

Jammer Localization in Wireless Sensor Networks (WSN)

Panayiotis Vasiliou

University of Cyprus

Department of Computer Science

June 2023

University of Cyprus

Department of Computer Science

Jammer Localization in Wireless Sensor Networks (WSN)

Panayiotis Vasiliou

Research Supervisor

Dr. Vasos Vassiliou

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science at the University of Cyprus

June 2023

Acknowledgements

First and foremost, I would like to thank my thesis supervisor and mentor, professor Dr.

Vasos Vasiliou for his invaluable assistance and guidance throughout this academic year.

I would also like to express my gratitude towards PhD candidate Michael Savva for his

assistance with all the necessary data and information he provided me with and wish him

the best for his future. Lastly, I want to thank my beloved family and friends for

supporting me and being by my side all these years.

Summary

The Internet of Things (IoT) has become an integral part of our daily lives in various

institutions and domains for the past decades. Wireless Sensor Networks (WSNs) which

form the backbone of the IoT are a fundamental component and they provide the essential

data and relevant information that powers IoT applications. Since it is in the nature of

man to cause damage for expediency and due to the importance, ubiquity, and

interconnectedness of WSNs, the latter have been getting increasingly vulnerable to

attacks. Among these attacks, jamming attacks pose a significant threat. In a jamming

attack, a malicious actor disrupts communication within the network and tries to render it

unavailable by flooding it with interference signals. Since the consequences of such an

attack can be severe, actions need to be taken to mitigate as much damage as possible.

This paper focuses on one very important part of counter measuring the attack—jammer

localization. Jammer localization is the process of determining or estimating the potential

coordinates of the jammer within the network. This thesis presents a comprehensive

review and comparison of five jammer localization algorithms, cross examining their

performance across different types of network topologies, jammer types and jammer

position scenarios to identify the best approach and reach some conclusions regarding the

effectiveness of the algorithms.

 It is also important to note that the performance of the algorithms depends on the quality

of the information they receive, a point which is discussed later in the paper. The findings

and insights from this work can be useful and contribute to the ongoing battle against

jamming attacks by aiding in the development of effective countermeasures, thereby

strengthening the overall security of WSN and IoT deployment.

Table of Content

Chapter 1 Introduction... 1

1.1 Motivation 1

1.2 Goal 2

1.3 Methodology 3

1.4 Structure 6

Chapter 2 Detection Mechanisms and Simulation Data……………………… 7

2.1 Detection Mechanisms 7

2.1.1 Fuzzy Logic for Jamming Detection 7

2.2 Simulation Data 10

2.2.1 Simulation Setup and Dataset Generation 10

2.2.2 Filtered data for Algorithm Evaluation 12

2.2.3 Visualization of Node and Jammer Coordinates 14

 Chapter 3 Algorithmic Analysis……………………………………………….. 16

3.1 Related Work on Jammer Localization Algorithms 17

3.1.1 Centroid Localization Algorithm 17

3.1.2 Weighted Centroid Localization Algorithm 18

3.1.3 Double Circles Localization Algorithm 18

3.1.4 Virtual Force Iterative Algorithm 20

3.2 Particle Swarm Optimization Algorithm 21

3.2.1 Particle Swarm Optimization, A General Review 21

3.2.2 Implementation of Particle Swarm Optimization 22

3.2.3 Parameter Selection for PSO 24

Chapter 4 Jammer Types... 32

4.1 Different Types of jammers 33

4.1.1 Constant Jammer 33

4.1.2 Deceptive Jammer 33

4.1.3 Random Jammer 34

4.1.4 Reactive Jammer 34

Chapter 5 Comparative Analysis of Range-Free Jammer

 Localization Algorithms…………………………………………… 35

5.1 Result Examples 36

5.2 Storing and Processing the Results 41

5.3 Result Analysis 47

5.3.1 Constant Jammer 47

5.3.1.1 Constant Jammer on uniformly distributed topology 47

5.3.1.2 Constant Jammer on randomly distributed topology 49

5.3.2 Deceptive Jammer 50

5.3.2.1 Deceptive Jammer on uniformly distributed topology 50

5.3.2.2 Deceptive Jammer on randomly distributed topology 51

5.3.3 Random Jammer 52

5.3.3.1 Random Jammer on uniformly distributed topology 52

5.3.3.2 Random Jammer on uniformly distributed topology 53

5.3.4 Reactive Jammer 54

5.3.4.1 Reactive Jammer on uniformly distributed topology 54

5.3.4.2 Reactive Jammer on randomly distributed topology 55

5.4 Overall Performance Analysis and Conclusions 56

5.4.1 Impact of Jammer and Topology Type on Overall Performance 56

5.4.2 Impact of Jammer Location on Overall Performance 60

5.4.3 CPU Execution Time Analysis 62

Chapter 6 Conclusion and Future Considerations ... 65

 6.1 Important conclusions 65

 6.2 Suggestions 67

Bibliography ... 68

Appendices …………………………………………………………………….. 70

1

Chapter 1

Introduction

1.1 Motivation 1

1.2 Goal 2

1.3 Methodology 3

1.4 Structure 6

1.1 Motivation

When the internet first emerged, human to human communication was the primary form

of interaction for internet-connected devices. Most of the machines that had access to the

internet still had to be operated by a human. For the past few decades however, this has

not been the case, as we witness more and more devices interconnected with one another,

exchanging information bringing us closer to the role of the spectator in the IoT era [1].

As a result, Wireless Sensor Networks (WSNs), which collect and interface the

information between the sensors/ actuator in the IoT, have been getting more and more

common [2].

Critical infrastructure sectors, such as chemical, energy, communication and even the

healthcare and public health, are now relying on wireless sensor as a reality of our daily

lives. Such crucial aspects of our daily lives can be disrupted by malicious jamming

attacks which can cripple a part of the network or even render the whole network unable

to transmit data. The consequences range from security compromises, hindered

communication to complete system failure. This growing threat has compelled us in

developing strategies that prevent the attacks or at least mitigate the damage as much as

possible.

According to recent studies, it is estimated that the number of connected IoT devices could

reach up to 45 billion and the numbers of attacks on wireless sensor networks have

2

skyrocketed. Only in in the first half of 2019, we observed an increase of more than 300%

in the number of jamming attacks [4]. Given that cybercrime against companies amounts

to a loss of nearly USD 6 trillion per year, and it could cost the world USD 10.5 trillion

annually by 2025 there is a lot of money on the line and big companies are willing to

invest heavily on anti-jamming measures [5].

Since WSNs are so ubiquitous and since they are comprised of sensors that are of low

computational power and energy capabilities, they often become easy targets for

adversaries that attempt to jam the network. To ensure the functionality, reliability, and

integrity of the WSNs we have developed algorithms that try to estimate the location of

the jammer within the network, the so-called jammer localization algorithms.

Our motivation arises to seek the best way we can leverage information from a network

suffering a jamming attack, in an attempt to mitigate the effects of the jamming attack by

estimating the geological x,y coordinates of the jammer within the network, so that further

actions can be taken to restore normality to the network. We provide this information to

the algorithms, and we obtain the estimated position of the jammer.

Figure 1.1 – Wireless sensor network (WSN) [3]

1.2 Goal

The main objective of this research is to investigate the effectiveness of various jammer

localization algorithms, across different combinations of topologies, jammer types and

jammer positions within the network. By cross examining five state-of-the-art algorithms,

this study aims to draw meaningful conclusions regarding the accuracy of each algorithm.

3

By comparing the results we obtain from extensive tests and simulations, we can pinpoint

the strengths and weaknesses of these algorithms, to determine the most reliable approach

to localizing the jammer.

To further clarify the goal of this paper, we can break down the objective into a couple of

useful research questions/ hypotheses.

• With 5 algorithms at our disposal, each one with its own pros and cons, how do

they differ in terms of performance? Is mean accuracy sufficient for gaining a

general understanding of their performance?

• How is each algorithm influenced from the conditions of the simulation and the

quality of the provided data?

• Are these algorithms performing as expected? Is their performance solely based

on how good they are or are they constrained by the information we have at hand?

By gaining a comprehensive understanding of the strengths and weaknesses of different

jammer localization algorithms, this research will contribute by providing valuable

insights and conclusions in implementing defence systems that select the best option

available when it comes to jammer localization algorithms.

Ultimately, the outcomes of this research can contribute to the ongoing battle against

malicious jamming attacks, which will get more common, more severe, and more

complex as the world of IoT becomes increasingly integrated into our daily lives.

1.3 Methodology

This work employs a comparative experimental research design, and this is done by

comparing the results of five jammer localization algorithms. It is important to point out

that for a complete and meaningful evaluation of the algorithms, we had to treat them with

fairness. This means that all experiments conducted are controlled and run under

standardized conditions. Four out of the five algorithms follow a relatively similar

baseline approach, while the fifth algorithm, which was developed completely from

scratch too, has a distinct approach. Nonetheless, all of them were tested using the same

4

datasets and had the exact same information available to them, even when alternative

information available within the data seemed intuitively more suitable. This is to ensure

that all the algorithms have the same information to their disposal as the work focuses on

how the algorithms behave with data obtained from a specific logic, named fuzzy logic,

which will be explained later.

Initially, we started by getting a thorough understanding of what data we are going to

work with as well as reviewing various surveys on the general topic of jammer

localization such as the work done by Yanqiang Sun et al. [6]. The data we had at our

disposal was information obtained on the condition of the network based on a fuzzy logic

which produces an index, noting whether a node in our network is jammed or not.

Next, we conducted a comprehensive literature review to gather information about the

existing jammer localization algorithms. This involved analysing papers, reports, articles,

and relevant sources, to get an idea of the existing approaches towards localizing a jammer

after the attack has been detected.

Based on the information and the knowledge gathered from the steps mentioned

previously, we conducted a second, more comprehensive and extensive literature review

to select a subset of the algorithms we researched previously in a way that we could pair

them with the data we had in our disposal. This was important because a lot of algorithms

were not going to work with what we had in hand, due to the nature of how the algorithms

process information to obtain results. We were able to extract key details about the

methodology of each algorithm, as well as its implementation and assumptions. Four of

the five algorithms were supplied with a baseline implementation, which we then adjusted

and fine-tuned to make them compatible with our data. As for the fifth algorithm, it was

developed from scratch following a variation of the original algorithm proposed in the

paper.

The data that our algorithms used, was provided in the form of excel files. This

information was obtained by running various scenarios in the ContikiOS simulator.

However, it does not concern us on how the data was obtained as this is not the purpose

of the research.

Subsequently, we executed our algorithms on this data for all the possible scenarios. This

covers different jammer types, different topologies, and different jammer locations. The

5

data consists of two topologies, four different types of jammers and sixteen different

jammer locations. This means we run a total of 2x4x16x5 python scripts to cover all the

possible scenarios. The scripts were performed in Visual Studio Code editor.

Regarding the data analysis techniques, we utilized the statistical metric of Euclidean

distance between the algorithm’s estimation and the actual jammer location. This allowed

us to evaluate the performance of each algorithm based on localization error. By

considering all possible combinations of environment parameters, we examined how each

algorithm behaves with regards to different parameters.

It is also worth mentioning that this work was limited to topologies where the sink was in

the middle. Additionally, the performance of all the algorithms solely relies on the quality

of the data we tested them with, and more specifically with the fuzzy index of each node

in the network.

6

1.4 Structure

In Chapter 1 we have provided the overall goal of this paper as well as giving the

motivation behind the research. Moreover, we present the process of thought and the path

we followed towards completing this paper.

In Chapter 2 we give a brief but adequate explanation on the part of detecting the jammer

attack within the network, as this was the way the data for the algorithms was obtained.

Additionally, we describe the structure of the data we were supplied with.

Chapter 3 offers a comprehensive review of the five state-of-the-art algorithms that were

selected for our experiments. We explain how each algorithms works and how it processes

the information from the datasets. Furthermore, we provide insight into how we decided

which values would the parameters of the fifth algorithm get.

Next in Chapter 4, we give a quick reference to the four types of jammers that were used

in the attacks from which we gained the data from. It is also worth noting that each jammer

type has provided different results in the jamming detection phase, which has resulted in

different results across our experiments.

In Chapter 5, we showcase the experiments we run across the various available

combinations from topologies, jammers, and jammer positions. We give a brief

explanation for each scenario, so that the reader can have a clear picture of what was

happening behind the scenes while we obtained the results. Graphs for each scenario are

presented and analysed in a meaningful way, facilitating the derivation of conclusions.

Finally, Chapter 6 proposes ideas and suggestions on future work that would greatly

enhance the performance of the algorithms in similar scenarios.

7

Chapter 2

Detection Mechanisms and Simulation Data

2.1 Detection Mechanisms 7

2.1.1 Fuzzy Logic for Jamming Detection 7

2.2 Simulation Data 10

2.2.1 Simulation Setup and Dataset Generation 10

2.2.2 Filtered data for Algorithm Evaluation 12

2.2.3 Visualization of Node and Jammer Coordinates 14

The process of detecting a jamming attack is the initial step in taking effective measures

against such attacks. A detection mechanism that actively monitors the network, to spot

anomalies and unusual activity is what has provided the relevant information that will be

used later in the process of localizing the jammer. Based on a set of parameters that

determine the input, it decides which nodes are likely to be jammed. This chapter provides

a high-level overview of the role of fuzzy logic in determining the jamming status of the

nodes within the network and how that is connected to our research.

2.1 Detection Mechanisms

2.1.1 Fuzzy logic for Jamming Detection

Fuzzy logic is a framework that enables the representation and manipulation of imprecise

values or concepts. In contrast to a more traditional mathematical framework, fuzzy logic

gives us the opportunity to work with different degrees of truth, instead of relying on

binary TRUE/FALSE values. By incorporating imprecise, uncertain, and incomplete

information, fuzzy logic provides a bridge between natural and machine intelligence [7].

8

In general, fuzzy logic as a detection framework can make real-time decisions even with

lacking information, therefore it is considered a suitable option for addressing this

problem [8]. Since it can accept a combination of metrics, it can also represent the

environment through if-then rules accurately [9]. Based on a set of classification rules,

we can create fuzzy sets which resemble membership functions for the possible values

that the variables can have.

In the work by Savva, M et al. [10], an intrusion detection technique which uses fuzzy

logic as its detection mechanism is proposed. In their work, they employed a combination

of the following metrics to generate the fuzzy index:

• ETX: Expected Transmission count (ETX) is the expected number of

transmissions required to successfully transmit and acknowledge a packet.

• Retransmissions: The total number that a packet had to be transmitted over and

over until it was successfully received.

• PDPT: Packets Dropped Per Terminal (PDPT) is the ration of the number of

received packets that have not passed the Cyclic Redundancy Check, to the total

number of packets received by the node.

• PDR: Packet delivery Ratio (PDR) is the ratio of packets that are successfully

delivered to the destination to the total number of packets sent out by the sender.

9

Figure 2.1.1 Values of Variables Used In the Definition of Membership Functions [10]

Figure 2.1.2 The trapezoidal Membership function plots for the output, Jamming index (JI).

[10]

10

2.2 Simulation Data

2.2.1 Simulation Setup and Dataset Generation

The datasets used in this research were derived from simulations performed in the Contiki

OS with the help of the Cooja simulator tool. By simulating a network topology as a grid

area with 25 nodes with a central node acting as the sink, different scenarios were

performed. In each scenario, there was a different combination of topology type, jammer

type and jammer position with 2 different types of topologies (uniform and random), four

different jammer types and 16 different jammer positions.

By simulating all these different scenarios, enough data was generated, which would reflect

the conditions within the network producing a fuzzy index that indicates the likelihood of a

node being jammed.

While it is important to highlight the importance of the fuzzy index in determining the

likelihood of a node being jammed, we chose not to go into excessive and specific technical

detail on this matter, as this is not the primary focus of this research. Fuzzy logic only serves

as the technique that enables the bridge between the attack detection and the jammer

localization in a wireless sensor network suffering an attack. With this concise explanation,

we showcase how the necessary input information for the algorithms was generated,

ensuring an extensive and comprehensive comparison and evaluation of their results.

In the following two screenshots, Figure 2.2.1 – Uniformly Distributed Topology and Figure

2.2.2 – Randomly Distributed Topology, we can see a graphical representation of how the

two types of topologies, uniform and random respectively were set from the simulations. It

is important to note that both topology types feature the same 16 jammer locations.

11

Figure 2.2.1- Uniformly Distributed Topology [10]

Figure 2.2.2 – Random Distribution Topology

12

In the following Table 2.2.3 – Simulation Data, we can see the form, structure, and length of

the data in the way it was provided to us for this research with the full table used in one of

the scenarios. Each scenario simulates one minute of traffic monitoring within the network.

With 336 records, we have fourteen batches of nodes, with each batch holding 24 nodes.

Every 24 nodes, the process starts over until a full minute has been captured.

ETX RetransmissionsFuzzy

6.038416 20.54545 2 0 0.327954 0.041494 0.1354 0

4.298618 68.18182 3 1 0.207939 0.222683 0.1354 0

4.072945 101.9091 4 1 0.192372 0.350968 0.4 0

6.958457 40.81818 5 0 0.391421 0.118603 0.1354 0

3.309529 21.72727 6 0 0.13971 0.045989 0.1354 0

6.814834 51.72727 7 0 0.381513 0.160097 0.1354 0

3.980012 97.72727 8 1 0.185961 0.335062 0.3185 0

3.740753 127 9 1 0.169456 0.446404 0.4 0

6.921223 70 10 0 0.388852 0.229599 0.1354 0

2.160142 52.63636 11 0 0.060423 0.163555 0.1354 0

5.067873 51.72727 12 0 0.261004 0.160097 0.1379 0

Table 2.2.3 – Simulation Data

2.2.2 Filtered Data for Algorithm Evaluation

In the following screenshot Figure 2.2.4 – Snapshot of Data, we can see the relevant

information that was used in our algorithms. While other approaches could make use of

more information from the table, we chose to follow a more simplified approach, to treat the

algorithms with fairness, by utilizing the same minimal information for all algorithms. Due

to the simplicity of some algorithms, that do not need excessive amounts of information to

work, we preferred to use that minimal information for all of the algorithms. This would

13

allow us to evaluate the performance of each algorithm and compare them in the fairest way

possible, reaching safe conclusions about the accuracy of the algorithms in question.

Figure 2.2.4- Snapshot of Data

The screenshot corresponds to a specific scenario in which the parameters were:

• Topology: uniformly distributed nodes.

• Jammer Type: Deceptive jammer.

• Jammer Position: 2 (-20, -60)

This means that these are the outputs of the simulation run in the Contiki OS, for one minute

of recording the traffic within the network. The type of jammer used in this simulation is

deceptive, it was placed in the second position out of the 16 different positions of jammers

(-20, -60) and the nodes in the network were distributed uniformly (See Figure 2.2.1 –

Uniformly Distributed Topology).

14

Due to the excessive amount of information, we can filter out most of the columns in our

excel files, and only focus on the necessary data that is needed for the algorithms.

Therefore, the only columns that concern us are the following:

• C: The ID for each node, this column loops in the range of values of 2-25. This is

used to correlate the node and its position, which is held in another excel file.

• G: This column is holding the jamming value for the node, which was obtained as

the fuzzy index from the simulation.

• H: Column H, holds the information on whether a node is considered jammed or not

jammed via binary values, 1 and 0 respectively.

To cover all the different combinations of jammer type/ topology type/ jammer position, we

had an excel file (with the exact same format as the one shown in figure 2.2.4 – Snapshot of

data), for each position (16 total positions in each topology) of the jammer. In total, this

accumulates to a total of 2(topologies)* 4(jammer types) *16(different jammer locations).

In each of these files, there are 336 records, which add up to 14 batches of 24 nodes. This

means that each algorithm estimates the possible location of the jammer 14 times. The method

we chose to calculate the error for each algorithm, was via calculating the average error of all

these batches. This is the safest way of assuming the accuracy of each algorithm because this

resembles a realistic network monitoring scenario, in which some batches can provide

relatively good information, while other might provide misleading and wrongful data. We

assessed that the approach of using the worst-case scenario would not provide adequate

information, as it was often leading to our algorithms completely missing the position of the

jammer. The same stands for the best-case scenario which respectively led to estimations with

zero localization error.

2.2.3 Visualization of Node and Jammer Coordinates

In figure 2.2.5 – Node coordinates and figure 2.2.6- Jammer coordinates, we can see the x,y

coordinates of the nodes and the jammers respectively. It is worth noting that Node with ID 1

is the sink node, therefore its coordinates are (0,0).

15

Figure 2.2.5 - Node Coordinates Figure 2.2.6 - Jammer Coordinates

Figure 2.2.5 - Node Coordinates shows the nodes’ coordinates for both topology type,

with the uniformly distributed topology shown on the left and the randomly distributed

topology shown on the right.

Figure 2.2.6 - Jammer Coordinates shows the coordinates of the locations of the jammers.

Overall, in this chapter we provide an overview of the data obtained from the simulations.

This includes a concise explanation of the simulation setup, the generation of the datasets

and the filtering of the relevant information, which was then used in our algorithms. We

employed a methodology that allows a fair comparison and evaluation of the algorithms’

performance.

16

Chapter 3

Algorithmic Analysis

3.1 Related Work on Jammer Localization Algorithms 17

3.1.1 Centroid Localization Algorithm 17

3.1.2 Weighted Centroid Localization Algorithm 18

3.1.3 Double Circles Localization Algorithm 18

3.1.4 Virtual Force Iterative Algorithm 20

3.2 Particle Swarm Optimization Algorithm 21

3.2.1 Particle Swarm Optimization, A General Review 21

3.2.2 Implementation of Particle Swarm Optimization 22

3.2.3 Parameter Selection for PSO 24

In this chapter, by going over how each algorithm works, we allow the reader to get an

adequate amount of information needed regarding the logic behind the algorithms. Five

state-of-the-art algorithms have been chosen to be tested and evaluated. As far as the first

four algorithms are concerned, we were supplied with a simplistic baseline

implementation which had to be tweaked in a way that would allow the process of the

data we already had. It is also worth noting that these algorithms were also reviewed in

the literature to ensure they are suitable to process the information we had at hand. The

fifth algorithm was chosen after an extensive literature review based on how suitable it

was regarding the data. Moreover, the last algorithm is much more sophisticated

compared to the other four, therefore it is explained in much more detail. It is also worth

mentioning that for our experiments we preferred to use range-free localization

algorithms. As the name suggests, range-free algorithms do not rely on precise distance

measurements between nodes for localization purposes. Instead, they utilize other

information, such as connectivity or relative signal strengths, to estimate the location of

the target node or jammer by using various geometric methods [13]. No need for

17

additional and special software support is necessary, compared to range-based techniques

which comes with the benefit of better level of accuracy.

3.1 Related Work on Jammer Localization Algorithms

3.1.1 Centroid Localization Algorithm

Centroid Localization (CL) Algorithm is arguably the simplest algorithm out of the five

algorithms reviewed in this research. This algorithm can calculate the possible jammer

location, by taking the coordinates of the jammed nodes and averaging them [11]. It

requires only a minimum of computations and little communication expenses compared

to other algorithms and it is only relying on the binary information on whether a node is

jammed or not.

Figure 3.1.1.1 – Centroid Localization Algorithm Formula [11]

When it comes to our experiments, CL only requires the information on whether a node is

jammed or not. Hence, in our variation, we select data only from columns C and H which

give the node’s ID and its jamming condition respectively. After 24 nodes have been

processed, the program calculates the averages as mentioned above, and then the relevant

variables are reset as the program moves to the next 24-node batch. Due to its simplicity, CL

is performing relatively good in scenarios where there is high node density, and where nodes

are uniformly spread across the network. Lastly, CL can be considered the general baseline

for all jammer localization algorithms, and almost all papers examined in the literature,

regarding various localization algorithms, were comparing their findings with CL.

18

3.1.2 Weighted Centroid Localization

Much like CL, Weighted Centroid Localization (WCL) is still using averages to estimate

the jammers position, with the only difference being that it also uses weights to achieve

better results [12]. While there are many different options to use as weights, in the WCL

variation that we were supplied with, the fuzzy index of each node was used as a weight

metric. While this isn’t a bad option, it caps the localization capabilities of the algorithm

since the performance is completely reliant on the fuzzy index. This means that a faulty

fuzzy index, or a fuzzy index that is not particularly good, will lead to errors, compared

to using the distance as the metric of weight or a combination of both. Moreover, to ensure

fairness in the comparison of the algorithms, we used only the fuzzy index from nodes

that were recorded as jammed. This means that WCL had the exact same nodes to work

with, with the CL algorithm. As a threshold, jammed nodes are the nodes whose jamming

index value is greater than 0.575. In our experiments, we used the same approach in how

the data is processed with the one mentioned in 3.1.1. This also includes resetting the

relevant variables so that the program can safely proceed to the next batch of nodes, as

well as how the average error for the whole scenario is calculated.

Figure 3.1.2.1- WCL formula [12]

3.1.3 Double Circle Localization Algorithm

Double Circle Localization (DCL) is an algorithm that is being used in jammer

localization with the usage of two geometrical concepts: minimum bounding circle

(MBC) and maximum inscribed circle (MIC) [14]. The baseline edition of DCL that we

had, was using these two concepts in a slightly different way than the one described in the

literature review. It works by creating two convex hulls, one for jammed nodes and one

19

for non-jammed nodes, whereas the original proposed idea is to create the MBC to contain

only non-jammed nodes and have MIC as another circle within the convex hull that the

jammed nodes form. It involves comparing the positions of the jammed and non-jammed

nodes by analysing their respective convex hulls and minimum bounding circles. Our

algorithm, after creating the two convex hulls mentioned above, generates an MBC for

each hull. At the end we calculate the relative displacement between the two MBCs. The

resulting vector (x, y) provides an indication of the jammer's position relative to the

overall network. Once again, after each calculation, the program resets the relevant

variables and proceeds to get the next batch of nodes. It is also very important to note that

this implementation of DCL has a major flaw. Due to its nature of constructing convex

hulls and circles, there are scenarios in which the program does not come with an

estimation, as there are not enough points in the dataset to create a convex hull. There

need to be at least three jammed and three not jammed nodes, so that each convex hull

can be created. This means that in scenarios where there isn’t much available information,

this algorithm fails to provide an estimation in some of the batches, or completely fails to

provide an estimation at all. This is also discussed in our conclusions.

Figure 3.1.3.1- DCL Algorithm

20

3.1.4 Virtual Force Iterative Localization

Virtual Force Iterative Localization (VFIL) aims to estimate the possible location of the

jammer by modelling the network as a system of interactive particles, which exercise push

and pull forces towards one another. By utilizing network connectivity, in the work

described by Hongbo Liu, et.al [15], the algorithm initially calculates the centroid using

the CL algorithm (described in 3.1.1) and then it iteratively re-estimates the position until

it’s close to the real position, using a moving step. In the code we had to our disposal,

after we initially calculate the location using CL, we re-estimate the location by

examining the push and pull forces of the particles/nodes. The logic behind this, is that

jammed nodes exert pull forces, while non-jammed nodes exert push force. By summing

all the push forces and pull forces respectively, and by using a special formula, we can

calculate the Joint force, which as a value helps in changing the initial calculation to a

better, more accurate and precise one. Much like all the previous algorithms, we make

sure to reset the relevant variables after each batch is processed before moving to the next

one. In general, VFIL attempts to “fix” the estimation made by the CL, by incorporating

extra calculations after the CL algorithm makes the estimation.

Figure 3.1.4.1- Pull and Push Formula

Figure 3.1.4.2- Joint Force Formula

21

 These range-free algorithms offer different approaches for estimating the location of

jammers based on the network connectivity and geometric methods. While most of them are

not implemented in the exact same way they are proposed in the literature, they are used as a

good baseline example of how different approaches behave in scenarios from which the data

is being collected by using fuzzy logic. In the following section, we will delve into the

details of the Particle Swarm Optimization Algorithm, a more sophisticated approach that

leverages swarm intelligence to tackle the jammer localization problem.

3.2 Particle Swarm Optimization Algorithm

3.2.1 Particle Swarm Optimization, A General Review

As a concept, Particle Swarm Optimization (PSO) is very similar to a genetic algorithm

because it is initialized with a population of random possible solutions. The difference

between PSO and genetic algorithms, is that each one of those candidate solutions is given a

velocity and the ability to flow through the search space [16]. It is inspired by the social

behaviour of fish schooling and bird flocks. In general, PSO is considered a metaheuristic

optimization algorithm, and it aims to find the optimal solution in a problem by iteratively

adjusting the position and velocity of candidate solutions, until a mutual convergence is

reached. Based on individual experience of each particle, as well as a collective knowledge

of the whole herd, acting as cognitive and social components respectively, the particles tend

to move to the best solution, which resembles the jammer’s location. To adapt PSO for the

jammer localization problem, we modified the objective function, which basically uses a

fitness function to define the quality of a particle, e.g., the solution.

Inspired by the work presented by Liang Pang et.al [17] we developed a variation of the

algorithm, that would better suit the problem of localizing the jammer in wireless sensor

networks with regards to our specific data and simulation experiments.

In the variation of the PSO algorithm that we developed, since it was developed from scratch,

we swapped the stop criteria of convergence with a maximum number of iterations. Normally,

PSO stops iterating as soon as the convergence reaches a value smaller than a stop criterion

(usually a very small positive value [17]). After extensive experiments and trials, we noticed

that for a fair number of scenarios, the convergence would never occur, since the stop criteria

22

was never reached. This is caused by the quality of the data obtained from the simulations

described in 2.2. Therefore, we had to adapt to this problem, and we did that by setting the

iterations as a parameter. This comes at a cost of extra execution time and resource allocation,

but our algorithm manages to come with relatively good results and average execution time.

Figure 3.2.1.1 – Velocity and Position Equation [17]

In the PSO algorithm particles are moving through a socio-cognitive space, and therefore

are affected both by their individual knowledge (cognitive component) and by the collective

knowledge from all other particles (social component). The system is dynamic, meaning that

these particles are constantly changing positions and velocities in an attempt to achieve the

best fitness value, which is used to evaluate all solutions. The direction of movement is

calculated with a formula that takes into consideration the current position and velocity, the

best solution that the individual has found (cognitive component) and the best solution

found in the entire herd (social component) [17].

As the equation in Figure 3.2.1.1 suggests, we use two effective parameters, φ1 for the

cognitive component of the equation and φ2 for the social component of the equation. The

symbols ρι and ρg resemble the local best and global best positions found so far

respectively. Each particle is a candidate solution and to evaluate the quality of that solution

we calculate its fitness value. More information follows on how the program is structured

and how it works.

3.2.2 Implementation of PSO

Our program begins by creating and initializing particles in the search space, by assigning

them a random position (x, y) and a random velocity (xVelocity, yVelocity). The program

picks the batch and begins processing it. After picking a batch, the iterations begin and, in

each iteration, we do the following tasks:

1) Pick the first particle from the list of particles.

23

2) For that particle, calculate the minimum covering circle, which encloses all the nodes that

are jammed. This basically gives us the fitness value for the particle in question. The

minimum covering circle, is defined by the furthest jammed node. After thorough thinking,

we came up with the idea of using the distance from the particle’s position to the furthest

jammed node as the fitness value for the particle. Since PSO is a metaheuristic algorithm,

we transform the problem of localizing the jammer to a minimization problem, in which the

smallest fitness value is the best candidate solution, e.g., the position most likely to resemble

the real location of the jammer. The Euclidean distance was used as they metric to calculate

the distance between the furthest node.

3) Whenever we find a new, smaller minimal covering circle, this means we have found a

better new solution, at least locally. This means that we check whether the new circle

calculated is smaller than the previous smallest circle, and if so, we update the best local

solution, by setting it to the one just discovered. This means that we keep track of the

position and fitness value of the particle, to be able to access them in the comparisons. This

is done to calculate the cognitive component.

4) When the circle for the particle is created, and the personal fitness value is calculated and

after we update the personal best solution, if necessary, we need to check if we have a new

global solution which is better than the previous global solution. We can think of this as

having the best values for all the particles, with one of them being the global best value, and

comparing the new personal best value with this global best value. This is done to calculate

the social component.

5) As soon as these calculations are made, we can proceed to update the velocity and the

position of the particle in question, by using the equation shown in Figure 3.2.1.1. The order

in which we do these updates is very important, as the velocity needs to be updated first

before updating the position, since the position is directly affected by the velocity.

6) After the velocity and position of the particle has been updated, we proceed to move to

the next particle, and perform the steps 2-5 for the new particle in question.

7) As soon as all the particles have been processed, and all the possible solutions have been

calculated, the program will move to the next iteration. This means that the particles start

with the position and velocity that they had at the end of the last iteration. The steps 1-6 are

repeated until all of the iterations have been completed.

8) As soon as the last iteration finishes, the program output the global best solution, which is

the most accurate estimation of the jammer.

24

9) The program resets all the relevant variables, including the position and velocity of the

particles, and then moves on to the next 24-node batch, in which the steps 1-8 are repeated,

until all 14 batches have been processed.

This means that we have a total of 14(node batches) *24(nodes per batch) * 24 (iterations) *

60 (particles) iterations until the program completes.

Figure 3.2.2.1 – Animation of particles

 3.2.3 Parameter Selection for PSO

In this subchapter, we give some insight into the important aspect of parameter selection that

took place in the PSO algorithm. This is very important, as the values of the parameters

dramatically impact the overall performance of the algorithm. This includes the convergence

speed, the execution speed, and the accuracy of the algorithm.

In our research, we focused on two primary parameters: the number of iterations and the

number of particles. These two parameters play a significant role in how the algorithm

performs. To determine the optimal values for these parameters we have conducted numerous

investigations, by employing several experiments and performance evaluations. By

25

thoroughly analysing the impact of the number of particles and iteration we can decide which

values give the best trade-off between convergence behaviour, solution quality and execution

time.

Here are three graphs, that show the relationship between iteration number, particle number,

average error, and CPU execution time. As you can notice, in each one of the three graphs,

the number of iterations remains the same, increasing it from 5 to 10 and then to 20, 40 and

60. The particles in each graph slowly increase (X axis). This shows how average error is

dropping as both particles and iterations are growing as well as how CPU time increases. The

experiments stop when the execution time reaches a non-viable value, which is around the 4

second mark. As mentioned above, the average error is the average Euclidean distance

between the algorithm’s estimation and the real jammer location. CPU time is expressed in

seconds.

Figure 3.2.3.1

In figure 3.2.3.1, we keep the number of iterations steady at 5. By slowly increasing the

number of particles, starting from 5 up to 150, we can see how the average error decreases

and how CPU time increases. At around 50-80 particles, the average error starts to stabilize,

meaning that using more particles than that gives no benefit to the average error and only

26

increases CPU execution time. Based on this, we start to get an idea on how the number of

particles directly affects the average error and the CPU time.

Figure 3.2.3.2

The same stands for figure 3.2.3.2 but this time, the number of iterations is increased to 10.

This has a noticeable effect on the average error since it starts from much lower (15.8)

compared to previously (47). Once again CPU time starts to increase drastically at around the

60-particle mark. Moreover, there is very little decrease in the average error as the number of

particles goes above 60. We can conclude that the number of particles can only decrease the

average error up to a certain point. By increasing the number of iterations, we manage two

things: First, the starting errors from small number of particles is much lower compared to

using the same number of particles but with lower iterations. Second, we manage to lower the

minimum error much faster. In other words, in Figure 3.2.3.1 we can see that the error reaches

10 at almost the maximum number of particles (150 particles) whereas in Figure 3.2.3.2 we

can see that the average error reaches 10 and even drops to smaller values much sooner, near

25 particles.

27

Figure 3.2.3.3

Similarly, Figure 3.2.3.3 shows how increasing the number of iterations drops the error, for

the same number of particles. The error for 5 particles is again lower than both previous

numbers of iterations (10 and 5). However, in this graph the problem with execution time

becomes more obvious, as it skyrockets to 5 seconds at maximum number of particles (150).

Yet, the trend that after around 55-60 particles the average errors stops dropping, still applies.

At this point, we had a good idea on how the number of particles and iterations influence the

average error and execution time. If we wanted to keep a relatively low and viable execution

time, while still maintaining low errors, we had to use iterations in the range of 20-30 and

particles in the range 40-70. Anything below or above these ranges, gives either big error or

big execution times.

28

Figure 3.2.3.4

Figure 3.2.3.4 shows how average error and CPU time behave when the value of iterations is

set to 40. We observe that the starting error for only 5 particles is very small at around 9.9.

However, this value changes very little when more particles are added, while the CPU time

increases dramatically, even when the extra particles added are only a few (notice how

execution time reaches 5 seconds with only 50 particles). This led to the inclination that after

a certain point, increasing the number of iterations does not provide a lower error, or at least

an error that is low enough to justify the big execution number.

29

Figure 3.2.3.5

Finally, figure 3.2.3.5 showcases that there is absolutely no change in the average error when

the number of iterations is set to 60. This means that our previous assumptions on the number

of iterations were correct, and that we need to use a smaller number to maintain a good balance

between execution time and average error, combined with the correct number of particles.

Figure 3.2.3.6

In Figure 3.2.3.6 we plot the number of iterations to the average error, which aids in getting a

clearer understanding of the impact that the iterations have on the average error. For this

graph, the number of particles was set to 30, which is a number in the middle of the range of

particles (as discussed previously, the maximum number of particles is around 60). The graph

30

shows that as the number of iterations exceeds 25, there is practically no difference in the

average error.

Figure 3.2.3.7

In figure 3.2.3.7, we demonstrate the effect of the number of iterations to the average error

and CPU execution time, again in general picture. However, this time we simulate the

experiment 5 times for the same number of iterations before incrementing it to the next value.

This is to show that there are fluctuations due to the random nature of the algorithm. This is

caused by the randomness in which particles are assigned an initial position and velocity and

it is important to note that in some cases the algorithm was more fortunate regarding the

placement of the particles, while in some other the placement was not that favourable. In any

case, the experiment was tested multiple times so that the randomness does not give faulty

results, or results that do not accurately represent the performance of the algorithm. We can

clearly see that after the number of iterations exceeds the range of 20-30, there is no difference

to the average error, and CPU execution time increases drastically.

31

Figure 3.2.3.8

Lastly, in Figure 3.2.3.8 we show how different values for the number of particles affect the

average error and CPU execution time of our algorithm. Similarly with the previous

example, we keep the number of iterations steady at 10, which is a number that allows us to

isolate the effect of particles on CPU execution time and average error, by producing results

that represent it as close to reality as possible. Moreover, we use the same number of

particles more than once, to once again show that the algorithm behaves differently in the

same scenario, due to its randomness. It is obvious that after a certain number of particles, in

the range of 50-80, there is very little difference in the decrease of the average error.

Moreover, the trade-off between the average error and CPU execution time, after more than

80 particles are generated, does not justify in any case the increase in particle number.

In this chapter, we thoroughly investigated the importance of selecting the right value for two

key parameters of the PSO algorithm, number of particles and number of iterations. By

conducting a series of experiments, we aimed to reach a conclusion and decide which will be

the values that we will be using to test our algorithm in all the scenarios of this research. By

32

considering the trade-off between CPU execution time and average Euclidean distance error,

we demonstrate how the optimal value was decided for both parameters. The experiments

demonstrated that the number of particles directly affects the average error and CPU time,

with a diminishing return on error reduction beyond a certain particle count. Increasing the

number of iterations, on the other hand, allowed for lower initial errors and faster convergence

to a minimum error. However, there was a point of diminishing returns where additional

iterations did not significantly improve the average error but resulted in increased execution

time. Based on the results after the presented comprehensive investigation, we have concluded

that to maintain a balance between execution time and average error, we recommend using a

relatively low number of iterations in the range of 20-30, combined with an optimal number

of particles ranging from 40 to 70. Values below or above these ranges result to suboptimal

results. It is also worth mentioning that the random nature of the algorithm is producing

variability in the performance of the algorithm, due to the initialization of the particles. To

counter this, we conducted multiple experiments for the same value for each parameter, to

produce results that correctly represent the true performance of the algorithm in general

scenarios. In the following experiments, in which we test the algorithms on all the possible

scenarios, we used 24 iterations and 60 particles.

Chapter 4

Jammer Types

4.1 Different Types of jammers 33

4.1.1 Constant Jammer 33

4.1.2 Deceptive Jammer 33

4.1.3 Random Jammer 34

4.1.4 Reactive Jammer 34

33

 4.1 Different Types of Jammers

Like previously mentioned, in our experiments we tested the performance of our

algorithms across different topologies, jammer types and jammer locations. In this

chapter, we briefly cover the different types of jammers that were used in the Contiki OS

for generating the necessary data that we used in our experiments. This is a crucial detail,

because different types of jammers force our algorithms to produce different localization

errors. The results from different jammer types can provide valuable information

regarding how good or bad each algorithm performs. These conclusions add up to the

whole point of this research, which is to comprehensively review the performance of

various range-free localization algorithms. The data we had in our disposal consisted of

four different types of jammers. The work presented in [18] does an incredible job of

describing the different jammer types that are being used. The first three types of jammers

belong to the active jammers category, while the last type falls under the category of

reactive jamming.

4.1.1 Constant Jammer

A constant jammer is a type of jammer that continuously emits a radio signal. A constant

jammer does not follow any MAC-layer protocol and attempts to hold a channel busy by

sending random data. It is seemingly the simplest jammer out of the four jammers

reviewed in this chapter and it is the easiest to implement and the easiest to detect.

Moreover, it requires a lot of energy to function because it keeps emitting signals non-

stop.

4.1.2 Deceptive Jammer

Contrary to the Constant Jammer, a deceptive jammer is sending regular packets in

between the normal flow of packets in the network channel. Due to this fact, this jammer

34

is much harder to infer while keeping a relatively easy implementation. However, a

deceptive jammer is requiring a lot of energy to function properly.

4.1.3 Random Jammer

A random jammer instead of using a lot of energy to continuously emit signal data, can

alternate between sleeping and jamming modes. This results in much lower energy

consumption which is the major flaw of the two types of jammers mentioned right above.

During its jamming phase, it can behave either as a constant jammer and as a deceptive

jammer. It is worth noting that from our experiments, this type of jammer proved to be the

most dangerous of all, causing the biggest combined average error. More information on this

will be discussed in the conclusions chapter.

4.1.4 Reactive Jammer

In contrast with the previous three types of jammers mentioned right above, a reactive

jammer follows a different approach. Since this type of jammer belongs to the reactive

family, it does not jam the network when there is no traffic observed. This makes it consume

less energy and at the same time increases the difficulty of detection. However, it is

challenging to design and works on a single channel.

35

Chapter 5

Comparative Analysis of Range-Free Jammer Localization Algorithms

5.1 Result Examples 36

5.2 Storing and Processing the Results 41

5.3 Result Analysis 47

5.3.1 Constant Jammer 47

5.3.1.1 Constant Jammer on uniformly distributed topology 47

5.3.1.2 Constant Jammer on randomly distributed topology 49

5.3.2 Deceptive Jammer 50

5.3.2.1 Deceptive Jammer on uniformly distributed topology 50

5.3.2.2 Deceptive Jammer on randomly distributed topology 51

5.3.3 Random Jammer 52

5.3.3.1 Random Jammer on uniformly distributed topology 52

5.3.3.2 Random Jammer on uniformly distributed topology 53

5.3.4 Reactive Jammer 54

5.3.4.1 Reactive Jammer on uniformly distributed topology 54

5.3.4.2 Reactive Jammer on randomly distributed topology 55

5.4 Overall Performance Analysis and Conclusions 56

5.4.1 Impact of Jammer and Topology Type on Overall Performance 56

5.4.2 Impact of Jammer Location on Overall Performance 60

5.4.3 CPU Execution Time Analysis 62

36

Chapter 5 features a comprehensive comparative review of the five state-of-the-art

jammer localization algorithms presented and explained in chapter 3. The essence of the

study is to evaluate the performance and effectiveness of these algorithms, by examining

various datasets which are explained in chapter 2. The metric which we chose to compare

the algorithms with is that of the Euclidean distance error of the algorithm’s estimation

with respect to the real jammer location which was used in each scenario.

Like previously mentioned, we used datasets which consist of two different topologies,

four different jammer types and 16 different jammer positions in each scenario. This totals

to 128 unique scenarios, on which each of the five algorithms was tested. This gives us

diversity in our results and has also presented us with the chance to explore a wide range

of network conditions/ jammer placements and see how each algorithm behaves under

those circumstances.

While it is true that having lots of different outputs can help with generating a lot of

conclusions, it might become too much for the reader to see hundreds of tables. Since in

each jammer position, there are fourteen batches of 24 nodes, the information will become

too overwhelming and difficult to read, had we only noted down the distance errors for

each batch. We have compressed this data by only using the average distance error across

all the batches for a scenario. To facilitate an understanding of the results, most of them

will be presented in the form of graphs with a brief explanation underneath them. This

combination of graphical representation plus a small explanation, will help in interpreting

the data and provide insights on key findings, patterns, and limitations.

Overall, this chapter is the most crucial component of our thesis, as it focuses on a

systematic comparison and aids in giving valuable insights that can contribute to the

enhancement of jammer localization techniques.

5.1 Result Examples

To kick off the demonstration of our work, let’ see a snapshot of how each dataset was

tested. The algorithms were implemented and tested in the Visual Code Studio Editor,

which supports python language programs development. It is also very user-friendly, and

easy to use, by allowing automation in the project setup.

37

Figure 5.1.1 - Snapshot of Output

Figure 5.1.1 – Snapshot of Output is an example of one of the many executions of our

algorithms. More specifically, this snapshot was taken when the PSO algorithm was

tested on the randomly distributed topology, when the random jammer was used and

placed in the second location of the sixteen different locations (-20, -60). As we can see,

the program iterates over the fourteen batches found in the excel file we specify within

the code. This is a good time to explain that the readings of the nodes, e.g., the

information about which nodes were jammed or not, as well as the information on the

coordinates of these nodes are loaded into panda data frames directly from the excel

files, to allow for easy processing. In Figure 5.1.1- Snapshot of Output we showcase the

output of the PSO algorithm, in which we print the Euclidean distance error, between

the algorithm’s estimation and the actual jammer’s location. You might notice that some

batches do not provide with enough information. In this example, the first batch of

nodes is skipped, because there were no jammed nodes recorded, therefore the algorithm

is unable to localize the jammer, since no attack is recorded.

 In the following Figure 5.1.2 – Snapshot of Output 2, we can also see the exact x and y

coordinates of each estimation.

38

Figure 5.1.2 - Snapshot of Output 2

The calculated position of the jammer for each batch is displayed above the

corresponding Euclidean distance error for each batch. Once again, there are minor

differences in the distance errors, even though the scenario remains the same. This is

caused by the random nature of the algorithm. To balance these fluctuations, we chose

to use the average error resulting from all the fourteen batches. By using the average

error resulting from all the batches, we also balance between batches that provide good

information and therefore produce a smaller distance error, and batches that provide not

that accurate information which leads to bigger distance errors. For example, batch 9

has relatively good information, which is evident by the small distance error (17.65593),

whereas batch 13 gives a much bigger error (30.6985), meaning that the recordings on

the jamming conditions of the nodes were not as good quality as batch 9. The x and y

coordinates of each batch’s calculation are not being used in the comparisons, since we

only care about the Euclidean distance error to evaluate the performance. By printing

them, we can show that the Euclidean distance error is not just a fictional or random

generated number, but instead is calculated between the estimation and the real location.

39

In the following figures, Figure 5.1.3 – Snapshot of output Centroid, Figure 5.1.4 –

Snapshot of output weighted Centroid, Figure 5.1.5 – Snapshot of output DCL, Figure

5.1.6 – Snapshot of output VFIL, we showcase the outputs of the other four algorithms

discussed in chapter 3.

Figure 5.1.3 – Snapshot of Output Centroid

Figure 5.1.4 – Snapshot of Output Weighted Centroid

40

Figure 5.1.5 – Snapshot of Output DCL

Notice that there are some batches that do not provide sufficient information for the DCL

algorithm to function normally. As discussed in 3.1.3, the DCL algorithm requires at least

three jammed nodes to function, because a convex hull cannot be created with two or less

points. We ignore batches that contain insufficient information and only process the ones

that will lead to estimations. This is a huge downside in DCL, because the information

comes from simulating realistic scenarios, meaning that DCL will malfunction in some

real-world situations.

Figure 5.1.6 – Snapshot of output VFIL

This is how we tested each algorithm for all the possible scenarios. This information is

stored across multiple excel files, which will be explained in the next subchapter of this

paper.

41

5.2 Storing and Processing the Results

Due to the overwhelming amount of information that each simulation provides, we had to

come up with a way to store and organize our data that would allow for easy processing.

We did that by creating an excel file for each jammer location per topology. In other

words, there is an excel file with 16 sheets, per topology type per jammer, with each sheet

storing the calculations of the five algorithms for one of the sixteen possible jammer

locations.

Figure 5.2.1 – Example of an Excel Workbook

In the above Figure 5.2.1 - Example of an Excel Workbook, we can see how the results of the

five algorithms shown in 5.1 were stored. There are 16 total sheets, with each sheet storing

the information on the corresponding jammer position. Sheet 2 is selected, meaning that we

42

are seeing the results from the second jammer position (-20, -60), when a randomly distributed

topology was used alongside a random jammer. The cells in the range A1:A5 hold the name

of each algorithm. Then, each column from B to O has the Euclidean distance error for each

batch, hence there are 14 columns to represent the 14 batches. At column Q, we store the

average error for that algorithm which is also the information we use later in the comparison

of the algorithms. By storing the average error, we can use it to see how each algorithm

performs across different topologies, different jammer types and different jammer locations.

Lastly, at the cell Q8 we hold the average error from all the algorithms. Once again, this is

useful in pointing out how different combinations of topology type, jammer type and jammer

location generally affect the performance of the five algorithms.

After all 16 possible jammer locations, shown in Figure 2.2.5 – Jammer Coordinates have

been tested, we proceed to concatenate the information from each batch and store them in

another excel file. This Excel file calculates the averages of the five algorithms plotted to the

topology type, jammer type and jammer placement. In the following Figure 5.2.2 – Snapshot

of Data, we can see the structure of the file.

Figure 5.2.2 - Snapshot of Data

43

We have organized the results like this: At the columns from E to I we store the average error

of each algorithm. Each row represents a jammer location, hence the 16 total rows. This means

that under each algorithm’s name, we see the average Euclidean distance error from the 14

batches of that algorithm in each jammer location. Also, we calculate the average error of all

the algorithms per jammer location in the column A. By doing this, we get an idea of how the

jammer placement affects the algorithms in a more general way. At the bottom of the

snapshot, we can see the average Euclidean distance error for each algorithm across all 16

jammer placements in the topology. Once again this sums the performance of each algorithm

and gives us a clearer picture on the performance of each algorithm. Here, one simple

deduction which occurs simply by looking at the numbers, is that PSO has underperformed in

the combination of randomly distributed topology with a random jammer, averaging an error

of 24.52546 across the 16 possible jammer locations. Moreover, we can also infer that when

the jammer was placed in the 14th position (-20, 60), it causes the biggest error across all five

algorithms, reaching a value of 40.415284. Lastly, the different colours visible in the column

concerning the DCL algorithm, are used to show how much the average error was affected by

the lack of DCL to provide an estimation in some batches. A yellow colour indicates that there

isn’t much divergence compared to the average error of other algorithms and the possible

average error of DCL had the algorithm given an estimated position in all batches. An orange

colour shows that the average error is higher than expected, because some batches that give

low average errors for the other four algorithms cannot be of use from DCL, therefore its

average error was calculated from relatively poor information. A red colour indicates that

there is huge difference in DCL’s average error, because some poor batches have not been

included in the calculations. In other words, the average error resulting from DCL can be

misleading in some cases, meaning that the average error across all jammer positions

(19.30504) for this combination of jammer type plus topology does not reflect the

performance of DCL in the same level of accuracy compared to the other four algorithms.

Lastly, in the scenario in which the jammer was placed in the 9th position, DCL completely

failed to provide an estimation throughout the 14 batches, which would have a catastrophic

result in a real-life scenario.

In this same excel file, we have plenty of graphs that help in understanding the data, by

visualising the performance of the algorithms plotted to various variables. More information

is given under each graph in the next section.

44

Figure 5.2.3 – Performance of Algorithms

In figure 5.2.3 - Performance of Algorithms, we can see the average error of the five

algorithms, based on the location that the jammer was placed. It is evident that the

algorithms follow the same trends, and we can observe that they have very similar errors

across the different jammer locations. DCL seems to be the best algorithm, but this is not

the case, as there are misleading results in some jammer locations which cause a smaller

average error. Overall, none of the algorithms is doing particularly well when a random

jammer was used in a topology with randomly distributed nodes. We can interpret this

observation in many ways:

1. When the jammer was placed at the bottom right of the topology, it caused a huge

error across all the algorithms. If we look at the topology shown in Figure 2.2.2 –

Random Distribution Topology, we can see that there are not that many nodes

scattered near that location of the jammer, meaning that the information we gave

our algorithms was of relatively bad quality.

2. PSO algorithm, has performed poorly, with respect to the other algorithms and our

expectations. We did not expect this, since the algorithm generates particles across

the network, it would be able to handle situations like this better than the other

algorithms who greatly benefit by a uniform node distribution and good node

45

density. This means that PSO is heavily relying on the quality of the data. When

the data is not of particularly good quality, the algorithm underperforms.

3. DCL algorithm is not suitable for this topology, as it misses a lot of estimations

due to the lack of sufficient jammed nodes in most of the batches.

4. CL, WCL and VFIL perform almost identically, with a relatively average

performance. Since these three algorithms follow similar approaches, we can say

that they are bound by the quality of the data. The approach of calculating the

centroid and then fixing the calculation notwithstanding, VFIL does not improve

the localization accuracy.

We further analyse the results in the excel file by providing more graphs.

Figure 5.2.4 Average error Per Algorithm

In Figure 5.2.4 - Average error Per Algorithm we can see the average error of the algorithms,

in a clearer way. Our conclusions are verified by seeing that the algorithms perform similarly.

Moreover, we can safely say that all algorithms give a relatively big average error, which

means that:

46

1) The random distribution topology when a random jammer is used is a big challenge in

general.

2) The data we were supplied with is not good enough to provide the algorithms with

information that gives good localization accuracy.

Figure 5.2.5 – Average error per scenario

In Figure 5.2.5 - Average error per scenario, we show the graph in which we plotted the

average Euclidean Distance Error to the jammer location. We can see that apart from the 14th

location which has given a huge average distance error, there is no clear indication on how

the jammer location affects the performance of the algorithms, since there are continuous

ups and downs across different locations. This is how we evaluate the performance of each

algorithm, across different topologies and jammer types. By recording the information and

grouping it like this, we can analyse the effects of the different conditions of the simulation

on the localization error. In the following section, we will provide the graphs from

47

experiments from which we deducted the insights that will be discussed at the end of this

chapter. All the graphs are followed by a brief explanation, and some deductions.

5.3 Result Analysis

In this subchapter, we present the most relevant graphs from each simulation, along with

a brief yet concise explanation about the scenario and some conclusions. As previously

mentioned, we will not provide the results in the same level of detail as in 5.2, since it

will be hard for the reader to find them meaningful, whereas a condensed representation

of the results will avoid overwhelming the reader.

5.3.1 Constant Jammer

5.3.1.1 Constant Jammer on uniformly distributed topology

Figure 5.3.1.1.1

Figure 5.3.1.1.1 illustrates the performance of the algorithms in the scenario where a

constant jammer was used in a uniformly distributed topology. From the graph, we can

48

see that PSO algorithm outperforms the rest of the algorithms. While the DCL algorithm

(circles) seems to be having a lower average, this doesn’t accurately reflect the reality,

since some batches were excluded from the calculations because not enough data was

available for DCL to provide an estimation. Since a constant jammer was used, which is

the easiest to detect as we discussed in 4.1.1, we have very low localization errors,

indicating the high quality of the data.

Figure 5.3.1.1.2

Figure 5.3.1.1.2 presents the performance of the algorithms with regards to each jammer

position (X axis). Once again, we can see that the placement of the jammer makes no

difference which is expected since the nodes in the topology are distributed uniformly.

Notably, the readings from the fuzzy logic detection system are pretty much the same for

all positions, leading to similar performances across the algorithms.

49

5.3.1.2 Constant Jammer on randomly distributed topology

 Figure 5.3.1.2.1

Figure 5.3.1.2.1 demonstrates the immediate effect of the topology type on the

performance of the algorithms when the same type of jammer as previously was used.

While the jammer type and jammer positions remain the same, transitioning from a

uniform to a random topology has a tremendous impact on the localization error. All five

algorithms perform poorly and have a localization error twice as much as what they had

in the uniformly distributed topology.

50

 5.3.2 Deceptive Jammer

5.3.2.1 Deceptive Jammer on uniformly distributed topology

Figure 5.3.2.1.1

In Figure 5.3.2.1.1, where a deceptive jammer was used, we observe that all algorithms,

except VFIL, exhibit improved performance compared to the scenario where a constant

jammer was used. PSO excels in this scenario, showing the capabilities of the algorithm

we implemented when the readings of the datasets have good quality. So far, we can say

that the jammer type has almost no difference in the performance of PSO since both

jammer types have produced similar errors. Additionally, jammer positions closer to the

sink (e.g., 6,7,10,11) result in higher errors, something that does not occur when a constant

jammer is used.

51

 5.3.2.2 Deceptive Jammer on randomly distributed topology

Figure 5.3.2.2.1

Figure 5.3.2.2.1 confirms the negative impact from changing the topology from uniform

to random on both five algorithms, and especially PSO since it has the biggest difference

between the average errors across the two topology types. Moreover, jammer position

plays no role in the average error across all algorithms. Interestingly, there is very little

difference between the errors that are caused by the constant jammer and the deceptive

jammer in randomly distributed topologies, unlike the more significant disparity observed

when a uniform topology is used.

52

5.3.3 Random Jammer

5.3.3.1 Random Jammer on uniformly distributed topology

Figure 5.3.3.1.1

Figure 5.3.3.1.1 displays the performance of the algorithms when a random jammer was used

on a uniformly distributed topology PSO and DCL once again demonstrate their extreme

efficiency in localizing the jammer, while the other three algorithms perform at an average

level, similar to their performances in a uniformly distributed topology for constant and

deceptive jammers. It is important to note that DCL fails to provide an estimation for some

batches, indicating that its average error in a real-life scenario would be higher than the one

shown in graphs. Furthermore, jammer position does not affect the performance of any of the

5 algorithms.

53

5.3.3.2 Random Jammer on randomly distributed topology

Figure 5.3.3.2.1

In Figure 5.3.3.2.1, it is clearly visible that when a random jammer was used on a randomly

distributed topology, we had the biggest average errors out of all other jammer/topology

combinations. None of the algorithms has successfully managed to localize the jammer in any

jammer location. This very likely suggests the fuzzy index readings of the nodes in this

simulation are of poor quality and this is evident in the significantly higher localization errors.

Since this experiment aligns with the one used in 5.2 to demonstrate the results, there is no

need for further analysis.

54

5.3.4 Reactive Jammer

5.3.4.1 Reactive Jammer on uniformly distributed topology

Figure 5.3.4.1.1

Figure 5.3.4.1.1 visualises the effects of using a reactive jammer in a uniformly topology.

Much like all the other types of jammers in this type of topology, we have relatively low

localization errors. For once more, PSO is doing exceptionally good in localizing the

jammer, with DCL yielding similar results. However, both the CL and WCL algorithms,

with this type of jammer exhibit slightly poorer performance than anticipated, much like

their performance with a random jammer. Jammer location has no effect on the

performance of the algorithm.

55

5.3.4.2 Reactive Jammer on uniformly distributed topology

 Figure 5.3.4.2.1

Lastly, Figure 5.3.4.2.1 depicts the performance of each algorithm when a reactive

jammer was used in a randomly distributed topology. Similar to previous

experiments with random topologies, there is a significant difference in the

performance of all algorithms compared to their performance with the same

jammer type but in a uniformly distributed topology. Notably, DCL totally fails to

provide an estimation for more jammer locations in this topology compared to

other topology/jammer type simulations. It is once again obvious that the

performance of the algorithms is constrained by the quality of the provided data.

This can be deducted from the fact that PSO, which as a concept follows a

completely different approach than the other four algorithms, gives almost identical

localization errors with the other four algorithms.

56

By summarizing the results of running the algorithms across the eight different

combinations of jammer type/topology type, we can see the effect of these

parameter on the performance of each algorithm. Individually, these can provide

with meaningful insights regarding the performance of each algorithm in each

situation. In the following chapter, we provide the results from putting together all

the above, in an attempt to gain a broader perspective of our work.

5.4 Overall Performance Analysis and Conclusions

In this subchapter, our aim is to provide a holistic view of how the overall performance of

the algorithms is affected by various factors such as jammer type, topology type and

jammer location. By combining the results explained in 5.3, we present a comprehensive

analysis of the overall work done, to help draw more meaningful and accurate deductions.

5.4.1 Impact of Jammer and Topology Type on Overall Performance

One very important aspect of the work is how different jammers across the two different types

of topologies affect the overall performance of the algorithms. To do that we have combined

the results and isolated the average error of each algorithm, per jammer type and topology

type. This means that we have taken the average errors from each algorithm and separated

them depending on the jammer type and the topology.

Figure 5.4.1.1 – Effect of jammer type across algorithms

57

Figure 5.4.1.1 - Effect of jammer type across algorithms showcases how each algorithm

behaved with respect to the four jammer types. For example, PSO averaged a Euclidean

distance error of 6.45767 when the constant jammer was used in the uniformly distributed

topology. Similarly, for the same jammer type in the randomly distributed topology, it

averaged 19.65559. The same goes for the rest of the algorithms. By looking at the data, we

can see that in the uniform topology, PSO has clearly outperformed the rest of the algorithm.

The constant jammer has caused the worse performance for PSO, while the rest of the

jammers have given very low localization errors, compared to the one caused by the

constant jammer. By also looking at column Q, which resembles the average error for each

jammer type across all algorithms, we can see that the constant jammer has caused the

largest average error of 7.34173. This means that if we were in a uniformly distributed

topology, the worst type of jammer to face would be the constant jammer, which is

surprising since this type of jammer is the least harmful of all. In contrast with this, the

deceptive jammer has caused the least error with a value of 4.46559. Apart from the

deceptive jammer’s relatively low localization error, all the other jammers cause similar

errors. From this we can also deduce that the uniformly distributed topology provides with

good quality information, which in turn causes our algorithms to perform fairly well even

when different types of jammers are used.

We can also see that CL and WCL perform almost identically. This is something that we

expected since we set the fuzzy index of each node to be used in WCL as the weight. This

means that WCL is only working with the same information that CL does, without taking

advantage of other metrics, such as the distance between the centroid, which is something

that would provide better localization accuracy.

DCL is performing very good as well, however like previously mentioned, some results are

not that accurate due to the miss of some estimations across different jammer locations.

Random and reactive types of jammers cause the most misses to DCL, hence the relatively

low and misleading localization errors under DCL.

VFIL is severely underperforming in all jammer types when the simulations included a

uniformly distributed topology with an average error of 10.5744, meaning that it is the least

preferred algorithm to be used in this type of topology. This is most likely related to the

58

implementation of the algorithm. Since we were supplied with a baseline implementation of

the original VFIL algorithm and not with the version proposed in the literature, there could

be issues with it. In normal circumstances, VFIL should perform similarly or better than CL

and WCL.

Moving on to the results for the randomly distributed topology, the impact of transitioning to

this type of topology is evident in the huge difference between average localization errors of

the algorithm. PSO performs the worse, with an average error of 20.686641. This has led us

to the inclination that we should avoid using PSO when our problem consists of a randomly

distributed topology, no matter what type of jammer is used. This is mainly caused by two

reasons: 1) The algorithm is heavily relying on good quality information. Since the

recordings in the random topology are not that good compared to the recordings of the

uniform topology, the algorithm performs badly. In other words, good information provides

optimal results, whereas bad quality information is producing worse results than the other

four algorithms. 2) There is something wrong with the implementation. PSO is a

complicated algorithm and uses a lot of different parameters. It is possible that some

parameters do not have the optimal values, therefore the results are suboptimal.

Contrary to the effect of different types of jammers when a uniformly distributed topology

was used, in a randomly distributed topology, there are big differences in the localization

errors for each jammer. Deceptive jammer is still the jammer that causes the smallest

localization error, meaning that in a real-life situation, the best-case scenario will include a

deceptive jammer. Constant jammer is causing the second lowest average error, in contrast

to the highest average error caused in the uniformly distributed topology. Reactive jammer

is causing the second highest error, much like in the uniformly distributed topology in which

again reactive jammer comes second in average error. From this we can understand that the

algorithms have a stable performance for both topologies when a reactive jammer was used,

meaning that this type of jammer is particularly effective across different types of

topologies. The random jammer has caused the greatest average error, with a value of

22.162. The effects of a jamming attack when a random jammer is used in a randomly

distributed topology are catastrophic, as all five algorithms produce high localization errors.

Moreover, the random jammer records the biggest difference between the average error of

the uniform topology and the random topology.

59

CL and WCL are performing identically, which confirms our speculations on why this is

happening as mentioned above. Regarding VFIL, it performs slightly better than the PSO,

with an average error of 19.5405, which falls short to the performance of CL, WCL and

DCL who have errors ~18.5. This means that VFIL, with the variation used in our

experiments, should be avoided for both topologies and for all types of jammers. Moreover,

random and reactive jammer types cause a lot of misses to DCL when the random topology

is used.

Figure 5.4.1.2

Figure 5.4.1.2 shows a graph which compares the jammers with one another. We can see

the average error that each jammer causes for each of the two topology types. This graph

summarizes what we mentioned above, by showing that the random jammer has the

highest error, deceptive jammer having the lowest error and constant and reactive causing

similar errors. Moreover, by separating the errors between the topology types, we can see

how the effectiveness of each jammer type changes based on the topology type. By

looking at this, in a real-life situation, we have an idea of what type of jammer is more

likely to be used, with respect to the topology, which ultimately helps us prepare for an

attack or mitigate its effects.

60

Figure 5.4.1.3

Figure 5.4.1.3 depicts the performance of each algorithm when all the results from all

experiments are combined. This includes all jammer locations, all jammer types, and all

topologies. By looking at this graph, we can tell that PSO and DCL are the most reliable as

they have the lowest errors across the board. PSO is preferred over DCL since it always

produces an estimation, whereas DCL sometimes provides no estimation at all. If we have a

relatively smooth and uniform node distribution, DCL and PSO are almost identical in terms

of localization accuracy. It is also worth noting that in a random topology, the five algorithms

perform almost identically, leading to the conclusion that they are constrained by the quality

of the readings.

5.4.2 Impact of Jammer Location on Overall Performance

By looking at the performance of the algorithms across the different jammer locations, our

aim was to provide insights on how the jammer placement affects the localization accuracy.

61

Figure 5.4.2.1

Figure 5.4.2.1 showcases the average error that each jammer location has caused, across

both topologies, the four jammer types and all five algorithms. From the graph, we can see

that there is virtually no difference in the localization error when the jammer changes

positions. This comes to our surprise since we expected jammer locations closer to the sink

to cause more error. However, this is not the case as jammer locations such as 6,7,10,11 do

not have a localization error high enough to justify our speculation.

62

Figure 5.4.2.2

Figure 5.4.2.2 visualizes the performance of the algorithms by comparing them across each

scenario. By comparing the algorithms like this, we can see that they follow the same trends

when it comes to how they perform with respect to jammer placement. From what is shown

above, we can confirm that there is no difference on how each algorithm performs when the

location of the jammer changes. This means that no algorithm excels in a specific jammer

location, so this information should not influence what algorithm one would choose to use.

5.4.3 CPU Execution Time Analysis

In the last subchapter of chapter 5, we present the analysis regarding the CPU execution times

of the algorithms employed in our study. Our goal is to examine how the different parameters

of the scenario, such as the topology, jammer type and jammer position influence the

execution time for each algorithm.

63

Figure 5.4.3.1 – CPU Execution Time

Figure 5.4.3.1 – CPU Execution Time, illustrates the CPU execution time of each algorithm

across the two topology types and the four jammer types, as well as eight different jammer

locations (2,4,6,8,10,12,14,16). As the graph suggests, there is no difference between the

execution times across different topologies, jammer types and jammer locations. The graph is

split in two parts, with the left part indicating the results from the uniformly distributed

topology and the right part indicating the results from the randomly distributed topology. For

example, the first four points for each algorithm, are simulations of the four different jammer

types in the uniformly distributed topology, in the order of constant jammer, deceptive

jammer, random jammer and reactive jammer. Each point represents a different combination

of jammer type and jammer location.

From what is seen on the graph, each algorithm performs in the same way, regardless of the

conditions of the experiment, which shows stability and trustworthiness. Contrary to the effect

of jammer types and topology types in the localization accuracy, these do not influence the

execution time of any of the five algorithms. This comes to our surprise, especially for the

random jammer in the randomly distributed topology since it had caused the biggest

localization error out of all scenarios in all algorithms.

64

Regarding PSO, the fluctuations in the execution times are caused by the inherent randomness

that the algorithm incorporates. Since it utilizes a population of randomly generated particles

and these particles are influenced by their personal and global best solutions, in combination

with its stochastic nature, this leads to different values in the execution time. Updating each

particle’s position and velocity, also involves random factors, like the inertia weigh and the

φ1,φ2 effective parameters. All these contribute to the variations in the execution times.

Contrary to this, all the other algorithms are relying on predetermined calculations, which

consequently leads to more consistent execution time. The fluctuations in CPU execution time

that PSO exhibits, are not indicative of its performance, as we have seen that PSO is as

consistent as the other algorithms and even better in some scenarios, especially in the

uniformly distributed topology.

Figure 5.4.3.2 – Average CPU Execution Time

Figure 5.4.3.2 - Average CPU Execution Time, features the average CPU execution time of

each algorithm, across all experiments. Since we have already clarified the effect of the

scenario parameters is minimal on the execution time, we can proceed to compare the

algorithms solely based on their mean execution times. It is evident that PSO takes far more

time to complete (~1.6 seconds), which is something we expected since it is the most

65

complex out of the five algorithms reviewed in this work and it requires far more

calculations.

DCL averages a CPU execution time of 1 second, which once again is expected as there is

big function overhead from the functions calculating the convex hulls.

CL, WCL and DCL have the smallest average CPU execution time, near 0.4 seconds. Since

they are the simplest algorithms, we had also expected them to have relatively low CPU

execution times.

Chapter 6

Conclusion and Future Considerations

6.1 Important conclusions 65

6.2 Suggestions 67

 Arriving in this final chapter, we reflect on the extensive research and analysis conducted in

this study, to present the most significant and meaningful insights mentioned throughout this

paper. By studying the subject of jammer localization, throughout the study, we have aimed

to aid towards developing effective techniques localizing jammers in wireless sensor

networks. Moreover, we provide some valuable suggestions into the future work that could

take place, to maximize the contribution in the jammer localization sector.

6.1 Important conclusions

From data collection and then algorithm development to simulation experiments and

performance evaluations, we have managed to analyse the obtained result and reach

important conclusions that could be of use to the ongoing battle against jamming attacks.

The most important conclusion of this study underlines the overall effectiveness of the

selected algorithms in localizing the jammer within the network. Via conducting numerous

experiments and simulations which feature different combinations of network parameters,

such as the topology and the jammer type and position, we have managed to showcase that

the selected algorithms are performing relatively good in localizing the jammer.

66

Secondly, we have managed to prove that the work was constrained by the quality of the

provided data. Since we used different algorithms, that are implemented differently, work

differently and approach the problem of jammer localization differently, we have conducted

research that leads to clear conclusions. For example, we started with a very simplistic

algorithm, CL that was used as our baseline example. WCL and VFIL are two amplified and

enhanced versions of CL, that try to take advantage of other information that CL does not, to

provide better results. From all the analysis presented in 5.2, we can see that in terms of

localization error, these three algorithms perform similarly, across different scenarios. This

indicates that, in the way WCL and VFIL are implemented cannot be of extra use and do not

improve the results of CL, which leads to the conclusion that they are constrained by the

quality of the data they were provided with. This can also be confirmed by the results of

PSO, which performs at the same level as all the other algorithms when the data was of bad

quality (e.g., the data collected from simulations where the topology had randomly

distributed nodes). Having an algorithm which follows a completely different approach and

that is much more computationally expensive perform in similar ways, is a sign that the

capabilities of all algorithms are bound by the data.

We have also showcased that while DCL is ostensibly performing better than the other

algorithms, we cannot rely on it for randomly distributed topologies, as a lot of times there

wasn’t enough information for the algorithm to reach a conclusion. If we also add the CPU

execution times of DCL and PSO into the equation, we can say that it would be best to avoid

using them completely in randomly distributed topologies.

Regarding the effects of different jammer types, different jammer locations and different

topology types we can firstly say with certainty that there is a tremendous increase in the

localization error for all algorithms when the topology is transitioned from uniform to

random. No algorithm has managed to come up with particularly low localization errors in

this type of topology. Moreover, jammers perform similarly with each other with respect to

the jammer location, meaning that it doesn’t really affect whether the jammer is placed in

the middle, or in the corners of the grid. It is also important to point out it that both four

jammer types are equally safe and dangerous in the uniform and random topologies

respectively. The only significant difference was observed when the random jammer was

used in the randomly distributed topology which showcased the largest localization error.

67

 6.2 Suggestions

While this research features an extensive and comprehensive analysis and review of the

performance of the algorithms, there are plenty of ways that it could be improved.

The selection of algorithms consisted of choosing approaches that are working on

information similar with what we had in hand (e.g,. nodes record x,y,if-jammed). There is a

huge collection of jammer localization algorithms from what we have seen in the literature

review with other algorithms potentially being more suitable or better options that the ones

we have. Moreover, the implementations for all algorithms except CL, follow some kind of

variation which strafes away from what was initially proposed in the paper by the authors,

meaning that these algorithms could be improved. For example, WCL could make use of a

combined weight resulting from the fuzzy index plus the distance from the centroid, instead

of only using the fuzzy index.

Moreover, PSO being an extremely complex algorithm can be improved in different points.

There are many parameters that dramatically affect the performance of the algorithm, apart

from the iteration and particle number, such as the effective parameters φ1, φ2, the social

and cognitive weights, the inertia components and even the fitness function that evaluates

the quality of each possible solution.

Lastly, since we have inferred that the overall performance is constrained by the quality of

the data that the fuzzy index detection system has produced, perhaps a new and improved

version of it could be reviewed. This improved version could potentially provide with better

quality data. Combining this new improved data with the new and improved algorithms

should result in better performances.

As we bring this research to a close, we need to acknowledge that the ever-growing field of

WSN security is continuously evolving. Jamming attacks will become more and more

prevalent and the anti-jamming measures will become even more demanding. We hope that

the findings of this paper can contribute to the jammer localization field and inspire future

researchers to join in this ongoing battle.

68

Bibliography

[1] Lu Tan and Neng Wang, "Future internet: The Internet of Things," 2010 3rd

International Conference on Advanced Computer Theory and Engineering(ICACTE),

Chengdu, China, 2010, pp. V5-376-V5-380, doi: 10.1109/ICACTE.2010.5579543.

[2] Khalil, N., Abid, M.R., Benhaddou, D. and Gerndt, M., 2014, April. Wireless sensors

networks for Internet of Things. In 2014 IEEE ninth international conference on

Intelligent sensors, sensor networks and information processing (ISSNIP) (pp. 1-6). IEEE.

[3] Kocakulak, M. and Butun, I., 2017, January. An overview of Wireless Sensor

Networks towards internet of things. In 2017 IEEE 7th annual computing and

communication workshop and conference (CCWC) (pp. 1-6). Ieee.

[4] 3. Forum W.E. The Global Risks Report 2020. 2020. [(accessed on 21 December

2021)]. Available online: https://www.weforum.org/reports/the-global-risks-report-

2020.html

[5] 9. Morgan S. Global Cybercrime Damages Predicted To Reach $6 Trillion Annually

By 2021. 2018. [(accessed on 21 December 2021)]. Available online:

https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

[6] Y. Sun and X. Wang, "Jammer Localization in Wireless Sensor Networks," 2009 5th

International Conference on Wireless Communications, Networking and Mobile

Computing, Beijing, China, 2009, pp. 1-4, doi: 10.1109/WICOM.2009.5302614.

[7] Zadeh, L.A., 2023. Fuzzy logic. In Granular, Fuzzy, and Soft Computing (pp. 19-49).

New York, NY: Springer US.

[8] H. H. R. Sherazi, R. Iqbal, F. Ahmad, Z. A. Khan and M. H. Chaudary, "DDoS Attack

Detection: A Key Enabler for Sustainable Communication in Internet of Vehicles",

Sustainable Computing: Informatics and Systems, vol. 23, pp. 13-20, 2019.

[9] J. E. Dickerson and J. A. Dickerson, "Fuzzy Network Profiling for Intrusion

Detection", Fuzzy Information Processing Society 2000. NAFIPS. 19th International

Conference of the North American, pp. 301-306, 2000.

[10] Savva, M., Ioannou, I. and Vassiliou, V., 2022, June. Fuzzy-Logic Based IDS for

Detecting Jamming Attacks in Wireless Mesh IoT Networks. In 2022 20th Mediterranean

Communication and Computer Networking Conference (MedComNet) (pp. 54-63).

IEEE.

https://www.weforum.org/reports/the-global-risks-report-2020.html
https://www.weforum.org/reports/the-global-risks-report-2020.html
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

69

[11] Hongbo Liu, Wenyuan X, Yingying Chen and Zhenhua Liu, "Localizing jammers in

wireless networks," 2009 IEEE International Conference on Pervasive Computing and

Communications, Galveston, TX, 2009, pp. 1-6, doi: 10.1109/PERCOM.2009.4912878.

[12] J. Blumenthal, R. Grossmann, F. Golatowski and D. Timmermann, "Weighted

Centroid Localization in Zigbee-based Sensor Networks," 2007 IEEE International

Symposium on Intelligent Signal Processing, Alcala de Henares, Spain, 2007, pp. 1-6,

doi: 10.1109/WISP.2007.4447528.

[13] Elhadi Shakshukia, Abdulrahman Abu Elkhailb, Ibrahim Nemerb, Mumin Adamb,

Tarek Sheltamib, “Comparative Study on Range Free Localization Algorithms” The

10th International Conference on Ambient Systems, Networks and Technologies

(ANT) April 29 - May 2, 2019, Leuven, Belgium

https://doi.org/10.1016/j.procs.2019.04.068.

(https://www.sciencedirect.com/science/article/pii/S1877050919305307)

[14] T. Cheng, P. Li and S. Zhu, "An Algorithm for Jammer Localization in Wireless

Sensor Networks," 2012 IEEE 26th International Conference on Advanced

Information Networking and Applications, Fukuoka, Japan, 2012, pp. 724-731, doi:

10.1109/AINA.2012.11.

[15] Hongbo Liu, Wenyuan X, Yingying Chen and Zhenhua Liu, "Localizing jammers

in wireless networks," 2009 IEEE International Conference on Pervasive Computing

and Communications, Galveston, TX, 2009, pp. 1-6, doi:

10.1109/PERCOM.2009.4912878.

[16] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory,"

MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and

Human Science, Nagoya, Japan, 1995, pp. 39-43, doi: 10.1109/MHS.1995.494215.

[17] Pang, L., Chen, X., Xue, Z., Khatoun, R. (2017). A Novel Range-Free Jammer

Localization Solution in Wireless Network by Using PSO Algorithm. In: Zou, B., Han,

Q., Sun, G., Jing, W., Peng, X., Lu, Z. (eds) Data Science. ICPCSEE 2017.

Communications in Computer and Information Science, vol 728. Springer, Singapore.

https://doi.org/10.1007/978-981-10-6388-6_17

[18] Xu, W., Trappe, W., Zhang, Y. and Wood, T., 2005, May. The feasibility of launching

and detecting jamming attacks in wireless networks. In Proceedings of the 6th ACM

international symposium on Mobile ad hoc networking and computing (pp. 46-57).

https://www.sciencedirect.com/science/article/pii/S1877050919305307
https://doi.org/10.1007/978-981-10-6388-6_17

70

Appendices

 PSO Python Script:

Particle Swarm Optimization Algorithm implementation #

---------- #

Panayiotis Vasiliou #

import random

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import math

import time

np.set_printoptions(suppress=True)

st = time.time()

pst = time.process_time()

Load the Excel file into a pandas DataFrame

Extract the NodeID,x, y in the node_coordinates array

nodes_df =

pd.read_excel("./Deceptive_random/random_nodes_coordinates.xlsx",sheet_name="

Sheet1")

node_coordinates = nodes_df[["Node","X", "Y"]].values

Load the Excel file into a pandas DataFrame

Extract the IMPORTANT colums C and H in the jammed_info array

simulation_60sec_df =

pd.read_excel("./Reactive_random/reactive_random_ALL_values.xlsx",

sheet_name="fuzzy_(8)",usecols=[2,7])

jammer_x=60.00

jammer_y=-20.00

simulation_60sec_df = simulation_60sec_df.rename(columns={"Unnamed: 2":"Node"

, "Unnamed: 7": "Jammed"})

jammed_info = simulation_60sec_df.values

num_particles = 60

num_iterations=24

num_nodes=24

71

w = 0.65 # Inertia weight

c1 = 1.2 # Cognitive weight

c2 = 1.4 # Social weight

This function takes the current position of a particle

and a list of affected nodes (affected_nodes) and calculates the

Euclidean distance between the particle and each affected node.

The largest distance is returned as the fitness value, which

represents the radius of the minimal covering circle.

So fitness function is the minimal covering circle

#This is the PSO algorithm function.

Particles are randomly generated withing the search space , with a

random velocity as well (velocity in X coordinate and Y coordinate of the

search

space respectively). Those particles influence one another on the way they

move , with

each particle being a candidate solution to the problem. It is a

minimization problem

as we are searching for the particle that has the smallest fitness value.

The fitness

value is obtained by calculating the minimal covering circle around each

particle, with

that circle containing each and every node in the network that currently

records that

it is jammed. Hence , the smallest circle is the best solution. Particles

are affected

by the values explained in notes , but they are mainly guided by their

personal best

and by the global best alogn with some randomness.

The algorithm begins by dividing the data into batches of 24 nodes.

Specifically in our tests

we had a total of 14 batches. Each batch is basically the records of the

nodes for a specific

period of time (nodes record their jamming status). Each batch is

processed over 24 times before

a final estimation is made regrding the precise location of the jammer.

For each batch , we generate and initialize the particles. Then for 24

times the code goes over

all the particles , one-by-one and calculates their minimal covering circle

by checking which

nodes are jammed or not and adding the relevant ones to the circle. After a

particle is done

with checking the 24 nodes of the current batch, we check for a personal

best and a global best

and if necessary update those. Then we move to the next particle and do the

exact same thing.

72

After it goes over all the particles 24 times, it moves to the next batch

and the same

the set of particles.

print ("DATA LOADED ")

def calculate_fitness(jammed_info, node_coordinates, w, c1, c2):

 total_error=0

 # take each batch one-by-one (agreed that there should be a result for

each batch)

 # reset the position, velocity, fitness etc

 for node_batch_index in range(14):

 jam_count=False

 particle_position = np.zeros((num_particles, 2))

 particle_velocity = np.zeros((num_particles, 2))

 particle_current_fitness = np.zeros(num_particles)

 particle_previous_fitness = np.zeros(num_particles)

 particle_personal_best_position = np.zeros((num_particles,

2))

 particle_personal_best_fitness = np.full(num_particles,

np.inf)

 global_best_position=np.zeros((1,2))

 global_best_fitness = float('inf')

 # regenerate the positions and velocities for the new batch

 for j in range(num_particles):

 particle_position[j] = np.random.uniform(0,100,2)

 particle_velocity[j] = np.random.uniform(0,100,2)

 max_distance = float('-inf')

 # pick the next batch

 node_batch = jammed_info[node_batch_index*num_nodes :

(node_batch_index+1)*num_nodes]

 # start the processing for the batch ,(total of # iterations)

 for i in range(num_iterations):

 max_distance = float('-inf')

 # start picking up particles, one-by-one

 for particle_index in range(len(particle_position)):

 max_distance = float('-inf')

 current_position = particle_position[particle_index]

 current_velocity = particle_velocity[particle_index]

 # for each particle, go over all the nodes in the current

batch

 for node in node_batch:

 # check for end of file

 if node[0] > 26 or node[0] < 0:

73

 break

 # skip nodes that are NOT jammed

 if node[1] != 1:

 continue

 else:

 jam_count=True

 # store the nodeID

 node_id = node[0]

 # link the current node being processed with it's

coordinates (x,y in another excel file)

 node_coords =

node_coordinates[np.where(node_coordinates[:, 0] == node_id)][0, 1:]

 x_distance = current_position[0] - node_coords[0]

 y_distance = current_position[1] - node_coords[1]

 # euclidean distance between particle and node

 distance = math.sqrt(x_distance**2 + y_distance**2)

 # minimal covering circle, eg the fitness function is the

biggest distance (furthest node)

 if distance > max_distance:

 max_distance = distance

 particle_current_fitness[particle_index]=max_distance

 # do the necessary checks for personal and global optimum.

 # minimization problem , as we need the smallest circle

possible, therefore smallest value wins

 # update when

necessary

 if

particle_current_fitness[particle_index]<particle_personal_best_fitness[parti

cle_index]:

 particle_previous_fitness[[particle_index]]=particle_pers

onal_best_fitness[particle_index]

 particle_personal_best_fitness[particle_index]=particle_c

urrent_fitness[particle_index]

 particle_personal_best_position[particle_index]=particle_

position[particle_index]

 if

particle_personal_best_fitness[particle_index]<global_best_fitness and

particle_personal_best_fitness[particle_index]!=0.0:

 global_best_fitness=particle_personal_best_fitness[partic

le_index]

 global_best_position[0][0] =

particle_position[particle_index][0]

 global_best_position[0][1] =

particle_position[particle_index][1]

 # update particle velocity and position after iterating over

all nodes in the batch

74

 particle_velocity[particle_index] =

update_velocity(particle_index, particle_position, particle_velocity, w, c1,

c2, particle_personal_best_position, global_best_position)

 particle_position[particle_index] =

update_position(particle_index, particle_position, particle_velocity)

 # also add the error to the sum so that avg error can be calculated

 # avg error is important, as it tells us how good the algorithm is on

the specific scenartio (jammer location)

 # print("batch : ", node_batch_index+1, "has calculated that the

position is : ", (global_best_position))

 error=math.sqrt((jammer_x - global_best_position[0][0])**2 +

(jammer_y - global_best_position[0][1])**2)

 # mse = ((jammer_x - global_best_position[0][0])**2 + (jammer_y -

global_best_position[0][1])**2)/2

 # rmse = math.sqrt(((jammer_x - global_best_position[0][0])**2 +

(jammer_y - global_best_position[0][1])**2)/2)

 if(jam_count):

 print("batch : ", node_batch_index+1, " euclidean distance error

: ", error)

 # print(error)

 else:

 print("batch : ", node_batch_index+1, " SKIPPED ")

 return 1

function for the update of a particle's velocity.

def update_velocity(particle_index, particle_position, particle_velocity, w,

c1, c2, personal_best, global_best):

 r1 = random.uniform(0, 1)

 r2 = random.uniform(0, 1)

 velocity = particle_velocity[particle_index]

 velocity[0] = w * velocity[0] + c1 * r1 *

(personal_best[particle_index][0] - particle_position[particle_index][0]) +

c2 * r2 * (global_best[0][0] - particle_position[particle_index][0])

 velocity[1] = w * velocity[1] + c1 * r1 *

(personal_best[particle_index][1] - particle_position[particle_index][1]) +

c2 * r2 * (global_best[0][1] - particle_position[particle_index][1])

 return velocity

75

function for updating a particle's postion

def update_position(particle_index, particle_position, particle_velocity):

 x = particle_position[particle_index, 0] +

particle_velocity[particle_index, 0]

 y = particle_position[particle_index, 1] +

particle_velocity[particle_index, 1]

 return np.array([x, y])

 # return particle_position

calculate average error , while skipping first batch

average_error=(calculate_fitness(jammed_info,node_coordinates,w,c1,c2))/14

pet = time.process_time()

pres = pet - pst

print('CPU Execution time:', pres, 'seconds')

Centroid Localization Python Script :

import sys

import math

import time

import pandas as pd

pst = time.process_time()

df = pd.read_excel("./Reactive_random/reactive_random_ALL_values.xlsx",

sheet_name="fuzzy_(8)")

jammer_x=60.00

jammer_y=-20.00

array = df.values.tolist()

nodes_df =

pd.read_excel("./Constant_random/random_thesi.xlsx",sheet_name="Sheet1",

header=None)

node_batch_index=1

node_coordinates = nodes_df.values.tolist()

length = len(array)

count = 0 # counter to find how many 1 we have

76

arrayForX = 0

jam_count=0

arrayForY=0

sumX = 0

sumY=0

for i,j in zip(array,node_coordinates):

 if((i[4])!=1.0 and (i[4]!=0.0)):

 continue

 count = count + 1

 if (i[4]) == 1.0:

 jam_count = jam_count + 1

 arrayForX = (i[4]) * (j[0])

 arrayForY = (i[4]) * (j[1])

 sumX = sumX + arrayForX

 sumY = sumY + arrayForY

 if count == 24: # Once 24 nodes have been processed, calculate the

centroid

 if (jam_count==0):

 print (" BATCH : " , node_batch_index, " skipped ")

 count = 0

 arrayForX = 0

 sumX = 0

 arrayForY = 0

 sumY = 0

 jam_count=0

 node_batch_index +=1

 continue;

 Xestimate = sumX / jam_count

 Yestimate = sumY / jam_count

 error=math.sqrt((jammer_x - Xestimate)**2 + (jammer_y -

Yestimate)**2)

 mse = ((jammer_x - Xestimate)**2 + (jammer_y - Yestimate)**2)/2

 rmse = math.sqrt(((jammer_x - Xestimate)**2 + (jammer_y -

Yestimate)**2)/2)

 count = 0

 arrayForX = 0

 sumX = 0

 arrayForY = 0

 sumY = 0

 jam_count=0

 # print("batch : ", node_batch_index, " has calculated : ",

Xestimate , " ", Yestimate)

77

 print("batch : ", node_batch_index, " euclidean distance error : ",

error)

 # print(error)

 # print("batch : ", node_batch_index, " mse distance error : ", mse)

 # print("batch : ", node_batch_index, " rmse distance error : ",

rmse)

 node_batch_index +=1

pet = time.process_time()

pres = pet - pst

print('CPU Execution time:', pres, 'seconds')

Weighted Centroid Localization Algorithm Python Script:

import sys

import math

import time

import pandas as pd

pst = time.process_time()

df = pd.read_excel("./Reactive_random/reactive_random_ALL_values.xlsx",

sheet_name="fuzzy_(4)")

jammer_x=60.00

jammer_y=-20.00

array = df.values.tolist()

nodes_df =

pd.read_excel("./Constant_random/random_thesi.xlsx",sheet_name="Sheet1",

header=None)

node_batch_index=1

node_coordinates = nodes_df.values.tolist()

length= len(array)

start_time = time.time()

count = 0 #counter to find how many 1 we have

weights=0

arrayForX = 0

jam_count=0

arrayForY=0

sumX = 0

78

sumY=0

for i,j in zip(array,node_coordinates):

 if((i[4])!=1.0 and (i[4]!=0.0)):

 continue

 count = count +1

 if float(i[3]) > 0.575 :

 jam_count = jam_count + 1

 weights = weights +float(i[3])

 arrayForX= (i[3]) * (j[0])

 sumX = sumX + arrayForX

 arrayForY= (i[3]) *(j[1])

 sumY = sumY + arrayForY

 if count == 24: # Once 24 nodes have been processed, calculate the

centroid

 if (jam_count==0):

 print("SKIPPED BATCH : ", node_batch_index)

 count = 0

 arrayForX = 0

 sumX = 0

 arrayForY = 0

 sumY = 0

 jam_count=0

 weights=0

 node_batch_index +=1

 continue;

 Xestimate = sumX / weights

 Yestimate = sumY / weights

 error=math.sqrt((jammer_x - Xestimate)**2 + (jammer_y -

Yestimate)**2)

 mse = ((jammer_x - Xestimate)**2 + (jammer_y - Yestimate)**2)/2

 rmse = math.sqrt(((jammer_x - Xestimate)**2 + (jammer_y -

Yestimate)**2)/2)

 count = 0

 arrayForX = 0

 sumX = 0

 arrayForY = 0

 sumY = 0

 jam_count=0

 weights=0

 # print("batch : ", node_batch_index, " has calculated : ",

Xestimate , " ", Yestimate)

 # print("batch : ", node_batch_index, " euclidean distance error

: ", error)

 print(error)

 # print("batch : ", node_batch_index, " mse distance error : ", mse)

79

 # print("batch : ", node_batch_index, " rmse distance error : ",

rmse)

 error=0

 node_batch_index +=1

pet = time.process_time()

pres = pet - pst

print('CPU Execution time:', pres, 'seconds')

Double Circles Localization Algorithm Python Script:

double cicles algorithm

input positions of jammed nodes and boundary nodes

jammed nodes are the ones that have 1 in dataset.

A node is considered to be a boundary node if it lost

some of neighbors while it can communicate with part of unaffected nodes.

output: estimated position

import math

import pandas as pd

import matplotlib.pyplot as plt

from scipy.spatial import ConvexHull, convex_hull_plot_2d, distance

from helper import Point, welzl

import distance as d

import time

import gc

pst = time.process_time()

def calc_minimum_bounding_circles(boundaryhpoints, jammedhpoints):

 bhpoints = []

 for points in boundaryhpoints:

 bhpoints.append(Point(points[0], points[1]))

 jhpoints = []

 for points in jammedhpoints:

 jhpoints.append(Point(points[0], points[1]))

 # calculate circles of each

 mbc_bounding = welzl(bhpoints)

 mbc_jammed = welzl(jhpoints)

80

 return (mbc_bounding, mbc_jammed)

def calculate_jammer_position(filename, debug):

 start = time.time()

 data = pd.read_excel(filename,sheet_name="fuzzy_(4)")

 data.iloc[1]

 actualx = data['actual_X'].iloc[0]

 actualy = data['actual_y'].iloc[0]

 # get the number of nodes per batch

 nodes_per_batch = 24

 # get the total number of batches

 num_batches = 14

 # process each batch individually

 for batch_num in range(num_batches):

 boundary = None

 jammed = None

 boundary_hull = None

 jammed_hull = None

 mbc_bounding = None

 mbc_jammed = None

 # get the start and end indices of the current batch

 start_index = batch_num * nodes_per_batch

 end_index = (batch_num + 1) * nodes_per_batch

 # get the data for the current batch

 batch_data = data.iloc[start_index:end_index]

 # fuzzy column is un needed

 batch_data = batch_data.copy() # make a copy of the DataFrame slice

 batch_data.drop(columns=['Fuzzy'], inplace=True)

 # drop the unneeded columns

 batch_data.drop(columns=['actual_X'], inplace=True)

 batch_data.drop(columns=['actual_y'], inplace=True)

 # get unbounded nodes, the ones that have 0 in affected

81

 boundary = batch_data.drop(batch_data[(batch_data['affected'] ==

1)].index, axis=0)

 # remove affected column

 boundary.drop(columns=['affected'], inplace=True)

 # reset dataframe index

 boundary.reset_index(drop=True, inplace=True)

 boundary = boundary.to_numpy()

 # get jammed nodes, the ones that have 1 in affected

 jammed = batch_data.drop(batch_data[(batch_data['affected'] ==

0)].index, axis=0)

 # remove affected column

 jammed.drop(columns=['affected'], inplace=True)

 # reset dataframe index

 jammed.reset_index(drop=True, inplace=True)

 # convert to numpy array

 jammed = jammed.to_numpy()

 # calculate 2 convex hulls

 # one with the jammed nodes

 # one with the boundary nodes

 if (len(boundary)<= 0 or len(jammed)<=0):

 # reset relevant variables for the next batch

 print("SKIPPED BATCH : ", batch_num+1)

 del boundary, jammed, boundary_hull, jammed_hull, mbc_bounding,

mbc_jammed

 gc.collect()

 continue;

 # Check if there are enough boundary and jammed nodes

 if len(boundary) < 3 or len(jammed) < 3:

 print("SKIPPED BATCH : ", batch_num+1 , " NOT ENOUGH NODES TO

MAKE A HULL")

 del boundary, jammed, boundary_hull, jammed_hull, mbc_bounding,

mbc_jammed

 gc.collect()

 continue;

 if len(boundary) > 0:

 boundary_hull = ConvexHull(boundary)

 if len(jammed) > 0:

82

 jammed_hull = ConvexHull(jammed)

 if debug:

 print('Points:\n', boundary_hull.points)

 if (len (jammed>0)):

 print('Points:\n', jammed_hull.points)

 # calculate the minimum bounding circles

 mbc_bounding, mbc_jammed = calc_minimum_bounding_circles(

 boundary_hull.points, jammed_hull.points)

 # calculate the positon of the jammer

 x = (mbc_jammed.C.X-mbc_bounding.C.X)

 y = (mbc_jammed.C.Y-mbc_bounding.C.Y)

 # print(f'Batch {batch_num+1} - Predicted position: ', x, y)

 distance_error = math.sqrt((actualx-x)**2+(actualy-y)**2)

 print(f'Batch {batch_num+1} - Distance error: ', distance_error)

 # print(distance_error)

 # reset relevant variables for the next batch

 del boundary, jammed, boundary_hull, jammed_hull, mbc_bounding,

mbc_jammed

 gc.collect()

 stop = time.time()

 time_taken = stop-start

 return distance_error,time_taken

def main():

 error=0

83

 timeF=0

 filename = 'concat_values.csv'

 error, timeF =

calculate_jammer_position('./Reactive_random/reactive_random_concat_values.xl

sx', False)

 pet = time.process_time()

 pres = pet - pst

 print('CPU Execution time:', pres, 'seconds')

if __name__ == '__main__':

 main()

Virtual Force Iterative Localization Algorithm Python Script:

import sys

import time

import numpy as np

import math

import pandas as pd

pst = time.process_time()

def distance(x1, y1, x2, y2):

 one = (x1 - x2) ** 2

 two = (y1 - y2) ** 2

 return math.sqrt(one + two)

def main():

 start_time = time.time()

 df = pd.read_excel("./Reactive_random/reactive_random_ALL_values.xlsx",

sheet_name="fuzzy_(8)")

 jammer_x=60.00

 jammer_y=-20.00

 array = df.values.tolist()

84

 nodes_df =

pd.read_excel("./Constant_random/random_thesi.xlsx",sheet_name="Sheet1",

header=None)

 node_batch=0

 coordinate_batch=0

 node_batch_index=0

 coordinate_batch_index=0

 node_coordinates = nodes_df.values.tolist()

 length = len(array)

 start_time = time.time()

 count = 0 # counter to find how many 1 we have

 jam_count=0

 coordinate_batches = [node_coordinates[i:i+24] for i in range(0,

len(node_coordinates), 24)]

 node_batches = [array[i:i+24] for i in range(0, len(array), 24)]

 for node_batch, coordinate_batch in zip

(node_batches,coordinate_batches):

 Max = []

 maxX = []

 maxY = []

 sumX=0

 sumY=0

 arrayForX=0

 arrayForY=0

 count=0

 jam_count=0

 Xestimate=0

 Yestimate=0

 Xestimate2=0

 Yestimate2=0

 max_d = 0

 max_x = 0

 max_y=0

 temp=0

 F_Pull = []

 F_Push = []

 pullX=0

 pullY=0

 pushX=0

 pushY=0

 sum_sqX =0

 rootX = 0

 sum_sqY =0

85

 rootY =0

 DistanceJamRange = 0

 sum_x_pull = 0

 sum_y_pull = 0

 sum_x_push = 0

 sum_y_push = 0

 SumJoint=0

 for i, j in zip(node_batch,coordinate_batch):

 if(int(i[4])!=1.0 and int(i[4]!=0.0)):

 continue

 count=count+1

 if int(i[4]) == 1.0:

 jam_count = jam_count + 1

 arrayForX = (i[4]) * (j[0])

 arrayForY = (i[4]) * (j[1])

 sumX = sumX + arrayForX

 sumY = sumY + arrayForY

 if (jam_count==0):

 print ("node_batch ID : ", node_batch_index +1,

"SKIPPED")

 count = 0

 arrayForX = 0

 sumX = 0

 arrayForY = 0

 sumY = 0

 jam_count=0

 node_batch_index+=1

 coordinate_batch_index+=1

 continue;

 Xestimate = float(sumX / jam_count)

 Yestimate = float(sumY / jam_count)

86

 for i,j in zip(node_batch,coordinate_batch):

 if int(i[4]) == 1.0:

 temp = distance(Xestimate, Yestimate, float(j[0]),

float(j[1]))

 if temp > max_d:

 max_d = temp

 max_x = j[0]

 max_y=j[1]

 maxX = float(max_x)

 maxY = float(max_y)

 # Estimated area

 Xestimate2 = float(Xestimate)

 Yestimate2 = float(Yestimate)

 # Pull, Push Formula

 sumPullX = 0

 sumPullY = 0

 sumPushX = 0

 sumPushY = 0

 for i, j in zip(node_batch,coordinate_batch):

 if float(j[0]) == Xestimate2 and float(j[1]) == Yestimate2:

 pass

 else:

 if int(i[4]) == 1.0:

 pullX = (float(j[0]) - Xestimate2) / math.sqrt(

 math.pow(float(j[0]) - Xestimate2, 2) +

math.pow(float(j[1]) - Yestimate2, 2))

 pullY = (float(j[1]) - Yestimate2) / math.sqrt(

 math.pow(float(j[0]) - Xestimate2, 2) +

math.pow(float(j[1]) - Yestimate2, 2))

 F_Pull.append({'x': pullX, 'y': pullY})

 else:

 pushX = (Xestimate2 - float(j[0])) / math.sqrt(

 math.pow(Xestimate2 - float(j[0]), 2) +

math.pow(Yestimate2 - float(j[1]), 2))

 pushY = (Yestimate2 - float(j[1])) / math.sqrt(

 math.pow(Xestimate2 - float(j[0]), 2) +

math.pow(Yestimate2 - float(j[1]), 2))

87

 F_Push.append({'x': pushX, 'y': pushY})

 sum_sqX = np.sum(np.square(pushX - pullX))

 rootX = np.sqrt(sum_sqX)

 sum_sqY = np.sum(np.square(pushY - pullY))

 rootY = np.sqrt(sum_sqY)

 DistanceJamRange = rootX + rootY

 # Joint Formula

 for index, z in enumerate(F_Push):

 sum_x_push = sum_x_push + z['x']

 sum_y_push = sum_y_push + z['y']

 for index, z in enumerate(F_Pull):

 sum_x_pull = sum_x_pull + z['x']

 sum_y_pull = sum_y_pull + z['y']

 SumJoint = (sum_x_push + sum_x_pull) / abs(sum_y_push + sum_y_pull)

 SumJoint = (sum_x_push + sum_x_pull) / abs(sum_y_push + sum_y_pull)

 Xestimate2 = Xestimate2 + SumJoint * DistanceJamRange

 Yestimate2 = Yestimate2 + SumJoint * DistanceJamRange

 # print("New estimated jammer's position:", Xestimate2, Yestimate2)

 timet=time.time() - start_time

 error=math.sqrt((jammer_x - Xestimate2)**2 + (jammer_y -

Yestimate2)**2)

 print("Batch num : ", node_batch_index+1,"The error rate is:", error)

 # print(error)

 coordinate_batch_index+=1

 node_batch_index+=1

 pet = time.process_time()

88

 pres = pet - pst

 print('CPU Execution time:', pres, 'seconds')

if __name__ == '__main__':

 main()

