

Diploma Thesis

A Configurable Application Suite for Streamlined Anomaly

Detection Algorithm Development

Panagiotis Papadopoulos

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2023

i

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

A Configurable Application Suite for Streamlined Anomaly Detection Algorithm

Development

Panagiotis Papadopoulos

Supervisor professor:

Vasos Vassiliou

The final project was submitted in partial fulfilment of the requirements for obtaining the

Computer Science degree of the Department of Computer Science of the University of

Cyprus

May 2023

ii

Acknowledgments

I would like to express my deepest gratitude to Professor Vasos Vassiliou, my thesis

supervisor, for his continuous support throughout the course of this project. His profound

knowledge, insightful critiques, and patient guidance have been invaluable to my work.

His enthusiasm for the subject and commitment to advancing my understanding

significantly influenced my academic journey. The door to Professor Vassiliou’s office was

always open whenever I ran into a roadblock or had a question about my research or writing.

Furthermore, I would like to thank the rest of the Computer Science faculty and staff

for their encouragement and assistance over the course of my studies. My thanks also go out to

my peers for their companionship and constructive feedback during the development of this

project.

Lastly, I would like to express my heartfelt appreciation to my family and friends for

their unwavering belief in my abilities and their ongoing support throughout my academic

career. This accomplishment would not have been possible without the collective support and

guidance of these individuals.

iii

Abstract

This thesis presents the development and implementation of a real-time, configurable

testing environment aimed at streamlining the development of detection algorithms in Intrusion

Detection Systems (IDS). In the constantly evolving field of Network Security, there is an

increasing need for more effective and efficient threat detection systems. However, the

development of new and improved algorithms can be a difficult and time-consuming process.

This project aims to address this issue by providing a suite of applications that simulate

the functionalities of an IDS within a computer network environment. It allows for real-time

data capturing, processing, storage, and result presentation, providing a realistic environment

for algorithm testing. A unique feature of this tool is its configurable threat detection module,

which can be adapted to include and use different anomaly detection algorithms, enabling

multiple algorithms to be tested concurrently.

Ultimately, the goal of this tool is to speed up the development process by providing a

flexible and realistic testing framework, thereby facilitating the introduction of more effective

threat detection systems into real-world applications.

iv

Content

ACKNOWLEDGMENTS II

ABSTRACT III

CONTENT IV

CHAPTER 1 INTRODUCTION 1

1.1 INTRODUCTION TO IDS 1

1.2 AIM OF THE FINAL PROJECT 1

1.3 STRUCTURE OF THE FINAL PROJECT 2

CHAPTER 2 PROBLEM/SIMILAR SOFTWARE 3

2.1 PROBLEM-NEED 3

2.2 DESCRIPTION OF POTENTIAL SOLUTIONS 4

2.3 SIMILAR SOFTWARE 5

2.3.1 Snort 5

2.3.2 Suricata 5

2.3.3 Zeek 6

CHAPTER 3 REQUIRED KNOWLEDGE AND TECHNOLOGIES 7

3.1 BASIC DEFINITIONS 7

3.1.1 Artificial Intelligence 7

3.1.2 Machine Learning 8

3.1.3 Neural Networks 9

3.1.4 Computer Networks 9

3.1.4.1 Network Traffic 10

3.2 REQUIRED TECHNOLOGIES 10

3.2.1 Wireshark 10

3.2.2 MySQL 11

3.2.3 PowerShell 11

3.2.4 JSON 11

3.2.5 XML 12

3.2.6 CSV Files 12

3.2.7 C# Programming Language 12

v

3.2.8 .NET Core 13

3.2.9 Java 13

3.2.10 CiCFlowMeter 14

3.2.11 Erlang 14

3.2.11 RabbitMQ 14

CHAPTER 4 REQUIREMENTS AND SPECIFICATIONS 16

4.1 MODULAR DESIGN 16

4.2 REQUIREMENTS 16

4.2.1 Functional Requirements 17

4.2.1.1 Data Collection Component 17

4.2.1.2 Data Processing Component 18

4.2.1.3 Threat Detection Component 18

4.2.1.4 Database Component 19

4.2.2Non-Functional Requirements 20

4.2.2.1 Data Collection Component 20

4.2.2.2 Data Processing Component 21

4.2.2.3 Threat Detection Component 22

4.2.2.4 Database Component 23

4.3 SPECIFICATIONS 23

4.3.1 User Characteristics 23

4.3.2 Development Principles 24

4.3.3 Design Restrictions and Limitations 26

4.3.3 Use Case Diagram 27

CHAPTER5 SYSTEM DESIGN AND IMPLEMENTATION 28

5.1 SYSTEM ARCHITECTURE 29

5.2 DATA CAPTURE COMPONENT 30

5.2.1 Component Design 30

5.2.2 Component Implementation 30

5.2.3 Requirements 31

5.2.4 Deployment and Usage 31

5.3 DATA PROCESSING COMPONENT 31

5.3.1 Design 31

vi

5.3.2 Implementation 33

5.3.3 Requirements 34

5.3.4 Deployment and Usage 34

5.4 THREAT DETECTION COMPONENT 36

5.4.1 Design 36

5.4.2 Implementation 36

5.4.3 Requirements 37

5.4.4 Deployment and Usage 37

5.5 DATABASE COMPONENT 37

5.5.1 Design 38

5.5.2 Implementation 38

5.5.3 Database ERD 39

5.5.4 Requirements 39

5.5.5 Deployment and Usage 40

5.6 SHARED LIBRARY 40

5.6.1 Design and Implementation 41

CHAPTER 6 RESULTS 42

REFERENCES 43

APPENDIX A 45

1

Chapter 1

Introduction

INTRODUCTION TO IDS 1

AIM OF THE FINAL PROJECT 1

STRUCTURE OF THE FINAL PROJECT 2

1.1 Introduction to IDS

An Intrusion Detection System (IDS) is a system designed to detect potential

threats in a computer network. To accomplish this task multiple components are used and

communicate together. The process begins with the capture of network traffic, this

network traffic represents raw data. Raw data is then processed to extract information that

can be used to detect anomalies. Finally, processed data is used as input into algorithms

that are designed to detect abnormalities. The output of this algorithm is an estimation of

the state in which the network is in according to the presented data. An IDS could perform

other actions such as monitoring and can even take actions depending on the detected

state of the network. However, threat detection is the core functionality of any IDS. These

systems are employed by network administrators as an additional layer of security to their

network which can react and issue warnings the moment an abnormality is detected. [4]

1.2 Aim of the final project

The aim of this project is to develop a suite of applications that can be used as a

testing environment for new approaches in anomaly detection algorithms. This testing

environment should emulate the functions of an IDS in a computer network which

includes data capturing, data processing, data storage and an interface where the results

are presented. Finally, the application suite should include a configurable module that can

be used to change the detection algorithms that are used to make predictions.

The use of such a tool can help in the development of new or improved algorithms

for anomaly detection. This can be achieved by providing a framework where new

detection algorithms can be tested in a realistic and real-time environment. In addition,

2

this application suite can allow for multiple algorithms to be tested at the same time which

can further increase the speed of development.

1.3 Structure of the final project

The first chapter of this document serves as an introduction for the project. It

includes an abstract description of the project and a brief description of an Intrusion

Detection System (IDS). Some concepts that are mentioned in the description of the IDS

and the project are explained in detail in a later chapter. The structure of the document is

also included in the first section.

The second chapter contains sections which describe the need that led to the

development of this project and from where that need originated. Furthermore, other

similar existing projects are briefly mentioned and discussed.

The third chapter consists of sections where concepts essential to the project are

discussed along with the technologies that have been leveraged to develop this application

suite such as programming languages and frameworks. These concepts and technologies

include but are not limited to Computer Networks, Network Protocols, Artificial

Intelligence, Machine Learning, and .NET Core.

The fourth chapter discusses the requirements of this project. The functional and

non-functional requirements are mentioned in detail along with the project’s

specifications. Use Case Diagrams are also included. This chapter will also focus on who

are expected to make use of the application suite.

The fifth chapter contains sections that describe the design and implementation of

the project. Decisions about architecture will be discussed in depth and all components

will be explained in detail.

The sixth chapter contains the testing and results of this project. The methodology

used to get these results will also be defined here. Finally, a section with the conclusions

that we have arrived at will be contained in the chapter.

The last and seventh chapter discusses possible future work that can be done after

this project.

References can be found in the appendices section at the end of the document.

3

Chapter 2

Problem/Similar Software

PROBLEM-NEED 3

DESCRIPTION OF POTENTIAL SOLUTIONS 4

SIMILAR SOFTWARE 5

SNORT 5

SURICATA 5

ZEEK 6

2.1 Problem-Need

Since the goal of an IDS is to detect anomalies in network traffic and the features

that can be extracted from a given dataset of network traffic are fixed, the accuracy of the

predictions depends solely on the detection algorithm used. Multiple detection algorithms

exist and have been implemented over time with varying degrees of success. Success in

this context represents the accuracy of the IDS predictions, where an accurate prediction

means that the IDS has correctly detected whether the network is under-

attack/malfunction or that operation is normal.

Each algorithm that is used for detection follows a principle to reach a prediction.

These approaches can be Conditional, where predictions are made depending on a

collection of conditions that need to be met, these conditions can be defined based on

previous attacks and their signature such as a very specific set of actions. Another

approach is Statistical Analysis, where predictions are made depending on the deviation

that exists between what is currently detected and what is considered normal behavior. A

similar approach to Statistical Analysis is Time Series Analysis where the changes in

network traffic patterns are observed over time and checked for any sudden or unusual

changes. [5]

An IDS can make use of multiple algorithms each with a different approach to

reach a final prediction however, predictions need to be made quickly since data is

collected on a real-time basis and the window of time between consecutive predictions

4

ranges from a few minutes down to a few milliseconds. This limitation presents an issue

with conventional detection algorithm approaches.

The issue is that the processing power they need to produce results scales up when

the network scales up in size and as a result an increase in raw data that is generated.

Also, as more conditions, analysis and comparisons need to be performed to increase the

accuracy of these algorithms, there is a further increase is processing power needs.

Considering that the hardware on which an IDS runs has a limited amount of processing

power that it can produce, and hardware upgrades come at a cost, there is a clear incentive

for new approaches with better scaling to be introduced.

2.2 Description of potential solutions

Artificial Intelligence and Machine Learning have seen a rise in recent years and

have provided solutions in other sectors such as Image and Voice Recognition. In these

approaches a model is constructed and using large quantities of labelled data are trained

to then be able to make accurate predictions on data that it has never seen before. This

approach appears to be like Statistical Analysis, but here the patterns analyzed are not

defined by the developer but instead the model during its training.

Multiple models exist and each model can be trained using a variety of training

algorithms. Furthermore, these models are not well-defined structures but rather abstract

definitions which allow for experimentation. This experimentation is crucial as each

model and training algorithm has its own strengths and weaknesses, in addition, the

structure of the model needs to be fine-tuned for optimal results.

Despite the difficulty in implementing such approaches, research has shown that

if implemented correctly, Machine Learning approaches can have increased accuracy

compared to other approaches. However, it is important to understand that a Machine

Learning model can have varying degrees of success in different networks and therefore

every implementation should be tested and tuned for optimal results. This testing and

tuning of the model can be time consuming, this is because the training and testing of

these models can be a lengthy process especially for more complex models. Furthermore,

there is no easy way to test multiple models at once. Usually, comparisons between

models are done using pre-existing datasets, these datasets could contain vast amounts of

data but are not always a good representation of the data that the target network is

producing and therefore could be a source of error in the results.

5

This is where a need for a suite of tools which can help speed up the process of

training, testing, and comparing of possible models arises. A suite of tools that can allow

for the testing of multiple models at once with real-time data and an interface that can

display the results of these models can potentially accelerate the implementation of

Machine Learning models.

2.3 Similar Software

2.3.1 Snort

Snort is an Open-Source Intrusion Prevention System developed by the

company Sourcefire which was bought by Cisco Systems Inc in 2013. It allows

for real-time traffic analysis, logging of incoming traffic and intrusion detection.

To detect and react to possible threats the user must define a set of rules and

actions. Rulesets can be created by the user, but they can also access the publicly

available Rulesets of the community. Another option is to subscribe to the Ruleset

that is maintained and updated by Cisco Systems. This Ruleset is a superset of the

community Ruleset, however subscription to this Ruleset comes at a cost.

While Snort does offer some flexibility for defining rules and actions, the

user is limited to a Conditional approach. Furthermore, Snort does not allow for

the comparative testing of multiple detection models. [16]

Figure 1: Snort logo

2.3.2 Suricata

Suricata is an Open-Source software that can serve multiple functions, but

the primary function is an Intrusion Detection System and Intrusion Prevention

System. It offers a vast collection of tools that can assist a network administrator

in the monitoring of the network. The primary approach for detecting threats is

performing traffic analysis to detect signatures of known threats. In addition, a

Conditional approach is also used with the Suricata Ruleset and VRT Ruleset

6

which are updated regularly. Finally, Suricata allows the user to develop and

deploy Lua scripts that can be used for threat detection.

Overall, Suricata offers flexibility and customizability, however the user

is limited to Conditional and Statistical Analysis approaches. The functionality of

Lua Scripting does give some room for different approaches, but developing and

implementing complex models this way is not recommended. [18]

Figure 2: Suricata logo

2.3.3 Zeek

 Zeek is an Open-Source software for traffic analysis in computer

networks. It is primarily used as a monitoring tool thanks to its comprehensive

library of tools that are tailored towards this task. It can allow for extensive

logging of network activity in all the layers of the network, from physical wire

connections to high level application protocols such as HTTP. Furthermore, Zeek

is equipped with tools that can assist in analysis of traffic and the detection of

threats. Zeek also allows for a lot of flexibility and customization thanks to its

custom-made scripting language for traffic analysis. Another crucial aspect of

Zeek is its capability to run on commodity hardware that is more affordable

compared to proprietary solutions.

All in all, Zeek offers an extensive, flexible, and customizable library of

tools to the user, however the primary objective of Zeek is monitoring and traffic

analysis and not threat detection. This means that Zeek is better utilized as a tool

for extracting data which can later be used as input to an IDS. [17]

Figure 3: Zeek logo

7

Chapter 3

Required Knowledge and Technologies

BASIC DEFINITIONS 7

ARTIFICIAL INTELLIGENCE 7

MACHINE LEARNING 8

NEURAL NETWORKS 9

COMPUTER NETWORKS 9

NETWORK TRAFFIC 10

REQUIRED TECHNOLOGIES 10

WIRESHARK 10

MYSQL 11

POWERSHELL 11

JSON 11

XML 12

CSV 12

C# PROGRAMMING LANGUAGE 12

.NET CORE 13

JAVA 13

CICFLOWMETER 14

ERLANG 14

RABBITMQ 14

3.1 Basic Definitions

3.1.1 Artificial Intelligence

According to John McCarthy, Artificial Intelligence refers to the science

of engineering and developing intelligent machines, systems, and programs. It has

similarities with another field of study, where computers and machines are used

to understand human intelligence, but Artificial Intelligence is not limited to

biologically observable methods. [1]

8

The field of Artificial Intelligence is extensive and contains other concepts

such as Machine Learning which will be discussed later in the document.

Artificial Intelligence also has a long history dating back to the 1950s and

throughout time has had periods of growth and stagnation.

Artificial Intelligence systems can perform their tasks by grasping their

environment and use problem solving to achieve a goal. Their problem-solving

capabilities allow them to solve problems that traditional algorithmic approaches

cannot solve or require a lot of processing power. Furthermore, their actions can

be influenced by previous experience to further improve future results.

3.1.2 Machine Learning

Machine Learning is a form of Artificial Intelligence. Machine learning

attempts to create models that can then be trained to perform a task without

providing them a strict definition for how to approach the problem, like a human

learning.[2]

The field of Machine Learning seeks to develop such models that can be

trained on data using a training algorithm. The model during training is expected

to detect patterns that it can use to take more effective actions or make more

accurate predictions. The patterns that the model can detect after training are not

always clear to the developer of the model, this has resulted in the term of the

Black-Box where we input data and get results without knowledge of the boxes

inner workings. Over the years multiple models and training algorithms have been

developed, each with their own strengths and weaknesses.

In a lot of applications Machine Learning models show promising results

when tasked with predicting possible courses of action, responses to certain

situations, and future trends. Furthermore, Machine Learning models have very

high accuracy in the field of image and voice recognition, so much so that they

have become the primary approach to solving such problems. This is why

researchers are now trying to find if these approaches can benefit the field of threat

detection in computer networks.

9

3.1.3 Neural Networks

Neural Networks are a type of model used in the field of Machine

Learning. They attempt to simulate the structure of a biological brain using

concepts such as Neurons and Synapses. [3]

A Neural Network is a collection of Neurons that are connected to each

other, depending on the topology of the model the connections can be different,

these connections are also weighted which means that the connection has a set

amount of influence to the next Neuron. The Neural Network structure is inspired

by the biological structure of the brain.

To train these models special algorithms are used along with vast amounts

of data. During training the weights of connections are altered to either strengthen

or weaken the influence of the connection. After training, the accuracy of the

model is calculated using test data which the model has not seen before. This

methodology attempts to emulate the way a biological brain functions when

learning, like a student solving mathematical problems with known solutions and

then can proceed to solve problems with unknown solutions.

Neural Networks are also flexible in terms of structure and multiple

topologies and training algorithms have been defined over time to serve specific

purposes. Some Neural Networks are more effective with homogenous data such

as images and sound, while other Neural Networks are better with Time-Series

data such as the temperature reading of a sensor.

3.1.4 Computer Networks

A Computer Network is a collection of computers that can communicate

with each other to share resources. The computers that make up the network are

usually referred to as nodes.

Computer Networks can employee different schemes to connect the nodes

together, the methodology used to define the structure is referred to as the

Network topology. Connections can be made using either electrical wiring or

optical wiring, wireless connections are also possible using Electromagnetic

Waves and Radio-Frequency. Furthermore, to facilitate communication between

nodes a protocol needs to be defined and each node needs to use this protocol to

understand each other. Nodes in the network can also be grouped into categories

10

depending on their primary purpose, common categories include Servers, Clients,

and Hosts. A Servers primary purpose is to serve data to Clients, Clients

themselves can be other Servers or Nodes. A Host refers to a simple Node in

network but can also refer to a Node who is running or hosting a service that other

Nodes can make use of.

The field of Computer Networks is vast and from it we have managed to

create networks which together connect the whole world into a single large

Network of Networks known as the Internet.

3.1.4.1 Network Traffic

Network traffic represents the messages that are communicated between

nodes in a Computer Network as they travel between Nodes. Messages are often

split into smaller pieces during communication, we refer to these pieces as

Packets. Depending on the Network Protocol, the structure of the packets can vary

to suit the needs of the protocol. The procedure of capturing Network traffic is

called Packet Sniffing or Packet Snooping, this is usually done using specialized

software.

3.2 Required Technologies

3.2.1 Wireshark

Wireshark is a free and open-source packet sniffing software. It also

provides tools for analysing the captured packets. It is widely used to troubleshoot

computer networks and to assist in the development of communication protocols.

It supports most network protocols and can also decrypt data when the network

protocol makes use of encryption algorithms. Furthermore, it provides the ability

to filter captured data and can also save the data in multiple formats.

Wireshark can be used via a Graphical User Interface or a command-line

environment. It is the preferred choice for packet sniffing and has been in

development since 1998 using the C programming language [12].

11

3.2.2 MySQL

MySQL is an open-source relational database management system owned

by the Oracle Corporation. It has been in development since 1995 and is written

in the C and C++ programming languages.

 A relational database is a type of database in which data is stored in tables

which represent entities. Tables can be related to each other using foreign keys,

these relations represent relationships between entities such as an Author and his

books. Data can be extracted, modified, and inserted to and from the database

using a unique language called SQL which stands for Structured Query Language.

Operations in SQL are done using statements and a collection of SQL statements

is called a query.

Due to its open-source nature and reliability MySQL has been used widely

as a long-term data storage solution. MySQL is also a main component in the

LAMP web application software stack alongside the Linux Operating System,

Apache Web Server, and the PHP programming language. [19]

3.2.3 PowerShell

PowerShell is an open-source tool developed and maintained by the

Microsoft Corporation. It is used for task automation using a command-line shell,

a scripting language, and a configuration management framework. PowerShell

was originally available only on Windows, but it is now available for Linux and

MacOS. PowerShell was developed using the C# programming language using

the .NET Core framework.

Developers can use PowerShell to automate tasks, build, test, and deploy

solutions. PowerShell can also serve as an alternative command-line shell. The

scripting language has support for functions, classes, modules, and native support

for common file formats such as CSV, JSON, and XML.

PowerShell modules are packages that contain other PowerShell

components, these modules can be shared with other users and developers using

online repositories. [20]

3.2.4 JSON

JSON, which stands for JavaScript Object Notation, is a file and data

format. It is an open standard and it is written as text. It was originally derived

12

from the JavaScript programming language but is now used in other programming

languages for multiple tasks.

Data in JSON format is a collection of objects containing key-value pairs,

and arrays. JSON is the primary data format used in web applications to exchange

data. It can also be used as a format to store configurations. JSON files use the

“.json” extension. [13]

3.2.5 XML

XML stands for eXtensible Markup Language is a language and file

format used to store, transmit and serialize data. It is an open standard specified

by the World Wide Web Consortium. The standard defines a ruleset for document

encoding in a text format that can be readable for both humans and machines.

XML uses tags to define data structures, tags come in pairs with a starting and

closing tag, between the start and end tag is the data. XML tags can be nested and

can also contain metadata and attributes.

It has been used as a data exchange format on the web and to define

documents. XML is another data format often used to store configurations for

applications. [15]

3.2.6 CSV Files

CSV, which stands for Comma Separated Values, is a file format used to

store tabular data. Each line in a CSV file represents a record, values are separated

using commas, and the first line in the file is used to define the fields. The file

format does not have any published standard.

CSV files are a common way to share tabular data. They are used by users

to share data and is also a common file format used to exchange data between

applications. It can also be used to import data to spreadsheets and Databases with

native support in most applications thanks to its simple format that requires

minimal processing to be parsed. [14]

3.2.7 C# Programming Language

C# is an open-source object-oriented programming language developed

and maintained by the Microsoft Corporation. It uses type-safety and has a C style

syntax like other programming languages in the C family of languages. It has

13

native support for exception handling, nullable-types, lambda expressions and

asynchronous operations. C# also has a built-in feature called LINQ which stands

for Language Integrated Query. This feature provides the developer with tools

with which he can query data sources.

C# programs run on the Common Language Runtime or CLR which is a

virtual system that allows the execution of C# programs. When the program is

compiled, it is transformed into an Intermediate Language that can then be

executed on the CLR with Just In Time compilation to convert the Intermediate

Language into machine code. C# is most used in conjunction with the .NET Core

framework.[6]

3.2.8 .NET Core

The .NET Core is an open-source development platform developed and

maintained by the Microsoft Corporation. It can be used to build Web

Applications, Desktop Applications, Windows Applications, and services, IoT

applications, and Machine Learning applications.

It has an extensive library of functionalities that can help in the

development process. It has built-in support for a garbage collector, Attributes,

asynchronous code, Events, Generic types, Parallel programming, and Exceptions

among others. Applications developed using the .NET Core framework are also

cross-platform, meaning that they can run in multiple Operating Systems such as

Android, Windows, and Linux. Furthermore, it can run on x86, x64, and Arm64

architectures. There is also support for emulated environments.

Applications built using the .NET framework can be written in the C#, F#,

and Visual Basic programming languages. All these programming languages are

developed and maintained by the Microsoft Corporation. [7]

3.2.9 Java

Java is an object-oriented programming language developed and

maintained by Sun Microsystems, a subsidiary of the Oracle Corporation. It

launched in 1995 and has seen widespread adoption.

Java programs are compiled to bytecode which can then be run on the Java

Virtual Machine using Just-In-Time compilation. This feature also allows the

programmer to “write once, run everywhere” using the same bytecode. Memory

14

management is handled by the garbage collector and the syntax is similar to other

languages in the C family of programming languages. [8]

3.2.10 CiCFlowMeter

CiCFlowMeter is a program written in the Java programming language

that can generate flows from network traffic. It has been developed by researchers

at the Canadian Institute for Cybersecurity and is open-source software.

It can be used to extract features from network traffic and can also export

the results to CSV files. It can be run using a Graphical User Interface or a

command-line environment. Furthermore, it allows the user to directly read and

process traffic from the network or use already captured network traffic stored in

.pcap files.[9]

3.2.11 Erlang

Erlang is a programming language that was originally developed in the

Ericsson Computer Science Laboratory. It can be used to create large scale real-

time systems that require high availability. It has seen extensive use in the

telecom, banking, e-commerce, and telephony industries. It launched officially in

1986 and has become an open-source technology since 1998.

It is a functional language and is focused on concurrency. Erlang is often

mentioned alongside the Open Telecom Platform or OTP, a platform made up of

a runtime system for Erlang programs and a library of components written with

Erlang. [10]

3.2.11 RabbitMQ

RabbitMQ is an open-source message broker software from VMware Inc.

It has been developed using the OTP framework and is written in the Erlang

programming language. It has native support for multiple messaging protocols

such as Advanced Message Queuing Protocol-AMQP for short, Streaming Text

Oriented Messaging Protocol-STOMP, and MQ Telemetry Transport among

others.

It has seen widespread adoption in the industry, from small to large-scale

solutions. It supports multiple operating systems and can be deployed in the cloud

15

or on premises. RabbitMQ can also be deployed in either a distributed or federated

configuration for high availability and scalability.

Using RabbitMQ a developer can define queues to which messages can be

sent and then received by client applications. Libraries exist in most programming

languages that contain the necessary functions to use RabbitMQ. [11]

16

Chapter 4

Requirements and Specifications

MODULAR DESIGN 16

REQUIREMENTS 16

FUNCTIONAL REQUIREMENTS 17

Data Collection Component 17

Data Processing Component 18

THREAT DETECTION COMPONENT 18

Database Component 19

NON-FUNCTIONAL REQUIREMENTS 20

Data Collection Component 20

Data Processing Component 21

Threat Detection Component 22

SPECIFICATION 23

USER CHARACTERISTICS 23

DEVELOPMENT PRINCIPLES 24

DESIGN RESTRICTIONS AND LIMITATIONS 26

USE CASE DIAGRAM 27

4.1 Modular Design

Before proceeding to defining any requirements, the main modules of the project

need to be decided. The system can be divided into three main components. The first

component is data collection, the second component is data processing, and the final

component is threat detection. There is another complementary component, that is data

storage. The requirements for each component will be discussed separately.

4.2 Requirements

Requirements are split into two categories. Functional and Non-Functional.

Functional requirements represent specific functionalities, features, and behaviors that a

17

system or application should implement to achieve its intended purpose. These

requirements define what the system must do and how it should respond to user

interactions or other events. They also serve as blueprints during development, providing

a clear understanding of the system's core functionalities. They are also reference points

during the testing phase of the system to ensure that the system is behaving according to

these requirements.

On the other hand, non-functional requirements focus on the qualities and

characteristics of a system, rather than its specific functionalities. These requirements

represent aspects such as performance, security, usability, reliability, scalability, and

maintainability. Non-functional requirements describe how well the system should

perform in terms of speed, responsiveness, availability, and other attributes.

4.2.1 Functional Requirements

4.2.1.1 Data Collection Component

The component that is responsible for data collection should capture

network traffic from the target network and forward it to the data processing

component. The period of the capture, capture interval, network to perform

capture, and input of the next component should be configurable by the user. The

component should also allow the user to configure filters that can filter data during

the capture process. The component should also support data transfer through a

network in case the data processing component is running on a remote host.

Capture Network Traffic: The data collection component should be

capable of capturing network traffic from a target network. It should be able to

collect packets and forward them to the data processing component for further

analysis. The component should support configurable capture parameters such as

the capture period, capture interval, and the specific network on which network

traffic will be captured.

Configurable Data Filtering: The data collection component should

provide the ability to configure data filters during the capture process. Users

should be able to define filter criteria based on specific network protocols, IP

addresses, ports, or other parameters. These filters should allow for the selective

capture of network traffic based on the defined criteria, allowing the user to focus

on specific subsets of data for analysis.

18

4.2.1.2 Data Processing Component

The Data processing component should process network traffic and extract

features from it. Network traffic will come in the form of packets and the

component should present the extracted features in tabular format. The user

should be able to configure the list of features to be extracted. Upon successful

processing of network traffic, the component should also forward the results to

the threat detection component.

Feature Extraction: The component should be able to process network

traffic packets and extract features from them. The features to be extracted should

be configurable by the user. Examples of features could include source and

destination IP addresses, port numbers, packet size, protocol type, etc.

Tabular Presentation: The extracted features should be presented in a

tabular format. This could be in the form of a table or a file (e.g., CSV, Excel)

containing the extracted feature values. The tabular presentation should be

organized and easy to understand.

Configuration of Feature List: The user should have the ability to

configure the list of features to be extracted. This could include selecting

predefined feature sets or defining custom feature combinations based on their

specific requirements.

Integration with Threat Detection Component: Upon successful

processing of network traffic and extraction of features, the component should

forward the extracted features to the threat detection component. This ensures that

the processed data is available for further analysis and anomaly detection.

Error Handling: The component should handle potential errors or

exceptions that may occur during the processing of network traffic. Appropriate

error messages or logging mechanisms should be implemented to notify the user

or system administrators about any issues encountered.

4.2.1.3 Threat Detection Component

The Threat detection component should be able to execute the detection

algorithm that has been configured by the user and present its results. The

component should provide the necessary infrastructure to integrate and call

external detection algorithms, which can include Python scripts, binary

19

executables, or other compatible formats. The key requirement is that the

detection algorithm follows the expected input and output specifications defined

by the Threat detection component.

Detection Algorithm configuration: The component should allow the

user to configure and specify the detection algorithm to be used for analysing the

extracted features. This configuration could include providing the path or

reference to the algorithm's script or executable, along with any required input

parameters or settings. The component should ensure that the algorithm is

properly invoked, allowing it to process the extracted features and generate the

corresponding threat detection results.

Execution of the Algorithm: The component should be responsible for

executing the configured threat detection algorithm. It should handle the

invocation of the algorithm, passing the extracted features as input, and managing

the execution process. The component should implement error handling to handle

any potential issues during the execution, such as invalid algorithm

configurations, errors in the algorithm's execution, or unexpected termination.

Error messages and appropriate logging should be implemented to facilitate

debugging and troubleshooting in case of algorithm execution failures.

Result Presentation: the component should handle the retrieval and

presentation of the detection results. This could involve capturing the output

generated by the detection algorithm and presenting it in a format that is easily

interpretable by the user. The results could be displayed as a summary report, log

files, or any other suitable format that provides meaningful insights into the

detected threats.

4.2.1.4 Database Component

Data Storage: The database component should provide a reliable and

efficient means of storing the collected network traffic data, extracted features,

and detection results. It should support the storage of data in a structured manner,

preserving the integrity and consistency of the information. The component

should allow for the creation and management of appropriate database tables or

collections to store different types of data, ensuring optimal organization and

retrieval.

20

Data Retrieval: The component should enable the retrieval of stored data

based on various criteria, such as time intervals, specific network traffic attributes,

or detection results. It should support query functionalities that allow users to

retrieve relevant data for further analysis or reporting. The retrieval process should

be efficient, providing timely access to the required data, even with large datasets.

Data Management: The component should offer mechanisms for

managing the stored data, including data backup, restoration, and archival

procedures. It should provide options for data retention policies, allowing the user

to define the duration for which data should be preserved. The component should

also support data indexing and optimization techniques to enhance the

performance of data retrieval operations.

Integration with Other Components: The database component should

seamlessly integrate with the other components of the system, such as the data

collection component and the data processing component. It should facilitate the

transfer and storage of data between these components, ensuring that the

necessary data is appropriately captured, processed, and stored in the database.

The component should handle data synchronization and consistency across the

system to maintain accurate and up-to-date information.

Security and Access Control: The database component should

implement appropriate security measures to protect the stored data from

unauthorized access, tampering, or disclosure. It should support user

authentication and authorization mechanisms to control access to the database and

its data. Additionally, the component should adhere to data privacy regulations

and best practices, ensuring the confidentiality and integrity of the stored

information.

4.2.2Non-Functional Requirements

4.2.2.1 Data Collection Component

• Efficiency: The Data collection module should be designed to operate

efficiently with minimal resource consumption, ensuring it runs smoothly on

computers with limited resources.

21

• Low Overhead: The module should introduce minimal overhead to the

system, and the overall performance of the capturing device.

• Device Compatibility: The module should be compatible with a wide range

of devices, allowing for seamless integration and data capture from various

sources.

• Protocol Support: The module should support multiple network protocols,

ensuring the ability to capture data from different types of networks.

• Minimal Logging: The module should implement logging capabilities for

troubleshooting purposes only, minimizing unnecessary log entries to reduce

resource usage.

• Troubleshooting Information: The logs should provide relevant

information related to the capture and forwarding process, assisting in

identifying and resolving any issues that may arise.

• Detailed Documentation: The module should be accompanied by extensive

and detailed documentation, providing clear instructions on configuration

options, command-line usage, and advanced capabilities such as filtering and

network selection.

• Configuration Simplification: To accommodate users with limited

resources or command-line access, the module should support configuration

through XML or JSON files, providing a streamlined and efficient

configuration process without the need for a graphical user interface.

• Compliance: The module should adhere to relevant data privacy regulations

and best practices to ensure the privacy of captured network data.

4.2.2.2 Data Processing Component

• Processing capacity: The component should be able to handle varying

volumes of network traffic data efficiently, scaling according to the size of

the network(s) it is processing.

• Real-time processing: The component should have minimal processing time

to ensure timely analysis of the network traffic data.

• Scalable architecture: The component should be designed with scalability

in mind to handle increasing data volumes and potential expansion of the

network(s) it processes.

22

• Feature extraction customization: The component should allow users to

select and customize pre-defined features to be extracted from the network

traffic data.

• Configuration using XML or JSON: The component's configuration

should be easily customizable and manageable through XML or JSON files.

• Input data format: The component should support input data in the form of

packets, preferably in a file format like .pcap.

• Output data format: The extracted features should be presented in a tabular

format, preferably in a file format like .csv.

• Error handling: The component should implement robust error handling

mechanisms to handle exceptions.

• Minimal logging: Logging should be kept to a minimum, primarily for

troubleshooting purposes, to avoid unnecessary resource usage.

• Graceful failure: In the event of a failure or error, the component should exit

gracefully and provide clear notifications to the user through the log.

4.2.2.3 Threat Detection Component

• Configuration using XML or JSON: The component's configuration should

be easily customizable and manageable using XML or JSON files.

• Algorithm flexibility: The component should be flexible in its algorithm

invocation methods, allowing users to make use of any technology or

programming language they need to develop their detection algorithm.

• Input data format: The component should support input data in the form of

a CSV file, providing a dataset of extracted features from network traffic.

• Output data format: The component should support generating output in a

structured format, such as CSV files or JSON files, depending on the

algorithm's requirements.

• Extensibility: The component should support the addition of new detection

algorithms, allowing the system to adapt and incorporate emerging

technologies and methodologies.

• Error handling: The component should implement error handling to handle

exceptions and unexpected situations.

23

• Logging: Logging should be implemented to allow troubleshooting and

analysis of the detection algorithm execution.

• Detailed documentation: The component should provide extensive

documentation, guiding users on configuration, and understanding the

input/output formats.

4.2.2.4 Database Component

• Data Persistence: The database should ensure the durability and persistence

of stored data, even in the event of a system failure or power outage.

• Reliability: The database should be reliable, providing consistent access to

the data and minimizing any risk for data loss or data corruption.

• Availability: The database should support high availability, allowing

continuous access to the data and minimal downtime.

• Data Security: The database should provide mechanisms to secure the data,

protecting against unauthorized access.

4.3 Specifications

Within this section, the specifications of the system will be outlined, providing an

understanding of its requirements, functionalities, and limitations. General specifications

that apply to the system as a whole will be discussed first, including the expected users,

use case diagrams, limitations, and development principles. This will provide context for

the system and its intended purpose.

Following the general specifications, more specific specifications for each

component of the system will be discussed. By addressing each component individually,

a detailed analysis of their functionalities, interfaces, and requirements can be provided.

This will enable a comprehensive understanding of the system's architecture and the role

of each module within it.

Through these specifications, a clear and well-defined outline of the system will

be provided, ensuring that all stakeholders have a solid understanding of its capabilities,

limitations, and intended usage.

4.3.1 User Characteristics

The users of the system are mentioned in detail in this section:

24

• Algorithm Researchers: These users are interested in developing and

testing new detection algorithms for network threat detection. They would

utilize the system's flexibility and customization capabilities to experiment

with different approaches and evaluate the performance of their

algorithms.

• Network/System Administrators: These users are responsible for

deploying and the system. They would configure and deploy the system,

ensuring its integration with other components.

4.3.2 Development Principles

By incorporating these development principles into the project, it will be

better equipped to address the unique requirements and challenges of such a

system.

1. Modularity: A modular design allows for the independent development and

testing of each component, enabling easier maintenance and code reuse. It

allows researchers and developers to focus on specific functionalities without

affecting the entire system.

2. Flexibility: The system needs to be flexible and allow for different detection

algorithms and configurations. Researchers and algorithm developers may

have different requirements and preferences in terms of the technologies and

tools they want to use. Providing flexibility in the system's design allows

them to leverage their preferred programming languages, frameworks, or

even pre-existing models, promoting innovation and experimentation.

3. Extensibility: The system should be designed with extensibility in mind to

support future improvements and integrations. As new network protocols

emerge or machine learning techniques evolve, the system should be able to

adapt and incorporate these advancements without requiring extensive re-

architecting. This ensures that the system remains up-to-date and relevant

over time.

25

4. Scalability: Scalability is crucial as the system needs to handle varying

volumes of network traffic efficiently. By optimizing resource utilization,

and leveraging parallel processing techniques, the system can handle

increasing amounts of data while maintaining performance and

responsiveness.

5. Usability: Well-documented configuration files make it easier for

researchers and network administrators to set up and operate the system.

Clear instructions, informative logs, and error handling mechanisms allow

users to understand and troubleshoot the system effectively.

6. Performance: Performance is crucial for real-time or near-real-time

processing of network traffic. Optimized algorithms, data structures, and

efficient processing techniques should be used to ensure that the system can

keep up with the data flow and deliver threat detection results with minimal

latency.

7. Reliability and Fault Tolerance: The system should be resilient to failures

and errors to ensure seamless operation. It should handle unexpected

scenarios gracefully and recover from failures to minimize disruption.

Reliability and fault tolerance mechanisms are important to maintain the

system's availability and ensure a steady flow of data processing.

8. Security: While data privacy may not be a primary concern for this project,

implementing secure coding practices and appropriate security measures is

still important. This ensures that the system is protected against potential

vulnerabilities and safeguards it from unauthorized access or malicious

activities.

9. Documentation: Extensive and comprehensive documentation is

necessary for researchers and developers to understand the system's

functionality, configuration options, and usage guidelines. Well-

documented code and technical guides allow for easier troubleshooting,

26

and future development. Clear documentation helps users leverage the

system's capabilities effectively.

4.3.3 Design Restrictions and Limitations

The architecture and design of the system has the following limitations

and restrictions:

1. Centralized Data Collection: The system requires a centralized

collection point within the network architecture to capture all network

traffic. This requires the identification of a suitable location, such as a

central switch or network tap, to avoid partial data collection. It should be

noted that this requirement may limit the deployment of the system to

networks that allow for a centralized collection approach.

2. Access to Network Infrastructure: To capture network traffic, the

system requires access to the network infrastructure, including the

necessary permissions and credentials. This may require collaboration and

coordination with network administrators or relevant stakeholders to

ensure the system's deployment and operation within the network.

3. Availability of Compatible Network Protocols: The system relies on the

availability and support of compatible network protocols for capturing and

processing network traffic. It should be compatible with common network

protocols used in the target network environment, such as TCP/IP,

Ethernet, or Wi-Fi protocols.

4. System Compatibility: The system's components may have compatibility

requirements with the operating systems, programming languages, and

dependencies used for implementation. It is essential to consider the

compatibility constraints of each component and ensure the necessary

environment is available for the system's deployment.

5. Hardware and Resource Requirements: The system's performance and

functionality may be affected by hardware and resource limitations.

Considerations should be given to the hardware specifications, processing

27

power, memory, and storage requirements to ensure the system can

effectively handle the anticipated workload and data volumes. It is also

important to consider that the hardware requirements can vary depending

on the scale of the network and the amount of traffic it produces.

6. Data Privacy and Legal Compliance: The system should abide to all data

privacy regulations and legal requirements when capturing and processing

network traffic data.

4.3.3 Use Case Diagram

28

Chapter5

System Design and Implementation

SYSTEM ARCHITECTURE 29

DATA CAPTURE COMPONENT 30

COMPONENT DESIGN 30

COMPONENT IMPLEMENTATION 30

REQUIREMENTS 31

DEPLOYMENT AND USAGE 31

DATA PROCESSING COMPONENT 31

DESIGN 31

IMPLEMENTATION 33

REQUIREMENTS 34

DEPLOYMENT AND USAGE 34

THREAT DETECTION COMPONENT 36

DESIGN 36

IMPLEMENTATION 36

REQUIREMENTS 37

DEPLOYMENT AND USAGE 37

DATABASE COMPONENT 37

DESIGN 38

IMPLEMENTATION 38

DATABASE ERD 39

REQUIREMENTS 39

DEPLOYMENT AND USAGE 40

SHARED LIBRARY 40

DESIGN 41

29

5.1 System Architecture

The system follows a distributed architecture, consisting of multiple

interconnected components that work together to capture, process, and detect threats in

network traffic. The main components include the Data Collection component, Data

Processing component, Threat Detection component, and the Database component.

The Data Collection component is responsible for capturing network traffic. It

utilizes appropriate mechanisms to intercept and capture the traffic. Once the data is

captured, it is forwarded to the Data Processing component. The Data Processing

component exposes an API endpoint to receive the data.

The Data Processing component receives the captured data from the Data

Collection component through an exposed API endpoint. The API receives data using

HTTP POST requests. When the API receives data, it is inserted to the Database

component and a message is sent to the appropriate queue with the newly inserted record

id. When the Data Processing component receives a message in the queue it retrieves the

data record from the database component. Then it performs necessary preprocessing and

feature extraction. The processed data is then sent to the Threat Detection component for

analysis. Communication between the Data Processing and Threat Detection components

is also facilitated through RabbitMQ message queues. The Data Processing component

inserts the processed data in the Database component, and a message with the newly

inserted record id is sent to the appropriate queue.

The Threat Detection component is responsible for invoking the configured

detection algorithm on the processed data. It utilizes the extracted features to perform

threat analysis and generate detection results. The detection algorithm can be customized

by the user. The Threat Detection component awaits messages from a queue. When the

queue receives a message, the component will then retrieve the Processed Data record

with the id provided from the message. Then the Detection Algorithm is invoked, and the

results are inserted to the Database component, finally a message with the newly inserted

record id is sent to the appropriate queue.

The Database component is an integral part of the system, providing long-term

storage for the captured data, processed data, and detection results. The use of the

Database component ensures data persistence and enables future analysis and retrieval.

Overall, the system architecture enables efficient data collection, processing, and

threat detection by utilizing RabbitMQ message queues for communication between the

30

components. The integration of the Database component ensures long-term storage and

retrieval of the captured data and detection results, providing a comprehensive solution

for network traffic analysis and threat detection.

5.2 Data Capture Component

The Data Capture module must perform three tasks. First, it must read the configuration

provided by the user, then it must capture traffic from the network according to the

configuration, and finally it must forward the traffic that was captured to the Data

Processing component.

5.2.1 Component Design

Considering that the Data Capture component is likely to be deployed on

a computer with limited processing and memory resources, a script-based

approach is used. Using the script, we can make use of external tools to capture

traffic. Then the script can make an HTTP Request to a remote API to forward the

data for storage and processing. The script can also be automated using tools like

Cron Job and Windows Task Scheduler. With this approach, the component is

kept simple and uses as little resources possible.

5.2.2 Component Implementation

The Data capturing component is implemented using PowerShell scripting

language. PowerShell provides the necessary functionalities to interact with the

operating system, execute commands, and handle the capture process. The

component uses PowerShell functions to read the configuration file, execute the

tshark command, and make the HTTP POST request.

The Data capturing component integrates with Wireshark, specifically

utilizing the tshark command-line tool. By invoking tshark, the component can

capture network traffic and save the captured traffic to a pcap file before sending

it to the next component.

Configuration is provided using an XML file. Thanks to a built-in

functionality of PowerShell no additional modules are needed to read XML files.

31

5.2.3 Requirements

Thanks to the minimal design, the Data Capture component has only two

requirements:

1. PowerShell Scripting Language v7.0 and later

2. Wireshark

5.2.4 Deployment and Usage

The process of deploying the Data Capture component is as follows:

1. Copy the directory of the component to the desired location.

2. Apply the desired configuration using the provided XML file.

Details about the configuration options are provided in the

README file.

3. (Optional) Automate the execution of the capture script using tools

like Cron Job and Task Scheduler. Blueprints for these tasks are

provided as separate scripts.

The component can be used by executing the capture script provided. The

capture script is a PowerShell script.

5.3 Data Processing Component

5.3.1 Design

The Data Processing component is the largest of the three main

components. It must perform multiple tasks. The primary task is the processing of

Data as it is received from the Data Capture component.

Considering that the Data Capture component is likely to be running on a

remote computer, an API must be implemented and exposed to the network to

facilitate the transmission of data. The API must receive the data, insert it into the

Database Component and send a message to begin processing the data. The

message must contain the record ID of the data inserted into the Database

Component.

For a more scalable design a message brokering service has been

integrated into the system. This allows for multiple processing events to happen

simultaneously and with the addition of failure queues there is an additional layer

of fault tolerance. Using the queue system of the message broker service we can

32

define queues where messages can be sent and received from our components.

These queues can act as a buffer between components, this way each component

can be independent from each other. Furthermore, each component can be scaled

according to its processing needs, for example, if the processing component is

overwhelmed by incoming data, the queue where the captured data messages are

sent will grow, allowing the Data Capture component to continue its operation,

the Data Processing component can then be scaled to handle the increased flow of

incoming data.

To utilize the Queue system of the Message Broker service a Consumer

Model is used. A consumer is an entity that subscribes to a queue. When a message

is sent to that queue the Message Broker service will signal a consumer that is

subscribed to the queue. If multiple consumers are subscribed to the same queue,

then the consumer will be selected using a round-robin approach. When a

consumer is signaled by the message broker it will execute a method which can

be defined by the developer. This method has access to the message that has been

sent.to the queue.

The Data Processing is performed using one or more consumers. The

consumer is subscribed to the queue where the raw data is sent. When a message

is received the consumer reads the message to get the ID of the record inside the

Database component, then the raw data is fetched from the Database component.

After fetching the raw data, a tool for feature extraction is used to process the data,

when the tool is finished processing the raw data the results are saved into a

temporary location before being inserted into the Database component. During

the insertion of processed data, the ID of the related raw data must be provided to

establish the relationship between the raw and processed data inside the Database

component. Finally, when the processed data has been inserted into the Database

component a message is sent to the appropriate queue. The message contains the

ID of the newly inserted record of processed data.

The number of consumers can be configured by the user. Depending on

the amount of raw data produced by the Data Capture component, the user can

increase or decrease the number of consumers that are used, offering flexibility

and scalability.

33

 5.3.2 Implementation

The Data processing component has been developed using the .NET Core

framework and the C# programming language. The Messaging Brokering Service

that is sued is RabbitMQ. The component is designed as a console application

without a Graphics User Interface.

The API that receives data from the Data Capture component has also been

developed using the .NET Core framework and the C# programming language.

The API is designed as a Web Application.

Access to the Database component is offered through a shared library of

C# classes that both the API and Data Processing application use. It contains

classes and methods that can provide access to the Database Component along

with other functionality that is shared between the two applications. This was done

for code-reuse purposes. The classes that give access to the Database Component

have all the necessary methods that allow the applications to connect to the

Database, query the Database, and insert new data to the Database.

The raw data consumers are extensions of the generic consumer class

provided by the RabbitMQ library. Additionally, helper methods have been

defined to assist consumers with the exchange of messages and the declaration of

queues. Queues can be configured by the user, allowing for a longer or shorter

message lifespan known as Time-To-Live or TTL. When the consumer receives

a message, the raw data is fetched from the Database component using the record

ID inside the message, then using an external tool named CiCFlowMeter, the

features are extracted from the raw data and saved inside a CSV file. When the

extraction of the features is finished, the consumer will insert the processed data

in the Database Component, a relationship with the processed and raw data is

created using the record ID of the raw data to reference the origin of the results.

Finally, when the processed data has been inserted successfully into the Database

component, a message is sent to the appropriate queue signalling the next

component to begin.

Exception handling has also been implemented for a more fault-tolerant

application. Furthermore, in the case of a failure, the application will exit

gracefully and provide the user with a detailed log of the incident that caused the

failure to assist in debugging. Finally, the connection parameters for the Message

34

broker service and the Database Connector are configurable by the user with the

use of JSON files.

5.3.3 Requirements

For the deployment of the Processing component the following

requirements must be met.

1. Valid and running Installation of RabbitMQa.

2. Valid and running installation of a MySQL server. The MySQL server

will contain the Database instance of our system and represents the

Database component. Further details will be provided in a later section.

3. The user must allow communication between the computer/server pairs

that host the components. Note that if needed, all components can be

hosted on the same computer/server.

a. Data Capture - Data Processing web API

b. Data Processing web API - Data Processing application

c. Data Processing web API – Database

d. Data Processing application – Database

4. (Optional) .NET Core Runtime version 7.0

5.3.4 Deployment and Usage

Deployment of the Data Processing is done by following the procedure

below.

1. Build the application using .NET Core or use a pre-built package.

a. Optionally, the user can build the application and use the framework

dependent executable, the executable will be in the form of a DLL

file. However, this requires the user to have the .NET Core Runtime

v7.0 installed.

2. Copy the directory of the packaged application to the desired location.

3. Using the provided JSON files, apply the configuration needed. The

configuration includes the connection parameters for the Message Brokering

Service-RabbitMQ, the Database Component, the path of the

CiCFlowMeter executable, and the output path for the processed data.

Detailed explanation of the configuration options is provided in the

README file.

35

4. After applying the configuration, launch the executable file. Any warnings

or errors will be displayed inside the console window of the application. If

the user has chosen to use the framework dependent executable, the

application can be launched using the dotnet run command and providing

the path to the DLL file.

Deployment of the API module is done separately. This is done for

modularity. Another reason is that the API can be deployed with the Database

component on the same server for lower latency. The procedure for deployment

is like the Data processing module.

1. Build the Web app using .NET Core or use a pre-built package for the target

system.

a. Optionally, the user can build the Web app and use the framework

dependent executable, the executable will be in the form of a DLL file.

However, this requires the user to have the .NET Core Runtime v7.0

installed.

2. Copy the directory of the packaged web app to the desired location.

3. Using the provided JSON files, apply the configuration needed. The

configuration includes the connection parameters for the Message Brokering

Service-RabbitMQ, the Database Component, and the names of the queues

where messages for successful or failed transmissions are sent. Detailed

explanation of the configuration options is provided in the README file.

4. After applying the configuration, launch the executable file. Any warnings or

errors will be displayed inside the console window of the application. If the

user has chosen to use the framework dependent executable, the application

can be launched using the dotnet run command and providing the path to the

DLL file.

5. The console window will provide the necessary information to access the API,

such as URL and port number. The user can configure these variables inside

the configuration file; however, this is optional.

36

5.4 Threat Detection Component

The Threat Detection Component is responsible for the execution of the detection

algorithm that is provided by the user. It must make sure that the execution process goes

smoothly, and it is also tasked with inserting the results of the algorithm to the Database

Component. The component must provide the user with the tools needed for the

deployment of the detection algorithm of choice. The component limits the user only in

the format of the expected input. The algorithm must take as input a CSV file with features

extracted from network traffic.

5.4.1 Design

The Threat Detection component follows a design pattern similar to the

Data Processing component. For this reason, the component has been merged with

the Data Processing component in a single application.

Like the Data Processing component, the Threat Detection component

defines a custom consumer class which is subscribed to a queue. When the queue

receives a message, a processed data record is fetched from the Database

component using the record ID inside the message. When the record is fetched it

is stored as a temporary file in CSV format, then the Threat Detection algorithm

that was defined by the user inside the configuration will be executed with the

temporary file containing the processed data as input. When the algorithm has

been executed successfully, the results are inserted into the Database component,

and the processed record ID is used to create a relationship between the data in

the Database.

The number of consumers can be configured by the user. Additionally, the

user must provide the path to the algorithm executable along with the command

used to execute the algorithm and any other arguments that are needed.

5.4.2 Implementation

The component has been developed using the .NET Core framework and

the C# programming language. It is packaged alongside the Data Processing

component due to their identical design and requirements. The consumer class is

an extension of the generic Consumer class provided by the RabbitMQ library.

Access to the Database component is provided by the Shared Library used by the

37

previously discussed components. The component also contains a tool that allows

the user to test if the provided configuration is valid and that the Threat Detection

algorithm can be executed successfully, this tool is provided to assist the user in

debugging the Detection Algorithm before deployment.

Error handling has been implemented for increased fault-tolerance.

Furthermore, all errors that are encountered are logged to assist the user in

debugging.

5.4.3 Requirements

For the deployment of the Threat Detection component the following

requirements must be met.

1. All Requirements of The Data Processing Component

2. Any requirements that must be met to execute the Threat Detection algorithm

that the user has provided. This can be the Runtime environment of the

programming language of choice, like the case of a language like Java or C#.

5.4.4 Deployment and Usage

The component is deployed alongside the Data Processing component and

as such no additional steps need to be taken, other than the configuration of the

application. A detailed description of the configuration options is provided in the

README file of the application.

The component is launched alongside the Data Processing component, no

additional executables are needed. The console window will provide information

regarding the startup process of each component, and all errors will be logged

inside a log file.

5.5 Database Component

The Database component is responsible for the long-term storage of data in all its

forms. It is also responsible for providing access to the data when needed using queries.

In addition, the Database component is tasked with the creation of relationships between

data, these relationships represent the transitions between each form of data, this includes

raw data, processed data, and results from the detection algorithm. These relationships

allow the user to trace each result back to its original source. This can potentially help in

the analysis of the results.

38

5.5.1 Design

The Database component has two primary functions, the storage of data

long-term, and the querying of stored data. In addition, a mechanism to establish

relationships between data records is needed. The database must be able to store

binary data such as captured network traffic. Finally, the Database component

must perform its primary functions in the shortest amount of time possible, this is

critical for scalability, and it is even more crucial when considering the real-time

nature of the system.

Each form of data, that is raw data, processed data, and results from

processed data, must be a different type of record. Additionally, each record must

be uniquely identifiable by an ID, this unique is called the Primary Key. The

unique ID of each record will be used to reference other records for the

establishment of relationships between data, these references are called Foreign

Keys.

The Database component must also be accessible through the network to

be accessible to components that are running on remote hosts. Finally, the

component must provide an interface that other components can use to perform

data insertions and data querying.

5.5.2 Implementation

The Database component has been implemented using as Relational

Database using the MySQL Relational Database Management System. Records

in the database are represented as lines inside a table, each record can have

multiple values, where each of these values is associated with a field. Fields are

represented as columns of a table. A table represents an entity, the case of our

system our entities are the data in all its forms. There are three tables in total, the

raw data table, the processed data table, and the results table.

Each record in the raw data table has the following values, record ID, insert

date, and data. The record ID is a numerical value that must be unique for each

record, and it is used to identify a record. The insert date is a date time value that

notes the exact date and time the record was inserted into the database. The data

value is binary data, this binary data represents the contents of the captured

network traffic data file.

39

The processed data records have the same values as the raw data records,

the only addition is a value that references the record ID of the raw data that was

used to create the processed data record, in other words the processed data record

has a foreign key for a raw data record.

The results records are structured like the processed data records with the

only difference being that they reference processed data records and not raw data

records. Using this scheme each result has a processed data record where it

originated from, and that processed data record also has a raw data record from

which it originates, thus establishing a traceable origin path for each result.

Binary data inside the database is stored as a Blob type. The blob type does

not contain any metadata such as file name or file extension. This means that the

developer and user must be aware of the nature of the stored data, such as file

format and file extension.

5.5.3 Database ERD

The following Entity-Relationship-Diagram is a visual representation of

the entities inside the database and their relationships with each other.

 5.5.4 Requirements

There are no special requirements for the deployment of the Database

component, however, it should be noted that for optimal performance the

component should be hosted on a computer or server that is not severely limited

in terms of processing and memory resources. In addition, the Database

component must be available to the network to be accessible to other components

and the link must be able to handle the amount of traffic that will be generated. If

Figure 4 Database ERD

40

any of the resources is not adequate, there can be negative effects on the

performance of the component and by extension the system.

5.5.5 Deployment and Usage

Deployment of the component is done with the following procedure.

1. Install MySQL Server on the host machine.

2. Connect to the Database server using the default user credentials. This can

be done from a command-line environment or through a Graphical User

Interface by utilizing an external application named MySQL Workbench.

3. Create a new Database Instance. The name of the Database instance can be

defined by the user. This instance name is part of the configuration that must

be applied to the other components that need to have access to the Database

component.

4. Using the provided SQL query, create the tables of the database. The

provided SQL Query contains the necessary statements to create all the

necessary tables.

5. (Optional but highly recommended) Change the default user credentials and

create another user that has access to the database instance with SELECT

and INSERT privileges. This user will be used from the components to

access the Database Component, the credentials for the user must be

provided in the configuration of the components.

6. The user can check if the components can access the database by launching

the other components. Each component will attempt to establish a

connection to the Database component. If the connection fails, an error will

be displayed detailing where the connection attempt was stopped. Using this

information, the user can know if the issue is due to a lack of communication

between the components, invalid credentials, or any other issue.

5.6 Shared Library

The Shared Library is a collection of Classes and methods that are used in multiple

components. These classes and methods are used to establish a connection with the

Database component and Message Brokering Service. In addition, helper methods are

41

provided for easier message transmission and data querying. Finally, a class for each

entity in the database has been created for easier manipulation of data records.

This Shared Library is linked to each component that makes use of it during the

build process and as such no further action is needed from the user.

5.6.1 Design and Implementation

The Classes and methods that are used for accessing the Database

component make use of the Entity Framework. This is a library that allows the

developer to map Database entities to .NET Objects. This can be done by using

predefined tags inside the class definition, these tags are used to associate the

Object with an entity/table and the object properties with columns. The use of the

Entity Framework then allows for easier access to the record of the database.

Using a specific syntax, the developer can declare methods that perform queries

without writing any SQL code. Furthermore, by mapping the records to a .NET

Object, their manipulation becomes much easier and decreases the total amount

of code needed.

Helper Classes and methods for the Message Broker Service-RabbitMQ

are also defined in the Shared Library. These Classes and methods allow for an

easy establishment of connection to the RabbitMQ server, and quick declaration

of all the required queues using a .NET Configuration object which we can create

easily using the JSON configuration file of the application. Methods for sending

messages to queues are also available.

Overall, the Classes and methods that are provided by the Shared Library

promote code-reuse and reduce the amount of code needed inside the application,

which in turn provides a more readable codebase for the developer.

42

Chapter 6

Conclusion

6.1 Results

6.2 Summary

6.3 Future Work

43

REFERENCES

[1]“What is Artificial Intelligence (AI) ? | IBM.”

https://www.ibm.com/topics/artificial-intelligence

[2] “What is Machine Learning? | IBM.” https://www.ibm.com/topics/machine-

learning

[3] “What are Neural Networks? | IBM.” https://www.ibm.com/topics/neural-

networks

[4] “What is an Intrusion Detection System (IDS)? Definition & Types |

Fortinet,” Fortinet. https://www.fortinet.com/resources/cyberglossary/intrusion-

detection-system

[5] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of

intrusion detection systems: techniques, datasets and challenges,” Cybersecurity, vol. 2,

no. 1, Jul. 2019, doi: 10.1186/s42400-019-0038-7.

[6] BillWagner, “A tour of C# - Overview,” Microsoft Learn, May 04, 2023.

https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/

[7] Gewarren, .“NET (and .NET Core) - introduction and overview,” Microsoft

Learn, Mar. 15, 2023. https://learn.microsoft.com/en-us/dotnet/core/introduction

[8] “Java Software,” Oracle. https://www.oracle.com/java/

[9] “Applications | Research | Canadian Institute for Cybersecurity | UNB.”

https://www.unb.ca/cic/research/applications.html

[10] “About - Erlang/OTP,” Erlang.org. https://www.erlang.org/about

[11] “Messaging that just works — RabbitMQ.” https://www.rabbitmq.com/

[12] “Wireshark · Go Deep,” Wireshark. https://www.wireshark.org/

[13] “JSON.” https://www.json.org/json-en.html

[14] “DataHub - a complete solution for Open Data Platforms, Data Catalogs,

Data Lakes and Data Management.” https://datahub.io/docs/data-packages/csv

[15] “Extensible Markup Language (XML).” https://www.w3.org/XML/

[16] “Snort - Network Intrusion Detection & Prevention System.”

https://www.snort.org/

[17] “The Zeek Network Security Monitor,” Zeek. https://zeek.org/

[18] “Home - Suricata,” Suricata, Aug. 10, 2022. https://suricata.io/

[19] “MySQL.” https://www.mysql.com/

44

[20] Sdwheeler, “What is PowerShell? - PowerShell,” Microsoft Learn, Oct.

21, 2022. https://learn.microsoft.com/en-

us/powershell/scripting/overview?view=powershell-7.3

45

APPENDIX A

