

Dissertation

DEVELOPMENT OF AN AUTOMATED COURSE SCHEDULING

TOOL USING CONSTRAINT PROGRAMMING

Sohaib Nassar

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2023

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Development of an Automated Course Scheduling Tool using Constraint

Satisfaction Programming

Sohaib Nassar

Supervisor:

Dr. Anna Philippou

The Individual Diploma Thesis was submitted for partial fulfillment of the requirements

for obtaining the degree of Computer Science of the Department of Computer Science

of the University of Cyprus

May 2023

Acknowledgment

Foremost, I would like to express my sincere gratitude to my supervisor. Dr. Anna

Philipou, for her unconditional guidance and support during my journey of writing my

dissertation. Her insight, feedback and expertise have been invaluable in guiding me,

and ensuring the quality of my work.

I am also deeply thankful to my family for their support, understanding and

encouragement during my journey.

I would like to also extend my gratitude to my friends who have provided me with

valuable insight. Their presence and support have kept me encouraged and motivated to

excel in my work.

Lastly, I would like to express my appreciation to every professor, friend, colleague,

and everyone who played a part in my journey. Their support means the world to me.

Abstract

Course scheduling holds immense significance within a university department,

demanding extensive coordination and substantial manpower to be crafted every

semester. The department of Computer Science in the University of Cyprus produces its

course schedules by utilizing a manual approach.

Course scheduling, being an NP-complete problem, is a very hard problem for computers

to solve efficiently. Hence, most approaches that attempt to solve it use some form of

Artificial Intelligence techniques.

This dissertation focuses on the development of a system that would replace the current

time-consuming approach with a more efficient and effective automated approach. Our

method employs the Minizinc tool, which is a modeling language used for modeling

Constraint Satisfaction problems to be passed to independent solvers.

Our work starts with exploring the course scheduling problem. Forthwith, we follow the

stages of the Software Development Process in the light of developing the automated tool.

Our final system consists of a web-interface which is used for the communication of the

requirements of the schedule to the system, a Minizinc model, used to describe the

schedule problem in a solver-independent form, and back-end scripts which are

responsible for the communication of the aforementioned parts.

Finally, we evaluate our approach and determine that the developed Minizinc model

successfully generates solutions for previous semester’s schedules within a reasonable

timeframe.

Contents
1 Introduction .. 1

1.1 General introduction .. 1

1.2 Motivation .. 2

1.2.1 The Scheduling problem and its time-complexity 2

1.2.2 Scheduling in the Department of Computer Science 2

1.2.3 Motivation summary ... 3

1.3 Objectives of the dissertation ... 3

1.4 Methodology .. 3

1.5 Outline of Dissertation.. 4

2 Background ... 6

2.1 Introduction ... 6

2.2 Existing tools ... 6

2.3 Related work ... 7

2.3.1 Techniques overview.. 8

2.3.2 Advanced ILP Techniques .. 9

2.3.3 Scheduling in MiniZinc ... 10

2.3.4 Particle Swarm Optimization with Local Search 11

2.3.5 Simulated Annealing.. 12

2.4 Chosen approach ... 13

2.4.1 Constraint Satisfaction Programming ... 13

2.4.2 Minizinc modeling language ... 14

3 Software Development Process & Technologies 15

3.1 Introduction ... 15

3.2 The Incremental model .. 17

3.3 Technologies .. 17

3.3.1 Front-end Development ... 18

3.3.1.1 HTML: Hypertext Markup Language ... 18

3.3.1.2 CSS: Cascading Style Sheets .. 19

3.3.1.3 JavaScript Programming Language ... 19

3.3.2 Back-end Development .. 19

3.3.2.1 PHP Hypertext Preprocessor ... 20

3.3.2.1 Python Programming Language ... 20

3.3.2.3 MySQL Relational Database Management System 21

4 Requirements .. 22

4.1 Introduction ... 22

4.2 Requirements Specification ... 23

4.3 Schedule Specifications... 23

4.3.1 Course types ... 23

4.3.2 Schedule requirements .. 24

4.4 User types ... 26

4.5 Interface requirements ... 26

4.5.1 Interface functional requirements for Instructor users 27

4.5.2 Interface functional requirements for Administrator users 28

4.5.3 Non-functional requirements .. 30

4.6 Use cases ... 31

5 Design .. 33

5.2 System architecture .. 33

5.3 Database design ... 34

5.3.1 Tables .. 34

5.3.2 Database Relational Schema ... 38

5.4 Front-end design ... 39

5.4.1 Navigation pattern ... 39

5.4.2 Common pages ... 40

5.4.3 Instructor pages ... 42

5.4.4 Administrator pages .. 48

6 Implementation .. 55

6.1 Front-end implementation ... 56

6.1.1 Development environment .. 56

6.2.2 Development ... 56

6.1.2.1 Bootstrap .. 56

6.1.2.2 PHP .. 56

6.1.2.3 Security .. 57

6.1.2.4 Error prevention and handling ... 57

6.2 Minizinc Implementation ... 59

6.2.1 Environment ... 59

6.2.2 Algorithmic logic .. 60

6.2.3 Minizinc syntax .. 61

6.2.4 Parameters and Variables ... 62

6.2.4.1 Timeslots parameters ... 62

6.2.4.2 Variables .. 62

6.2.4.3 Unavailability parameters .. 63

6.2.4.4 Course relationships parameters ... 63

6.2.4.5 Course details parameter ... 63

6.2.5 Constraints ... 64

6.2.6 Versions ... 72

6.2.7 Solver ... 73

6.3 Back-end implementation .. 74

6.3.1 Input script ... 74

6.3.2 Output scripts ... 74

7 Testing and Evaluation .. 76

7.1 Minizinc Model Testing .. 76

7.2 Website Evaluation ... 80

7.3 Limitations ... 85

8 Conclusion ... 86

8.1 Conclusion ... 86

8.2 Challenges .. 86

8.3 Future work ... 87

Bibliography .. 88

Appendix 1 ... 91

Appendix 2 ... 93

Appendix 3 ... 95

1

Chapter 1

1 Introduction

1.1 General introduction

1.2 Motivation

 1.2.1 The problem with Scheduling

 1.2.2 Scheduling in the Department of Computer Science

 1.2.3 Motivation summary

1.3 Objectives of the dissertation

1.4 Methodology

1.5 Outline of dissertation

1.1 General introduction

In our fast-paced world, staying organized is essential for the seamless and dependable

operation of any entity. A vital ingredient of an effective organization is the thoughtful

utilization of schedules. In simpler terms, for an organization to function optimally, it

must embrace customized schedules that align perfectly with its unique needs and

available resources. By doing so, it can cultivate an effective and efficient environment.

These schedules are used to organize the different tasks, activities, or events in an

organization to several times, places, and resources. The Department of Computer

Science is a great example of such an institution where schedules play a key role in its

operation. As such, the department develops a new schedule for every semester, to keep

up with the ever-changing needs and resources available to it. These schedules mainly

assign the different courses to be taught in the department to different timeslots, based on

varying criteria. This dissertation aims to explore the scheduling problem and develop a

dynamic scheduling system for the Department, that uses advanced artificial intelligence

techniques, such as constraint satisfaction programming to automate the scheduling

process. By doing so, the system can reduce the time and effort required to create and

2

manage the department’s schedules. Through this work, we hope to enhance the

department's operations and contribute to its overall efficiency and effectiveness.

1.2 Motivation

1.2.1 The Scheduling problem and its time-complexity

Task scheduling for any type of organization can be an extremely challenging job. The

problem with scheduling lies in the difficulty of coordinating the availability of people,

resources, and time. For small entities, such as small schools, small university

departments or small businesses, the task can be overseen using simple organization tools,

such as AscTimetable and SaaSworthy, or simply be done manually. On the other hand,

as these organizations get bigger and become more complex, there is a substantial

increase in resources and dependencies between the various tasks and resources to be

scheduled. These factors deem the job of developing a correct and efficient schedule more

complex and time consuming, which may make it overwhelming if not impossible for a

human to accomplish.

The university course scheduling problem was shown by Kingston et al. [18] to be NP-

Complete, meaning it is as hard to solve as any other NP problem. Therefore, finding a

polynomial solution to it would prove that all NP problems can be solved in polynomial

time [18]. This fact discourages us from attempting to implement a brute force approach,

where all combinations would be tested until a satisfactory one is found, for the simple

reason that the search space is astronomically large. Therefore, a different approach must

be taken, such as utilizing techniques from the field of Artificial Intelligence

1.2.2 Scheduling in the Department of Computer Science

Currently, an iterative method is used by the department’s secretary to create each

semester’s schedule. In this method, the corresponding schedule from the previous year

is edited based on any new needs or requirements that appear. This, for example, can

include the addition of a new teaching instructor, a new course, a change to an existing

course, or the addition of a new laboratory. This approach, as expected, can be very time

consuming and labor intensive. In addition, it can lead to errors and inaccuracies in the

3

final schedule, particularly when there are significant differences in the requirements

compared to the previous version. Furthermore, even minor adjustments to the semester

schedule can have implications for the resulting timetable when applying the manual

approach. Such subtle modifications may necessitate significant reconstruction due to the

intricate interdependencies and resource availabilities among the various entities

involved. Subsequently, creating an optimal schedule with this method can be very

challenging, hence the schedule that is usually produced can be furtherly optimized,

which in the case of a manual approach cannot be easily achieved.

1.2.3 Motivation summary

The inspiration for this dissertation is to solve the problem of manual scheduling, as it

has been described above. An automated tool for the creation of a semester schedule for

the Department of Computer Science, which would consider the factors and complexities

of the schedule. Such a tool would make the job of the secretary easier and make the

department less vulnerable to unanticipated consequences.

1.3 Objectives of the dissertation

The main aim of this dissertation is to research and develop an automated tool for the

creation of a timetable-schedule for the numerous professors and teaching assistants at

the Department of Computer Science in the University of Cyprus. This tool would

consider the various factors that need to be taken in mind when creating a timetable, such

as the availability of instructors and teaching assistants, the availability of resources, and

the dependencies between the different courses. In addition, another objective is to ensure

that the tool is adaptable to changing requirements and needs. For example, it should be

able to handle the addition or removal of courses, changes in the availability of instructors

or resources, and other unpredicted changes.

1.4 Methodology

With the goal of understanding the problem at hand, conducting research was one of the

first steps that were taken. Firstly, the methods with which different organizations handled

their scheduling tasks were investigated, this included the way they managed to create

their schedules, the difficulties they faced, and the software that they used, if any.

4

Furthermore, after some in-person talks with some of the instructors at the Department of

Computer Science, a general idea as to what the problem is, was developed, as well as for

an idea as to what a solution to this problem would look like and how it would function.

Moreover, existing implementations that solved the scheduling problem were

investigated, alongside the different algorithms that were used to implement such tools.

Subsequently, the incremental model of the Software Development Life Cycle (SDLS)

was decided to be used, and the first design iterations for the database and the front-end

interface were created. After the initial design, the Incremental method was applied to

advance the interface, the basic functionalities were added one by one. Besides that, the

Minizinc tool was chosen to be used for the development of the algorithm (model) that

would generate the final schedules. The initial model was developed to match the existing

functionality of the interface. Following that, both the Minizinc implementation and the

interface were developed iteratively, by adding new constraints to the Minizinc model

and testing them, then adding the new functionalities to the interface. In addition, the

database was also incrementally developed, on top of the initial design, so that it can

fulfill the growing needs and complexity of the tool. Finally, once the tool was complete,

testing was conducted to find any weak points, and to examine its final abilities.

1.5 Outline of Dissertation

The remainder of the dissertation is organized as follows.

Chapter 2 presents the conducted research which was orchestrated for the study of

existing approaches that solve the scheduling problem. Moreover, the background work

preceding the dissertation is also presented. In addition, the decisions for the approach

used in our implementation are discussed.

In Chapter 3, the Software Development Process (SDP) is demonstrated. Specifically, the

Incremental Model, which was used in our development process, is illustrated.

Additionally, the various employed technologies are presented and discussed.

5

Chapter 4 documents the Requirements Analysis stage of the Software Development

Process. This includes documenting and elaborating on the functional and the non-

functional requirements for the system interface and the backend algorithm.

Chapter 5 illustrates the Design stage of the SDP where the design decisions for the Web

interface and the Database are depicted and explained.

In Chapter 6, some key components of the implementation are showcased, providing

explanations on some decisions that were made regarding the front-end interface, the

back-end scripts and the Minizinc model.

Chapter 7 discusses the testing and evaluations that were conducted in the Evaluation

stage of the SDP. In addition, the results of these evaluations are also presented and

discussed.

Finally, Chapter 8 concludes this work by highlighting the encountered challenges that

were faced during the development process and proposes some future improvements that

can be implemented in the system as part of future work.

6

Chapter 2

2 Background

2.1 Introduction

2.2 Existing tools

2.3 Related work

 2.3.1 Techniques overview

 2.3.2 Advanced ILP Techniques

 2.3.3 Scheduling in MiniZinc

 2.3.4 Particle Swarm Optimization with Local Search

 2.3.5 Simulated Annealing

2.4 Chosen approach

2.4.1 Minizinc

2.4.2 Constraint Satisfaction Programming

2.1 Introduction

In this chapter, we present the research which was conducted for this dissertation for the

purpose of understanding and solving the scheduling problem. The main goal was to

understand and identify the different methods that have already been employed and

researched for this specific problem. The first section of this chapter discusses the related

works, which include various techniques such as Advanced ILP Techniques, Scheduling

in Minizinc, Particle Swarm Optimization with Local Search, and Simulated Annealing.

The second section presents and reviews the technique of Constraint Satisfaction

Programming from the field of Artificial Intelligence.

2.2 Existing tools

There exists a plethora of scheduling tools used for task scheduling. Ad Astra, College

Scheduler and aSc Timetables are some of many proprietary scheduling tools. These tools

7

provide convenient solutions for small institutions to efficiently organize their courses.

By automating the scheduling process, these tools can save significant time and effort for

the institution. Moreover, they offer a diverse range of established functionalities that can

be tailored to meet the specific requirements of the institution. However, it's important to

note that these tools are proprietary, meaning they require a financial investment from the

institution to utilize their benefits. In addition, they might not be suited for the unique

requirements of an institution and therefore force the institution to change the way it

operates.

Developing a specialized tool for the department, on the other hand, can offer many

advantages in comparison to the use of the existing tools. Firstly, the department would

be self-sufficient, meaning it would not rely on a third party for a crucial part of its

operation. Furthermore, a specialized tool can offer long term scalability, where the tool

can grow and adapt to evolving needs. Finally, a specialized tool could be integrated with

existing systems in the department to facilitate seamless and integrated operation.

2.3 Related work

The field of automated course scheduling has been subject to comprehensive research,

incorporating diverse techniques and methodologies. The objective of this sub-chapter is

to present and expound upon various approaches that have been established for the

purpose of addressing this specific issue.

It is important to note that the scheduling problem can have a variety of instances and

characteristics, based on the needs and requirements of each problem. In essence, the

scheduling problems can look very different, depending on its specific application.

Consequently, certain approaches may prove more suitable for specific problems

compared to others.

The problem which this work is trying to solve is the problem of course scheduling in the

Department of Computer Science as it was described in Chapter 1. Hence, the approach

that we would choose for solving this problem must satisfy some criteria. It should be

efficient, as in, find a valid solution in an acceptable timeframe. It should be

8

uncomplicated, so that it can be implemented in the timeframe available to us. It should

be suitable for the department’s schedule requirements. Finally, it should not require any

proprietary software.

In light of this, in the next sub-chapters, an overview of the different methods used for

solving the problem of course scheduling is presented. Consequently, some

implementations that have been deployed for tackling scheduling problems are explored.

2.3.1 Techniques overview

There are various techniques used in solving the scheduling problem, these can be

grouped into three categories, single solution based meta-heuristics approaches,

operational research-based approaches and population based meta-heuristics techniques

[21]. Each one of these will be briefly introduced and evaluated to determine their

suitability for addressing our problem.

Single solution-based approaches, sometimes referred to as local search algorithms start

with a single solution and then try to find a better solution by searching the neighborhood

space. They do this by iteratively improving the given solution, until an optimal solution

is found. These techniques offer a high-quality solution while also being efficient.

However, these approaches may be difficult to implement in large scale problems because

of their scalability issues. In addition, they can be biased in the solution they find, as the

scheduling problems are very complex and have a large search space [21]. For these

reasons, they would not be our first choice for developing a scheduling algorithm from

the department. Simulated Annealing is an example of a single solution based meta-

heuristic approach.

Operational research-based approaches are usually derived from the Graph Coloring

problem. These approaches try to develop an algorithm that finds one of the many valid

solutions that satisfy all the requirements. From their nature, these approaches don’t

always find the optimal solution, but a solution that satisfies the given requirements. The

problems in these techniques can also be presented as a constraint satisfaction problem

[21]. These techniques could be suitable for our problem, as they are flexible for a variety

9

of complex problems. In addition, their adaptability to changing requirements is ideal for

our implementation since the requirements of the department are not static. Examples of

OR based approaches include Advanced ILP Techniques and Constraint Satisfaction

Programming.

Population-based meta-heuristics approaches are similar to single solution-based

approaches with the difference that they focus on a set of possible solutions rather than

focusing on a single solution to be optimized. This is achieved by iteratively changing a

population of solutions until a solution of high quality is found. An advantage of using

these approaches includes their global search capability, whereby searching through

multiple solutions, they are more likely to find a good solution. In addition, their ability

to be parallelized can offer better utilization of computational resources and find solutions

in less time. Nevertheless, these approaches come with some drawbacks. As they work

on a set of solutions, their computational complexity is higher than single solution-based

approaches, especially for large problems such as the scheduling problem. In addition, it

can be difficult to model complex scheduling constraints in these approaches [21].

Examples of algorithms that follow the population-based meta-heuristics approaches

include Particle Swarm Optimization with Local Search.

2.3.2 Advanced ILP Techniques

In their paper Ahmed Wasfy and Fadi A. Aloul [12] describe an integer linear

programming (ILP) based approach for creating university course schedules. ILP is a

mathematical optimization programming method in which all the variables in a program

are restricted to integers. The authors mention that most of the proposed solutions to the

university class scheduling problem either cannot prove un-satisfiability or cannot

guarantee that the found solution is the optimal one. For this reason, they decided to

develop a new approach which is mathematically complete. In other words, their

approach would be able to detect if a certain scheduling problem is unsatisfiable, or on

the other hand, the solution if it exists. If the problem is satisfiable, then their approach

would search for all possible solutions to find the optimal one. The authors first start by

formulating the problem into a 0-1 ILP problem. To do this, they analyzed the

requirements of the schedule and generated the equivalent mathematical constraints. They

10

also developed an easy-to-use GUI interface, which they used to gather user input. The

tool then converts these inputs into a 0-1 ILP instance, which is passed to a backend ILP

solver that tries to find the optimal solution. Finally, they tested their approach on

different cases with variable sizes and concluded that it showed promising results.

2.3.3 Scheduling in MiniZinc

Rahman et al. [15] proposed a solution to the problem of course scheduling which

employed Constraint Satisfaction Programming. Specifically, they utilized the Minizinc

tool, which is a high-level declarative modeling language that allows for the development

of solver-independent general models. This language allows for the creation of models

that can be efficiently passed to a solver along with the required data, which are passed

as parameters. In the Minizinc language, a satisfiable solution is achieved with the use of

the relevant variables, parameters, and their relations in the form of constraints.

Figure 2.1 – Minizinc Implementation [15]

The above diagram depicts their implementation. On the left, the input can be seen as

defined by the details of each course, a 3D data strcuctere which represents the availability

of the teachers, and some other variables which are needed for the specific problem. The

model was then passed to the available off-the-shelf solvers, which Minizinc provides,

and received the satisfiable shcedules in the form of populated 3-D tables.

It is important to note that in their approach, the authors defined the days as having a fixed

number of slots, therefore courses cannot be taught in time periods that are not inclosed

inside one of these slots.

11

Figure 2.2 – Weekly Schedule [15]

The above diagram displays a 3-D data structure which is comprised of 2-D planes which

they used to represent the weekly schedule of one individual instructor.

In their quest for finding the best solver that can satisfy a solution to the problem, the

authors tested several sets of problems, on a varying number of variables, such as courses

and teachers, and found the below results.

Figure 2.3 – Results [15]

They concluded that the performance of the Chuffed solver was outstanding in

comparison to the other ones. This, they explained, was because of Chuffed’s ability to

generate “no-goods” or sub-trees which would lead to failures. In adition, its ability to

detects conflics from an early stage and eliminate bad decisions, makes it the best

available solver for the problem of course sheduling.

2.3.4 Particle Swarm Optimization with Local Search

Ruey-Maw Chen and Hsiao-Fang Shih in their article titled “Solving University Course

Timetabling Problems Using Constriction Particle Swarm Optimization with Local

Search” [13], experimented in a new approach that takes advantage of Particle swarm

optimization to solve the NP-complete problem of course timetabling. They first

evaluated the two types of PSO versions, these being the inertia weight version and the

12

constriction version. Then, the authors defined the course timetabling problem and

differentiated the constraints into hard and soft constraints. Hard constraints are these

which the final schedule must always satisfy, and the soft constraints are these which the

program satisfies as much as possible. Furthermore, they explained how the PSO

algorithm works and how it was implemented in their case. PSO, as the authors described,

is a population-based optimization algorithm developed in 1995 by Kennedy and

Eberhart. Each particle represents a bird in a flock, and the swarm is a group of particles.

The position of each particle is considered as a candidate solution to an optimization

problem, and each particle is assigned a fitness function that is designed based on the

corresponding problem. As the PSO particles evolve, their movement is determined by

the personal best of each particle and the global best. However, in this implementation,

the particles are likely to be trapped on the local optimal solution. For this reason, they

designed a disturb mechanism to the movement of the particles, to make them more likely

to escape the local solution and discover the global one. This mechanism is called the

interchange heuristic. Finally, the authors concluded that their approach was able to

improve the satisfaction of the teachers and classes towards the final schedule, this they

determined was a result of using the interchange heuristic mechanism.

2.3.5 Simulated Annealing

Another solution to the course scheduling problem was developed by E. Aycan and T.

Ayav in their paper titled “Solving the Course Scheduling Problem Using Simulated

Annealing” [14]. In this article, Ayav et al. addressed the task of resolving the course

scheduling challenge utilizing simulated annealing techniques. They implemented a

solution based on their specific department’s needs, namely the department of computer

engineering in the university of Izmir. Firstly, they presented the scheduling problem

along with the constraints that their solution would need to satisfy. Then, the authors

explained the simulated annealing method, which as they describe, is a probabilistic

technique for approximating the global optimum. This technique is based on particles and

system energy (temperature), the particles are replaced by elements and the energy is

defined by the timetable cost. The particles are initially placed randomly, and the initial

temperature and cost are calculated. Then, a neighborhood search is carried out to find

the next possible solution set. For this, they utilized three algorithms, namely the Simple

13

Search Neighborhood (SSN), Swapping Neighborhoods (SWN), and Simple Searching

and Swapping Neighborhoods (S3WN). The authors concentrated their efforts on the

implementing and testing the merging of the three distinct algorithms, and subsequently

evaluated and documented the results pertaining to their respective speeds, which are

documented in the below table.

Figure 2.4 – Simulated Annealing Results

From this, the authors determined that the SSN provided the best results. Forwith, they

decided to combine the aforementioned algorithms and found that it achieved the best

results, which can be seen in the below table.

Figure 2.5 – Simulated Annealing Combination Results

The authors concluded by stating that their approach obtained a timetable with a lower

cost than the manual method which was used in creating the schedule for the 2007-2008

fall semester for their department.

2.4 Chosen approach

Based on the conducted research, particularly referencing [15], it appeared that the

Minizinc constraint modeling language demonstrates exceptional potential in comparison

to the other methods. Additionally, it was also found to be one of the most versatile and

user-friendly approaches. For these reasons, it was decided that this tool would be the

method to be explored in the development of the automated system.

2.4.1 Constraint Satisfaction Programming

Constraint satisfaction programming (CSP) is a problem-solving technique that uses a

variety of approaches from artificial intelligence and operations research to solve

combinatorial problems. In recent years, it received the attention of many researchers

14

because of its potential for solving real-world hard problems. CSP uses constraints, which

are logical relations between several unknowns to express real world dependencies

between different entities or physical objects. These unknowns are also referred to as

variables, which must take a value from a given domain. Thus, the constraints limit the

possible values of an object, in essence giving partial information about it. Constraints

are non-directional, meaning a constraint on object A can be influenced by object B, but

object B is not influenced by object A. In addition, these constraints are often not

independent, meaning multiple constraints usually refer to the same object. An algorithm

that solves such problems i.e., the satisfaction of the constraints, can give a single

solution, all possible solutions, or the optimal solution based on an objective function.

CSP has been adapted to many applications in recent years, computer graphics, natural

language processing and timetabling to name a few [17].

2.4.2 Minizinc modeling language

Minizinc is a language used for modeling constraint satisfaction. It was developed with

the intent of being a standard modeling language which is expressive and solver

independent. In other words, most constraint satisfaction problems can be modeled using

it, and then passed to many generic constraint satisfaction solvers to be solved. Minizinc

can do this because of its nature, being sufficiently high-level which enables the easy

expression of many combinatorial optimization problems, and sufficiently low-level that

it can be easily graphed onto many solvers [16].

A Minizinc model has three components, parameters, variables, and constraints.

Parameters can be either an input value or a fixed value defined in the model. Parameters

are mainly used for passing the inputs for each problem into the model. Variables, on the

other hand, are not given a value in the model, instead only their domain is defined, their

value is determined by the solver. For instance, “var 1..130: age”, is a variable named

“age” which can take values from 1 to 130. The solver tries to find values for these

variables, while also respecting all the constraints that involve them. For example,

“constraint age > 17” ensures that the value given to the “age” variable is always bigger

than 17. Therefore, when the solver is called to find a satisfactory solution, we can be

certain that the resulting age variable will be 18 or higher, up to 130.

15

Chapter 3

3 Software Development Process & Technologies

3.1 Introduction

3.2 The Incremental model

3.3 Technologies

 3.3.1 Front-end Development

 3.3.1.1 HTML: Hypertext Markup Language

 3.3.1.2 CSS: Cascading Style Sheets

 3.3.1.3 JavaScript Programming Language

3.3.2 Back-end Development

 3.3.2.1 PHP Hypertext Preprocessor

 3.3.2.2 Python Programming Language

 3.3.2.3 MySQL Relational Database Management System

3.1 Introduction

The software development life cycle defines the steps with which a software or system

will be developed. This includes everything from initially defining the goal to the

deployment of the software. The life cycle aims to simplify the process of developing a

software system and lowering the cost while ensuring high-quality operations.

Furthermore, it tries to minimize any errors that might occur from the development

process, it also tries to detect and eliminate any gaps that might have been left unseen

during the development process [1].

As mentioned above, the development life cycle consists of many stages. The first stage

is the Requirement Analysis stage, which can be viewed as the foundation of the project.

Creating a good Requirement Analysis stage can make the rest of the development

simpler and more efficient [1]. In this stage the goal of the project is determined, the

16

resources are defined and allocated, the different functionalities that will be developed

are defined and given priorities, the risks and the limiting factors are also defined [2].

The second stage is the Design stage. In this stage the gathered requirements are used to

create the system architecture which will be used for implementing the system [3]. To be

more precise, the database design is created in this stage, as well as for the design for the

system overview, how the system will function and what the user interface will look like.

The third stage is the Development stage. During this stage the development of the system

starts, this means that the programmers start developing the different parts of the system.

This development is based on the design documents that have been gathered in the Design

stage [3].

The fourth stage is the Testing stage. The goal of this stage is to find any defects which

will be documented and assigned to the developers to resolve them. The system in this

stage is tested thoroughly so that it fits the customer’s standards [3].

The fifth and final stage is the deployment and Maintenance stage. After the system has

been tested thoroughly and all defects have been fixed, the system is ready to be deployed.

During the Maintenance part of this stage, the final system is monitored and any issues

that may arise are fixed or any enhancements that need to be applied are also implemented

[3].

Figure 3.1 – The Software Development Life Cycle (DSLF) visualised.

17

3.2 The Incremental model

The Incremental model, also known as the iterative waterfall model, is one of the main

models which are used for the development of software systems. As the name suggests,

this model can be viewed as a series of waterfall models [4]. It is based on the idea of

incremental development, where the software under development is divided into smaller

parts. These parts are designed, developed, and tested incrementally until the final product

is realized. This model offers many advantages compared to other software development

models. Its main advantage is the fact that the feedback of previous iterations can be used

in the development of a new iteration [4]. This allows the developers to better understand

the problem, which may not be clear from the early stages. In addition, it pushes the

stakeholders to be more involved in the development of the system [4].

Figure 3.2 – The Incremental model visualized.

After some research and collaboration with the dissertation supervisor, this approach was

deemed as the best to be used in the development of the automated tool. This decision

was based on its seamless alignment with the specific needs and conditions. In addition,

the abilities, and strengths of the Minizinc tool were not very clear from the beginning.

Subsequently, the system was developed incrementally, where after each iteration,

additional requirements were added and then designed and developed, after that, they

were tested to insure proper functionality.

3.3 Technologies

18

In the process of developing the automated tool, many technologies and programming

languages were used. These technologies can be differentiated into front-end technologies

and back-end technologies. In the next sections, these technologies are briefly presented.

3.3.1 Front-end Development

Front-end Development focuses on the visible side of an application, this means the

development of the part of the application which the user sees and interacts with. The

goal of front-end developers is to create a visually appealing, intuitive, and user-friendly

interface that enhances the user experience [6]. This includes the ease of use of the

interface, the learnability of the interface, in other words how easy it is for a user to learn

how to use the interface, the reliability of the interface and the responsiveness of the

interface. Some of the most known and used languages that support the development and

maintenance of such interfaces include HTML, JavaScript, and CSS. In the below figure,

the roles of these languages in the overall interface can be visualized.

Figure 3.3 – Front-end languages stack

3.3.1.1 HTML: Hypertext Markup Language

HTML stands for Hypertext Markup Language, a markup language which creates the

structure of a webpage, this includes the page layout, paragraphs, links and more. It

creates what can be viewed as the skeleton of the web page. It does this by utilizing tags

and elements, where each tag and element has a specific function that contributes to the

overall structure of the web page. An advantage of using HTML is its compatibility with

other languages used for web-development, these include JavaScript and CSS, which

when combined create a more robust and seamless web page [9].

19

3.3.1.2 CSS: Cascading Style Sheets

As explained above, HTML mainly controls and organizes the structure of a webpage,

without much of an ability to control the styling of the elements. Meanwhile CSS, which

is a styling language, is responsible for the specification of fonts, colors and layouts of

the elements that are to be displayed on the page [10]. This styling makes the webpage

more visually appealing, easier to read and use. The CSS code can be included in the

headers of the HTML tags, in the HTML document with the <style> tag, or simply be

placed in a different file.

3.3.1.3 JavaScript Programming Language

JavaScript is a type of scripting or programming language that enables the

implementation of intricate functionalities on web pages. Whenever a web page is more

than just a static display of information, JavaScript can be used to display dynamic content

updates, interactive maps, animations, video players with scrolling capability, and many

more features. In other words, it is commonly used for determining the behavior of web

pages [11]. It runs on the client-side, which means it is executed by the user's web browser

rather than the web server.

3.3.2 Back-end Development

Back-end development is, as the name implies, the behind-the-scenes part of any

application, whether that is a web application or a mobile application. It focuses on server-

side programming but also on the databases and managing them. This process can be

visualized in Figure 3.4. Languages that support backend development include PHP and

Python, which will be analyzed in more detail in the subsequent sections [6].

20

Figure 3.4 – Back-end visualized.

3.3.2.1 PHP Hypertext Preprocessor

PHP is a general-purpose server-side scripting language and interpreter which is used

widely in the development of web applications. The PHP script can easily be included in

any html file, without the need to include additional files. When a client requests a web

page, the parser interprets the PHP code and generates the required html code. As a result,

web pages become dynamic since the displayed content varies based on the input or other

factors. As mentioned above, PHP is a server-side scripting language, this implies that

the script is only available to the server, meaning the client does not receive any PHP

code, instead it receives the complete html code. PHP is especially useful in applications

where there is a need for a database, as it can communicate with the database and request

any data that needs to be displayed or any updates to the data that need to be executed in

the database [5].

3.3.2.1 Python Programming Language

Python is a high-level, object-oriented programming language that was developed in 1991

by Guido van Rossum and has since become a staple language in the world of

programming. It is great for rapid application development because of its built-in high-

level data structures alongside its abilities for dynamic typing and dynamic binding.

Dynamic typing means that Python does not require variable type declarations, which can

save time and make code easier to read. Dynamic binding means that Python can handle

changes to an object's type at runtime, which enables programmers to write flexible and

adaptable code. It emphasizes readability which characterizes it as simple to use and easy

21

to learn. Another great advantage of using Python is its support for a vast number of useful

modules and packages which encourages code reuse [6].

3.3.2.3 MySQL Relational Database Management System

MySQL is one of the most popular database management systems and has since been

deemed as the number one choice for developers for a variety of reasons. It is an open-

source relational database management system, which means that it is freely available for

developers to download, use, and modify. It offers a variety of useful sets of functions

which can make the process of database management and administration much more

efficient. For instance, it offers built-in support for indexing, which can speed up database

queries and improve performance. It also offers robust backup and recovery features, thus

ensuring that data is not lost in the event of a system failure. Other advantages of using it

include its ease of use, which is supported by its graphical user interface (GUI), its

reliability, its scalability, its security, and its performance compared to other database

management systems.

22

Chapter 4

4 Requirements

4.1 Introduction

4.2 Requirements Specification

4.3 Schedule requirements

4.4 User types

4.5 Interface requirements

4.5.1 Interface functional requirements for Instructor users

 4.5.2 Interface functional requirements for Administrator users

 4.5.3 Non-functional requirements

4.6 Use cases of the scheduling tool

4.1 Introduction

Requirements identification is extremely important as an initial step in the software

development life cycle (SDLC), as elaborated in Chapter 3. It involves identifying the

needs, expectations, and specifications of the stakeholders of a particular software

application. In other words, the main goal is to ensure that the application fulfils the needs

of the users and stakeholders. This process involves identifying and documenting both

the functional and the non-functional requirements of the software. Functional

requirements refer to the features and functionalities that the software must offer. These

requirements are usually documented in terms of what the software “should do” and under

which conditions it should be able to do so. Non-functional requirements refer to the

reliability, performance, and usability of the application. Examples of Non-functional

requirement include turnaround time, which is the length of time needed for completing

a task, learnability which is defined as the time duration that is needed for a beginner user

to learn and become efficient in using an application, and usability. In this chapter, the

requirements for the automated tool are documented and described.

23

4.2 Requirements Specification

The main source for identifying the requirements for the automated tool was my

supervising professor Dr. Anna Philipou. With her extensive experience in the

department, Dr. Philipou provided valuable insight into the needs and expectations of the

department regarding the automated tool. Another source which offered great insight was

the study of similar systems that are being used by similar institutions. Furthermore,

studying the systems that have been developed in the field of schedule making, whether

experimental or functional, has contributed to a greater understanding of the required

essential features and capabilities. In addition, my own experience as a computer science

student at the university provided me with valuable information, as I have a good

understanding of the difficulties and needs that need to be satisfied in the semester

schedule.

All these sources provided valuable insight into what the system should be able to do and

how it should be designed. By leveraging these insights, a comprehensive set of possible

functional and non-functional requirements that accurately reflected the needs and

expectations of the stakeholders was created.

4.3 Schedule Specifications

The automated tool will be designed primarily to fit the needs of the Department of

Computer Science, for this reason, the requirements for the final schedule were specified

based on the current scheduling model that is implemented in the department. With this

in mind, the department offers a range of different lectures and laboratories, which all had

to be identified and analyzed for the purpose of developing the schedule generator.

4.3.1 Course types

As mentioned above, the university offers a variety of courses, for this reason The

different combinations of lectures, tutorials and laboratories that are common in the

department’s schedule were identified and are listed below.

1. Courses that have one lecture per week only.

2. Courses that have two lectures per week only.

24

3. Courses that have one lecture plus a tutorial per week.

4. Courses that have two lectures plus a tutorial per week.

5. Courses that have two lectures plus a laboratory per week.

6. Courses that have one lecture plus a laboratory per week.

7. Courses that have one lecture, a tutorial and one laboratory per week.

8. Courses that have two lectures, a tutorial and one laboratory per week.

9. Courses that have two lectures, a tutorial and two laboratories per week.

4.3.2 Schedule requirements

The automated tool should produce two types of schedules. The first one being a schedule

for each individual instructor. In this schedule, for each Instructor, all the courses,

tutorials, and laboratories they teach, would be displayed on it with the time of teaching.

The second type is a set of schedules for each lecture hall/laboratory room. In these

schedules, for each room, the courses would be displayed along with the time of teaching.

In the instructors’ schedule, the model would focus on the instructors and their availability

to produce a valid schedule, while in the rooms’ schedule, the model would focus on the

number of rooms and on their availability. In our implementation, only the instructors’

schedule was realized.

Generally, in the department, the lectures are scheduled on weekdays except for

Wednesdays. The lectures of type “two lectures a week” are scheduled on Monday and

Thursday or on Tuesday and Friday. Meanwhile, the tutorials are mostly reserved for

Wednesdays. In addition, laboratories are scheduled to any day if they are of type “once

a week” or follow the Monday and Thursday or Tuesday and Friday model if they are of

type “twice a week”. The schedule generator must respect this pattern in the final

generated schedules.

The priorities assigned to the requirements are determined by the level of importance they

hold in the final schedule implementation.

25

The requirements for the instructor’s schedules are presented in more detail in the below

table.

 Requirement description Priority

1 Courses with two lectures per week should be taught at the same

time on the two days of the week. Either on Monday-Thursday

or Tuesday-Friday.

High

2 The instructor must not have any assigned courses during the

days/ hours where they are busy.

High

3 The schedule should not have courses that are taught at the same

time and belong to the “course conflicts” list.

High

4 The schedule should assign all the courses in the “parallel

courses” list to be taught at the same time.

High

5 Tutorials should be scheduled on Wednesdays. Moderate

6 The number of lectures/tutorials that are taught at the same time

should not exceed the number of available lecture halls.

High

7 The number of laboratories that are taught at the same time

should not exceed the number of available laboratories.

High

8 Each assigned room should not have a maximum capacity lower

than the number of expected students for each lecture/tutorial.

High

9 In the case of lectures that require laboratories where the number

of students exceeds the capacity of the laboratories, the schedule

should have multiple iterations/sections of the same laboratory.

High

10 The instructor that instructs a lecture can be different from the

instructor that instructs the laboratory of a course. Meaning, the

instructor that registers a course, also registers its laboratories.

These laboratories can be set to be instructed by a different

instructor.

Moderate

11 For laboratories that have multiple sections, these sections should

be scheduled in succession. Meaning they would be scheduled

one after the other, on the same day.

Moderate

Table 4.1 – Schedule Requirements

26

4.4 User types

The users of the system should be differentiated into different types with their own set of

functionalities in the system, depending on their role and position in the university. For

the use of the automated tool, two types of users were identified to be necessary for the

smooth functionality of the system. These two different user types will not be used in

practice by an equal number of users.

The first user type is the instructors, which will cover most of the users. These users will

have a somewhat limited set of functionalities, their main goal for using it will be to

document their needs and demands in the semester schedule, including, amongst other

things, their availability during the week and the courses they will instruct.

The second type is the administrators, which will consist of a selected few in the

department’s staff. These users will have many of the same functionalities as the

instructors. However, they will have some additional functionalities which would allow

them to initiate the system, manage the users, and manage any dependencies between the

different courses.

4.5 Interface requirements

The interface should be a web-based application where the users can interact with the

tool. It should offer a variety of functionalities based on the type and privileges of the

user. The main goal of the interface is to be a simple, easy to use tool to supplement the

required information about the schedule to the database, with which the backend

algorithm would utilize to produce the schedule.

Below are the specified requirements for the interface, with their description and the

priority that should be given to them in the implementation stage, categorized based on

the user type.

27

4.5.1 Interface functional requirements for Instructor users

 Requirement Description Priority

1 Logging in The instructors should easily be able

to login to the system using their

username and password.

High

2 Logging out The instructors should have an easy

way of logging out of the system.

High

3 Setting a password The instructors should be able to set

their password once they login into

the system for the first time.

Moderate

4 Changing the password The instructors should be able to

change their current password.

Moderate

5 Registering a course The instructors should be able to

register courses that they will be

instructing in the semester. These

courses should include information

such as their course id, number of

expected students and the type of the

course. The system should

automatically register any needed

laboratories and tutorials based on

the type of the course.

High

6 Adding unavailability The instructors should be able to add

their unavailability, or in other

words, when they are not able to

teach in the university. These

availabilities should be separated

based on the day and hour of the

week.

High

7 Updating unavailability The instructors should be able to

update the registered unavailable

hours.

Moderate

28

8 Updating course

Information

The instructors should be able to

easily update the information for

each course they have registered.

Moderate

9 Deleting a course The instructors should be able to

delete any course they registered

alongst with any laboratories or

tutorials that might be related to it.

High

10 Viewing added courses The instructors should have the

option to view all the courses,

laboratories, and tutorials that they

have registered, alongst with their

information.

Moderate

11 Viewing final schedule The instructors should be able to

view their final weekly schedule

that was automatically created by

the tool.

High

12 Choosing a laboratory to

instruct

The instructors should be able to

choose any of the added laboratories

so that they can instruct them.

High

Table 4.2 – Instructor Requirements

4.5.2 Interface functional requirements for Administrator users

 Requirement Description Priority

1 Logging in The administrators should be able to

login into the system with their

credentials.

High

2 Logging out The administrators should be able to

logout of the system from any page.

High

3 Changing the password The administrators should be able to

change their password.

Moderate

29

4 Registering Instructors The administrators should be able to

register any new instructors into the

system.

High

5 Removing Instructors The administrators should be able to

remove any instructor from the

system, doing so should remove

their access to the system.

Moderate

6 Editing Instructor’s

information

The administrators should be able to

edit any instructor’s registered

information.

Low

7 Registering more

Administrators

Any administrators should be able to

register additional administrators

who would have the same privileges

as them.

Moderate

8 Setting schedule’s initial

settings and variables

The administrators should be able to

set the initial settings and variables

of the semester schedule.

High

9 Viewing all courses The administrators should be able to

see all the courses that have been

registered by the instructors, this

should include all the course’s

details.

Moderate

10 Editing courses The administrators should have the

option to edit and change any

information of any registered

course.

Low

11 Adding course conflicts The administrators should be able to

set any pair of courses as “conflict

courses”, or in other words, courses

that should not be taught at the same

time of the week.

High

30

12 Removing course conflicts They should also be able to remove

any course conflicts that have

already been added.

Moderate

13 Setting courses as parallel The administrators should be able to

set any pair of courses as “parallel

courses”, courses that should be

taught at the exact same time during

the weekly schedule.

High

14 Removing parallel courses They should also be able to remove

any parallel courses that have

already been added.

Moderate

15 Running scheduling tool The administrators should have the

option to run the automated

scheduling tool to generate the

weekly semester schedule.

High

16 Viewing all the

instructors’ schedules

The administrators must have the

option to view all the created

schedules of all the instructors that

are registered in the system.

High

17 Creating course

combination schedules

The administrators should be able to

create schedules that consist of a

chosen set of courses.

High

Table 4.3 – Administrator Requirements

4.5.3 Non-functional requirements

 Requirement Description Priority

1 Performance

The tool should produce the

schedules withing a reasonable

amount of time (less than an hour).

High

2 Scalability The tool should be able to at least

handle the needs that are currently

present in the department.

Moderate

31

3 Availability The system should be available 24/7

with minimal downtime.

Moderate

4 Usability The front-end interface must be easy

to use and learn.

High

5 Reliability The tool should be reliable with a

low error rate.

High

6 Security The system should not have any

vulnerabilities and therefore be

secure against any attack.

High

7 Error prevention The system should be able to detect

any inconsistencies or invalid inputs

and handle them.

High

Table 4.4 – None-functional Requirements

4.6 Use cases

In the below diagrams, some use cases for the two types of users are presented.

Instructor’s use case diagram:

Figure 4.1 – Instructor use case diagram

32

This diagram displays the functionalities and the sub-functionalities that are available to

the instructor users. For instance, the add course functionality includes additing the

course’s info like course id and course type, then the validation of the submitted

information to insure proper input, and finally the storing procedure in the database.

Administrator’s use case diagram:

Figure 4.1 – Administrator use case diagram

The functionalities of the Administrator can be seen in the above diagram. For example,

the user can set two courses as conflicting courses. To do this, they must first access the

“Set courses as conflicted” functionality, which in our implementation is a web page. This

action also includes choosing two courses from the registered courses list, subsequently

the course combination is checked in the “Validate courses” phase and then the action is

saved in the database automatically.

33

Chapter 5

5 Design

5.1 System architecture

5.2 Database design

 5.2.1 Tables

 5.2.2 Relational Schema

5.3 Front-end design

 5.3.1 Navigation pattern

 5.3.2 Common pages

5.3.2 Instructor pages

5.3.4 Administrator pages

5.2 System architecture
The Administrators and Instructors users interact only with the web-application of the

tool, to manage their account and to specify the variables and requirements for the

schedule. These variables are all communicated from the interface directly to the database

without the need for the user’s intervention. When the time comes for executing the

Minizinc solver, a python script is called which reads the database and generates the

required input files to be used by the solver. Then, the solver is called, and the output is

managed by another python script, this final program produces easy to read schedules for

the users to access. This entire process can be visualized in the below diagram.

34

Figure 5.1 – System Overview

5.3 Database design

The intent of the designed database is to be used for storing the data needed for the front-

end interface to function, and the data to be used by the Minizinc solver. This data

includes the users of the system, the unavailability of the instructors, the courses and their

details, and the dependencies between the different courses.

The chosen database is MySQL, because of its many advantages that have been discussed

in Chapter 3.3.2.3, and especially its ease of use.

5.3.1 Tables

The database consists of 8 tables. In the next section, the tables and their attributes are

presented.

35

Table admins:

This table contains information about the administrators of the system, mainly their

unique usernames and their hashed passwords.

Key: admin_username

Attribute Type Comments

admin_username string A unique username.

admin_password string A hashed password.

First_login integer An int of value 1 or 0, to represent if the user

needs to create a password or not.

Table 5.1 – Database Table admins

Table instructors:

Similarly, the instructors table contains information for each instructor as shown below.

The first_login attribute is used by the system to determine if the instructor has already

set a password or not.

Key: instructor_username

Attribute Type Comments

instructor_username string A unique username.

instructor_password string A hashed password.

first_login integer An integer of value 1 or 0, to represent if

the user needs to create a password or not.

name string

email string A unique email.

surname string

admin_username string The username of the admin that registered

the instructor.

Table 5.2 – Database Table instructors

Table courses:

This table is utilized to save the information of each course in the schedule.

Key: course_code

36

Attribute Type Comments

course_code string A unique code for the course.

course_type integer An integer value which represents the type

of the course (lecture, lab, tutorial etc.).

max_students integer The maximum number of students

expected to enroll in the course.

instructor_username string The username of the instructor that will

instruct this course.

num_of_labs string The number of sections/iterations that this

course will have. (Will be determined by

the system and not be given as user input).

Table 5.3 – Database Table courses

Table conflicts:

This table specifies the courses that should not be taught during the same time slot. This

is achieved by adding two different courses that are not taught by the same instructor to

the table.

Key: course_code1 and course_code2

Attribute Type Comments

course_code1 string The course code of the first code.

course_code2 string The course code for the second course.

Table 5.4 – Database Table conflicts

Table parallel:

Similarly, it defines the courses which should be taught at the same time slot.

Key: course_code1 and course_code2

Attribute Type Comments

course_code1 string The course code of the first code.

course_code2 string The course code for the second course.

Table 5.5 – Database Table parallel

37

Table instructor_unable_hours:

It contains the unavailability of the instructors based on the day and hour. The day

attributes will take one of the below values.

• 1 – representing Mondays and Thursdays

• 2 – representing Tuesdays and Fridays

Key: instructor_username, day, and hour

Attribute Type Comments

instructor_username string

hour Float The start hour in which the course is

unavailable.

day integer The day in which this availability is valid.

Table 5.6 – Database Table instructor_unable_hours

Table instructor_unable_hours_Wednesday:

Similarly, this table represents the unavailability of the instructors but on Wednesdays

only.

Key: instructor_username and hour

Attribute Type Comments

instructor_username string

Hour float The start hour in which the course is

unavailable.

Table 5.7 – Database Table instructor_unable_hours_Wednesday

Table additional_info:

This table is used to store some additional information about the overall schedule.

Key: none

Attribute Type Comments

Lectures_capacity integer The capacity of the lecture in the

department.

laboratories_capacity integer The capacity of the laboratories in the

department.

num_of_labs integer The number of available laboratories.

38

num_of_lecture_rooms integer The number of available lecture halls in the

department.

Table 5.7 – Database Table additional_info

The above tables, except for tables admins and instructors, are used for the purpose of

creating the semester schedule. The latter two are also used for the management of the

interface’s users.

5.3.2 Database Relational Schema

Figure 5.1 – Database Relational Schema

This diagram presents the relational shcema between the different tables. Each admin is

connected to the instructor that they registered. Each instructor is connected to the courses

that they teach, and to their unavailabilities tables. Table additional_info is not connected

to the rest of the database tables.

39

5.4 Front-end design

The interface, as per the requirements, was designed to be as simple to use and as efficient

as possible. For this reason, a modern and minimalistic design was chosen. This design

ensures that the users can get familiar with its functionality quickly, reducing the learning

curve and enabling them to efficiently achieve their goals.

5.4.1 Navigation pattern

The Global navigation pattern was chosen to be used for the navigation between the

different pages. With this pattern, a navigation bar, which is always present at the top of

each page, displays all the pages that can be navigated to at any given point. This pattern

is especially fitted for use in simple, small sized websites that do not have many pages.

Its mains advantages are its simplicity and usability.

The background color of the navigation bar is dark blue, and the pages which can be

navigated to are white. This is no coincidence, the colors were picked to have good

contrast, to aid in better readability and attract the attention of the user. In addition, the

color of the page which the user is situated on is black. This was designed so that the

users can always know on which page they are located.

On the very left of the navigation bar, the main page of the interface is always displayed

and on the very right, a logout button is always present. This button only appears when

the user is logged in, and when pressed, the user is taken back to the login page.

40

Mobile view:

The navigation bar is suitable for a mobile view too.

When there isn’t enough space on a browser to fit all

the pages, three lines appear on the right representing a

menu. When clicked, the pages are shown in a

dropdown list.

5.4.2 Common pages

Home page:

This is the main page which the user lands on when first accessing the interface. Its

main purpose is to be an informatory page about the interface.

Login page:

The users can only login into the system after they have been registered by an

administrator. This means that the users cannot register themselves, this task is left to the

administrators.

41

On this page,the user can sign in using their unique username and password. If the user

signs in for the first time, then they will be directed to a different page, where they will

create their own password.

When the mouse is hovered over any buttom in the

interface, it changes color, turning to white. This

gives the website a responsive character.

Set password page:

This page is only used once by the users, on their first login. It consists of a title and a

form. Submitting the new password will direct the users to the Instructor or Administrator

page.

42

Change password page:

Similarly, this can be used by any user to change their password for whatever reason.

With the only difference being that the user needs to insert the current password as a

requirement to ensure security.

Footer:

This footer exists on the bottom of each page. Its primary goal is to provide some useful

links and contact information.

5.4.3 Instructor pages

Instructor page:

43

On this page, the instructor is given a simple guide on how to use the interface.

My schedule page:

On this page, each Instructor can view their final shedule once it has been created.

The schedule is in a form of a ready to download pdf.

Add course page:

On this page, the instructors can register a course that they are going to teach in the

shcedule. For the type of course, a dropdown list includes all the course types that are

available in the department.

44

A small arrow to the right is used

as a metaphor to indicate the

existence of the dropdown list.

Add laboratory page:

The add laboratory page is used by the instructors to choose a laboratory of a course that

has already been registered, so that they instruct it. This feature satisfies requirement 10

of the schedule requirements. Similartly to the add course page, the available laboratories

are shown in the form of a dropdown list.

Add unavailability page:

This page is used to determine the unavailability of the instructor during the week. The

functionality takes place on multiple pages. This separation was implemented so that it

does not become overwhelming for the users, and to make the process more clear-cut and

straightforward.

45

The first page, as shown above, asks the instructors to determine if they are unavailable

for an entire day. This is done by utalizing a checklist, where multiple options can be

checked. After clicking “Submit and continue”, the instructors will be taken to the below

page. Option “I’m available every day”, directs the user to the next page.

On this page, the users are asked to choose the time slots on Mondays and Thursdays

where they are busy.

They have the option to choose multiple timeslots, or no

timeslot at all. When clicking on the button, the process

continues, and they are taken to a new page which will

ask about the unavailability on Wednesday.

46

This page was deemeed necessary to have different timeslots from the rest of the days

because of the schedule’s nature in the department.

Finally, the process is finished when the users inform about their unavailability on

Tuesdays and Fridays.

47

My courses page:

On this page, the instructors can see the courses which they will teach, including some

additional information, such as the type of the course, the maximum number of students

to be registered and the number of sections of the course.

Remove course page:

This is a very simple page with one drop down list, it is used by the instructors to remove

any course. Removing a course also removed all of its registered laboratories and

tutorials.

48

5.4.4 Administrator pages
Administrator page:

This is the page that the administrators land on once they sign in. Its main functionality

is to initiate the shedule solver. The administrators are given the option to choose between

different versions of the solver, which have slight differences in the way they handle the

schedule’s requirements. These verions are promptly explained on the page.

Schedules page:

To view the created schedule, the administrator is given a

drop-down list that contains all of the registered instructors.

Once an instructor is selected, their schedule is displayed in

the form of a pdf on the right side of the page. To change

the schedule, all the administrator has to do is choose

another instructor from the list. These PDFs can be easily

downloaded.

49

Courses combinations schedule page:

On this page, the administrators can view a schedule that

consists only of a set of courses. For example, to see if a set

of courses that must be taken by a group of students do not

overlap.

To do this, the administrator must select the courses from the

given list. Then, once the Generate PDF button is pressed,

the PDF schedule is created and is shown on the right side of

the screen.

In this example we have courses EPL211, EPL325, EPL326

and EPL341.

50

The process can be repeated by selecting a new set of courses and a new PDF would be

generated.

Add initial information page:

The administrators must use this page to set some variables that are needed for the

schedule generator to function properly and produce a valid schedule. The data that is

submitted in this form is saved in the additional_information table in the database, as

explained in Chapter 5.3.1.

51

Add courses conflicts:

This page is only available to the administrators. It functions as a way for the

administrators to define courses that should not be scheduled to be taught at the same

time. This for example can be used for courses that a group of students must take in the

same semester, therefore the courses should not have any conflicts.

Add courses parallel page:

Similarly, this page is used to set combinations of courses that should be scheduled to be

taught at the same day and hour. This is done by using a form which contains two

dropdown lists that have all of the registered courses as options.

52

View added courses page:

On this page the administrators can monitor the courses that have been registered in the

system by the instructors. This includes seeing which instructors registered which

courses. In addition, for the laboratories, the administrators have the ability of seeing

which laboratories has yet to be taken by a laboratory instructor.

53

Register admin page:

On this page, an administrator can register another adiminstrator by giving them a

username and an OTP. The OTP is a one time use password which the administrators will

use to sign in for the first time.

Register instructor page:

Additional instructors can be registered in the system by the administrators by using this

page. It consists of a form that contains some information about the instructor, such as

their username, email address and OTP.

54

Remove instructor page:

This is a simple page that is meant to be used by the adiminstrator to remove Instructors

from the system. Removing an instructor from the system will also remove any courses

that they have already registered.

55

Chapter 6

6 Implementation

6.1 Front-end implementation

 6.1.1 Development environment

 6.1.2 Development

 6.1.2.1 Bootstrap

 6.1.2.2 PHP

 6.1.2.3 Security

 6.1.2.4 Error prevention and handling

6.2 Minizinc Implementation

 6.2.1 Environments

6.2.2 Algorithmic logic

6.2.3 Minizinc Syntax

6.2.4 Parameters and Variables

 6.2.4.1 Timeslots parameters

 6.2.4.2 Variables

 6.2.4.3 Unavailability parameters

 6.2.4.4 Course relationships parameters

 6.2.4.5 Course details parameters

6.2.5 Constraints

6.2.6 Versions

6.2.7 Solver

6.3 Back-end implementation

 6.3.1 Input

 6.3.2 Output

56

6.1 Front-end implementation

6.1.1 Development environment

Microsoft’s Visual Studio Code was used as the integrated development environment

(IDE) as it offers many useful functionalities while also being simple and easy to use.

XAMPP, a local webserver environment, was also utilized for testing and evaluating the

interface during the development process.

6.2.2 Development

6.1.2.1 Bootstrap

Bootstrap is a web development framework which helps in the creation of responsive

simple websites. Many of the elements used in the interface, such as buttons, tables, and

forms, are sourced from it. An advantage of using Bootstrap is the fact that the elements

are easily placed in the code, without the need for adding additional CSS files, something

which makes the code easier to read and simpler.

6.1.2.2 PHP

Because of the application’s nature, communication with the database for reading and

uploading data was going to be a major part of its functionality. As such, choosing a web-

server language which supported an efficient and easy way to connect and transfer

information between the webserver and the database was of great importance. For this

reason, PHP was the preferred choice for this task, along with its advantages which were

discussed in Chapter 3.3.2.1.

Whenever a user enters the website, a new PHP session is started. This session establishes

a connection with the database and generally manages the user’s overall interaction with

the website. For instance, when a user submits one of the many forms at their disposal, a

PHP function is called at the time of submitting the form. This function uses the given

connection with the database to delete, insert or update data. This process can be seen in

Appendix 1.3.

57

6.1.2.3 Security

As it was specified in the requirements phase, the security of the system was to be taken

in mind during the development stage.

For this reason, the passwords in the database are not stored in a plaintext format,

something which could lead to catastrophic consequences in case of a data breach.

Instead, they are stored in an encrypted format. This was achieved by leveraging a hash

function which turns the real password of any length into a cypher text of a specified

length. The cypher text cannot be used to login to the system in case of a data breach.

Algorithm sha512 is used for hashing the password stored in the database. Whenever a

user is registered or tries to login, the plaintext password is hashed and then the hashvalue

is saved or used respectevly. This can be seen in Appendix 1.1.

To protect against brute force attacks, the tool enforces strict password requirements,

specifically, the password must have at least one capital character, one small character,

one number, one symbol and the total length to be at least 8 characters. These password

constraints are checked by employing a JavaScript function, which validates the given

input before it is sent to the webserver. This can be seen in Appendix 1.2.

Furthermore, to ensure that pages are not available to users who are not logged in, every

time a new page is accessed, the system checks if the user is logged in, and if so, if that

user is allowed to view that specific page. For instance, if a user who is logged in as an

instructor tries to change the URL into /admin.php, to access the admin page, an

“ACCESS DENIED” message is displayed. An example of that can be seen on page

admin.php which is provided in Appendix 1.4.

6.1.2.4 Error prevention and handling

As seen in the Design chapter, the front-end web-application consists of many forms. For

this reason, checking the validity of the form inputs is very important for the system’s

correct functionality.

58

For instance, when the user enters the wrong username or password while trying to log

into the application, a warning message is given.

Similarly, when the user sets or changes their password, if the given password does not

fulfill the requirements described in chapter 6.1.2.3 Security, a warning message is

displayed, and the password is not accepted.

When an administrator registers instructors, the system checks if the entered email is a

valid email and if the given username already exists in the system.

59

If an adiministrator tried to enter two courses that are taught by the same instructor as

“parallel courses” then the system will recognise that and output a warning message.

Similar error prevention techniques can be found all over the system.

6.2 Minizinc Implementation

6.2.1 Environment

For the development of the Minizinc model, the Minizinc IDE, which is freely available

for use, was utilized. For the purpose of integrating the Minizinc implementation into the

final system, the solver had to be executed through command line. Therefore, it had to be

installed on a Linux operating system. As Minizinc is not supported on Linux, a software

60

packaging and deployment system had to be utilized, in this case Snap [19]. With Snap

installed, the Minizinc snap package was then also installed. Finally, with this

configuration set up, the Minizinc solvers can be easily executed from the command line

with the option of choosing any of the out of the box solvers.

“snap run minizinc --solver chuffed data/inputData.dzn iteration5.mzn -o

data/result.txt”

The above command runs a Minizinc solver on a given model, “iteration5.mzn” in this

case, with the option for the solver set as “Chuffed” and finally with the output saved in

file “result.txt”.

6.2.2 Algorithmic logic

As the scheduling problem was defined in Chapter 4.3.2, the solver must generate two

types of schedules. In the initial iterations, the developed models tried to satisfy these two

types of schedules in the same model. After some testing on small to medium data sets,

it was obvious that this technique is not ideal. This conclusion came from the fact that it

took the solver significantly more time to find a satisfactory solution. For this reason, it

was decided that the two schedules would be split into two different models. In other

words, there would be a model which would find a solution for the instructors’ schedules

and another one that would find a solution for the Room’s schedules.

This dissertation focused on the implementation of the first schedule type, since it was

deemed to be of higher importance to the department. The room’s schedule is left for

future work and for improvement of the system.

In the next sections, the parameters, variables, and constraints that were used for the

model are presented and explained.

61

6.2.3 Minizinc syntax

The Minizinc language stands out among other programming languages due to its unique

syntax. For this reason, the following section is dedicated to introducing and briefly

explaining the syntax.

Firstly, the input data is saved in a 1-D array called CLASS_DETAILS_INPUT, which

is responsible for cataloguing the information about each course. This array has a length

equal to the number of classes in the schedule multiplied by the number of parameters, 5.

array[1..((numOfClasses+1)*5)] of int: CLASS_DETAILS_INPUT;

The following code section defines the array CLASS_DETAILS_INPUT in the “.dzn”

input file. For each class, the number of the class, the number of instructor, the number

of expected students, the class type, and the number of sections are defined. In the

following example, “C1”, “T19”, “60”, “1”, and “1” respectively.

CLASS_DETAILS_INPUT = [

C1, T19, 60, 1, 1,

C2, T19, 60, 3, 1]

Subsequently, the parameters of the model are parsed into the form of 2-D arrays. The

following code parses the 1-D array, used for reading data from the input file, into a 2-D

array called CLASS_DETAILS. The x dimension in this array has the same length as the

number of courses in the schedule, CLASSES in this case, which is an array than includes

all the courses in the schedule. This is achieved with the help of function array2d, which

parses a 1-D array into a 2-D array.

array[CLASSES, 1..5] of int: CLASS_DETAILS = array2d(CLASSES, 1..5,

CLASS_DETAILS_INPUT);

Constraints in Minizinc start with the word “constraint” and end with a semicolon. These

constraints can have loops that cover a set of variables. For instance, the bellow constraint

example has a for loop that includes all the classes in the schedule that are of type “1”,

and are not class “1”, as seen in the “where” statement. Each one of these classes, in other

words, all classes of type “Twice a week lectures”, are constrained into being placed

exactly 2 times in the overall schedule. This is achieved with the help of function sum.

62

This function calculates the number of times that each class is present in the entire

schedule array, as seen in line 2. The if statement in line 3, only checks if the class exists

in a specific array slot, and if so, adds value “1” to the overall sum. The below example

constraints the values of a 3D array I_SCHEDULE, which is an array that is used to

represent the schedules of all instructors.

1. constraint forall(c in CLASSES where c != 1 /\ CLASS_DETAILS[c, 4] == 1)(

2. sum (i in INSTRUCTORS, d in DAYS, s in SLOTS)

3. (if I_SCHEDULE[i,d,s] == CLASSES[c] then 1 else 0 endif) == 2);

6.2.4 Parameters and Variables

6.2.4.1 Timeslots parameters

The days in the schedule are divided into timeslots, each timeslot represents 60 or 90

minutes. On normal lecture days, these being Monday, Tuesday, Thursday, and Friday,

the day is divided into 8 timeslots, each representing a 90-minute period. For

Wednesdays the day is split into 12 timeslots, representing 60-minute periods.

The days were broken up in this way so that the schedule complies with requirement 5 in

the Schedule requirements, which specifies that tutorials should be taught on

Wednesdays, and since the length of tutorials in the department is 60 minutes, the

separation was inevitable.

Figure 6.9 Timeslots Parameters

6.2.4.2 Variables

The variables in the model represent the schedules of the instructors. These schedules are

represented by a 3D array that has a domain of type classes. The x-axis in the array

represents the instructors, the y-axis represents the days (5 in total), and the z-axis

represents the timeslots.

Similarly, the variables for the Wednesday shcedule are represented by a 2D array, with

the only difference being that the days dimension is not present.

63

Figure 6.10 – Schedules Variable Arrays

For representing the lack of a course, since the variable tables are defined to be of type

classes, an independent class called E (represented by number 1 in the model) is needed.

This class symbolizes an empty slot and is not involved in any of the constraints, making

it placable in any time slot. Thus, empty slots in the final solution will be ocupied by class

E “1”.

6.2.4.3 Unavailability parameters

The unavailability of the instructors is represented by a 3D array for the lecture days and

by a 2D array for Wednesdays. These arrays are used to determine when instructors are

unavailable for teaching. Value "1" in these arrays indicates that the instructor is

unavailable, while the value "0" indicates that the instructor is available.

Figure 6.11 – Busy Parameter Arrays

6.2.4.4 Course relationships parameters

The DISJUCT and PARALLEL_LEC arrays are lists of sets of two courses, these course

peers signify combinations of courses that shouldn’t be taught at the same time or must

be taught at the same time, respectively.

Figure 6.12 – Course Dependencies Parameters

6.2.4.5 Course details parameter

64

Array CLASS_DETAILS contains information about each course, such as the class

number, the instructor’s number, the maximum number of students, and the type of the

course as show below.

Figure 6.13 – Course Details Parameter

6.2.5 Constraints

The constraints are seperated into different goups in this section, depending on their

functionality. For example, a set of 3 contstraints could be needed to ensure that one of

the requirements, that are shown in Chapter 4.3.2, is enforced.

Constraints 1 – Unavailability

1.1 - Instructors cannot teach when they are busy:

constraint forall(i in INSTRUCTORS, d in DAYS, s in SLOTS where d != WE /\ BUSY[i,s,d] == 1)

 (I_SCHEDULE[i,d,s] == 1);

This constraint sets all the timeslots where the instructor is busy as having class 1, which

is class E, representing an empty slot. This way, the instructor cannot be assigned any

course during that timeslot.

1.2 - Instructors cannot teach when they are busy on Wednesdays:

constraint forall(i in INSTRUCTORS where W_BUSY[i,1] == 1 \/ W_BUSY[i,2] == 1)

 (I_SCHEDULE[i,WE,1] == 1);

constraint forall(i in INSTRUCTORS where W_BUSY[i,2] == 1 \/ W_BUSY[i,3] == 1)

 (I_SCHEDULE[i,WE,2] == 1);

constraint forall(i in INSTRUCTORS where W_BUSY[i,4] == 1 \/ W_BUSY[i,5] == 1)

 (I_SCHEDULE[i,WE,3] == 1);

constraint forall(i in INSTRUCTORS where W_BUSY[i,5] == 1 \/ W_BUSY[i,6] == 1)

 (I_SCHEDULE[i,WE,4] == 1);

constraint forall(i in INSTRUCTORS where W_BUSY[i,7] == 1 \/ W_BUSY[i,8] == 1)

 (I_SCHEDULE[i,WE,5] == 1);

constraint forall(i in INSTRUCTORS where W_BUSY[i,8] == 1 \/ W_BUSY[i,9] == 1)

 (I_SCHEDULE[i,WE,6] == 1);

65

constraint forall(i in INSTRUCTORS where W_BUSY[i,10] == 1 \/ W_BUSY[i,11] == 1)

 (I_SCHEDULE[i,WE,7] == 1);

constraint forall(i in INSTRUCTORS where W_BUSY[i,11] == 1 \/ W_BUSY[i,12] == 1)

 (I_SCHEDULE[i,WE,8] == 1);

Since Wednesdays and the other days have a different number of timeslots, the

unavailability of the instructors on Wednesdays are passed through a different array,

W_BUSY. Therefore, to determine the unavailability of the instructors in the schedule

for courses that are not tutorials, the above constraints had to be used. For instance, the

first one checks if the instructor is unavailable on either one of the first two 60-minute

slots, if so, then they are also unavailable in the first slot of the 90-minute period, and so

on.

1.3 - Instructor can’t teach when they are busy on Wednesday for Wednesday

Schedule:

constraint forall(i in INSTRUCTORS, s in W_SLOTS where W_BUSY[i,s] == 1)

 (I_W_SCHEDULE[i,s] == 1);

The tutorials, as previously shown in 6.2.3.2 Variables, are scheduled in a different

array, this being I_W_SCHEDULE.

This constraint sets the timeslots where the instructors are unavailable on Wednesdays as

occupied by class E which represents an empty timeslot.

Constraints 2 – Instructor and Course coherence

Each class can only be taught by its instructor:

constraint forall(c in CLASSES where c != 1)(

 forall(i in INSTRUCTORS, d in DAYS, s in SLOTS where i != CLASS_DETAILS[c,2])

 (I_SCHEDULE[i,d,s] != CLASSES[c]));

This constraint makes sure that each class that does not belong to an instructor is not

present in their schedule. CLASS_DETAILS[c,2] contains the instructor which teaches

class c.

Constraint 3 – Conflict courses

constraint forall(f in 1..numOfConflicts)(

 forall(i in INSTRUCTORS, d in DAYS, s in SLOTS)(

 forall(i2 in INSTRUCTORS, d2 in DAYS, s2 in SLOTS where d==d2 /\ s==s2 /\

I_SCHEDULE[i,d,s] == DISJUNCT[f,1])(

 (I_SCHEDULE[i2,d2,s2] != DISJUNCT[f,2]))));

66

Checks if a course is being taught in a timeslot, then no other instructor can have the

second course in the DISJUNCT array in their schedule at the same timeslot. This

constraint ensures that each pair of two courses defined in the DISJUNCT array are not

taught on the same day and timeslot.

Constraint 4 - Parallel courses

constraint forall(f in 1..numOfParallelLectures)(

 forall(i in INSTRUCTORS, d in DAYS, s in SLOTS where d==MO \/ d==TU)(

 forall (i2 in INSTRUCTORS, d2 in DAYS, s2 in SLOTS where (d2==MO \/ d2==TU) /\ (d!=d2

\/ s!=s2) /\ (I_SCHEDULE[i,d,s] == PARALLEL_LEC[f,2]))

 (I_SCHEDULE[i2,d2,s2] != PARALLEL_LEC[f,1])));

Similarly, this constraint ensures that each of the two courses defined in the

PARALLEL_LEC array are taught at the same timeslot and day. This is done by ensuring

that for all combinations of different timeslots, if the first course is taught, then the

second course should not be taught. Therefore, constraining the courses into being taught

at the same day and timeslot.

Constraints 5 – Twice a week Lectures

5.1 - Each lecture can be taught a maximum of one time per day:

constraint forall (day in DAYS where day != 3)(

 forall(c in CLASSES where c != 1 /\ CLASS_DETAILS[c, 4] == 1)(

 sum (i in INSTRUCTORS, s in SLOTS where i == CLASS_DETAILS[c,2])

 (if I_SCHEDULE[i,day,s] == CLASSES[c] then 1 else 0 endif) <= 1));

5.2 - Two Lectures for course of type twice a week lectures in total:

constraint forall(c in CLASSES where c != 1 /\ CLASS_DETAILS[c, 4] == 1)(

 sum (i in INSTRUCTORS, d in DAYS, s in SLOTS)

 (if I_SCHEDULE[i,d,s] == CLASSES[c] then 1 else 0 endif) == 2);

5.3 - Lectures are taught at the same time slot on different days (MO-TH):

constraint forall(i in INSTRUCTORS, s in SLOTS)(

 forall(s2 in SLOTS where s != s2 /\ I_SCHEDULE[i,MO,s] != 1 /\ I_SCHEDULE[i,TH,s2] != 1 /\

CLASS_DETAILS[I_SCHEDULE[i,MO,s], 4] == 1 /\ CLASS_DETAILS[I_SCHEDULE[i,TH,s2], 4]

== 1)(

 I_SCHEDULE[i,MO,s] != I_SCHEDULE[i,TH,s2]));

67

5.4 - Lectures are taught at the same time slot on different days (TU-FR):

constraint forall(i in INSTRUCTORS, s in SLOTS)(

 forall(s2 in SLOTS where s != s2 /\ I_SCHEDULE[i,TU,s] != 1 /\ I_SCHEDULE[i,FR,s2] != 1

/\ CLASS_DETAILS[I_SCHEDULE[i,TU,s], 4] == 1 /\ CLASS_DETAILS[I_SCHEDULE[i,FR,s2], 4]

== 1)(

 I_SCHEDULE[i,TU,s] != I_SCHEDULE[i,FR,s2]));

5.5 - Lectures on MO-TH, TU-FR :

constraint forall(c in CLASSES where c != 1 /\ (CLASS_DETAILS[c,4] == 1))(

 sum (i in INSTRUCTORS, d in DAYS, s in SLOTS where d == MO \/ d == TH)

 (if I_SCHEDULE[i,d,s] == CLASSES[c] then 1 else 0 endif) == 2

 \/ sum (i in INSTRUCTORS, d in DAYS, s in SLOTS where d == TU \/ d == FR)

 (if I_SCHEDULE[i,d,s] == CLASSES[c] then 1 else 0 endif) == 2);

Constraints 5.1, 5.2, 5.3, 5.4 and 5.5 ensure that courses of type twice a week lectures

(CLASS_DETAILS[C,4] == 1) are taught on Monday and Thursday or Tuesday and Friday,

once in each day and at the same timeslot. This is accomplished by limiting the lectures

to being taught exactly two times per week in constraint 5.2, then forcing them into being

scheduled at the exact same timeslot on the two different days, constant 5.3 & 5.4. Finally,

constraint 5.5 ensures that one lecture is scheduled on Monday and the other one on

Thursday, or Tuesday and Friday, respectively.

Constraints 6 - Twice a week labs

6.1 - Labs of type 4 (Twice a week) on MO-TH, TU-FR:

constraint forall(c in CLASSES where c != 1 /\ (CLASS_DETAILS[c,4] == 4))(

 sum (i in INSTRUCTORS, d in DAYS, s in SLOTS where d == MO \/ d == TH)

 (if I_SCHEDULE[i,d,s] == CLASSES[c] then 1 else 0 endif) ==

CLASS_DETAILS[CLASSES[c], 5] * 2

 \/ sum (i in INSTRUCTORS, d in DAYS, s in SLOTS where d == TU \/ d == FR)

 (if I_SCHEDULE[i,d,s] == CLASSES[c] then 1 else 0 endif) ==

CLASS_DETAILS[CLASSES[c], 5] * 2);

6.2 - Labs of type Twice a Week be taught at the same time slot on different days

(MO-TH) or (TU-FR):

constraint forall(c in CLASSES where c != 1 /\ CLASS_DETAILS[c, 4] == 4)(

 sum (s in SLOTS)

 (if I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c, 2]],TU,s] ==

I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c, 2]],FR,s] /\

68

I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c, 2]],TU,s] == c then 1 else 0 endif) ==

CLASS_DETAILS[c, 5]

 \/

 sum (s in SLOTS)

 (if I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c,2]],MO,s]==

I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c,2]],TH,s] /\

I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c, 2]],MO,s] == c then 1 else 0 endif) ==

CLASS_DETAILS[c, 5]);

6.3 - Labs of type (Twice a week) are taught in a week as many times as defined in

CLASS_DETAILS:

constraint forall(c in CLASSES where c != 1 /\ CLASS_DETAILS[c, 4] == 4)(

 sum (i in INSTRUCTORS, d in DAYS, s in SLOTS)

 (if I_SCHEDULE[i,d,s] == CLASSES[c] then 1 else 0 endif) ==

(CLASS_DETAILS[CLASSES[c], 5] * 2));

Like constraints 5, the above constraints guarantee that the laboratories of type “twice a

week” (CLASS_DETAILS [c, 4] == 4) are taught in the schedule on Mondays and

Thursdays or Tuesdays and Fridays, at the same timeslot. The only difference here is that

the laboratories can be taught multiple times per day. This is defined in parameter

CLASS_DETAILS[CLASSES[c], 5].

Constraint 7 - Once a week labs

Labs of type (Once a week) are taught in a week as many times as defined in

CLASS_DETAILS:

constraint forall(c in CLASSES where c != 1 /\ CLASS_DETAILS[c, 4] == 2)(

 sum (i in INSTRUCTORS, d in DAYS, s in SLOTS)

 (if I_SCHEDULE[i,d,s] == CLASSES[c] then 1 else 0 endif) ==

CLASS_DETAILS[CLASSES[c], 5]);

This constraint specifies that laboratories of type “Once a week” are taught as many times

as the iterations are defined in CLASS_DETAILS[CLASSES[c], 5]). It is important to

note that in this case, these laboratories can be scheduled on any day of the week, without

day constraints.

Constraint 8 – Once a week Lectures

constraint forall(c in CLASSES where c != 1 /\ CLASS_DETAILS[c, 4] == 5)(

 sum (i in INSTRUCTORS, d in DAYS, s in SLOTS)

69

 (if I_SCHEDULE[i,d,s] == CLASSES[c] then 1 else 0 endif) == 1);

Lectures of type “once a week” (CLASS_DETAILS[c, 4] == 5) are taught only once in

the instructor’s schedule. This lecture can be placed anywhere in the schedule with no

day or timeslot constraints, if all the other constraints are satisfied.

Constraints 9 – Tutorials

9.1 - Tutorial conflicts:

constraint forall(f in 1..numOfConflicts)(

 forall(i in INSTRUCTORS, s in W_SLOTS)(

 forall(i2 in INSTRUCTORS, s2 in W_SLOTS where s==s2 /\ I_W_SCHEDULE[i,s] ==

DISJUNCT[f,1])(

 (I_W_SCHEDULE[i2,s2] != DISJUNCT[f,2]))));

9.2 - Tutorials taught in parallel:

constraint forall(f in 1..numOfParallelLectures)(

 forall(i in INSTRUCTORS, s in W_SLOTS)(

 forall (i2 in INSTRUCTORS, s2 in W_SLOTS where s!=s2 /\ (I_W_SCHEDULE[i,s] ==

PARALLEL_LEC[f,2]))

 (I_W_SCHEDULE[i2,s2] != PARALLEL_LEC[f,1])));

9.3 - Each tutorial is only taught once in the I_W_TIMETABLE:

constraint forall (c in CLASSES where c != 1 /\ CLASS_DETAILS[c, 4] == 3)(

 sum(i in INSTRUCTORS, s in W_SLOTS)

 (if I_W_SCHEDULE[i,s] == c then 1 else 0 endif) == 1);

 9.4 - Each tutorial can only be taught by its instructor:

constraint forall(c in CLASSES where c != 1 /\ CLASS_DETAILS[c,4] == 3)(

 forall(i in INSTRUCTORS, s in W_SLOTS where i != CLASS_DETAILS[c,2])

 (I_W_SCHEDULE[i,s] != CLASSES[c]));

Like the other array, the array for the tutorials is constrained into following the same

rules.

Constrains 10 – Coherence between the two arrays.

10.1 - I_SCHEDULE does not have tutorials:

constraint forall(i in INSTRUCTORS, d in DAYS, s in SLOTS)(

70

 (CLASS_DETAILS[I_SCHEDULE[i,d,s], 4] != 3));

10.2 - Wednesday schedule can only have tutorials:

constraint forall(i in INSTRUCTORS, s in W_SLOTS)(

 (CLASS_DETAILS[I_W_SCHEDULE[i,s], 4] == 3 \/ I_W_SCHEDULE[i,s] == 1));

10.3 - Wednesdays in I_SCHEDULE only have labs (No lectures or tutorials):

constraint forall(i in INSTRUCTORS, s in SLOTS)(

 (CLASS_DETAILS[I_SCHEDULE[i,WE,s], 4] == 2 \/ I_SCHEDULE[i,WE,s] == 1));

10.4 - Instructors cannot have labs and tutorial at the same time in the two different

schedules:

constraint forall(i in INSTRUCTORS)(

 (I_SCHEDULE[i,WE,1] == 1 \/ (I_W_SCHEDULE[i,1] == 1 /\ I_W_SCHEDULE[i,2]==1)));

constraint forall(i in INSTRUCTORS)(

 (I_SCHEDULE[i,WE,2] == 1 \/ (I_W_SCHEDULE[i,2] == 1 /\ I_W_SCHEDULE[i,3] == 1)));

constraint forall(i in INSTRUCTORS)(

 (I_SCHEDULE[i,WE,3] == 1 \/ (I_W_SCHEDULE[i,4] == 1 /\ I_W_SCHEDULE[i,5] == 1)));

constraint forall(i in INSTRUCTORS)(

 (I_SCHEDULE[i,WE,4] == 1 \/ (I_W_SCHEDULE[i,5] == 1 /\ I_W_SCHEDULE[i,6] == 1)));

constraint forall(i in INSTRUCTORS)(

 (I_SCHEDULE[i,WE,5] == 1 \/ (I_W_SCHEDULE[i,7] == 1 /\ I_W_SCHEDULE[i,8] == 1)));

constraint forall(i in INSTRUCTORS)(

 (I_SCHEDULE[i,WE,6] == 1 \/ (I_W_SCHEDULE[i,8] == 1 /\ I_W_SCHEDULE[i,9] == 1)));

constraint forall(i in INSTRUCTORS)(

 (I_SCHEDULE[i,WE,7] == 1 \/ (I_W_SCHEDULE[i,10] == 1 /\ I_W_SCHEDULE[i,11] ==1);

constraint forall(i in INSTRUCTORS)(

 (I_SCHEDULE[i,WE,8]==1 \/ (I_W_SCHEDULE[i,11] == 1 /\ I_W_SCHEDULE[i,12]==1)));

The above constraints ensure that there is consistency between the two variable arrays.

For example, if an instructor has a tutorial scheduled on the first timeslot on Wednesday,

then they shouldn’t have a laboratory scheduled at the same time in the I_SCHEDULES

array.

Constraints 11 – Iterations of laboratories

11.1 - Labs of type (Twice a week) are taught one after the other with no breaks in

between on MO-TH:

71

constraint forall(c in CLASSES, s1 in SLOTS, s2 in SLOTS where c != 1 /\ s1 != s2 /\

CLASS_DETAILS[c, 4] == 4 /\ CLASS_DETAILS[c, 5] > 1 /\

I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c, 2]],MO,s1] == c /\

I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c, 2]],MO,s2] = c)(

 (abs(s1-s2) < CLASS_DETAILS[c,5]));

11.2 - Labs of type (Twice a Week) are taught one after the other with no breaks in

between on TU-FR:

constraint forall(c in CLASSES, s1 in SLOTS, s2 in SLOTS where c != 1 /\ s1 != s2 /\

CLASS_DETAILS[c, 4] == 4 /\ CLASS_DETAILS[c, 5] > 1 /\

I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c, 2]],TU,s1] == c /\

I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c, 2]],TU,s2] = c)(

 (abs(s1-s2) < CLASS_DETAILS[c,5]));

11.3 - Labs of type (Once a week) are taught one after the other with no breaks in

between:

constraint forall(c in CLASSES, d in DAYS, s1 in SLOTS, s2 in SLOTS where c != 1 /\ s1 != s2 /\

CLASS_DETAILS[c, 4] == 2 /\ CLASS_DETAILS[c, 5] > 1 /\

I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c, 2]],d,s1] == c /\

I_SCHEDULE[INSTRUCTORS[CLASS_DETAILS[c, 2]],d,s2] = c)(

 (abs(s1-s2) < CLASS_DETAILS[c,5]));

11.4 - Labs of type (Once a week) are taught on the same day:

constraint forall(c in CLASSES where c != 1 /\ (CLASS_DETAILS[c,4] == 2))(

 sum (i in INSTRUCTORS, s in SLOTS)

 (if I_SCHEDULE[i,MO,s] == CLASSES[c] then 1 else 0 endif) ==

CLASS_DETAILS[CLASSES[c], 5]

 \/ sum (i in INSTRUCTORS, s in SLOTS)

 (if I_SCHEDULE[i,TU,s] == CLASSES[c] then 1 else 0 endif) ==

CLASS_DETAILS[CLASSES[c], 5]

 \/ sum (i in INSTRUCTORS, s in SLOTS)

 (if I_SCHEDULE[i,WE,s] == CLASSES[c] then 1 else 0 endif) ==

CLASS_DETAILS[CLASSES[c], 5]

 \/ sum (i in INSTRUCTORS, s in SLOTS)

 (if I_SCHEDULE[i,TH,s] == CLASSES[c] then 1 else 0 endif) ==

CLASS_DETAILS[CLASSES[c], 5]

 \/ sum (i in INSTRUCTORS, s in SLOTS)

 (if I_SCHEDULE[i,FR,s] == CLASSES[c] then 1 else 0 endif) ==

CLASS_DETAILS[CLASSES[c], 5]);

72

These constraints force the iterations/sections of the laboratories to be taught

consecutively one after the other on the same day.

Constraints 12 – Room capacities

12.1 - Maximum capacity for how many lectures can be taught at the same time:

constraint forall(d in DAYS, s in SLOTS)(

 sum(i in INSTRUCTORS where CLASS_DETAILS[I_SCHEDULE[i,d,s],4] == 1)

 (if I_SCHEDULE[i,d,s] != 1 then 1 else 0 endif) <= num_of_lecture_rooms);

12.2 - Maximum capacity for how many labs can be taught at the same time:

constraint forall(d in DAYS, s in SLOTS)(

 sum(i in INSTRUCTORS where CLASS_DETAILS[I_SCHEDULE[i,d,s],4] == 2 \/

CLASS_DETAILS[I_SCHEDULE[i,d,s],4] == 4)

 (if I_SCHEDULE[i,d,s] != 1 then 1 else 0 endif) <= num_of_lab_rooms);

12.3 - Maximum capacity for how many tutorials can be taught at the same time:

constraint forall(s in W_SLOTS)(

 sum(i in INSTRUCTORS where CLASS_DETAILS[I_W_SCHEDULE[i,s],4] == 3)

 (if I_W_SCHEDULE[i,s] != 1 then 1 else 0 endif) <= num_of_lecture_rooms);

The above constraints limit the number of lectures, tutorials and laboratories that can be

scheduled in each day and timeslot, between all the instructors. The numbers of rooms in

the department are passed into the model through parameters num_of_lecture_rooms and

num_of_lab_rooms.

6.2.6 Versions

The final system consists of three Minizinc models, these are referred to as versions in

this dissertation. Each one of these versions has slight differences from the other two,

mainly regarding how strict the requirements for the laboratory sections are.

The Department usually schedules the sections of a laboratory, which are created when

the number of students registered in a laboratory is higher than the capacity of the

laboratory rooms, to be taught consecutively, one after the other.

73

Version 1 is the simplest one, it created a valid schedule that satisfies all the requirements

given to it. Meaning, in the case of laboratories that must be taught in many sections, this

version will freely schedule them on different days and timeslots without consecutivity

constraint.

Version 2, on the other hand, schedules the sections to be taught on the same day but

without any constraint on the time of instructing. In other words, one laboratory could be

taught in the morning and the other one in the evening, as long as these slots satisfy the

rest of the constraints.

Lastly, version 3 is the strictest. It schedules all the sections of a laboratory to be taught,

on the same day and consecutively. This means that each laboratory section will be taught

immediately after the previous one, without any breaks in between.

6.2.7 Solver

The Minizinc tool comes with several off-the-shelf solvers. These solvers have different

characteristics and are optimized for different uses. The default solver in Minizinc is the

Gecode solver. It is a general-purpose solver used for solving simple constraint problems.

In addition, Minizinc also supports the OR-Tools solver, which as the advantage of being

able to execute multi-threadedly to improve performance. [20]

The chosen solver for the model is the Chuffed solver. From the early stages of the

model’s development, it was obvious that this solver was going to be the solver of choice.

This conclusion came from small tests that were conducted on early versions of the model.

The results were very clear, while Chuffed solver could produce an answer in an

acceptable timeframe, the other off-the shelf solvers could not produce an answer, even

if left for hours. Similar results were found by Rahman et al. [15] as discussed in Chapter

2.2.2.

The Chuffed solver, supported by Minizinc, stands out as one of the top-performing

solvers. Its proficiency in conflict clause learning, watched literal propagation, and

activity-based search heuristics makes it significantly more efficient compared to other

solvers. [20]

74

6.3 Back-end implementation

Minizinc, as it is a modeling language, can only read data in the form of parameters and

find satisfactory values to a set of variables. Meaning, it is not able to read any

parameters from a database or create easy to read graphical outputs. For these reasons,

separate Python scripts were created to handle the input and output of data from the

model.

6.3.1 Input script

The MiniZinc solvers read the input parameters of a model from a file in the ".dzn"

format. This file contains all the parameters as defined in Chapter 6.2.3. An example of

such a file can be seen in Appendix 2.1.

However, the user-defined input variables from the interface are stored in the database in

the form of records. For this reason, a script which is able to transform the data from the

database into the “.dzn” file format was required.

It is essential to point out that the model can only recognize inputs in the form of integer

numbers, therefore the Python scripts must be able to associate the courses and

instructor names/code to integer values. This association is very critical for the output

scripts, which would associate the output integer values back to the course/instructor

codes.

The script first establishes a connection to the database, then creates two files that

associate the course codes and instructor usernames to integer values and saves them in

“.txt” files. Afterwards, it builds the “.dzn” file by reading the database and creating the

input for each needed array or parameter required by the model.

6.3.2 Output scripts

Once the solver has completed its task, it outputs the populated 3D schedule arrays in a

2D format, one 2D schedule for each instructor. This output operation can be seen in

Appendix 2.2. The output results are then saved into a text file called “result.txt”, this

file is used by the Python scripts, along with the assassination files created by the input

script to create graphical easy to read PDF schedules.

75

The first script splits the output results into separate files for each instructor, which then

the second script uses to generate PDF schedules for each instructor. In addition, the

second script uses the files “courses.txt” and “instructors.txt” to associate the given output

integers to the courses and instructors.

Figure 6.14 – Instructor’s PDF Schedule

The generated PDF files visualise the schedule for each instructor. A different color is

used for each lecture to emphasize the time of start and end. The course code for Lectures

and Laboratories is shown in the middle of the teaching period, while for the tutorials, on

the top portion.

76

Chapter 7

7 Testing and Evaluation

7.1 Minizinc Model Testing

7.2 Website Evaluation

7.3 Limitations

7.1 Minizinc Model Testing

For the purposes of testing the developed algorithm with realistic data sets, the number

of instructors and courses in the Fall semester of 2023 was used as a guide. Meaning, a

ratio of instructors to courses was calculated and used in the testing process. The schedule

consisted of 110 different courses, these being lectures, laboratories, and tutorials, and 35

instructors. Therefore, the ratio is 110/35 = 3.14 courses to instructors. Subsequently, the

model was tested on data sets ranging from 30 courses and 10 instructors up to 150

courses and 47 instructors. These tests were conducted with the static 5 courses conflicts

constraints.

It is important to note that these tests were conducted on a personal computer and not on

a large-scale supercomputer. The computer is powered by an Intel Core (TM) i7-9750H

CPU running on 2.60GHz with 16GB of RAM. Therefore, executing the solver on a high-

performance computer most probably would result in better running speeds.

77

Figure 7.1 – Running Time Test Linear Scale

The above graph shows the running time of the Chuffed solver when applied to the most

constraining version of the model (Version 3), since the goal of the testing is to verify

that the model can solve the hardest problem in an acceptable timeframe. The time

complexity of the model seems to be exponential. A satisfactory schedule can be found

for problems with up to 90 courses in less than 5 minutes. However, only a 60% increase

in size to 150 courses results in an astronomical 1517% increase in the observed running

time. This exponential trend can be seen in the steep upward curve of the graph, showing

a significant increase in running time as the size of the problem gets larger.

0

10

20

30

40

50

60

70

30 40 50 60 70 80 90 100 110 120 130 140 150

M
in

u
te

s

Number of courses

Running time - Linear scale

78

Figure 7.2 – Running Time Test Algorithmic Scale

This exponential trend can be seen more clearly in the above graph where the Y-axis is

set to a logarithmic scale. The upward trendline is marked in red.

This information can be useful in determining the practicality and efficiency of using this

approach. For the department of computer science, the model can find a satisfactory

schedule in about 17 minutes, which is a very reasonable timeframe. Subsequntly, even

if the department scales up its operations, making the problem larger, this approach can

still be useful as a schedule can be produced for 150 courses in about an hour.

Subsequently, the model was testing on different amounts of course conflicts with the

same number of courses and instructors. Specifically, with 110 courses and 35 instructors.

The tests were conducted with schedules with 0 course conflicts, up to 30 course conflicts.

These conflicts were set to a maximum chain of 5 courses. In other words, only a

maximum of 5 courses could be chained in the same conflicts chain. Conflicts chains

exist when course A and course B are conflicting courses, and course B and C are

conflicting courses, therefore course A and C also become conflicting courses.

0.1

1

10

100

30 40 50 60 70 80 90 100 110 120 130 140 150

M
in

u
te

s

Number of courses

Running time - Logarithmic scale

79

The above graph depicts the results of these tests. The number of conflicts does not seem

to affect the required running time of the solver by a substantial amount. In addition, it

seems that a small number of conflicts improve the speed of the solver.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

M
in

u
te

s

Number of Conflicts

Running time - Linear scale

80

7.2 Website Evaluation

The goal of this part of the evaluation phase is to determine the usability of the we-

interface along with the user experience. The system was given to multiple users to be

used in a normal setting, without any guidance. Subsequently, a questionnaire, consisting

of 11 questions about ease of use and general usability was given to the participants for

collecting and documenting the feedback. The questionnaire can be seen in Appendix 3.

The results of the questionnaire are presented below.

Figure 7.3 – Questionnaire Question 1

Figure 7.4 – Questionnaire Question 2

81

Figure 7.5 – Questionnaire Question 3

Figure 7.6 – Questionnaire Question 4

82

Figure 7.7 – Questionnaire Question 5

Figure 7.8 – Questionnaire Question 6

83

Figure 7.9 – Questionnaire Question 7

Figure 7.10 – Questionnaire Question 8

84

Figure 7.11 – Questionnaire Question 9

Firstly, the questionnaire revealed that most of the participants found the website to be

easily navigable, with only 12.5% of the respondents having difficulties in navigating

between the different pages. Similarly, most participants found the content on the web

interface to be clear and easy to understand, along with the purpose of each page. On the

other hand, the fonts and colors used on the website seemed to not satisfy the participants’

expectations, as only 37.5% of participants found the colors and fonts to be easily

recognizable and readable. In addition, most users found the graphical design to be

satisfactory, with only 25% of participants answering with “Not satisfied” and none with

“Not satisfied at all”. These two areas, the colors and fonts, and the graphical design can

be the focus of future improvements.

Most participants found the interface to be quite similar systems they have used in the

past but not exactly the same. This is great because it suggests that the interface is familiar

enough for users to navigate with ease, yet unique enough to stand out from the crowd.

In addition, the participants seemed to be satisfied with the way the schedules are

displayed.

Finally, when the participants were asked to suggest any changes to the interface, one

participant noted that the Error message could be improved to be more specific in some

cases.

85

7.3 Limitations

The implemented system succeeds in managing and producing valid schedules for the

instructors of the department in a reasonable timeframe. However, the system has some

limitations.

For one, the system can produce a schedule only for the instructors of the department,

classroom assignment was not realized in this implementation. As previously discussed,

merging both problems into the same model was not successful, this is because of the

produced time-complexity, which is much higher than the time-complexity of the

problems individually. In other words, the merged model required astronomical

timeframes to solve the problems, which is not realistic. Meanwhile, the instructor’s

schedule problem was prioritized as it posed a more challenging problem for the

department’s secretary than the room assignment problem. Although, the classroom

assignment problem can be implemented by extending the system into including a second

Minizinc model, which takes the generated schedule by the first model as an input and

generates a similar schedule for the classrooms.

In addition, due to time constraints, the developed system does not schedule sections of a

laboratory to different instructors, meaning that all sections of a laboratory must be taught

by the same instructor. This feature can be implemented in future work.

Finally, the interface could benefit from additional functionalities, such as editing the

information of instructors or resetting a forgotten password. These functionalities can be

implemented in future versions of the system.

86

Chapter 8

8 Conclusion

8.1 Conclusion

8.2 Challenges

8.3 Future work

8.1 Conclusion

In this dissertation, the course scheduling problem was explored and analyzed. From its

nature, the use of Artificial Intelligence techniques made perfect sense as the most viable

solution to such an NP hard problem. Subsequently, existing approaches were presented

and discussed, along with the Constraint Satisfaction Programming technique. Forthwith,

the Software Development Life Cycle was introduced and followed during the

development of the system. Starting with the Requirements analysis, where the

requirements for the front-end interface and the schedule were defined and documented.

Subsequently, the design of the database and the interface were presented and discussed.

In addition, some key components from the implementation stage were showcased.

Finally, the system was tested and evaluated. In this stage, we concluded that the

developed system could go through further enhancements, mainly regarding the web-

interface and the realization of a room course scheduler. In closing, the conducted testing

revealed that the automated tool is capable of handling the required number of courses

and instructors to produce a valid schedule for the Department in a reasonable timeframe.

8.2 Challenges

During the designing and developing of the tool, many challenges were encountered.

Firstly, as previously discussed, the capabilities and weaknesses of the Minizinc tool were

not clear from the early stages. This deemed the project as being somewhat experimental

87

because there weren’t many existing similar implementations of such an approach that

uses the Minizinc tool.

The Minizinc tool, although user-friendly, has the disadvantage of having a lack of

widespread usage. Due to this, there is a limited set of documentation and materials

available about it. This was one of the main challenges that we faced, as acquiring the

necessary knowledge and skills from the very few available sources was challenging.

Additionally, the implementation of a Minizinc model that would create both the

instructors’ schedule as well as the rooms’ schedule posed a significant challenge because

of the time-complexity required, as shown from the testing. For this reason, only the

model for the instructors’ schedule was realized.

Lastly, the deployment of the back-end component of the implementation faced

significant obstacles and was unsuccessful due to a cyberattack targeting the university's

infrastructure, which posed numerous technological challenges.

8.3 Future work

Due to time constraints, some of the features that were proposed in the Requirements

Analysis stage were not realized. Firstly, as explained above, the implementation of a

Minizinc model that would create schedules for the rooms and laboratories of the

Department can be realized in future work.

In addition, the web interface of the tool could be formerly improved to better suit the

needs of the users and enhance its usability. This can include the implementation of some

of the features that were documented in the Requirements Analysis stage, such as the

possibility for an instructor to update their unavailability or change the details of a course,

since these requirements were not implemented in the developed system.

Furthermore, given that only the Interface of the system has been successfully deployed

on the servers of the department, the back-end algorithm could also be deployed and

tested on the servers.

88

Bibliography

[1] PagerDuty. (n.d.). What Is the Software Development Life Cycle?

https://www.pagerduty.com/resources/learn/software-development-life-cycle/

[2] Jevtic, G. (2019, May 15). What is SDLC? How the Software Development

Life Cycle Works. PhoenixNAP Global IT Services.

https://phoenixnap.com/blog/software-development-life-cycle

[3] What Is SDLC (Software Development Life Cycle) Phases & Process. (n.d.).

https://www.softwaretestinghelp.com/software-development-life-cycle-sdlc

[4] Ruparelia, N. B. (2010). Software development lifecycle models. ACM

SIGSOFT Software Engineering Notes, 35(3), 8.

[5] What is PHP (Hypertext Preprocessor)? - Definition from WhatIs.com. (n.d.).

WhatIs.com. https://www.techtarget.com/whatis/definition/PHP-Hypertext-

Preprocessor

[6] Simmons, L. (2022, January 7). The Difference Between Front-End vs. Back-

End. Code a New Career | ComputerScience.org.

https://www.computerscience.org/bootcamps/resources/frontend-vs-backend/

[7] Python Software Foundation. (2019). What is Python? Executive Summary.

Python.org. https://www.python.org/doc/essays/blurb/

[8] Oracle. (2021). What is MySQL? Oracle.com.

https://www.oracle.com/mysql/what-is-mysql/

[9] What is HTML, and why should I learn it? (2020, February 17). Code Institute

Global. https://codeinstitute.net/global/blog/what-is-html-and-why-should-i-

learn-it/

89

[10] O’Grady, B. (2020, February 25). What is CSS? The Ultimate Intro. Code

Institute Global. https://codeinstitute.net/global/blog/what-is-css-and-why-

should-i-learn-it/

[11] Mozilla. (2019, July 2). What is JavaScript? MDN Web Docs.

https://developer.mozilla.org/en-

US/docs/Learn/JavaScript/First_steps/What_is_JavaScript

[12] Wasfy, A., & Aloul, F. (n.d.). Solving the University Class Scheduling Problem

Using Advanced ILP Techniques.

http://www.aloul.net/Papers/faloul_sch_gcc07.pdf

[13] Chen, R.-M., & Shih, H.-F. (2013). Solving University Course Timetabling

Problems Using Constriction Particle Swarm Optimization with Local Search.

Algorithms, 6(2), 227–244. https://doi.org/10.3390/a6020227

[14] Aycan, E., & Ayav, T. (2009, March 1). Solving the Course Scheduling

Problem Using Simulated Annealing. IEEE Xplore.

https://doi.org/10.1109/IADCC.2009.4809055

[15] Rahman, M., Binte Noor, S., & Siddiqui, H. (n.d.). Automated Large-scale Class

Scheduling in MiniZinc. https://arxiv.org/pdf/2011.07507.pdf

[16] Stuckey, P. J., Feydy, T., Schutt, A., Tack, G., & Fischer, J. (2014). The

MiniZinc Challenge 2008–2013. AI Magazine, 35(2), 55.

https://doi.org/10.1609/aimag.v35i2.2539

[17] Barták, R. (n.d.). Constraint Programming - What is behind?

https://kti.mff.cuni.cz/~bartak/NASSLLI2003/files/paper1.pdf

[18] Cooper, T., & Kingston, J. (n.d.). The Complexity of Timetable Construction

Problems.

http://jeffreykingston.id.au/tt_papers/cooper_kingston_1996_complexity.pdf

90

[19] Snapcraft - Snaps are universal Linux packages. (n.d.). Snapcraft

https://snapcraft.io/

[20] The MiniZinc Handbook. (n.d.). Solving Technologies and Solver Backends.

https://www.minizinc.org/doc-2.4.3/en/solvers.html?highlight=cbc%20solver

[21] Chen, M. C., Sze, S. N., Goh, S. L., Sabar, N. R., & Kendall, G. (2021). A

Survey of University Course Timetabling Problem: Perspectives, Trends and

Opportunities. IEEE Access, 9, 106515–106529.

https://doi.org/10.1109/access.2021.3100613

91

Appendix 1

This appendix includes some key parts of the implementation.

1:

PHP function that is triggered by the user’s login, it reasds the user’s credentials and

hashes the password to compare it later to the saved password in the database.

2:

JavaScript function for testing the validity of the passwords to ensure compliance with

the password security requirements.

92

3:

PHP function for registering a user.

4:

The code for the tool can be found in this GitHub link:

https://github.com/sohanassa/Thesis.git

https://github.com/sohanassa/Thesis.git

93

Appendix 2

This appendix presents a sample of the “.dzn” file used for the Minizinc model and the

output functions in the model in part 2.

1:

…

…

94

2:

95

Appendix 3

This appendix includes the questions of the questionnaire that was used in the interface

evaluation stage.

96

