impact of its actions 

on crop health and productivity. This iterative training process involves the agent executing 

actions, the environment responding with new state updates and rewards, and the agent 

updating its policy based on this feedback. Over time, the agent refines its strategy to 

maximize cumulative rewards, thereby learning to make decisions that yield the most 

beneficial outcomes. 

The agent is trained with two algorithms in this thesis, PPO and REINFORCE. 

3.6.1  PPO  

Proximal Policy Optimization (PPO)[13]  is a cutting-edge algorithm in the realm of Deep 

Reinforcement Learning (DRL). Developed by OpenAI, PPO has gained significant traction 

due to its simplicity, stability, and remarkable performance across various tasks. 

PPO falls under the category of Policy-Based methods in DRL (2.2.2.2). Unlike value-based 

methods that focus on optimizing the value function or actor-critic methods that combine 

features of both value-based and policy-based methods, PPO directly optimizes the policy 

function. This characteristic makes it particularly suitable for environments with continuous 

action spaces. 
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This algorithm is known for its stability during training meaning that the policy updates are 

controlled, preventing the network from diverging or becoming unstable. Also, PPO utilizes 

training samples which lead to faster convergence and requires fewer samples compared to 

some other deep reinforcement learning algorithms. Furthermore, it is well-suited for 

environments with continuous action spaces, like the one for this project, as it directly 

optimizes the policy function. Finally, maintains a balance between exploration and 

exploitation, crucial for learning in dynamic environments. By controlling the magnitude of 

policy updates, it ensures that the agent explores new strategies while not deviating too far 

from previously learned policies. 

The policy network, which is commonly implemented as a neural network, receives the 

current state of the environment and generates a probability distribution for the available 

actions. PPO then interacts with the environment to collect experiences, which contain state-

action pairs, and the corresponding rewards. The experiences are essential in assessing how 

sophisticated the policy is in maximizing the expected rewards. PPO then proceeds to 

improve the policy by updating its parameters. This is dissimilar to value-based approaches 

that consist of optimizing the value functions because PPO directly improves the policy 

function. This is done through policy-based optimization where the innovation of PPO is its 

constrained-based form of optimization that ensures stability. Rather than allowing for an 

unconstrained policy update, PPO clips the changes to the policy to ensure that they do not 

change significantly. The policy network training uses a gradient-based optimization 

technique such as stochastic gradient descent or the Adam optimizer. These two techniques 

minimize the objective, thus updating the policy in each iteration. PPO ensures that learning 

is stable and efficient in an environment with a continuous action space. 

Implementation: 

The training setup for the PPO agent (Appendix B6) comprises two central components, the 

actor and the value networks. These networks are designed with the 

actor_distribution_network and value_network classes made available by TensorFlow 

Agents. Both the actor and the value networks incorporate a custom combiner, which 

processes the inputs by concatenating all relevant tensors to ensure that the features from 
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different sources can be effectively merged before they are fed into the fully connected layers 

with 100 units each. This setup allows the networks to thoroughly process the complex 

interactions between the states and the actions in the environment. 

The optimization of the network is handled using an Adam optimizer with a learning rate of 

0.01 to ensure effective and efficient gradient descent during the training. The agent itself is 

configured to use various configurations, including observation and reward normalization 

and generalized advantage estimation over ten training epochs. These features enhance the 

agent's performance by ensuring a more stable and converged learning process. 

The data necessary to train the agent is recorded and stored in a TFUniformReplayBuffer 

to allow batch learning from the experience. A DynamicEpisodeDriver is used to capture 

data into the buffer as the agent interacts with the environment over multiple episode 

sequences. This setting not only allows the agent to have enough data for learning but also 

to refine its policy in a thorough state-action-reward experience review. This setup of the 

components allows for an effective training of the PPO agent, promoting optimal learning 

and adaptability in the greenhouse environment simulation. 

3.6.2  REINFORCE  

REINFORCE[14], referred to as the Monte Carlo Policy Gradient, is one of the core 

algorithms of this field and has been critical in the evolution and exploration of policy-based 

methods in DRL (2.2.2.2) due to its simplistic implementation and theoretical characteristics. 

Unlike value-based methods, which seek to optimize the value function, or the actor-critic 

family that balances optimization with both the policy and the value function, REINFORCE 

belongs to purely policy-based methods. This means it aims to optimize the policy function 

entirely, ignoring the value one. Such characteristics make REINFORCE particularly 

effective in cases where the sequence of decision-making steps is essential and when the 

environment is highly stochastic. 

REINFORCE is unique in that it operates on complete episodes for learning, making it an 

“on-policy” method. This implies that it is not dependent on prior or different policy 

trajectories and always uses the episodes under its current policy to update its parameters. Its 



47 
 

major strengths are that the simple algorithm can precisely optimize policies in an unbiased 

manner. It does this by focusing on the final output of policy execution, the total of rewards 

accumulated. This learning signal is consistent and directly correlated to the objective of 

maximizing returns, hence making it very reliable especially when the reward signal of the 

environment is clear and the episodes are clearly defined. It secondly accommodates high-

dimensional action spaces and policy structures regardless of complexity, which is actually 

the norm in real-world applications. Its other critical aspect is that it inherently supports 

learning and exploration since exploration is made on sampled policy improvement, which 

satisfies the vital need to discover where new policies highly lead to improved performances. 

The operational mechanics of REINFORCE are based on the generation and evaluation of 

episode trajectories. The REINFORCE algorithm has a policy network at its heart, often 

implemented via a neural network that receives the current environmental state and outputs 

a distribution of probabilities over possible actions. This distribution then plays a critical role 

in guiding the agent's actions in the environment. During the episode, the agent interacts with 

the environment under this policy, recording all state-action pairs and noting the immediate 

rewards. Once the episode concludes, the total discounted reward for each action is calculated 

and returned. These returns are then used to calculate gradients, which adjust the policy’s 

parameters to increase the probability of actions that yield higher returns. The key aspect 

here is that the policy is updated after the episode is completed, ensuring that each update is 

informed by an entire sequence of actions and outcomes, reinforcing the connection between 

actions taken and their long-term results. 

This episodic update method contrasts sharply with algorithms that update based on single 

steps or pairs of actions and rewards, allowing REINFORCE to leverage all the information 

from fully explored sequences. By updating the policy parameters using full returns, 

REINFORCE aligns directly with the objective of maximizing cumulative rewards, making 

it effective in episodic environments. The policy parameters are typically computed via 

gradient ascent, often using simple but powerful optimizers such as stochastic gradient 

descent. Although this approach isn’t always the quickest or least variant, it excels in 

environments where the quality of an entire sequence of actions determines success. 



48 
 

Implementation: 

The REINFORCE setup (Appendix B7) includes an actor network, implemented using the 

actor_distribution_network. A key feature of this network is the custom combiner layer, 

which concatenates all input tensors into a single flattened vector. This is crucial for 

processing the diverse and high-dimensional state inputs. The actor network consists of two 

fully connected layers with 100 and 50 neurons, respectively, designed to capture the 

complex interrelationships within the environmental data and facilitate precise action 

selection based on the current state. 

In terms of agent optimization and initialization, the REINFORCE agent employs an Adam 

optimizer with a learning rate of 0.001 and features return normalization, which adjusts the 

rewards to have zero mean and unit variance, significantly enhancing the learning stability. 

The agent's initialization includes setting up a TensorFlow variable train_step_counter, 

which helps monitor and control the training process. 

Training data is collected and stored in a TFUniformReplayBuffer, which holds trajectories 

that include states, actions, and rewards. This data is crucial for updating the agent's policy. 

Data collection is managed by a DynamicEpisodeDriver, which orchestrates the interaction 

between the agent and the environment, ensuring a consistent and efficient collection of 

experiences. This driver executes the policy over multiple episodes, enabling the agent to 

explore and learn from a diverse array of environmental scenarios. 

3.6.3  Training and evaluation  

Both algorithms during training are set to execute a set number of episodes, specifically 100 

episodes in this scenario. Each episode encapsulates a complete interaction cycle between 

the agent and the environment for 4000 timesteps, reflecting a full set of actions from start 

to finish. Unfortunately, due to the lack of computational power and time the algorithms 

could not train for more episodes. 

At the start of each episode, the DynamicEpisodeDriver executes the agent's current policy 

to interact with the environment. This driver ensures the capture of complete trajectories, 

which include sequences of states, actions, and rewards, all stored in the 

TFUniformReplayBuffer. Following the conclusion of an episode, these trajectories are 
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retrieved from the buffer for training purposes. The agent processes this data to update its 

policy, aiming to refine its decision-making skills based on the outcomes of the whole 

episode. The session ends with the calculation and recording of training loss, providing a 

clear metric of the agent's progression in learning throughout the episode. Then, the replay 

buffer is cleared to accommodate fresh data from upcoming episodes.  

After training, the cumulative rewards collected during each episode are plotted. This 

visualization serves as a tool to evaluate the effectiveness of the agent’s evolving policy 

across episodes, showcasing the learning trends and the agent’s increasing capability to 

maximize rewards. 

Once training is complete, the agent's performance is assessed through an evaluation phase 

to test the effectiveness of the learned policy. This phase uses a similar environmental setup 

to maintain consistent testing conditions. The evaluation involves running the agent through 

10 separate episodes in the test environment. The agent navigates through the environment 

based on its learned policy, and the actions taken, along with the resultant state transitions 

and rewards, are recorded. The total reward for each episode, representing the agent’s 

performance, is calculated by summing up all received rewards. 

The cumulative rewards for each evaluation episode are then plotted. This chart is crucial as 

it reflects the agent’s ability to apply its learned policy to new scenarios, indicating how well 

the training has generalized. It also highlights the consistency of the agent’s performance and 

pinpoints areas that may require further refinement. 
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4.1  Prediction Models   

To build the State Prediction Regression Model and the Crop Parameters Regression 

Prediction Model, a lot of regression algorithms were cross validated for comparison. The 

algorithms were: 

• Random Forest Regressor 

• Gradient Boosting 

• Support Vector Regressor 

• K-Nearest Neighbours 

• Linear Regression 

• Elastic Net 

Random Forest Regressor:  

Random Forest is an ensemble model that constructs multiple decision trees during training 

and averages the predictions of each tree. This method excels in regression tasks as it 
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effectively manages overfitting without significantly increasing bias errors. It is particularly 

useful in high-dimensional spaces. 

Gradient Boosting Regressor:  

Gradient Boosting is an ensemble learning technique that builds models sequentially, with 

each model aiming to correct the errors of its predecessor. This approach optimizes a loss 

function to generate predictions and is known for its high accuracy, even with complex 

datasets where relationships between parameters are nonlinear. 

Support Vector Regressor (SVR):  

SVR utilizes principles similar to Support Vector Machines (SVM), a well-regarded method 

in classification tasks. SVR focuses on maximizing the number of instances between two 

boundaries while minimizing margin violations, making it resistant to outliers and effective 

in high-dimensional spaces. 

K-Nearest Neighbors (KNN):  

The KNN algorithm is a form of instance-based or lazy learning where computations are 

deferred until classification. It predicts outcomes by analyzing the behaviors of a case's 

nearest neighbors, averaging their attributes. This method is straightforward and useful where 

predictions can be directly derived from nearby data points in the feature space. 

Linear Regression:  

Linear Regression is a fundamental and traditional method in statistics and machine learning 

for predicting a response variable from one or more predictors using a linear relationship. It 

is especially effective when the relationships within the data are linear. 

The Gradient Boosting Regressor and the Support Vector Regressor do not support multi-

output regression. To solve this problem, they were wrapped with the meta-estimator 

‘MultiOutputRegressor’ that basically constructs one regressor per target. This assumes 

that the outputs are not related to each other and each regressor is fitted independently on a 

single output.  

When it comes to the complete assessment of regression models designed to predict state and 

crop parameters, it is essential to use a varied of performance evaluation during CV, as input 
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features have different and non-relatable natures. Given that the input data has distributions 

as distinct as Gaussian, skewed, flat, and random ones as shown in the section 3.3.4, different 

statistical methods should be applied to ensure a universally applicable assessment of model 

fitness and effectiveness. For this reason, three metrics were selected for comparing the 

algorithms: Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared 

(R2). Each of these metrics provides a unique perspective on model performance, as detailed 

in Section 2.2.1.3. MAE offers insights into the average magnitude of the errors without 

considering their direction, making it a straightforward indicator of average error. MSE, 

which squares the errors before averaging, emphasizes the impact of larger errors and is 

particularly useful for identifying models that might be prone to significant prediction errors. 

R-squared measures how much of the variation in the dependent variables (outputs) can be 

explained by the independent variables (inputs), indicating how well the model fits the data. 

Together, these metrics provide a well-rounded assessment of model accuracy, fit, and 

robustness, and an informed comparison across the regression algorithms employed in the 

project. 

4.1.2  State Prediction Regression Model  

Before Cross-Validating, a predefined set produced by the train_test_split function from 

Scikit-learn, which allocated 80% of the data to the training set and 20% to the testing set, 

with a fixed random state to ensure reproducibility of the split, was used to train the models 

for each algorithm. After training, the models were used to make predictions on the dataset, 

which were then utilized to calculate the metrics MAE, MSE, RMSE and R2. 

 

 

 

 

 

 



53 
 

The results were: 

Model MAE MSE RMSE R2 

Random Forest Regressor 0.030566 0.004200 0.064805 0.928661 

Gradient Boosting Regressor 0.037728 0.006782 0.082352 0.909448 

Support Vector Regressor 0.057036 0.008510 0.092252 0.865166 

K-Nearest Neighbors 0.038598 0.007360 0.085789 0.887993 

Linear Regression 0.052392 0.011923 0.109194 0.854127 

Elastic Net 0.192762 0.059946 0.244839 -0.000242 

 

Figure 4.1: Metric table for the training of State Prediction Regression Model with every 

model type using the train_test_split 

 

 

Figure 4.2: Metric plot or the training of State Prediction Regression Model with every 

model type using the train_test_split 

 

Overall, the results show that most models performed relatively well, with Random Forest 

Regressor and Gradient boosting Regressor showing the best results by having relatively 

high R2 values and low error metrics. Given that both models are based on ensemble methods 

where multiple decision trees make a decision and thus outperform individual models, it can 

be assumed that the data contains complex and nonlinear relationships which the model could 

capture. However, the Elastic Net has a very low level of performance with closer to zero 
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R2 and significantly higher error values. This can be due to the linear nature of the model 

that cannot capture the complexity of the dataset or due to multicollinearity in which the 

Elastic Net method was penalized, and therefore difference. 

However, a further evaluation with CV was applied for several reasons. One of them is to 

detect overfitting that negatively impacts the performance of the model on new data. 

Furthermore, CV provides a more generalized performance metric than a single train-test 

split. Finally, CV maximizes the use of available data by allowing every observation to be 

used for both training and validation, and as such, the model training can benefit from the 

entire dataset. 

By applying 10-fold CV the results were: 

Model MAE MSE R2 

Random Forest Regressor 0.080887   0.016240   0.272739 

Gradient Boosting Regressor 0.045091   0.008538   0.806296 

Support Vector Regressor 0.084574   0.016443   0.236989 

K-Nearest Neighbors 0.100600   0.027678 -0.255842 

Linear Regression 0.057751 0.012808   0.757539 

Elastic Net 0.197382   0.062745 1.475431 

 

Figure 4.3: Metric table for the training of State Prediction Regression Model with every 

model type using CV with 10 folds 

 

It is clear that Gradient Boosting Regressor stands out as the top performer with an R2 of 

0.806, the lowest MSE at 0.008538, and the lowest MAE of 0.045091. Its superior 

performance suggests strong predictive capabilities and an excellent fit to the dataset, making 

it the preferred choice for predicting state and crop parameters in the simulator. 

Linear Regression, surprisingly, shows strong performance with an R2 of 0.757539 and 

moderate error rates, indicating a good fit for datasets with linear characteristics. However, 
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its slightly higher error metrics compared to Gradient Boosting Regressor suggest some 

limitations in handling complex nonlinear relationships within the data. 

4.1.2  Crop Parameters Prediction Regression Model  

Similarly with the State Prediction Regression Model, a predefined set produced was used to 

train the models for each algorithm. After training, the models were used to make predictions 

on the dataset, which were then utilized to calculate the metrics MAE, MSE, RMSE and R2. 

The results were: 

Model MAE MSE RMSE R2 

Random Forest Regressor 0.000522 1.064815e-05 0.003263 0.999848 

Gradient Boosting Regressor 0.001659 5.093134e-06 0.002257 0.999911 

Support Vector Regressor 0.047985 3.112529e-03 0.055790 0.943564 

K-Nearest Neighbors 0.020611 1.459654e-03 0.038205 0.972726 

Linear Regression 0.000636 7.546073e-07 0.000869 0.999986 

Elastic Net 0.191737 6.149200e-02 0.247976 -0.001020 

 

Figure 4.4: Metric table for the training of Crop Parameters Prediction Regression Model 

with every model type using the train_test_split 

 

Figure 4.5: Metric plot or the training of Crop Parameters Prediction Regression Model 

with every model type using the train_test_split 
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All the models seem to perform exceptionally well with a very high R2 score and minimal 

MSE and MAE. This time the Linear Regression had the lowest MSE and high R2 value 

close to 1 and the Random Forest Regressor the lowest MAE. The results This suggest an 

almost perfect prediction with minimal error, indicating that the linear model is surprisingly 

effective, potentially due to a linear or nearly linear relationship between features and the 

target in the dataset used for this split. The Elastic Net performed poorly once again, with a 

negative R2 indicating that the model performs worse than a simple horizontal line mean 

model. 

For the same reasons as for the State Prediction Regression Model, CV was applied for 

further evaluation. 

By applying 10-fold CV the results were: 

Model MAE MSE R2 

Random Forest Regressor 0.037598   0.003679   0.763458 

Gradient Boosting Regressor 0.003859 0.000128   0.996679 

Support Vector Regressor 0.074762   0.008725   0.567697 

K-Nearest Neighbors 0.142893   0.040026 -0.935228 

Linear Regression 0.000817   0.000048  0.998314 

Elastic Net 0.206359   0.069178 -1.886438 

 

Figure 4.6: Metric table for the training of Crop Parameters Prediction Regression Model 

with every model type using CV with 10 folds 

 

Gradient Boosting Regressor and Linear Regression clearly stand out with extremely high 

R2 values of 0.996679 and 0.998314, respectively, indicating that both models are highly 

predictive of the crop parameters with minimal error (MSE and MAE). 

Even though Linear Regression has slightly better metrics, it is important to note that the 

expected output that the model tries to predict is the three crop parameters which have been 
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linearly interpolated during the data expansion in the section 3.3.3. Real-world data might 

exhibit non-linear behaviors not captured through interpolation, whereas Gradient Boosting 

can adapt to potential non-linearities better than Linear Regression. Therefore, choosing 

Gradient Bosting Regressor algorithm appears to be a strategic decision based on its 

performance, adaptability, and robustness. 

4.1.3  Algorithm Justification  

Multi-output Gradient Boosting Regression was selected to train both predictive models as 

it performed the best in both cases. It is specifically designed to handle scenarios where 

multiple output predictions are required from the same set of inputs. 

In the context of a greenhouse, where outputs (e.g., humidity levels, temperature, CO2 levels) 

might not only be interdependent but also vary widely in their nature and distribution, a 

multioutput framework is essential. This model trains individual gradient boosting regressors 

for each output parameter but does so within a coherent framework that manages all outputs 

simultaneously. This capability is crucial for maintaining consistency across predictions of 

different parameters, each of which may influence the others. 

Also, Gradient Boosting is inherently robust to a variety of input distributions due to its 

decision-tree-based approach. This makes them particularly adept at managing features with 

different distributions such as Gaussian, skewed, or flat, as typically seen in greenhouse data 

sets where factors like humidity, CO2 levels, and light intensity can vary in distribution.  

Gradient Boosting Regression constructs a strong predictive model by sequentially adding 

trees that correct the residuals of the previous trees. This iterative correction allows the model 

to effectively capture complex non-linear relationships between features and outputs. In 

greenhouse environments, the interactions between different environmental factors and their 

effects on plant growth can be highly non-linear and influenced by multiple interacting 

factors. Gradient Boosting’s capacity to model these relationships makes it highly effective 

for such applications.  

Additionally, Gradient Boosting includes several mechanisms for regularization, such as the 

number of trees, depth of trees, and learning rate, which help prevent overfitting. 
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4.2  DRL algorithms  

In this section, we explore the application of two prominent DRL algorithms: Proximal 

Policy Optimization (PPO) and REINFORCE. These algorithms represent two different 

approaches to solving reinforcement learning problems, each with unique characteristics and 

strengths as described in the section 3.6. 

However, theoretically, REINFORCE is not as robust or efficient as PPO especially in 

environments that require high stability and reliable policy behaviour over time. 

REINFORCE is a basic policy gradient method that makes a direct proportional update to 

the policy based on the gradient of the expected returns. The direct nature of the update can 

introduce several weaknesses, particularly in complex learning problems. 

Its updates are often characterized by high variance due to the fact that calculating the 

gradient requires a full trajectory, and so the output of the gradient calculation at any single 

time steps depends heavily on the rewards and actions from start to finish. High variance is 

often a sign of unstable training because policies may fluctuate and fail to converge to 

optimality. 

Similarly, because the algorithm requires a full trajectory to make updates, it can be 

inefficient in terms of computational complexity. In cases where rollout trajectories are 

expensive or slow to collect, the variance in policy can increase. As a result, many episodes 

are required to make a learning update sufficiently reliable when using REINFORCE. This 

often makes the approach much slower to converge than more advanced methods and also 

less sample-efficient. 

Whereas PPO addresses many of the limitations seen in REINFORCE through several key 

improvements. It introduces a clipped surrogate objective, limiting the policy update at each 

iteration. This procedure acts as an upper bound and prevents the software from making 

implausibly large updates that might destabilize the policy. However, it ensures the updates 

are sizable enough to meaningfully improve the learning rather than undermining the 

strengths of an already decent policy. 

In the upcoming sections of the thesis, I will present empirical results demonstrating these 

theoretical expectations. The experiments are designed to compare the performance of 
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REINFORCE and PPO based on the cumulative reward. The results are expected to validate 

the theoretical advantages of PPO over REINFORCE, providing a practical perspective on 

why PPO is often favoured in applications requiring robust and efficient learning. The 

effectiveness and efficiency of these algorithms were evaluated through two main strategies: 

• Cumulative Reward During Training: This metric is one of the most important in that 

it quantifies the actual performance of each policy over time. Since the key end for 

most RL applications is to maximize the accumulated reward, the cumulative reward 

during training provides an insight into how quickly each of the algorithms learn to 

approach this goal. By actually plotting the dynamics of the accumulated rewards 

throughout the training, we will be able to understand which of the algorithms learns 

more stably and quickly. Therefore, this figure will provide the information needed 

to practically apply the model. 

• Cumulative Reward in a Test Environment: Following the training phase, both 

algorithms were further tested in a new test environment for ten episodes. By 

measuring the total rewards accumulated in each episode of this test phase, we assess 

the robustness and reliability of the policies. 

Each algorithm as mentioned in the section 3.6.3 was trained for 100 iterations of 1 episode 

each, 4000 timesteps per episode.  

4.2.1  PPO  

The PPO was trained with the Adam optimizer. In the experiments, three different learning 

rates (LRs) were used for the Adam optimizer: 0.01, 0.001 and 0.0001. For each learning 

rate, two plots are provided: A plot of the cumulative reward for each of the 100 iterations 

during the training and a plot of policy evaluation which the policy is applied on a new test 

environment for 10 episodes. 
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Learning Rate: 0.01  

 

Figure 4.7: Cumulative reward for PPO training with LR 0.01 

 

 

Figure 4.8: Cumulative reward for PPO evaluation trained with LR 0.01 
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Learning Rate: 0.001  

 

   Figure 4.9: Cumulative reward for PPO training with LR 0.001 

 

 

   Figure 4.10: Cumulative reward for PPO evaluation trained with LR 0.001 
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Learning Rate: 0.0001   

 

   Figure 4.11: Cumulative reward for PPO training with LR 0.0001 

 

 

   Figure 4.12: Cumulative reward for PPO evaluation trained with LR 0.0001 
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Discussion:  

After observing the graphs it is clear that the best learning rate is 0.001 since the learning 

rate is gradually increasing, specifically in the first graph the cumulative reward has 

overcome 0.50 at in the last iterations. Additionally, the policy with 0.001 Adam optimizer 

learning rate has achieved cumulative rewards in the range of [0.40, 0.45]. 

A lower learning rate does not show significant improvement as the learning is too slow and 

not many changes are applied in each iteration. Similarly, a higher learning rate does not 

seem to be effective either since the cumulative reward during the training is too noisy due 

to the rapid big changes. However, with a bigger learning rate the evaluation had surprisingly 

good evaluation results except one episode that had 0.34 cumulative reward. This could mean 

that the model adapted to certain aspects of the environment, but its volatility is evident where 

the cumulative reward dropped in that one episode. 

4.2.2  REINFORCE  

The REINFORCE was also trained with the Adam optimizer. In the experiments, the same 

learning rates as in PPO were used for the optimizer and the training was 100 iterations and 

the evaluation 10.  
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Learning Rate: 0.01  

 

   Figure 4.13: Cumulative reward for REINFORCE training with LR 0.01 

 

 

  Figure 4.14: Cumulative reward for REINFORCE evaluation trained with LR 0.01 
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Learning Rate: 0.001  

 

   Figure 4.15: Cumulative reward for REINFORCE training with LR 0.001 

 

 

  Figure 4.16: Cumulative reward for REINFORCE evaluation trained with LR 0.001 
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Learning Rate: 0.0001   

 

   Figure 4.17: Cumulative reward for REINFORCE training with LR 0.0001 

 

 

  Figure 4.18: Cumulative reward for REINFORCE evaluation trained with LR 0.0001 
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Discussion:  

In the exploration of the REINFORCE algorithm, the impact of different learning rates on 

model performance was distinctly less favourable compared to the results observed with the 

PPO algorithm. Across various learning rate settings, REINFORCE consistently struggled to 

achieve the efficiency and effectiveness demonstrated by PPO. Despite experimenting with 

multiple rates, none yielded particularly strong outcomes within the scope of 100 training 

iterations. 

The analysis underscores that while REINFORCE can operate with a bigger learning rate, it 

does not inherently translate to better performance but rather to an increased range of 

outcomes, which sometimes captures higher peaks in cumulative rewards. This variability, 

paired with generally lower efficiency compared to PPO, suggests that REINFORCE might 

require additional iterations to truly optimize and stabilize its policy learning. In scenarios 

where training duration can be extended, and model stability is less critical, a higher learning 

rate for REINFORCE might prove more advantageous, albeit still trailing the performance 

capabilities and consistency offered by PPO. 

4.2.3  Best algorithm  

The graphs in Chapter 4 indicate that PPO with a 0.001 learning rate is the best performing 

model due to its stable and consistently improving cumulative rewards. Specifically, Figure 

4.9 and Figure 4.10 show that the cumulative rewards for PPO with a 0.001 learning rate 

exceed 0.50 in the final iterations of training and achieve a range of [0.40, 0.45] during 

evaluation.  
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  Figure 4.19: Cumulative reward for PPO training for 200 episodes with LR 0.001 

 

After running the best algorithm, PPO, with the optimal learning rate, we observe significant 

learning progress as evidenced by Figure 4.19. The cumulative reward graph indicates a clear 

upward trend over the 100 episodes, suggesting that the agent is increasingly improving its 

performance. During training, the PPO algorithm continuously explores various actions to 

discover the most rewarding strategies. This exploration can lead to fluctuations in 

performance as the agent sometimes tries suboptimal actions to ensure it is not missing out 

on potentially better policies. Additionally, the complexity and variability of the greenhouse 

environment, combined with the stochastic nature of the learning process, contribute to these 

oscillations. 
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Chapter 5 

Conclusion and Future Work 

 

5.1  Conclusion        69 

5.2  Future work        71 

 

 

5.1  Conclusion  

This research confirms that Deep Reinforcement Learning (DRL) can effectively address 

complex problems within controlled agricultural environments, providing robust tools for 

optimizing greenhouse operations. By leveraging DRL, we demonstrate that these techniques 

are not only theoretically sound but also practically applicable in real-life settings. This 

application of DRL has the potential to revolutionize traditional farming methods by enabling 

more precise control over environmental factors and resource utilization, significantly 

contributing to sustainable agriculture. Implementing such AI-driven systems can lead to 

increased crop yields, reduced resource waste, and enhanced economic viability, making 

food production more sustainable and efficient as global agricultural demands continue to 

grow. 

In this study, the use of an environment simulator was particularly beneficial given the 

constraints specific to the problem at hand. Direct interaction with the greenhouses was not 

feasible, and the available dataset for training was relatively small, limiting the potential for 

extensive empirical testing. Furthermore, the application of Deep Reinforcement Learning 

(DRL) typically requires large amounts of data to effectively capture the complex dynamics 

of the environment it seeks to optimize. The environment simulator addressed these 

challenges by providing a virtual platform where the DRL algorithms could be intensively 

tested and refined. This approach allowed for the simulation of numerous scenarios to 
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evaluate the performance and impact of various strategies without the need for direct, real-

world experimentation, thus conserving resources and enabling more iterative enhancements 

in a controlled and cost-effective manner. 

In this project, cross-validation (CV) was chosen over a traditional train-test split due to the 

limited size of the dataset. CV allows for a more robust evaluation by utilizing the entire 

dataset for both training and validation, ensuring that every data point is used for both 

purposes across different iterations. This method reduces the risk of model overfitting and 

provides a more comprehensive understanding of the model's performance, which is crucial 

in situations where data are not abundant. Opting to train and average predictions across 10 

models further enhanced the reliability and stability of the results. This approach averages 

out the noise and potential biases of individual models, leading to more generalized and 

robust predictions. 

Choosing multi-output Gradient Boosting for regression tasks was particularly effective 

because of its capability to handle the intricacies and non-linear relationships inherent in 

agricultural datasets. Gradient Boosting builds models sequentially, improving with each 

iteration by focusing on the hardest to predict instances, which makes it adept at handling 

complex and varied data structures. This characteristic was crucial for predicting multiple 

dependent variables simultaneously, which is often required in agricultural modeling to 

account for the various interacting parameters that influence crop growth and resource usage. 

The strength of Gradient Boosting in capturing complex interactions within the data made it 

the superior choice compared to other models, which might not effectively handle the multi-

dimensional outputs or might not adapt as efficiently to the evolving nuances of the dataset. 

Among the learning algorithms evaluated, Proximal Policy Optimization (PPO) was 

identified as the superior choice over REINFORCE, which was an expected outcome based 

on the specific characteristics of each method. The learning rate of 0.01 for PPO was found 

to be optimal, balancing rapid convergence with stability to prevent significant performance 

oscillations. Other learning rates tested included more aggressive rates such as 0.001 and 

0.01, but these either resulted in slower convergence or too much instability in policy updates. 

The use of the Adam optimizer with PPO further enhanced its performance by efficiently 
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handling the gradient descent, optimizing the learning process to achieve more reliable and 

robust policy improvements. This combination of a carefully tuned learning rate and a 

sophisticated optimizer ensures that PPO not only learns effectively but also adapts 

consistently to the complexities of the simulated agricultural environment. 

In summary, the integration of DRL into greenhouse management through the use of 

advanced simulation tools and precisely selected predictive models represents a significant 

stride in agricultural technology. The strategic use of Proximal Policy Optimization (PPO) 

and meticulous calibration of its learning rate illustrate the potential of AI to significantly 

enhance the efficiency and sustainability of food production globally. Despite the limited 

span of only 200 iterations (episodes), the results clearly demonstrate that the agent is 

effectively learning, as evidenced by the increase in cumulative rewards as the episodes 

progress. Furthermore, the crop parameters have shown consistent improvement, reinforcing 

the effectiveness of the applied AI strategies. At the conclusion of the last episode, both the 

actions taken and the state of the environment exhibit a positive alignment with the 

correlation map of the features with the crop parameters. This alignment further substantiates 

the appropriateness of the chosen AI methods and their implementation, highlighting their 

capability to optimize agricultural outputs in real-world scenarios. 

5.1  Future work  

Given the constraints on time and computational resources during the development of this 

system, there are several key areas for improvement that could enhance the model's 

performance and its applicability in real-world scenarios: 

• Enhance Prediction Models: For future work, it is therefore critical to carry out 

systematic hyperparameter tuning of the conducted Gradient Boosting algorithms in 

order to refine the prediction models. Specifically, all major parameters including the 

learning rate, number of trees, tree depth, minimum samples split, and maximum 

features must be adjusted meticulously to suit the characteristics of agricultural data. 

These changes have the potential to drastically improve the accuracy and efficiency 

of the models and make sure they remain simple enough to prevent overfitting. This 
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targeted activity is essential to guarantee that the models not only make precise 

predictions but also remain strong and effective across all potential case scenarios. 

• Explore Non-Policy Based Algorithms: Exploring a broader array of Deep 

Reinforcement Learning (DRL) algorithms, including those outside of policy-based 

approaches, could significantly enhance the understanding and management of 

greenhouse environments. Deep Q-Learning, an extension of the traditional Q-

learning algorithm, employs deep neural networks to approximate the Q-value 

function, which could be particularly effective in stable environments where the value 

of actions does not change drastically. This method allows for a robust assessment of 

action outcomes, facilitating solid decision-making. Additionally, incorporating 

advanced actor-critic methods like Soft Actor-Critic (SAC), which optimizes a trade-

off between entropy (exploration) and reward (exploitation), could offer a balanced 

approach to learning. SAC, in particular, is designed to function well in environments 

with continuous action spaces, making it suitable for the nuanced control required in 

agricultural settings. Each of these DRL categories addresses learning and decision-

making from a different angle, potentially leading to more effective strategies for 

maximizing crop yield and resource efficiency. 

• Increase Number of Episodes: Running more episodes could help in achieving a more 

complete convergence of the learning algorithms, as the cumulative reward was still 

showing an upward trend at the conclusion of 200 episodes. Extended training might 

allow the model to explore a wider range of strategies and refine its approach, 

potentially surpassing the performance of the teams’ systems. 

• Expand Data Sources and Crop Parameters: Expanding the dataset by utilizing more 

CSV files and additional crop parameters could significantly enhance the model's 

performance by providing a richer, more varied dataset. This approach not only 

improves the robustness and accuracy of the model by covering more variability in 

the input data but also ensures a broader representation of possible greenhouse 

conditions and crop behaviours. Such expansion would enable a more detailed 

simulation of real-world scenarios, thereby increasing the generalizability and 

reliability of the model predictions. 
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• Adjust Reward Function Weights: Modifying the weights of the reward function 

could substantially impact the learning outcomes by aligning the model's focus more 

closely with specific agricultural goals. This adjustment allows for a tailored 

approach where certain crop parameters can be prioritized according to their 

importance, thus directly influencing the strategic decisions made by the AI in real-

time scenarios. 

• Experiment with alternative Optimizers: While the Adam optimizer is renowned for 

its efficiency and adaptive learning rates, exploring alternative optimization 

algorithms such as SGD or RMSprop could uncover additional improvements in 

model performance.  
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Appendix A: Dataset 

A1  GreenhouseClimate.csv   

(All taken with a 5-minute interval)  

  A1.1  Indoor climate, status of actuators and irrigation  

Column Heading Parameter Description Unit Comments 

Tair 

Greenhouse Air 

temperature °C - 

Rhair 

Greenhouse relative 

humidity % - 

CO2air CO2 greenhouse ppm - 

HumDef 

Greenhouse humidity 

deficit g/m³ - 

VentLee 

Leeward vents 

opening % [0 to 100] - 

Ventwind 

Windward vents 

opening % [0 to 100] - 

AssimLight 

HPS lamps status 

(on-off) % [0 or 100] - 

EnScr 

Energy curtain 

opening % [0 to 100] - 

BlackScr 

Blackout curtain 

opening % [0 to 100] - 
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PipeLow 

Rail pipe 

Temperature (Lower 

circuit) °C - 

PipeGrow 

Crop pipe 

Temperature (Growth 

circuit) °C - 

co2_dos CO2 dosing kg/ha hour 

Computed CO2 dosage and 

calibrated by monthly CO2- meter 

readings. 

Tot_PAR 

Total inside PAR (Sun 

+ HPS + LED) µmol/m² s 

Computed based on outdoor PAR, 

cover transmissivity (0.5), operation 

and transmissivity of energy (0.75) 

and blackout screens (0.02), PAR 

from LED and HPS. 

Tot_PAR_Lamps 

PAR sum from HPS 

and LED lamps µmol/m² s 

Computed based on lamps’ 

operation and measured PPFD 

contribution of HPS (100 µmol/m² s) 

and LED (Blue = 11, Red = 49, Farred 

= 0, White = 37 µmol/m² s) when set 

at maximum range of LED 

proportional control (=1000) 

EC_drain_PC Drain EC dS/m - 

pH_drain_PC Drain pH [-] - 

Water_sup 

Cumulative number 

of minutes of 

irrigation in a day minutes 

This cumulation is reset to 0 at 

midnight. 
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Cum_irr 

Cumulative number 

of litres of irrigation in 

a day L/m² day 

Conversion from minutes to liter. This 

cumulation is reset to 0 at midnight. 

 

A1.2  Climate and irrigation setpoints  

Column Heading Parameter Description Unit Comments 

co2_sp CO2 setpoint ppm - 

dx_sp 

Humidity deficit 

setpoint g/m³ - 

t_rail_min_sp 

Rail pipe minimum 

temperature setpoint °C - 

t_grow_min_sp 

Crop pipe minimum 

temperature setpoint °C - 

Assim_sp 

Assimilation lighting 

setpoint (HPS lamp) % [0 or 100] - 

scr_enrg_sp 

Energy curtain 

setpoint % [0 to 100] - 

scr_blck_sp 

Blackout curtain 

setpoint % [0 to 100] - 

t_heat_sp 

Heating temperature 

setpoint °C - 

t_vent_sp 

Ventilation 

temperature setpoint 

(leeward vents) °C - 

window_pos_lee_sp 

Lee side window 

position minimum % - 
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setpoint (leeward 

vents) 

water_sup_int_sp_min 

Water supply interval 

time setpoint minutes 

Interval time between the last and 

next irrigation turn 

int_blue_sp 

Intensity set of blue 

spectrum channel 

(LED lamps) 

[0 to 1000] 

range of 

proportional 

control 

LED light control was coupled with 

HPS control ,that is LED lamps can 

only be used when the HPS-lamps 

are switched on as well. 

int_red_sp 

Intensity set of red 

spectrum channel 

(LED lamps) 

[0 to 1000] 

range of As above 

int_farred_sp 

Intensity set of far-

red spectrum 

channel (LED lamps) 

[0 to 1000] 

range of 

proportional 

control As above 

nt_white_sp 

Intensity set of white 

spectrum channel 

(LED lamps) 

[0 to 1000] 

range of 

proportional 

control As above 

 

A1.3  VIP (realized setpoints)  

Column Heading Parameter Description Unit Comments 

co2_vip CO2 VIP ppm - 

dx_vip Humidity deficit VIP g/m³ - 

t_rail_min_vip 

Rail pipe minimum 

temperature VIP °C - 
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t_grow_min_vip 

Crop pipe minimum 

temperature VIP °C - 

Assim_vip 

Assimilation lighting 

VIP (HPS lamp) % [0 or 100] - 

scr_enrg_vip Energy curtain VIP % [0 to 100] - 

scr_blck_vip Blackout curtain VIP % [0 to 100] - 

t_heat_vip 

Heating temperature 

VIP °C - 

t_vent_vip 

Ventilation 

temperature VIP 

(leeward vents) °C - 

window_pos_lee_vip 

Lee side window 

position minimum 

VIP (leeward vents) % - 

water_sup_int_vip_min 

Water supply interval 

time VIP minutes 

Interval time between the last and 

next irrigation turn 

int_blue_vip 

Intensity set of blue 

spectrum channel 

VIP (LED lamps) 

[0 to 1000] 

range of 

proportional 

control 

LED light control was coupled with 

HPS control ,that is LED lamps can 

only be used when the HPS-lamps 

are switched on as well. 

int_red_vip 

Intensity set of red 

spectrum channel 

VIP (LED lamps) 

[0 to 1000] 

range of As above 

int_farred_vip 

Intensity set of far-

red spectrum 

channel VIP (LED 

lamps) 

[0 to 1000] 

range of 

proportional 

control As above 
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nt_white_vip 

Intensity set of white 

spectrum channel 

VIP (LED lamps) 

[0 to 1000] 

range of 

proportional 

control As above 

 

A2  Crop Parameters   

(All taken with a 1-week interval)  

Column Heading Parameter Description Unit Comments 

Stem_elong 

Stem growth per 

week cm/week 

This refers to 10 sample stems 

(average value). Data no later than 

22 April (because tomato plants 

were topped). 

Stem_thick Stem thickness mm 

This refers to 10 sample stems 

(average value) Data no later than 22 

April (because tomato plants were 

topped) 

Cum_trusses 

Cumulative number 

of new set trusses on 

the stem. number/stem 

This refers to 10 sample stems 

(average value). A truss is 

considered as “set” Manual 

registration when at least 5 flowers 

are set. 

stem_dens Stem density Stems/m² - 

Plant_dens Plant density Plants/m² - 
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Appendix B: Code  

B1  Data Processing code for State Prediction Model  

Importing libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.preprocessing import MinMaxScaler 

import tensorflow as tf 

import os 

from sklearn.model_selection import train_test_split 

import xgboost as xgb 

from sklearn.metrics import mean_absolute_error 

import pickle 

import os 

from scipy.stats import iqr 

 

Functions to clean and process a team’s dataset 

repository_url = "https://github.com/CEAOD/Data.git" 

!git clone {repository_url} 

path = '/content/Data/GH_Tomato/AutonomousGreenhouseChallenge2019' 

 

def get_folders_list(path): 

  # get all items from path 

  items = os.listdir(path) 

  # if item is folder, store in folders list 

  folders = [item for item in items if os.path.isdir(os.path.join(path, 

item))] 

  print("Folders in the directory:") 

  print(folders) 

  return folders 

 

def interpolate_nan(series): 

    # Fill NaN values by interpolating  

    series_interpolated = series.interpolate(method='linear', 

limit_direction='both') 

    return series_interpolated 

 

 

def get_prepare_data(team_name): 

  print("@team name is:  " + team_name) 

  main_path = "/content/Data/GH_Tomato/AutonomousGreenhouseChallenge2019" 

  path = main_path + "/" + team_name 

 

 

 

  df_GreenhouseClimate = pd.read_csv(path + "/GreenhouseClimate.csv") 

  print("coluns of df_"+ team_name+ "_GreenhouseClimate: \n", 

df_GreenhouseClimate.columns) 

  df_GreenhouseClimate = df_GreenhouseClimate.astype(float) 

  print("number of rows:", df_GreenhouseClimate.shape[0]) 
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  df_GreenhouseClimate = 

df_GreenhouseClimate.dropna(subset=["AssimLight"]) #delete 71 features 

which are common null in many features. 

  df_GreenhouseClimate = 

df_GreenhouseClimate.dropna(subset=["int_blue_sp"]) # delete 14 value. 

  # if Cum_irr is more than 10 it is outlier (since it is not logical and 

it is an unit related error.) 

  df_GreenhouseClimate['Cum_irr'] = 

df_GreenhouseClimate['Cum_irr'].apply(lambda x: x / 10 if x > 7 else x) 

 

  df_GreenhouseClimate = df_GreenhouseClimate.reset_index(drop=True) 

 

 

  # Fill NaN values for each column in the DataFrame 

  for col_i in df_GreenhouseClimate.columns: 

      df_GreenhouseClimate[col_i] = 

interpolate_nan(df_GreenhouseClimate[col_i]) 

 

  # POST-INTERPOLATION cleaning 

  percentage_features = ['VentLee', 'Ventwind', 'EnScr', 'BlackScr', 

'scr_enrg_sp', 'scr_blck_sp'] 

  for feature in percentage_features: 

      df_GreenhouseClimate[feature] = 

df_GreenhouseClimate[feature].clip(lower=0, upper=100) 

 

  # Features that are binary should be 0 or 100 as described in the 

ReadMe pdf 

  binary_features = ['AssimLight', 'assim_sp', 'assim_vip', 

'scr_enrg_vip', 'scr_blck_vip'] 

  for feature in binary_features: 

      df_GreenhouseClimate[feature] = 

df_GreenhouseClimate[feature].apply(lambda x: 0 if x < 50 else 100) 

 

  # Ensure irrigation volumes are not negative 

  df_GreenhouseClimate['Cum_irr'] = 

df_GreenhouseClimate['Cum_irr'].clip(lower=0) 

  df_GreenhouseClimate = df_GreenhouseClimate.reset_index(drop=True) 

 

 

  nan_counts = df_GreenhouseClimate.isnull().sum() 

  print("None counts after process:", nan_counts.sum()) 

 

 

  x_raw = df_GreenhouseClimate 

  x_time = x_raw['%time'] 

  x_raw = x_raw.drop(columns=['%time']) 

 

  x_train = [] 

  time_values = []  # To store the time values for each group 

 

  for iter in range(0, len(x_raw), 12): 

      selected_rows = x_raw[iter:iter+12] 

      selected_rows = selected_rows.tail(12) 

      average_row = selected_rows.mean()  # Calculate the mean for the 

selected rows 

      x_train.append(average_row) 
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      # Calculate the corresponding hour and add it to time_values 

      current_time = (iter // 12) % 24 

      time_values.append(current_time) 

 

  # Create a DataFrame from the averaged rows 

  df_x_train = pd.DataFrame(x_train) 

 

  # Add the 'time' column to the DataFrame 

  df_x_train['hour'] = time_values 

 

  #print("len x_train", len(x_raw)) 

  return df_x_train 

 

Merging each team’s dataset 

directory_path = 

'/content/Data/GH_Tomato/AutonomousGreenhouseChallenge2019' 

team_names = get_folders_list(directory_path) 

team_names.remove('Weather') 

team_names.remove('Reference') 

 

 

x_new_list = [] 

lens = [] 

 

for team_iterator in range(0, len(team_names)): 

  if (team_iterator == 0): 

    x = get_prepare_data(team_names[team_iterator]) 

    lens.append(len(x)) 

  else: 

    x_new = get_prepare_data(team_names[team_iterator]) 

    x = pd.concat([x, x_new], axis=0, ignore_index=True) 

    lens.append(len(x)) 

x = x.fillna(x.mean()) 

 

x.isnull().sum() 

 

Distribution plotting and normalizing 

def plot_distributions_grid(df, rows=6): 

    # Calculate the number of columns needed based on the number of rows 

specified 

    cols = int(np.ceil(len(df.columns) / rows)) 

 

    # Initialize the figure with subplots 

    fig, axes = plt.subplots(rows, cols, figsize=(5*cols, 5*rows)) 

    axes = axes.flatten()  # Flatten the axes array for easy iteration 

 

    for i, column_name in enumerate(df.columns): 

        # Select the current axis for plotting 

        ax = axes[i] 

        sns.histplot(df[column_name], kde=True, color='blue', ax=ax) 

        mean = df[column_name].mean() 

        std_dev = df[column_name].std() 

 

        # Highlight the standard deviation area around the mean 

        ax.axvline(mean, color='k', linestyle='dashed', linewidth=1) 
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        ax.axvspan(mean - std_dev, mean + std_dev, alpha=0.2, 

color='blue') 

 

        # Set the title and labels 

        ax.set_title(f'Distribution of {column_name}') 

        ax.set_xlabel(column_name) 

        ax.set_ylabel('Density') 

 

    # Hide any unused axes 

    for i in range(len(df.columns), len(axes)): 

        fig.delaxes(axes[i]) 

 

    plt.tight_layout() 

    plt.show() 

 

# Call the function to plot distributions for all features in a grid 

plot_distributions_grid(x) 

 

from sklearn.preprocessing import MinMaxScaler 

import pandas as pd 

import numpy as np 

 

def normalize_dataframe(df): 

    scaler = MinMaxScaler() 

    df_normalized = pd.DataFrame(scaler.fit_transform(df), 

columns=df.columns) 

    return df_normalized, scaler 

 

# Assuming 'x' is your original DataFrame 

x_normalized, scaler = normalize_dataframe(x) 

 

# Compute and print max, min, and IQR for all features 

def compute_stats(df): 

    stats = pd.DataFrame(index=['Max', 'Min', 'IQR'], columns=df.columns) 

    for column in df.columns: 

        stats.loc['Max', column] = df[column].max() 

        stats.loc['Min', column] = df[column].min() 

        stats.loc['IQR', column] = iqr(df[column]) 

    return stats 

 

stats = compute_stats(x) 

normalized_stats = compute_stats(x_normalized) 

print(x_normalized.shape) 

 

normalized_stats 

 

Outliers’ adjustment 

def adjust_outliers_less_aggressive(column): 

    # Determine the IQR 

    Q1 = column.quantile(0.25) 

    Q3 = column.quantile(0.75) 

    IQR_value = iqr(column) 

 

    # Calculate the outlier thresholds using a wider range 

    lower_bound = Q1 - 3 * IQR_value 

    upper_bound = Q3 + 3 * IQR_value 
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    # Adjustment values just outside the less aggressive outlier 

thresholds 

    lower_adjustment = Q1 - 2.99 * IQR_value 

    upper_adjustment = Q3 + 2.99 * IQR_value 

 

    # Apply adjustments 

    column = np.where(column < lower_bound, lower_adjustment, column) 

    column = np.where(column > upper_bound, upper_adjustment, column) 

 

    return column 

 

# Apply the less aggressive outlier adjustment 

x_adjusted = x_normalized.apply(adjust_outliers_less_aggressive) 

print(x_adjusted.shape) 

 

# Call the function to plot distributions for all features in a grid 

plot_distributions_grid(x_adjusted) 

 

# Re-plot the distributions for all features in a grid 

plot_distributions_grid(x_adjusted) 

 

# Re-compute and print max, min, and IQR for all features 

adjusted_stats = compute_stats(x_adjusted) 

adjusted_stats 

 

Saving the dataset 

x_adjusted.to_csv(folder_path + '/GreenhouseClimate_X_adjusted.csv', 

index=False) 

 

B2  Data Processing code for Crop Parameters Prediction Model   

The only difference from B1 is the get_prepare_data() function 

def get_prepare_data(team_name): 

  print("@team name is:  " + team_name) 

  main_path = "/content/Data/GH_Tomato/AutonomousGreenhouseChallenge2019" 

  path = main_path + "/" + team_name 

 

  df_CropParameters = pd.read_csv(path + "/CropParameters.csv") 

  df_CropParameters = df_CropParameters.astype(float) 

  print("columns of df "+team_name+" CropParameters: \n", 

df_CropParameters.columns) 

  #crop parameters are sampled weekly. 

  y_raw = df_CropParameters[['%Time', 'Stem_elong', 'Stem_thick', 

'Cum_trusses']] 

  y_raw = y_raw.dropna() 

  y_raw = y_raw.reset_index(drop=True) 

  # y_time = y_raw['%Time'] 

  # y_raw = y_raw.drop(columns=['%Time']) 

  # y_time = y_time.reset_index(drop=True) 
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  df_GreenhouseClimate = pd.read_csv(path + "/GreenhouseClimate.csv") 

  print("coluns of df_"+ team_name+ "_GreenhouseClimate: \n", 

df_GreenhouseClimate.columns) 

  df_GreenhouseClimate = df_GreenhouseClimate.astype(float) 

  print("number of rows:", df_GreenhouseClimate.shape[0]) 

 

  df_GreenhouseClimate = 

df_GreenhouseClimate.dropna(subset=["AssimLight"]) #delete 71 features 

which are common null in many features. 

  df_GreenhouseClimate = 

df_GreenhouseClimate.dropna(subset=["int_blue_sp"]) # delete 14 value. 

  # if Cum_irr is more than 10 it is outlier (since it is not logical and 

it is an unit related error.) 

  df_GreenhouseClimate['Cum_irr'] = 

df_GreenhouseClimate['Cum_irr'].apply(lambda x: x / 10 if x > 7 else x) 

 

  df_GreenhouseClimate = df_GreenhouseClimate.reset_index(drop=True) 

 

  null_counter = df_GreenhouseClimate.isnull().sum() 

  max_null_len = null_counter.max() # maximum count of missing values in 

any column 

 

  df_GreenhouseClimate = df_GreenhouseClimate.reset_index(drop=True) 

 

  # Fill NaN values for each column in the DataFrame 

  for col_i in df_GreenhouseClimate.columns: 

      df_GreenhouseClimate[col_i] = 

interpolate_nan(df_GreenhouseClimate[col_i]) 

 

  # POST-INTERPOLATION cleaning 

  percentage_features = ['VentLee', 'Ventwind', 'EnScr', 'BlackScr', 

'scr_enrg_sp', 'scr_blck_sp'] 

  for feature in percentage_features: 

      df_GreenhouseClimate[feature] = 

df_GreenhouseClimate[feature].clip(lower=0, upper=100) 

 

  # Features that are binary should be 0 or 100 as described in the 

ReadMe pdf 

  binary_features = ['AssimLight', 'assim_sp', 'assim_vip', 

'scr_enrg_vip', 'scr_blck_vip'] 

  for feature in binary_features: 

      df_GreenhouseClimate[feature] = 

df_GreenhouseClimate[feature].apply(lambda x: 0 if x < 50 else 100) 

 

  # Ensure irrigation volumes are not negative 

  df_GreenhouseClimate['Cum_irr'] = 

df_GreenhouseClimate['Cum_irr'].clip(lower=0) 

  df_GreenhouseClimate = df_GreenhouseClimate.reset_index(drop=True) 

 

    nan_counts = df_GreenhouseClimate.isnull().sum() 

  print("None counts after process:", nan_counts.sum()) 

 

  x_raw = df_GreenhouseClimate 

    # Convert %time columns in both DataFrames to datetime format if not 

already 

  df_GreenhouseClimate['%time'] = pd.to_datetime(x_raw['%time']) 
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  y_raw['%Time'] = pd.to_datetime(y_raw['%Time']) 

 

  # Merge x_raw with y_raw on the time column 

  df_merged = pd.merge(df_GreenhouseClimate, y_raw, how='left', 

left_on='%time', right_on='%Time') 

 

  # Interpolate the missing values in the columns that came from y_raw 

  df_merged[['Stem_elong', 'Stem_thick', 'Cum_trusses']] = 

df_merged[['Stem_elong', 'Stem_thick', 

'Cum_trusses']].interpolate(method='linear') 

 

  # Drop the %Time column from y_raw as it's redundant now 

  df_merged.drop(['%Time'], axis=1, inplace=True) 

 

  # x_time = x_raw['%time'] 

  # x_raw = x_raw.drop(columns=['%time']) 

 

  df_merged = df_merged.drop(columns=['%time']) 

 

  x_train = [] 

  time_values = []  # To store the time values for each group 

 

  for iter in range(0, len(df_merged), 12): 

      selected_rows = df_merged[iter:iter+12] 

      selected_rows = selected_rows.tail(12) 

      average_row = selected_rows.mean()  # Calculate the mean for the 

selected rows 

      x_train.append(average_row) 

      # Calculate the corresponding hour and add it to time_values 

      current_time = (iter // 12) % 24 

      time_values.append(current_time) 

 

  # Create a DataFrame from the averaged rows 

  df_x_train = pd.DataFrame(x_train) 

 

  # Add the 'time' column to the DataFrame 

  df_x_train['hour'] = time_values 

 

  #print("len x_train", len(x_raw)) 

  return df_x_train 

 

B3  Code for State Regression Prediction Model 

Importing Libraries 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.multioutput import MultiOutputRegressor 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.ensemble import RandomForestRegressor 
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from sklearn.svm import SVR 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.linear_model import LinearRegression 

from sklearn.linear_model import ElasticNet 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import make_scorer 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_absolute_error, mean_squared_error, 

r2_score 

from sklearn.preprocessing import PolynomialFeatures 

import joblib 

 

Reading the dataset and lens.csv from B1 

file_path = 'cyprus/' 

X = pd.read_csv('GreenhouseClimate_X_adjusted.csv') 

#terminal_state_indicator = pd.read_csv('/terminal_state_indicator.csv') 

lens = pd.read_csv('lens.csv') # length of each team observations 

#pd.set_option('display.max_rows', None) 

 

merged_df = pd.concat([X], axis=1) 

 

Plot correlation map of realized and set points 

# Lists of columns for sp and vip 

sp_columns = [col for col in merged_df.columns if '_sp' in col] 

vip_columns = [col for col in merged_df.columns if '_vip' in col] 

 

# Initialize an empty DataFrame to store the correlation values 

correlation_matrix = pd.DataFrame(index=sp_columns, columns=vip_columns) 

 

# Compute the correlation between each 'sp' column and each 'vip' column 

for sp_col in sp_columns: 

    for vip_col in vip_columns: 

        correlation = merged_df[sp_col].corr(merged_df[vip_col]) 

        correlation_matrix.loc[sp_col, vip_col] = correlation 

 

# Convert the correlation matrix to a float type for plotting 

correlation_matrix = correlation_matrix.astype(float) 

 

# Plot the heatmap 

plt.figure(figsize=(len(vip_columns), len(sp_columns))) 

sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm', 

cbar_kws={'label': 'Correlation Coefficient'}) 

plt.title("Correlation between SP and VIP Variables") 

plt.ylabel('SP Variables') 

plt.xlabel('VIP Variables') 

plt.tight_layout()  # Adjusts plot to ensure everything fits without 

overlapping 

plt.show() 

 

Declaration of action and state columns 

action_columns = ['VentLee', 'Ventwind', 'AssimLight', 'EnScr', 

'BlackScr', 

                  'co2_dos', 'Cum_irr', 'co2_sp', 'dx_sp', 

                  't_grow_min_sp', 'assim_sp', 

'scr_enrg_sp','scr_blck_sp', 't_heat_sp', 
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                  't_vent_sp', 'window_pos_lee_sp', 'int_blue_sp', 

'int_red_sp', 

                  'int_farred_sp', 'int_white_sp', 

'water_sup_intervals_sp_min', 'water_sup'] 

 

state_columns = ['Tair', 'Rhair', 'HumDef', 'CO2air', 'PipeLow', 

'PipeGrow', 

                 'EC_drain_PC', 'Tot_PAR','Tot_PAR_Lamps', 'pH_drain_PC', 

'hour', 

                 't_grow_min_vip'] 

 

 

columns_to_keep = state_columns + action_columns 

 

data_df = merged_df[columns_to_keep] 

 

Creating expected outputs for each record and normalizing the dataset 

lens_df = lens["length"] 

end_indices = (lens_df - 1).astype(int).tolist() 

print(end_indices) 

 

# Initialize empty lists to store features and targets for all sequences 

features_list = [] 

targets_list = [] 

 

# Iterate through each sequence, identified by start and end indices 

start_idx = 0 

for i, end_idx in enumerate(end_indices): 

    # Select the current sequence excluding the last row 

    current_sequence = data_df.iloc[start_idx:end_idx] 

    current_targets = current_sequence[state_columns].shift(-1) 

 

    # Drop the last row to avoid using it for predicting the start of the 

next sequence 

    current_sequence = current_sequence.iloc[:-1, :] 

    current_targets = current_targets.iloc[:-1, :] 

 

    #if i != i_test_sequence: 

        # Store the processed sequence and targets 

    features_list.append(current_sequence) 

    targets_list.append(current_targets) 

    #else: 

        #X_test = current_sequence 

        #Y_test = current_targets 

 

    # Update start index for the next sequence 

    start_idx = end_idx + 1 

 

# Concatenate all processed sequences and targets 

all_features = pd.concat(features_list, ignore_index=True) 

all_targets = pd.concat(targets_list, ignore_index=True) 

 

# Initialize scalers for features and targets 

scaler_features = MinMaxScaler(feature_range=(0, 1)) 

scaler_targets = MinMaxScaler(feature_range=(0, 1)) 
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# Scale the training features and targets 

all_features_scaled = scaler_features.fit_transform(all_features) 

all_targets_scaled = scaler_targets.fit_transform(all_targets)  # 

Assuming Y_train is a Series 

 

Defining the model types 

# Define your models 

models = { 

    'Random Forest Regressor': RandomForestRegressor(n_estimators=100, 

random_state=42), 

    'Gradient Boosting': 

MultiOutputRegressor(GradientBoostingRegressor(n_estimators=100, 

learning_rate=0.05, random_state=42)), 

    'Support Vector Regressor': MultiOutputRegressor(SVR(kernel='rbf')), 

    'K-Nearest Neighbors': KNeighborsRegressor(n_neighbors=5), 

    'Linear Regression': LinearRegression(), 

    'Elastic Net': ElasticNet(random_state=42) 

} 

 

Training, saving and evaluating models with the train_test_split function 

# Split the normalized data into training and testing sets 

# X_train, X_test, Y_train, Y_test = 

train_test_split(all_features_scaled, all_targets_scaled, test_size=0.2, 

random_state=42) # false because the data is sequential 

X_train, X_test, Y_train, Y_test = train_test_split(all_features_scaled, 

all_targets_scaled, test_size=0.2, random_state=42) # false because the 

data is sequential 

 

predictions = [] 

 

for model_name, model in models.items(): 

  model.fit(X_train, Y_train) 

  print(model_name + " trained\n" ) 

   # Save the model 

  filename = file_path + f'models/{model_name.replace(" ", "_")}.joblib' 

  joblib.dump(model, filename) 

  predictions.append(model.predict(X_test)) 

 

# Function to calculate metrics 

def calculate_metrics(y_true, y_pred): 

    mae = mean_absolute_error(y_true, y_pred) 

    mse = mean_squared_error(y_true, y_pred) 

    rmse = np.sqrt(mse) 

    r2 = r2_score(y_true, y_pred) 

    return mae, mse, rmse, r2 

 

# Calculate metrics for each model 

metrics_rfr = calculate_metrics(Y_test, predictions[0]) 

metrics_gbr = calculate_metrics(Y_test, predictions[1]) 

metrics_svr = calculate_metrics(Y_test, predictions[2]) 

metrics_knn = calculate_metrics(Y_test, predictions[3]) 

metrics_lr = calculate_metrics(Y_test, predictions[4]) 

metrics_en = calculate_metrics(Y_test, predictions[5]) 

 

# Create a DataFrame to hold the metrics 

metrics_df = pd.DataFrame({ 
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    'Model': ['Random Forest Regressor', 'Gradient Boosting', 'Support 

Vector Regressor', 'K-Nearest Neighbors', 'Linear Regression', 'Elastic 

Net'], 

    'MAE': [metrics_rfr[0], metrics_gbr[0], metrics_svr[0], 

metrics_knn[0], metrics_lr[0], metrics_en[0]], 

    'MSE': [metrics_rfr[1], metrics_gbr[1], metrics_svr[1], 

metrics_knn[1], metrics_lr[1], metrics_en[1]], 

    'RMSE': [metrics_rfr[2], metrics_gbr[2], metrics_svr[2], 

metrics_knn[2], metrics_lr[2], metrics_en[2]], 

    'R2': [metrics_rfr[3], metrics_gbr[3], metrics_svr[3], 

metrics_knn[3], metrics_lr[3], metrics_en[3]] 

}) 

 

metrics_df 

 

# Set up the matplotlib figure and axes, one for each metric 

fig, axes = plt.subplots(1, 4, figsize=(20, 5), sharey=True) 

metrics = metrics_df.columns[1:]  # Skip the 'Model' column 

 

for ax, metric in zip(axes, metrics): 

    ax.bar(metrics_df['Model'], metrics_df[metric], 

color=plt.cm.Set3(np.arange(len(metrics_df)))) 

    ax.set_title(metric) 

    ax.set_xticklabels(metrics_df['Model'], rotation=45, ha='right') 

 

plt.tight_layout() 

plt.show() 

 

Training and evaluating models with CV 10 folds and saving the GBR ones 

from sklearn.model_selection import cross_validate 

# Define scorers 

scorers = { 

    'MAE': make_scorer(mean_absolute_error), 

    'MSE': make_scorer(mean_squared_error), 

    'R2': make_scorer(r2_score) 

} 

 

# Results container 

results = [] 

 

# Iterate over each model 

for model_name, model in models.items(): 

 

    model_results = {'Model': model_name} 

 

    # Skip the two models that performed worst for faster training 

#   if model_name == 'Elastic Net' or model_name == 'K-Nearest Neighbors' 

or model_name == 'Random Forest Regressor' or model_name == 'Support 

Vector Regressor' or model_name == 'Linear Regression': 

    if model_name == '': 

      # Skip cross-validation and set scores to 0 for all scorers 

      for scorer_name in scorers.keys(): 

          model_results[scorer_name] = 0 

    else: 

       # Perform 10-fold cross-validation and record mean scores 
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      cv_results = cross_validate(model, all_features_scaled, 

all_targets_scaled, cv=10, scoring=scorers, return_estimator=True) 

 

      # Save each fold's estimator if the model is Gradient Boosting 

      if model_name == 'Gradient Boosting': 

          for i, estimator in enumerate(cv_results['estimator']): 

              model_path = file_path + f'/gb_cv/{model_name.replace(" ", 

"_")}_fold_{i+1}.joblib' 

              joblib.dump(estimator, model_path) 

 

      # Record the mean scores 

      for scorer_name in scorers.keys(): 

          model_results[scorer_name] = cv_results['test_' + 

scorer_name].mean() 

 

      results.append(model_results) 

 

# Convert results to DataFrame for easy viewing 

results_df = pd.DataFrame(results) 

 

# Print the results 

print(results_df) 

 

B4  Code for Crop Parameters Regression Prediction Model 

Import Libraries 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.multioutput import MultiOutputRegressor 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.svm import SVR 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.linear_model import LinearRegression 

from sklearn.linear_model import ElasticNet 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import make_scorer 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_absolute_error, mean_squared_error, 

r2_score 

from sklearn.preprocessing import PolynomialFeatures 

import joblib 

 

Reading the dataset and lens.csv from B1 

file_path = 'cyprus/' 

X = pd.read_csv(file_path + 'RewardDataset_X.csv') 

lens = pd.read_csv(file_path + 'lens.csv') # length of each team 

observations 

merged_df = pd.concat([X], axis=1) 
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Keep columns needed for Crop Parameters’ prediction 

parameters = ['Stem_elong', 'Stem_thick', 'Cum_trusses'] 

not_used = ['assim_vip', 'co2_vip', 'dx_vip', 'int_blue_vip', 

'int_farred_vip', 'int_red_vip', 'int_white_vip', 'scr_blck_vip', 

'scr_enrg_vip', 

        't_heat_vip', 't_rail_min_sp', 't_rail_min_vip', 't_ventlee_vip', 

't_ventwind_vip', 'water_sup_intervals_vip_min', 'window_pos_lee_vip'] 

other_features = [col for col in merged_df.columns if col not in 

parameters + not_used] 

 

Plot correlation map of features with the 3 crop parameters 

# Create a new DataFrame with only the parameters and other features 

data_for_correlation = merged_df[parameters + other_features] 

 

# Calculate the correlation matrix 

correlation_matrix = data_for_correlation.corr().loc[parameters, 

other_features] 

 

# Create a larger figure to improve readability 

plt.figure(figsize=(20, 10))  # You can adjust these values as needed 

 

# Create the heatmap using seaborn, with better text size for readability 

ax = sns.heatmap(correlation_matrix, annot=True, fmt=".2f", 

cmap='coolwarm', cbar_kws={'label': 'Correlation Coefficient'}, 

                 annot_kws={"size": 8}) 

 

# Set larger x-tick and y-tick labels for better readability 

plt.xticks(rotation=90, fontsize=10)  # Rotate and set a smaller size if 

necessary 

plt.yticks(fontsize=12)  # Set a larger size for y-ticks for better 

readability 

 

# Set the title and labels with larger font sizes for better readability 

plt.title('Correlation between Parameters and Other Features', 

fontsize=14) 

plt.xlabel('Other Features', fontsize=12) 

plt.ylabel('Selected Parameters', fontsize=12) 

 

# Ensure everything fits without overlapping 

plt.tight_layout() 

 

# Display the heatmap 

plt.show() 

 

Creating expected outputs for each record and normalizing the dataset 

data_df = merged_df[other_features + parameters] 

lens_df = lens["length"] 

end_indices = (lens_df - 1).astype(int).tolist() 

crop_parameters = ['Stem_elong', 'Stem_thick', 'Cum_trusses'] 

# Initialize empty lists to store features and targets for all sequences 

features_list = [] 

targets_list = [] 

 

# Iterate through each sequence, identified by start and end indices 

start_idx = 0 
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for i, end_idx in enumerate(end_indices): 

    # Select the current sequence excluding the last row 

    current_sequence = data_df.iloc[start_idx:end_idx] 

    current_targets = current_sequence[crop_parameters].shift(-1) 

 

    # Drop the last row to avoid using it for predicting the start of the 

next sequence 

    current_sequence = current_sequence.iloc[:-1, :] 

    current_targets = current_targets.iloc[:-1, :] 

 

    #if i != i_test_sequence: 

        # Store the processed sequence and targets 

    features_list.append(current_sequence) 

    targets_list.append(current_targets) 

    #else: 

        #X_test = current_sequence 

        #Y_test = current_targets 

 

    # Update start index for the next sequence 

    start_idx = end_idx + 1 

 

# Concatenate all processed sequences and targets 

all_features = pd.concat(features_list, ignore_index=True) 

all_targets = pd.concat(targets_list, ignore_index=True) 

 

# Initialize scalers for features and targets 

scaler_features = MinMaxScaler(feature_range=(0, 1)) 

scaler_targets = MinMaxScaler(feature_range=(0, 1)) 

 

 

# Scale the training features and targets 

all_features_scaled = scaler_features.fit_transform(all_features) 

all_targets_scaled = scaler_targets.fit_transform(all_targets)  # 

Assuming Y_train is a Series 

 

Defining the model types 

# Define your models 

models = { 

    'Random Forest Regressor': RandomForestRegressor(n_estimators=100, 

random_state=42), 

    'Gradient Boosting': 

MultiOutputRegressor(GradientBoostingRegressor(n_estimators=100, 

learning_rate=0.05, random_state=42)), 

    'Support Vector Regressor': MultiOutputRegressor(SVR(kernel='rbf')), 

    'K-Nearest Neighbors': KNeighborsRegressor(n_neighbors=5), 

    'Linear Regression': LinearRegression(), 

    'Elastic Net': ElasticNet(random_state=42) 

} 

 

Training, saving and evaluating models with the train_test_split function 

# Split the normalized data into training and testing sets 

X_train, X_test, Y_train, Y_test = train_test_split(all_features_scaled, 

all_targets_scaled, test_size=0.2, random_state=42) # false because the 

data is sequential 

 

predictions = [] 
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for model_name, model in models.items(): 

  model.fit(X_train, Y_train) 

  print(model_name + " trained\n" ) 

  filename = file_path + f'/r_models/{model_name.replace(" ", 

"_")}.joblib' 

  joblib.dump(model, filename) 

  predictions.append(model.predict(X_test)) 

 

# Function to calculate metrics 

def calculate_metrics(y_true, y_pred): 

    mae = mean_absolute_error(y_true, y_pred) 

    mse = mean_squared_error(y_true, y_pred) 

    rmse = np.sqrt(mse) 

    r2 = r2_score(y_true, y_pred) 

    return mae, mse, rmse, r2 

 

# Calculate metrics for each model 

metrics_rfr = calculate_metrics(Y_test, predictions[0]) 

metrics_gbr = calculate_metrics(Y_test, predictions[1]) 

metrics_svr = calculate_metrics(Y_test, predictions[2]) 

metrics_knn = calculate_metrics(Y_test, predictions[3]) 

metrics_lr = calculate_metrics(Y_test, predictions[4]) 

metrics_en = calculate_metrics(Y_test, predictions[5]) 

 

# Create a DataFrame to hold the metrics 

metrics_df = pd.DataFrame({ 

    'Model': ['Random Forest Regressor', 'Gradient Boosting', 'Support 

Vector Regressor', 'K-Nearest Neighbors', 'Linear Regression', 'Elastic 

Net'], 

    'MAE': [metrics_rfr[0], metrics_gbr[0], metrics_svr[0], 

metrics_knn[0], metrics_lr[0], metrics_en[0]], 

    'MSE': [metrics_rfr[1], metrics_gbr[1], metrics_svr[1], 

metrics_knn[1], metrics_lr[1], metrics_en[1]], 

    'RMSE': [metrics_rfr[2], metrics_gbr[2], metrics_svr[2], 

metrics_knn[2], metrics_lr[2], metrics_en[2]], 

    'R2': [metrics_rfr[3], metrics_gbr[3], metrics_svr[3], 

metrics_knn[3], metrics_lr[3], metrics_en[3]] 

}) 

 

metrics_df 

 

# Set up the matplotlib figure and axes, one for each metric 

fig, axes = plt.subplots(1, 4, figsize=(20, 5), sharey=True) 

metrics = metrics_df.columns[1:]  # Skip the 'Model' column 

 

for ax, metric in zip (axes, metrics): 

    ax.bar(metrics_df['Model'], metrics_df[metric], 

color=plt.cm.Set3(np.arange(len(metrics_df)))) 

    ax.set_title(metric) 

    ax.set_xticklabels(metrics_df['Model'], rotation=45, ha='right') 

 

plt.tight_layout() 

plt.show() 

 

Training and evaluating models with CV 10 folds and saving the GBR ones 
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from sklearn.model_selection import cross_validate 

# Define scorers 

scorers = { 

    'MAE': make_scorer(mean_absolute_error), 

    'MSE': make_scorer(mean_squared_error), 

    'R2': make_scorer(r2_score) 

} 

 

# Results container 

results = [] 

 

# Iterate over each model 

for model_name, model in models.items(): 

 

    model_results = {'Model': model_name} 

 

    # Skip the two models that performed worst for faster training 

#   if model_name == 'Elastic Net' or model_name == 'K-Nearest Neighbors' 

or model_name == 'Random Forest Regressor' or model_name == 'Support 

Vector Regressor' or model_name == 'Linear Regression': 

    if model_name == '': 

      # Skip cross-validation and set scores to 0 for all scorers 

      for scorer_name in scorers.keys(): 

          model_results[scorer_name] = 0 

    else: 

       # Perform 10-fold cross-validation and record mean scores 

      cv_results = cross_validate(model, all_features_scaled, 

all_targets_scaled, cv=10, scoring=scorers, return_estimator=True) 

 

      # Save each fold's estimator if the model is Gradient Boosting 

      if model_name == 'Gradient Boosting': 

          for i, estimator in enumerate(cv_results['estimator']): 

              model_path = file_path + f'/r_gb_cv/{model_name.replace(" 

", "_")}_fold_{i+1}.joblib' 

              joblib.dump(estimator, model_path) 

 

      # Record the mean scores 

      for scorer_name in scorers.keys(): 

          model_results[scorer_name] = cv_results['test_' + 

scorer_name].mean() 

 

      results.append(model_results) 

 

# Convert results to DataFrame for easy viewing 

results_df = pd.DataFrame(results) 

 

# Print the results 

print(results_df) 

 

B5  Code for Environment Simulator 

Import Libraries 
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!pip install tensorflow==2.15.0   

!pip install dm-reverb 

!pip install tf-agents[reverb]   

!pip install --upgrade tf-agents 

!pip install tf-keras            

!pip show tensorflow 

import os 

# Keep using keras-2 (tf-keras) rather than keras-3 (keras). 

os.environ['TF_USE_LEGACY_KERAS'] = '1' 

from __future__ import absolute_import 

from __future__ import division 

from __future__ import print_function 

import tensorflow as tf 

import numpy as np 

import pandas as pd 

import gin 

import tf_agents 

from tf_agents.environments import py_environment 

from tf_agents.environments import tf_environment 

from tf_agents.environments import tf_py_environment 

from tf_agents.trajectories import time_step as ts 

from tf_agents.specs import BoundedArraySpec 

import joblib 

 

Environment Simulator class 

class GreenhouseEnvironment(py_environment.PyEnvironment): 

 

  def action_spec(self): 

        return { 

          'EnScr': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='EnScr'), 

          'AssimLight': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='AssimLight'), 

          'BlackScr': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='BlackScr'), 

          'dx_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='dx_sp'), 

          'co2_dos': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='co2_dos'), 

          'Cum_irr': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='Cum_irr'), 

          'VentLee': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='VentLee'), 

          'Ventwind': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='Ventwind'), 

          'co2_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='co2_sp'), 

          't_grow_min_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='t_grow_min_sp'), 

          'assim_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='assim_sp'), 

          'scr_enrg_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='scr_enrg_sp'), 

          'scr_blck_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='scr_blck_sp'), 
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          't_heat_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='t_heat_sp'), 

          't_vent_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='t_vent_sp'), 

          'window_pos_lee_sp': BoundedArraySpec(shape=(), 

dtype=np.float32, minimum=0.0, maximum=1.0, name='window_pos_lee_sp'), 

          'int_blue_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='int_blue_sp'), 

          'int_red_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='int_red_sp'), 

          'int_farred_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='int_farred_sp'), 

          'int_white_sp': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='int_white_sp'), 

          'water_sup_intervals_sp_min': BoundedArraySpec(shape=(), 

dtype=np.float32, minimum=0.0, maximum=1.0, 

name='water_sup_intervals_sp_min'), 

          'water_sup': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='water_sup') 

    } 

 

  def observation_spec(self): 

      return { 

          'EC_drain_PC': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='EC_drain_PC'), 

          'CO2air': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='CO2air'), 

          'HumDef': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='HumDef'), 

          'PipeGrow': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='PipeGrow'), 

          'PipeLow': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='PipeLow'), 

          'Rhair': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='Rhair'), 

          'Tair': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='Tair'), 

          'Tot_PAR': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='Tot_PAR'), 

          'Tot_PAR_Lamps': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='Tot_PAR_Lamps'), 

          'pH_drain_PC': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='pH_drain_PC'), 

          't_grow_min_vip': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='t_grow_min_vip'), 

          'hour': BoundedArraySpec(shape=(), dtype=np.float32, 

minimum=0.0, maximum=1.0, name='hour'), 

      } 

 

 

  def __init__(self): 

 

    self.column_state_order = ['Tair', 'Rhair', 'HumDef', 'CO2air', 

'PipeLow', 'PipeGrow', 'EC_drain_PC', 'Tot_PAR', 'Tot_PAR_Lamps', 

'pH_drain_PC', 'hour', 
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            't_grow_min_vip', 'VentLee', 'Ventwind', 'AssimLight', 

'EnScr', 'BlackScr', 'co2_dos', 'Cum_irr', 'co2_sp', 'dx_sp', 

't_grow_min_sp', 

            'assim_sp', 'scr_enrg_sp', 'scr_blck_sp', 't_heat_sp', 

't_vent_sp', 'window_pos_lee_sp', 'int_blue_sp', 'int_red_sp', 

'int_farred_sp', 

            'int_white_sp', 'water_sup_intervals_sp_min', 'water_sup'] 

 

    self.column_reward_order = ['AssimLight', 'BlackScr', 'CO2air', 

'Cum_irr', 'EC_drain_PC', 'EnScr', 'HumDef', 'PipeGrow', 'PipeLow', 

'Rhair', 'Tair', 'Tot_PAR', 

       'Tot_PAR_Lamps', 'VentLee', 'Ventwind', 'assim_sp', 'co2_dos', 

'co2_sp', 'dx_sp', 'int_blue_sp', 'int_farred_sp', 'int_red_sp', 

'int_white_sp', 

       'pH_drain_PC', 'scr_blck_sp', 'scr_enrg_sp', 't_grow_min_sp', 

't_grow_min_vip', 't_heat_sp', 't_vent_sp', 'water_sup', 

       'water_sup_intervals_sp_min', 'window_pos_lee_sp', 'hour', 

'Stem_elong', 'Stem_thick', 'Cum_trusses'] 

 

    self._reset() 

 

    self.episode_ended = False 

    self.weights = {'diff_Stem_elong': 0.2, 'diff_Stem_thick': 0.2, 

'diff_Cum_trusses': 0.6} 

    self.timestep = 0 

    self.file_path = 'cyprus/' 

    self._state_model = joblib.load(self.file_path + 

'models/Gradient_Boosting.joblib') 

    self._state_cv_models = [] 

    self.cumulative_reward = 0 

     # Load and predict with each model 

    for fold in range(1, 11): 

        model_path = 

f'{self.file_path}models/Gradient_Boosting_fold_{fold}.joblib' 

        self._state_cv_models.append(joblib.load(self.file_path + 

f'gb_cv/Gradient_Boosting_fold_{fold}.joblib')) 

    self._reward_model = joblib.load(self.file_path + 

'r_models/Gradient_Boosting.joblib') 

    self._reward_cv_models = [] 

    self.final_rewards = [] 

    for fold in range(1, 11): 

        model_path = 

f'{self.file_path}models/Gradient_Boosting_fold_{fold}.joblib' 

        self._reward_cv_models.append(joblib.load(self.file_path + 

f'r_gb_cv/Gradient_Boosting_fold_{fold}.joblib')) 

 

 

  def _reset(self): 

      # Define the initial state of the environment 

      self._state = { 

          'EC_drain_PC': np.float32(np.random.uniform(0.0, 0.1)), 

          'CO2air': np.float32(np.random.uniform(0.0, 0.1)), 

          'HumDef': np.float32(np.random.uniform(0.0, 0.1)), 

          'PipeGrow': np.float32(np.random.uniform(0.0, 0.1)), 

          'PipeLow': np.float32(np.random.uniform(0.0, 0.1)), 

          'Rhair': np.float32(np.random.uniform(0.0, 0.1)), 
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          'Tair': np.float32(np.random.uniform(0.0, 0.1)), 

          'Tot_PAR': np.float32(np.random.uniform(0.0, 0.1)), 

          'Tot_PAR_Lamps': np.float32(np.random.uniform(0.0, 0.1)), 

          'pH_drain_PC': np.float32(np.random.uniform(0.0, 0.1)), 

          't_grow_min_vip': np.float32(np.random.uniform(0.0, 0.1)), 

          'hour': np.float32(np.random.randint(0, 24)/24)  # 24 is 

exclusive, 

      } 

      self._parameters = { 

          'Stem_elong': np.float32(np.random.uniform(0.0, 0.1)), 

          'Stem_thick': np.float32(np.random.uniform(0.0, 0.1)), 

          'Cum_trusses': np.float32(np.random.uniform(0.0, 0.1)), 

          'diff_Stem_elong': np.float32(0),   # Will be between -1 and 1 

          'diff_Stem_thick': np.float32(0), 

          'diff_Cum_trusses': np.float32(0) 

          # Add other necessary parameters similarly 

      } 

 

      self.episode_ended = False 

      self.timestep = 0 

      self.cumulative_reward = 0  

      # Directly use the state dictionary as the observation for the 

TimeStep 

      return ts.restart(self._state) 

 

  def _calculate_reward(self): 

    current_parameters = self._parameters 

    weighted_df = pd.DataFrame() 

    input_df = pd.DataFrame([{ 

    'diff_Stem_elong': current_parameters['diff_Stem_elong'], 

    'diff_Stem_thick': current_parameters['diff_Stem_thick'], 

    'diff_Cum_trusses': current_parameters['diff_Cum_trusses'] 

    }]) 

    for column, weight in self.weights.items(): 

      weighted_df[column] = input_df[column] * weight 

    weighted_sum = weighted_df.sum(axis=1) 

    return self.ensure_scalar(weighted_sum[0]) 

 

  def _action_spec(self): 

    return self._action_spec 

 

  def _observation_spec(self): 

    return self._observation_spec 

 

  def _parameters_spec(self): 

    return self._action_spec 

 

  def ensure_scalar(self, value): 

      """Ensure numpy arrays with one element are converted to scalars 

and cast to np.float32.""" 

      if isinstance(value, np.ndarray) and value.size == 1: 

          # Convert single-element arrays to scalar and ensure type 

np.float32 

          return np.float32(value.item()) 

      elif isinstance(value, float): 

          # Convert Python float to np.float32 
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          return np.float32(value) 

      return value 

 

 

 

  def _predict_state(self, input_data): 

    # Assuming input_data is a DataFrame formatted correctly for your 

models 

    # The DataFrame should be ordered and formatted correctly for model 

input 

    predictions = [] 

 

    # Loop through each of the models, make predictions, and store them 

    for model in self._state_cv_models: 

        pred = model.predict(input_data.values) 

        predictions.append(pred) 

 

    # Convert predictions to a numpy array for easier averaging 

    predictions = np.array(predictions) 

 

    # Average predictions across all models for each parameter 

    # Assuming the output is 1D per model 

    average_predictions = predictions.mean(axis=0) 

 

    # Return the average predictions 

    return average_predictions 

 

  def _predict_parameters(self, input_data): 

    # Assuming input_data is a DataFrame formatted correctly for your 

models 

    # The DataFrame should be ordered and formatted correctly for model 

input 

    predictions = [] 

 

    # Loop through each of the models, make predictions, and store them 

    for model in self._reward_cv_models: 

        pred = model.predict(input_data.values) 

        predictions.append(pred) 

 

    # Convert predictions to a numpy array for easier averaging 

    predictions = np.array(predictions) 

 

    # Average predictions across all models for each parameter 

    # Assuming the output is 1D per model 

    average_predictions = predictions.mean(axis=0) 

 

    # Return the average predictions 

    return average_predictions 

 

  def _update_parameters(self, action): 

     # Create DataFrame from state and action dictionaries for model 

input 

    combined_data = {**self._state, **action, **self._parameters} 

    input_df = pd.DataFrame([combined_data]) 

 

    # Order columns as expected by the model 
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    input_df = input_df[self.column_reward_order] 

 

    # Predict the next state using the model USING NON CV MODEL 

    # predicted_reward_array = 

self._reward_model.predict(input_df.values) 

    # Predict the next state using the model USINGCV MODEL 

    predicted_reward_array = self._predict_parameters(input_df) 

 

     # Convert the predicted array to a DataFrame if necessary, assuming 

the output is 1D 

    if isinstance(predicted_reward_array, np.ndarray) and 

predicted_reward_array.ndim == 1: 

        predicted_reward_df = 

pd.DataFrame(predicted_reward_array.reshape(1, -1), 

columns=['Stem_elong', 'Stem_thick', 'Cum_trusses']) 

    else: 

        predicted_reward_df = pd.DataFrame(predicted_reward_array, 

columns=['Stem_elong', 'Stem_thick', 'Cum_trusses']) 

 

    # Convert the predicted DataFrame back to a dictionary 

    predicted_reward_dict = predicted_reward_df.iloc[0].to_dict() 

 

    temp = predicted_reward_dict.copy() 

     

    # Clip values to ensure they are within the specified range 

    for key, value in predicted_reward_dict.items(): 

        clipped_value = np.clip(value, 0.0, 2.0)  # Ensuring the value 

stays between 0 and 2 (2 means double the best in data) 

        predicted_reward_dict[key] = np.float32(clipped_value)  # Convert 

and store as float32 

 

    # Calculate the difference for each parameter between new and old 

values 

    for key in temp: 

        if key in self._parameters: 

            old_value = self._parameters.get(key, 0) 

            new_value = predicted_reward_dict[key] 

            diff_key = f'diff_{key}' 

            predicted_reward_dict[diff_key] = new_value - old_value 

 

 

 

    #print("Old reward parameters:",self._parameters) 

    #print("Predicted reward parameters:",predicted_reward_dict) 

 

    # Now, update the parameters in the state with this new dictionary 

    self._parameters.update(predicted_reward_dict) 

 

    for key in self._parameters: 

        self._parameters[key] = self.ensure_scalar(self._parameters[key]) 

 

    #print("Updated reward parameters:",self._parameters) 

 

  def _update_state(self, action): 

    # Create DataFrame from state and action dictionaries for model input 

    combined_data = {**self._state, **action} 
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    input_df = pd.DataFrame([combined_data]) 

 

    # Order columns as expected by the model 

    input_df = input_df[self.column_state_order] 

 

    # Predict the next state  

    predicted_state_array = self._predict_state(input_df) 

 

    # Convert the predicted array to a DataFrame if necessary, assuming 

the output is 1D 

    if isinstance(predicted_state_array, np.ndarray) and 

predicted_state_array.ndim == 1: 

        predicted_state_df = 

pd.DataFrame(predicted_state_array.reshape(1, -1), columns=['Tair', 

'Rhair', 'HumDef', 'CO2air', 'PipeLow', 'PipeGrow', 

                 'EC_drain_PC', 'Tot_PAR','Tot_PAR_Lamps', 'pH_drain_PC', 

'hour', 't_grow_min_vip']) 

    else: 

        predicted_state_df = pd.DataFrame(predicted_state_array, 

columns=['Tair', 'Rhair', 'HumDef', 'CO2air', 'PipeLow', 'PipeGrow', 

                 'EC_drain_PC', 'Tot_PAR','Tot_PAR_Lamps', 'pH_drain_PC', 

'hour', 't_grow_min_vip']) 

 

    # Increment 'hour' by 1/24 to simulate the passing of one hour 

    new_hour = self._parameters.get('hour', 0) + 1/24 

 

    # If 'hour' exceeds 1, wrap it around to 0 

    if new_hour >= 1: 

        new_hour = 0 

 

 

    predicted_state_dict = predicted_state_df.iloc[0].to_dict() 

 

    # Clip values to ensure they are within the specified range 

    for key, value in predicted_state_dict.items(): 

        clipped_value = np.clip(value, 0.0, 1.0)  # Ensuring the value 

stays between 0 and 1 

        predicted_state_dict[key] = np.float32(clipped_value)  # Convert 

and store as float32 

 

    #print("Old state parameters:", self._state) 

    #print("Predicted state parameters:", predicted_state_dict) 

 

    # Convert the predicted DataFrame back to a dictionary and update the 

state 

    self._state.update(predicted_state_dict) 

 

    # Update 'hour' in the state 

    self._state['hour'] = new_hour 

 

    for key in self._state: 

        self._state[key] = self.ensure_scalar(self._state[key]) 

 

    #print("Updated state parameters:", self._state) 

 

  def _check_termination_condition(self): 
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    # Assuming these are your termination conditions 

    max_timesteps = 4000  # Or another appropriate number for your 

environment 

    return self.timestep >= max_timesteps 

 

 

  def _step(self, action): 

    #print(action) 

    # Assume action is a dict with keys corresponding to action_spec 

    # Apply the action to the environment 

    self._update_parameters(action) 

 

    # Update the environment's state based on the action 

    self._update_state(action) 

 

    # Increment timestep 

    self.timestep += 1 

 

    # Check if the episode has ended, which could be based on a condition 

or timestep 

    if self._check_termination_condition(): 

        self._episode_ended = True 

    else: 

        self._episode_ended = False 

 

    # Format observations to ensure they are scalars 

    observation = {key: self.ensure_scalar(self._state[key]) for key in 

self._state} 

    reward = self.ensure_scalar(self._calculate_reward()) 

    self.cumulative_reward += reward  # Accumulate the reward 

    discount = 1   

 

    # Construct the TimeStep based on the episode end status 

    if self._episode_ended: 

        self.timestep = 0 

        self.final_rewards.append(self.cumulative_reward)  # Store the 

total reward for this episode 

        print(self.cumulative_reward) 

        self.cumulative_reward = 0  # Reset cumulative reward for the 

next episode 

        return ts.termination(self._state, reward) 

    else: 

        return ts.transition(self._state, reward, discount=1) 

 

 

B6  Code for PPO agent 

Import Libraries 

import tensorflow as tf 

from tf_agents.environments import tf_py_environment 

from tf_agents.networks import actor_distribution_network, value_network 

from tf_agents.agents.ppo import ppo_agent 
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from tf_agents.utils import common 

from tf_agents.replay_buffers import tf_uniform_replay_buffer 

from tf_agents.trajectories import trajectory 

from tf_agents.drivers import dynamic_episode_driver 

from tf_agents.policies import policy_saver 

from tensorflow.keras.layers import Concatenate 

import matplotlib.pyplot as plt 

 

Custom Combiner 

# Define a simple combiner that concatenates all input tensors along the 

last dimension 

class CustomCombiner(tf.keras.layers.Layer): 

    def call(self, inputs): 

        # Flatten each input and concatenate along the last axis 

        flattened_inputs = [tf.reshape(input_tensor, 

(tf.shape(input_tensor)[0], -1)) for input_tensor in inputs.values()] 

        return tf.concat(flattened_inputs, axis=-1) 

 

# Use the custom combiner in the EncodingNetwork 

combiner = CustomCombiner() 

 

Initialize training and evaluation environment 

# Initialize the environment 

environment = GreenhouseEnvironment()  # Assuming this is your custom 

environment 

tf_env = tf_py_environment.TFPyEnvironment(environment) 

eval_env = tf_py_environment.TFPyEnvironment(GreenhouseEnvironment()) 

# Verify environment compatibility with TF-Agents 

utils.validate_py_environment(train_py_env, episodes=1) 

 

Implementing agent 

# Create a concatenation layer for combining inputs 

concat_layer = Concatenate(axis=-1) 

 

# Create actor and value networks for the PPO agent 

actor_net = actor_distribution_network.ActorDistributionNetwork( 

    train_env.observation_spec(), 

    train_env.action_spec(), 

    preprocessing_combiner=combiner, 

    fc_layer_params=(100,)) 

 

value_net = value_network.ValueNetwork( 

    train_env.observation_spec(), 

    preprocessing_combiner=combiner, 

    fc_layer_params=(100,)) 

 

# Create the optimizer 

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4) 

 

# Initialize the PPO agent 

ppo_tf_agent = ppo_agent.PPOAgent( 

    train_env.time_step_spec(), 

    train_env.action_spec(), 

    actor_net=actor_net, 

    value_net=value_net, 

    optimizer=optimizer, 
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    normalize_observations=True, 

    normalize_rewards=True, 

    use_gae=True, 

    num_epochs=10) 

 

ppo_tf_agent.initialize() 

 

# Replay buffer to store the collected data 

replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer( 

    data_spec=ppo_tf_agent.collect_data_spec, 

    batch_size=train_env.batch_size, 

    max_length=1000) 

 

# Collect driver for gathering episodes 

collect_driver = dynamic_episode_driver.DynamicEpisodeDriver( 

    train_env, 

    ppo_tf_agent.collect_policy, 

    observers=[replay_buffer.add_batch], 

    num_episodes=1) 

 

Training Loop 

# Training Loop 

num_episodes = 100 

for _ in range(num_episodes): 

    # Collect and train 

    collect_driver.run() 

    trajectories = replay_buffer.gather_all() 

    train_loss = agent.train(experience=trajectories) 

    replay_buffer.clear() 

    print(f'Training Loss: {train_loss.loss.numpy()}') 

 

Plotting cumulative rewards of training 

# Assuming the environment instance is `env` 

episode_rewards = environment.final_rewards  # Access the cumulative 

rewards after the training loop 

# Plot cumulative rewards 

plt.figure(figsize=(10, 5)) 

plt.plot(episode_rewards, label='Cumulative Reward') 

plt.xlabel('Iterations') 

plt.ylabel('Total Reward') 

plt.title('Cumulative Reward per Episode Over Training') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

Evaluation of policy 

# Evaluate the agent's policy once training has completed 

num_eval_episodes = 10  # Number of episodes to run for evaluation 

episode_rewards = [] 

for _ in range(num_eval_episodes): 

    time_step = eval_env.reset() 

    episode_reward = 0 

    while not time_step.is_last(): 

        action_step = ppo_tf_agent.policy.action(time_step) 

        time_step = eval_env.step(action_step.action) 

        episode_reward += time_step.reward.numpy() 
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    print(f'Episode Reward: {episode_reward}') 

    episode_rewards.append(episode_reward) 

 

Plotting cumulative rewards from evaluation 

# Plotting the results 

import matplotlib.pyplot as plt 

 

plt.figure(figsize=(10, 5)) 

plt.plot(episode_rewards, label='Cumulative Reward per Episode') 

plt.xlabel('Episode') 

plt.ylabel('Cumulative Reward') 

plt.title('Cumulative Reward Per Episode Over Time for REINFORCE') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

B7  Code for REINFORCE agent 

Import Libraries 

import tensorflow as tf 

from tf_agents.environments import tf_py_environment 

from tf_agents.networks import actor_distribution_network 

from tf_agents.agents.reinforce import reinforce_agent 

from tf_agents.drivers import dynamic_episode_driver 

from tf_agents.replay_buffers import TFUniformReplayBuffer 

from tf_agents.trajectories import trajectory 

 

Custom Combiner 

# Custom Combiner for the actor network 

class CustomCombiner(tf.keras.layers.Layer): 

    def call(self, inputs): 

        return tf.concat([tf.reshape(tensor, [tf.shape(tensor)[0], -1]) 

for tensor in inputs.values()], axis=-1) 

 

Initialize training and evaluation environment 

# Initialize the environment 

environment = GreenhouseEnvironment()  # Assuming this is your custom 

environment 

tf_env = tf_py_environment.TFPyEnvironment(environment) 

eval_env = tf_py_environment.TFPyEnvironment(GreenhouseEnvironment()) 

 

 

Implementing agent 

# Actor Network 

actor_net = actor_distribution_network.ActorDistributionNetwork( 

    tf_env.observation_spec(), 

    tf_env.action_spec(), 

    preprocessing_combiner=CustomCombiner(), 

    fc_layer_params=(100, 50), 

) 

 

# REINFORCE Agent 
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optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3) 

train_step_counter = tf.Variable(0) 

 

agent = reinforce_agent.ReinforceAgent( 

    tf_env.time_step_spec(), 

    tf_env.action_spec(), 

    actor_network=actor_net, 

    optimizer=optimizer, 

    normalize_returns=True, 

    train_step_counter=train_step_counter 

) 

 

agent.initialize() 

 

# Replay Buffer 

replay_buffer = TFUniformReplayBuffer( 

    data_spec=agent.collect_data_spec, 

    batch_size=tf_env.batch_size, 

    max_length=1000 

) 

 

# Collect Driver 

collect_driver = dynamic_episode_driver.DynamicEpisodeDriver( 

    tf_env, 

    agent.collect_policy, 

    observers=[replay_buffer.add_batch], 

    num_episodes=1 

) 

 

Training Loop 

# Training Loop 

num_episodes = 100 

for _ in range(num_episodes): 

    # Collect and train 

    collect_driver.run() 

    trajectories = replay_buffer.gather_all() 

    train_loss = agent.train(experience=trajectories) 

    replay_buffer.clear() 

    print(f'Training Loss: {train_loss.loss.numpy()}') 

 

Plotting cumulative rewards of training 

# Assuming the environment instance is `env` 

episode_rewards = environment.final_rewards  # Access the cumulative 

rewards after the training loop 

# Plot cumulative rewards 

plt.figure(figsize=(10, 5)) 

plt.plot(episode_rewards, label='Cumulative Reward') 

plt.xlabel('Iterations') 

plt.ylabel('Total Reward') 

plt.title('Cumulative Reward per Episode Over Training') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

Evaluation of policy 

eval_env = tf_py_environment.TFPyEnvironment(GreenhouseEnvironment()) 
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# Evaluate the agent's policy once training has completed 

num_eval_episodes = 10  # Number of episodes to run for evaluation 

episode_rewards = [] 

 

for _ in range(num_eval_episodes): 

    time_step = eval_env.reset() 

    episode_reward = 0 

    while not time_step.is_last(): 

        action_step = agent.policy.action(time_step) 

        time_step = eval_env.step(action_step.action) 

        episode_reward += time_step.reward.numpy() 

    print(f'Episode Reward: {episode_reward}') 

    episode_rewards.append(episode_reward) 

 

Plotting cumulative rewards from evaluation 

# Plotting the results 

import matplotlib.pyplot as plt 

 

plt.figure(figsize=(10, 5)) 

plt.plot(episode_rewards, label='Cumulative Reward per Episode') 

plt.xlabel('Episode') 

plt.ylabel('Cumulative Reward') 

plt.title('Cumulative Reward Per Episode Over Time for REINFORCE') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

 

 

 

 

 

 

 

 

 


