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Abstract 

 

Cache replacement policies play a crucial role in optimizing cache efficiency and 

performance in modern computer architectures. Traditional policies like LRU and 

FIFO have limitations in meeting the demands of complex workloads and diverse 

access patterns. This research investigates the viability of automating the search 

for specialized cache replacement policies using a genetic algorithm. The 

objective is to optimize cache hit rates and minimize cache trashing for specific 

access patterns. 

Through a population-based evolutionary algorithm, the genetic search approach 

explores a vast search space of potential cache replacement policies and evaluates 

their performance through simulations. The algorithm evolves and refines the 

policies over multiple generations, converging towards more effective solutions. 

Specifically, this thesis focuses on the application of genetic search to RRIP (Re-

Reference Interval Prediction) replacement policies. 

 

The methodology encompasses a detailed investigation of the genetic search 

process, including the experimental setup. Simulations are conducted to compare 

the performance of evolved specialized policies against traditional replacement 

policies. The results demonstrate the superiority of the evolved policies, achieving 

an average improvement of 1.38% over LRU and 1.05% over SRRIP in terms of 

average instructions per cycle (IPC) over 20 Benchmarks. These findings 

highlight the potential benefits of specializing a replacement policy for different 

cache access types and provide valuable insights into cache replacement policy 

optimization.  

Overall, this research contributes to the advancement of cache replacement policy 

optimization. By automating the search for specialized policies, it opens up new 

possibilities for improving cache hit rates and overall system performance. Future 

research directions are discussed, emphasizing the need for continued exploration 

and refinement of specialized cache replacement policies to meet the evolving 

demands of modern computer architectures. 
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1.1 Introduction 

 

Cache replacement policies play a crucial role in the efficiency and performance 

of cache systems in modern computer architectures. These policies control the 

selection of cache lines to be evicted when the cache becomes full when a new line 

is fetched. Traditional policies such as LRU ( Least Recently Used) and FIFO 

(First-In-First-Out), have been widely studied and implemented. However, with the 

increasing complexity of workloads and diverse access patterns, there is a growing 

need for specialized cache replacement policies tailored to specific cache access 

types. 

The objective of this research is to investigate the viability of automating the search 

for a specialized cache replacement policy through the use of a genetic algorithm 

and potentially yield performance benefits. By employing genetic search 

algorithms, we aim to discover efficient cache replacement policies that optimize 

the cache hit rate and minimize cache trashing for specific types of cache accesses. 

The motivation behind this research comes from the limitations of existing cache 

replacement policies. While traditional policies are general-purpose and can 

provide reasonable performance in many scenarios, they may not be optimal for 

specific cache access patterns. By automating the search for specialized policies, 
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we can explore new possibilities and potentially achieve higher cache hit rates and 

improved overall system performance. 

To accomplish our research goal, we will utilize a genetic search approach that 

makes use of a population-based evolutionary algorithm. This approach allows us 

to explore a large search space of potential cache replacement policies and 

evaluates their performance through simulations. The genetic search algorithm will 

evolve and refine the cache replacement policies over multiple generations, 

gradually converging towards more effective solutions. 

In this thesis, we will present a detailed investigation of the genetic search on RRIP 

(Re-Reference Interval Prediction) replacement policies. We will outline the 

methodology, describe the experimental setup, and present the results of our 

simulations, comparing the performance of evolved specialized policies against 

traditional replacement policies. Finally, we will discuss insights that derive from 

our findings, and possible future research in cache replacement policy 

optimization. 

 

1.2 Outline 

 

This paper consists of  seven chapters and is organized as follows. Chapter 1 was 

the introduction which presents the significance of optimizing cache replacement 

policies and posing the research question whether automating the search for 

specialized policies can yield performance benefits. Chapter 2 presents the 

background knowledge someone will need in order to understand this work. 

Chapter 3 presents the frameworks and methodology, it describes the benchmark 

suite used to evaluate candidate policies, analyzes the frameworks and the 

evaluation methodology used in our research. Chapter 4 describes how we 

represent a replacement policy as a genome and the interface created to join the 

genetic algorithm to the microarchitecture simulator. In Chapter 5 we evaluate the 

solutions from our search and compare them to traditional replacement policies. In 

Chapter 6 we discuss research related to ours and what differentiates us. Chapter 7 

concludes this work and discusses future work. 
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Chapter 2 

 

Background 

 

 

 

    2.1 Modern CPUs .......................................................................................................... 3 

    2.2  Multilevel Cache Hierarchy ................................................................................... 4 

    2.3 Replacement Policies - SRRIP ............................................................................... 5 

    2.4 Genetic Algorithms ................................................................................................. 7 

    2.5  Simulators .............................................................................................................. 8 

 

 

2.1 Modern CPUs 

 

Modern central processing units (CPUs) play a crucial role in driving the 

performance of today's computing systems. These microprocessors have seen great 

advancements in the past decades to deliver exceptional processing power and 

efficiency. When a program is executed, the CPU undertakes a series of operations. 

It starts by fetching instructions from memory, utilizing various levels of cache to 

minimize data retrieval time and improve overall performance. The CPU then 

decodes the instructions in order to understand their intended action and proceeds 

to execute the necessary calculations or operations. Throughout this process, the 

CPU effectively manages the flow of data, utilizing the cache hierarchy to store 

frequently accessed data and instructions closer to the CPU cores for faster 

retrieval. By intelligently utilizing caches, modern CPUs allow for faster program 

execution, resulting in better performance and enabling computers to efficiently 

handle a wide range of tasks with speed. In addition to these advancements, modern 

CPUs also feature simultaneous multithreading (SMT), also known as hyper-

threading. SMT enhances the CPU's multitasking capabilities by allowing a single 
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CPU core to handle multiple threads simultaneously. This technology has an impact 

on cache utilization as well. With SMT, the CPU core is shared among multiple 

threads, which means that each thread has access to a portion of the cache 

resources. The cache is divided and dynamically shared between the threads, 

ensuring that frequently accessed data and instructions are still stored closer to the 

CPU cores for faster retrieval. However, the cache resources are distributed among 

the threads, and if multiple threads compete for the same cache space, it can 

potentially lead to cache thrashing or increased cache misses, which may impact 

performance. By intelligently utilizing caches, modern CPUs optimize program 

execution speed. This results in enhanced overall performance, enabling computers 

to handle a wide range of tasks more efficiently. The combination of fast instruction 

fetching, decoding, and execution, along with cache utilization, allows modern 

CPUs to deliver swift and seamless computing experiences. 

 

 

2.2  Multilevel Cache Hierarchy 

 

Processors nowadays typically have three levels of cache L1, L2, and L3 (LLC) 

with each level providing different performance characteristics and serving a 

specific purpose in the memory hierarchy. L1 cache is the smallest and fastest cache 

of them all, located closest to the processor. It is usually split into separate 

instructions and data caches and is designed to provide very fast access to 

frequently used instructions and data. L2 cache is larger than L1 , which makes it 

slower than L1. It is designed to provide a large cache for frequently accessed data 

and instructions. Its larger size allows it to store more data than L1, which reduces 

the number of cache misses and improves overall performance. L3 cache is even 

larger than L2 and shared across all the cores on a processor. It is slower than L2 

but still faster than main memory and is designed to provide a large cache for shared 

data between cores. This can reduce the amount of traffic to main memory and 

improve overall performance. By using different sizes of caches, we can optimize 

performance by keeping frequently accessed data and instructions close to the 

processor while also reducing the number of cache misses and main memory 
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accesses. This can significantly improve overall performance and reduce power 

consumption. Figure 2.1 shows a 1-core processor with private IL1, DL1 and L2 

caches and a shared L3 cache. Each individual cache in the figure has its  own 

stream buffer used to prefetch data from lower levels of the cache hierarchy and  a 

miss status holding registers (MSHR) used to track outstanding requests that had a 

miss in the cache. 

 

Figure 2.1 Single Core Multilevel Cache 

 

 

2.3 Replacement Policies - SRRIP 

 

With programs nowadays requiring large amounts of data, caches are essential 

components in computer systems. Caches are small, fast memory systems that store 

frequently accessed data for quick access by the CPU. However, caches have 

limited size and capacity, and as a result they can become full quickly. To make 

room for new data, it is necessary to replace some of the existing data in the cache, 

this process is described as a replacement policy. Choosing the right replacement 

policy for a cache is critical because it can significantly impact the caches and the 



  6  

overall system’s performance. The primary objective of a replacement policy is to 

maximize the cache hit rate, which is the percentage of memory accesses that are 

satisfied by the cache. There are various replacement policies currently available, 

such as LRU (Least Recently Used), PLRU (Pseudo Least Recently Used), LFU 

(Least Frequently Used), MRU(Most Recently Uses), RRIP (Re-reference Interval 

Prediction) which have their own advantages and disadvantages. The best choice 

of policy will depend on the specific requirements of the system and the workload 

being executed. Moreover, when choosing a cache replacement policy, we should 

also note that the properties of the cache (write-through, write-back, write-allocate, 

write-no-allocate) also have an impact on what is the best choice of policy, as these 

characteristics change the behavior of the cache and in turn the optimal replacement 

policy for it. 

 

In this paper we will use the Re-reference interval prediction policy (RRIP) and 

most specifically SRRIP which is a cache replacement policy that uses a history-

based approach to determine the usefulness of a cache block. Traditional 

replacement policies such as LRU and FIFO focus on the recency or frequency of 

a block accesses, but SRRIP goes a step further by tracking the re-reference 

intervals of each block. The re-reference interval refers to the time between two 

consecutive references to a block, and it provides valuable information about the 

temporal locality of the block. SRRIP divides the re-reference intervals into 

different classes, where each class corresponds to a different level of usefulness. 

The class of a block is determined by its re-reference interval value and ranges 

from 0 to N, with 0 being the most recently referenced and N being the least 

recently referenced. Whenever a block is accessed, its value is reset to its minimum 

value (highest class), indicating that the block is recently used. As time progresses 

and the block remains untouched, the counter gradually increases through the 

process of finding which block to evict. An eviction occurs when the cache is full 

and a new block needs to be inserted, the block with the maximum value is evicted 

but if there not blocks currently matching these criteria then the value of all blocks 

in the set is increased until a block matches the eviction criteria. Figure 2.2 shows 

how LRU, NRU and SRRIP behave on the same access pattern. This approach has 



  7  

proven effective in adapting to changing access patterns and making informed 

eviction decisions. In addition, SRRIP is relatively easy to implement and has low 

overhead compared to other replacement policies, e.g. In a 16way cache that 

implements LRU we need 4 bits per way to encode the position in the LRU stack, 

on the other hand using 2-bit RRIP requires only 2 bits per way to encode the 4 

different classes. RRIP has shown promising results in reducing cache misses and 

improving system performance, particularly in workloads with irregular access 

patterns. However, it may not perform as well as LRU in workloads with high 

temporal locality, as LRU is better suited to exploit this type of access pattern. 

 

  

Figure 2.2 Example of SRRIP and comparison with LRU and NRU 

 

 

2.4 Genetic Algorithms 

 

Genetic Algorithms are a heuristic based approach inspired by the process of 

natural selection. They work by repeatedly generating new solutions through the 

combination and mutation of existing solutions, then evaluating their fitness before 

selecting the most promising ones for the next iteration. We can see the flow of a 
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genetic algorithm in Figure 2.3. The use of a genetic algorithm can be beneficial in 

narrowing down the search space. The algorithm can generate and evaluate a large 

number of candidate solutions efficiently, making it well-suited for problems with 

a large search space such as ours. Moreover, genetic algorithms are capable of 

exploring diverse regions of the solution space, increasing the likelihood of finding 

an optimal solution. This is because it uses a stochastic approach to solution 

generation, incorporating randomness in the selection and mutation of candidate 

solutions. The algorithm can identify and retain the most promising candidate 

solutions while discarding the poor ones, helping to narrow down the search space. 

In order to evaluate each candidate solution, we calculate the fitness value of each 

one based on the average IPC scored in 20 different benchmarks. In this paper we 

will be using GeST, a framework created for automatic generation of stress tests 

that was modified to work for the purpose of our research. 

 

 

Figure 2.3 The flow of a genetic algorithm 

2.5  Microarchitecture Simulators 

 

Microarchitecture simulators are software tools that replicate the behavior and 

functionality of a microarchitecture, allowing researchers to analyze, test, and 

optimize hardware designs without the need for physical implementations. They 

over several advantages over using real hardware for development and testing 

purposes. Firstly, simulators possess a modular nature, allowing users to modify 

specific components or simulate different configurations without physical 

modifications. Furthermore, hardware experiments may be subject to variability 

due to environmental factors or hardware degradation. In contrast, using a 

simulator can be an effective alternative as it can accurately capture the memory 

access patterns and other characteristics of the workload, making it a reliable tool. 

Moreover, for the purpose of our research a microarchitecture simulator can enable 
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faster experimentation and evaluation of a large number of candidate policies in a 

controlled and repeatable environment. One of the most important benefits of 

simulations is that we can change any parameter we want without any cost.  For 

example, we can use a single core or multicore CPU, we can change the sizes of 

the caches, and most importantly their replacement policies. 

 

 

  



  10  

Chapter 3 

 

Frameworks and Methodology 

 

 

 

3.1 Evaluation Methodology. ........................................................................................ 10 

3.2 SPEC CPU 2017 Benchmark Suite ........................................................................ 12 

3.3  ChampSim ............................................................................................................. 13 

3.4 GeST ....................................................................................................................... 16 

 

 

3.1 Evaluation Methodology. 

 

In this subsection, we describe the evaluation methodology employed in this paper 

aimed to investigate the practicality of automating the search for specialized cache 

replacement policies tailored to specific cache access types, with the objective to 

achieve higher cache hit rates and improved overall performance. To accomplish 

this, a genetic search approach (described in section 3.4) was utilized to generate 

candidate policies. These candidate policies were evaluated through simulations 

using a set of 20 benchmarks (described in section 3.2) that represent a range of 

workload characteristics and cache access patterns. The genetic algorithm 

employed in this study follows a systematic process to generate and evaluate 

candidate cache replacement policies. Initially, a set of candidate policies is 

randomly created. Through the interface the candidate policies of the entire 

generation are subjected to simulations, with each policy evaluated across a set of 

benchmarks. The simulations capture the cache performance under various 

workload scenarios. From the output of each simulation, we can extract metrics 

that can help us identify the best candidate replacement policies. For the purpose 

of our research, we decided to evaluate each candidate’s replacement policy based 
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on the Instructions Per Cycle (IPC) value it achieved.  Once the simulations for the 

generation are completed, the interface calculates the average IPC achieved by each 

candidate policy, that serves as the quantitative measure of their performance. 

Based on the principles of evolution, a new generation of candidate policies is 

created through the selection, combination, and mutation of the most promising 

policies from the previous generation. This iterative process continues until the 

desired number of generations is achieved, allowing the genetic algorithm to refine 

and improve the cache replacement policies over time. By employing this 

evolutionary approach, the algorithm explores and converges towards more 

effective cache replacement policies tailored to specific cache access types. Figure 

3.1 illustrates how the genetic algorithm works in conjunction with the 

microarchitecture simulator through the interface. 

 

 

Figure 3.1 Integration of Genetic Algorithm and Simulator 
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3.2 SPEC CPU 2017 Benchmark Suite 

 

In order to evaluate our candidate policies, we used the traces created from the 

Benchmarks included in the SPEC 2017 suite, which were designed to stress the 

system processor and memory subsystem, which is great for evaluating cache 

replacement policies. 

For our study we decided to use 20 traces created from the benchmarks included in 

the SPEC 2017 suite, shown in Table 3.1. 

 

Benchmarks  

Blender Bwaves 

cactusBSSN Cam4 

Exchange Fotonik3d 

Gcc Imagick 

Lbm Leela 

Mcf Omnetpp 

Parest Perlbench 

Povray Roms 

Wrf X264 

Xalancbmk Xz 

Table 3.1 SPEC CPU 2017 Benchmarks used  
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3.3  ChampSim 

 

3.3.1 ChamSim Overview 

 

For the purpose of our research, we used ChampSim [4] which is a trace-based 

simulator for microarchitecture study that was used in various contests, such as the 

3rd Data Prefetching Championship and the 2nd Cache Replacement 

Championship. The simulator is designed to model and evaluate the behavior and 

performance of modern out-of-order CPUs with a three-level cache hierarchy and 

uncore memory. This enables us to assess the impact of a candidate replacement 

policy on the performance of the system. Through its output it provides us with 

valuable insights and information about the behavior and performance of the 

simulated system, some of the metrics the simulator generates are instruction per 

cycle (IPC), execution time, cache hit/miss rates.  

 

3.3.2 ChampSim Configuration 

 

For our experiments we modeled a 1-core out-of-order processor with 3 levels of 

cache. The configuration used is described in Table 4.3. For the LLC replacement 

policy, we used a modular version of DRRIP replacement policy. 

 

 

 

Parameter Configuration 

L1 I-Cache 

 

(Private) 

32KB, 64B blocks, 8-way 

 

8 MSHRs, 1 cycle latency 

 

LRU Replacement Policy 
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L1 D-Cache 

 

(Private) 

32KB, 64B blocks, 8-way 

 

8 MSHRs. 4 cycles latency 

 

LRU Replacement Policy 

 

Next-Line Prefetcher 

L2 Cache 

 

(Private) 

256KB, 64B Blocks, 8-way 

 

16 MSHRs, 8 cycles latency 

LRU Replacement Policy 

 

IP-Based Stride Prefetcher 

L3 Cache (Shared) 2MB per core, 64B Blocks, 16-way 

 

32 MSHRs, 20 cycles latency 

 

Modular DRRIP-Based Replacement 

Policy 

Branch Predictor Perceptron 

Table 3.2 ChampSim Simulator Configuration 

 

3.3.3 Modular DRRIP-based Replacement Policy 

 

In order to effectively run our simulation, we need to create a replacement policy that is 

modular and can change its behavior based on the arguments given to the simulator. The 

policy is case driven with each case implementing one function (described in Chapter 4). 

We decided to use a DRRIP-based policy that we will modify in order to achieve the 

preferred function. DRRIP is a replacement that just like SRRIP predicts the intervals at 

which cache lines will be accessed. The difference is that it dynamically selects between 2 

competing policies using set dueling. Set dueling works by dedicating a few sets of the 
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cache to each of the competing policies, with 32-64 dedicated sets to be sufficient to choose 

the best policy. The remaining sets referred to as “follower sets” use the policy that 

performs better. In order to determine which policy performs better and select it as the 

primary policy used by the follower sets, Set Dueling uses a Policy Selector counter 

referred to ”PSEL”. PSEL is a saturating counter that keeps track of which of the two 

competing policies incurs fewer misses, one policy adds to the counter and the other 

subtracts if a miss occurs in the sets dedicated to it. The most significant bit of the counter 

determines the policy that performs better. Figure 3.2 illustrates how Set Dueling will work 

with LRU and BIP as competing policies. 

 

 

  

Figure 3.2 Set Dueling between LRU and BIP 
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3.4 GeST 

 

For our research we used GeST [5] , an automatic framework for generating CPU 

stress tests. It uses a genetic algorithm, a technique inspired by biological 

evolution, to create tests that maximize the load on a CPU. The framework operates 

by evolving a population of test cases through generations. Initially, a set of test 

cases (individuals), each representing a potential stress test, is randomly generated. 

The second step involves measuring the metrics of interest and assigning a fitness 

value to the individual. In the third and final step the algorithm creates a new 

population by selecting the fittest individuals as parents for the individuals of the 

next generation, the process includes the exchange of instructions between the two 

parents (crossover) and performing a mutations operation. A mutation converts an 

instruction or an operand into another based on a probability referred to as 

“mutation rate”. The potential stress test created consists of a loop of assembly 

instructions that continuously executes on the CPU. Within this loop, a series of 

computationally intensive instructions, such as mathematical calculations or data 

manipulations, are performed repeatedly. By subjecting the CPU to this intense 

loop of instructions, GeST aims to identify potential weaknesses, bottlenecks, or 

instabilities in the processor's performance. With GeST users have the ability to 

tweak parameters through the main configuration file. With this level of 

modularity, users can customize various parameters to fine-tune the generated 

stress tests. They can specify the size and complexity of the instruction loop, select 

specific instruction types, set the mutation rate, and change the fitness function. By 

tweaking these parameters, users can focus on specific aspects of the CPU's 

behavior, target particular architectural features, or emulate real-world workloads 

that closely resemble their specific use cases. As mentioned, GeST allows users to 

modify the fitness function through the creation of a new file. In GeST, the fitness 

function is a crucial component that determines the effectiveness of a stress test in 

measuring their desired metric. By creating a separate file dedicated to the fitness 

function, users can customize and define their own criteria for evaluating the 

quality and effectiveness of the stress tests. This modularity empowers users to 

adapt GeST to their specific needs and research objectives. They can introduce new 
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metrics, algorithms, or heuristics to assess the CPU’s performance based on their 

unique requirements. Figure 3.3 illustrates an overview of the framework. 

 

Figure 3.3 Framework Overview  
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4.1 Policy Definition 

The first step we needed to overcome was to create an encoding that would allow 

us to represent a cache replacement policy as a genome. We propose an encoding 

that consists of multiple values, each value represents a different function for the 

different aspects of the policy. The genetic algorithm will produce a genome 

containing these values and those same values will be given as arguments to the 

simulator. As mentioned in Chapter 3, the replacement policy used in the simulator 

is case driven, with each case implementing the function it represents. We identified 

five aspects, which are  independent from each other, that need to be encoded 

(Shown in Table 4.1). In addition, each aspect of the policy if applicable has two 

states clean / dirty. 

 

Aspect Definition 

Demotion On a miss what happens to the value of all blocks in the set 

Eviction On a miss which block will be evicted 

Insertion On a miss what value will the newly installed block have 

Self – Promotion On a hit what is the new value of that block 

Other-Promotion On a hit what happens to the value of all other blocks 

Table 4.1 Policy aspects that need encoding. 
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4.1.1 Proposed functions for Demotion 

 

For Demotion we propose four functions: 

The first proposed function is Repeating Saturating Increment by Y with ceiling X 

in which for a given set we increment the RRPV value of all blocks in the set by Y 

until a block in the set reaches the ceiling set by X. 

The second proposed function is Conditional Repeating Saturating Increment by Y 

with ceiling X if block under Z in which for a given set increment the RRPV value 

of blocks that currently have an RRPV value smaller than Z by Y until a block in 

the set reaches the ceiling set by X. 

The third proposed function is Conditional Repeating Saturating Increment by Y 

with ceiling X if block over Z in which for a given set increment the RRPV value 

of blocks that currently have an RRPV value larger than Z by Y until a block in the 

set reaches the ceiling set by X. 

 

 

4.1.2 Proposed functions for Eviction 

 

For  Eviction we propose four functions: 

The first proposed function is First Block with RRPV of X in which when looking 

from left to right (Way 0 – Way N) in the set, evict the first block you encounter 

that has an RRPV value of X. 

The second proposed function is Probabilistic First Block with RRPV X or Y based 

on Z in which when looking from left to right (Way 0 – Way N) in a set, evict the 

first block you encounter that has an RRPV value of X or Y. For each eviction we 

choose X or Y based on the probability Z. 

The third proposed function is First block with RRPV of X unless a dirty block 

with RRPV of Y was found before. In this function, while looking from left to right 
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we evict the first block that has an RRPV value of X but if we find a dirty block 

with an RRPV value of  Y before we evict that. 

The last proposed function is First block with RRPV of X unless dirty block before. 

This function is very similar to the third one but with the difference that it does not 

take into consideration the RRPV value of the dirty block. 

 

 

4.1.3 Proposed functions for Insertion 

 

For Insertion we propose two functions : 

The first proposed function is Assignment to X, in which when inserting a new 

block in the set, add the new block with an RRPV value of X. 

The second proposed function is Probabilistic Assignment to X or Y based on Z. In 

this function, when inserting a new block add the new block with an RRPV value 

of either X or Y based on the probability Z. 

 

 

4.1.4 Proposed functions for Self-Promotion 

 

For Self-Promotion we propose two functions: 

The first proposed function is Saturating Decrement by Y with floor X, in which 

for a given set decrement the RRPV value of all blocks in the set by Y until a block 

reaches the floor set by X. 

The second proposed function is Probabilistic Saturating Decrement by X or Y with 

floor R based on Z. In this function, for a given set decrement the RRPV by X or 

Y until a block reaches the floor set by R based on the probability Z. 

 

 

4.1.5 Proposed functions for Other-Promotion 

 

For Other-Promotion we propose three functions: 
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The first proposed function is Do Nothing. In this function, when another block 

was accessed and promoted don’t do anything to the rest of the blocks in the set. 

The second proposed function is Saturating Increment by Y with ceiling X. In this 

function, when another block was accessed and promoted, we increment the RRPV 

value of all blocks in the set by Y until a block in the set reaches the ceiling set by 

X. 

The third proposed function is Saturating Decrement by Y with floor X. In this 

function, when another block was accessed and promoted, we decrease the RRPV 

value of all blocks in the set by Y until a block in the set reaches the floor set by X. 

 

 

4.2 Representation of a cache replacement policy as a GeST individual 

 

4.2.1 How we represented a policy as a GeST individual 

 

As highlighted in Chapter 3, GeST is an exceptionally modular framework that allows us 

to harness its capabilities for our intended purpose. We will achieve that by tailoring its 

parameters such as the fitness function and selecting specific instruction types, to align 

with the specific requirements of our research. For our research we mapped the instruction 

types that can be defined in the configuration of GeST to represent the four access types 

that we will explore (Shown in Figure 4.1). We then mapped the instructions to represent 

three aspects of the proposed five with Demotion and Self-Promotion having a clean and 

dirty version (Shown in Figure 4.2). Finally, we mapped the operands of the instructions 

to represent the functions that each aspect supports (Shown in Figure 4.3). 

 



  22  

 

Figure 4.1 How the policy access types are represented as GeST instruction types 
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Figure 4.2 How the policy aspects are represented as GeST instructions 

 

Figure4.3 How the functions are represented as GeST operands 
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4.2.2 Functions explored in this research 

 

Although numerous functions for each of the aspects that comprise a replacement 

policy were proposed, for the purpose of the research we only explored a subset of 

them. 

 

We chose to explore only four of the five aspects that comprise a replacement 

policy, these include Demotion, Eviction, Insertion and Self-Promotion. In 

addition, we implemented a subset of the available functions for each aspect. In 

order to simplify the interface, and simulator the encoding assigns each function a 

number. Tables 4.2 – 4.6 depict the assignment of each function for all aspects of 

the policy. 

 

Starting With Demotion: 

We used five functions for this aspect of the policy, four of which originate from 

an unpublished paper by Mr. Sazeides.  

 

The first function is Full Demotion, as the name suggests the RRPV value of all 

blocks in the set increases by  until we evict a block.  

The second function is Asymmetric Demotion 1, in this function  we increase the 

RRPV value of blocks in the set by 1 until the maximum RRPV value in the set is 

greater than 1.  

The third function is Asymmetric Demotion 2, in this function we increase the 

RRPV value of blocks in the set by one until the maximum RRPV value in the set 

is greater than 2 but only for blocks that have an RRPV value less than 2. 

The fourth function is Asymmetric Demotion 3, in this function we increase the 

RRPV value of blocks in the set by one until the maximum RRPV value in the set 

is greater than 2 but only for blocks that have an RRPV value less than 2 but also 

if the maximum RRPV value in the set is 0 then all blocks get an RRPV value of 

2. 

The fifth and final function is Asymmetric Demotion 4, in this function if the 

maximum RRPV value in the set is 0 then all blocks get an RRPV value of 2 but 
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also if the maximum RRPV value is equal to 1 then we increase all blocks RRPV 

by 1. 

 

Number  Function 

0 Full Demotion 

1 Asymmetric Demotion 1 

2 Asymmetric Demotion 2 

3 Asymmetric Demotion 3 

4 Asymmetric Demotion 4 

 

Moving on to Insertion: 

We used 1 function for this aspect of the policy but with different arguments. The 

function used is Assign to X, in which new blocks get assigned an RRPV value 

based on X. Because we used a 2-bit  SRRIP the possible values for X are 0-3. 

 

Number  Function 

0 Assign to 0 

1 Assign to 1 

2 Assign to 2 

3 Assign to 3 

 

 

Finally on to Promotion: 

For Promotion, we yet again used one function similar to Insertion. The function 

used is Assign to X, but this time X has possible values from 0-2 

 

Number  Function 

0 Assign to 0 

1 Assign to 1 

2 Assign to 2 
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4.3 Definition of interface between GeST and ChampSim 

 

4.3.1 Interface Definition 

 

This interface is used to convert the individuals that are generated by the genetic 

algorithm (GeST) to the format required by the microarchitecture simulator 

(ChampSim). Each individual encodes a replacement policy for the Last Level 

Cache (LLC) that the simulator will test by simulating multiple benchmarks. In 

addition, the interface at the end of all simulations will extract the achieved IPC of 

all benchmarks and will calculate their average. The average IPC will be given 

back to the genetic algorithm as the fitness value for the individual. In order to 

simplify the code, we split the interface into two parts, the first part converts the 

individuals generated by the genetic algorithm to the required format for the 

simulator and starts the simulations while the second part extracts the achieved IPC 

of all benchmarks for a specific individual, calculates the average IPC and returns 

it to the genetic algorithm. 

 

 

4.3.2 Input and Output formats 

 

The interface gets its input by opening and reading a file that has the format 

“generation_id.txt”. Because we run the simulations for all individuals in a 

generation simultaneity the interface gets as argument the generation number, 

while the ability to run a single individual is possible by giving as arguments the 

generation and id of the specific individual. The interface then creates a batch file 

that will start the simulations on the cluster. In each file we are only interested in 

the part of the code that includes the genome (shown in Figure 4.1). The genome 

consists of  20 genes, placed in the same number of lines. As you can see in Figure 

4.1 there are 4 distinct types that correspond to the access types we want to explore 

in this research. We differentiate the types by the first character in each line, L is 
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for LOAD, R for RFO, P for PREFETCH and W for WRITEBACK. Each type also 

has 6 subtypes corresponding to the 4 aspects with Demotion and Self-Promotion 

having different values for clean and dirty blocks. Moving on to the output format 

after the interface reads the input in the format described above it will then produce 

an output that can be given as the input to the microarchitecture simulator 

(ChampSim). The simulator takes as input three 16digit numbers named plist, 

dirty_plist and demmask. So, the interface must create these 16digit numbers from 

the values it read from the input file and then give them as arguments to the 

simulator. It also gives as argument a unique identifier that consists of the 

generation and id of the GeST individual. 

The plist defines what happens on a promotion and insertion for clean blocks for 

the four types of cache accesses (LOAD, RFO, PREFETCH, WRITEBACK). The 

dirty_plist defines what happens on a promotion and insertion for dirty blocks for 

the four different types of cache accesses. And finally, the demmask defines what 

happens on demotion of clean and dirty blocks for the four types of cache accesses.  

 

 

Figure 4.1 How the genome is represented as a GeST individual 
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4.2.3 Processing of Data 

 

The interface, to easily create the desired output format, uses dictionaries to store 

the values for each gene. The code (Shown in Figure 4.3) first searches the file to 

find the section of interest that is always located after the “. L2” line. After the 

section of interest, the algorithm reads each line, the key is always the first word 

of the line e.g., “L_DemDirty” and the value is the number after the % symbol. 

After storing all the key pair values in a dictionary, the interface creates the plist, 

dirty_plist and demmask values. Depending on the arguments given the interface 

creates a bash file containing the commands that are used to run the simulator with 

the values calculated given as arguments. After that the interface runs the bash 

script to start all simulations for all benchmarks.  
 

 

Figure 4.3 Code that extracts the values for each policy and stores them in a dictionary 
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Chapter 5 

 

Experimental Evaluation 
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5.1 Experiments Specifications 

 

In this subsection, we describe how we did our simulations on ChampSim. For each 

candidate replacement policy, we run a set of benchmarks, with each benchmark running 

for one hundred million warm-up instructions and five hundred million instructions on the 

simulator. The experiments are divided into two groups, in the first group we run 

simulations with the full benchmark suite while the second group consists of a subset of 

benchmarks as we discovered some of them are not affected by the change in replacement 

policy. 
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5.2 Simulations using the full benchmark suite 

 

5.2.1 Simulations with random first Generation 

 

Our first experiment consisted of fifty individuals that were randomly generated and 

evolved for fifty generations. As mentioned in this search we used the full benchmark suit 

in order to evaluate the candidate’s replacement value. Figure 5.1 illustrates the average 

IPC for each individual from generation 1 to generation fifty. The goal of this experiment 

was to see if automating the search for candidate replacement policies with the use of 

genetic algorithm will yield performance benefits. So, based on the figure below we can 

see that the average IPC appears to increase through the generations but hits the ceiling of 

0.788 around the eighth generation. 

 

Figure 5.1 Average IPC for each individual from generation 1 to generation 50 
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5.2.2 Simulations with some promising individuals in the first Generation 

 

We then proceeded to our second experiment that also consisted of fifty individuals from 

which two were explicitly added and include SRRIP (Table 5.5) and the best assignment 

of functions from previous work (Table 5.1), with the rest of the individuals being 

randomly generated. The second run also evolved individuals for fifty generation and used 

the full benchmark suit in order to evaluate the candidate replacement policy. Figure 5.2 

illustrates the average IPC for each individual from generation one to generation fifty. The 

goal of this analysis is to see if the two explicitly added policies from which one was the 

most promising from pervious work will help achieve a higher average IPC than our first 

experiment. The idea behind this run was that adding two promising policies in the first 

generation will improve the performance of upcoming generations because they have 

strong “genes”. As we can see from Figure 5.2 our suspicion that the promising policies 

added in the first generation did not work as expected. In addition, we should also point 

out that this time we reached the ceiling of 0.789 in the sixth generation in contrast to the 

first run that took eight generations. Finally, we observe that we did gain a small 

improvement of 0.001 in the average IPC. 

 

 

Figure 5.2 Average IPC for each individual from generation 1 to generation 50 
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L_DemClean 4 

L_DemDirty 4 

L_Insert 2 

L_SPromClean 0 

L_SPromDirty 0 

R_DemClean 0 

R_DemDirty 4 

R_Insert 2 

R_SPromClean 0 

R_SPromDirty 0 

P_DemClean 4 

P_DemDirty 4 

P_Insert 3 

P_SPromClean 0 

P_SPromDirty 0 

W_DemClean 0 

W_DemDirty 4 

W_Insert 3 

W_SPromClean 0 

W_SPromDirty 0 

Table 5.1 Best policy from previous research 
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Benchmark IPC 

Blender 0.670 

cactuBSSN 0.755 

Cam4 0.731 

Fotonik3d 0.620 

Gcc 0.353 

Imagick 2.191 

Lbm 0.697 

Mcf 0.401 

Omnetpp 0.247 

Parest 1.024 

Perlbench 0.447 

Roms 1.046 

Wrf 0.825 

x264 1.365 

Xalancbmk 0.433 

Xz 0.899 

Table 5.2 IPCs the best policy from previous research achieved 

 

5.3 Simulations with reduced benchmark suite 

 

From the results of the previous experiments, we discovered that some of the benchmarks 

used to evaluate the candidate replacement policies were not affected by the change in 

replacement policy. The benchmarks that were removed from the benchmark suite include 

Bwaves, Exchange, Leela and Povray. By observing the IPC that all candidate policies 

achieved in these benchmarks we observed that either the value is constant or has minor 

fluctuations. We then rerun our experiments but removed these benchmarks from the 

benchmark suite, in order to identify if they are the reason that we did not see much 

improvement in the IPC from our candidate policies. Figure 5.3 illustrates the IPC achieved 

in the Bwaves benchmark from all candidate individuals in our first experiment. 
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Figure 5.3  IPC achieved from all candidate policies in the Bwaves benchmark 

 

 

 

 

5.3.1 Simulations with random 

 

Moving on to the third experiment, it consisted of fifty individuals that were randomly 

generated and evolved for fifty generations. The goal of this experiment was to validate if 

the unaffected benchmarks influence the average IPC negatively and if that was the reason, 

we did not see much improvement in our previous experiments. Figure 5.4 illustrates the 

average IPC for each individual from generation 1 to generation 50. At a first glance 

removing those benchmarks seems to help improve the performance as the average IPC of 

our best candidate policy is 0.796, but after comparing the IPC achieved in each benchmark 

we came to the conclusion that the removal of the unaffected benchmark did not help us 

achieve higher performance. Table 5.4 shows the IPC each policy achieved in the 

benchmarks excluding the benchmarks that are not affected by the change in replacement 

policy.  
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Let’s now inspect the best policy from the third experiment. Table 5.3 illustrates the values 

the best policy consists of. As we can see Load and Writeback blocks are given more 

chance to “prove themselves” as they are inserted with an RRPV of 2 while RFO and 

Prefetch blocks are inserted with an RRPV of 3. In addition, we can see that all dirty blocks 

never get promoted to an RRPV of 0 which is also true for clean RFO and Writeback 

blocks. 

 

 

 

Figure 5.4 Average IPC for each individual from generation 1 to generation 50 

 

L_DemClean 4 

L_DemDirty 0 

L_Insert 2 

L_SPromClean 0 

L_SPromDirty 1 

R_DemClean 0 

R_DemDirty 2 

R_Insert 3 

R_SPromClean 1 

R_SPromDirty 1 

P_DemClean 4 
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P_DemDirty 4 

P_Insert 3 

P_SPromClean 2 

P_SPromDirty 0 

W_DemClean 0 

W_DemDirty 1 

W_Insert 2 

W_SPromClean 1 

W_SPromDirty 1 

Table 5.3 Best policy from experiment 3 

 

 

Benchmark IPC from experiment 2 best IPC from experiment 3 best 

Blender 0.672 0.672 

Cam4 0.730 0.730 

cactuBSSN 0.755 0.755 

Gcc 0.353 0.353 

Lbm 0.698 0.690 

Mcf 0.401 0.401 

Parest 1.036 1.035 

Wrf 0.826 0.841 

Xalancbmk 0.431 0.431 

Fotonik3d 0.619 0.616 

Imagick 2.191 2.191 

Omnetpp 0.247 0.248 

Perlbench 0.447 0.447 

Roms 1.049 1.051 

x264 1.365 1.365 

Xz 0.899 0.899 

Average IPC 0.795 0.796 

Table 5.4 IPC of  all benchmarks from experiment 3 
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L_DemClean 0 

L_DemDirty 0 

L_Insert 2 

L_SPromClean 0 

L_SPromDirty 0 

R_DemClean 0 

R_DemDirty 0 

R_Insert 2 

R_SPromClean 0 

R_SPromDirty 0 

P_DemClean 0 

P_DemDirty 0 

P_Insert 2 

P_SPromClean 0 

P_SPromDirty 0 

W_DemClean 0 

W_DemDirty 0 

W_Insert 2 

W_SPromClean 0 

W_SPromDirty 0 

Table 5.5 SRRIP used for the comparison with our best policy 

 

 

 

5.4 Comparison with SRRIP and LRU 

 

In this subsection we will compare the best policy from experiment 3 as it has the highest 

average IPC against SRRIP and LRU. This subsection focuses more on the results of the 

simulations in order to compare the policies, for better comparison we recommend 

reviewing the source code for each benchmark in order to understand better why we see 

degradation / improvement in IPC. Table 5.3 illustrates how we encoded SRRIP (Described 

in Chapter 2) as a GeST individual. As you can see in the encoding on insertion regardless 
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of the type of access blocks get assigned an RRPV of 2, while on cache hits all type of 

accesses get promoted to 0. Figure 5.5 illustrates the IPC achieved in each benchmark from 

the competing policies, Figure 5.6 illustrates the improvement in IPC that out policy 

achieved over LRU and SRRIP. Improvement was calculated using the formula 

Improvement = (New IPC – Reference IPC) / Reference IPC * 100. 

 

We will firstly compare our best policy with SRRIP (Table 5.5). We use the Parest 

benchmark for this comparison as we observed the most improvement in IPC. Looking at 

Figures 5.5 and 5.6 we can see that our best policy found has a 7.8% improvement in IPC 

over regular SRRIP. We will now try to determine why we see this improvement using 

Figures 5.7 – 5.11. When inspecting Figure 5.7, we can see that our policy does better with 

13.5 hits PKI opposed to 10.2% achieved by SRRIP with also achieving lower misses PKI, 

shown in Figure 5.9. From Figure 5.10 we can see that our policy has a higher Hit rate in 

LLC compared to SRRIP, with 53.80% over 40.72% which is expected. We will then have 

a closer look to determine what makes our policy perform better than SRRIP. When 

inspecting Figure 5.11 which illustrate the percentage of hits for each type of access 

compared to the total number of hits, we can see that our policy decreases the percentage 

of hits on Writeback accesses by 2% and increases the percentage of hits on Prefetch 

accesses by the same amount. Load and RFO accesses don’t see much of change. This 

indicates that blocks that originate from prefetch are more important than blocks that 

originate from writebacks in this benchmark which in turn improves the Hit Rate increasing 

the performance and the achieved IPC in this benchmark. 

 

We then compare our best policy with LRU. We also used the Parest benchmark for this 

comparison as we observed the most improvement in IPC. Looking at Figures 5.5 and 5.6 

we can see that our best policy found has a 10.78% improvement in IPC over LRU. We 

will now try to determine why we see this improvement using Figures 5.7 – 5.11. When 

inspecting Figure 5.7, we can see that our policy does better with 13.5 hits PKI opposed to 

7.6% achieved by LRU with also achieving lower misses PKI, shown in Figure 5.8. From 

Figure 5.10 we can see that our policy has a higher Hit rate in LLC compared to SRRIP, 

with 53.80% over 30.39 % which is expected. We will then have a closer look to determine 

what makes our policy perform better than LRU. When inspecting Figure 5.11 that 

illustrate the percentage of hits for each type of access compared to the total number of 
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hits, we can see that our policy decreases the percentage of hits on Load accesses and 

Writeback by 2% and 4% respectively and increases the percentage of hits on prefetch by 

6%. RFO accesses don’t see much change. This indicates that blocks that originate from 

Prefetch accesses are more important than blocks that originate from Writebacks and Load 

accesses in this benchmark which in turn improves the Hit Rate increasing the performance 

and the achieved IPC in this benchmark.  

 

One interesting result is when we investigate the Lbm benchmark. As shown in Figure 5.6 

our best policy yields ~6% improvement over SRRIP and LRU but does so with 

significantly less hit rate ~10% over the two competing policies that have 42% and 43% 

respectively, shown in Figure 5.12. We then investigated to uncover the reason why our 

policy performed better. From Figure 5.9 we can see that Lbm benchmark has a high 

intensity of  RFO and Writeback accesses ~ 17 accesses PKI in both types, with load and 

RFO only having ~3 accesses PKI. We then investigate the Hit percentage for each access 

type across the competing policies shown in Figures 5.13. Looking at the percentages of  

all LLC hits, LRU and SRRIP Writeback hits make up 96% of all LLC cache hits and RFO 

only 1%. When looking at the same percentages when using our best policy, we can see 

that the percentage of  Writeback hits decreases to 42.5% and RFO hits increase to 42%. 

From these results we can see that our policy balanced the LLC cache hits for RFO and 

Writeback which as we discussed have the same intensity PKI, this in turn reduced our Hit 

Rate but increased the performance. 

 

Moving forward, we can see that our policy did not perform better in all benchmarks. From 

Figure 5.6 we can see that for benchmarks cactuBSSN, Roms, x264 our policy was 

outperformed by both SRRIP and LRU. Most notably, in benchmark Roms we saw a 

decrease of performance by 2% over SRRIP and 2.6% from LRU. When inspecting the 

misses PKI in LLC for the Roms benchmark we can see that our policy has 15 misses PKI 

in the LLC while LRU and SRRIP managed ~12 misses PKI. This indicates that our policy 

increased the number of LLC cache misses by 3 for every 1000 instructions, which in turn 

contributes to the decrease in performance. Similarly, the same behavior can be observed 

in benchmarks x264 and cactuBSSN. 
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We then explore if the ability to use different policies for each benchmark was possible 

how much improvement will each benchmark see, and how much would the overall 

improvement we will see. In order to do determine the improvement, we first found which 

policies performed the best in each benchmark, Table 5.4 shows for each benchmark which 

policy performed best at it. As we can see we have 13 unique policies with Imagick and 

Perlbench having the same policy as well as Mcf and Roms also having the same policy. 

We then calculated the improvement in each benchmark using the formula Improvement = 

(Best IPC – Reference IPC) / Reference IPC * 100. Figure 5.14 shows the best IPC we 

achieved in each benchmark while Figure 5.15 shows the improvement compared to LRU 

and SRRIP. As we can see most benchmarks achieved better performance with Imagick 

and Perlbench being the only benchmark that had 0% improvement. Nevertheless, when 

calculating the average improvement over the SRRIP and LRU, using different policies 

improves the IPC by 2.11% on average over SRRIP and 2.5% on average over LRU. In 

this point we would like to point out that running different experiments where the genetic 

algorithm would search for the optimal policy for each individual benchmark, we would 

probably see better improvement as the policies would be more specialized for each 

benchmark as opposed to the policies created in this experiment that were specialized to 

perform better in all benchmarks.  

 

Benchmark Generation ID 

Blender 50 2483 

cactuBSSN 13 628 

Cam4 45 2248 

Fotonik3d 3 132 

Gcc 10 488 

Imagick 1 1 

Lbm 43 2127 

Mcf 33 1618 

Omnetpp 38 1862 

Parest 47 2305 

Perlbench 1 1 

Roms 33 1618 
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Wrf 1 48 

x264 4 157 

Xalancbmk 1 46 

Xz 40 1973 

Table 5.6 Policies that achieved the best IPC for each benchmark 

5.4.1 Figures used in the comparison 

 

 

Figure 5.5 IPC comparison between best policy with SRRIP and LRU in benchmark suite 
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Figure 5.6 Improvement in IPC 

Figure 5.7 Total Hits PKI comparison between best policy with LRU and SRRIP in benchmark suite 
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Figure 5.8 Total Misses PKI comparison between best policy with LRU and SRRIP in benchmark suite 

 

 

Figure 5.9 Accesses PKI for each access type 

 

0

5

10

15

20

25

30

35

40

45
M

is
se

s 
P

K
I

Benchmark

Total Misses Per Kilo Instructions

LRU Best SRRIP

0

5

10

15

20

25

A
cc

es
se

s 
P

K
I

Benchmark

Accesses PKI

Load RFO Writeback Prefetch



  44  

 

Figure 5.10 Parest benchmark Hit / Miss Rates 

 

 

Figure 5.11 Parest benchmark percentage of LLC hits from different access types 
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Figure 5.12 Lbm benchmark Hit / Miss Rates in LLC 

 

 

Figure 5.13 Lbm benchmark percentage of LLC hits from different access types 
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Figure 5.14 IPC comparison between best policy for each benchmark with SRRIP and LRU  

 

 

Figure 5.15 Improvement in IPC when using the best policy for each benchmark 
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5.5 Comparison with best from previous work 

 

In this subsection we will compare the best policy created from the genetic algorithm 

(Table 5.3) with the best policy created from previous work (Table 5.1) using SRRIP as 

the base for our comparison. From Figure 5.15 we can see the IPC each policy achieved 

in each benchmark. We first compare the improvement each policy achieved over SRRIP 

using Figure 5.16 which illustrates the improvement in IPC achieved by each policy from 

SRRIP. As we can see from the figure Both policies appear to perform better in the same 

benchmarks with the exception of Wrf in which the best policy created from the genetic 

algorithm shows 1.6% improvement over SRRIP wile the best policy from the previous 

work appears to have 0.2% decrease in improvement over SRRIP. Moving forward, we 

will compare the two policies head on, to do so we calculated the improvement in IPC the 

best policy from the genetic algorithm achieved over the best policy from previous work. 

Figure 5.17 illustrates the improvement, as we can see our policy generated by the 

genetic algorithm shows improvement over 7 benchmarks while the best policy from 

previous work is outperforming it in 5 benchmarks.  
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Figure 5.15 IPC comparison between best policy from GA with best policy from previous work and SRRIP  

 

 

Figure 5.16 Improvement comparison between best policy from GA with best policy from previous work over SRRIP  

 

  

Figure 5.17 Improvement of best policy from GA over best policy from previous work  
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6.1  Insertion Promotion Vectors 

 

Another relevant work in the field of cache replacement policies for last-level 

caches is “Insertion and Promotion for Tree-Based pseudoLRU Last-Level 

Caches” [3]. IPVs propose to approach cache management by utilizing a tree-based 

pseudoLRU (PLRU) scheme. Unlike traditional LRU, PLRU leverages a 

hierarchical tree structure to overcome the challenges associated with cache size 

scalability. A drawback of PLRU is the fact that is based on LRU, meaning it has 

an inheritance insertion and promotion policy. However, in the paper that are many 

choices in insertion and promotion that are not exploited by LRU or PLRU. The 

basic idea of the paper is to explore the space of possible insertion and promotion 

policies to choose a policy that will maximize the performance. The paper 

generalizes the notion into the concept of an insertion/promotion vector or IPV. An 

IPV vector that for a K-way associative cache has length of k+1 entries, each entry 

has an integer ranging from 0...k-1 that determines what new position a block in 

the recency stack should occupy when it is re-referenced and what position a new 

block should occupy. Exploring using an exhaustive search for the vector providing 

the best speedup would be practically impossible as for a k-way set associative 

cache there are kk+1 possible insertion and promotion policies, e.g., for k=16 there 

are 2.95 x 1020 different IPVs. Thus, the researchers used a heuristic technique and 
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to be more specific they used a genetic algorithm to evolve a good IPV. In figure 

6.1 you can see the best insertion/promotion vector found by the genetic algorithm 

for a 16-way set associative last-level cache. We will now discuss the similarities 

and what differentiates our work from the aforementioned. Firstly, our research 

uses a very similar general approach in searching for a better replacement policy 

for last-level cache, we also use a genetic algorithm in order to evolve a good 

replacement policy as the search space is impossible to explore without a heuristic 

approach. What differentiates our work besides than we search for an RRIP based 

replacement policy rather than LRU one is that we specialized our replacement 

policy to perform differently for each cache access type, in addition we defined 5 

aspects that comprise a replacement policy and each one has the ability to perform 

differently based on the function it implements. 

 

 

 

Figure 6.1 Best IPV found by the genetic algorithm 
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Chapter 7 

 

Conclusion and Future Work 
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7.1  Conclusion 

 

In conclusion, this thesis has addressed the importance of cache replacement 

policies in modern computer architectures and the need for specialized policies to 

optimize cache performance for specific access patterns. Through the use of a 

genetic algorithm, we have explored the viability of automating the search for such 

specialized cache replacement policies. The results of our simulations have 

provided valuable insights into the performance benefits of evolved cache 

replacement policies. We have observed improved cache hit rates and overall 

system performance compared to traditional policies, indicating the potential of 

automated search techniques in optimizing cache efficiency. The findings 

presented in this thesis contribute to the existing body of knowledge on cache 

replacement policies and demonstrate the effectiveness of genetic search 

algorithms in discovering specialized solutions. These results open avenues for 

further research in cache replacement policy optimization, considering different 

access patterns and evaluating the performance of evolved policies in real-world 

scenarios. 
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7.2  Future Work 

In order to advance the field of cache replacement policies and optimize cache 

performance in modern computer architectures, future work can be directed 

towards several promising directions. Firstly, conducting experiments on real 

hardware platforms would provide more accurate and practical insights into the 

effectiveness of evolved policies. Additionally, expanding the search space by 

using a larger set of candidate functions for cache replacement would allow for a 

larger space of potential solutions. Furthermore, incorporating set dueling 

techniques, which involve utilizing multiple policies in parallel and dynamically 

selecting the most suitable one, could lead to further improvements in cache 

efficiency. Moreover, exploring the application of machine learning techniques, 

such as reinforcement learning or neural networks, as an alternative to genetic 

algorithms would open new possibilities for automating the discovery of optimized 

cache replacement policies. By following these avenues of investigation, we can 

push the boundaries of cache optimization and contribute to the development of 

smarter and more effective cache replacement strategies. 
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