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Abstract 

This thesis addresses the challenge of implementing a continual learning model on 

embedded devices, notably on an Android phone, to address real-world applications. 

Our focus is on the utilization of a pre-trained model with some fine-tuning to facilitate 

class incremental learning on common objects through real-time on-device training and 

inference. We strive to minimize catastrophic forgetting while optimizing performance 

and limiting computational resource utilization. 

The objectives of this thesis are twofold. First, to mitigate the added continual learning 

capabilities from the old TensorFlow-Lite application to the new one by incorporating a 

replay buffer. Second, to further experiment offline with the model in order to improve 

its performance while remaining lightweight and feasible for deployment on resource-

limited devices. 

The implementation of continual learning in the new TensorFlow-Lite demo app 

provides several advantages. These include increased customization, simplified model 

management, and an effortless way to save and restore the weights of the model. 

Specifically, this approach facilitates more flexible model structure and optimizer 

selection, streamlines model management by utilizing a single .tflite model for training 

and inference, and enables more efficient storage and updating of training weights with 

the use of tf.functions. 

In our experimental phase, we did several modifications to our model which consist of a 

frozen MobileNetV2 as a base and a trainable head learning at full pace. These changes 

include the integration of replay buffer samples with new samples in the training 

process, application of a novel replay buffer replacement algorithm, and employment of 

the latent replay strategy. With these changes, we achieved significant improvements in 

accuracy on the CORe50 benchmark. We reached a peak accuracy of 69.7% with a 

replay buffer size (RBS) of 7500 samples and 69.5% with an RBS of 3000 samples 

which represents a significant leap over the previous model used in [2] that achieved a 

peak accuracy of 56.6% with an RBS of 7500 and around 62% with an RBS of 30000. 

Our model, though slightly less accurate than the 72.24% achieved by the AR1* model 

from [15], maintains a simple and lightweight model architecture that is optimal for 

edge deployment. 



 

 

As a result, this study offers valuable insights for the deployment of continual learning 

models in resource-constrained environments and represents a promising advancements 

in on-device continual learning capabilities.  
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1.1 – Continual Learning Problem 

Continual Learning is a field in machine learning that deals with the challenge of 

maintaining the performance of machine learning models as they encounter new data 

incrementally over time, without suffering from catastrophic forgetting. It essentially 

refers to the ability of such models to continuously learn and adapt to new information, 

while retaining previously learned knowledge [14]. 

Continual Learning has the goal of developing incremental learning models, models that 

can continually acquire, fine-tune and transfer knowledge and skills in dynamic, real-

world environments, just as humans and animal can do. This is a crucial ability for 

computational systems and autonomous agents that need to process continuous streams 

of information and learn from experiences in real-world applications [14]. 

However, applying continual learning to models is a major challenge, making continual 

learning a complex and active area of research in machine learning. The biggest 

challenge it tries to tackle is preventing catastrophic forgetting, which occurs when a 

model overwrites previously learned knowledge with new information, resulting in a 

drastic decline in performance of old tasks. Furthermore, in real-world applications, 

continual learning requires models to learn from non-stationary data distributions, in 

contrast of traditional machine learning models, which are trained on stationary data 

distributions.  

In addition, adding continual learning in the context of embedded devices makes the 

challenge even harder. Such computational systems have limited resources, such as 

memory, computation power or energy. Such scenarios require very efficient use of 

these limited resources [2]. 

 

1.2 – Why Continual Learning 

One could argue as to why we should use Continual Learning in our models instead of 

other approaches for addressing the challenges of machine learning such as Federated 

Learning.  

Federated Learning is a machine learning setting in which many individual devices 

organizations work together to train a shared model. This is done through a central 

server that coordinates the process without the need for sharing any of the data itself. 
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The approach has gained significant attention recently because it could lead to reducing 

privacy risks and costs associated with centralized machine learning [6]. 

However, it all depends on the environment and the type of data that we are dealing 

with. When it comes to applications where the data distribution is nonstationary, and 

where it is necessary to adapt to new data incrementally over time, continue learning is 

definitely the way forward. We are able to learn from a continuous stream of data and 

adapt to new tasks without having to retrain the model from scratch. 

 

1.3 – Importance of Continual Learning on Edge 

Tackling the problem of continual learning, especially for embedded devices is not an 

easy task. However, the benefits that we can obtain from applying incremental learning 

models on edge are numerous, especially since embedded devices are becoming 

increasingly prevalent in our everyday lives. From smart home devices to medical 

devices, all embedded devices can benefit from continual learning models since they 

process and analyse data in real-time on the edge.  

What is more, embedded devices often operate in areas with limited or unreliable 

network connectivity, making it impossible to transfer data and retrain models in the 

cloud. On such occasions, it is vital to be able to continuously learn and adapt with on-

device training. 

Continual Learning on Edge can also be beneficial in ensuring our data privacy and 

preventing the transmission of sensitive information since the need of transferring data 

to the cloud can be reduced. In addition, with continual learning, models can adapt 

quickly to new information, without the need of complete retraining from scratch. This 

leads to faster model adaptation, improving overall performance of the system and also 

reducing the computational resources required, cutting the costs significantly [2]. 

 

1.4 – Previous Research on Continual Learning on Edge 

There has been a significant amount of previous research on continual learning on edge 

in recent years. In this section we are going to summarize some of the most relevant 

papers and their findings. 
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“Continual Learning on Edge with TensorFlow Lite” 

“Continual Learning on the Edge with TensorFlow Lite” attempted to expand the 

TensorFlow-Lite library to enable continual learning since at the time Google only had 

an experimental transfer learning API to their TensorFlow-Lite library which proved to 

be prone to catastrophic forgetting. In the paper, a continual learning model was tested 

on the CORe50 benchmark with the use of an Android application, showing that it 

tackles catastrophic forgetting. 

The model used a frozen MobileNetV2 as the backbone which was pretrained on the 

ImageNet dataset. The head of the network is a simple dense fully connected layer with 

ReLU activations followed by a classification layer with softmax activations. A simple 

replay buffer was integrated right after MobileNetV2. The model was then tested with 

various replay buffer sizes and was compared with one of the current state-of-the-art 

continual learning model AR1* + Latent Replay (AR1*LR) with an accuracy close to 

that of AR1*LR. 

Figure 1.1 - Last accuracy comparison of the Transfer Learning model, The Continual Learning 

model of the paper and AR1* on the CORe50 NICv2 – 391 benchmark.  

(Source: https://arxiv.org/abs/2105.01946) 

With the newer TensorFlow-Lite Demo App that simplifies on-device training, as well 

as modifying the body and experimenting with numerous approaches for the head of the 

model we are confident that better results can be achieved [2].  

“Continual Learning at the Edge: Real-Time Training on Smartphone Devices” 

“Continual Learning at the Edge: Real-Time Training on Smartphone Devices” 

implemented and deployed a hybrid continual learning strategy (AR1*) on an Android 

application for real-time on-device personalization without forgetting. The model stands 

as one of the state-of-the-art continual learning models with great efficiency and 

effectiveness. The CORe50 dataset was used once again as a benchmark. A latent replay 

https://arxiv.org/abs/2105.01946
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buffer was used, and the model was built with the Caffe framework for both the 

inference and training phases. 

Figure 1.2 – Final accuracy and on-device training time in seconds  

(Source: https://arxiv.org/abs/2105.13127) 

“Latent Replay for Real-Time Continual Learning” 

“Latent Replay for Real-Time Continual Learning” introduced a novel technique called 

“Latent Replay.” The authors utilize a replay buffer to preserve past data not from the 

input space but from the features of the images up to a certain layer of the 

MobileNetV1. They experiment with moving the replay buffer to different layers to find 

out which one achieves the highest accuracy. To ensure the consistency of the 

representations and the validity of the stored activations, they suggest decelerating the 

learning process in all layers below the one with latent replay, while permitting the 

upper layers to learn in full pace. They are able to achieve state-of-the-art performance 

on the CORe50 benchmark which shows the feasibility of nearly real-time continual 

learning on edge devices, like smartphones. 

Figure 1.3 – Accuracies of choosing different layers for latent replay in the AR1*free model with a 

replay memory size of 1500.  

(Source: https://arxiv.org/abs/1912.01100) 

https://arxiv.org/abs/2105.13127
https://arxiv.org/abs/1912.01100
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2.1 – Artificial Neural Networks Background 

2.1.1 – Origin of Artificial Neural Networks 

Artificial neural networks (ANN), or neural networks (NN) are computing systems that 

were inspired by the behavior of biological neural networks. A biological neuron is a 

type of cell found in the nervous system that receives and processes information from 

other neurons or sensory organs. It then transmits signals to other neurons or muscle 

cells. It consists of a cell body, dendrites that receive the input signals, an axon that 

transmits signals to other neurons and synapses that connect the axon of one neuron to 

the dendrites of another.   

 

 

 

 

 

Figure 2.1: A Biological Neuron  

(Source: https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1) 

In a similar fashion, artificial neural networks consist of a series of interconnected units 

or nodes known as artificial neurons, which are inspired by the neurons found in a 

biological brain. Each connection, akin to the synapses in a living brain, can transmit 

signals to other neurons. An artificial neuron takes in these signals, processes them, and 

can then send signals to the neurons it is connected to. The links between neurons are 

referred to as edges, and usually, both neurons and edges possess weights that are 

adjusted during the learning process. 

Neurons are grouped into layers, with each layer potentially performing distinct 

transformations on their inputs. Signals move from the initial layer (the input layer) to 

the final layer (the output layer), passing through all intermediate layers (hidden layers) 

along the way. 

Nowadays, a plethora of different ANN architectures are being utilized to solve 

different problems. 

https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
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2.1.2 – Variations of Artificial Neural Networks 

2.1.2.1 – Multi-Layer Perceptron (MLP) 

A multilayer perceptron is a fully connected category of feedforward artificial neural 

network. It is made of a minimum of three layers of nodes: an input layer, a hidden 

layer, and an output layer. The perceptrons in one layer are connected to the ones in the 

adjacent layer by a set of trainable weights, which are adjusted during training to 

minimize the error between the predicted and true output values.  

Figure 2.2 – A fully-connected artificial neural network.  

(Source: https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-

d7834f67a4f6) 

Excluding the input node, each node is a neuron that uses a nonlinear activation 

function. The output layer typically produces a classification or regression output, 

depending on the task. 

Figure 2.3 – A few of the activation functions. 

(Source: https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-

d7834f67a4f6)  

MLPs are widely used for a variety of tasks, including image classification, natural 

language processing, and speed recognition. They have been shown to be effective in 

many applications and can be easily adapted to handle a wide range of input data 

formats.  

 

https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6


10 

 

2.1.2.2 – Convolutional Neural Network (CNN) 

Convolutional neural networks are a class of artificial neural networks, most used for 

image recognition and classification tasks, due to their ability to learn hierarchical 

representations of image features. 

They are made up of multiple layers, typically including convolutional layers, pooling 

layers, and fully connected layers. Each layer performs a specific type of computation 

on the input data. 

Figure 2.4 – Architecture of a CNN. 

(Source: https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939 ) 

Convolution Layer 

The convolutional layer serves as the primary component of a CNN. It conducts a dot 

product between two matrices, the filter, and a limited section of the receptive field. As 

the forward pass progresses, the kernel moves across the image, generating a collection 

of feature maps. These filters adapt to identify particular in the input, like edges or 

corners within an image. By arranging several convolutional layers together, a CNN can 

learn to detect intricate patterns in the input data, such as shapes and objects.                                                                 

Figure 2.5 – Convolution Operation. 

(Source: https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939) 

https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
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Pooling Layer 

The pooling layer contributes to the reduction of the spatial size of the representation, 

which in turn decreases the computational requirements and weights. This process is 

carried out independently on each slice of the representation. Max pooling is the most 

prevalent technique, as it records the highest output within the local region.  

Figure 2.6 – Pooling Operation. 

(Source: https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939)  

Fully connected Layer 

Lastly, a fully connected layer takes the output from the previous layer which is a 

flatten layer that transforms the input into a one-dimensional form. The fully connected 

layer is used to be able to provide classification on the problem by producing a set of 

probabilities for each possible class label. 

 

2.1.2.2.1 – MobileNet 

The MobileNet is a type of neural network architecture for deep learning that was 

designed for use in mobile and embedded applications with limited computational 

resources. It is TensorFlow’s first mobile computer vision model. 

The architecture uses depthwise separable convolutions, a combination of depthwise 

convolutions and pointwise convolutions, to reduce the computational cost and model 

size while maintaining the accuracy of the network.  

Depthwise Convolution 

A depthwise convolution applies a single filter to each input channel. 

 

https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939


12 

 

Pointwise Convolution 

Regarding pointwise convolution, it employs a 1x1 convolution to merge the outputs of 

the depthwise convolution. Unlike a standard convolution that filters and combines 

inputs into a new set of outputs in a single step, the depthwise separable convolution 

divides this process into two layers – one dedicated to filtering and another to 

combining. Consequently, this factorization reduces computation and model size. [4] 

Figure 2.7 – Depthwise Separable Convolution. 

(Source: https://medium.com/analytics-vidhya/image-classification-with-mobilenet-cc6fbb2cd470)  

 

2.1.2.2.2 – EfficientDet 

EfficientDet is a state-of-the-art object detection model which aims to achieve higher 

accuracy with fewer parameters and computations.  

The EfficientDet architecture consists of a backbone network, a feature network, and a 

prediction network. 

The backbone network is a convolutional neural network called “EfficientNet” which 

takes an input image and generates feature maps at multiple scales. 

The feature network, called “bi-directional feature pyramid network” (BiFPN) is used to 

combine the feature maps from the backbone network to produce a single feature map. 

Lastly, the feature map is then used by the prediction network, called “Box prediction 

net” to make predictions. The prediction network consists of multiple convolutional 

https://medium.com/analytics-vidhya/image-classification-with-mobilenet-cc6fbb2cd470
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layers and fully connected layers that generate class probabilities and bounding box 

offsets for each object. 

Figure 2.8 – EfficientDet architecture: EfficientNet as the backbone network, BiFPN as the feature 

network and box shared class/box prediction network. 

(Source: https://medium.com/analytics-vidhya/efficientdet-scalable-and-efficient-object-detection-

384a5df9011a)  

EfficientDet has several benefits over other CNNs, including higher accuracy, smaller 

model size, and faster inference speed. It achieves state-of-the-art performance on 

several object detection benchmarks. 

What is more, is that there is an EfficientDet-Lite which is the EfficientDet model 

optimized for TF-Lite, designed for performance on mobile CPU, GPU and EdgeTPU 

[20]. 

 

2.1.3 – Training Artificial Neural Networks 

2.1.3.1 - Loss function 

Loss functions serve to quantify the discrepancy between the predicted output and the 

actual output generated by a machine learning model. Gradients, derived from the loss 

function, are utilized to update the weights.  

Several types of loss functions exist, such as: 

Mean Squared Error 

Mean squared error is used in regression contexts where both expected and predicted 

outcomes are real-number values. The formula calculates the squared difference 

between the expected value and the predicted value. 

https://medium.com/analytics-vidhya/efficientdet-scalable-and-efficient-object-detection-384a5df9011a
https://medium.com/analytics-vidhya/efficientdet-scalable-and-efficient-object-detection-384a5df9011a
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Figure 2.9 – Mean Squared Error formula. 

(Source: https://programmathically.com/an-introduction-to-neural-network-loss-functions/)  

Cross-Entropy 

Cross-Entropy based loss functions are typically used in classification situations. They 

measure the divergence between the predicted probability distribution and the true 

probability distribution of the target classes, resulting in a value known as the loss. 

Binary Cross-Entropy 

Binary Cross-Entropy is suitable for binary classification settings, where one of two 

possible outcomes is expected. The loss is computed using a formula where y represents 

the expected outcome, and y hat represents the outcome generated by the model.  

Figure 2.10 – Binary Cross-Entropy formula. 

(Source:  https://programmathically.com/an-introduction-to-neural-network-loss-functions/)  

 

2.1.3.2 - Gradient Descent 

Gradient Descent is an optimisation algorithm used to find a local minimum/maximum 

of a given function. It is widely used in machine learning and deep learning with the 

goal of minimizing a cost/loss function.  

The model's parameters are initialized with random values, and the algorithm computes 

the loss function using the training data and current parameter values. The gradient of 

the loss function concerning each model parameter is then calculated. Finally, the 

algorithm updates the parameters/weights by subtracting the gradient multiplied by a 

learning rate, a small positive number. 

 

https://programmathically.com/an-introduction-to-neural-network-loss-functions/
https://programmathically.com/an-introduction-to-neural-network-loss-functions/
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Figure 2.11 – Gradient descent change. 

(Source: Laboratory lectures of CS442 course at the University of Cyprus) 

The learning rate determines the size of the steps taken in the direction of the negative 

gradient. Too high or too low learning rates can lead to suboptimal convergence or 

convergence failure. Choosing an appropriate learning rate is crucial for the 

convergence of the optimization algorithm. 

 

2.1.3.3 – Backpropagation 

The backpropagation algorithm is probably the most fundamental building block in 

neural networks. It is used to effectively train a neural network through a method called 

chain rule. It propagates the error backwards starting from the output layer so we will 

know using the gradient descent how much to change each weight. 

It is used after each forward pass through a network. The forward pass calculates the 

predicted output.  

Figure 2.12 – An example of a forward pass for calculating f5 output. Y are the outputs of the 

neurons. 

(Source: Laboratory lectures of CS442 course at the University of Cyprus) 
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The backward pass adjusts the model’s parameters (weights and biases). 

Figure 2.13 – An example of a backward pass. Calculating derivatives and deltas. 

(Source: Laboratory lectures of CS442 course at the University of Cyprus) 

 

Figure 2.14 – An example of a backward pass. Updating the weights and biases. 

(Source: Laboratory lectures of CS442 course at the University of Cyprus) 

 

2.1.3.4 – Overfitting/Underfitting 

Overfitting and Underfitting are two primary issues that arise in machine learning, 

leading to decreased performance in machine learning models. The goal in machine 

learning is to ensure that models generalize well. Generalization refers to a model's 

ability to produce appropriate outputs by adapting to a given set of unknown data. 

Overfitting and underfitting are two factors that must be assessed to determine if a 

model is generalizing effectively. 
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Overfitting 

Overfitting occurs in a model when it attempts to fit all the data points present in a 

dataset that it is being trained on. It learns the training data too well, to the point that it 

starts to capture the noise of random variations in the data, as well as the underlying 

patterns. As a result, this leads to extremely poor generalization performance on new, 

unseen data. The overfitted model has low bias and high variance. 

Figure 2.15 – An example of a model overfitting on the training dataset. 

(Source: https://www.javatpoint.com/overfitting-and-underfitting-in-machine-learning) 

There are a variety of ways to minimize the likelihood of overfitting in our model such 

as: 

• Cross-Validation 

• Training with mode data 

• Removing features 

• Early stopping the training 

• Regularization 

Underfitting 

Underfitting is a condition where the machine learning model is unable to recognize the 

underlying trend of the data. This occurs when the fed training data stops at an early 

stage to prevent overfitting, however it leads to the model learning insufficiently from 

the data. As a result, the model fails to find the best fit of the dominant trend in the data, 

thereby leading to less accurate and unreliable predictions. 

https://www.javatpoint.com/overfitting-and-underfitting-in-machine-learning
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Figure 2.16 – An example of a model underfitting, unable to capture the datapoints in the plot. 

(Source: https://www.javatpoint.com/overfitting-and-underfitting-in-machine-learning) 

In order to prevent underfitting, we can increase the training time of the model as well 

as increasing the number of features. 

 

2.1.3.5 – Regularization Techniques 

Regularization is a technique used to prevent overfitting in a model. It adds new 

constraints or penalties into the model to encourage it to prioritize simpler solutions that 

are less likely to overfit. 

A few of the most used regularization techniques in machine learning are L1 and L2 

regularization, dropout, early stopping and data augmentation. 

L1 & L2 Regularization 

L1 and L2 regularization are the most prevalent types. They modify the overall cost 

function by incorporating an additional term known as the regularization term. 

Dropout 

The dropout method randomly selects some nodes during each iteration and removes 

them, along with all their incoming and outgoing connections. This forces the model to 

learn more robust features. 

Early Stopping 

Early stopping involves reserving a portion of the training set as a validation set. When 

the performance on the validation set starts to deteriorate, training on the model is 

halted immediately. 

 

https://www.javatpoint.com/overfitting-and-underfitting-in-machine-learning
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Data Augmentation 

Lastly, in data augmentation we increase the size of the training data by creating 

additional synthetic training data from the existing training data. We apply various 

operations such as rotation, flipping, zooming, cropping, changing brightness or 

contrast to the existing training data to create new variations of the same data. They are 

similar enough to the original data to allow the model to learn from them, but different 

enough that it helps prevent overfitting. 

 

2.2 – Continual Learning Scenarios 

With Continual Learning we strive to achieve training of a machine learning model on a 

sequence of tasks over time, where the model learns each task while maintaining its 

performance on previously learned ones. 

There are different Continual Learning scenarios that can occur, and they can be 

categorized in the following types based on how the tasks are presented to the model. 

 

2.2.1 – Class Incremental 

In this situation, the model must learn new classes over time without forgetting 

previously learned classes. It should be capable of solving each task encountered so far 

and determining which task is being presented. This is a typical real-world problem 

involving the incremental learning of new object classes and is of great interest to us 

[21]. 

An example would be a model that learns to classify animals. It would need to learn 

new animal species while also remembering the previously learned ones.   

 

2.2.2 – Task Incremental 

In a task incremental scenario, the model is always informed about the task it needs to 

perform. This is the simplest Continual Learning scenario, as the task-ID is always 

provided. To address this scenario, output units are typically dedicated to each task, 

while the remainder of the network is shared among tasks. 
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An example would be a model that recognizes speech commands. It will need to 

recognize new speech commands without forgetting the previously learned ones. Each 

command is considered a task and no classes exist [21]. 

 

2.2.3 – Domain Incremental 

Lastly, we have the domain incremental scenario. It is similar to the task incremental 

scenario; however, the task identity (task-ID) is not available during test time. The 

model only needs to solve the task and not required to infer which task is it. 

An example would be an agent that needs to adapt to different environments to survive, 

without requiring explicit identification of the environment [21]. 

 

2.3 – Evaluation 

2.3.1 – Common Continual Learning Benchmarks 

In order to evaluate the performance of continual learning models, it is necessary to 

have benchmark datasets that allow the comparison of different approaches. There are 

several datasets that have been proposed for this purpose. They cover a wide range; 

however, we are most interested in the ones that are mostly used for image recognition 

and object detection in a continual learning scenario. 

 

2.3.1.1 – Image Benchmarks 

Image benchmarks are datasets consisting of static images, mostly used for 

classification and object detection. The most popular image benchmarks that are used 

for continual learning are ImageNet and CORe50. 

 

2.3.1.1.1 – ImageNet 

ImageNet is a large-scale dataset of images that has been used as a benchmark for 

image classification since 2010. The dataset contains over 14 million images, each 

belonging to one of 1000 predefined classes. The images have been collected from the 

web and manually annotated with class labels. ImageNet has been used to evaluate the 
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performance of many state-of-the-art image classification algorithms, including deep 

neural networks and it is also used to evaluate continual learning models [17]. 

 

2.3.1.1.2 – CORe50 

CORe50 is a recent benchmark dataset that has been proposed specifically for the task 

of continual learning. Datasets such as ImageNet has been designed with “static” 

evaluation protocols in mind with the dataset being split in a training set and a test set. 

On the other hand, CORe50 focuses on being able to more effectively train and test 

continuous learning approaches. It does so by presenting multiple views of the same 

objects taking in different environments (lighting, pose, background etc.). 

The dataset consists of 50 object categories, each with 10000 images. The dataset is 

designed to simulate a continual learning scenario, where the model must learn to 

recognize new classes while also retaining its ability to identify previously learned 

classes [11]. 

 

Figure 2.17 – Example Images of the 50 objects in CORe50. Each column denotes one of the 10 

categories. 

(Source: https://arxiv.org/abs/1705.03550.pdf)  

 

2.3.1.2 – Natural Video Benchmarks 

Natural video benchmarks are datasets that contain videos that capture a dynamic and 

continuous stream of visual information. They are particularly useful for evaluating the 

performance of machine learning models that need to process continuous streams of 

https://arxiv.org/abs/1705.03550.pdf
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data and adapt to changing visual contexts over time. Two examples of widely used 

natural video benchmarks are Stream-51 and OpenLoris. 

 

2.3.1.2.1 – Stream-51 

Stream51 is a benchmark dataset for continual learning in videos, which is an extension 

of the CORe50 dataset. It consists of 51 different complex actions or events such as 

playing the guitar, eating, and brushing teeth, with each event containing multiple 

videos. The dataset is designed to evaluate the ability of models to learn and adapt to 

new tasks and data streams in the video domain [24]. 

 

2.3.1.2.2 – OpenLoris 

OpenLoris is a lifelong robotic vision dataset collected via RGB-D cameras. The dataset 

includes difficulties that a robot could encounter in a real-life situation and offers 

benchmarks to assess the effectiveness of a lifelong object recognition algorithm [19]. 

 

2.3.2 – Model Evaluation 

Model evaluation is a process in which various metrics are used to assess the 

performance of a machine learning model, as well as its strengths and weaknesses. 

Evaluating a model's effectiveness and optimizing it for better performance is crucial. 

 

2.3.2.1 – Baselines 

Baseline models assist in the evaluation process. A baseline model is essentially a 

simple model that serves as a reference in machine learning. It provides context for the 

results of trained models. Typically, there are upper and lower bound baseline models 

that function as benchmarks. 

In the context of continual learning some of the common baselines are explained below: 

Naïve 

We have the naïve approach where we just do a continuing backpropagation. It is an 

approach prone to forgetting and usually used as a lower bound. 
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JointTraining / Offline 

On the other hand, JointTraining/Offline is a pure multi-task learning approach, where it 

is assumed that access to all data is available, and all tasks are trained simultaneously. 

This serves as an upper bound. 

Greedy Sampler and Dumb Learner (GDumb) 

Another intriguing control baseline method that has questioned the progress of recently 

proposed approaches for continual learning is GDumb. This method greedily stores 

samples in memory as they arrive, and at test time, it trains a model from scratch using 

only the samples in memory. There is no knowledge transfer in this strategy. However, 

despite its simplicity, it has achieved impressive performance that outperforms 

numerous existing and more complex continual learning strategies. As a result, it is 

important that any new continual learning approaches should be tested against GDumb. 

If they cannot outperform it, then something is definitely wrong about the proposed 

strategy [16]. 

Cumulative 

Lastly, we have the cumulative approach, where for every experience, we accumulate 

all data and re-train from scratch. This approach is unsustainable over time and is used 

as an upper bound.  

 

2.3.2.2 – Hyperparameters  

A hyperparameter is a parameter with a value set before the learning process starts, and 

it is used to regulate the learning process. They are used by the learning algorithm, but 

they are not part of the resulting model. Choosing the most appropriate hyperparameters 

is incredibly important in obtaining the best results from our model.  

Some of the most important hyperparameters that we can choose is our train-test split 

ratio, our learning rate, the type of activation function that we choose as well as the 

optimization algorithm.  
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2.3.3 – Model Metrics 

One of the major factors for evaluating continual learning models is the focus on 

preventing forgetting of the data used in our model. However, there is a more 

comprehensive set of metrics that appear to have practical implications worth 

considering, especially when we are trying to deploy a real AI system that learns 

continually.  

 

2.3.3.1 – Accuracy 

Accuracy is a fundamental metric used to evaluate the performance of a model. It 

measures the proportion of correct predictions made by the model relative to the total 

number of predictions. A high accuracy indicates that the model is effective at 

classifying or predicting the correct outcomes. However, it is essential to consider other 

metrics as well, particularly in cases with imbalanced datasets [3].  

 

2.3.3.2 – Samples storage size efficiency 

In many Continual Learning approaches, training samples are stored using a replay 

strategy to prevent forgetting. Sample Storage Size Efficiency is a metric that measures 

the efficiency of the model's memory usage in relation to the storage of training 

samples. A model with high Sample Storage Size Efficiency can maintain good 

performance while requiring less memory for storing training data, making it more 

suitable for real-world applications with storage constraints [3]. 

 

2.3.3.3 – Computational efficiency 

Computational Efficiency is a metric that measures the number of computational 

resources, such as multiplication and addition operations, required for a model to 

perform its tasks, including training and inference. A computationally efficient model 

can achieve good performance with less processing power and time, making it more 

practical for real-world applications where computational resources may be limited [3]. 
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2.4 – Continual Learning Methodologies 

In this section, we provide a brief overview of the most popular continual learning 

strategies found in the literature. These methodologies generally aim to address the 

challenges inherent in learning new tasks sequentially while preserving knowledge from 

previous tasks. Key approaches include architectural modifications, regularization 

techniques, rehearsal strategies, and hybrid methods that combine elements from 

various strategies to create more robust and efficient solutions for continual learning. 

 

2.4.1 – Architectural Strategies 

Architectural strategies are techniques used in continual learning to modify the 

architecture of a neural network. By modifying the architecture of the neural network, 

we are able to create more efficient and effective models that can learn new tasks 

without forgetting the old ones. 

Some of the most used architectural strategies are the following: 

Multi-Head Architectures 

Multi-head architectures in continual learning are approaches where the model has 

multiple output heads, each responsible for a different task. Each head is essentially a 

separate classifier. It allows the model to separate the representation space for different 

tasks in an attempt to reduce the likelihood of catastrophic forgetting.  

An example of a multi-head architecture is the MORE technique which can be seen in 

[8] that uses the multi-head approach along with a transformer network. A multi-head 

network is trained as an adapter to a pre-trained network with each head being an out-

of-distribution detection model for a task. In addition, hard attention masks are utilized 

to prevent forgetting. 

Progressive Neural Networks (PNNs) 

The PNN architecture consists of a series of connected sub-networks, with each sub-

network dedicated to learning a particular task. As new tasks are introduced, a new sub-

network is added to the architecture, which learns the new task while the previously 

learned tasks are still preserved in the existing sub-networks. 



26 

 

During training, the output of the previous sub-networks is used as input to the new sub-

network, allowing the new sub-network to build on the knowledge learned from the 

previous sub-networks. This process of building new sub-networks for new tasks while 

preserving the knowledge of previously learned tasks continues over time, resulting in a 

progressively expanding network that can handle a wide range of tasks. without 

forgetting previous knowledge [18]. 

 

2.4.2 – Regularization Strategies 

Regularization strategies, as mentioned earlier, are techniques that impose constraints 

on the model’s parameters. Besides the common regularization techniques to prevent 

overfitting, there are certain strategies used to address the issue of catastrophic 

forgetting with some of the most known explained below: 

Learning Without Forgetting (LWF) 

The idea behind Learning Without Forgetting is to use the outputs of the previous 

model to constrain the training of the new one. During the training process, the model is 

trained on both the old and new data. The old data is replayed, and the new data is 

trained on the model with the previous weights. 

To prevent the model from completely forgetting the old knowledge, the model's output 

on the old data is compared with the output of the previous model. The difference 

between the two outputs is minimized by adding a distillation loss to the training 

objective. This way, the model is forced to maintain the same outputs on the old data as 

the previous model [10]. 

Elastic Weights Consolidation (EWC) 

Elastic Weights Consolidation works by selectively retraining important weights for 

solving previously learned tasks while allowing the network to adjust its weights for 

new tasks. For example, we have two tasks A and B and the EWC method of selective 

regularization of parameters theta. After we learn A, the regularization method figures 

out which parameters are important for A and penalizes any change made to the 

network parameters according to their importance while learning B [1]. 
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The penalty term that is used to constrain the changes in the important weights is 

calculated using the Fisher information matrix. The matrix is used to compute a 

diagonal matrix of importance weights which assigns high importance to parameters 

that are most critical for solving the previously learned tasks. 

When we train the network on a new task, EWC adds a regularization term to the loss 

function that encourages the weights to remain close to their previous values. The 

amount of regularization is dependant to the importance weights that were computed 

with the Fisher information matrix [9]. 

 

2.4.3 – Rehearsal Strategies  

Replay is a very general and effective strategy for Continual Learning. 

Things to consider when choosing your implementation option: 

• Fixed or “adaptive” external memory? 

• Sample selection: random or representative examples? 

• Mini-batch sample selection – what examples to choose and use in the current 

mini-batch? 

• Separate buffers per class / tasks / notable distributions? 

• Sample based on time – different timescales? 

• Sample replacement – which examples to throw away when the memory is full? 

There is not really a clear answer to all these questions. It depends on the scenario / 

problem you are solving, and a lot of experimenting is needed when choosing the 

correct implementation. 

Some approaches that are used are the following: 

Random Replay 

The main idea of the random replay approach is to sample randomly a subset of the 

previously observed data and includes them in the current training process along with 

the current batch of data with the goal of mitigating the forgetting of previously learned 

information.  
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One variation of the random replay strategy is to fill a fixed-size memory with examples 

from previous experiences. When we train a new experience, a random subset of the 

fixed memory is sampled along with the current data. This allows the model to continue 

learning from previously seen data while adjusting to the new data as well. 

We can also take a different approach and replace examples of the random replay 

randomly to maintain an approximate equal number of examples for experience, 

preventing the model to become biased towards a particular experience.  

Latent Replay 

Replay in the input space is inefficient. What we do is storing a subset of previously 

learned data in a buffer and replaying it during the training of new data. We do not 

replay the raw data but the features that were extracted from it. This means that the 

latent replay buffer is towards the end of our network near our output layer. As a result, 

it allows the model to retrain the key features of the previous data and prevent 

catastrophic forgetting while also avoiding the issue of storing and handling big 

amounts of raw data. 

Figure 2.18 – A latent replay buffer replaying the latent activations of the model. 

(Source: https://arxiv.org/abs/1912.01100.pdf)  

Generative replay 

In generative replay, instead of a replay memory we generate examples that are then 

used to augment the current training data, helping the model retain the knowledge from 

the past tasks. Although in theory it seems like a promising approach, in reality is it still 

https://arxiv.org/abs/1912.01100.pdf
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challenging to scale this approach on high-dimensional data on complex problems and 

find good accuracy-efficiency trade-offs. 

Dynamic Data Removal (DDR) 

It is worth mentioning the Dynamic Data Removal strategy, which is a data efficiency 

strategy that can be used to increase the efficiency of the replay buffer. It is a simple yet 

effective strategy to reduce training data for further acceleration. It was proposed as one 

of the methodologies of the SparCL framework proposed on [22] at NeurIPS 2022. 

DDR measures the importance of each training example by the occurrence of 

misclassification during continual learning, and gradually removes training data at the 

end of each stage based on a specific policy. 

The policy involves calculating the total number of misclassifications for each training 

example on each stage and removing a proportion of training samples with the least 

number of misclassifications. As a result, by removing “easier” samples, the probability 

of saving “harder” samples to the buffer is increased and the construction of a more 

informative buffer is archived without heavy computation.  

Furthermore, DDR attempts to solve the data imbalance issue of the buffer since it is of 

much smaller size than the training set. The data removal proportion for each task is set 

as ρ ∈ [0, 1], and a cut-off stage is defined to control the trade-off between efficiency 

and accuracy. 

Setting the cut-off stage earlier leads to faster training for the following stages, but we 

need to be cautious not to lead to underfitting of the removed data. 

 

2.4.4 – Hybrid Strategies 

In the pursuit of improving continual learning algorithms, researchers have explored a 

variety of strategies including architectural, regularization, and rehearsal methods. Each 

strategy has its own strengths and weaknesses, making them better suited for specific 

scenarios. Interestingly, biological learning systems seem to utilize multiple approaches 

for continual learning, suggesting that hybrid approaches may be effective in machine 

learning as well. Despite their potential, hybrid strategies are still relatively 
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underexplored in the field and could lead to more optimal effectiveness and efficiency 

trade-offs. 

Some of the most popular hybrid approaches in continual learning are described below: 

Gradient Episodic Memory (GEM) 

Gradient Episodic Memory (GEM) is a hybrid strategy for continual learning that 

combines the use of a memory buffer with gradient-based regularization. GEM aims to 

prevent catastrophic forgetting by storing past task information in a memory buffer and 

using it to constrain the optimization process during the learning of new tasks.  

During the training of a new task, GEM modifies the gradient descent step to ensure 

that the current task's loss does not increase with respect to the stored tasks. The stored 

task information is updated by storing the current task's gradients and using them to 

update the memory buffer with a projection operation that ensures that the stored task 

information is not overwritten.  

The hybrid approach of GEM allows for effective use of the memory buffer while 

minimizing the risk of negative interference between the current and stored tasks [12]. 

Figure 2.19 – GEM Algorithm 

(Source: https://course.continualai.org/) 

Incremental Classifier and Representation Learning (iCaRL) 

iCaRL is a hybrid strategy for continual learning that combines incremental learning 

with representation learning. The model uses a memory buffer to store a subset of 

previously seen examples, and during training, it simultaneously updates the 

classification model and the representation model. 

https://course.continualai.org/
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The classification model is trained using a distillation loss that compares the output 

probabilities of the current model with the probabilities of the exemplars in the memory 

buffer. The representation model is trained using a mean-squared loss that encourages 

the feature vectors of the current model to be similar to the feature vectors of the 

exemplars in the memory buffer. 

Figure 2.20 – iCaRL Algorithm. 

(Source: https://course.continualai.org/)  

AR1: A Flexible Hybrid Strategy for Continual Learning 

AR1 is a hybrid strategy in continual learning that combines architectural, 

regularization and replay components. Copy-weights with Re-init (CWR) but improved 

with mean-shift and zero initialization (called CWR*), as the architectural component, 

online synaptic intelligence as the regularization component, and a latent replay as the 

replay component. Details on the strategy can be found on [13]. 

 

2.5 – Future Directions 

In this section, we will look at some exciting directions for future research in continual 

learning. Three areas that have recently received considerable attention are Continual 

Meta-Learning, Continual Reinforcement Learning, and Continual Unsupervised 

Learning. 

 

2.5.1 – Continual Meta-Learning (CML) 

Continual Meta-Learning (CML) aims to enable fast adaptation to new tasks by learning 

reusable and task-agnostic representations from previous tasks. Recent research has 

shown the potential of CML in reducing forgetting and improving generalization in 

https://course.continualai.org/
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continual learning. However, there is still much to be done to fully utilize the benefits of 

CML [5]. 

 

2.5.2 – Continual Reinforcement Learning (CRL) 

Continual Reinforcement Learning (CRL) is an important direction for research due to 

its potential to enable agents to learn from and adapt to a changing environment without 

forgetting previously learned skills. This area is particularly challenging as it involves 

balancing the exploration of new skills with the preservation of previously learned ones 

[7]. 

 

2.5.3 – Continual Unsupervised Learning (CUL) 

Continual Unsupervised Learning (CUL) is an area of continual learning that aims to 

learn from a continuous stream of unsupervised data. The potential of CUL lies in its 

ability to learn from real-world data that is often plentiful but unlabelled. However, it 

poses many challenges, such as maintaining the quality of the learned representations 

and avoiding catastrophic forgetting [23]. 

Overall, these areas offer exciting opportunities for future research in continual 

learning, with the potential to greatly improve the effectiveness and efficiency of 

machine learning models in real-world applications.  
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3.1 – Overview of existing continual learning demo app 

3.1.1 – TensorFlow and TensorFlow-Lite 

3.1.1.1 – TensorFlow 

TensorFlow is an open-source machine learning library developed by Google that has 

gained popularity among researchers and developers in artificial intelligence. It provides 

a comprehensive and flexible platform for creating, training, and deploying machine 

learning models across a wide range of applications. TensorFlow lets users create 

complex neural networks easily, using a high-level API and many pre-built functions. It 

also offers support for various hardware accelerators, such as GPUs and TPUs, which 

allows for efficient and parallelized computation. The library's ecosystem includes 

numerous tools, such as TensorBoard for visualization, TensorFlow Hub that contains 

pre-trained models and TensorFlow-Lite making it a powerful tool for machine learning 

practitioners. 

 

3.1.1.2 – TensorFlow-Lite 

TensorFlow Lite is a lightweight version of the TensorFlow library designed 

specifically for deploying machine learning models on devices with limited resources, 

such as mobile phones and embedded systems. It focuses on optimizing model size, 

latency, and power consumption, making it ideal for on-device inference. TensorFlow-

Lite allows developers to convert TensorFlow models into a smaller, more efficient 

format that can run easily on mobile devices and other edge hardware. The framework 

supports a wide range of pre-trained models and enables the implementation of custom 

models, offering flexibility and adaptability for various use cases. By bringing machine 

learning capabilities to resource-constrained devices, TensorFlow-Lite empowers 

developers to create intelligent applications that can run efficiently on the edge, without 

relying on constant connectivity or powerful servers. 

 

3.1.2 – Personalized Machine Learning 

Personalized machine learning aims to tailor models to individual users' needs, offering 

a more customized and relevant user experience. Traditional machine learning models 

rely on massive datasets to be as generic and unbiased as possible. However, this 
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approach may not always cater to specific user requirements. Moreover, sending user 

data to the cloud for model training raises concerns regarding privacy, data 

consumption, and power usage. On-device training offers a solution to these issues, 

enabling personalized machine learning while preserving user privacy, saving 

bandwidth, and working without an internet connection. 

 

3.1.3 – Transfer Learning 

Transfer learning is a machine learning technique that leverages pre-trained models, 

typically developed for data-rich tasks, to solve related but data-poor tasks. By 

retraining a portion of the pre-trained model's layers (usually the last ones), transfer 

learning allows models to be quickly adapted to new tasks without requiring extensive 

training data or computational resources. This approach is highly beneficial for on-

device applications, as it enables personalized models to be trained efficiently and 

effectively, even with limited resources. 

Figure 3.1 – Traditional ML vs Transfer Learning 

(Source: https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html)  

https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html
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3.1.4 – TensorFlow-Lite Object Classifier App 

The TensorFlow-Lite demo app as an example project demonstrates on-device transfer 

learning by classifying images taken from our camera in real-time. The app performs 

training by capturing sample photos of different classes. By leveraging the power of 

transfer learning on the MobileNetV2 model pre-trained on ImageNet, the app replaces 

the last few layers with a trainable softmax classifier. Users can train the model to 

recognize up to four new classes, with accuracy depending on the complexity of the 

classes. Even a small number of samples can be sufficient to achieve satisfactory 

results. 

Figure 3.2 – Snapshot of the android application 

(Source: https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html)  

 

3.1.5 – Transfer Learning Pipeline 

The transfer learning pipeline includes three main components: the converter, Android 

library, and TensorFlow-Lite interpreter. The converter generates a transfer learning 

model by selecting a base model (a deep neural network pre-trained on a generic task) 

https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html
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and a head model (a simpler network that learns from the base model's features to solve 

the personalized task). The Android library provides an intermediate layer to handle the 

non-linear lifecycle of the transfer learning model, while the TensorFlow Lite 

interpreter enables on-device inference. The on-device training is performed on the head 

of the model, which consists of a dense layer with softmax activations. 

Figure 3.3 – TF-Lite Transfer Learning Pipeline 

(Source: https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html)  

 

3.1.6 – Extending the TensorFlow-Lite Demo App for Continual Learning 

3.1.6.1 - Limitations of Transfer Learning 

Deploying deep learning models on embedded devices presents numerous challenges, 

such as privacy concerns, data limitations, network connection issues, and the need for 

fast model adaptation. Google is currently working on addressing these challenges by 

embedding an experimental transfer learning API into their TensorFlow-Lite machine 

learning library. Although transfer learning serves as a good starting point for on-device 

model training, it has limitations in more realistic scenarios, particularly in terms of 

catastrophic forgetting. This issue can be seen by the extension that the previous paper 

https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html
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touched upon where it extended the demo app by adding continual learning capabilities 

and compared the transfer learning and continual learning accuracies of the model on 

the CoRE50 benchmark [2]. 

 

3.1.6.2 - Introducing Continual Learning to TensorFlow-Lite 

To overcome the limitations of transfer learning, [2] expanded the TensorFlow-Lite 

library to include continual learning capabilities by integrating a simple replay buffer 

approach into the head of the current transfer learning model. The continual learning 

model was tested on the CORe50 benchmark to show its effectiveness in tackling 

catastrophic forgetting and its ability to continually learn even under non-ideal 

conditions, as demonstrated using the developed Android application. The source code 

of the Android application was open sourced to enable developers to integrate continual 

learning into their own smartphone applications and facilitate further development of 

continual learning functionality within the TensorFlow-Lite environment. 

Figure 3.4 – During the New Classes Scenario experiments, the Android application reveals that 

Continual Learning successfully classifies objects, while Transfer Learning faces significant issues 

due to catastrophic forgetting caused by incremental training. 

(Source: https://arxiv.org/abs/2105.01946.pdf)  

 

https://arxiv.org/abs/2105.01946.pdf
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3.2 – Updated TensorFlow-Lite Model Personalization demo app 

3.2.1 – Improvement Over the Previous Approach 

The new demo app addresses several limitations of the previous on-device training 

approach. These improvements make the new app more efficient and user-friendly for 

developers and end-users: 

Customization  

The new approach allows for easier customization of the model structure and 

optimizers, giving developers more flexibility when building their on-device training 

applications. We use tf.functions to define the loading of the bottleneck features, the 

training of the head of the model and for invoking an inference on the given feature 

which we can alter as we please. The TensorFlow model is then converted to a 

TensorFlow-Lite model where we can load in our application and with the use of an 

interpreter, we can call the signatures of our defined functions. 

Simplified model management 

Unlike the earlier method, which required dealing with multiple physical TensorFlow 

Lite (.tflite) models, the updated approach uses a single TensorFlow Lite model for both 

training and inference. This simplification makes model management and deployment 

more streamlined. 

Improved weight storage and updating 

The new approach provides an easier way to store and update the training weights. By 

implementing tf.functions for saving and loading weights, the app can efficiently save 

the training weights after each epoch and restore them for the next training epoch. This 

can be used to maintain the trainable weights even when closing and reopening the 

application. 

These improvements offer a more streamlined and efficient on-device training process, 

making it easier for developers to create personalized applications and end-users to 

benefit from fine-tuned models that cater to their specific needs. 
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3.2.2 – Overview of the New Demo App 

The updated TensorFlow Lite Model Personalization demo app leverages the latest 

improvements in TensorFlow Lite to provide an efficient and user-friendly experience 

for on-device training. The app integrates on-device training into an Android app, 

allowing users to fine-tune an image classification model based on their specific needs. 

The demo app follows the same principle as the older demo app which allows us to 

perform real-time training and classification for up to 4 classes. 

Figure 3.5 – Snapshot of the new TensorFlow-Lite demo application 

(Source:https://github.com/tensorflow/examples/blob/master/lite/examples/model_personalization/

README.md)  

 

3.2.3 – Modifications and Implementation Details 

The application follows a series of steps to gather samples, train the model, and perform 

inference. Here is a well-structured explanation of how the application works: 

Gathering samples  

The CameraFragment class captures images using the device's camera. 

https://github.com/tensorflow/examples/blob/master/lite/examples/model_personalization/README.md
https://github.com/tensorflow/examples/blob/master/lite/examples/model_personalization/README.md
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When a user captures an image, it is preprocessed and converted into a TensorImage. 

The corresponding class of the image is also saved to be used later in the inference 

process. The image is then passed through the pre-trained feature extractor that uses 

MobileNetV2, which generates bottleneck features. These features, along with the 

corresponding class label, are stored as a TrainingSample in the 

ModelPersonalizationHelper class. All the TrainingSamples are stored in a mutable list 

to be used later for training the model. 

Training 

Before we start the training, we make sure to get our .tflite model and load it into the 

interpreter to be able to use the signatures of the functions that we defined. Once 

enough samples are collected and we press the train button, the TransferLearningHelper 

class starts training the model. It first determines the training batch size, which depends 

on the total number of training samples collected. The training samples are then divided 

into batches using an iterator. 

For each batch of training samples, the TransferLearningHelper class extracts 

bottleneck features and corresponding labels. These are fed as inputs to the model, and 

the model is trained using the specified training signature from the .tflite model file. The 

training process also calculates the loss for each training step, which is provided to the 

ClassifierListener for monitoring the training progress. 

After training, the training samples are cleared by calling resetTrainingSamples() to 

make room for new samples. This is where a replayBuffer is of great use because we 

can save a portion of the samples to retain the previously learned knowledge in the next 

training cycles. We will discuss the replayBuffer in the next subsection. 

Performing inference 

The application uses the trained model to perform inference on new images. When an 

image is captured, it is preprocessed and converted into a TensorImage. The image is 

then passed through the pre-trained feature extractor to generate bottleneck features. 

These bottleneck features are used as input to the trained model, which outputs the 

probability of each class. The ClassifierListener receives the results along with the 

inference time, allowing the application to display the predictions and their 

corresponding confidence scores. 
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3.2.4 – On-Device Training and Continual Learning Implementation 

In addition to the on-device training capabilities demonstrated in the updated demo app, 

we further extended the app to enable continual learning by implementing a replay 

buffer. The replay buffer is a crucial component for continual learning as it helps the 

model to learn from past experiences while adapting to new data. Here is an overview 

of the replay buffer implementation and some additional details: 

Integration of replay buffer 

The replay buffer was integrated into the existing on-device training workflow. It stores 

a fixed amount of recent training data, which is reused during the training process. 

Data management 

The replay buffer efficiently manages the stored data by replacing the oldest data with 

new incoming data when the buffer reaches its maximum capacity. The training samples 

are replaced randomly as it has shown to achieve higher accuracy than a FIFO (First In 

First Out) replacement method [2]. 

Continual learning process 

During the on-device training process, a certain percentage of the training data comes 

from the replay buffer, and the rest is new training samples gathered for the first time. 

This allows the model to maintain the knowledge it has already acquired while learning 

from new data, effectively enabling continual learning. 

Parameter tuning 

The ratio of replay buffer data to new data used during training, the replay buffer's 

maximum capacity, and other relevant parameters can be fine-tuned to optimize the 

model's performance and adaptability. Currently, the maximum size of the replay buffer 

is 100 training samples. In each training cycle we add 25% of the training samples into 

the replay buffer and replace existing samples randomly if the buffer is full. 

Conclusion 

By extending the demo app with a replay buffer implementation, we have successfully 

extended the new TensorFlow-Lite demo app that is used for on-device training to 

enable continual learning capabilities. 
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This allows the model to continually improve its performance over time as it encounters 

more examples from the user’s environment. Most importantly, it now enables the 

model to inference correctly all classes in a class incremental scenario. 

 

3.2.5 – Showcasing Different Scenarios 

 

Figure 3.6 – Snapshot of the continual learning application that performs on-device training 

 

In this section, we present three different scenarios to validate the effectiveness of the 

continual learning (CL) model in comparison with the traditional learning (TL) model, 

using the newly extended TensorFlow Lite demo app with a replay buffer. We 

examined three scenarios that demonstrate the capabilities of the CL model in handling 

various learning conditions. These scenarios include Cumulative Scenario - Batch 

Training, New Instances Scenario - Batch Training, and New Classes Scenario - 

Incremental Training. Our aim is to prove that the CL model can mitigate catastrophic 

forgetting under different circumstances where the default TensorFlow Lite demo app 

with the TL model fails to do so. 

For the following 3 scenarios, our Class 1 consists of Pen samples, Class 2 consists 

of Calculator samples, Class 3 consists of Stapler samples and lastly Class 4 

consists of Small Plant samples. 
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Figure 3.7 – The 4 samples used for the scenarios 

 

3.2.5.1 – Cumulative Scenario – Batch Training 

For the Cumulative Scenario, we collect 50 samples from each of the four available 

classes, ensuring that the position and rotation of the objects vary within a limited area 

of capture. We then trained both the TL and CL models using all 200 samples, with zero 

samples replayed for the CL model. After training, we evaluate the performance of both 

models to understand their ability to classify the objects and compare their overall 

accuracies. 

Figure 3.8 – Inference of TL model for the Cumulative Scenario. The inference is correct for all the 

4 different classes 
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Figure 3.9 – Inference of CL model for the Cumulative Scenario. The inference is correct for all the 

4 different classes 

In the Cumulative Scenario, we can observe that both the CL model with the replay 

buffer as well as the original TL model of the TensorFlow-Lite demo app perform 

correct inference on all 4 classes. 

 

3.2.5.2 – New Instances Scenario – Batch Training 

In the New Instances Scenario, we follow a similar procedure as the Cumulative 

Scenario by first training both models on 200 samples from the First Instance row. The 

replay buffer is filled with 40 random samples (20%) from the first training cycle. 

Subsequently, we show new instances of the same four classes, and add 20 new samples 

per class. We then train both models with these 80 samples as well as replay the 40 

samples from the buffer to the CL model. Finally, we compare the TL and CL models 

on how well they are able to remember the first instances of each class and analyse their 

performance under these conditions. 
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Figure 3.10 – The 4 new samples used for the New Instances Scenario 

 

Figure 3.11 – Inference of TL model for the New Instances Scenario. The inference is correct for all 

the 4 different classes 
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Figure 3.12 – Inference of CL model for the New Instances Scenario. The inference is correct for all 

the 4 different classes 

In the New Instances Scenario, we can again observe that both the CL model as well as 

the original TL model perform correct inference on all 4 classes. However, it is worth 

mentioning that there would be rare occurrences of forgetting. The 3rd class (Stapler) 

would rarely indicate a wrong inference classifying the Stapler in the 4th class as we can 

see in the figures below. In the end, the inference would stay correctly on the 3rd class. 

 

 

 

 

 

 

 

 

 

Figure 3.13 – Occasionally the 3rd class would be wrongly inferenced as the 4th class 
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3.2.5.3 – New Classes Scenario – Batch Training 

The New Classes Scenario is designed to simulate a more natural setting for the 

deployment of the models. In this scenario, we incrementally introduce new classes. We 

start by adding 50 samples for each class and train both the TL and CL model We then 

move on to the next class. As each new class is introduced, the old samples that are in 

the buffer are replayed to the CL model. 10 random samples (20%) from the new class 

are added to the replay buffer. This process is repeated until both models have been 

trained on all four classes. Finally, we evaluate the TL and CL models by their ability to 

classify objects successfully in incremental learning settings. 

Figure 3.14 – Inference of TL model for the New Instances Scenario. The inference is only correct 

on the last added class while we have wrong classifications for all the other classes. 
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Figure 3.15 – Inference of CL model for the New Instances Scenario. The inference is correct on all 

4 classes. 

In the New Classes Scenario, we notice a significant difference in performance between 

the original TL model of the TensorFlow Lite demo app and the CL model. The TL 

model exhibits a considerable degree of forgetting, struggling to accurately infer the 

first three classes it was trained in. On the other hand, the CL model with the use of the 

replay buffer, it can retain knowledge of all four classes, successfully mitigating 

catastrophic forgetting. This outcome highlights the superiority of the CL model in 

handling incremental learning situations, where new classes are introduced sequentially.  
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4.1 – Introduction to Experiments 

In this chapter, we outline our experimental setup. The goal of the experiments is to 

build a lightweight model which will be able to perform well in real life object detection 

scenarios. If successful, this shows that the model can be used in applications like our 

TensorFlow-Lite Continual Learning demo app. The previous study [2] conducted 

offline experiments by maintaining the same model architecture used in the older demo 

app and altered the replay buffer sizes to examine their influence on the model's 

accuracy when tested against a benchmark dataset that introduces both new instances 

and new classes throughout the evaluation. 

In the following sections, we offer a comprehensive description of the experimental 

setup, parameters, and the benchmark employed. We also discuss the objectives and 

outcomes of the previous offline experiments. Finally, we introduce our newly proposed 

experiments, which involve modifying the model architecture based on [15] as well as 

altering the way we add our samples to the replay buffer with the goal to enhance the 

accuracy of our benchmark results while keeping the size of the buffer relatively small. 

 

4.2 – Experiment Setup 

In this section, we provide a detailed description of the experiment setup. The setup is 

organized into three main components: the controller class, the experiment class, and 

the model class. The purpose of each component is to streamline the process of 

building, training, and evaluating the models using the CORe50 NICv2 - 391 

benchmark. The replay buffer sizes are varied during the experiments to investigate 

their impact on the model's accuracy. 

 

4.2.1 – Controller Class 

The controller class serves as the conductor of the experiments. It is responsible for 

defining the experiments to be run, setting up the parameters for each experiment, and 

managing the interactions between the experiment functions and the model class. This 

class provides a high-level interface to configure, execute, and plot the experiments, 

ensuring that the entire process is efficient and easy to manage. 
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4.2.2 – Experiment Class 

The experiment class contains a collection of functions that handle various aspects of 

the experimentation process, such as loading the CORe50 dataset, building the model, 

training the model, and calling the replay buffer function. These functions work 

together to carry out the following tasks: 

 

Load the CoRE50 dataset 

The process of loading the CORe50 dataset involves several steps, including 

instantiation of the dataset using the CORe50 class with the NICv2_391 scenario. The 

test set is acquired with the help of a method from the data loader helper class of the 

CORe50 dataset. The images are preprocessed with the help of a utility function which 

scales the pixel values to the range [0,1]. After these steps, the CORe50 dataset is 

suitable for training and evaluation. 

It is worth mentioning that the NICv2_391 scenario is a specific configuration of the 

CORe50 dataset designed for evaluating incremental learning algorithms in a New 

Instances and Classes (NIC) setting. The dataset is organized into 391 incremental 

batches, with each batch containing both new instances of previously seen classes and 

entirely new classes. The first batch contains around 3000 samples of different classes 

of objects while all the other batches contain around 300 samples each. New classes are 

introduced incrementally throughout the training process. Around the last 40 batches, no 

more new classes are introduced but rather older classes are shown to the model again.  

The test set evaluates the model on different instances of all 50 classes. The objective is 

to evaluate how well a model can learn to recognize and classify new instances and 

classes as they are introduced incrementally [11]. 

Build the model 

We initialize the model class, set up the base, head, and complete model using the 

provided parameters. Then, we compile the model for training, specifying the optimizer, 

loss function, and evaluation metrics. 
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Training 

The model is trained on the CORe50 dataset using the specified training parameters and 

updates the weights of the model's head accordingly. We use Stochastic Gradient 

Descent (SGD) as the optimizer and train the head for all the training incremental 

batches. 

Replay Buffer 

The samples stored in the replay buffer are fitted in the model's head along with the new 

samples. Two different methods are used to store the new samples into the replay buffer 

which will be discussed in the model class. If the replay buffer is full, we randomly 

replace old samples with new ones. This ensures that the replay memory is updated and 

used effectively during the training process, which includes shuffling the training data, 

storing representations, and evaluating the model on the test set. 

 

4.2.3 – Model Class 

The model class contains the functions necessary to build the base, head, and complete 

model, as well as the functions for managing the replay memory. The main functions in 

the model class include: 

BuildBaseHidden 

This function constructs the base model using the MobileNetV2 architecture with pre-

trained weights from the ImageNet dataset. The base model is designed to extract 

features from the input images. The base model is truncated at a specified layer given as 

a parameter, and the remaining layers are transferred to the head model. All of the base 

models' layers are frozen, so the weights remain fixed and are not updated. This 

configuration aligns with the context of our study. 

In a real-world scenario, our model would be deployed on a resource-constrained 

device, such as a smartphone. These devices often have limited computational 

capabilities and cannot afford to retrain the entire network every time new data comes 

in. This constraint is particularly relevant for continual learning scenarios, where we 

want the model to learn from new experiences without forgetting the old ones. 
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Freezing the MobileNetV2 layers simulates this situation because it mirrors the 

operation of a smartphone that leverages pre-trained models without updating all their 

parameters. This way, we can focus on training only the head of our model, making the 

model more lightweight and feasible for deployment on edge devices. 

By adopting this approach, we ensure that our experimental setup realistically simulates 

the conditions under which the model will operate in a real-world context, enabling us 

to derive results that are directly applicable to practical implementation. 

BuildHeadHidden 

The BuildHeadHidden function creates the head model by incorporating a number of 

hidden layers from the MobileNetV2 architecture which are given as a parameter. These 

layers are added to the head model sequentially and are un-frozen so they can be 

trained. The model is then compiled with a stochastic gradient descent optimizer and a 

sparse categorical cross entropy loss function. This approach enables the exploration of 

different head model complexities and their impact on the overall model performance. 

BuildCompleteModel 

The BuildCompleteModel function connects the base and head models to form the 

complete model for training and evaluation. It first defines an input layer with the 

appropriate shape for the images in the dataset. This input layer is then passed through 

the base model, which is responsible for feature extraction. The output of the base 

model is fed into the head model, which handles classification. Finally, the complete 

model is constructed by defining the inputs and outputs of the model and compiling it. 

This results in a unified model ready for training and evaluation on the CORe50 dataset. 

StoreRepresentations and StoreRepresentationsNativeRehearsal 

The StoreRepresentations function is responsible for managing the replay memory by 

storing feature representations obtained from the feature extractor. It ensures that the 

replay memory stays within its defined capacity by randomly removing the oldest 

samples, when necessary, with a 1.5% sample replacement rate. Once the feature 

representations and corresponding labels are added to the replay memory, the function 

provides an update on the current size of the replay memory for both feature 

representations and labels. 
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The StoreRepresentationsNativeRehearsal follows the same approach with removing 

samples. However, we use a different algorithm for adding samples to our replay buffer 

as proposed in [15]. For every training batch, we save x patterns to our replay buffer 

which are calculated as our replay buffer size divided with the number of the current 

training batch. If the replacement batch size is larger than the current training batch 

samples, we just save all of the current training batch samples. This has as a result the 

number of patterns added to progressively decrease. This ensures an overall balanced 

contribution from the different training batches, although no specific measures are 

implemented to achieve equal representation across classes. 

Replay 

The Replay function is designed to update the head model using the samples stored in 

the replay memory. By calling this function, the head model is trained with the feature 

representations and corresponding labels from the replay memory, effectively 

incorporating the knowledge from past training samples into the current model. This 

process is performed to enhance the model's ability to generalize across different data 

distributions. This function will end up being redundant since further in our experiments 

we will incorporate mixing our replay samples with the new samples, shuffling them, 

and fitting them to the head once rather in 2 different steps. 

 

4.3 – Previous Experiments 

The previous paper conducted experiments to evaluate the original model's performance 

under various conditions. These experiments can be broadly categorized into three main 

areas: comparison of transfer learning and continual learning, analysis of different 

replay buffer replacement strategies, and evaluation of different replay buffer sizes. 

Transfer Learning vs Continual Learning 

The first experiment compared TensorFlow’s transfer learning model with the continual 

learning model which has a replay buffer to demonstrate the benefits of continual 

learning in terms of model adaptability and accuracy. The study highlighted that 

continual learning models were more capable of adapting to new data distributions and 

maintaining their performance, whereas transfer learning models tended to struggle with 

these challenges. Both models were exactly the same with a MobileNetV2 for the body 
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and a dense layer with ReLU activations along with a softmax layer for the head. The 

only difference was the replay buffer that was used in the continual learning model. 

Figure 4.1 – A comparison of the accuracy of Continual Learning model with the replay buffer 

(7500 pattern storage) vs the Transfer Learning model on the CORe50 NICv2 – 391 benchmark 

(Source: https://arxiv.org/abs/2105.01946.pdf)  

Replay Buffer Replacement Strategies – FIFO vs Random 

The second experiment analyzed the impact of different replay buffer replacement 

strategies, namely First-In-First-Out (FIFO) and random replacement. The study aimed 

to determine which strategy was more effective in maintaining the model's accuracy 

while adapting to new data distributions. The results indicated that the random 

replacement strategy provided better performance than the FIFO method, as it allowed 

the model to retain a more diverse set of samples from the past resulting in a higher 

accuracy. 

https://arxiv.org/abs/2105.01946.pdf
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Figure 4.2 – A comparison of the accuracy the Continual Learning model using a FIFO 

replacement strategy on the replay buffer vs using a random replacement strategy on the CORe50 

NICv2 – 391 benchmark 

(Source: https://arxiv.org/abs/2105.01946.pdf)  

Impact of Different Replay Buffer Sizes 

The third experiment investigated the effects of varying the replay buffer size on the 

model's performance. The study considered several buffer sizes, ranging from 3,000 to 

30,000, to understand how the size of the buffer influenced the model's adaptability and 

accuracy. The results demonstrated that larger buffer sizes led to better performance, as 

they enabled the model to store more samples from previous tasks and enhance its 

generalization capabilities. However, it is crucial to balance the buffer size with 

computational resources and memory constraints. The best balance of accuracy loss and 

least storage usage had the replay buffer of 7500 feature patterns. It requires 75% less 

storage compared to the largest buffer size with a minimal accuracy loss of 3.5%. 

 

https://arxiv.org/abs/2105.01946.pdf
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Figure 4.3 – A comparison of the accuracy the Continual Learning model using different replay 

buffer sizes on the CORe50 NICv2 – 391 benchmark 

(Source: https://arxiv.org/abs/2105.01946.pdf)  

 

4.4 – Proposed Experiments 

For our experiments, we propose a couple of changes to the way the model head is 

trained, the way we add a portion of the new samples to our replay buffer and a change 

in the models’ architecture. Lastly, we run the model with all the new changes proposed 

with various replay buffer sizes. It is worth mentioning that we will focus on 

maintaining a relatively small replay buffer size since our goal is to prove the 

effectiveness of a model that can be later added to an embedded device such as a 

smartphone application. 

We propose the following three changes as we can see below. 

 

4.4.1 – Sequential vs. Simultaneous Training: New Samples and Replay Buffer 

Samples 

In this experiment, we aim to compare two different training approaches for the head of 

our model. The first approach, and existing one, involves training the head on the new 

samples of our training batch for 3 epochs followed by training on the replay buffer 

https://arxiv.org/abs/2105.01946.pdf
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samples for just one epoch. The second approach involves concatenating the new 

samples with the replay buffer samples and shuffling them before fitting them to the 

head for training of 4 epochs. 

 

4.4.2 – Storing New Samples Representations in the Replay Buffer 

In the experiment setup subsection, we have already discussed two different approaches 

for incorporating new samples into the replay buffer. The first approach, which is the 

existing method, involves adding a fixed percentage of samples (specifically 1.5% of 

the replay buffer size) from the current training batch to the replay buffer. Once the 

buffer reaches its capacity, random replacement is performed to accommodate the new 

samples. 

The second and new approach, proposed in [15], utilizes a different algorithm for 

adding samples to the replay buffer. For each training batch, a certain number of 

patterns are saved to the replay buffer. This value is calculated by dividing the replay 

buffer size by the number of the current training batch. If the replacement batch size 

exceeds the number of current training batch samples, all of them are added to the 

replay buffer. As a result, the number of patterns added progressively decreases over 

time. 

The objective of this new approach is to ensure a balanced contribution from different 

training batches with the goal of increasing accuracy. Measures to achieve equal 

representation across classes are not implemented. 

 

4.4.3 – Latent Replay 

We propose moving the last few hidden layers from the body (MobileNetV2) to the 

head of the model and making them trainable. This approach was inspired by the 

AR1*LR paper [15], which demonstrated improved accuracy when applied to 

MobileNetV1. The experiments will be conducted by testing different numbers of 

moved hidden layers to investigate the potential benefits of this modification. As a 

result of moving the hidden layers, the replay buffer replayed the samples a few layers 

earlier, potentially enabling better knowledge retention. 
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To comprehensively evaluate the impact of this modification, we will implement this 

change on top of the best performing changes of the other two experiments. 

Furthermore, we will test different learning rates to see which one performs best. This 

will provide a deeper understanding of how the combination of moved hidden layers 

and varying learning rates influences the model's performance, adaptability, and 

knowledge retention. By analyzing the results, we aim to identify a relatively optimal 

configuration for the hidden layer movement, which can maximize the model's 

effectiveness while considering computational and memory constraints by maintaining a 

small replay buffer size. 

Figure 4.4 – AR1 with latent replay on different hidden layers of the MobileNetV1 showing an 

increase in accuracy when moving hidden layers of the MobileNetv1 to the head of the model thus 

making them trainable. This means that the replay occurs a few layers earlier, at the end of the 

body of the model. 

(Source: https://arxiv.org/abs/1912.01100.pdf)  

4.4.4 – Different Replay Buffer Sizes 

In this last experiment, we explored the impact of varying replay buffer sizes on the 

performance of our continual learning model after all the proposed changes which had a 

positive impact in our model’s prediction capabilities. The goal here is to provide a 

showcase of our models’ accuracy across different replay buffer sizes in comparison to 

the old models’ experiment results.    

https://arxiv.org/abs/1912.01100.pdf
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Chapter 5 

5 – Experimental Results and Discussion 

 

5.1 – Sequential vs. Simultaneous Training: New Samples and Replay Buffer 

Samples 

5.2 – Storing New Samples Representations in the Replay Buffer  

5.3 – Latent Replay 

5.4 – Different Replay Buffer Sizes 
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5.1 – Sequential vs. Simultaneous Training: New Samples and Replay Buffer 

Samples 

The previous approach to model training involves a two-step sequential process. This 

process commences with training the model's head on fresh samples of the current 

training batch for three epochs. Subsequently, the model's head is trained on the replay 

buffer samples, over a period of one epoch. Hence, the model's head is fitted twice, with 

each instance employing different sample sets. 

However, we have now adopted a revised methodology where we perform simultaneous 

training. In this approach, the samples from the new training batch and those contained 

in the replay buffer are merged and shuffled together. This union creates a 

comprehensive and diverse dataset that includes both the most recent data as well as the 

historical data from the replay buffer. Following this, we conduct training on this 

unified dataset over four epochs, in a single, uninterrupted training process. 

Figure 5.1 – Comparison of training the head simultaneously on a mixture of both replay 

representations and new samples VS training it sequentially first on the new samples and then on 

the replay representations. 

The graph provided above represents the comparison between the previous sequential 

training method and our newly implemented simultaneous training approach.  

The peak accuracies observed in the graph demonstrate a noticeable difference between 

the two methodologies. The conventional sequential training process yields a peak 

accuracy of 45.5%, which, although respectable, is outperformed by the simultaneous 
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training method. The revised simultaneous training approach exhibits a peak accuracy 

of 47.8%, indicating an improvement in model performance. 

We can also observe that from around the 100th batch onwards, the simultaneous 

training method consistently maintains a higher level of accuracy compared to the 

sequential approach, and this trend continues throughout all subsequent training batches 

until the end of the training process. 

This indicates that the simultaneous training method not only increases the peak 

accuracy but also improves the model's performance stability over time. 

 

5.2 – Storing New Samples Representations in the Replay Buffer 

In Section 5.2, we explore the algorithm implemented for adding new samples to our 

replay buffer. This process is important as it helps ensure a balanced and diverse mix of 

training samples for our model. 

Current algorithm for replay buffer samples 

In the current model, the replace algorithm simply replaces a fixed percentage of 

samples in the replay buffer randomly once the buffer is full. Specifically on the 

experiments we ran, it would replace 1.5% of the replay buffer size with new samples 

from the current training batch. 

However, this deteriorated the model's performance towards the last 200 training 

batches. This could be due to starting to lose knowledge in previous classes.  

New algorithm for replay buffer samples 

As a result, inspired by the algorithm used in [15], we introduced the following 

algorithm which adds the replay samples in a different manner to mitigate the loss. 

Firstly, the algorithm determines the replacement batch size, which will progressively 

decrease based on dividing the replay buffer size with the current batch number to 

ensure a balanced contribution from different training batches. This is a crucial part of 

the algorithm as it helps maintain the variety of the samples in the replay buffer. 
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If the replacement batch size is larger than the number of samples in a batch, the 

algorithm adjusts the replacement batch size to match the batch size. This situation may 

occur during the initial training batches or depending on the size of the replay buffer. 

Next, if the replay buffer is at risk of exceeding its capacity due to the addition of the 

new batch (i.e., the combined size of existing replay buffer and the new batch is greater 

than the replay buffer limit), the algorithm takes corrective action. It first selects a 

random number of samples equal to the replacement batch size from the new batch. The 

selected samples then go through the feature extraction process. Simultaneously, the 

algorithm randomly identifies old samples for deletion from the replay buffer to make 

room for the new ones. 

If there is no risk of overflow, the algorithm simply selects samples from the new batch, 

equal to the replacement batch size, and processes them through the feature extraction 

step. 

Finally, regardless of the scenario, the processed samples are added to the replay buffer, 

replacing the old samples if necessary. 

This algorithm was designed keeping in mind the need for continual learning and 

ensuring a diverse and balanced replay buffer for model training. Following this, we 

present a graph highlighting the results achieved using this algorithm. 

Figure 5.2 – Comparison of the two different algorithms for adding new samples to the replay 

buffer. The mixedSamples approach was used as well. 
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"RBS_3000_HL0_newReplacement+mixedSamples" shows a steady increase in 

accuracy over time. Moreover, towards the last half of our training batches we can see 

that the model is able to retain both the knowledge of the old classes as well as the new 

ones since we have a constant accuracy increase which reaches a peak of 57.4%. This 

suggests that your new algorithm for adding samples to the replay buffer is effective in 

maintaining a diverse and balanced mix of training samples, thereby enhancing the 

model's performance as training progresses. 

"RBS_3000_HL0_oldReplacement+mixedSamples" also shows a similar pattern of 

increasing accuracy over time, though there is a slightly higher accuracy around the 

middle of our training batches. However, the model seems unable to retain knowledge 

for all the classes and as a result shows a loss in performance towards the end of our 

training thus being able to reach a peak of only 47.8%. 

However, a limitation of the new replacement method is that it might struggle to 

adequately represent new classes introduced very late in the training process if we have 

a much higher number of training batches. Since the sample replacement batch size 

decreases as the batch number increases, fewer samples from these new classes will be 

able to enter the replay buffer. This lack of diversity in the replay buffer could 

potentially lead to underperformance on these new classes, as the model might not have 

enough exposure to their examples. 

One way to address this issue could be to periodically reset the sample replacement 

batch size. This could ensure more samples from later-introduced classes make it into 

the replay buffer. 

Alternatively, another strategy could be to incorporate a prioritization mechanism in the 

replacement method. This would favor the selection of samples from less-represented 

classes, thus ensuring diversity in the replay buffer throughout the training process. 
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5.3 – Latent Replay 

With the latent replay methodology, we attempt to boost the performance of our model. 

This technique involves the movement of layers from the body (in this case, 

MobileNetV2) to the head of the model, and making them trainable.  

Traditionally, in transfer learning applications, the body of the model (pre-trained on a 

large and diverse dataset like ImageNet) is frozen during the training process to 

preserve the learned features. The head of the model, which in our case is a dense fully 

connected layer followed with a softmax layer is then trained to adapt to the specific 

task at hand. 

However, in the latent replay methodology, selected latent layers from the body are 

made trainable and are moved to the head of the model. This approach would hopefully 

allow the model to learn more refined features from the data. 

It is important to note that this shift in structure required us to adjust the learning rate. 

With the introduction of more trainable layers, it was necessary to increase the learning 

rate. The rationale for this is that since the body of our model is frozen, the head should 

be able to learn at a full pace.  

We can see below on our first graph, that even with only the dense layer in our head and 

without any hidden layers moved, we noticed a significant increase in the accuracy of 

our model when compared to the learning rate that was used in [2]. With the new 

learning rate, a peak accuracy of 63.3% was reached while with the old learning rate 

and the model adjusted with our previous 2 changes, the model reached an accuracy of 

only 57.4%. 
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Figure 5.3 – Comparing a low learning rate vs a higher learning rate for the head of our model. For 

both experiments, no latent replay was used, the head only consisted of the dense layer and the 

softmax layer. 

The learning rate value of 0.001 seems to perform well when compared with lower 

learning rate values. More experimentation could be conducted with higher learning rate 

values, however higher values appeared to result in the model oscillating in certain 

training batches as we can see from our experiment with a learning rate of 0.01. It is 

worth noting that the oscillation occurred mostly when we moved a certain number of 

hidden layers with the latent replay approach rather than when using only the dense 

layer in our head of the model. Different optimizers could also be used. For the 

experiments we used the SGD optimizer. 

Figure 5.4 – A higher learning rate (0.01) along with latent replay of 5 hidden layers results in a 

huge oscillation of our model on certain training batches. 
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Figure 5.5 – Using the latent replay method we can see the graph for moving 0, 3 and 5 hidden 

layers to the head of our model 

 

From the graph, the latent replay method significantly impacts the model's accuracy, 

and this impact is directly correlated with the number of hidden layers moved. We 

observe an upward trend in accuracy as more hidden layers are involved in the process. 

Starting from zero hidden layers moved, the accuracy is at 63.3%. As we move to three 

hidden layers, we see a marked increase in accuracy, demonstrating the effectiveness of 

incorporating more complexity in the head of our model through these hidden layers. 

When we move up to five hidden layers, the trend continues, with the model reaching 

its peak accuracy of 67.3%. This suggests that the added depth on the head provided by 

more hidden layers can significantly enhance the power of the model. 
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Figure 5.6 – Experimenting with more hidden layers moved we keep seeing increases in the 

accuracy 

Continuing with moving 7 and 9 hidden layers from the body of our model to the head 

we can see a continued, albeit slight, improvement in accuracy with each increase. The 

peak accuracy reaches 69.5% when 9 layers are moved, showing that more complex 

models do, to an extent, continue to benefit from the added depth. 

However, these benefits need to be balanced against potential drawbacks. As more 

layers are moved, the complexity of the model's head increases. This complexity can 

pose a challenge, particularly when it comes to on-device training. Devices often have 

computational and power constraints, making it important to optimize models for 

efficiency and accuracy. 

 

5.4 – Different Replay Buffer Sizes 

As we continue our exploration in section 5.4, we investigate the impact of different 

replay buffer sizes. Building on the previous modifications that have been proven to 

increase our model's accuracy, we aim to see if increasing the size of our replay buffer 

could potentially offer additional improvements. Specifically, we test a replay buffer 

size of 7500 compared to the replay buffer size we have used so far of 3000 samples 

with performing latent replay on the 5th and 9th hidden layer. 
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Figure 5.7 – RBS_3000 VS RBS_7500 with moving 5 hidden layers to the head 

 

Figure 5.8 – RBS_3000 VS RBS_7500 with moving 9 hidden layers to the head 

 

Upon examining the two graphs, the performance improvement when the buffer size is 

increased from 3000 to 7500 is minor with almost exact peak accuracy. This is 

consistent across both scenarios, namely when we move 5 and 9 hidden layers to the 

head of our model accordingly. 
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The higher replay buffer size manages to reach a peak accuracy of 69.5% on the first 

graph and 69.7% on the second graph. 

An important observation is the enhanced stability across all training batches when 

employing the larger buffer size. Unlike with the smaller buffer size, where loss values 

demonstrated some fluctuations, the larger buffer size provided a more consistent 

performance. This resulted in a steadier and less variable loss trajectory, further 

improving the robustness of our training process.  

However, it is crucial to put these findings in perspective. While a steadier model is 

indeed observed, we must remember that the buffer size has been more than doubled in 

these tests. We should question whether this justifies our increase in resource 

consumption with a larger buffer size, particularly in the context of our primary aim: 

enabling efficient on-device training. 

Our emphasis should remain on achieving a balance between performance and 

efficiency, and as such, we should continue to prioritize smaller buffer sizes. 
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Chapter 6 

6 – Conclusion 

 

6.1 – Conclusion 

6.2 – Future work 
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6.1 – Conclusion 

This thesis was guided by the goal of integrating a continual learning model into 

embedded devices, particularly within the realm of smartphone applications. This type 

of learning model holds immense potential, not only for its adaptability in learning new 

concepts but also for its capacity to function within the constraints of these devices. Key 

to this functionality is the model's lightweight structure, efficiency, and optimized use 

of computational resources. 

The objectives of this thesis were anchored in two fundamental aspects. Firstly, we 

aimed to transition the continual learning capabilities from the previous TensorFlow-

Lite application to the updated version. We achieved this by incorporating a replay 

buffer, which proved instrumental in managing the storage and retrieval of learning 

patterns. Secondly, we aimed to further experiment offline with the model to enhance its 

performance while maintaining a lightweight structure suitable for resource-constrained 

devices. 

In terms of practical implementation, we successfully integrated the original model and 

our replay buffer into the new TensorFlow-Lite application. This integration yielded 

several advantages, including increased customization potential, streamlined model 

management, and more efficient storage and updating of training weights. Notably, this 

approach facilitated a more flexible model structure and optimizer selection, providing a 

single model solution for both training and inference. 

Our experimental phase allowed us to make significant changes in improving the 

accuracy of our model. We accomplished this by incorporating a mix of replay buffer 

samples with new samples in the training process, applying a new replay buffer 

replacement algorithm, and utilizing the latent replay method. As a result of these 

strategic adjustments, we were able to achieve a peak accuracy of 69.7%.  

This improved performance represents a significant advancement from the previous 

work used in [2] which used the same model architecture with a frozen MobileNetV2 as 

the body and a trainable head. The previous work managed to achieve a peak accuracy 

of 56.6% with a replay buffer size (RBS) of 3000 and around 62% with an RBS 30000, 

a size 10 times bigger than the one we used for our own model. As regards to [15], our 

peak accuracy of 69.7% falls slightly lower than the latent replay strategy on AR1* with 
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the latent replay occurring on the conv5_4/dw hidden layer (the 9th hidden layer of 

MobileNetV1 starting from the end) which achieves an accuracy of 72.24%. However, 

the AR1* model is a hybrid model which incorporates additional continual learning 

strategies such as regularization besides rehearsal methods (random and latent replay). 

This makes the AR1* model much more complex than our model which only utilizes 

rehearsal continual learning strategies. Despite a slightly lower accuracy, we manage to 

maintain a simple and lightweight model architecture suitable for edge deployment. 

In conclusion, the work presented in this thesis offers valuable insights for the 

deployment of continual learning models in resource-limited environments, specifically 

on embedded devices such as smartphones. Our research underscores the potential for 

continual learning models to address real-world applications effectively and efficiently. 

As we look ahead, the prospect of incorporating our improved model into future 

TensorFlow applications holds exciting potential for the advancement of on-device 

learning capabilities. This thesis thus represents a step forward in the continual learning 

field and a foundation for future research and development in this area. 

 

6.2 – Future work 

Despite the significant strides made in this thesis, there remains considerable potential 

for future work, particularly within both the application and offline experimental facets 

of our study. 

Application Related: 

A promising area of future work lies in expanding the number of classes within the 

application. Given the reasonable accuracy achieved on the CORe50 dataset under the 

NICv2 - 391 scenario, which covers 50 distinct classes, it suggests the potential for 

increasing our application classes well beyond the current count of four. 

Additionally, the improved performance of our new model presents an opportunity to 

implement it within the application. Future studies could consider on-device 

experimentation to assess metrics beyond accuracy, potentially offering a richer 

understanding of model performance. Given the simplified processes facilitated by the 

new application, one could proceed with benchmarking on Android Studio. 
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The application's enhanced capabilities in saving and loading model weights open the 

door for future updates which could consider mechanisms to preserve the model state 

when closing and reopening the application, ensuring continuity in the learning process. 

Offline Experiments Related: 

One potential approach for future work involves further fine-tuning of model 

hyperparameters, such as the learning rate. Exploration of different optimizers, 

particularly those with adaptable learning rates, may help to further boost accuracy. 

Another aspect worth investigating is the replay buffer replacement method. Developing 

an approach to replace samples in a manner that achieves class-balancing could 

potentially enhance the model's ability to handle diverse data, albeit with an expected 

increase in complexity. Furthermore, more experimentation should be conducted on the 

new replay buffer method where the further we are on our training batches the less new 

samples we replace, specifically in scenarios where new classes are introduced after a 

lot of training batches. A strategy can be created where a soft reset occurs after a while 

to increase the number of new samples that we replace. 

Furthermore, research could focus on optimizing the size of the replay buffer. Studies 

could explore the trade-off between accuracy and buffer size to find an optimal balance, 

potentially following the methodology used in the latent replay paper. This could also 

aid in integrating the exact model used in offline experiments into the application. 

Lastly, several alternative strategies could be investigated to further enhance the model's 

performance and adaptability. For instance, we could explore the utilization of coresets, 

which can provide a summary of the dataset while preserving the essential 

characteristics needed for learning. This approach could lead to an even more efficient 

use of storage and computational resources enabling us to reduce the needed rehearsal 

space. 

Additionally, dataset distillation, a technique that creates a smaller but equally 

representative dataset, could be used to reduce the amount of data required for training, 

further optimizing the model for resource-limited devices. Such techniques could make 

our model even more efficient and applicable to a wider range of devices and use cases. 
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Another possibly promising direction is the application of continual learning to 

regression problems. This would be a significant step in broadening the applicability of 

continual learning models, as they are currently largely limited to classification tasks. 

Investigating this possibility could open up new realms of practical applications for 

these models. 

The exploration of these avenues could lead to significant advances in the deployment 

of continual learning models on edge devices, further pushing the boundaries of what is 

achievable in this domain. 
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Appendix 

 

1 - Application 

1.1 – Android Studio Code 

1.1.1 - CameraFragment 

/* 

 * Copyright 2022 The TensorFlow Authors. All Rights Reserved. 

 * 

 * Licensed under the Apache License, Version 2.0 (the "License"); 

 * you may not use this file except in compliance with the License. 

 * You may obtain a copy of the License at 

 * 

 *             http://www.apache.org/licenses/LICENSE-2.0 

 * 

 * Unless required by applicable law or agreed to in writing, software 

 * distributed under the License is distributed on an "AS IS" BASIS, 

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

 * See the License for the specific language governing permissions and 

 * limitations under the License. 

 */ 

 

package org.tensorflow.lite.examples.modelpersonalization.fragments 

 

import android.annotation.SuppressLint 

import android.content.res.Configuration 

import android.graphics.Bitmap 

import android.graphics.Canvas 

import android.graphics.Color 

import android.os.Bundle 

import android.os.Handler 

import android.os.Looper 

import android.os.SystemClock 

import android.util.Log 

import android.view.LayoutInflater 

import android.view.MotionEvent 

import android.view.View 

import android.view.ViewGroup 

import android.widget.TextView 

import android.widget.Toast 

import androidx.appcompat.content.res.AppCompatResources 

import androidx.camera.core.* 

import androidx.camera.lifecycle.ProcessCameraProvider 

import androidx.core.content.ContextCompat 

import androidx.fragment.app.Fragment 

import androidx.fragment.app.activityViewModels 

import androidx.navigation.Navigation 

import org.tensorflow.lite.examples.modelpersonalization.MainViewModel 

import org.tensorflow.lite.examples.modelpersonalization.R 

import 

org.tensorflow.lite.examples.modelpersonalization.TransferLearningHelp

er 

import 

org.tensorflow.lite.examples.modelpersonalization.TransferLearningHelp

er.Companion.CLASS_FOUR 
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import 

org.tensorflow.lite.examples.modelpersonalization.TransferLearningHelp

er.Companion.CLASS_ONE 

import 

org.tensorflow.lite.examples.modelpersonalization.TransferLearningHelp

er.Companion.CLASS_THREE 

import 

org.tensorflow.lite.examples.modelpersonalization.TransferLearningHelp

er.Companion.CLASS_TWO 

import 

org.tensorflow.lite.examples.modelpersonalization.databinding.Fragment

CameraBinding 

import org.tensorflow.lite.support.label.Category 

import java.util.* 

import java.util.concurrent.ConcurrentLinkedQueue 

import java.util.concurrent.ExecutorService 

import java.util.concurrent.Executors 

 

class CameraFragment : Fragment(), 

    TransferLearningHelper.ClassifierListener { 

 

    companion object { 

        private const val TAG = "Model Personalization" 

        private const val LONG_PRESS_DURATION = 500 

        private const val SAMPLE_COLLECTION_DELAY = 300 

    } 

 

    private var _fragmentCameraBinding: FragmentCameraBinding? = null 

    private val fragmentCameraBinding 

        get() = _fragmentCameraBinding!! 

 

    private lateinit var transferLearningHelper: 

TransferLearningHelper 

    private lateinit var bitmapBuffer: Bitmap 

 

    private val viewModel: MainViewModel by activityViewModels() 

    private var preview: Preview? = null 

    private var imageAnalyzer: ImageAnalysis? = null 

    private var camera: Camera? = null 

    private var cameraProvider: ProcessCameraProvider? = null 

    private var previousClass: String? = null 

 

    /** Blocking camera operations are performed using this executor 

*/ 

    private lateinit var cameraExecutor: ExecutorService 

 

    // Used for the first time to train with white images to solve the 

class incremental issue 

    private var _isFirstTime: Boolean = true 

 

    // When the user presses the "add sample" button for some class, 

    // that class will be added to this queue. It is later extracted 

by 

    // InferenceThread and processed. 

    private val addSampleRequests = ConcurrentLinkedQueue<String>() 

 

    private var sampleCollectionButtonPressedTime: Long = 0 

    private var isCollectingSamples = false 

    private val sampleCollectionHandler = 

Handler(Looper.getMainLooper()) 
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    private val onAddSampleTouchListener = 

        View.OnTouchListener { view, motionEvent -> 

            when (motionEvent.action) { 

                MotionEvent.ACTION_DOWN -> { 

                    isCollectingSamples = true 

                    sampleCollectionButtonPressedTime = 

                        SystemClock.uptimeMillis() 

                    sampleCollectionHandler.post(object : Runnable { 

                        override fun run() { 

                            val timePressed = 

                                SystemClock.uptimeMillis() - 

sampleCollectionButtonPressedTime 

                            

view.findViewById<View>(view.id).performClick() 

                            if (timePressed < LONG_PRESS_DURATION) { 

                                sampleCollectionHandler.postDelayed( 

                                    this, 

                                    LONG_PRESS_DURATION.toLong() 

                                ) 

                            } else if (isCollectingSamples) { 

                                val className: String = 

                                    

getClassNameFromResourceId(view.id) 

                                addSampleRequests.add(className) 

                                sampleCollectionHandler.postDelayed( 

                                    this, 

                                    SAMPLE_COLLECTION_DELAY.toLong() 

                                ) 

                            } 

                        } 

                    }) 

                } 

                MotionEvent.ACTION_UP -> { 

                    

sampleCollectionHandler.removeCallbacksAndMessages(null) 

                    isCollectingSamples = false 

                } 

            } 

            true 

        } 

 

    // Permission related, doesn't bother us 

    override fun onResume() { 

        super.onResume() 

 

        if (!PermissionsFragment.hasPermissions(requireContext())) { 

            Navigation.findNavController( 

                requireActivity(), 

                R.id.fragment_container 

            

).navigate(CameraFragmentDirections.actionCameraToPermissions()) 

        } 

    } 

 

    override fun onDestroyView() { 

        _fragmentCameraBinding = null 

        super.onDestroyView() 

 

        // Shut down our background executor 

        cameraExecutor.shutdown() 
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    } 

 

    override fun onCreateView( 

        inflater: LayoutInflater, 

        container: ViewGroup?, 

        savedInstanceState: Bundle? 

    ): View { 

        _fragmentCameraBinding = 

            FragmentCameraBinding.inflate(inflater, container, false) 

 

        return fragmentCameraBinding.root 

    } 

 

    // Initializes different UI components as well as listeners 

    @SuppressLint("MissingPermission", "ClickableViewAccessibility") 

    override fun onViewCreated(view: View, savedInstanceState: 

Bundle?) { 

        super.onViewCreated(view, savedInstanceState) 

 

        transferLearningHelper = TransferLearningHelper( 

            context = requireContext(), 

            classifierListener = this 

        ) 

 

        cameraExecutor = Executors.newSingleThreadExecutor() 

 

        viewModel.numThreads.observe(viewLifecycleOwner) { 

            transferLearningHelper.numThreads = it 

            transferLearningHelper.close() 

            if (viewModel.getTrainingState() != 

MainViewModel.TrainingState.PREPARE) { 

                // If the model is training, continue training with 

old image 

                // sets. 

                

viewModel.setTrainingState(MainViewModel.TrainingState.TRAINING) 

                transferLearningHelper.startTraining() 

            } 

        } 

 

        // If training state button changes, update the UI. 

        viewModel.trainingState.observe(viewLifecycleOwner) { 

            updateTrainingButtonState() 

        } 

 

        // If capture mode changes, update the UI. 

        viewModel.captureMode.observe(viewLifecycleOwner) { 

isCaptureMode -> 

            if (isCaptureMode) { 

                viewModel.getNumberOfSample()?.let { 

                    updateNumberOfSample(it) 

                } 

                // Unhighlight all class buttons 

                highlightResult(null) 

            } 

 

            // Update the UI after switch to training mode. 

            updateTrainingButtonState() 

        } 
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        viewModel.numberOfSamples.observe(viewLifecycleOwner) { 

            // Update the number of samples 

            updateNumberOfSample(it) 

            updateTrainingButtonState() 

        } 

 

        with(fragmentCameraBinding) { 

            if (viewModel.getCaptureMode()!!) { 

                btnTrainingMode.isChecked = true 

            } else { 

                btnInferenceMode.isChecked = true 

            } 

            llClassOne.setOnClickListener { 

                addSampleRequests.add(CLASS_ONE) 

            } 

            llClassTwo.setOnClickListener { 

                addSampleRequests.add(CLASS_TWO) 

            } 

            llClassThree.setOnClickListener { 

                addSampleRequests.add(CLASS_THREE) 

            } 

            llClassFour.setOnClickListener { 

                addSampleRequests.add(CLASS_FOUR) 

            } 

            llClassOne.setOnTouchListener(onAddSampleTouchListener) 

            llClassTwo.setOnTouchListener(onAddSampleTouchListener) 

            llClassThree.setOnTouchListener(onAddSampleTouchListener) 

            llClassFour.setOnTouchListener(onAddSampleTouchListener) 

            // listener for pause, resume and start of training 

            btnPauseTrain.setOnClickListener { 

                

viewModel.setTrainingState(MainViewModel.TrainingState.PAUSE) 

                // We call the replay buffer update in this method 

                transferLearningHelper.pauseTraining() 

            } 

            btnResumeTrain.setOnClickListener { 

                

viewModel.setTrainingState(MainViewModel.TrainingState.TRAINING) 

                transferLearningHelper.startTraining() 

            } 

            btnStartTrain.setOnClickListener { 

                // Start training process 

                

viewModel.setTrainingState(MainViewModel.TrainingState.TRAINING) 

                transferLearningHelper.startTraining() 

            } 

            radioButton.setOnCheckedChangeListener { _, checkedId -> 

                if (checkedId == R.id.btnTrainingMode) { 

                    // Switch to training mode. 

                    viewModel.setCaptureMode(true) 

                } else { 

                    if (viewModel.getTrainingState() == 

MainViewModel.TrainingState.PREPARE) { 

                        

fragmentCameraBinding.btnTrainingMode.isChecked = true 

                        

fragmentCameraBinding.btnInferenceMode.isChecked = false 

 

                        Toast.makeText( 

                            requireContext(), "Inference can only " + 
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                                    "start after training is done.", 

Toast 

                                .LENGTH_LONG 

                        ).show() 

                    } else { 

                        // Pause the training process and switch to 

inference mode. 

                        transferLearningHelper.pauseTraining() 

                        

viewModel.setTrainingState(MainViewModel.TrainingState.PAUSE) 

                        viewModel.setCaptureMode(false) 

                    } 

                } 

            } 

 

            viewFinder.post { 

                // Set up the camera and its use cases 

                setUpCamera() 

            } 

        } 

    } 

 

    // Initialize CameraX, and prepare to bind the camera use cases 

    private fun setUpCamera() { 

        val cameraProviderFuture = 

            ProcessCameraProvider.getInstance(requireContext()) 

        cameraProviderFuture.addListener( 

            { 

                // CameraProvider 

                cameraProvider = cameraProviderFuture.get() 

 

                // Build and bind the camera use cases 

                bindCameraUseCases() 

            }, 

            ContextCompat.getMainExecutor(requireContext()) 

        ) 

    } 

 

    // For configuration change, doesn't care us probably 

    override fun onConfigurationChanged(newConfig: Configuration) { 

        super.onConfigurationChanged(newConfig) 

        imageAnalyzer?.targetRotation = 

            fragmentCameraBinding.viewFinder.display.rotation 

    } 

 

    // Declare and bind preview, capture and analysis use cases 

    @SuppressLint("UnsafeOptInUsageError") 

    private fun bindCameraUseCases() { 

 

        // CameraProvider 

        val cameraProvider = 

            cameraProvider 

                ?: throw IllegalStateException("Camera initialization 

failed.") 

 

        // CameraSelector - makes assumption that we're only using the 

back camera 

        val cameraSelector = 

            CameraSelector.Builder() 
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.requireLensFacing(CameraSelector.LENS_FACING_BACK).build() 

 

        // Preview. Only using the 4:3 ratio because this is the 

closest to our models 

        preview = 

            Preview.Builder() 

                .setTargetAspectRatio(AspectRatio.RATIO_4_3) 

                

.setTargetRotation(fragmentCameraBinding.viewFinder.display.rotation) 

                .build() 

 

        // ImageAnalysis. Using RGBA 8888 to match how our models work 

        imageAnalyzer = 

            ImageAnalysis.Builder() 

                .setTargetAspectRatio(AspectRatio.RATIO_4_3) 

                

.setTargetRotation(fragmentCameraBinding.viewFinder.display.rotation) 

                

.setBackpressureStrategy(ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST) 

                

.setOutputImageFormat(ImageAnalysis.OUTPUT_IMAGE_FORMAT_RGBA_8888) 

                .build() 

                // The analyzer can then be assigned to the instance 

                .also { 

                    it.setAnalyzer(cameraExecutor) { image -> 

                        if (!::bitmapBuffer.isInitialized) { 

                            // The image rotation and RGB image buffer 

are initialized only once 

                            // the analyzer has started running 

                            bitmapBuffer = Bitmap.createBitmap( 

                                image.width, 

                                image.height, 

                                Bitmap.Config.ARGB_8888 

                            ) 

                        } 

 

                        // poll is basically pop in queue 

                        val sampleClass = addSampleRequests.poll() 

                        if (sampleClass != null) { 

                            addSample(image, sampleClass) 

                            

viewModel.increaseNumberOfSample(sampleClass) 

                        } else { 

                            // Invokes inference from TLHelper 

                            if (viewModel.getCaptureMode() == false) { 

                                classifyImage(image) 

                            } 

                        } 

                        image.close() 

                    } 

                } 

 

        // Must unbind the use-cases before rebinding them 

        cameraProvider.unbindAll() 

 

        try { 

            // A variable number of use-cases can be passed here - 

            // camera provides access to CameraControl & CameraInfo 

            camera = cameraProvider.bindToLifecycle( 

                this, 
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                cameraSelector, 

                preview, 

                imageAnalyzer 

            ) 

 

            // Attach the viewfinder's surface provider to preview use 

case 

            

preview?.setSurfaceProvider(fragmentCameraBinding.viewFinder.surfacePr

ovider) 

        } catch (exc: Exception) { 

            Log.e(TAG, "Use case binding failed", exc) 

        } 

    } 

 

    // Classify image using TLHelper 

    private fun classifyImage(image: ImageProxy) { 

        // Copy out RGB bits to the shared bitmap buffer 

        image.use { 

bitmapBuffer.copyPixelsFromBuffer(image.planes[0].buffer) } 

 

        val imageRotation = image.imageInfo.rotationDegrees 

        // Pass Bitmap and rotation to the transfer learning helper 

for 

        // processing and classification. 

        transferLearningHelper.classify(bitmapBuffer, imageRotation) 

    } 

 

    // addSample to the training data 

    private fun addSample(image: ImageProxy, className: String) { 

        // Copy out RGB bits to the shared bitmap buffer 

        image.use { 

bitmapBuffer.copyPixelsFromBuffer(image.planes[0].buffer) } 

 

        // Overview of all the training samples before we start 

training 

        // Print all of the samples class labels in log.d 

        Log.d("addSamples-ClassesLabels", "Sample Class: $className") 

 

        val imageRotation = image.imageInfo.rotationDegrees 

        // Pass Bitmap and rotation to the transfer learning helper 

for 

        // processing and prepare training data. 

        transferLearningHelper.addSample(bitmapBuffer, className, 

imageRotation) 

    } 

 

    private fun createWhiteBitmap(width: Int, height: Int): Bitmap { 

        val whiteBitmap = Bitmap.createBitmap(width, height, 

Bitmap.Config.ARGB_8888) 

        val canvas = Canvas(whiteBitmap) 

        canvas.drawColor(Color.WHITE) 

        return whiteBitmap 

    } 

 

    // Used only at the launch of the app 

    // NOT USED ANYMORE - NEWCODE 

    private fun addWhiteImageToAllClassesAndTrain() { 

        val classNames = arrayOf(CLASS_ONE, CLASS_TWO, CLASS_THREE, 

CLASS_FOUR) 
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        val whiteBitmap = createWhiteBitmap(bitmapBuffer.width, 

bitmapBuffer.height) 

 

        // Add white image to all classes 

        for (className in classNames) { 

            transferLearningHelper.addSample(whiteBitmap, className, 

0) 

            viewModel.increaseNumberOfSample(className) 

        } 

 

        // Train the model 

        Log.d("WhiteImage", "White image start training") 

        transferLearningHelper.startTraining() 

 

        // Wait 2 seconds 

        Thread.sleep(2000) 

        Log.d("WhiteImage", "White image pause training") 

        transferLearningHelper.pauseTraining() 

 

        // Clear the samples 

        //transferLearningHelper.resetTrainingSamples() 

        //transferLearningHelper.clearReplayBuffer() 

        //Log.d("WhiteImage", "White image clear training samples and 

replay buffer") 

 

        _isFirstTime = false 

    } 

 

 

    @SuppressLint("NotifyDataSetChanged") 

    override fun onError(error: String) { 

        activity?.runOnUiThread { 

            Toast.makeText(requireContext(), error, 

Toast.LENGTH_SHORT).show() 

        } 

    } 

 

    @SuppressLint("NotifyDataSetChanged") 

    override fun onResults( 

        results: List<Category>?, 

        inferenceTime: Long 

    ) { 

        activity?.runOnUiThread { 

            // Update the result in inference mode. 

            if (viewModel.getCaptureMode() == false) { 

                // Show result 

                results?.let { list -> 

                    // Highlight the class which is highest score. 

                    list.maxByOrNull { it.score }?.let { 

                        highlightResult(it.label) 

                    } 

                    updateScoreClasses(list) 

                } 

 

                fragmentCameraBinding.tvInferenceTime.text = 

                    String.format("%d ms", inferenceTime) 

            } 

        } 

    } 
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    // Show the loss number after each training. 

    override fun onLossResults(lossNumber: Float) { 

        String.format( 

            Locale.US, 

            "Loss: %.3f", lossNumber 

        ).let { 

            fragmentCameraBinding.tvLossConsumerPause.text = it 

            fragmentCameraBinding.tvLossConsumerResume.text = it 

        } 

    } 

 

    // Show the accurate score of each class. 

    private fun updateScoreClasses(categories: List<Category>) { 

        categories.forEach { 

            val view = getClassButtonScore(it.label) 

            (view as? TextView)?.text = String.format( 

                Locale.US, "%.1f", it.score 

            ) 

        } 

    } 

 

    // Get the class button which represent for the label 

    private fun getClassButton(label: String): View? { 

        return when (label) { 

            CLASS_ONE -> fragmentCameraBinding.llClassOne 

            CLASS_TWO -> fragmentCameraBinding.llClassTwo 

            CLASS_THREE -> fragmentCameraBinding.llClassThree 

            CLASS_FOUR -> fragmentCameraBinding.llClassFour 

            else -> null 

        } 

    } 

 

    // Get the class button score which represent for the label 

    private fun getClassButtonScore(label: String): View? { 

        return when (label) { 

            CLASS_ONE -> fragmentCameraBinding.tvNumberClassOne 

            CLASS_TWO -> fragmentCameraBinding.tvNumberClassTwo 

            CLASS_THREE -> fragmentCameraBinding.tvNumberClassThree 

            CLASS_FOUR -> fragmentCameraBinding.tvNumberClassFour 

            else -> null 

        } 

    } 

 

    // Get the class name from resource id 

    private fun getClassNameFromResourceId(id: Int): String { 

        return when (id) { 

            fragmentCameraBinding.llClassOne.id -> CLASS_ONE 

            fragmentCameraBinding.llClassTwo.id -> CLASS_TWO 

            fragmentCameraBinding.llClassThree.id -> CLASS_THREE 

            fragmentCameraBinding.llClassFour.id -> CLASS_FOUR 

            else -> { 

                "" 

            } 

        } 

    } 

 

    // Highlight the current label and unhighlight the previous label 

    private fun highlightResult(label: String?) { 

        // skip the previous position if it is no position. 

        previousClass?.let { 
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            setClassButtonHighlight(getClassButton(it), false) 

        } 

        if (label != null) { 

            setClassButtonHighlight(getClassButton(label), true) 

        } 

        previousClass = label 

    } 

 

    private fun setClassButtonHighlight(view: View?, isHighlight: 

Boolean) { 

        view?.run { 

            background = AppCompatResources.getDrawable( 

                context, 

                if (isHighlight) R.drawable.btn_default_highlight else 

R.drawable.btn_default 

            ) 

        } 

    } 

 

    // Update the number of samples. If there are no label in the 

samples, 

    // set it 0. 

    private fun updateNumberOfSample(numberOfSamples: Map<String, 

Int>) { 

        fragmentCameraBinding.tvNumberClassOne.text = if 

(numberOfSamples 

                .containsKey(CLASS_ONE) 

        ) numberOfSamples.getValue(CLASS_ONE) 

            .toString() 

        else "0" 

        fragmentCameraBinding.tvNumberClassTwo.text = if 

(numberOfSamples 

                .containsKey(CLASS_TWO) 

        ) numberOfSamples.getValue(CLASS_TWO) 

            .toString() 

        else "0" 

        fragmentCameraBinding.tvNumberClassThree.text = if 

(numberOfSamples 

                .containsKey(CLASS_THREE) 

        ) numberOfSamples.getValue(CLASS_THREE) 

            .toString() 

        else "0" 

        fragmentCameraBinding.tvNumberClassFour.text = if 

(numberOfSamples 

                .containsKey(CLASS_FOUR) 

        ) numberOfSamples.getValue(CLASS_FOUR) 

            .toString() 

        else "0" 

    } 

 

    // Update training button states UI 

    private fun updateTrainingButtonState() { 

        with(fragmentCameraBinding) { 

            tvInferenceTime.visibility = if (viewModel 

                    .getCaptureMode() == true 

            ) View.GONE else View.VISIBLE 

 

            btnCollectSample.visibility = if ( 

                viewModel.getTrainingState() == 

MainViewModel.TrainingState.PREPARE && 
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                (viewModel.getNumberOfSample()?.size ?: 0) == 0 && 

viewModel 

                    .getCaptureMode() == true 

            ) View.VISIBLE else View.GONE 

 

            btnStartTrain.visibility = if ( 

                viewModel.getTrainingState() == 

MainViewModel.TrainingState.PREPARE && 

                (viewModel.getNumberOfSample()?.size ?: 0) > 0 && 

viewModel 

                    .getCaptureMode() == true 

            ) View.VISIBLE else View.GONE 

 

            btnPauseTrain.visibility = 

                if (viewModel.getTrainingState() == MainViewModel 

                        .TrainingState.TRAINING && viewModel 

                        .getCaptureMode() == true 

                ) View.VISIBLE else View.GONE 

 

            btnResumeTrain.visibility = 

                if (viewModel.getTrainingState() == MainViewModel 

                        .TrainingState.PAUSE && viewModel 

                        .getCaptureMode() == true 

                ) View.VISIBLE else View.GONE 

 

            // Disable adding button when it is training or in 

inference mode. 

            (viewModel.getCaptureMode() == true && 

viewModel.getTrainingState() != 

                    MainViewModel.TrainingState.TRAINING).let { enable 

-> 

                llClassOne.isClickable = enable 

                llClassTwo.isClickable = enable 

                llClassThree.isClickable = enable 

                llClassFour.isClickable = enable 

            } 

        } 

    } 

} 
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1.1.2 - HelperDialog 

/* 

 * Copyright 2022 The TensorFlow Authors. All Rights Reserved. 

 * 

 * Licensed under the Apache License, Version 2.0 (the "License"); 

 * you may not use this file except in compliance with the License. 

 * You may obtain a copy of the License at 

 * 

 *             http://www.apache.org/licenses/LICENSE-2.0 

 * 

 * Unless required by applicable law or agreed to in writing, software 

 * distributed under the License is distributed on an "AS IS" BASIS, 

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

 * See the License for the specific language governing permissions and 

 * limitations under the License. 

 */ 

 

package org.tensorflow.lite.examples.modelpersonalization.fragments 

 

import android.app.Dialog 

import android.os.Bundle 

import androidx.appcompat.app.AlertDialog 

import androidx.appcompat.app.AppCompatDialogFragment 

import org.tensorflow.lite.examples.modelpersonalization.R 

 

// HelperDialog solely used for when  we click on the help button 

class HelperDialog : AppCompatDialogFragment() { 

    companion object { 

        const val TAG = "Helper Dialog" 

    } 

 

    override fun onCreateDialog(savedInstanceState: Bundle?): Dialog { 

        return AlertDialog.Builder(requireActivity()).apply { 

            

setTitle(requireActivity().getString(R.string.helper_dialog_title)) 

            setMessage( 

                requireActivity().getString( 

                    R.string 

                        .helper_dialog_content 

                ) 

            ) 

            setPositiveButton("ok") { _, _ -> 

                // no-op 

            } 

        }.create() 

    } 

} 
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1.1.3 - PermissionsFragment 

/* 

 * Copyright 2022 The TensorFlow Authors. All Rights Reserved. 

 * 

 * Licensed under the Apache License, Version 2.0 (the "License"); 

 * you may not use this file except in compliance with the License. 

 * You may obtain a copy of the License at 

 * 

 *             http://www.apache.org/licenses/LICENSE-2.0 

 * 

 * Unless required by applicable law or agreed to in writing, software 

 * distributed under the License is distributed on an "AS IS" BASIS, 

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

 * See the License for the specific language governing permissions and 

 * limitations under the License. 

 */ 

 

package org.tensorflow.lite.examples.modelpersonalization.fragments 

 

import android.Manifest 

import android.content.Context 

import android.content.pm.PackageManager 

import android.os.Bundle 

import android.widget.Toast 

import androidx.activity.result.contract.ActivityResultContracts 

import androidx.core.content.ContextCompat 

import androidx.fragment.app.Fragment 

import androidx.lifecycle.lifecycleScope 

import androidx.navigation.Navigation 

import org.tensorflow.lite.examples.modelpersonalization.R 

 

private val PERMISSIONS_REQUIRED = arrayOf(Manifest.permission.CAMERA) 

 

// A fragment used to request camera permissions, and then navigate to 

the camera fragment. 

 

class PermissionsFragment : Fragment() { 

 

    private val requestPermissionLauncher = 

        registerForActivityResult( 

            ActivityResultContracts.RequestPermission() 

        ) { isGranted: Boolean -> 

            if (isGranted) { 

                Toast.makeText(context, "Permission request granted", 

Toast.LENGTH_LONG).show() 

                navigateToCamera() 

            } else { 

                Toast.makeText(context, "Permission request denied", 

Toast.LENGTH_LONG).show() 

            } 

        } 

 

    override fun onCreate(savedInstanceState: Bundle?) { 

        super.onCreate(savedInstanceState) 

        when { 

            ContextCompat.checkSelfPermission( 

                requireContext(), 

                Manifest.permission.CAMERA 
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            ) == PackageManager.PERMISSION_GRANTED -> { 

                navigateToCamera() 

            } 

            else -> { 

                requestPermissionLauncher.launch( 

                    Manifest.permission.CAMERA 

                ) 

            } 

        } 

    } 

 

    private fun navigateToCamera() { 

        lifecycleScope.launchWhenStarted { 

            Navigation.findNavController(requireActivity(), 

R.id.fragment_container).navigate( 

                

PermissionsFragmentDirections.actionPermissionsToCamera() 

            ) 

        } 

    } 

 

    companion object { 

 

        /** Convenience method used to check if all permissions 

required by this app are granted */ 

        fun hasPermissions(context: Context) = 

PERMISSIONS_REQUIRED.all { 

            ContextCompat.checkSelfPermission(context, it) == 

PackageManager.PERMISSION_GRANTED 

        } 

    } 

} 
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1.1.4 - SettingFragment 

/* 

 * Copyright 2022 The TensorFlow Authors. All Rights Reserved. 

 * 

 * Licensed under the Apache License, Version 2.0 (the "License"); 

 * you may not use this file except in compliance with the License. 

 * You may obtain a copy of the License at 

 * 

 *             http://www.apache.org/licenses/LICENSE-2.0 

 * 

 * Unless required by applicable law or agreed to in writing, software 

 * distributed under the License is distributed on an "AS IS" BASIS, 

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

 * See the License for the specific language governing permissions and 

 * limitations under the License. 

 */ 

 

package org.tensorflow.lite.examples.modelpersonalization.fragments 

 

import android.app.Dialog 

import android.os.Bundle 

import android.view.LayoutInflater 

import android.view.View 

import android.view.ViewGroup 

import androidx.fragment.app.DialogFragment 

import androidx.fragment.app.activityViewModels 

import org.tensorflow.lite.examples.modelpersonalization.MainViewModel 

import 

org.tensorflow.lite.examples.modelpersonalization.databinding.Fragment

SettingBinding 

 

// SettingFragment is used to set/change the number of threads used 

for classification 

 

class SettingFragment : DialogFragment() { 

    companion object { 

        const val TAG = "SettingDialogFragment" 

    } 

 

    private var _fragmentSettingBinding: FragmentSettingBinding? = 

null 

    private val fragmentSettingBinding 

        get() = _fragmentSettingBinding!! 

 

    private var numThreads = 2 

    private val viewModel: MainViewModel by activityViewModels() 

 

    override fun onCreateDialog(savedInstanceState: Bundle?): Dialog { 

        return super.onCreateDialog(savedInstanceState).apply { 

            setCancelable(false) 

            setCanceledOnTouchOutside(false) 

        } 

    } 

 

    override fun onCreateView( 

        inflater: LayoutInflater, 

        container: ViewGroup?, 

        savedInstanceState: Bundle? 
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    ): View { 

 

        _fragmentSettingBinding = FragmentSettingBinding.inflate( 

            inflater, 

            container, 

            false 

        ) 

        return fragmentSettingBinding.root 

    } 

 

    override fun onViewCreated(view: View, savedInstanceState: 

Bundle?) { 

        super.onViewCreated(view, savedInstanceState) 

 

        viewModel.getNumThreads()?.let { 

            numThreads = it 

            updateDialogUi() 

        } 

 

        initDialogControls() 

 

        fragmentSettingBinding.btnConfirm.setOnClickListener { 

            viewModel.configModel(numThreads) 

            dismiss() 

        } 

        fragmentSettingBinding.btnCancel.setOnClickListener { 

            dismiss() 

        } 

    } 

 

    private fun initDialogControls() { 

        // When clicked, decrease the number of threads used for 

classification 

        fragmentSettingBinding.threadsMinus.setOnClickListener { 

            if (numThreads > 1) { 

                numThreads-- 

                updateDialogUi() 

            } 

        } 

 

        // When clicked, increase the number of threads used for 

classification 

        fragmentSettingBinding.threadsPlus.setOnClickListener { 

            if (numThreads < 4) { 

                numThreads++ 

                updateDialogUi() 

            } 

        } 

    } 

 

    //  Update the values displayed in the dialog. 

    private fun updateDialogUi() { 

        fragmentSettingBinding.threadsValue.text = 

            numThreads.toString() 

    } 

} 
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1.1.5 - MainActivity 

/* 

 * Copyright 2022 The TensorFlow Authors. All Rights Reserved. 

 * 

 * Licensed under the Apache License, Version 2.0 (the "License"); 

 * you may not use this file except in compliance with the License. 

 * You may obtain a copy of the License at 

 * 

 *             http://www.apache.org/licenses/LICENSE-2.0 

 * 

 * Unless required by applicable law or agreed to in writing, software 

 * distributed under the License is distributed on an "AS IS" BASIS, 

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

 * See the License for the specific language governing permissions and 

 * limitations under the License. 

 */ 

 

package org.tensorflow.lite.examples.modelpersonalization 

 

import android.content.Context 

import android.os.Build 

import androidx.appcompat.app.AppCompatActivity 

import android.os.Bundle 

import android.widget.Toast 

import androidx.activity.viewModels 

import 

org.tensorflow.lite.examples.modelpersonalization.databinding.Activity

MainBinding 

import 

org.tensorflow.lite.examples.modelpersonalization.fragments.HelperDial

og 

import 

org.tensorflow.lite.examples.modelpersonalization.fragments.SettingFra

gment 

import java.io.File 

 

class MainActivity : AppCompatActivity() { 

    private lateinit var activityMainBinding: ActivityMainBinding 

    private val viewModel: MainViewModel by viewModels() 

 

    override fun onCreate(savedInstanceState: Bundle?) { 

        super.onCreate(savedInstanceState) 

        activityMainBinding = 

ActivityMainBinding.inflate(layoutInflater) 

        setContentView(activityMainBinding.root) 

 

        activityMainBinding.imgSetting.setOnClickListener { 

            // Making sure that you can increase threads in settings 

only when in training mode 

            // and not inference mode 

            if (viewModel.getCaptureMode() == true) { 

                SettingFragment().show( 

                    supportFragmentManager, 

                    SettingFragment.TAG 

                ) 

            } else { 

                Toast.makeText( 

                    this, "Change the setting only available in " + 
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                            "training mode", Toast.LENGTH_LONG 

                ).show() 

            } 

        } 

        // Show HelperDialog when the user clicks on the helper icon 

        activityMainBinding.tvHelper.setOnClickListener { 

            HelperDialog().show(supportFragmentManager, 

HelperDialog.TAG) 

        } 

        // Call refresh function when user clicks on the refresh icon 

        // Can implement it in future 

//        activityMainBinding.refreshButton.setOnClickListener { 

//            restartAppAndModel() 

//        } 

    } 

 

    // We can implement this as a reset button in future 

    private fun restartAppAndModel() { 

    } 

 

    // Might be fixed but unsure 

    override fun onBackPressed() { 

        if (Build.VERSION.SDK_INT == Build.VERSION_CODES.Q) { 

            // Workaround for Android Q memory leak issue in 

IRequestFinishCallback$Stub. 

            // (https://issuetracker.google.com/issues/139738913) 

            finishAfterTransition() 

        } else { 

            super.onBackPressed() 

        } 

    } 

 

    companion object { 

         fun getCheckpointPath(context: Context): String { 

            val checkpointDir = context.getDir("checkpoints", 

Context.MODE_PRIVATE) 

            if (!checkpointDir.exists()) { 

                checkpointDir.mkdirs() 

            } 

            return File(checkpointDir, "checkpoint").absolutePath 

        } 

    } 

} 
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1.1.6 – MainViewModel 

/* 

 * Copyright 2022 The TensorFlow Authors. All Rights Reserved. 

 * 

 * Licensed under the Apache License, Version 2.0 (the "License"); 

 * you may not use this file except in compliance with the License. 

 * You may obtain a copy of the License at 

 * 

 *             http://www.apache.org/licenses/LICENSE-2.0 

 * 

 * Unless required by applicable law or agreed to in writing, software 

 * distributed under the License is distributed on an "AS IS" BASIS, 

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

 * See the License for the specific language governing permissions and 

 * limitations under the License. 

 */ 

 

package org.tensorflow.lite.examples.modelpersonalization 

 

import androidx.lifecycle.MutableLiveData 

import androidx.lifecycle.ViewModel 

import java.util.* 

 

 

class MainViewModel : ViewModel() { 

    private val _numThread = MutableLiveData<Int>() 

    val numThreads get() = _numThread 

 

    private val _trainingState = 

        MutableLiveData(TrainingState.PREPARE) 

    val trainingState get() = _trainingState 

 

    private val _captureMode = MutableLiveData(true) 

    val captureMode get() = _captureMode 

 

    private val _numberOfSamples = MutableLiveData(TreeMap<String, 

Int>()) 

    val numberOfSamples get() = _numberOfSamples 

 

    fun configModel(numThreads: Int) { 

        _numThread.value = numThreads 

    } 

 

    fun getNumThreads() = numThreads.value 

 

    fun setTrainingState(state: TrainingState) { 

        _trainingState.value = state 

    } 

 

    fun getTrainingState() = trainingState.value 

 

    fun setCaptureMode(isCapture: Boolean) { 

        _captureMode.value = isCapture 

    } 

 

    fun getCaptureMode() = captureMode.value 

 

    fun increaseNumberOfSample(className: String) { 
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        val map: TreeMap<String, Int> = _numberOfSamples.value!! 

        val currentNumber: Int = if (map.containsKey(className)) { 

            map[className]!! 

        } else { 

            0 

        } 

        map[className] = currentNumber + 1 

        _numberOfSamples.postValue(map) 

    } 

 

    fun getNumberOfSample() = numberOfSamples.value 

 

    enum class TrainingState { 

        PREPARE, TRAINING, PAUSE 

    } 

} 
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1.1.7 - TransferLearningHelper 

/* 

 * Copyright 2022 The TensorFlow Authors. All Rights Reserved. 

 * 

 * Licensed under the Apache License, Version 2.0 (the "License"); 

 * you may not use this file except in compliance with the License. 

 * You may obtain a copy of the License at 

 * 

 *             http://www.apache.org/licenses/LICENSE-2.0 

 * 

 * Unless required by applicable law or agreed to in writing, software 

 * distributed under the License is distributed on an "AS IS" BASIS, 

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

implied. 

 * See the License for the specific language governing permissions and 

 * limitations under the License. 

 */ 

 

// ANYTHING THAT IS RELATED TO THE REPLAY BUFFER IS NEW CODE 

 

package org.tensorflow.lite.examples.modelpersonalization 

 

import android.content.Context 

import android.graphics.Bitmap 

import android.os.Handler 

import android.os.Looper 

import android.os.SystemClock 

import android.util.Log 

import org.tensorflow.lite.DataType 

import org.tensorflow.lite.Interpreter 

import org.tensorflow.lite.support.common.FileUtil 

import org.tensorflow.lite.support.common.ops.NormalizeOp 

import org.tensorflow.lite.support.image.ImageProcessor 

import org.tensorflow.lite.support.image.TensorImage 

import org.tensorflow.lite.support.image.ops.ResizeOp 

import org.tensorflow.lite.support.image.ops.ResizeWithCropOrPadOp 

import org.tensorflow.lite.support.image.ops.Rot90Op 

import org.tensorflow.lite.support.label.Category 

import org.tensorflow.lite.support.label.TensorLabel 

import org.tensorflow.lite.support.tensorbuffer.TensorBuffer 

import java.io.IOException 

import java.nio.ByteBuffer 

import java.nio.ByteOrder 

import java.nio.FloatBuffer 

import java.util.* 

import java.util.concurrent.ExecutorService 

import java.util.concurrent.Executors 

import kotlin.math.max 

import kotlin.math.min 

import kotlin.random.Random 

 

// This class is responsible for the training process and inference 

process. 

 

class TransferLearningHelper( 

    var numThreads: Int = 2, 

    val context: Context, 

    // A listener to receive updates on the models performance during 

training. 
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    val classifierListener: ClassifierListener? 

) { 

 

    // A tf.lite interpreter used for inference and training. 

(contains the signatures) 

    private var interpreter: Interpreter? = null 

    // A list of training samples objects which contain the bottleneck 

    // and label data needed for model training (I THINK). 

    // Changed from private to public 

    val trainingSamples: MutableList<TrainingSample> = mutableListOf() 

    // ExecutorService running the model training process 

    private var executor: ExecutorService? = null 

 

    //This lock guarantees that only one thread is performing training 

and 

    //inference at any point in time. 

    // Other threads could be adding samples to the trainingSamples 

list 

    // or updating the UI and handling user input (I THINK) 

    private val lock = Any() 

    // Input image dimensions for the MobileNet model.(224, 224) 

    private var targetWidth: Int = 0 

    private var targetHeight: Int = 0 

    // Handler running on the main thread (UI thread). 

    private val handler = Handler(Looper.getMainLooper()) 

 

    // Our replayBuffer - NEW 

    private val replayBuffer: MutableList<TrainingSample> = 

mutableListOf() 

 

    // Used as a flag because pauseTraining is called both when we 

pause the training 

    // and when the inference button is called. We only want to update 

the replayBuffer once 

    private var replayBufferUpdated = false 

    private var firstTrainingFlag = true 

 

    init { 

        if (setupModelPersonalization()) { 

            targetWidth = interpreter!!.getInputTensor(0).shape()[2] 

            targetHeight = interpreter!!.getInputTensor(0).shape()[1] 

        } else { 

            classifierListener?.onError("TFLite failed to init.") 

        } 

    } 

 

    // Close the interpreter and executor. 

    fun close() { 

        executor?.shutdownNow() 

        executor = null 

        interpreter = null 

    } 

 

    // KNOWN BUG 

    // Keep an eye that if we press pause and train again, every time 

we do that, the reply buffer 

    // updates again. So make sure to train and then pause and add new 

samples if you want 

    // to train again. 
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// NEW 

    fun pauseTraining() { 

        // Update replayBuffer with samples from this training cycle 

 

        // Apparently, pauseTraining is called when we pause the 

training but 

        // also when we click the inference button. This is the fix to 

it 

        if(!replayBufferUpdated){ 

            Log.d("PauseTraining", "Updating replay buffer") 

            // Disabling these for now 

            updateReplayBuffer() 

            resetTrainingSamples() 

            replayBufferUpdated = true 

        } 

 

        executor?.shutdownNow() 

    } 

 

    // We get the model.tflite and load it into the interpreter. 

    private fun setupModelPersonalization(): Boolean { 

        val options = Interpreter.Options() 

        options.numThreads = numThreads 

        return try { 

            val modelFile = FileUtil.loadMappedFile(context, 

"modelnew.tflite") 

            interpreter = Interpreter(modelFile, options) 

            true 

        } catch (e: IOException) { 

            classifierListener?.onError( 

                "Model personalization failed to " + 

                        "initialize. See error logs for details" 

            ) 

            Log.e(TAG, "TFLite failed to load model with error: " + 

e.message) 

            false 

        } 

    } 

 

    // Process input image and add the output into list samples which 

are 

    // ready for training. 

 

    fun addSample(image: Bitmap, className: String, rotation: Int) { 

        synchronized(lock) { 

            if (interpreter == null) { 

                setupModelPersonalization() 

            } 

            processInputImage(image, rotation)?.let { tensorImage -> 

                val bottleneck = loadBottleneck(tensorImage) 

                val newSample = TrainingSample( 

                        bottleneck, 

                        encoding(classes.getValue(className)) 

                    ) 

                trainingSamples.add(newSample) 

            } 

        } 

    } 

 

    // Start training process 
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// FUNCTION IS UPDATED WITH THE NEW CODE 

    fun startTraining() { 

 

        if (interpreter == null || firstTrainingFlag) { 

            setupModelPersonalization() 

            firstTrainingFlag = false 

 

        } 

        else 

        { 

            // Saving and loading of weights can be used in future if 

we have a lot of 

            // layers in the head of the model 

 

            // Save weights 

//            val checkpointPath = 

MainActivity.getCheckpointPath(context) 

//            val saveInputs: MutableMap<String, Any> = HashMap() 

//            saveInputs[SAVE_INPUT_KEY] = checkpointPath 

//            val saveOutputs: MutableMap<String, Any> = HashMap() 

//            saveOutputs[SAVE_OUTPUT_KEY] = checkpointPath 

//            interpreter?.runSignature(saveInputs, saveOutputs, 

SAVE_KEY) 

 

            setupModelPersonalization() 

 

            // Load weights 

//            val restoreInputs: MutableMap<String, Any> = HashMap() 

//            restoreInputs[RESTORE_INPUT_KEY] = checkpointPath 

//            val restoreOutputs: MutableMap<String, Any> = HashMap() 

//            val restoredTensors = HashMap<String, FloatArray>() 

//            restoreOutputs[RESTORE_OUTPUT_KEY] = restoredTensors 

//            interpreter?.runSignature(restoreInputs, restoreOutputs, 

RESTORE_KEY) 

        } 

 

        // Reset the replayBufferUpdated flag 

        replayBufferUpdated = false 

 

        // Create new thread for training process. 

        executor = Executors.newSingleThreadExecutor() 

        val trainBatchSize = getTrainBatchSize() 

 

        // The fix of this exception I think is not in the 

getTrainBatchSize() function 

        // but rather adding both training samples and replay buffer 

samples in the if statement 

        if (trainingSamples.size + replayBuffer.size < trainBatchSize) 

{ 

            throw RuntimeException( 

                String.format( 

                    "Too few samples to start training: need %d, got 

%d", 

                    trainBatchSize, trainingSamples.size 

                ) 

            ) 

        } 

 

        Log.d("ReplayBuffer", "Replay buffer size: 

${replayBuffer.size}") 
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        Log.d("ReplayBuffer", "Training samples size: 

${trainingSamples.size}") 

 

        // Combine the training samples and the replay buffer samples 

        val combinedSamples = (trainingSamples + 

replayBuffer).toMutableList() 

        // combinedSamples.shuffle() 

 

        Log.d("ReplayBuffer","Combined samples size: 

${combinedSamples.size}") 

 

        executor?.execute { 

            synchronized(lock) { 

                var avgLoss: Float 

 

                // Keep training until the helper pause or close. 

                while (executor?.isShutdown == false) { 

                    var totalLoss = 0f 

                    var numBatchesProcessed = 0 

 

                    // Shuffle training samples to reduce overfitting 

and 

                    // variance. 

                    combinedSamples.shuffle() 

 

                    // Now trainingBatches will be called with both 

the training samples and the replay buffer samples 

                    // The function implementation will change to 

adapt to this 

                    trainingBatches(trainBatchSize, combinedSamples) 

                        .forEach { combinedSamplesCurrentBatch -> 

                            val trainingBatchBottlenecks = 

                                MutableList(trainBatchSize) { 

                                    FloatArray( 

                                        BOTTLENECK_SIZE 

                                    ) 

                                } 

 

                            val trainingBatchLabels = 

                                MutableList(trainBatchSize) { 

                                    FloatArray( 

                                        classes.size 

                                    ) 

                                } 

 

                            // Copy a training sample list into two 

different 

                            // input training lists. 

                            combinedSamplesCurrentBatch.forEachIndexed 

{ index, trainingSample -> 

                                trainingBatchBottlenecks[index] = 

                                    trainingSample.bottleneck 

                                trainingBatchLabels[index] = 

                                    trainingSample.label 

                            } 

 

                            val loss = training( 

                                trainingBatchBottlenecks, 

                                trainingBatchLabels 

                            ) 
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                            totalLoss += loss 

                            numBatchesProcessed++ 

                        } 

 

                    // Calculate the average loss after training all 

batches. 

                    avgLoss = totalLoss / numBatchesProcessed 

                    handler.post { 

                        classifierListener?.onLossResults(avgLoss) 

                    } 

 

                } 

            } 

        } 

    } 

 

    // Used for debugging to check the weights after training 

// NEW 

    private fun getModelWeightsHead(bottlenecks: 

MutableList<FloatArray>): FloatArray { 

        val wsSize = BOTTLENECK_SIZE * NUM_CLASSES * 4 // 4 bytes per 

float 

        val wsBuffer = 

ByteBuffer.allocateDirect(wsSize).order(ByteOrder.nativeOrder()) 

 

        val inputs: MutableMap<String, Any> = HashMap() 

        // Used just because we need an input. Has no use 

        inputs[TRAINING_INPUT_BOTTLENECK_KEY] = 

bottlenecks.toTypedArray() 

 

        val outputs: MutableMap<String, Any> = HashMap() 

        outputs["ws"] = wsBuffer 

 

        // Get weights and biases as defined in our signature in the 

model. 

        interpreter?.runSignature(inputs, outputs, "initialize") 

 

        val wsArray = FloatArray(BOTTLENECK_SIZE * NUM_CLASSES) 

        wsBuffer.rewind() 

        wsBuffer.asFloatBuffer().get(wsArray) 

 

        return wsArray 

    } 

 

    // Runs one training step with the given bottleneck batches and 

labels 

    // and return the loss number. 

    private fun training( 

        bottlenecks: MutableList<FloatArray>, 

        labels: MutableList<FloatArray> 

    ): Float { 

 

        val inputs: MutableMap<String, Any> = HashMap() 

        inputs[TRAINING_INPUT_BOTTLENECK_KEY] = 

bottlenecks.toTypedArray() 

        inputs[TRAINING_INPUT_LABELS_KEY] = labels.toTypedArray() 

 

        val outputs: MutableMap<String, Any> = HashMap() 

        val loss = FloatBuffer.allocate(1) 

        outputs[TRAINING_OUTPUT_KEY] = loss 



28 

 

 

        // Training as defined in our signature in the model. 

        interpreter?.runSignature(inputs, outputs, TRAINING_KEY) 

 

        Log.d("Loss", "Loss is ${loss.get(0)}") 

 

        // Used for debugging 

 

        // Get weights and biases after training 

        // val weights = getModelWeightsHead(bottlenecks) 

        // Use or print the weights and biases as needed 

        // Log.d("WeightsAndBiases", "Weights: 

${weights.contentToString()}") 

 

        return loss.get(0) 

    } 

 

    // Invokes inference on the given image batches. 

    fun classify(bitmap: Bitmap, rotation: Int) { 

        processInputImage(bitmap, rotation)?.let { image -> 

            synchronized(lock) { 

                if (interpreter == null) { 

                    setupModelPersonalization() 

                } 

 

                // Inference time is the difference between the system 

time at the start and finish of the 

                // process 

                var inferenceTime = SystemClock.uptimeMillis() 

 

                val inputs: MutableMap<String, Any> = HashMap() 

                inputs[INFERENCE_INPUT_KEY] = image.buffer 

 

                val outputs: MutableMap<String, Any> = HashMap() 

                val output = TensorBuffer.createFixedSize( 

                    intArrayOf(1, 4), 

                    DataType.FLOAT32 

                ) 

                outputs[INFERENCE_OUTPUT_KEY] = output.buffer 

 

                interpreter?.runSignature(inputs, outputs, 

INFERENCE_KEY) 

                val tensorLabel = TensorLabel(classes.keys.toList(), 

output) 

                val result = tensorLabel.categoryList 

 

                inferenceTime = SystemClock.uptimeMillis() - 

inferenceTime 

 

                classifierListener?.onResults(result, inferenceTime) 

            } 

        } 

    } 

 

    // Loads the bottleneck feature from the given image array. 

    private fun loadBottleneck(image: TensorImage): FloatArray { 

        val inputs: MutableMap<String, Any> = HashMap() 

        inputs[LOAD_BOTTLENECK_INPUT_KEY] = image.buffer 

        val outputs: MutableMap<String, Any> = HashMap() 

        val bottleneck = Array(1) { FloatArray(BOTTLENECK_SIZE) } 
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        outputs[LOAD_BOTTLENECK_OUTPUT_KEY] = bottleneck 

        interpreter?.runSignature(inputs, outputs, 

LOAD_BOTTLENECK_KEY) 

        return bottleneck[0] 

    } 

 

    // Preprocess the image and convert it into a TensorImage for 

classification. 

    private fun processInputImage( 

        image: Bitmap, 

        imageRotation: Int 

    ): TensorImage? { 

        val height = image.height 

        val width = image.width 

        val cropSize = min(height, width) 

        val imageProcessor = ImageProcessor.Builder() 

            .add(Rot90Op(-imageRotation / 90)) 

            .add(ResizeWithCropOrPadOp(cropSize, cropSize)) 

            .add( 

                ResizeOp( 

                    targetHeight, 

                    targetWidth, 

                    ResizeOp.ResizeMethod.BILINEAR 

                ) 

            ) 

            .add(NormalizeOp(0f, 255f)) 

            .build() 

        val tensorImage = TensorImage(DataType.FLOAT32) 

        tensorImage.load(image) 

        return imageProcessor.process(tensorImage) 

    } 

 

    // encode the classes name to float array 

    private fun encoding(id: Int): FloatArray { 

        val classEncoded = FloatArray(4) { 0f } 

        classEncoded[id] = 1f 

        return classEncoded 

    } 

 

    // Training model expected batch size. 

    // We can ask as many samples as we want 

    private fun getTrainBatchSize(): Int { 

 

        Log.d("TrainBatch", "Training samples: 

${trainingSamples.size}") 

        Log.d("TrainBatch", "Replay buffer: ${replayBuffer.size}") 

 

        // Added replayBuffer sizes here too 

        return min( 

            max( /* at least one sample needed */1, 

trainingSamples.size + replayBuffer.size), 

            EXPECTED_BATCH_SIZE 

        ) 

    } 

 

    // Constructs an iterator that iterates over training sample 

batches. 

    // Altered the function to include replayBuffer samples as well 

    private fun trainingBatches(trainBatchSize: Int, samples: 

List<TrainingSample>): Iterator<List<TrainingSample>> { 
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        return object : Iterator<List<TrainingSample>> { 

            private var nextIndex = 0 

 

            override fun hasNext(): Boolean { 

                return nextIndex < samples.size 

            } 

 

            override fun next(): List<TrainingSample> { 

                val fromIndex = nextIndex 

                val toIndex: Int = nextIndex + trainBatchSize 

                nextIndex = toIndex 

                return if (toIndex >= samples.size) { 

                    // To keep batch size consistent, last batch may 

include some elements from the 

                    // next-to-last batch. 

                    samples.subList( 

                        samples.size - trainBatchSize, 

                        samples.size 

                    ) 

                } else { 

                    samples.subList(fromIndex, toIndex) 

                } 

            } 

        } 

    } 

 

// NEW FUNCTION 

    private fun updateReplayBuffer(){ 

        // Portion of trainingSamples to add to replayBuffer 

        // I could zero this if I want to disable replayBuffer 

        val portion = 0.25 

 

        val samplesToAdd = (trainingSamples.size * portion).toInt() 

 

        // Might not be necessary 

        trainingSamples.shuffle() 

 

        Log.d("ReplayBuffer","Number of trainingSamples before 

updating replayBuffer are: ${trainingSamples.size}") 

 

        val samplesToAddToReplayBuffer = trainingSamples.subList(0, 

samplesToAdd) 

 

        // If samplesToAddToReplayBuffer are more than 

REPLAY_BUFFER_SIZE we will remove some 

        if (samplesToAddToReplayBuffer.size > REPLAY_BUFFER_SIZE){ 

            samplesToAddToReplayBuffer.subList(0, 

samplesToAddToReplayBuffer.size - REPLAY_BUFFER_SIZE) 

        } 

 

        // Add them to replayBuffer 

        replayBuffer.addAll(samplesToAddToReplayBuffer) 

 

        Log.d("ReplayBuffer", "Adding 

${samplesToAddToReplayBuffer.size} samples to replay buffer") 

        Log.d("ReplayBuffer", "Replay buffer size before removing 

extra samples is now: ${replayBuffer.size}") 

 

        // We randomly remove samples from the replay buffer 
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        // CAUTION HERE 

        // We basically add the new samples to the replay buffer 

        // and then remove from the buffer until it reaches it's 

        // maximum size. This means that probably some new samples 

        // will be removed instantly. 

        if(replayBuffer.size > REPLAY_BUFFER_SIZE){ 

 

            val samplesToRemove = replayBuffer.size - 

REPLAY_BUFFER_SIZE 

 

            Log.d("ReplayBuffer", "We will remove $samplesToRemove 

samples from replay buffer") 

 

            // We remove the excess samples 

            for(i in 0 until samplesToRemove){ 

                val randomIndex = Random.nextInt(replayBuffer.size) 

                val removedSample = replayBuffer.removeAt(randomIndex) 

                Log.d("ReplayBuffer", "Removing samples at index 

$randomIndex from replay buffer") 

            } 

        } 

 

        Log.d("ReplayBuffer", "Replay buffer size after removing extra 

samples is now: ${replayBuffer.size}") 

    } 

 

    // We want to remove the samples from the list after 

    // training because the replayBuffer will retain the previous 

knowledge 

    public fun resetTrainingSamples(){ 

        trainingSamples.clear() 

    } 

 

    public fun clearReplayBuffer(){ 

        replayBuffer.clear() 

    } 

 

    interface ClassifierListener { 

        fun onError(error: String) 

        fun onResults(results: List<Category>?, inferenceTime: Long) 

        fun onLossResults(lossNumber: Float) 

    } 

 

    companion object { 

        const val CLASS_ONE = "1" 

        const val CLASS_TWO = "2" 

        const val CLASS_THREE = "3" 

        const val CLASS_FOUR = "4" 

        private val classes = mapOf( 

            CLASS_ONE to 0, 

            CLASS_TWO to 1, 

            CLASS_THREE to 2, 

            CLASS_FOUR to 3 

        ) 

        private const val LOAD_BOTTLENECK_INPUT_KEY = "feature" 

        private const val LOAD_BOTTLENECK_OUTPUT_KEY = "bottleneck" 

        private const val LOAD_BOTTLENECK_KEY = "load" 

 

        private const val TRAINING_INPUT_BOTTLENECK_KEY = "bottleneck" 

        private const val TRAINING_INPUT_LABELS_KEY = "label" 
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        private const val TRAINING_OUTPUT_KEY = "loss" 

        private const val TRAINING_KEY = "train" 

 

        private const val INFERENCE_INPUT_KEY = "feature" 

        private const val INFERENCE_OUTPUT_KEY = "output" 

        private const val INFERENCE_KEY = "infer" 

 

        private const val SAVE_INPUT_KEY = "checkpoint_path" 

        private const val SAVE_OUTPUT_KEY = "checkpoint_path" 

        private const val SAVE_KEY = "save" 

 

        private const val RESTORE_INPUT_KEY = "checkpoint_path" 

        private const val RESTORE_OUTPUT_KEY = "restored_tensors" 

        private const val RESTORE_KEY = "restore" 

 

        private const val NUM_CLASSES = 4 

        private const val BOTTLENECK_SIZE = 1 * 7 * 7 * 1280 

        private const val EXPECTED_BATCH_SIZE = 20 

        private const val TAG = "ModelPersonalizationHelper" 

 

        // Replay buffer size 

        private const val REPLAY_BUFFER_SIZE = 100 

    } 

 

    data class TrainingSample(val bottleneck: FloatArray, val label: 

FloatArray) 

} 
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1.2 - TensorFlow-Lite Model Creation Code 

# Copyright 2021 The TensorFlow Authors. All Rights Reserved. 

# 

# Licensed under the Apache License, Version 2.0 (the "License"); 

# you may not use this file except in compliance with the License. 

# You may obtain a copy of the License at 

# 

#     http://www.apache.org/licenses/LICENSE-2.0 

# 

# Unless required by applicable law or agreed to in writing, software 

# distributed under the License is distributed on an "AS IS" BASIS, 

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

# See the License for the specific language governing permissions and 

# limitations under the License. 

"""CLI wrapper for tflite_transfer_converter. 

 

Converts a TF model to a TFLite transfer learning model. 

""" 

 

import os 

 

import numpy as np 

import tensorflow as tf 

 

IMG_SIZE = 224 

NUM_FEATURES = 7 * 7 * 1280 

NUM_CLASSES = 4 

 

class TransferLearningModel(tf.Module): 

  """TF Transfer Learning model class.""" 

 

  def __init__(self, learning_rate=0.001): 

    """Initializes a transfer learning model instance. 

 

    Args: 

      learning_rate: A learning rate for the optimzer. 

    """ 

    self.num_features = NUM_FEATURES 

    self.num_classes = NUM_CLASSES 

 

    # trainable weights and bias for softmax 

    self.ws = tf.Variable( 

        tf.zeros((self.num_features, self.num_classes)), 

        name='ws', 

        trainable=True) 

    self.bs = tf.Variable( 
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        tf.zeros((1, self.num_classes)), name='bs', trainable=True) 

 

    # base model 

    self.base = tf.keras.applications.MobileNetV2( 

        input_shape=(IMG_SIZE, IMG_SIZE, 3), 

        alpha=1.0, 

        include_top=False, 

        weights='imagenet') 

    # loss function and optimizer 

    self.loss_fn = tf.keras.losses.CategoricalCrossentropy() 

    self.optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) 

 

  @tf.function(input_signature=[ 

      tf.TensorSpec([None, IMG_SIZE, IMG_SIZE, 3], tf.float32), 

  ]) 

  def load(self, feature): 

    """Generates and loads bottleneck features from the given image batch. 

 

    Args: 

      feature: A tensor of image feature batch to generate the bottleneck 

from. 

 

    Returns: 

      Map of the bottleneck. 

    """ 

    x = tf.keras.applications.mobilenet_v2.preprocess_input( 

        tf.multiply(feature, 255)) 

    bottleneck = tf.reshape( 

        self.base(x, training=False), (-1, self.num_features)) 

    return {'bottleneck': bottleneck} 

 

  @tf.function(input_signature=[ 

      tf.TensorSpec([None, NUM_FEATURES], tf.float32), 

      tf.TensorSpec([None, NUM_CLASSES], tf.float32), 

  ]) 

  def train(self, bottleneck, label): 

    """Runs one training step with the given bottleneck features and labels. 

 

    Args: 

      bottleneck: A tensor of bottleneck features generated from the base 

model. 

      label: A tensor of class labels for the given batch. 

 

    Returns: 

      Map of the training loss. 

    """ 

    with tf.GradientTape() as tape: 

      logits = tf.matmul(bottleneck, self.ws) + self.bs 
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      prediction = tf.nn.softmax(logits) 

      loss = self.loss_fn(prediction, label) 

    gradients = tape.gradient(loss, [self.ws, self.bs]) 

    self.optimizer.apply_gradients(zip(gradients, [self.ws, self.bs])) 

    result = {'loss': loss} 

    for grad in gradients: 

      result[grad.name] = grad 

    return result 

 

  @tf.function(input_signature=[ 

      tf.TensorSpec([None, IMG_SIZE, IMG_SIZE, 3], tf.float32) 

  ]) 

  def infer(self, feature): 

    """Invokes an inference on the given feature. 

 

    Args: 

      feature: A tensor of image feature batch to invoke an inference on. 

 

    Returns: 

      Map of the softmax output. 

    """ 

    x = tf.keras.applications.mobilenet_v2.preprocess_input( 

        tf.multiply(feature, 255)) 

    bottleneck = tf.reshape( 

        self.base(x, training=False), (-1, self.num_features)) 

    logits = tf.matmul(bottleneck, self.ws) + self.bs 

    return {'output': tf.nn.softmax(logits)} 

 

  @tf.function(input_signature=[tf.TensorSpec(shape=[], dtype=tf.string)]) 

  def save(self, checkpoint_path): 

    """Saves the trainable weights to the given checkpoint file. 

 

    Args: 

      checkpoint_path: A file path to save the model. 

 

    Returns: 

      Map of the checkpoint file path. 

    """ 

    tensor_names = [self.ws.name, self.bs.name] 

    tensors_to_save = [self.ws.read_value(), self.bs.read_value()] 

    tf.raw_ops.Save( 

        filename=checkpoint_path, 

        tensor_names=tensor_names, 

        data=tensors_to_save, 

        name='save') 

    return {'checkpoint_path': checkpoint_path} 

 

  @tf.function(input_signature=[tf.TensorSpec(shape=[], dtype=tf.string)]) 
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  def restore(self, checkpoint_path): 

    """Restores the serialized trainable weights from the given checkpoint 

file. 

 

    Args: 

      checkpoint_path: A path to a saved checkpoint file. 

 

    Returns: 

      Map of restored weight and bias. 

    """ 

    restored_tensors = {} 

    restored = tf.raw_ops.Restore( 

        file_pattern=checkpoint_path, 

        tensor_name=self.ws.name, 

        dt=np.float32, 

        name='restore') 

    self.ws.assign(restored) 

    restored_tensors['ws'] = restored 

    restored = tf.raw_ops.Restore( 

        file_pattern=checkpoint_path, 

        tensor_name=self.bs.name, 

        dt=np.float32, 

        name='restore') 

    self.bs.assign(restored) 

    restored_tensors['bs'] = restored 

    return restored_tensors 

 

  # Added this extra function 

  # @tf.function(input_signature=[]) 

  # def get_weights_and_biases(self): 

  #   """Returns the weights and biases of the head model. 

 

  #   Returns: 

  #     Map of weight and bias. 

  #   """ 

  #   return {'ws': self.ws, 'bs': self.bs} 

 

  # This is basically get weights and biases. For some reason if i use a 

different name the input tensor gets zeroed 

  # bottleneck not used, we just need an input for some reason it cant be 

empty 

  @tf.function(input_signature=[ 

    tf.TensorSpec([None, NUM_FEATURES], tf.float32) 

  ]) 

  def initialize_weights(self, bottleneck): 

    """Initializes the weights and bias of the head model. 

 

    Returns: 
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      Map of initialized weight and bias. 

    """ 

    #self.ws.assign(tf.random.uniform((self.num_features, self.num_classes))) 

    #self.bs.assign(tf.random.uniform((1, self.num_classes))) 

    return {'ws': self.ws} 

 

def convert_and_save(saved_model_dir='saved_model'): 

  """Converts and saves the TFLite Transfer Learning model. 

 

  Args: 

    saved_model_dir: A directory path to save a converted model. 

  """ 

  model = TransferLearningModel() 

 

  tf.saved_model.save( 

      model, 

      saved_model_dir, 

      signatures={ 

          'load': model.load.get_concrete_function(), 

          'train': model.train.get_concrete_function(), 

          'infer': model.infer.get_concrete_function(), 

          'save': model.save.get_concrete_function(), 

          'restore': model.restore.get_concrete_function(), 

          #'get_weights_and_biases': 

model.get_weights_and_biases.get_concrete_function(), 

          'initialize': model.initialize_weights.get_concrete_function(), 

      }) 

 

  # Convert the model 

  converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) 

  converter.target_spec.supported_ops = [ 

      tf.lite.OpsSet.TFLITE_BUILTINS,  # enable TensorFlow Lite ops. 

      tf.lite.OpsSet.SELECT_TF_OPS  # enable TensorFlow ops. 

  ] 

  converter.experimental_enable_resource_variables = True 

  tflite_model = converter.convert() 

 

  model_file_path = os.path.join('modelnew.tflite') 

  with open(model_file_path, 'wb') as model_file: 

    model_file.write(tflite_model) 

 

if __name__ == '__main__': 

  convert_and_save() 
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2 - Offline Experiments 

2.1 - Controller class 

from experiments import Experiments 

import argparse 

import numpy as np 

import tensorflow as tf 

 

# Set seeds for reproducibility 

# https://keras.io/getting_started/faq/#how-can-i-obtain-reproducible-

results-using-keras-during-development 

# Due to the fact that we are running the experiments on GPU, there is 

some non-determinism involved. 

SEED = 1 

np.random.seed(SEED) 

tf.random.set_seed(SEED) 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser() 

    parser.add_argument("--exp_RBS_3000", action="store_true") 

    parser.add_argument("--exp_RBS_5000", action="store_true") 

    parser.add_argument("--exp_RBS_7500", action="store_true") 

    parser.add_argument("--exp_RBS_10000", action="store_true") 

    parser.add_argument("--exp_RBS_15000", action="store_true") 

    parser.add_argument("--exp_RBS_20000", action="store_true") 

    parser.add_argument("--exp_RBS_30000", action="store_true") 

    args = parser.parse_args() 

    experiments = Experiments() 

 

    # Experimenting with different replay buffer sizes. 

    # For each experiment we move the replay layer 1 hidden layer 

backwards (We move hidden layers from MobileNetV2 to the head of the 

model and make them trainable) 

 

    if args.exp_RBS_3000: 

        print("> Experiment: RBS_3000") 

 

        experiments.runHiddenLayersExperiment(experiment_name="RBS_3000_H

L_EXPERIMENTS", 

                                                    usecase="RBS_3000_HL0

", 

                                                    replay_size=3000, 

num_hidden_layers=0) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_3000_H

L_EXPERIMENTS", 

                                                    usecase="RBS_3000_HL1

", 
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                                                    replay_size=3000, 

num_hidden_layers=1) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_3000_H

L_EXPERIMENTS", 

                                                    usecase="RBS_3000_HL2

", 

                                                    replay_size=3000, 

num_hidden_layers=2) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_3000_H

L_EXPERIMENTS", 

                                                    usecase="RBS_3000_HL3

", 

                                                    replay_size=3000, 

num_hidden_layers=3) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_3000_H

L_EXPERIMENTS", 

                                                    usecase="RBS_3000_HL4

", 

                                                    replay_size=3000, 

num_hidden_layers=4) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_3000_H

L_EXPERIMENTS",     

                                                    usecase="RBS_3000_HL5

", 

                                                    replay_size=3000, 

num_hidden_layers=5) 

 

        experiments.plotExperiment(experiment_name="RBS_3000_HL_EXPERIMEN

TS", 

                                   title="RBS_3000_HL_EXPERIMENTS (CORe50 

NICv2 - 391)") 

         

    elif args.exp_RBS_5000: 

        print("> Experiment: RBS_5000") 

 

        experiments.runHiddenLayersExperiment(experiment_name="RBS_5000_H

L_EXPERIMENTS", 

                                                    usecase="RBS_5000_HL0

", 

                                                    replay_size=5000, 

num_hidden_layers=0) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_5000_H

L_EXPERIMENTS", 
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                                                    usecase="RBS_5000_HL1

", 

                                                    replay_size=5000, 

num_hidden_layers=1) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_5000_H

L_EXPERIMENTS", 

                                                    usecase="RBS_5000_HL2

", 

                                                    replay_size=5000, 

num_hidden_layers=2) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_5000_H

L_EXPERIMENTS", 

                                                    usecase="RBS_5000_HL3

", 

                                                    replay_size=5000, 

num_hidden_layers=3) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_5000_H

L_EXPERIMENTS", 

                                                    usecase="RBS_5000_HL4

", 

                                                    replay_size=5000, 

num_hidden_layers=4) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_5000_H

L_EXPERIMENTS", 

                                                    usecase="RBS_5000_HL5

", 

                                                    replay_size=5000, 

num_hidden_layers=5) 

 

        experiments.plotExperiment(experiment_name="RBS_5000_HL_EXPERIMEN

TS", 

                                   title="RBS_5000_HL_EXPERIMENTS (CORe50 

NICv2 - 391)") 

 

    elif args.exp_RBS_7500: 

        print("> Experiment: RBS_7500") 

 

        experiments.runHiddenLayersExperiment(experiment_name="RBS_7500_H

L_EXPERIMENTS", 

                                                    usecase="RBS_7500_HL0

", 

                                                    replay_size=7500, 

num_hidden_layers=0) 
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        experiments.runHiddenLayersExperiment(experiment_name="RBS_7500_H

L_EXPERIMENTS", 

                                                    usecase="RBS_7500_HL1

", 

                                                    replay_size=7500, 

num_hidden_layers=1) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_7500_H

L_EXPERIMENTS", 

                                                    usecase="RBS_7500_HL2

", 

                                                    replay_size=7500, 

num_hidden_layers=2) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_7500_H

L_EXPERIMENTS", 

                                                    usecase="RBS_7500_HL3

", 

                                                    replay_size=7500, 

num_hidden_layers=3) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_7500_H

L_EXPERIMENTS", 

                                                    usecase="RBS_7500_HL4

", 

                                                    replay_size=7500, 

num_hidden_layers=4) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_7500_H

L_EXPERIMENTS", 

                                                    usecase="RBS_7500_HL5

", 

                                                    replay_size=7500, 

num_hidden_layers=5) 

         

        experiments.plotExperiment(experiment_name="RBS_7500_HL_EXPERIMEN

TS", 

                                   title="RBS_7500_HL_EXPERIMENTS (CORe50 

NICv2 - 391)") 

 

    elif args.exp_RBS_10000: 

        print("> Experiment: RBS_10000") 

 

        experiments.runHiddenLayersExperiment(experiment_name="RBS_10000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_10000_HL

0", 
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                                                    replay_size=10000, 

num_hidden_layers=0) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_10000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_10000_HL

1", 

                                                    replay_size=10000, 

num_hidden_layers=1) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_10000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_10000_HL

2", 

                                                    replay_size=10000, 

num_hidden_layers=2) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_10000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_10000_HL

3", 

                                                    replay_size=10000, 

num_hidden_layers=3) 

 

        experiments.runHiddenLayersExperiment(experiment_name="RBS_10000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_10000_HL

4", 

                                                    replay_size=10000, 

num_hidden_layers=4) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_10000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_10000_HL

5", 

                                                    replay_size=10000, 

num_hidden_layers=5) 

         

        experiments.plotExperiment(experiment_name="RBS_10000_HL_EXPERIME

NTS", 

                                    title="RBS_10000_HL_EXPERIMENTS 

(CORe50 NICv2 - 391)") 

 

    elif args.exp_RBS_15000: 

        print("> Experiment: RBS_15000") 

 

        experiments.runHiddenLayersExperiment(experiment_name="RBS_15000_

HL_EXPERIMENTS", 
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                                                    usecase="RBS_15000_HL

0", 

                                                    replay_size=15000, 

num_hidden_layers=0) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_15000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_15000_HL

1", 

                                                    replay_size=15000, 

num_hidden_layers=1) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_15000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_15000_HL

2", 

                                                    replay_size=15000, 

num_hidden_layers=2) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_15000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_15000_HL

3", 

                                                    replay_size=15000, 

num_hidden_layers=3) 

 

        experiments.runHiddenLayersExperiment(experiment_name="RBS_15000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_15000_HL

4", 

                                                    replay_size=15000, 

num_hidden_layers=4) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_15000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_15000_HL

5", 

                                                    replay_size=15000, 

num_hidden_layers=5) 

         

        experiments.plotExperiment(experiment_name="RBS_15000_HL_EXPERIME

NTS", 

                                    title="RBS_15000_HL_EXPERIMENTS 

(CORe50 NICv2 - 391)") 

 

    elif args.exp_RBS_20000: 

        print("> Experiment: RBS_20000") 
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        experiments.runHiddenLayersExperiment(experiment_name="RBS_20000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_20000_HL

0", 

                                                    replay_size=20000, 

num_hidden_layers=0) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_20000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_20000_HL

1", 

                                                    replay_size=20000, 

num_hidden_layers=1) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_20000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_20000_HL

2", 

                                                    replay_size=20000, 

num_hidden_layers=2) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_20000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_20000_HL

3", 

                                                    replay_size=20000, 

num_hidden_layers=3) 

 

        experiments.runHiddenLayersExperiment(experiment_name="RBS_20000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_20000_HL

4", 

                                                    replay_size=20000, 

num_hidden_layers=4) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_20000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_20000_HL

5", 

                                                    replay_size=20000, 

num_hidden_layers=5) 

         

        experiments.plotExperiment(experiment_name="RBS_20000_HL_EXPERIME

NTS", 

                                    title="RBS_20000_HL_EXPERIMENTS 

(CORe50 NICv2 - 391)") 

 

    elif args.exp_RBS_30000: 
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        print("> Experiment: RBS_30000") 

 

        experiments.runHiddenLayersExperiment(experiment_name="RBS_30000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_30000_HL

0", 

                                                    replay_size=30000, 

num_hidden_layers=0) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_30000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_30000_HL

1", 

                                                    replay_size=30000, 

num_hidden_layers=1) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_30000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_30000_HL

2", 

                                                    replay_size=30000, 

num_hidden_layers=2) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_30000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_30000_HL

3", 

                                                    replay_size=30000, 

num_hidden_layers=3) 

 

        experiments.runHiddenLayersExperiment(experiment_name="RBS_30000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_30000_HL

4", 

                                                    replay_size=30000, 

num_hidden_layers=4) 

         

        experiments.runHiddenLayersExperiment(experiment_name="RBS_30000_

HL_EXPERIMENTS", 

                                                    usecase="RBS_30000_HL

5", 

                                                    replay_size=30000, 

num_hidden_layers=5) 

         

        experiments.plotExperiment(experiment_name="RBS_30000_HL_EXPERIME

NTS", 

                                    title="RBS_30000_HL_EXPERIMENTS 

(CORe50 NICv2 - 391)")     
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    else: 

        print("> No valid experiment option provided") 
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2.2 - Experiments class 

from models import ContinualLearningModel 

from data_loader import CORE50 

from utils import * 

import os 

os.environ['TF_GPU_ALLOCATOR'] = 'cuda_malloc_async' 

import tensorflow as tf 

from matplotlib import pyplot as plt 

import json 

 

DATASET_ROOT = 'C:/Users/nikol/Desktop/University/Year-

4/ADE/ThesisCodeExperiments/CORe50-Dataset/core50_128x128/' 

 

class Experiments: 

 

    def __init__(self): 

        print("> Experiments Initialized") 

 

    def plotExperiment(self,experiment_name,title): 

        min_val = 100 

        max_val = 50 

        with open('experiments/' + experiment_name + '.json', ) as 

json_file: 

            usecases = json.load(json_file) 

            for usecase in usecases: 

                for key, value in usecase.items(): 

                    plt.plot(value['acc'], label=key) 

                    cur_min = min(value['acc']) 

                    cur_max = max(value['acc']) 

                    if cur_min < min_val: 

                        min_val = cur_min 

                    if cur_max > max_val: 

                        max_val = cur_max 

 

        plt.title(title) 

        plt.ylabel("Accuracy (%)") 

        plt.xlabel("Encountered Batches") 

        plt.yticks(np.arange(round(min_val), round(max_val)+10, 5)) 

        plt.grid() 

        plt.legend(loc='best') 

        #plt.show() 

        plt.savefig(experiment_name) 

     

    # Function used to store our experiment results in a json file 

    def storeExperimentOutputNew(self, experiment_name, usecase_name, 

accuracies, losses): 

        data = [] 
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        # Load previously recorded usescases 

        with open('experiments/' + experiment_name + '.json', ) as 

json_file: 

            data = json.load(json_file) 

 

        # Store new usecase 

        exp = dict() 

        exp[usecase_name] = dict() 

        exp[usecase_name]["acc"] = accuracies 

        exp[usecase_name]["loss"] = losses 

        data.append(exp) 

 

        # Write the updated data back to the file 

        with open('experiments/' + experiment_name + '.json', 'w') as 

outfile: 

            json.dump(data, outfile) 

 

    def print_trainable_status(self, model): 

        for layer in model.layers: 

            print(f"{layer.name}: {layer.trainable}") 

 

    # New implementation with hidden layers 

    def runHiddenLayersExperiment(self, experiment_name, usecase, 

replay_size, num_hidden_layers): 

        print("> Running Hidden Layers experiment") 

 

        dataset = CORE50(root=DATASET_ROOT, scenario="nicv2_391", 

preload=False) 

        test_x, test_y = dataset.get_test_set() 

        test_x = preprocess(test_x) 

 

        # Building main model 

        cl_model = ContinualLearningModel(image_size=128, 

name=usecase,replay_buffer=replay_size) 

        cl_model.buildBaseHidden(hidden_layers=num_hidden_layers) 

        cl_model.buildHeadHidden(sl_units=128, 

hidden_layers=num_hidden_layers) 

        cl_model.buildCompleteModel() 

 

        #### Used for debugging #### 

 

        # # After building the complete model 

        # print("Base model trainable status:") 

        # self.print_trainable_status(cl_model.base) 

 

        # print("\nHead model trainable status:") 

        # self.print_trainable_status(cl_model.head) 
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        # print("\nComplete model trainable status:") 

        # self.print_trainable_status(cl_model.model) 

 

        # print("\nComplete model summary:") 

        # cl_model.model.summary() 

 

        # # Stop the program 

        # exit() 

 

        #### End of debugging #### 

 

        accuracies = [] 

        losses = [] 

 

        # Training, loop over the training incremental batches 

        for i, train_batch in enumerate(dataset): 

            train_x, train_y = train_batch 

            train_x = preprocess(train_x) 

 

            print("----------- batch {0} -------------".format(i)) 

            print("train_x shape: {}, train_y shape: {}" 

                  .format(train_x.shape, train_y.shape)) 

 

            if i == 1: 

                # Previous values on both: 0.00005 

                # A higher learning rate on the head such as 0.001 works 

way better especially with the latent replay buffer 

                # Increasing the learning rate even more to e.g. 0.01 

makes the model unstable since on some batches we have huge loss 

                # but the overall accuracy remains more or less the same 

                cl_model.model.compile(optimizer=tf.keras.optimizers.SGD(

learning_rate=0.00005), 

                                       loss='sparse_categorical_crossentr

opy', metrics=['accuracy']) 

                cl_model.head.compile(optimizer=tf.keras.optimizers.SGD(l

earning_rate=0.001), 

                                      loss='sparse_categorical_crossentro

py', metrics=['accuracy']) 

 

            # Padding of the first batch. Unsure about this 

            if i == 0: 

                (train_x, train_y), it_x_ep = pad_data([train_x, 

train_y], 128) 

             

            shuffle_in_unison([train_x, train_y], in_place=True) 

 

            print("---------------------------------") 
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            features = cl_model.feature_extractor.predict(train_x) 

 

            # Combining the new samples and the replay buffer samples 

before training 

            print("> Combining new samples and replay buffer samples 

before training") 

            if i >= 1: 

                # Get replay samples 

                replay_x = np.array(cl_model.replay_representations_x) 

                replay_y = np.array(cl_model.replay_representations_y) 

 

                # Combine new samples with replay samples 

                combined_x = np.concatenate((features, replay_x), axis=0) 

                combined_y = np.concatenate((train_y, replay_y), axis=0) 

            else: 

                combined_x = features 

                combined_y = train_y 

 

            # Shuffle the combined samples 

            shuffle_in_unison([combined_x, combined_y], in_place=True) 

 

            print("combined-x shape: {}, combined-y shape: 

{}".format(combined_x.shape, combined_y.shape)) 

 

            # Fit the head on the combined samples 

            cl_model.head.fit(combined_x, combined_y, epochs=4, 

verbose=0) 

 

            #### Used if we want to fit the head on the new samples and 

the replay buffer samples separately #### 

 

            # cl_model.head.fit(features, train_y, epochs=4, verbose=0) 

            # if i >= 1: 

            #     cl_model.replay() 

            # cl_model.storeRepresentations(train_x, train_y) 

 

            #### End of the above #### 

 

            # Store the representations of the new samples in the replay 

buffer 

            cl_model.storeRepresentationsNativeRehearsal(train_x, 

train_y, i+1) 

 

            # Evaluate the model on the test set 

            loss, acc = cl_model.model.evaluate(test_x, test_y) 

            accuracies.append(round(acc*100,1)) 

            losses.append(loss) 



51 

 

            print("> ", cl_model.name, " Accuracy: ", acc, " Loss: ", 

loss) 

            print("---------------------------------") 

 

        # Store results in json file 

        self.storeExperimentOutputNew(experiment_name=experiment_name, 

                                   usecase_name=usecase, 

                                   accuracies=accuracies, 

                                   losses=losses) 
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2.3 – Models class 

import tensorflow as tf 

from keras import layers 

from keras.regularizers import l2 

import numpy as np 

import random 

import gc 

 

class ContinualLearningModel: 

 

    def __init__(self,image_size=224,name="None",replay_buffer=3000): 

        print("> Continual Learning Model Initiated") 

        # base = bases.MobileNetV2Base(image_size=224) 

        self.image_size = image_size 

        self.name = name 

        self.replay_representations_x = [] 

        self.replay_representations_y = [] 

        self.replay_buffer = replay_buffer # The number of patterns 

stored 

 

    # Base of our model. We remove the last N layers of MobileNetV2     

    def buildBaseHidden(self,hidden_layers=0): 

        baseModel = 

tf.keras.applications.MobileNetV2(input_shape=(self.image_size, 

self.image_size, 3), 

                                                      alpha=1.0, 

                                                      include_top=False, 

                                                      weights='imagenet') 

         

        # Batch normalization layers replaced with bactch renormalization 

layers - Better for CL 

        for l in baseModel.layers: 

            if ('_BN' in l.name): 

                l.renorm = True 

         

        baseModel.trainable = False 

 

        base_model_truncated = tf.keras.Model(inputs=baseModel.input, 

outputs=baseModel.layers[-hidden_layers-1].output) 

        self.base = base_model_truncated 

 

        inputs = tf.keras.Input(shape=(self.image_size, self.image_size, 

3)) 

        f = inputs 

        f_out = self.base(f) 

        self.feature_extractor = tf.keras.Model(f, f_out) 
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        self.feature_extractor.compile(optimizer=tf.keras.optimizers.SGD(

learning_rate=0.001), loss='categorical_crossentropy', 

                                       metrics=['accuracy']) 

 

    # Head of our model. We add N layers to the end of MobileNetV2 + a 

dense layer + softmax layer 

    def buildHeadHidden(self, sl_units=32, hidden_layers=0): 

 

        baseModel = 

tf.keras.applications.MobileNetV2(input_shape=(self.image_size, 

self.image_size, 3), 

                                                      alpha=1.0, 

                                                      include_top=False, 

                                                      weights='imagenet') 

 

        self.sl_units = sl_units 

 

        # Create a new head model 

        self.head = tf.keras.Sequential() 

 

        # Add the last N layers of MobileNetV2 to the head model 

        for i in range(-hidden_layers, 0): 

            layer = baseModel.layers[i] 

            layer.trainable = True 

            self.head.add(layer) 

 

        self.head.add(layers.Flatten(input_shape=(4, 4, 1280))) 

        # Removed the dense layer since we add Hidden Layers from 

MobileNetV2 now 

        self.head.add(layers.Dense( 

        units=sl_units, 

        activation='relu', 

        kernel_regularizer=l2(0.01), 

        bias_regularizer=l2(0.01) 

        )) 

 

        # Softmax layer (Last layer) 

        self.head.add(layers.Dense( 

            units=50,  # Number of classes 

            activation='softmax', 

            kernel_regularizer=l2(0.01), 

            bias_regularizer=l2(0.01)), 

        ) 

 

        # It's worth noting that the compiling of the head and the model 

here is probably redundant 

        # since we compile the head and model again on the experiments 

function with a different learning rate 
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        self.head.compile(optimizer=tf.keras.optimizers.SGD(learning_rate

=0.001), loss='sparse_categorical_crossentropy', 

                          metrics=['accuracy'])     

 

    def buildCompleteModel(self): 

        inputs = tf.keras.Input(shape=(self.image_size, self.image_size, 

3)) 

        x = inputs 

        x = self.base(x) 

        outputs = self.head(x) 

        self.model = tf.keras.Model(inputs, outputs) 

        self.model.compile(optimizer=tf.keras.optimizers.SGD(learning_rat

e=0.001), loss='sparse_categorical_crossentropy', 

                           metrics=['accuracy']) 

 

    # Refreshing replay memory with new samples and removing old ones if 

necessary 

    # Fixed bug with patterns being a little less than they should be 

    # This bug I think that it is caused because the replacement batch 

size is calculated as a percentage of the replay buffer 

    # Which is greater than the actual number of patterns stored in the 

replay buffer 

    #### Old function #### 

    def storeRepresentations(self, train_x, train_y): 

        # We need to add replay representations and replacement batch 

size not train_x 

        replacement_batch_size = int(self.replay_buffer * 0.015) # 1.5% 

sample replacement 

        replay_memory_size = len(self.replay_representations_x) + 

replacement_batch_size 

 

        # It's good to know that the first batch has around 3000+ samples  

        # The rest are around 300ish 

        # The last few batches don't introduce new classes 

        # If we want to look in depth each training batch contents we can 

check batches filelists in CORe50 

        # https://vlomonaco.github.io/core50/index.html#download 

 

        # For testing purposes 

        # print("Replay Memory Size: ",replay_memory_size) 

        # print("replay representation x: 

",len(self.replay_representations_x)) 

        # print("train x: ",len(train_x)) 

 

        # A check to see if the replacement batch size is greater than 

the number of samples in a batch 

        # This could happen for e.g buffer sizes of 30000 since the batch 

size is around 300 samples and 1.5% of 30000 is 450 
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        if replacement_batch_size > len(train_x): 

            replacement_batch_size = train_x 

 

        # If the replay buffer will overfill we need to remove some old 

samples 

        if replay_memory_size >= self.replay_buffer: 

 

            x_sample, y_sample = zip(*random.choices(list(zip(train_x, 

train_y)), k=replacement_batch_size)) 

            x_sample = self.feature_extractor.predict(np.array(x_sample)) 

 

            # Removing old samples 

            patterns_to_delete = 

random.sample(range(len(self.replay_representations_x)), 

replacement_batch_size) 

            for pat in sorted(patterns_to_delete, reverse=True): 

                del self.replay_representations_x[pat] 

                del self.replay_representations_y[pat] 

 

        # If it will not overfill we just add the new samples 

        else: 

            x_sample, y_sample = zip(*random.choices(list(zip(train_x, 

train_y)), k=replacement_batch_size)) 

            x_sample = self.feature_extractor.predict(np.array(x_sample)) 

 

        # Adding new ones 

        for i in range(len(x_sample)): 

            self.replay_representations_x.append(x_sample[i]) 

            self.replay_representations_y.append(y_sample[i]) 

 

        gc.collect() 

        print("Replay X: ",len(self.replay_representations_x)," Replay Y: 

",len(self.replay_representations_y)) 

 

    # Different approach where we follow the algorithm as shown in Latent 

Replay for Real-Time Continual Learning 

    # Performs much better than the previous approach 

    # We essentially reduce the replacement batch size the further we go 

into our trianing batches 

    # https://arxiv.org/abs/1912.01100.pdf 

    def storeRepresentationsNativeRehearsal(self, train_x, train_y, 

batch_num): 

 

        # The replacement batch size will progressively decrease to keep 

a balanced 

        # contribution from the different training batches. We don't have 

class balancing 

        replacement_batch_size = int(self.replay_buffer / batch_num) 
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        # print("Replacement Batch Size: ",replacement_batch_size) 

        # new_replay_memory_size = len(self.replay_representations_x) + 

replacement_batch_size 

        # print("Current Replay Memory Size: 

",len(self.replay_representations_x)) 

 

        # A check to see if the replacement batch size is greater than 

the number of samples in a batch 

        # This will happen in the first few training batches and 

depending on how big the replay buffer is 

        if replacement_batch_size > len(train_x): 

            replacement_batch_size = len(train_x) 

 

        # If the replay buffer will overfill we need to remove some old 

samples 

        # Bare in mind with current implementation, the buffer might end 

up saving a little bit more than the shown replay buffer size (it's not 

an issue) 

        if batch_num != 1 and (len(self.replay_representations_x) + 

replacement_batch_size) >= self.replay_buffer: 

 

            x_sample, y_sample = zip(*random.choices(list(zip(train_x, 

train_y)), k=replacement_batch_size)) 

            x_sample = self.feature_extractor.predict(np.array(x_sample)) 

 

            # Removing old samples 

            patterns_to_delete = 

random.sample(range(len(self.replay_representations_x)), 

replacement_batch_size) 

            for pat in sorted(patterns_to_delete, reverse=True): 

                del self.replay_representations_x[pat] 

                del self.replay_representations_y[pat] 

 

        # If replay buffer will not overfill we just add the new samples 

        else: 

            x_sample, y_sample = zip(*random.choices(list(zip(train_x, 

train_y)), k=replacement_batch_size)) 

            x_sample = self.feature_extractor.predict(np.array(x_sample)) 

 

        # Adding new samples 

        for i in range(len(x_sample)): 

            self.replay_representations_x.append(x_sample[i]) 

            self.replay_representations_y.append(y_sample[i]) 

 

        # Essential to call gc otherwise we get out of memory errors 

        gc.collect() 
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        print("Replay X: ",len(self.replay_representations_x)," Replay Y: 

",len(self.replay_representations_y)) 

 

    # Reduntant function since we mix the replay samples with the new 

samples and train them together in experiments function 

    def replay(self): 

 

        replay_x = np.array(self.replay_representations_x) 

        replay_y = np.array(self.replay_representations_y) 

 

        print("> REPLAYING") 

        # Fitting for just 1 epoch 

        self.head.fit(replay_x,replay_y,epochs=1,verbose=0)  
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2.4 – Data_Loader class 

# IMPORTANT NOTE - THIS CODE WAS NOT WRITTEN BY THE AUTHOR OF THE PAPER 

SUBJECT TO DOUBLE-BLIND REVIEW 

# CODE USED FROM PAPER: https://arxiv.org/abs/1912.01100 

#!/usr/bin/env python 

# -*- coding: utf-8 -*- 

 

#########################################################################

####### 

# Copyright (c) 2020. Vincenzo Lomonaco, Gabriele Graffieti, 

Lorenzo           # 

# Pellegrini, Davide Maltoni. All rights 

reserved.                             # 

# See the accompanying LICENSE file for 

terms.                                 # 

#                                                                         

     # 

# Date: 01-04-

2020                                                             # 

# Authors: Vincenzo Lomonaco, Gabriele Graffieti, Lorenzo Pellegrini, 

Davide   # 

# 

Maltoni.                                                                 

    # 

# E-mail: 

vincenzo.lomonaco@unibo.it                                           # 

# Website: 

vincenzolomonaco.com                                                # 

#########################################################################

####### 

 

""" Data Loader for the CORe50 Dataset """ 

 

# Python 2-3 compatible 

from __future__ import print_function 

from __future__ import division 

from __future__ import absolute_import 

 

# other imports 

import numpy as np 

import pickle as pkl 

import os 

import logging 

from hashlib import md5 

from PIL import Image 
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class CORE50(object): 

    """ CORe50 Data Loader calss 

 

    Args: 

        root (string): Root directory of the dataset where 

``core50_128x128``, 

            ``paths.pkl``, ``LUP.pkl``, ``labels.pkl``, 

``core50_imgs.npz`` 

            live. For example ``~/data/core50``. 

        preload (string, optional): If True data is pre-loaded with look-

up 

            tables. RAM usage may be high. 

        scenario (string, optional): One of the three scenarios of the 

CORe50 

            benchmark ``ni``, ``nc``, ``nic``, `nicv2_79`,``nicv2_196`` 

and 

             ``nicv2_391``. 

        train (bool, optional): If True, creates the dataset from the 

training 

            set, otherwise creates from test set. 

        cumul (bool, optional): If True the cumulative scenario is 

assumed, the 

            incremental scenario otherwise. Practically speaking 

``cumul=True`` 

            means that for batch=i also batch=0,...i-1 will be added to 

the 

            available training data. 

        run (int, optional): One of the 10 runs (from 0 to 9) in which 

the 

            training batch order is changed as in the official benchmark. 

        start_batch (int, optional): One of the training incremental 

batches 

            from 0 to max-batch - 1. Remember that for the ``ni``, ``nc`` 

and 

            ``nic`` we have respectively 8, 9 and 79 incremental batches. 

If 

            ``train=False`` this parameter will be ignored. 

    """ 

 

    nbatch = { 

        'ni': 8, 

        'nc': 9, 

        'nic': 79, 

        'nicv2_79': 79, 

        'nicv2_196': 196, 

        'nicv2_391': 391 

    } 
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    def __init__(self, root='', preload=False, scenario='ni', 

cumul=False, 

                 run=0, start_batch=0): 

        """" Initialize Object """ 

 

        self.root = os.path.expanduser(root) 

        self.preload = preload 

        self.scenario = scenario 

        self.cumul = cumul 

        self.run = run 

        self.batch = start_batch 

 

        if preload: 

            print("Loading data...") 

            bin_path = os.path.join(root, 'core50_imgs.bin') 

            if os.path.exists(bin_path): 

                with open(bin_path, 'rb') as f: 

                    self.x = np.fromfile(f, dtype=np.uint8) \ 

                        .reshape(164866, 128, 128, 3) 

 

            else: 

                with open(os.path.join(root, 'core50_imgs.npz'), 'rb') as 

f: 

                    npzfile = np.load(f) 

                    self.x = npzfile['x'] 

                    print("Writing bin for fast reloading...") 

                    self.x.tofile(bin_path) 

 

        print("Loading paths...") 

        with open(os.path.join(root, 'paths.pkl'), 'rb') as f: 

            self.paths = pkl.load(f) 

 

        print("Loading LUP...") 

        with open(os.path.join(root, 'LUP.pkl'), 'rb') as f: 

            self.LUP = pkl.load(f) 

 

        print("Loading labels...") 

        with open(os.path.join(root, 'labels.pkl'), 'rb') as f: 

            self.labels = pkl.load(f) 

 

    def __iter__(self): 

        return self 

 

    def __next__(self): 

        """ Next batch based on the object parameter which can be also 

changed 

            from the previous iteration. """ 
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        scen = self.scenario 

        run = self.run 

        batch = self.batch 

 

        if self.batch == self.nbatch[scen]: 

            raise StopIteration 

 

        # Getting the right indexis 

        if self.cumul: 

            train_idx_list = [] 

            for i in range(self.batch + 1): 

                train_idx_list += self.LUP[scen][run][i] 

        else: 

            train_idx_list = self.LUP[scen][run][batch] 

 

        # loading data 

        if self.preload: 

            train_x = np.take(self.x, train_idx_list, axis=0)\ 

                      .astype(np.float32) 

        else: 

            print("Loading data...") 

            # Getting the actual paths 

            train_paths = [] 

            for idx in train_idx_list: 

                train_paths.append(os.path.join(self.root, 

self.paths[idx])) 

            # loading imgs 

            train_x = 

self.get_batch_from_paths(train_paths).astype(np.float32) 

 

        # In either case we have already loaded the y 

        if self.cumul: 

            train_y = [] 

            for i in range(self.batch + 1): 

                train_y += self.labels[scen][run][i] 

        else: 

            train_y = self.labels[scen][run][batch] 

 

        train_y = np.asarray(train_y, dtype=np.float32) 

 

        # Update state for next iter 

        self.batch += 1 

 

        return (train_x, train_y) 

 

    def get_test_set(self, reduced=True): 

        """ Return the test set (the same for each inc. batch). """ 
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        scen = self.scenario 

        run = self.run 

 

        test_idx_list = self.LUP[scen][run][-1] 

 

        if self.preload: 

            test_x = np.take(self.x, test_idx_list, 

axis=0).astype(np.float32) 

        else: 

            # test paths 

            test_paths = [] 

            for idx in test_idx_list: 

                test_paths.append(os.path.join(self.root, 

self.paths[idx])) 

 

            # test imgs 

            test_x = 

self.get_batch_from_paths(test_paths).astype(np.float32) 

 

        test_y = self.labels[scen][run][-1] 

        test_y = np.asarray(test_y, dtype=np.float32) 

 

        if reduced: 

            # reduce test set 20 substampling 

            idx = range(0, test_y.shape[0], 20) 

            test_x = np.take(test_x, idx, axis=0) 

            test_y = np.take(test_y, idx, axis=0) 

 

        return test_x, test_y 

 

    next = __next__  # python2.x compatibility. 

 

    @staticmethod 

    def get_batch_from_paths(paths, compress=False, snap_dir='', 

                             on_the_fly=True, verbose=False): 

        """ Given a number of abs. paths it returns the numpy array 

        of all the images. """ 

 

        # Getting root logger 

        log = logging.getLogger('mylogger') 

 

        # If we do not process data on the fly we check if the same train 

        # filelist has been already processed and saved. If so, we load 

it 

        # directly. In either case we end up returning x and y, as the 

full 

        # training set and respective labels. 

        num_imgs = len(paths) 
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        hexdigest = md5(''.join(paths).encode('utf-8')).hexdigest() 

        log.debug("Paths Hex: " + str(hexdigest)) 

        loaded = False 

        x = None 

        file_path = None 

 

        if compress: 

            file_path = snap_dir + hexdigest + ".npz" 

            if os.path.exists(file_path) and not on_the_fly: 

                loaded = True 

                with open(file_path, 'rb') as f: 

                    npzfile = np.load(f) 

                    x, y = npzfile['x'] 

        else: 

            x_file_path = snap_dir + hexdigest + "_x.bin" 

            if os.path.exists(x_file_path) and not on_the_fly: 

                loaded = True 

                with open(x_file_path, 'rb') as f: 

                    x = np.fromfile(f, dtype=np.uint8) \ 

                        .reshape(num_imgs, 128, 128, 3) 

 

        # Here we actually load the images. 

        if not loaded: 

            # Pre-allocate numpy arrays 

            x = np.zeros((num_imgs, 128, 128, 3), dtype=np.uint8) 

 

            for i, path in enumerate(paths): 

                if verbose: 

                    print("\r" + path + " processed: " + str(i + 1), 

end='') 

                x[i] = np.array(Image.open(path)) 

 

            if verbose: 

                print() 

 

            if not on_the_fly: 

                # Then we save x 

                if compress: 

                    with open(file_path, 'wb') as g: 

                        np.savez_compressed(g, x=x) 

                else: 

                    x.tofile(snap_dir + hexdigest + "_x.bin") 

 

        assert (x is not None), 'Problems loading data. x is None!' 

 

        return x 
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if __name__ == "__main__": 

 

    # Create the dataset object for example with the "NIC_v2 - 79 

benchmark" 

    # and assuming the core50 location in ~/core50/128x128/ 

    dataset = CORE50(root='/home/admin/Ior50N/128', scenario="nicv2_79") 

 

    # Get the fixed test set 

    test_x, test_y = dataset.get_test_set() 

 

    # loop over the training incremental batches 

    for i, train_batch in enumerate(dataset): 

        # WARNING train_batch is NOT a mini-batch, but one incremental 

batch! 

        # You can later train with SGD indexing train_x and train_y 

properly. 

        train_x, train_y = train_batch 

 

        print("----------- batch {0} -------------".format(i)) 

        print("train_x shape: {}, train_y shape: {}" 

              .format(train_x.shape, train_y.shape)) 

 

        # use the data 

        pass 
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2.5 – Utils class 

import numpy as np 

 

def preprocess(images, scale=True, norm=False): 

    if scale: 

        # convert to float in [0, 1] 

        images = images / 255 

 

    if norm: 

        # normalize 

        images[:, :, :, 0] = ((images[:, :, :, 0] - 0.485) / 0.229) 

        images[:, :, :, 1] = ((images[:, :, :, 1] - 0.456) / 0.224) 

        images[:, :, :, 2] = ((images[:, :, :, 2] - 0.406) / 0.225) 

 

    return images 

 

def shuffle_in_unison(dataset, seed=None, in_place=False): 

    """ 

    Shuffle two (or more) list in unison. It's important to shuffle the 

images 

    and the labels maintaining their correspondence. 

 

        Args: 

            dataset (dict): list of shuffle with the same order. 

            seed (int): set of fixed Cifar parameters. 

            in_place (bool): if we want to shuffle the same data or we 

want 

                             to return a new shuffled dataset. 

        Returns: 

            list: train and test sets composed of images and labels, if 

in_place 

                  is set to False. 

    """ 

 

    if seed: 

        np.random.seed(seed) 

    rng_state = np.random.get_state() 

    new_dataset = [] 

    for x in dataset: 

        if in_place: 

            np.random.shuffle(x) 

        else: 

            new_dataset.append(np.random.permutation(x)) 

        np.random.set_state(rng_state) 

 

    if not in_place: 

        return new_dataset 
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def pad_data(dataset, mb_size): 

    """ 

    Padding all the matrices contained in dataset to suit the mini-batch 

    size. We assume they have the same shape. 

 

        Args: 

            dataset (str): sets to pad to reach a multile of mb_size. 

            mb_size (int): mini-batch size. 

        Returns: 

            list: padded data sets 

            int: number of iterations needed to cover the entire training 

set 

                 with mb_size mini-batches. 

    """ 

 

    num_set = len(dataset) 

    x = dataset[0] 

    # computing test_iters 

    n_missing = x.shape[0] % mb_size 

    if n_missing > 0: 

        surplus = 1 

    else: 

        surplus = 0 

    it = x.shape[0] // mb_size + surplus 

 

    # padding data to fix batch dimentions 

    if n_missing > 0: 

        n_to_add = mb_size - n_missing 

        for i, data in enumerate(dataset): 

            dataset[i] = np.concatenate((data[:n_to_add], data)) 

    if num_set == 1: 

        dataset = dataset[0] 

 

    return dataset, it 
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Image Sources 

Figure 2.1: https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1 

Figure 2.2: https://towardsdatascience.com/applied-deep-learning-part-1-artificial-

neural-networks-d7834f67a4f6 

Figure 2.3: https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-

learning-9689331ba092 

Figure 2.4: https://towardsdatascience.com/convolutional-neural-networks-explained-

9cc5188c4939 

Figure 2.5: https://towardsdatascience.com/convolutional-neural-networks-explained-

9cc5188c4939 

Figure 2.6: https://towardsdatascience.com/convolutional-neural-networks-explained-

9cc5188c4939 

Figure 2.7: https://medium.com/analytics-vidhya/image-classification-with-mobilenet-

cc6fbb2cd470 

Figure 2.8: https://medium.com/analytics-vidhya/efficientdet-scalable-and-efficient-

object-detection-384a5df9011a 

Figure 2.9: https://programmathically.com/an-introduction-to-neural-network-loss-

functions/ 

Figure 2.10: https://programmathically.com/an-introduction-to-neural-network-loss-

functions/ 

Figure 2.11: Taken from laboratory lectures of CS442 course at University of Cyprus 

Figure 2.12: Taken from laboratory lectures of CS442 course at University of Cyprus 

Figure 2.13: Taken from laboratory lectures of CS442 course at University of Cyprus 

Figure 2.14: Taken from laboratory lectures of CS442 course at University of Cyprus 

Figure 2.15 – 2.16: Overfitting and Underfitting in Machine Learning - Javatpoint  

Figure 2.17 – 2.20:  Continual Learning: On Machines that can Learn Continually - 

Continual Learning Course (continualai.org) 
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Figure 3.1 – 3.3: Example on-device model personalization with TensorFlow Lite — 

The TensorFlow Blog 

Figure 3.4: https://arxiv.org/abs/2105.01946.pdf  

Figure 3.5: examples/README.md at master · tensorflow/examples · GitHub 

Figure 3.6 – 3.16: Snapshots from the application that was made as part of this thesis 

Figure 4.1 – 4.4: [2105.01946] Continual Learning on the Edge with TensorFlow Lite 

(arxiv.org) 

https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html
https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html
https://arxiv.org/abs/2105.01946.pdf
https://github.com/tensorflow/examples/blob/master/lite/examples/model_personalization/README.md
https://arxiv.org/abs/2105.01946
https://arxiv.org/abs/2105.01946

