
Thesis Dissertation

PERFORMANCE EVALUATION OF MQTT OVER QUIC

Viktoras Milios

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Μay 2023



UNIVERSITY OF CYPRUS
DEPARTMENT OF COMPUTER SCIENCE

Performance Evaluation of MQTT over QUIC

Viktoras Milios

Supervisor

Dr. Andreas Pitsillides

The Diploma Thesis was submitted for partial fulfilment of the requirements for

obtaining the degree of Computer Science of the Department of Computer Science of

the University of Cyprus

Μay 2023



Acknowledgements

I  would  like  to  express  my  sincere  appreciation  to  my  supervisor,  Professor  Andreas

Pitsillides, for their guidance and introduction to the topic of my thesis.

I am also incredibly grateful to my family and friends for their support and understanding

throughout my studies.



Abstract

The Internet of Things (IoT) has seen exponential growth in the previous years as more and

more applications benefit from the usage of IoT devices. From home automation systems,

smart cities, smart homes to industrial automation and healthcare systems, the IoT ecosystem

continues to expand, enabling more and more innovative solutions to everyday challenges.

One of the key challenges in IoT is the need of reliable and efficient communication between

devices,  since  these  devices  are  often  resource-constrained,  bandwidth  limited  and many

times battery powered. MQTT is a lightweight protocol well suited for IoT applications due

to its small code footprint and its publish-subscribe messaging architecture, enabling devices

to efficiently transmit and receive data.

However, as IoT deployments grow in scale and complexity, there is a need to address the

limitations  of  the  underlying  transport  protocol  used  by  MQTT.  Transmission  Control

Protocol (TCP), which MQTT relies on, comes with numerous limitations such as Protocol

Entrenchment,  Implementation Entrenchment,  Handshake Delay and Head-of-Line (HOL)

Blocking Delay.

QUIC, a relatively new transport layer protocol designed by Google aims to address these

issues. QUIC is a transport layer protocol built on top of the User Datagram Protocol (UDP)

and it was initially designed to replace TCP in HTTP/3.0. It incorporated features similar to

TCP such as congestion control, connection multiplexing, stream prioritization and built-in

encryption.

In this  thesis,  the usage of QUIC as the underlying transport  layer protocol of MQTT is

studied.  After a performance evaluation is performed to compare MQTT over QUIC and

MQTT over  TCP,  the  findings  show that  MQTT over  QUIC outperformed  MQTT over

TCP+TLS  in  terms  of  connection  establishment  delay,  traffic  delay  and  overall  CPU

utilization. Furthermore, QUIC’s support of connection migration allows seamless roaming

of mobile IoT devices.

 



Table of Contents

Chapter 1 Introduction…………………………………………………………………1

1.1 Motivation   1

1.2 Objective and Contribution   2

1.3 Document Organization   2

Chapter 2 Background………………………………………………………………….3

2.1 Internet of Things   3

2.2 Publish-Subscribe Architecture   5

2.3 Transport Layer Protocols   6

2.3.1 User Datagram Protocol   7

2.3.2 Transmission Control Protocol   7

2.5 Transport Layer Security   8

2.6 Related Work  10

Chapter 3 Technologies...………………………………………………………………12

3.1 Raspberry Pi  12

3.2 Container  13

3.3 Linux Traffic Control  14

3.4 Wireshark  15

3.5 Erlang  16

Chapter 4 QUIC………………………………………………………………………  17

4.1 Introduction 17

4.2 Connection Establishment 17

4.3 Stream Multiplexing 19

4.4 Security 19

4.5 Connection Migration 20

4.6 Flow Control 20

4.7 Loss Detection 20

4.8 Congestion Control 21

Chapter 5 MQTT……………………………….…………….………………………..22 



5.1 Introduction 22

5.2 History 22

5.3 Architecture 23

5.3.1 Client 24

5.3.2 Broker 24

5.4 MQTT Topics 25

5.5 MQTT Control Packets 26

5.6 Packet Format 27

5.7 Quality of Service 27

5.8 Security 29

Chapter 6 Evaluation  Setup  and  Results……………………………………………31

6.1 Hardware Setup   31

6.2 Software Setup            32

6.3 Results   32

6.3.1 Connection Establishment   32

6.3.2 Publish Delay   35

6.3.3 CPU and Memory Usage   35

6.3.4 Average bytes generated per packet   37

 

Chapter 7 Conclusions …………………………………………………………………38

 7.1 Summary    38

        7.2 Future Work              38

        7.3 Conclusions  39

 

B i b l i o g r a p h y…………………………………………………………………………40

0



Chapter 1

Introduction

1.1 Motivation  1

1.2 Objective and Contribution  2

1.3 Document Organization  2

1.1 Motivation

The Internet of Things (IoT) has seen a rapid growth in the previous years, as more and more

devices  becoming  connected.  Automation  systems,  smart  cities,  smart  homes,  health

monitoring, smart grids and so on benefit from the usage of IoT devices such as sensors and

actuators. IoT devices are used to sense, actuate, process and communicate via the Internet,

either directly through a cellular network or through a gateway, most commonly using radio

technologies.  When designing protocols  for  the IoT several  factors  should be  taken into

consideration  such  as  device  and  traffic  characteristics,  since  IoT  devices  are  often

constrained in  terms  of  power,  memory and bandwidth.  In  the  meantime,  the  connected

devices communications protocol must fulfill multiple design requirements such as resource

control,  energy  awareness  (battery  powered  devices),  quality  of  service  (QoS),

interoperability, interference management, security and privacy, low latency communication,

small code footprint, high throughput and scalability [4, 5]. These requirements led to the

design and implementation of several communication protocols for IoT devices.

One of most well known and widely used communication protocol for the IoT is MQTT.

MQTT  is  widely  used  due  to  its  small  code  footprint,  low  overhead,  easy  integration,

security, good performance and it’s publish-subscribe architecture which is ideal for most IoT

applications,  thanks  to  its  ease  of  deployment  and  increased  scalability  &  reliability.

However, it is traditionally used over TCP (Transport Control Protocol), which comes with

numerous  limitations  such  as  Protocol  Entrenchment,  Implementation  Entrenchment,

Handshake  Delay  and  Head-of-Line  Blocking  Delay  (HOL)[3].  Replacing  TCP  as  the

underlying transport protocol can allow MQTT to overcome the limitations imposed by TCP.

1



The  main  motivation  of  this  thesis  is  to  provide  an  in-depth  analysis  of  a  promising

alternative  replacement  for  the  transport  protocol  used  by  MQTT  and  conduct  several

benchmarks to compare it to the current state of the protocol.

1.2 Objective and Contribution

To address the issues and limitations of TCP, a newly established protocol developed by

Google, QUIC, can be used as the underlying transport layer protocol of MQTT. QUIC is a

transport  layer  protocol  that  is  designed  to  replace  TCP  in  HTTP/3  and  uses  the  User

Datagram  Protocol  (UDP).  It  incorporates  on  top  of  it  features  such  as  connection

multiplexing, stream prioritization, and built-in encryption which can potentially improve the

performance and security of MQTT. 

The purpose of this thesis is to analyze and compare the performance of MQTT over QUIC in

order  to  examine the  potential  advantages  of  adopting  QUIC as  a  transport  protocol  for

MQTT. To evaluate the performance of MQTT over QUIC several benchmarks have been

established to  collect  metrics  like  latency,  throughput,  packet  loss,  CPU usage,  memory

usage, network utilization, handshake delay etc.

1.3 Document Organization

This thesis consists of 7 Chapters. Chapter 2 will go through some prerequisite knowledge of

protocols and concepts, as well as a literature survey. Precisely, there is an introduction to the

Internet of Things and the Publish-Subscribe which is commonly used in the IoT. Following

that, there is a review of UDP and TCP, followed by a look into TLS and a literature survey.

Chapter  3  reviews  technologies  used  in  the  test  environment.  In  Chapter  4,  an  in-depth

analysis of QUIC is  presented.  In Chapter 5,  we will  go through a detailed overview of

MQTT. The experimental setup, metrics examined and results are discussed in Chapter 6. A

comprehensive  overview,  potential  directions  for  future  work  and  key  conclusions  are

provided in the last chapter of this thesis.

2



Chapter 2

Background

2.1 Internet of Things   3

2.2 Publish-Subscribe Architecture   5

2.3 Transport Layer Protocols   6

2.3.1 User Datagram Protocol    7

2.3.2 Transmission Control Protocol     7

2.4.1 Transport Layer Security   8

2.4.2 Datagram Transport Layer Security   9

2.5 Related Work 10

2.1 Internet of Things

The Internet of Things (IoT) is a term used to describe the growing network of physical

objects, from appliances and vehicles to buildings and entire cities, that are connected to the

internet and can collect, exchange, and act on data. The term was introduced by the computer

scientist  Kevin  Ashton  in  1999,  which  at  the  time  described  RFID-tagged  objects.  The

following years, as more and more connected devices came to market, the public interest in

IoT began to take off. Now, the IoT is often seen as the next major thing of the internet,

enabling a  wide range of new applications and services and it  is  projected that  the total

number of IoT connected devices is expected to nearly double by 2030[2]. 

3



An  Internet  of  Things  device  generally  refers  to  an  object  or  “thing”  embedded  with

electronics, sensors, actuators and so on. Some of these devices include smart home devices

(e.g. smart thermostats, smart lights), wearables (e.g. smartwatches, fitness trackers), smart

appliances (e.g. smart refrigerators, smart washing machines), industrial sensors, connected

vehicles  and  many  more.  These  devices  are  mainly  used  to  sense,  actuate,  process  and

exchange information with other “things” via the Internet, either directly through a cellular

network or through a gateway, most commonly using radio technologies. Therefore, these

devices can be considered as part of Low-Power and Lossy Networks (LLNs) [32], which are

characterized  by  low  power  consumption,  limited  processing  capabilities,  and  lossy

communication links[31]. 

Due to the restrictions LLNs impose, traditional implementations of RESTful architectures

like HTTP client/server model are unsuitable and an adaptation is needed. While LLNs must

carefully consider several of these features because the services provided by lower layers are

significantly more constrained, REST architectures make assumptions on effective reliable

4

Figure 1: Statista. (2022) Number of IoT connected devices worldwide 2019-
2021, with forecasts to 2030 (statista.com)



transport and are not strictly constrained by payload size because expensive fragmentation is

dealt  with  at  lower  layers.  For  instance,  6LoWPAN  allows  for  the  pricey  IPv6  packet

fragmentation into 127-byte packets, but abusing this feature renders the network unusable.

Limiting packet extension is thus a requirement for application layer.

Numerous application layer protocols have been developed, each with their own advantages

and  disadvantages  based  on  each  application  requirements.  Table  1  provides  a  brief

comparison of the most common protocols.

Table 1: Comparison of IoT application protocols

CoAP MQTT XMPP AMQP DDS REST

Transport UDP TCP/
QUIC TCP TCP TCP/UDP TCP

Publisher/subscriber Yes Yes Yes Yes Yes No
Request/response Yes No Yes No No Yes
Security DTLS SSL SSL SSL SSL/DTLS SSL
QoS Yes Yes No Yes Yes No
Low power and lossy 
network Exc. Fair Fair Fair Poor Fair

Dynamic discovery Yes No No No Yes No
Binary encoding Yes Yes Yes Yes Yes No
Real-time No No No No Yes No
Open source Yes Yes Yes Yes Yes No
Architecture style P2P Broker P2P P2P Broker Data Space P2P
Organization IETF OASIS IETF OASIS OMG IETF

2.2 Publish-Subscribe Communication Pattern

Publish-Subscribe  communication  systems  describe  a  communication  pattern  where  the

publisher  is  the  service  responsible  for  publishing  the  message  (e.g.  events)  and  the

subscriber is the one that receives them. These two services are operating independently of

each other, meaning that both of them can act without being aware of the precense of the

other. A central service, usually called a broker (or server), is responsible for receiving the

messages sent by the publisher and forwards them to subscribers who listen to a specific

topic.  However,  in  some cases,  it  is  desireable  to  use  publish-subscribe  for  peer-to-peer

communication but it is unfeasible or undesirable to include a seperate node to operate as a

5



broker.  An  example  of  this  is  the  brokerless  publish-subscribe  implementation  is  CoAP

resource/observe operation[6].

The broker node operates as a message queuing system and besides its store and forward

operation,  implements  additional  functionality  that  varies  based  on  it’s  implementation

requirements. Some of these optional services and operations of a queuing system may be

scalability  (i.e.  multiple  queues  working  in  parallel),  error-tolerance  (i.e.  queues  hold  a

message  copy),  persistent  storage  (i.e.  store  messages  on  the  disk),  asynchronous  or

synchronous communication (i.e. messages enter the queues at any time or waiting for the

previous message to be acknowledged before processing next message)[7].

The  publish-subscribe  pattern  makes  an  ideal  choice  for  the  development  of  IoT

communication protocols, as it shares many of the requirements of publish-subscribe systems

as discussed above.

2.3 Transport Layer

The  transport  layer  is  a  crucial  component  of  the  TCP/IP  stack  that  is  responsible  for

exchanging  segments  between  two  communicationg  applications.  It  operates  above  the

network layer  (IP)  and protocols of  this  layer  are  used to  provide error  correction,  flow

control, congestion control, multiplexing/demultiplexing and end-to-end connection between

applications.

6

Figure 2: Publish-Subscribe Messaging



2.3.1 User Datagram Protocol (UDP)

The User Datagram Protocol is a connectionless transport layer protocol. It offers a simple

and unreliable service and does not  establish a  connection before sending any data.  It  is

described as a “best-effort” protocol as it operates in a fire-and-forget manner, meaning that

after it sends a packet, it does not provide any guarantees about the transmission. UDP is

widely  used  in  applications  that  prioritize  low  latency  and  high  throughput,  where

occcasional out of order delivery or lost packets are acceptable.

One of the distinguishing features of UDP is its stateless nature, where each datagram is

handled  as  an  independent  entity  without  any  guarantee  of  succesful  delivery  or  packet

ordering. Due to its low latency and overhead, UDP is well-suited for real-time applications

like VoIP, multimedia streaming and online gaming.

Another notable aspect of UDP is its lightweight header, which only takes up 8 bytes. Due to

its  improved  overhead  and  bandwidth  efficiency,  UDP  is  suitable  for  use  in  resource-

constrained environments,  such as  IoT devices,  where  reducing overhead is  essential  for

energy conservation and reducing network utilization.

However, the lack of reliability and lack of flow control, leads applications using UDP to,

based on their needs, manage error detection, correction and retransmission at the application

layer.  Additionally,  due  to  its  connectionless  nature,  UDP also  lacks  congestion  control

mechanisms, leading to network congestion and packet loss under high network utilization.

These reasons, led some application layer communication protocols to be built on top of TCP

even though UDP is more appealing for IoT devices.

2.3.2 Transmission Control Protocol (TCP)

The Transmission Control Protocol is a connection-oriented transport layer protocol which

unlike  UDP,  comes  with  a  reliable  and  stream-oriented  end-to-end  communication  that

provides  error-checked,  ordered  and  reliable  delivery  of  data.  In  addition  to  that,  TCP

implements congestion control mechanisms and relies on TLS for encryption. TCP is widely

used in applications that require reliable data stream such as HTTP, SMTP, FTP and etc.

7



TCP follows a  client-server  model,  where the client  initiates a  connection request  to  the

server  in  order  to  a  stablish  a  reliable  communication  channel.  Once  the  connection  is

established it is guaranteed that data will be delivered without loss or duplications to both

ends of the connection.

However,  all  these  features  that  TCP  provides,  introduce  numerous  limitations.  The

implementation  of  its  mechanisms  require  acknowledgements,  retransmissions  and  error

detection  which  increase  latency.  Furthemore,  the  3-way  handshake  needed  to  initiate  a

connection  introduces  startup  latency  (1  RTT),  where  this  becomes  2  or  3  RTTs  when

Transport Layer Security (TLS) is needed to encrypt the conversation.

Using TCP to ensure reliable and secure communication exerts high overhead and deems it

unsuitable  for  use  for  IoT applications.  As the  authors  in  [8-10]  point  out,  some of  the

drawbacks of using TCP with IoT are as follows:

 Devices frequently switch between sleep and awake mode in order to save power.

This causes the TCP connection to be short-lived.

 Since  communication  in  the  IoT  is  usually  small  in  data  size,  high  overhead  of

connection is unsuitable.

 TCP handshake introduces  high latency which is  undesirable,  especially for  time-

sensitive applications.

 Considering the inherent LLN nature of the IoT, TCP may frequently cause HOL

blocking.

 Half-open connections that can be exploited for SYN flooding attack[11].

2.4.1 Transport Layer Security (TLS)

The Transport Layer Security is a security protocol created to enable communications over

the Internet privacy and data security. TLS is the most common connection-based and stateful

client-server security protocol and is layered on tome of some reliable transport protocol. It’s

primary use case is to encrypt the communication between a client and a server, such as web

browsers  loading a  website  (HTTPS).  It  can also be used to  provide encryption to  other

services such as email, messaging and VoIP.

TLS is often used interchangeably with the term SSL which stands for Secure Sockets Layer.

The reason for this is that TLS evolved from SSL, which is a previous encryption protocol

8



developed  by  Netscape  its  name  was  changed  in  order  to  indicate  that  it  is  no  longer

associated with Netscape.

Apart  from the encryption,  TLS also ensures the integrity of the messages to detect  any

tampering or modification of the data during transmission.  In addition to that  it  includes

mechanisms for authentication, to verify the indentity of the server and, optionally, the client,

to ensure that communication is initiated between the intended hosts.

To start a communication that uses TLS, a TLS handshake must be performed in order for the

hosts to acknowledge and verify each other, establish the cryptographic method they will use

and exchange session keys. A typical TLS over TCP handshake is seen below.

2.4.2 Datagram Transport Layer Security (DTLS)

DTLS is an adaptation of TLS for use over unreliable datagram transport. As discussed in

[13], using DTLS instead of TLS for the IoT gives three high-level design decisions:

 Implementation of a standards based design

 Focus on application layer end-to-end security

 Support for unreliable transport protocols

9

Figure 3: TLS over TCP handshake



2.5 Related Work

Authors in [15] have noticed that the use of TCP comes with numerous limitations and is not

suitable for IoT applications due to the size of its packet header, sensitive congestion control

algorithms and its slow start strategy. They evaluated several UDP based transport protocols

to find the most  suitable  protocol  for  the  three IoT applications  they have tested.  These

protocols include RUBDP, UDTP and PA-UDP. For the evaluation they compared metrics

such as throughput, delay, CPU utilization and energy usage on wireless networks. Based on

their findings they concluded that PA-UDP has the best throughput performance but CPU

usage on the receiver side during the start and end of the transmission. UDT protocol as the

most  efficient  in  terms  of  cpu  usage  but  has  lower  throughput.  RBUDP  performed

consistently in wireless networks but the CPU usage as very high at the sender side. They

conclude by acknowledging that the UDT protocol is the most suitable of the three for IoT

applications due to its consistent performance and CPU efficiency.

The authors in [14], have used the Go programming language to integrate AMQP with QUIC

in order to reduce latency and reduce energy usage for IoT devices. They point out that one of

the main sources of delay in AMQP is the use of TCP as the underlying transport  layer

protocol.  They  used  dockers  to  containerize  the  AMQP  broker,  sender  and  receiver

implementations. Their experimental results indicate that RTT as 71% higher using QUIC,

but  the  Startup  Latency  and  Total  Communication  Time  is  improved  by  62% and  22%

respectively. The proposed scheme, AMQP over QUIC, transported 3.5 times more data than

the existing scheme, AMQP over TCP, but QUIC showed a throughput 7 times higher, that in

turn shorten the communication time and reduces energy by 31%. Additionally, their results

outperformed consistently the existing scheme in terms of packet loss, delay and channel

bandwidth with the exception of low channel bandwidth scenarios.

The author in [16] analyzed the use of CoAP over QUIC, instead of the standardized TCP

and UDP implementations. His findings show that QUIC is less lossy than TCP and UDP

under the same conditions, given that the jitter buffer size and packet transmission period are

within certain limits. The experimental method he used, estimates an application message

loss probability for UDP, TCP and QUIC which is 1.67%, 65.06% and 79.42% respectively.

TCP and QUIC likely appears to be less accurate due to the fact that RTT is assumed to be

constant over the length of the experiment. The experiment also confirms that QUIC provides

an application message loss of 5.33% and 30.76% on average, when compared to UDP and

10



TCP respectively. In conclusion, UDP and TCP appears to be superseded by QUIC in the

context of CoAP IoT sessions.

The authors in [23], have developed a common middleware for MQTT and CoAP, to provide

a  common programming interface supported  by  both.  The middleware  is  designed to  be

extensible  to support  future protocols.  Using the common middleware they designed and

implemented, they proceed to conduct several experiments to measure the performance of the

two protocols. The evaluated metrics include end-to-end delay and bandwidth consumption

under simulated packet loss environments using WANEM. The experimental results showed

that CoAP messages have higher delay than MQTT messages at lower packet loss rates and

lower delay than MQTT messages at higher packet loss rates. In addition, they point out that

if the message size is small and the packet loss is equal or less than 25%, CoAP generates

lower additional traffic than MQTT to ensure message reliability.

The authors in [9], pointed out the several limitation that TCP/TLS and UDP/DTLS impose

for IoT applications proposes a new transport protocol for MQTT, QUIC. . High connection

overhead, latency and connection migration are some of the limitations of TCP/TLS and

UDP/DTLS. The paper begins by discussing the challenges of using MQTT over the Internet

and  the  benefits  of  using  QUIC  as  its  underlying  transport  protocol.  Then  they  show

implementation details of their MQTT over QUIC implementation, before the proceed to test

it  over wired, wireless and long-distance testbeds.  Theirs findings show that MQTT over

QUIC  significantly  lowers  the  connection  overhead  based  on  the  number  of  exchanged

packets up to 56%. They also show that QUIC eliminates TCP half open connections and

reduces the cpu usage by 83% and memory usage by 50%, from the broker’s point of view.

Latency  is  also  reduced  up  to  55%,  due  to  removing  HOL  blocking.  Lastly,  thanks  to

connection migration feature of QUIC, during connection migration the throughput of MQTT

over QUIC is significantly lower compared to MQTT over TCP.

11



Chapter 3

Technologies

3.1 Raspberry Pi  12

3.2 Docker Containers  13

3.3 Linux Traffic Control  14

3.4 Wireshark  15

3.5 Erlang  16

3.1 Raspberry Pi

The  Raspberry  Pi[24]  is  a  series  of  single-board  computers  designed  by  the  UK-based

charity, Raspberry Pi Foundation, with a mission to promote computing education and access

to technology. First released in 2012, the Raspberry Pi has undergone multiple iterations and

variations, with the latest model featuring a 64-bit ARM-based quad-core CPU running at

1.8GHz (which can also be overclocked) and up to 8GB RAM. It has 4 USB ports, 40 GPIO

pins, 2x micro-HDMI ports, a DSI display ports, CSI camera port, a gigabit ethernet port and

an IEEE 802.11ac wireless card which supports bluetooth 5.0 and Wi-Fi. Additionally, it

provides  a  Micro-SD  card  slot  for  loading  the  operating  system  and  data  storage.  The

Raspberry Pi supports different operating systems such as Raspbian, Ubuntu, Windows 10

etc. Notably, the price point for Raspberry Pi has always remained under $100, with the most

affordable model, the Pi Zero, priced at just $5.

The Raspberry Pi has gained worldwide popularity for its affordability and versatility, with

individuals  and  organizations  utilizing  it  for  a  range  of  applications,  including  learning

programming,  building  hardware  projects,  home  automation,  and  industrial  applications.

Additionally,  the supports the running of Linux and GPIO (general purpose input/output)

pins, along with its low cost and size, makes it possible and ideal for use in the IoT.

12



3.2 Docker and Containers

Docker[26] is a software tool that provides a simple and efficient method for developers,

system administrators, and others that use OS-level virtualization to to deploy applications in

a sandbox, named containers. The primary advantage of Docker is that it enables users to

bundle an application and its dependencies into a standardized software unit for development.

In contrast to virtual machines, containers are more resource-efficient, resulting in reduced

overhead and improved utilization of system resources.

Docker makes use of resources in the Linux Kernel such as kernel namespaces and cgroups,

to allow the usage of multiple containers to operate concurrently on the same OS. This allows

containers to avoid the need for additional computer resources that would require the use of a

Virtual Machine.

Containers  provide  a  convenient  way  to  package  applications  independently  of  their

execution  environment.  This  enables  easy  and  consistent  deployment  across  various

13

Figure 4: Raspberry Pi 4B



environments, such as public clouds, private data centers, or personal computers, in a “plug

and  play”  manner.  By  separating  application  logic  from  the  execution  environment,

developers can create predictable and isolated environments that are easy to manage.

Docker containers are created from image file called docker file. The Docker image contains

all  the necessary executables,  code,  libraries and configuration needed to run a container

without requiring any changes.

3.3 Linux Traffic Control

The Linux Traffic Control (TC) [27] subsystem enables the management of network traffic

by providing functionalities such as policing, classification, shaping, and scheduling. This is

achieved through the use of queuing disciplines (qdiscs), which form a crucial component of

the  TC  architecture.  During  classification,  packet  content  can  be  altered  through  the

application of filters  and actions.  The scheduling mechanism involves organizing packets

before they enter or exit queues, with the FIFO scheduler being the most commonly used.

qdisc operations can be carried out  temporarily using the tc  utility or permanently using

NetworkManager.

TC can  be  used  to  simulate  different  network  conditions  and  test  how applications  and

services perform under different scenarios. For example, the queuing disciplines in TC allows

14

Figure 5: VM compared to Docker Container[26]



us  to  manipulate  traffic  and  simulate  different  network  conditions,  such  as  packet  loss,

latency, jitter and so on, to simulate a lossy network. 

3.4 Wireshark

Wireshark  is  a  free  and  open-source  software  used  for  analyzing  and  profiling  network

traffic. It  can be referred to as a network analyzer, sniffer, or network protocol analyzer.

Wireshark allows network administrators to examine network traffic at various levels, from

connection-level  information  to  individual  packet  bits.  Packet  capture  provides  network

administrators  with  information  about  individual  packets,  such  as  source,  destination,

protocol type, header data, and transmit time. This information can be useful for evaluating

security events and troubleshooting network security device issues.

As shown in figure 5, Wireshark typically displays information in three panels. The top panel

lists frames individually, with key data on a single line. The bottom-left panel explains any

single frame selected in the top panel, showing packet details that belong to the data link

layer, network layer, transport layer, or application layer. Finally, Wireshark's bottom-right

15

Figure 6: Viewing packet capture in WIreshark



panel displays the raw frame with a hexadecimal rendition on the left and the corresponding

ASCII values on the right.

3.5 Erlang

Erlang [28] is a programming language developed by Joe Armstrong, Robert Virding, and

Mike Williams in 1986 to provide soft real-time, fault-tolerance, distribution and hot code-

swapping in Telecom applications. It is a functional programming language that enables the

creation of distributed systems through the use of pure functions and immutable state.  It

comes with a library of tooles called OTP, designed to help build reliable systems. Erlang’s

base unit of abstraction is a process, and a normal Erlang application is built out of hundreds

of small Erlang processes.

The  authors  in  [30]  through  an  experimental  study,  conclude  that  Erlang  programming

language for the development of IoT applications mainly due to it’s low latency and low

memory usage,  in  addition  to  its  built-in  support  for  concurrency,  distribution  and fault

tolerance.

16



Chapter 4

QUIC

4.1 Introduction 17

4.2 Connection Establishment 17

4.3 Stream Multiplexing 19

4.4 Security 19

4.5 Connection Migration 20

4.6 Flow Control 20

4.7 Loss Detection 20

4.8 Congestion Control 21

4.1 Introduction

QUIC  is  a  relatively  new  connection-oriented  transport  protocol  originally  designed  by

Google[17] in 2013, and standarized by Internet Engineering Task Force (IETF)[18]. The

design of QUIC originally started to replace TCP+TLS+HTTP/2.0 in order to improve user

experience, having page load times in mind. It’s main objective is to provide the reliability of

TCP, while aiming to overcome it’s limitations by providing a more efficient and secure

protocol, utilizing UDP. In this section, QUIC’s main mechanisms are discussed below, as

presented in [3] and [22]. 

4.2 Connection Establishment

QUIC minimizes the number of RTT’s needed to setup a secure connection by combining the

cryptographic and transport handshake. The cryptographic handshake is done on a dedicated

reliable stream. If the handshake is successful, information regarding the origin is cached by

the client, allowing the client to establish an encrypted connection without an additional RTT

after the client handshake, for every subsequent connection to the same origin. Explained

below, are QUIC’s cryptographic handshake and the 0-RTT connection setup.

17



 Initial Handshake: Since the client has no information about the server, before the

handshake is done, an incomplete client hello (CHLO) message is sent to the server in

order to a reject (REJ) message as a reply. The REJ message contains: (i) a server

configuation  that  contains  the  server  long-term  Diffie-Hellman  public  key,  (ii)  a

certificate chain that authenticates the server, (iii) signature of the server configuration

and (iv) a source-address token, an encrypted block that consists of the client’s public

IP and server’s timestamp. This token is used by the client for subsequent connections

as proof of ownership of their IP. In other words, its a security mechanism to guard

against  IP  spoofing.  After  the  client  receives  the  server  configuration,  the

configuration  is  authenticated  by  verifying  the  received  certificate  chain  and

signature. Following that, the client sends a complete CHLO message that includes

it’s ephemeral Diffie-Hellman public key.

 Final (and repeat) handshake: At this point, the client can start sending encrypted

application data to the server since it can calculate the shared value from the Diffie-

Hellman public key sent by the server in the initial handshake and it’s own ephemeral

Diffie-Hellman private key, generating its initial keys. If the client starts sending data

encrypted with its initial keys without waiting for a server reply, it can achieve 0-RTT

data  latency.  On a successful  handshake,  server  replies with server  hello  (SHLO)

message. As soon as the server sends the SHLO message it switches to the forward-

secure keys for encryption. This is also the case for the client, after SHLO is received.

If  at  any  time,  the  source  address  token  or  the  server  config  expires,  the  server

changed certificates and cause handshake failure, even if the client sends a complete

CHLO.  The  server  handles  these  cases,  the  same as  if  it  received an  incomplete

CHLO and replies with a REJ message and the handshake continues.

18

Figure 7: QUIC handshake under difference scenarios



4.3 Stream Multiplexing

TCP’s  sequential  delivery  causes  a  performance-degrading  phenomenon  to  occur,  where

queued packets are held up in the queue because the first packet in line is taking too long to

be  processed  and leave  the  queue.  This  problem is  typically  refered  to  as  Head-of-Line

(HOL) blocking, because, as the name suggests, the head of the queue is blocking the traffic.

To overcome this, QUIC allows numerous streams over a single connectin. 

A stream is an bidirectional channel of a bytestream, that is used to send data from the client

to the server and vice versa. Each stream is assigned a stream id, to which the value is odd if

it is initiated by the client, and even otherwise in order to avoid collisions. The usage of

streams, ensures that a lost packet does not affect streams that their data was not included in

the packet, allowing applications to continue receiving subsequent data from other streams.

4.4 Security

QUIC packets are almost fully encrypted and authenticated except for some early handshake

and reset packets. Some parts of the header remain unecrypted since they are necessary for

routing and decryption. QUIC relies TLS 1.3[20] for all of its security aspects.

19

Figure 8: (a) shows TCP in-order deliver and (b) shows QUIC stream multiplexing



4.5 Connection Migration

QUIC allows connections to  persist  even when endpoint  addresses  (IP address  and port)

change, for example, due to NAT rebinding or an endpoint joining another network. This is

achieved with the introduction of 64-bit connection ID, which is used to identify endpoints.

As soon as a network change occurs, an endpoint can initiate a connection migration process

using its new addresses by sending a packet to earlier established connection ID’s. During

connection migration, the endpoints must verify whether or not the other peer is reachable to

their new address (IP and port) through a process named path validation.

Connection migration can only be initiated from the client, but there are some restrictions to

it. A client may not initiate connection migration before a handshake is confirmed because

the handshake requires a stable address during its duration.

4.6 Flow Control

QUIC utilizes flow control mechanisms to prevent receivers from being overwhelmed by

excessive data, thus ensuring optimal performance. The protocol employs two types of flow

control, connection-level and stream-level flow control to limit the amount of data that a

sender can send across all streams or an individual stream, respectively. Additionally, QUIC

implements credit-based flow control similar to HTTP/2, whereby a receiver advertises the

absolute byte offset that it is willing to receive for each stream. The sender can then send data

up to this limit, and the receiver periodically sends window update frames that increase the

advertised offset limit for the stream, enabling the sender to send more data. Connection-level

flow control  operates  similarly  to  stream-level  flow control,  but  it  aggregates  the  bytes

delivered and the highest received offset across all streams.

4.7 Loss Detection

QUIC uses acknowledgments and a Probe Timeout (PTO) algorithm to detect and recover

from lost  packets.  The transport  protocol implements various acknowledgment-based loss

detection  algorithms,  such  as  TCP's  Fast  Retransmit,  Early  Retransmit,  and  Forward

Acknowledgment.  If  a  packet  meets  certain  criteria,  it  is  declared  lost,  and QUIC takes

actions such as retransmitting data or discarding the frame. Spurious loss detection can lead

20



to  unnecessary  retransmissions,  so  implementations  can  adjust  reordering  thresholds  to

minimize recovery latency.

The PTO algorithm triggers the sending of one or two probe datagrams when ack-eliciting

packets are not acknowledged within the expected time or the server may not have validated

the client's address. PTO operates per packet number space and does not indicate packet loss

or cause prior unacknowledged packets to be marked as lost. The algorithm uses Tail Loss

Probe, RTO, and F-RTO algorithms from TCP, and the timeout computation is based on

TCP's RTO period. Loss detection is separate from RTT measurement and congestion control

because it relies on key availability.

4.8 Congestion Control

QUIC implements congestion control and reliability control separately to improve network

performance. Congestion control is achieved through a window-based scheme that limits the

maximum number of  bytes  a  sender  can have in  transit  at  any time.  QUIC incorporates

existing  congestion  control  algorithms,  but  does  not  aim to  develop  its  own.  Instead,  it

provides generic signals for congestion control, allowing senders to implement their  own

mechanisms. To avoid unnecessary congestion window reduction, QUIC only collapses the

congestion window if it detects persistent congestion.

QUIC  also  employs  pacing  to  prevent  short-term  congestion  by  regulating  the  interval

between packets based on factors such as the average round trip time, congestion window

size, and packet size. Congestion control is based on packet numbers, while reliability control

uses stream frame offsets. The QUIC standard [18] includes a congestion control algorithm in

the appendix, but senders are free to implement their own mechanisms.

21



Chapter 5

MQTT

5.1 Introduction 22

5.2 History 22

5.3 Architecture 23

5.3.1 Client 24

5.3.2 Broker 24

5.4 MQTT Topics 25

5.5 MQTT Control Packets 26

5.6 Packet Format 27

5.7 Quality of Service 27

5.8 Security 29

5.1 Introduction

MQTT  [31]  is  a  publish/subscribe  messaging  protocol  designed  for  use  in  machine-to-

machine communication (M2M) and IoT applications. It is designed to run over a reliable

transport layer protocol, so for this reason TCP was traditionally used, however, some recent

implementations are built on top of QUIC, such as EMQX broker and EMQX client written

in Erlang[21, 22].  MQTT is ideal for use in IoT applications and M2M communications

where small code footprint is required and network bandwidth is limited. Additionally, its

low power use makes it suitable for battery powered devices such as smartphones or sensors.

The contents of the following sections are derived from [31, 34].

5.2 History

MQTT was invented in  1999 by Dr.  Andy Stanford-Clark  of  IBM and Arlen  Nipper  of

Arcom Control Systems (now at Cirrus Link). At the time, it was designed for monitoring oil

22



pipelines over satellite connections. Over the years, its lightweight and efficient nature drawn

the attention of the IoT community and became an OASIS standard in 2014.

The original requirements [34] specified by the two inventors:

 Simple Implementation

 Quality of Service for data delivery

 Lightweight and low bandwidth usage

 Continuous session awareness

 Data agnostic

Although MQTT was originally designed for proprietary embedded systems, its core goals of

lightweight and efficient messaging still  remain relevant in the open IoT use cases. As a

result, the protocol has shifted its focus towards these use cases, leading to confusion about

its acronym. 

MQTT is no longer considered an acronym, but rather the name of the protocol itself. The

former acronym stood for MQ Telemetry Transport, with "MQ" referring to the MQ Series,

an IBM product that supported MQ telemetry transport. Despite being incorrectly labeled as a

message  queue  protocol  by  some  sources,  MQTT  is  not  a  traditional  message  queuing

solution, although it is possible to queue messages in certain cases. IBM used the protocol

internally  for  ten years  until  they released MQTT 3.1 as a  royalty-free version in  2010,

allowing everyone to implement and use the protocol. Since then, several applications were

built using it (e.g. Facebook Messenger adopted MQTT in an effort to increase battery life on

smartphones).

5.3 Architecture

MQTT  follows  the  publish/subscribe  pattern  which  presents  an  alternative  to  the

conventional  client-server  architecture.  As  discussed  previously,  unlike  the  client-server

model, where a client communicates directly with an endpoint, pub/sub decouples the client

that sends a message, or publisher, from the client or clients that receive the messages, or

subscribers. This allows MQTT to:

 Provide spatial decoupling between publishers and subscribers, where they only need

to know the hostname/IP and port of the broker to publish or receive messages.

23



 Provide decoupling by time, where the broker can store messages for offline clients,

provided the client had connected with a persistent session and subscribed to a topic

with QoS > 0. 

 Work  asynchronously,  so  a  client  is  not  blocked  while  waiting  or  publishing  a

message, however synchronization is possible if desirable.

In  addition  to  that,  MQTT  is  very  lightweight  on  the  client  side,  since  the  pub/sub

architecture allows most of the logic to be on the broker-side.

5.3.1 MQTT Client

In  MQTT,  an  MQTT client  refers  to  any device,  ranging  from microcontrollers  to  full-

fledged servers, that is connected to an MQTT broker through a network and runs an MQTT

library.  This  client  can  be  a  resource-constrained  device  that  connects  over  a  wireless

network and uses a minimal library or a standard computer with a graphical MQTT client for

testing. Therefore, any device that speaks MQTT over a TCP/IP stack can be considered an

MQTT  client.  The  MQTT  protocol's  client  implementation  is  straightforward  and

streamlined, making it an ideal choice for small devices. The ease of implementation is one

of the reasons MQTT is suitable for resource-constrained devices.

5.3.2 MQTT Broker

In MQTT, the MQTT broker is the central component that performs the key functions of the

publish/subscribe  protocol.  It  is  capable  of  handling  a  large  number  of  MQTT  clients

simultaneously, depending on the implementation.

The  MQTT  broker  is  responsible  for  receiving  and  filtering  all  incoming  messages,

determining which clients are subscribed to each topic, and delivering the message to those

clients.  In  addition,  the  broker  stores  session  data  for  clients  with  persistent  sessions,

including  subscriptions  and  missed  messages.  The  broker  is  also  responsible  for  client

authentication  and  authorization.  It  can  be  extended  to  support  custom  authentication,

authorization, and integration with backend systems. Integration is crucial for the broker, as it

is often directly exposed on the internet,  handles numerous clients, and needs to transfer

messages to downstream processing and analysis systems.

24



5.4 MQTT Topics

MQTT brokers use topics to to decide which clients receive which message. A topic refers to

a string that is used by the broker to identify to which clients each published message should

be forwarded. A topic may consist of multiple topic levels, where each topic is seperated by a

slash. Topics are lightweight and a broker accepts any valid topic, meaning that the client can

publish or subscribe to a topic without creating it.

For  example,  in  Figure  6  we  can  see  the  two  subscribers  are  subscribed  to  the  topic

bedroom/temperature. When the publisher sends the temperature to the broker, the topic to be

published is specifically noted in the publish packet, so the broker forwards the message to all

the subscribers subscribed to the corresponding topic.

Clients may also use wildcards to subscribe to multiple topics simultaneously, but not to

publish a message. There are two types of wildcards:

 Single Level: Replaces one topic level by using + as a topic level. For example a

subscription to topic home/firstfloor/+/temperature will subscribe to: 

◦ home/firstfloor/masterbedroom/temperature

◦ home/firstfloor/guestbedroom/temperature

but not:

◦ home/firstfloor/masterbedroom/brightness

◦ home/firstfloor/masterbedroom/bathroom/temperature

◦ home/groundfloor/masterbedroom/temperature

25



 Multi Level: Replaces many topic levels by using # as a topic level. A # may only be

used  as  the  last  topic  level  for  a  topic.For  example  a  subscription  to  topic

home/firstfloor/# will subscribe to: 

◦ home/firstfloor/masterbedroom/temperature

◦ home/firstfloor/masterbedroom/brightness

◦ home/firstfloor/guestbedroom/temperature

◦ home/firstfloor/guestbedroom/brightness

but not:

◦ home/groundfloor/livingroom/temperature

5.5 MQTT Control Packets

MQTT uses control packets to establish and manage communication between clients and

brokers. There are several types of control packets in MQTT:

 CONNECT: This packet is sent by a client to initiate a connection to a broker. It

contains  information  such  as  the  client  identifier,  username  and  password  (if

required), and the clean session flag.

 CONNACK: This packet is sent by the broker in response to a CONNECT packet. It

contains a status code indicating whether the connection was successful or not.

 PUBLISH: This packet is sent by a client to publish a message to a specific topic on

the broker. It contains the topic name, message payload, and QoS (Quality of Service)

level.

 PUBACK: This packet is sent by the broker to the client to acknowledge receipt of a

PUBLISH packet with a QoS level of 1.

 PUBREC: This packet is sent by the broker to the client to acknowledge receipt of a

PUBLISH packet with a QoS level of 2.

 PUBREL: This packet is sent by the client to the broker to release a PUBREC packet

with a QoS level of 2.

 PUBCOMP: This packet is sent by the broker to the client to acknowledge receipt of

a PUBREL packet with a QoS level of 2.

 SUBSCRIBE: This packet is sent by a client to subscribe to one or more topics on the

broker. It contains the topic name and QoS level for each subscription.

 SUBACK: This packet is sent by the broker in response to a SUBSCRIBE packet. It

contains a list of QoS levels for each subscription requested by the client.

 UNSUBSCRIBE: This packet is sent by a client to unsubscribe from one or more

topics on the broker. It contains the topic name for each subscription.

26



 UNSUBACK: This packet is sent by the broker in response to an UNSUBSCRIBE

packet to acknowledge the unsubscribe request.

 PINGREQ:  This packet is sent by the client to the broker to keep the connection

alive.

 PINGRESP: This packet is sent by the broker to the client to acknowledge receipt of

a PINGREQ packet.

 AUTH: This packet is used for authentication and is sent by a client to the broker. It

contains authentication data such as a username and password.

 DISCONNECT: This packet is sent by either the client or the broker to terminate the

connection.

5.6 Packet Format

One of the main reasons MQTT is considered ideal for IoT communication is due to the low

overhead of its packets. Unlike, for example, HTTP,  that has a large header, MQTT keeps a

concise header. This leads to efficient communication in resource-constrained environments

and keeps bandwidth usage low. The packet format is shown in Figure 10.

The fixed header takes 2 bytes for every packet,  and a variable header is used for some

control packets to set fields like topic name, QoS level, DUP flag etc.

5.5 Quality of Service (QoS)

Quality of Service (QoS) in MQTT is a mutually agreed upon level of delivery guarantee

between the message sender and receiver. When discussing QoS in MQTT, it is important to

27

Figure 10: MQTT Packet Format[33]



consider both sides of message delivery, i.e., message delivery from the publishing client to

the broker and message delivery from the broker to the subscribing client. The publishing

client determines the QoS level of the message and the broker transmits it to the subscribing

client using the QoS level specified by the subscriber during the subscription process.

QoS is a crucial feature of MQTT as it enables clients to choose a service level that suits their

network  reliability  and  application  logic.  MQTT  ensures  message  re-transmission  and

delivery  even  when  the  underlying  transport  is  unreliable,  making  communication  in

unreliable networks much easier.

MQTT provides three levels of QoS: 

 0 - At most once: QoS level 0 in MQTT is considered the minimum level of service

and provides a best-effort delivery guarantee. This means that there is no assurance of

message  delivery,  and  the  recipient  does  not  confirm  receipt  of  the  message.

Additionally, the sender does not store or retransmit the message. QoS level 0 is often

referred to as "fire and forget" and has similar reliability guarantees to the underlying

transport protocol.

 1 - At least once: QoS level 1 provides assurance that a message will be delivered at

least once to the recipient, and the sender will store the message until it receives a

PUBACK  packet  from  the  receiver,  which  confirms  that  the  message  has  been

received. However, it is possible for the message to be delivered multiple times. To

match the PUBLISH packet to the corresponding PUBACK packet, the sender uses

the packet identifier in each packet. If the sender does not receive a PUBACK packet

within a reasonable time frame, it resends the PUBLISH packet. Upon receiving a

message with QoS 1, the recipient can process it immediately. For instance, if the

recipient is a broker, the broker broadcasts the message to all subscribing clients and

then responds with a PUBACK packet. In the event that the publishing client resends

28

Figure 11: MQTT Publish Message Flow based on QoS level



the  message,  it  sets  a  duplicate  (DUP)  flag.  The  DUP  flag  is  used  for  internal

purposes only in QoS 1 and is not processed by either the broker or the client. The

recipient sends a PUBACK packet regardless of the DUP flag.

 2 -  Exactly  once: In  MQTT,  QoS level  2  provides  the  highest  level  of  service,

ensuring that each message is delivered exactly once to its intended recipients. This

level  is  considered  the  safest  but  also  the  slowest.  The  guarantee  of  delivery  is

accomplished  through  a  four-part  handshake,  consisting  of  at  least  two

request/response flows between the sender and receiver.  During this  process,  both

parties use the packet identifier of the original PUBLISH message to coordinate the

delivery of the message. When a receiver receives a QoS 2 PUBLISH packet from a

sender,  it  processes  the  message  and  responds  with  a  PUBREC  packet  as  an

acknowledgement.  If  the sender  does not  receive a  PUBREC packet,  it  sends the

PUBLISH  packet  again  with  a  duplicate  (DUP)  flag  until  it  receives  an

acknowledgement. Once the sender receives a PUBREC packet, it can safely discard

the initial PUBLISH packet and respond with a PUBREL packet. After the receiver

receives  the  PUBREL  packet,  it  can  discard  all  stored  states  and  reply  with  a

PUBCOMP packet. The same is true when the sender receives the PUBCOMP packet.

Until the receiver sends the PUBCOMP packet, it  stores a reference to the packet

identifier of the original PUBLISH packet to avoid processing the message twice.

After the sender receives the PUBCOMP packet, the packet identifier of the published

message becomes available for reuse. Upon completion of the QoS 2 flow, both the

sender and receiver are certain that the message is delivered, and the sender receives

confirmation of  delivery.  In  case  of  packet  loss,  the  sender  is  responsible  for  re-

transmitting the message within a reasonable amount of time, and the recipient must

respond to each command message appropriately.

5.6 Security

MQTT protocol employs several layers of security to prevent different types of attacks. As

MQTT aims to be a lightweight and user-friendly communication protocol for the IoT, it

specifies only a few security mechanisms. Therefore, most MQTT implementations use other

state-of-the-art security standards, such as TLS, to provide transport security. Building on

accepted standards is a sensible approach to ensuring security, as it can be a complex and

challenging task. In short, the security mechanisms that MQTT provides are:

 Authentication using username and password to connect to the broker.

29



 Authorization  in  order  to  manage  which  clients  can  access  certain  topics,  which

control packets one can use and the options a client can set.

 Encryption is optional when TCP is used. MQTT provides the option of encryption

through TLS+TCP on port 8883, instead of port 1883 used for not-encrypted TCP

connections. In case of MQTT over QUIC, the communication is always encrypted

using TLS1.3 on default port 14567(for emqx).

30



Chapter 6

Evaluation Setup and Results

6.1 Hardware Setup   31

6.2 Software Setup            32

6.3 Results   32

6.3.1 Connection Establishment   32

6.3.2 Publish Delay   35

6.3.3 CPU and Memory Usage   35

6.3.4 Bandwidth Usage   37

6.1 Hardware Setup

The hardware setup used for the experimental evaluation, as shown in Figure 7, consists of a

laptop, a Raspberry Pi 4 and a switch. The laptop acts as a broker, and it was also used to run

Wireshark [24] for all packet captures, as all traffic passes through the broker. The Raspberry

Pi played the role of both the publisher and the subscriber and was connected to a switch

through Ethernet.

  

The MQTT broker was run inside a docker container, on a laptop with 8GB RAM, which was

also connected to the router through Ethernet.

31

Figure 12: Evaluation Setup



To ensure time synchronization for calculating delay, the publisher and subscriber both ran

on the Raspberry Pi as in [23]. Therefore, every message published was transmitted through

the broker and back to the Raspberry Pi.

6.2 Software Setup

An  open  source  implementation  of  MQTT  broker  and  client,  named  emqx  [22]  and

emqtt_bench [21] were used for conducting the experiments. For the broker, a docker image

was used to run into a container for ease of deployment, whereas the benchmarking tool,

emqtt_bench, used as a client was built from source. In order to emulate a lossy network for

several experiment scenarios, the linux tc utility was used, which allows as to configure the

kernel packet scheduler and control the egress packet loss rate. Wireshark was used to record

all the traffic between the pulisher and the subscriber. For gathering system information such

as cpu and memory usage, the linux utility, htop was used.

Note than EMQX broker and client use the MSQUIC library for QUIC, which implements

congestion control using CUBIC.

6.3 Results

This  section  presents  the  performance  evaluation  conducted  on  the  previously  described

testbed. We examine the performance of MQTT over TCP and QUIC in terms of traffic delay

under different packet loss scenarios. It's important to note that for all configurations, TCP is

utilized alongside TLS to ensure consistent functionality and enable fair comparisons, unless

stated otherwise.

As  mentioned  previously,  the  linux  TC  utility  was  used,  to  replicate  a  lossy  network

environment. By conducting these experiments, we aim to gain insights into the behavior of

MQTT over QUIC in comparison to the current standard of MQTT and assess the impact the

underlying transport layer protocol has on delay.

6.3.1 Connection Establishment

To test  the connection establishment latency, we deployed 1000 client subscribe requests

from emqtt_bench. For the QUIC 0-RTT scenario, the client needs to firstly connect with a 1-

32



RTT handshake to obtain the session ticket needed for the 0-RTT handshake using the flag –

load-qst  in  emqtt_bench.  Before  going  through  the  results,  the  connection  establishment

process of MQTT with TCP+TLS, MQTT with QUIC 1-RTT and MQTT with QUIC 0-RTT

is demonstrated.

Shown below is the handshake performance of QUIC vs TCP+TLS vs TCP under various

packet loss configurations. 

33

0 5 10 15 20 25
0

200

400

600

800

1000

1200

Handshake Delay

QUIC 0-RTT
QUIC 1-RTT
TCP-TLS
TCP

Packet Loss %

A
vg

 D
el

ay
(m

s)

Figure 13: Connection Establishment process. MQTT QoS=0

0 5 10 15 20 25
0

200

400

600

800

1000

1200

Handshake Delay

QUIC 0-RTT
QUIC 1-RTT
TCP-TLS
TCP

Packet Loss %

A
vg

 D
el

ay
(m

s)



With  low packet  loss  rates,  QUIC 1-RTT,  TCP+TLS and  TCP do  not  show any  major

differences in the avg handshake delay, however as the packet loss grows, TCP+TLS gets

outperformed by QUIC with almost half the delay. The handshake delay of QUIC 1-RTT is

comparable to TCP’s, however TCP does not provide us with any encryption on its own. The

delay of QUIC 0-RTT(reconnection) handshake is negligible, and even though it effectively

reduces the handshake overhead and latency, emqx does not support early data by default,

which means encrypted application data cannot be sent with the first complete hello during

QUIC 0-RTT handshake. The reason is, early data are vulnerable to replay attacks and QUIC

recommends not  carrying data  on 0-RTT that  may possibly change the application state.

Therefore, the connect and subscribe delay results of QUIC 1-RTT and QUIC 0-RTT will be

identical.

34

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

MQTT Connect Delay

QUIC 0-RTT
QUIC 1-RTT
TCP-TLS
TCP

Packet Loss %

A
vg

 D
el

ay
 (m

s)

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

1800

MQTT Subscribe Delay

QUIC 0-RTT
QUIC 1-RTT
TCP-TLS
TCP

Packet Loss %

A
vg

 D
el

ay
 (m

s)



6.3.2 Publish Delay

For the message publishing test, a single publisher and a single subscriber were used, so both

QUIC and TCP achieved 100% delivery ratio irrespective of the packet loss rate observed in

all  conducted  experiments.  Nonetheless,  messages  transferred  over  TCP  suffered

considerably more retransmissions than QUIC, which can be possibly attributed to better

flow control, error correction and retransmission mechanisms. The publisher was set to send

1000 messages with an interval of 1s inbetween, in order to minimize congestion.

QUIC outperforms TCP carried messages for all values of packet loss. The results show that

TCP and TCP+TLS suffer from high delay which grows linearly as packet loss increases. On

the other hand, messages transported with QUIC have stable delay for all values of packet

loss. The high delay noticed for the TCP streams, is most likely attributed to HOL blocking,

which in turn caused noticeable amount of packet loss compared to QUIC stream. This effect,

would have even more negative impact in applications which rely on bursty traffic such as

motion sensors where congested links are more common.

6.3.3 CPU and Memory Usage

The publisher running over QUIC, also showed higher peak CPU usage than its counterparts.

Precisely, 61%, 25% and 25%, max CPU utilization was shown by the QUIC, TCP+TLS and

TCP implementations of MQTT respectively. In terms of memory usage TCP had a slight

edge, followed by QUIC and last TCP+TLS. However, the overall CPU and Memory usage

35

0 5 10 15 20 25
0

20

40

60

80

100

120

140

Publish Delay

QUIC
TCP-TLS
TCP

Packet Loss %

A
vg

 D
el

ay
 (m

s)



of QUIC appears to be much lower if take into consideration the total communication delay.

The publish delay for QUIC, TCP and TCP+TLS is 18ms, 92ms and 118ms respectively. At

worst case scenario for each we had a a peak of 60%, 25% and 25% CPU utilization. We can

use the CPU utilization x Communication Delay product to calculate the total amount of CPU

recources  used  over  the  given  duration.  Therefore,  the  CPU  time  for  QUIC,  TCP  and

TCP+TLS is 10.8ms, 30ms and 30ms respectively, concluding that QUIC has a lower CPU

usage that translates to lower energy usage.

36

QUIC TCP-TLS TCP
398

400

402

404

406

408

410

412

414

Publisher Memory Usage

Memory Usage (MB)

QUIC TCP-TLS TCP
0

10

20

30

40

50

60

70

Publisher CPU Usage

Cpu Utilization %



6.3.4 Bytes generated per packet

In terms of bandwidth usage, QUIC imposes more overhead, and as the packet loss ratio

increases,  the  traffic  generated  by  QUIC is  over  100% higher  than  TCP(+TLS).  This  is

caused due to  the larger  header  and additional  features  of  QUIC such as  Forward Error

Correction(FEC).  As the  packet  loss  rate  gets  higher,  the  FEC redundancy added to  the

original packet also gets higher, thus leading to higher average size per packet, if QUIC is

used.

37

0 5 10 15 20 25
0

100

200

300

400

500

600

Average bytes per message

QUIC
TCP-TLS
TCP

Packet Loss %

B
yt

es

Average bytes generated per packet



Chapter 7

Conclusion

7.1 Summary   38

7.2 Future Work   38

7.3 Conclusions   39

7.1 Summary

In this thesis, an in-depth analysis and comparison of MQTT over TCP with MQTT over

QUIC is made. We analyzed the theoretical improvements that QUIC offers as a transport

layer protocol over TCP and why it can also benefit the MQTT, and the IoT in general. Using

an open-source implementation of an MQTT client and broker, both by EMQX, we studied

the performance of MQTT over QUIC in comparison with MQTT over TCP. Experimental

results showed that MQTT w/QUIC outperforms MQTT w/TCP in every scenario in terms of

delay of handshake, connection establishment and MQTT traffic. MQTT over QUIC peak

CPU  usage  appears  to  be  higher  than  TCP(+TLS)  but  the  overall  CPU  used  is  lower.

However,  using  QUIC  generates  more  traffic,  as  the  traffic  generated  is  up  to  double

compared to TCP, for high packet loss rate, due to FEC.

7.2 Future Work

MQTT over QUIC showed higher traffic generated than the current state of the protocol

using TCP. This can be reduced by modifying the FEC mechanism to be less aggressive or

completely removing it.  In general, several optimizations can be done to reduce the code

footprint of QUIC and reduce the computational complexity of the encryption mechanisms.

Also, the open-source EMQX client and broker used, has not utilized all of QUIC features

such as flow control. Flow control may not seem that useful for IoT applications, but there

are some applications that depend on bursty traffic such as motion sensing apps. The above

can be addressed in future work.

38



7.3 Conclusions

 

QUIC shows very promising results for usage with MQTT in terms of traffic delay, CPU

usage and the connection establishment phase.  In addition,  MQTT over QUIC suffered a

noticeably less amount of packet loss than MQTT over TCP. Moreover, the client migration

mechanism it provides makes it suitable for the IoT and mobile devices as it can seamlessly

migrate  from one network to  another and survive ip  or port  changes (e.g.  mobile phone

switching from Wi-Fi to cellular network). Also, the fact that QUIC is not affected from HOL

blocking, makes MQTT even more capable to support bursty traffic,for use in applications

that rely on it such as applications relying on motion sensors.

39



Bibliography

[1] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of Things (IoT): A Literature

Review,” Journal of Computer and Communications, vol. 03, no. 05, pp. 164–173,

2015, doi: https://doi.org/10.4236/jcc.2015.35021.

[2] “IoT  connected  devices  worldwide  2019-2030,”  Statista.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

#:~:text=The%20number%20of%20Internet%20of.

[3] A. Langley et al., “The QUIC Transport Protocol,” Proceedings of the Conference of

the ACM Special Interest Group on Data Communication - SIGCOMM ’17, 2017,

doi: https://doi.org/10.1145/3098822.3098842.

[4] I.  Yaqoob  et  al.,  “Internet  of  Things  Architecture:  Recent  Advances,  Taxonomy,

Requirements, and Open Challenges,” IEEE Wireless Communications, vol. 24, no. 3,

pp. 10–16, Jun. 2017, doi: https://doi.org/10.1109/mwc.2017.1600421.

[5] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A Survey on

5G  Networks  for  the  Internet  of  Things:  Communication  Technologies  and

Challenges,”  IEEE  Access,  vol.  6,  pp.  3619–3647,  2018,  doi:

https://doi.org/10.1109/access.2017.2779844.

[6] M.  Koster,  A.  Keränen,  and  J.  Jimenez,  “Publish-Subscribe  Broker  for  the

Constrained  Application  Protocol  (CoAP),”  IETF  Datatracker,  May  04,  2022.

Accessed:  Apr.  22,  2023.  [Online].  Available:

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-10

[7] A. Lazidis, K. Tsakos, and E. G. M. Petrakis, “Publish-Subscribe approaches for the

IoT and the cloud: Functional and performance evaluation of open-source systems,”

Internet  of  Things,  p.  100538,  May  2022,  doi:

https://doi.org/10.1016/j.iot.2022.100538.

40



[8] W.  Shang,  Y.  Yu,  R.  Droms,  and L.  Zhang,  “Challenges  in  IoT Networking via

TCP/IP  Architecture,”  2016.  Available:

https://named-data.net/wp-content/uploads/2016/02/ndn-0038-1-challenges-iot.pdf

[9] P.  Kumar  and  B.  Dezfouli,  “Implementation  and  analysis  of  QUIC  for  MQTT,”

Computer  Networks,  vol.  150,  pp.  28–45,  Feb.  2019,  doi:

https://doi.org/10.1016/j.comnet.2018.12.012.

[10] K. Lakshminadh, N. Siva, Rao, and A. Radha, “ANALYSIS OF TCP ISSUES IN

INTERNET  OF  THINGS.”  Accessed:  Nov.  28,  2022.  [Online].  Available:

https://acadpubl.eu/jsi/2018-118-14-15/articles/14/24.pdf

[11] S. Saini and A. Fehnker, “Evaluating the Stream Control Transmission Protocol Using

Uppaal,” Electronic Proceedings in Theoretical Computer Science, vol. 244, pp. 1–13,

Mar. 2017, doi: https://doi.org/10.4204/eptcs.244.1.

[12] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version

1.2,” Aug. 2008, doi: https://doi.org/10.17487/rfc5246.

[13]  T. Kothmayr, C. Schmitt, W. Hu, M. Brünig, and G. Carle, “DTLS based security

and two-way authentication for the Internet of Things,” Ad Hoc Networks, vol. 11,

no. 8, pp. 2710–2723, Nov. 2013, doi: https://doi.org/10.1016/j.adhoc.2013.05.003.

[14] F. Iqbal, M. Gohar, H. Karamti, W. Karamti, S.-J. Koh, and J.-G. Choi, “Use of QUIC

for AMQP in IoT networks,” Computer Networks, vol. 225, p. 109640, Apr. 2023,

doi: https://doi.org/10.1016/j.comnet.2023.109640.

[15] M.  Masirap,  M.  H.  Amaran,  Y.  M.  Yussoff,  R.  A.  Rahman,  and  H.  Hashim,

“Evaluation of reliable UDP-based transport protocols for Internet of Things (IoT),”

IEEE  Xplore,  May  01,  2016.  https://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=7575063.

[16] R. Herrero, “Analysis of the constrained application protocol over quick UDP internet

connection  transport,”  Internet  of  Things,  vol.  12,  p.  100328,  Dec.  2020,  doi:

https://doi.org/10.1016/j.iot.2020.100328.

41

https://doi.org/10.1016/j.iot.2020.100328
https://doi.org/10.1016/j.comnet.2023.109640
https://doi.org/10.1016/j.adhoc.2013.05.003
https://doi.org/10.17487/rfc5246
https://doi.org/10.4204/eptcs.244.1
https://acadpubl.eu/jsi/2018-118-14-15/articles/14/24.pdf
https://doi.org/10.1016/j.comnet.2018.12.012
https://named-data.net/wp-content/uploads/2016/02/ndn-0038-1-challenges-iot.pdf


[17] “QUIC,  a  multiplexed  transport  over  UDP,”  www.chromium.org.

https://www.chromium.org/quic/

[18] M.  Thomson  and  J.  Iyengar,  “RFC 9000  QUIC:  A  UDP-Based  Multiplexed  and

Secure Transport” 2021. Available: https://www.rfc-editor.org/rfc/rfc9000.pdf

[19] A.  Langley  and  W.-T.  Chang,  “QUIC  Crypto,”  Google  Docs.

https://docs.google.com/document/d/1g5nIXAIkN_Y-

7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit.

[20] M. Thomson and S. Turner, “RFC FT-IETF-quic-TLS: Using TLS to secure quic,”

IETF  Datatracker,  27-May-2021.  [Online].  Available:

https://datatracker.ietf.org/doc/html/rfc9001.

[21] “emqtt-bench,”, https://github.com/emqx/emqtt  -bench  .

[22] “EMQX,”, https://github.com/emqx/emqx.

[23] D.  Thangavel,  X.  Ma,  A.  Valera,  H.-X.  Tan,  and  C.  K.-Y.  Tan,  “Performance

evaluation of MQTT and CoAP via a common middleware,” IEEE Xplore, Apr. 01,

2014. https://ieeexplore.ieee.org/abstract/document/6827678

[24] Wireshark  Foundation,  “Wireshark,”  Wireshark.org,  2016.

https://www.wireshark.org/

[25] R. P. Ltd, “Raspberry Pi,” Raspberry Pi. https://www.raspberrypi.com/

[26] Docker. https://www.docker.com/

[27] C.  Yunlong,  “What  Is  Docker  Container?  How  Does  It  Work?  -  Huawei,”

info.support.huawei.com.

https://info.support.huawei.com/info-finder/encyclopedia/en/Docker+Container.html

[28] EMQX. https://www.emqx.io/

42

https://www.emqx.io/
https://info.support.huawei.com/info-finder/encyclopedia/en/Docker+Container.html
https://www.raspberrypi.com/
https://www.wireshark.org/
https://ieeexplore.ieee.org/abstract/document/6827678
https://github.com/emqx/emqx
https://github.com/emqx/emqtt
https://datatracker.ietf.org/doc/html/rfc9001
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://www.chromium.org/quic/


[29] “tc(8)  -  Linux  manual  page,”  man7.org.

https://man7.org/linux/man-pages/man8/tc.8.html

[30] G.  Fedrecheski,  L.  C.  P.  Costa,  and M. K.  Zuffo,  “Elixir  programming language

evaluation  for  IoT,”  IEEE  Xplore,  Sep.  01,  2016.

https://ieeexplore.ieee.org/abstract/document/7797392

[31] MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul

Gupta.  07  March  2019.  OASIS  Standard.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html.

[32] J. P. Vasseur, “Terms Used in Routing for Low-Power and Lossy Networks,” IETF,

Jan. 01, 2014. https://datatracker.ietf.org/doc/rfc7102/.

[33] “MQTT Tutorial | MQTT architecture, MQTT protocol use cases,”  www.rfwireless-

world.com. https://www.rfwireless-world.com/Tutorials/MQTT-tutorial.html

[34] HiveMQ, “MQTT & MQTT 5 Essentials A comprehensive overview of MQTT facts

and features for beginners and experts alike”

43

https://www.rfwireless-world.com/Tutorials/MQTT-tutorial.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://ieeexplore.ieee.org/abstract/document/7797392
https://man7.org/linux/man-pages/man8/tc.8.html

