
 i

Diploma Project

GENETIC SEARCH ON RRIP REPLACEMENT POLICIES

Nikolas Papaki

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2023

 ii

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Genetic Search on RRIP Replacement Policies

Nikolas Papaki

Professor

Yiannakis Sazeides

The personal dissertation is submitted in partial fulfillment of requested

obligations for receiving the degree of computer science from the department of

Computer Science of the University of Cyprus

May 2023

 iii

Acknowledgments

At this point I would like to express my special thanks to my Professor, Mr. Yiannakis

Sazeides, for giving me this great opportunity to work with him on this topic and for the

guidance and support throughout the entire process of my Diploma Thesis.

 iv

Abstract

Cache replacement policies play a crucial role in optimizing cache efficiency and

performance in modern computer architectures. Traditional policies like LRU and

FIFO have limitations in meeting the demands of complex workloads and diverse

access patterns. This research investigates the viability of automating the search

for specialized cache replacement policies using a genetic algorithm. The

objective is to optimize cache hit rates and minimize cache trashing for specific

access patterns.

Through a population-based evolutionary algorithm, the genetic search approach

explores a vast search space of potential cache replacement policies and evaluates

their performance through simulations. The algorithm evolves and refines the

policies over multiple generations, converging towards more effective solutions.

Specifically, this thesis focuses on the application of genetic search to RRIP (Re-

Reference Interval Prediction) replacement policies.

The methodology encompasses a detailed investigation of the genetic search

process, including the experimental setup. Simulations are conducted to compare

the performance of evolved specialized policies against traditional replacement

policies. The results demonstrate the superiority of the evolved policies, achieving

an average improvement of 1.38% over LRU and 1.05% over SRRIP in terms of

average instructions per cycle (IPC) over 20 Benchmarks. These findings

highlight the potential benefits of specializing a replacement policy for different

cache access types and provide valuable insights into cache replacement policy

optimization.

Overall, this research contributes to the advancement of cache replacement policy

optimization. By automating the search for specialized policies, it opens up new

possibilities for improving cache hit rates and overall system performance. Future

research directions are discussed, emphasizing the need for continued exploration

and refinement of specialized cache replacement policies to meet the evolving

demands of modern computer architectures.

 v

Contents

Chapter 1 ... 1

Introduction .. 1

1.1 Introduction ... 1

1.2 Outline ... 2

Chapter 2 ... 3

Background .. 3

2.1 Modern CPUs .. 3

2.2 Multilevel Cache Hierarchy ... 4

2.3 Replacement Policies - SRRIP .. 5

2.4 Genetic Algorithms ... 7

2.5 Microarchitecture Simulators ... 8

Chapter 3 ... 10

Frameworks and Methodology .. 10

3.1 Evaluation Methodology. .. 10

3.2 SPEC CPU 2017 Benchmark Suite ... 12

3.3 ChampSim .. 13

3.4 GeST ... 16

Chapter 4 ... 18

Representing a cache replacement policy as a genome ... 18

4.1 Policy Definition ... 18

4.2 Representation of a cache replacement policy as a GeST individual 21

4.3 Definition of interface between GeST and ChampSim 26

 vi

Chapter 5 ... 29

Experimental Evaluation.. 29

5.1 Experiments Specifications ... 29

5.2 Simulations using the full benchmark suite .. 30

5.3 Simulations with reduced benchmark suite .. 33

5.4 Comparison with SRRIP and LRU ... 37

5.5 Comparison with best from previous work ... 47

Chapter 6 ... 49

Related Work ... 49

6.1 Insertion Promotion Vectors... 49

Chapter 7 ... 51

Conclusion and Future Work ... 51

7.1 Conclusion ... 51

7.2 Future Work ... 52

References ... 53

 1

Chapter 1

Introduction

 1.1 Introduction ... 1

 1.3 Outline .. 2

1.1 Introduction

Cache replacement policies play a crucial role in the efficiency and performance

of cache systems in modern computer architectures. These policies control the

selection of cache lines to be evicted when the cache becomes full when a new line

is fetched. Traditional policies such as LRU (Least Recently Used) and FIFO

(First-In-First-Out), have been widely studied and implemented. However, with the

increasing complexity of workloads and diverse access patterns, there is a growing

need for specialized cache replacement policies tailored to specific cache access

types.

The objective of this research is to investigate the viability of automating the search

for a specialized cache replacement policy through the use of a genetic algorithm

and potentially yield performance benefits. By employing genetic search

algorithms, we aim to discover efficient cache replacement policies that optimize

the cache hit rate and minimize cache trashing for specific types of cache accesses.

The motivation behind this research comes from the limitations of existing cache

replacement policies. While traditional policies are general-purpose and can

provide reasonable performance in many scenarios, they may not be optimal for

specific cache access patterns. By automating the search for specialized policies,

 2

we can explore new possibilities and potentially achieve higher cache hit rates and

improved overall system performance.

To accomplish our research goal, we will utilize a genetic search approach that

makes use of a population-based evolutionary algorithm. This approach allows us

to explore a large search space of potential cache replacement policies and

evaluates their performance through simulations. The genetic search algorithm will

evolve and refine the cache replacement policies over multiple generations,

gradually converging towards more effective solutions.

In this thesis, we will present a detailed investigation of the genetic search on RRIP

(Re-Reference Interval Prediction) replacement policies. We will outline the

methodology, describe the experimental setup, and present the results of our

simulations, comparing the performance of evolved specialized policies against

traditional replacement policies. Finally, we will discuss insights that derive from

our findings, and possible future research in cache replacement policy

optimization.

1.2 Outline

This paper consists of seven chapters and is organized as follows. Chapter 1 was

the introduction which presents the significance of optimizing cache replacement

policies and posing the research question whether automating the search for

specialized policies can yield performance benefits. Chapter 2 presents the

background knowledge someone will need in order to understand this work.

Chapter 3 presents the frameworks and methodology, it describes the benchmark

suite used to evaluate candidate policies, analyzes the frameworks and the

evaluation methodology used in our research. Chapter 4 describes how we

represent a replacement policy as a genome and the interface created to join the

genetic algorithm to the microarchitecture simulator. In Chapter 5 we evaluate the

solutions from our search and compare them to traditional replacement policies. In

Chapter 6 we discuss research related to ours and what differentiates us. Chapter 7

concludes this work and discusses future work.

 3

Chapter 2

Background

 2.1 Modern CPUs .. 3

 2.2 Multilevel Cache Hierarchy ... 4

 2.3 Replacement Policies - SRRIP ... 5

 2.4 Genetic Algorithms ... 7

 2.5 Simulators .. 8

2.1 Modern CPUs

Modern central processing units (CPUs) play a crucial role in driving the

performance of today's computing systems. These microprocessors have seen great

advancements in the past decades to deliver exceptional processing power and

efficiency. When a program is executed, the CPU undertakes a series of operations.

It starts by fetching instructions from memory, utilizing various levels of cache to

minimize data retrieval time and improve overall performance. The CPU then

decodes the instructions in order to understand their intended action and proceeds

to execute the necessary calculations or operations. Throughout this process, the

CPU effectively manages the flow of data, utilizing the cache hierarchy to store

frequently accessed data and instructions closer to the CPU cores for faster

retrieval. By intelligently utilizing caches, modern CPUs allow for faster program

execution, resulting in better performance and enabling computers to efficiently

handle a wide range of tasks with speed. In addition to these advancements, modern

CPUs also feature simultaneous multithreading (SMT), also known as hyper-

threading. SMT enhances the CPU's multitasking capabilities by allowing a single

 4

CPU core to handle multiple threads simultaneously. This technology has an impact

on cache utilization as well. With SMT, the CPU core is shared among multiple

threads, which means that each thread has access to a portion of the cache

resources. The cache is divided and dynamically shared between the threads,

ensuring that frequently accessed data and instructions are still stored closer to the

CPU cores for faster retrieval. However, the cache resources are distributed among

the threads, and if multiple threads compete for the same cache space, it can

potentially lead to cache thrashing or increased cache misses, which may impact

performance. By intelligently utilizing caches, modern CPUs optimize program

execution speed. This results in enhanced overall performance, enabling computers

to handle a wide range of tasks more efficiently. The combination of fast instruction

fetching, decoding, and execution, along with cache utilization, allows modern

CPUs to deliver swift and seamless computing experiences.

2.2 Multilevel Cache Hierarchy

Processors nowadays typically have three levels of cache L1, L2, and L3 (LLC)

with each level providing different performance characteristics and serving a

specific purpose in the memory hierarchy. L1 cache is the smallest and fastest cache

of them all, located closest to the processor. It is usually split into separate

instructions and data caches and is designed to provide very fast access to

frequently used instructions and data. L2 cache is larger than L1 , which makes it

slower than L1. It is designed to provide a large cache for frequently accessed data

and instructions. Its larger size allows it to store more data than L1, which reduces

the number of cache misses and improves overall performance. L3 cache is even

larger than L2 and shared across all the cores on a processor. It is slower than L2

but still faster than main memory and is designed to provide a large cache for shared

data between cores. This can reduce the amount of traffic to main memory and

improve overall performance. By using different sizes of caches, we can optimize

performance by keeping frequently accessed data and instructions close to the

processor while also reducing the number of cache misses and main memory

 5

accesses. This can significantly improve overall performance and reduce power

consumption. Figure 2.1 shows a 1-core processor with private IL1, DL1 and L2

caches and a shared L3 cache. Each individual cache in the figure has its own

stream buffer used to prefetch data from lower levels of the cache hierarchy and a

miss status holding registers (MSHR) used to track outstanding requests that had a

miss in the cache.

Figure 2.1 Single Core Multilevel Cache

2.3 Replacement Policies - SRRIP

With programs nowadays requiring large amounts of data, caches are essential

components in computer systems. Caches are small, fast memory systems that store

frequently accessed data for quick access by the CPU. However, caches have

limited size and capacity, and as a result they can become full quickly. To make

room for new data, it is necessary to replace some of the existing data in the cache,

this process is described as a replacement policy. Choosing the right replacement

policy for a cache is critical because it can significantly impact the caches and the

 6

overall system’s performance. The primary objective of a replacement policy is to

maximize the cache hit rate, which is the percentage of memory accesses that are

satisfied by the cache. There are various replacement policies currently available,

such as LRU (Least Recently Used), PLRU (Pseudo Least Recently Used), LFU

(Least Frequently Used), MRU(Most Recently Uses), RRIP (Re-reference Interval

Prediction) which have their own advantages and disadvantages. The best choice

of policy will depend on the specific requirements of the system and the workload

being executed. Moreover, when choosing a cache replacement policy, we should

also note that the properties of the cache (write-through, write-back, write-allocate,

write-no-allocate) also have an impact on what is the best choice of policy, as these

characteristics change the behavior of the cache and in turn the optimal replacement

policy for it.

In this paper we will use the Re-reference interval prediction policy (RRIP) and

most specifically SRRIP which is a cache replacement policy that uses a history-

based approach to determine the usefulness of a cache block. Traditional

replacement policies such as LRU and FIFO focus on the recency or frequency of

a block accesses, but SRRIP goes a step further by tracking the re-reference

intervals of each block. The re-reference interval refers to the time between two

consecutive references to a block, and it provides valuable information about the

temporal locality of the block. SRRIP divides the re-reference intervals into

different classes, where each class corresponds to a different level of usefulness.

The class of a block is determined by its re-reference interval value and ranges

from 0 to N, with 0 being the most recently referenced and N being the least

recently referenced. Whenever a block is accessed, its value is reset to its minimum

value (highest class), indicating that the block is recently used. As time progresses

and the block remains untouched, the counter gradually increases through the

process of finding which block to evict. An eviction occurs when the cache is full

and a new block needs to be inserted, the block with the maximum value is evicted

but if there not blocks currently matching these criteria then the value of all blocks

in the set is increased until a block matches the eviction criteria. Figure 2.2 shows

how LRU, NRU and SRRIP behave on the same access pattern. This approach has

 7

proven effective in adapting to changing access patterns and making informed

eviction decisions. In addition, SRRIP is relatively easy to implement and has low

overhead compared to other replacement policies, e.g. In a 16way cache that

implements LRU we need 4 bits per way to encode the position in the LRU stack,

on the other hand using 2-bit RRIP requires only 2 bits per way to encode the 4

different classes. RRIP has shown promising results in reducing cache misses and

improving system performance, particularly in workloads with irregular access

patterns. However, it may not perform as well as LRU in workloads with high

temporal locality, as LRU is better suited to exploit this type of access pattern.

Figure 2.2 Example of SRRIP and comparison with LRU and NRU

2.4 Genetic Algorithms

Genetic Algorithms are a heuristic based approach inspired by the process of

natural selection. They work by repeatedly generating new solutions through the

combination and mutation of existing solutions, then evaluating their fitness before

selecting the most promising ones for the next iteration. We can see the flow of a

 8

genetic algorithm in Figure 2.3. The use of a genetic algorithm can be beneficial in

narrowing down the search space. The algorithm can generate and evaluate a large

number of candidate solutions efficiently, making it well-suited for problems with

a large search space such as ours. Moreover, genetic algorithms are capable of

exploring diverse regions of the solution space, increasing the likelihood of finding

an optimal solution. This is because it uses a stochastic approach to solution

generation, incorporating randomness in the selection and mutation of candidate

solutions. The algorithm can identify and retain the most promising candidate

solutions while discarding the poor ones, helping to narrow down the search space.

In order to evaluate each candidate solution, we calculate the fitness value of each

one based on the average IPC scored in 20 different benchmarks. In this paper we

will be using GeST, a framework created for automatic generation of stress tests

that was modified to work for the purpose of our research.

Figure 2.3 The flow of a genetic algorithm

2.5 Microarchitecture Simulators

Microarchitecture simulators are software tools that replicate the behavior and

functionality of a microarchitecture, allowing researchers to analyze, test, and

optimize hardware designs without the need for physical implementations. They

over several advantages over using real hardware for development and testing

purposes. Firstly, simulators possess a modular nature, allowing users to modify

specific components or simulate different configurations without physical

modifications. Furthermore, hardware experiments may be subject to variability

due to environmental factors or hardware degradation. In contrast, using a

simulator can be an effective alternative as it can accurately capture the memory

access patterns and other characteristics of the workload, making it a reliable tool.

Moreover, for the purpose of our research a microarchitecture simulator can enable

 9

faster experimentation and evaluation of a large number of candidate policies in a

controlled and repeatable environment. One of the most important benefits of

simulations is that we can change any parameter we want without any cost. For

example, we can use a single core or multicore CPU, we can change the sizes of

the caches, and most importantly their replacement policies.

 10

Chapter 3

Frameworks and Methodology

3.1 Evaluation Methodology. .. 10

3.2 SPEC CPU 2017 Benchmark Suite .. 12

3.3 ChampSim ... 13

3.4 GeST ... 16

3.1 Evaluation Methodology.

In this subsection, we describe the evaluation methodology employed in this paper

aimed to investigate the practicality of automating the search for specialized cache

replacement policies tailored to specific cache access types, with the objective to

achieve higher cache hit rates and improved overall performance. To accomplish

this, a genetic search approach (described in section 3.4) was utilized to generate

candidate policies. These candidate policies were evaluated through simulations

using a set of 20 benchmarks (described in section 3.2) that represent a range of

workload characteristics and cache access patterns. The genetic algorithm

employed in this study follows a systematic process to generate and evaluate

candidate cache replacement policies. Initially, a set of candidate policies is

randomly created. Through the interface the candidate policies of the entire

generation are subjected to simulations, with each policy evaluated across a set of

benchmarks. The simulations capture the cache performance under various

workload scenarios. From the output of each simulation, we can extract metrics

that can help us identify the best candidate replacement policies. For the purpose

of our research, we decided to evaluate each candidate’s replacement policy based

 11

on the Instructions Per Cycle (IPC) value it achieved. Once the simulations for the

generation are completed, the interface calculates the average IPC achieved by each

candidate policy, that serves as the quantitative measure of their performance.

Based on the principles of evolution, a new generation of candidate policies is

created through the selection, combination, and mutation of the most promising

policies from the previous generation. This iterative process continues until the

desired number of generations is achieved, allowing the genetic algorithm to refine

and improve the cache replacement policies over time. By employing this

evolutionary approach, the algorithm explores and converges towards more

effective cache replacement policies tailored to specific cache access types. Figure

3.1 illustrates how the genetic algorithm works in conjunction with the

microarchitecture simulator through the interface.

Figure 3.1 Integration of Genetic Algorithm and Simulator

 12

3.2 SPEC CPU 2017 Benchmark Suite

In order to evaluate our candidate policies, we used the traces created from the

Benchmarks included in the SPEC 2017 suite, which were designed to stress the

system processor and memory subsystem, which is great for evaluating cache

replacement policies.

For our study we decided to use 20 traces created from the benchmarks included in

the SPEC 2017 suite, shown in Table 3.1.

Benchmarks

Blender Bwaves

cactusBSSN Cam4

Exchange Fotonik3d

Gcc Imagick

Lbm Leela

Mcf Omnetpp

Parest Perlbench

Povray Roms

Wrf X264

Xalancbmk Xz

Table 3.1 SPEC CPU 2017 Benchmarks used

 13

3.3 ChampSim

3.3.1 ChamSim Overview

For the purpose of our research, we used ChampSim [4] which is a trace-based

simulator for microarchitecture study that was used in various contests, such as the

3rd Data Prefetching Championship and the 2nd Cache Replacement

Championship. The simulator is designed to model and evaluate the behavior and

performance of modern out-of-order CPUs with a three-level cache hierarchy and

uncore memory. This enables us to assess the impact of a candidate replacement

policy on the performance of the system. Through its output it provides us with

valuable insights and information about the behavior and performance of the

simulated system, some of the metrics the simulator generates are instruction per

cycle (IPC), execution time, cache hit/miss rates.

3.3.2 ChampSim Configuration

For our experiments we modeled a 1-core out-of-order processor with 3 levels of

cache. The configuration used is described in Table 4.3. For the LLC replacement

policy, we used a modular version of DRRIP replacement policy.

Parameter Configuration

L1 I-Cache

(Private)

32KB, 64B blocks, 8-way

8 MSHRs, 1 cycle latency

LRU Replacement Policy

 14

L1 D-Cache

(Private)

32KB, 64B blocks, 8-way

8 MSHRs. 4 cycles latency

LRU Replacement Policy

Next-Line Prefetcher

L2 Cache

(Private)

256KB, 64B Blocks, 8-way

16 MSHRs, 8 cycles latency

LRU Replacement Policy

IP-Based Stride Prefetcher

L3 Cache (Shared) 2MB per core, 64B Blocks, 16-way

32 MSHRs, 20 cycles latency

Modular DRRIP-Based Replacement

Policy

Branch Predictor Perceptron

Table 3.2 ChampSim Simulator Configuration

3.3.3 Modular DRRIP-based Replacement Policy

In order to effectively run our simulation, we need to create a replacement policy that is

modular and can change its behavior based on the arguments given to the simulator. The

policy is case driven with each case implementing one function (described in Chapter 4).

We decided to use a DRRIP-based policy that we will modify in order to achieve the

preferred function. DRRIP is a replacement that just like SRRIP predicts the intervals at

which cache lines will be accessed. The difference is that it dynamically selects between 2

competing policies using set dueling. Set dueling works by dedicating a few sets of the

 15

cache to each of the competing policies, with 32-64 dedicated sets to be sufficient to choose

the best policy. The remaining sets referred to as “follower sets” use the policy that

performs better. In order to determine which policy performs better and select it as the

primary policy used by the follower sets, Set Dueling uses a Policy Selector counter

referred to ”PSEL”. PSEL is a saturating counter that keeps track of which of the two

competing policies incurs fewer misses, one policy adds to the counter and the other

subtracts if a miss occurs in the sets dedicated to it. The most significant bit of the counter

determines the policy that performs better. Figure 3.2 illustrates how Set Dueling will work

with LRU and BIP as competing policies.

Figure 3.2 Set Dueling between LRU and BIP

 16

3.4 GeST

For our research we used GeST [5] , an automatic framework for generating CPU

stress tests. It uses a genetic algorithm, a technique inspired by biological

evolution, to create tests that maximize the load on a CPU. The framework operates

by evolving a population of test cases through generations. Initially, a set of test

cases (individuals), each representing a potential stress test, is randomly generated.

The second step involves measuring the metrics of interest and assigning a fitness

value to the individual. In the third and final step the algorithm creates a new

population by selecting the fittest individuals as parents for the individuals of the

next generation, the process includes the exchange of instructions between the two

parents (crossover) and performing a mutations operation. A mutation converts an

instruction or an operand into another based on a probability referred to as

“mutation rate”. The potential stress test created consists of a loop of assembly

instructions that continuously executes on the CPU. Within this loop, a series of

computationally intensive instructions, such as mathematical calculations or data

manipulations, are performed repeatedly. By subjecting the CPU to this intense

loop of instructions, GeST aims to identify potential weaknesses, bottlenecks, or

instabilities in the processor's performance. With GeST users have the ability to

tweak parameters through the main configuration file. With this level of

modularity, users can customize various parameters to fine-tune the generated

stress tests. They can specify the size and complexity of the instruction loop, select

specific instruction types, set the mutation rate, and change the fitness function. By

tweaking these parameters, users can focus on specific aspects of the CPU's

behavior, target particular architectural features, or emulate real-world workloads

that closely resemble their specific use cases. As mentioned, GeST allows users to

modify the fitness function through the creation of a new file. In GeST, the fitness

function is a crucial component that determines the effectiveness of a stress test in

measuring their desired metric. By creating a separate file dedicated to the fitness

function, users can customize and define their own criteria for evaluating the

quality and effectiveness of the stress tests. This modularity empowers users to

adapt GeST to their specific needs and research objectives. They can introduce new

 17

metrics, algorithms, or heuristics to assess the CPU’s performance based on their

unique requirements. Figure 3.3 illustrates an overview of the framework.

Figure 3.3 Framework Overview

 18

Chapter 4

Representing a cache replacement policy as a genome

4.1 Policy Definition .. 18

4.2 Representation of a cache replacement policy as a GeST individual 21

4.3 Definition of interface between GeST and ChampSim ... 26

4.1 Policy Definition

The first step we needed to overcome was to create an encoding that would allow

us to represent a cache replacement policy as a genome. We propose an encoding

that consists of multiple values, each value represents a different function for the

different aspects of the policy. The genetic algorithm will produce a genome

containing these values and those same values will be given as arguments to the

simulator. As mentioned in Chapter 3, the replacement policy used in the simulator

is case driven, with each case implementing the function it represents. We identified

five aspects, which are independent from each other, that need to be encoded

(Shown in Table 4.1). In addition, each aspect of the policy if applicable has two

states clean / dirty.

Aspect Definition

Demotion On a miss what happens to the value of all blocks in the set

Eviction On a miss which block will be evicted

Insertion On a miss what value will the newly installed block have

Self – Promotion On a hit what is the new value of that block

Other-Promotion On a hit what happens to the value of all other blocks

Table 4.1 Policy aspects that need encoding.

 19

4.1.1 Proposed functions for Demotion

For Demotion we propose four functions:

The first proposed function is Repeating Saturating Increment by Y with ceiling X

in which for a given set we increment the RRPV value of all blocks in the set by Y

until a block in the set reaches the ceiling set by X.

The second proposed function is Conditional Repeating Saturating Increment by Y

with ceiling X if block under Z in which for a given set increment the RRPV value

of blocks that currently have an RRPV value smaller than Z by Y until a block in

the set reaches the ceiling set by X.

The third proposed function is Conditional Repeating Saturating Increment by Y

with ceiling X if block over Z in which for a given set increment the RRPV value

of blocks that currently have an RRPV value larger than Z by Y until a block in the

set reaches the ceiling set by X.

4.1.2 Proposed functions for Eviction

For Eviction we propose four functions:

The first proposed function is First Block with RRPV of X in which when looking

from left to right (Way 0 – Way N) in the set, evict the first block you encounter

that has an RRPV value of X.

The second proposed function is Probabilistic First Block with RRPV X or Y based

on Z in which when looking from left to right (Way 0 – Way N) in a set, evict the

first block you encounter that has an RRPV value of X or Y. For each eviction we

choose X or Y based on the probability Z.

The third proposed function is First block with RRPV of X unless a dirty block

with RRPV of Y was found before. In this function, while looking from left to right

 20

we evict the first block that has an RRPV value of X but if we find a dirty block

with an RRPV value of Y before we evict that.

The last proposed function is First block with RRPV of X unless dirty block before.

This function is very similar to the third one but with the difference that it does not

take into consideration the RRPV value of the dirty block.

4.1.3 Proposed functions for Insertion

For Insertion we propose two functions :

The first proposed function is Assignment to X, in which when inserting a new

block in the set, add the new block with an RRPV value of X.

The second proposed function is Probabilistic Assignment to X or Y based on Z. In

this function, when inserting a new block add the new block with an RRPV value

of either X or Y based on the probability Z.

4.1.4 Proposed functions for Self-Promotion

For Self-Promotion we propose two functions:

The first proposed function is Saturating Decrement by Y with floor X, in which

for a given set decrement the RRPV value of all blocks in the set by Y until a block

reaches the floor set by X.

The second proposed function is Probabilistic Saturating Decrement by X or Y with

floor R based on Z. In this function, for a given set decrement the RRPV by X or

Y until a block reaches the floor set by R based on the probability Z.

4.1.5 Proposed functions for Other-Promotion

For Other-Promotion we propose three functions:

 21

The first proposed function is Do Nothing. In this function, when another block

was accessed and promoted don’t do anything to the rest of the blocks in the set.

The second proposed function is Saturating Increment by Y with ceiling X. In this

function, when another block was accessed and promoted, we increment the RRPV

value of all blocks in the set by Y until a block in the set reaches the ceiling set by

X.

The third proposed function is Saturating Decrement by Y with floor X. In this

function, when another block was accessed and promoted, we decrease the RRPV

value of all blocks in the set by Y until a block in the set reaches the floor set by X.

4.2 Representation of a cache replacement policy as a GeST individual

4.2.1 How we represented a policy as a GeST individual

As highlighted in Chapter 3, GeST is an exceptionally modular framework that allows us

to harness its capabilities for our intended purpose. We will achieve that by tailoring its

parameters such as the fitness function and selecting specific instruction types, to align

with the specific requirements of our research. For our research we mapped the instruction

types that can be defined in the configuration of GeST to represent the four access types

that we will explore (Shown in Figure 4.1). We then mapped the instructions to represent

three aspects of the proposed five with Demotion and Self-Promotion having a clean and

dirty version (Shown in Figure 4.2). Finally, we mapped the operands of the instructions

to represent the functions that each aspect supports (Shown in Figure 4.3).

 22

Figure 4.1 How the policy access types are represented as GeST instruction types

 23

Figure 4.2 How the policy aspects are represented as GeST instructions

Figure4.3 How the functions are represented as GeST operands

 24

4.2.2 Functions explored in this research

Although numerous functions for each of the aspects that comprise a replacement

policy were proposed, for the purpose of the research we only explored a subset of

them.

We chose to explore only four of the five aspects that comprise a replacement

policy, these include Demotion, Eviction, Insertion and Self-Promotion. In

addition, we implemented a subset of the available functions for each aspect. In

order to simplify the interface, and simulator the encoding assigns each function a

number. Tables 4.2 – 4.6 depict the assignment of each function for all aspects of

the policy.

Starting With Demotion:

We used five functions for this aspect of the policy, four of which originate from

an unpublished paper by Mr. Sazeides.

The first function is Full Demotion, as the name suggests the RRPV value of all

blocks in the set increases by until we evict a block.

The second function is Asymmetric Demotion 1, in this function we increase the

RRPV value of blocks in the set by 1 until the maximum RRPV value in the set is

greater than 1.

The third function is Asymmetric Demotion 2, in this function we increase the

RRPV value of blocks in the set by one until the maximum RRPV value in the set

is greater than 2 but only for blocks that have an RRPV value less than 2.

The fourth function is Asymmetric Demotion 3, in this function we increase the

RRPV value of blocks in the set by one until the maximum RRPV value in the set

is greater than 2 but only for blocks that have an RRPV value less than 2 but also

if the maximum RRPV value in the set is 0 then all blocks get an RRPV value of

2.

The fifth and final function is Asymmetric Demotion 4, in this function if the

maximum RRPV value in the set is 0 then all blocks get an RRPV value of 2 but

 25

also if the maximum RRPV value is equal to 1 then we increase all blocks RRPV

by 1.

Number Function

0 Full Demotion

1 Asymmetric Demotion 1

2 Asymmetric Demotion 2

3 Asymmetric Demotion 3

4 Asymmetric Demotion 4

Moving on to Insertion:

We used 1 function for this aspect of the policy but with different arguments. The

function used is Assign to X, in which new blocks get assigned an RRPV value

based on X. Because we used a 2-bit SRRIP the possible values for X are 0-3.

Number Function

0 Assign to 0

1 Assign to 1

2 Assign to 2

3 Assign to 3

Finally on to Promotion:

For Promotion, we yet again used one function similar to Insertion. The function

used is Assign to X, but this time X has possible values from 0-2

Number Function

0 Assign to 0

1 Assign to 1

2 Assign to 2

 26

4.3 Definition of interface between GeST and ChampSim

4.3.1 Interface Definition

This interface is used to convert the individuals that are generated by the genetic

algorithm (GeST) to the format required by the microarchitecture simulator

(ChampSim). Each individual encodes a replacement policy for the Last Level

Cache (LLC) that the simulator will test by simulating multiple benchmarks. In

addition, the interface at the end of all simulations will extract the achieved IPC of

all benchmarks and will calculate their average. The average IPC will be given

back to the genetic algorithm as the fitness value for the individual. In order to

simplify the code, we split the interface into two parts, the first part converts the

individuals generated by the genetic algorithm to the required format for the

simulator and starts the simulations while the second part extracts the achieved IPC

of all benchmarks for a specific individual, calculates the average IPC and returns

it to the genetic algorithm.

4.3.2 Input and Output formats

The interface gets its input by opening and reading a file that has the format

“generation_id.txt”. Because we run the simulations for all individuals in a

generation simultaneity the interface gets as argument the generation number,

while the ability to run a single individual is possible by giving as arguments the

generation and id of the specific individual. The interface then creates a batch file

that will start the simulations on the cluster. In each file we are only interested in

the part of the code that includes the genome (shown in Figure 4.1). The genome

consists of 20 genes, placed in the same number of lines. As you can see in Figure

4.1 there are 4 distinct types that correspond to the access types we want to explore

in this research. We differentiate the types by the first character in each line, L is

 27

for LOAD, R for RFO, P for PREFETCH and W for WRITEBACK. Each type also

has 6 subtypes corresponding to the 4 aspects with Demotion and Self-Promotion

having different values for clean and dirty blocks. Moving on to the output format

after the interface reads the input in the format described above it will then produce

an output that can be given as the input to the microarchitecture simulator

(ChampSim). The simulator takes as input three 16digit numbers named plist,

dirty_plist and demmask. So, the interface must create these 16digit numbers from

the values it read from the input file and then give them as arguments to the

simulator. It also gives as argument a unique identifier that consists of the

generation and id of the GeST individual.

The plist defines what happens on a promotion and insertion for clean blocks for

the four types of cache accesses (LOAD, RFO, PREFETCH, WRITEBACK). The

dirty_plist defines what happens on a promotion and insertion for dirty blocks for

the four different types of cache accesses. And finally, the demmask defines what

happens on demotion of clean and dirty blocks for the four types of cache accesses.

Figure 4.1 How the genome is represented as a GeST individual

 28

4.2.3 Processing of Data

The interface, to easily create the desired output format, uses dictionaries to store

the values for each gene. The code (Shown in Figure 4.3) first searches the file to

find the section of interest that is always located after the “. L2” line. After the

section of interest, the algorithm reads each line, the key is always the first word

of the line e.g., “L_DemDirty” and the value is the number after the % symbol.

After storing all the key pair values in a dictionary, the interface creates the plist,

dirty_plist and demmask values. Depending on the arguments given the interface

creates a bash file containing the commands that are used to run the simulator with

the values calculated given as arguments. After that the interface runs the bash

script to start all simulations for all benchmarks.

Figure 4.3 Code that extracts the values for each policy and stores them in a dictionary

 29

Chapter 5

Experimental Evaluation

5.1 Experiments Specifications ... 29

5.2 Simulations using the full benchmark suite .. 30

5.2.1 Simulations with random first Generation ... 30

5.2.2 Simulations with some promising individuals in the first Generation 31

5.3 Simulations with reduced benchmark suite .. 33

5.3.1 Simulations with random ... 34

5.4 Comparison with SRRIP and LRU ... 37

5.4.1 Figures used in the comparison .. 41

5.5 Comparison with best from previous work... 47

5.1 Experiments Specifications

In this subsection, we describe how we did our simulations on ChampSim. For each

candidate replacement policy, we run a set of benchmarks, with each benchmark running

for one hundred million warm-up instructions and five hundred million instructions on the

simulator. The experiments are divided into two groups, in the first group we run

simulations with the full benchmark suite while the second group consists of a subset of

benchmarks as we discovered some of them are not affected by the change in replacement

policy.

 30

5.2 Simulations using the full benchmark suite

5.2.1 Simulations with random first Generation

Our first experiment consisted of fifty individuals that were randomly generated and

evolved for fifty generations. As mentioned in this search we used the full benchmark suit

in order to evaluate the candidate’s replacement value. Figure 5.1 illustrates the average

IPC for each individual from generation 1 to generation fifty. The goal of this experiment

was to see if automating the search for candidate replacement policies with the use of

genetic algorithm will yield performance benefits. So, based on the figure below we can

see that the average IPC appears to increase through the generations but hits the ceiling of

0.788 around the eighth generation.

Figure 5.1 Average IPC for each individual from generation 1 to generation 50

 31

5.2.2 Simulations with some promising individuals in the first Generation

We then proceeded to our second experiment that also consisted of fifty individuals from

which two were explicitly added and include SRRIP (Table 5.5) and the best assignment

of functions from previous work (Table 5.1), with the rest of the individuals being

randomly generated. The second run also evolved individuals for fifty generation and used

the full benchmark suit in order to evaluate the candidate replacement policy. Figure 5.2

illustrates the average IPC for each individual from generation one to generation fifty. The

goal of this analysis is to see if the two explicitly added policies from which one was the

most promising from pervious work will help achieve a higher average IPC than our first

experiment. The idea behind this run was that adding two promising policies in the first

generation will improve the performance of upcoming generations because they have

strong “genes”. As we can see from Figure 5.2 our suspicion that the promising policies

added in the first generation did not work as expected. In addition, we should also point

out that this time we reached the ceiling of 0.789 in the sixth generation in contrast to the

first run that took eight generations. Finally, we observe that we did gain a small

improvement of 0.001 in the average IPC.

Figure 5.2 Average IPC for each individual from generation 1 to generation 50

 32

L_DemClean 4

L_DemDirty 4

L_Insert 2

L_SPromClean 0

L_SPromDirty 0

R_DemClean 0

R_DemDirty 4

R_Insert 2

R_SPromClean 0

R_SPromDirty 0

P_DemClean 4

P_DemDirty 4

P_Insert 3

P_SPromClean 0

P_SPromDirty 0

W_DemClean 0

W_DemDirty 4

W_Insert 3

W_SPromClean 0

W_SPromDirty 0

Table 5.1 Best policy from previous research

 33

Benchmark IPC

Blender 0.670

cactuBSSN 0.755

Cam4 0.731

Fotonik3d 0.620

Gcc 0.353

Imagick 2.191

Lbm 0.697

Mcf 0.401

Omnetpp 0.247

Parest 1.024

Perlbench 0.447

Roms 1.046

Wrf 0.825

x264 1.365

Xalancbmk 0.433

Xz 0.899

Table 5.2 IPCs the best policy from previous research achieved

5.3 Simulations with reduced benchmark suite

From the results of the previous experiments, we discovered that some of the benchmarks

used to evaluate the candidate replacement policies were not affected by the change in

replacement policy. The benchmarks that were removed from the benchmark suite include

Bwaves, Exchange, Leela and Povray. By observing the IPC that all candidate policies

achieved in these benchmarks we observed that either the value is constant or has minor

fluctuations. We then rerun our experiments but removed these benchmarks from the

benchmark suite, in order to identify if they are the reason that we did not see much

improvement in the IPC from our candidate policies. Figure 5.3 illustrates the IPC achieved

in the Bwaves benchmark from all candidate individuals in our first experiment.

 34

Figure 5.3 IPC achieved from all candidate policies in the Bwaves benchmark

5.3.1 Simulations with random

Moving on to the third experiment, it consisted of fifty individuals that were randomly

generated and evolved for fifty generations. The goal of this experiment was to validate if

the unaffected benchmarks influence the average IPC negatively and if that was the reason,

we did not see much improvement in our previous experiments. Figure 5.4 illustrates the

average IPC for each individual from generation 1 to generation 50. At a first glance

removing those benchmarks seems to help improve the performance as the average IPC of

our best candidate policy is 0.796, but after comparing the IPC achieved in each benchmark

we came to the conclusion that the removal of the unaffected benchmark did not help us

achieve higher performance. Table 5.4 shows the IPC each policy achieved in the

benchmarks excluding the benchmarks that are not affected by the change in replacement

policy.

 35

Let’s now inspect the best policy from the third experiment. Table 5.3 illustrates the values

the best policy consists of. As we can see Load and Writeback blocks are given more

chance to “prove themselves” as they are inserted with an RRPV of 2 while RFO and

Prefetch blocks are inserted with an RRPV of 3. In addition, we can see that all dirty blocks

never get promoted to an RRPV of 0 which is also true for clean RFO and Writeback

blocks.

Figure 5.4 Average IPC for each individual from generation 1 to generation 50

L_DemClean 4

L_DemDirty 0

L_Insert 2

L_SPromClean 0

L_SPromDirty 1

R_DemClean 0

R_DemDirty 2

R_Insert 3

R_SPromClean 1

R_SPromDirty 1

P_DemClean 4

 36

P_DemDirty 4

P_Insert 3

P_SPromClean 2

P_SPromDirty 0

W_DemClean 0

W_DemDirty 1

W_Insert 2

W_SPromClean 1

W_SPromDirty 1

Table 5.3 Best policy from experiment 3

Benchmark IPC from experiment 2 best IPC from experiment 3 best

Blender 0.672 0.672

Cam4 0.730 0.730

cactuBSSN 0.755 0.755

Gcc 0.353 0.353

Lbm 0.698 0.690

Mcf 0.401 0.401

Parest 1.036 1.035

Wrf 0.826 0.841

Xalancbmk 0.431 0.431

Fotonik3d 0.619 0.616

Imagick 2.191 2.191

Omnetpp 0.247 0.248

Perlbench 0.447 0.447

Roms 1.049 1.051

x264 1.365 1.365

Xz 0.899 0.899

Average IPC 0.795 0.796

Table 5.4 IPC of all benchmarks from experiment 3

 37

L_DemClean 0

L_DemDirty 0

L_Insert 2

L_SPromClean 0

L_SPromDirty 0

R_DemClean 0

R_DemDirty 0

R_Insert 2

R_SPromClean 0

R_SPromDirty 0

P_DemClean 0

P_DemDirty 0

P_Insert 2

P_SPromClean 0

P_SPromDirty 0

W_DemClean 0

W_DemDirty 0

W_Insert 2

W_SPromClean 0

W_SPromDirty 0

Table 5.5 SRRIP used for the comparison with our best policy

5.4 Comparison with SRRIP and LRU

In this subsection we will compare the best policy from experiment 3 as it has the highest

average IPC against SRRIP and LRU. This subsection focuses more on the results of the

simulations in order to compare the policies, for better comparison we recommend

reviewing the source code for each benchmark in order to understand better why we see

degradation / improvement in IPC. Table 5.3 illustrates how we encoded SRRIP (Described

in Chapter 2) as a GeST individual. As you can see in the encoding on insertion regardless

 38

of the type of access blocks get assigned an RRPV of 2, while on cache hits all type of

accesses get promoted to 0. Figure 5.5 illustrates the IPC achieved in each benchmark from

the competing policies, Figure 5.6 illustrates the improvement in IPC that out policy

achieved over LRU and SRRIP. Improvement was calculated using the formula

Improvement = (New IPC – Reference IPC) / Reference IPC * 100.

We will firstly compare our best policy with SRRIP (Table 5.5). We use the Parest

benchmark for this comparison as we observed the most improvement in IPC. Looking at

Figures 5.5 and 5.6 we can see that our best policy found has a 7.8% improvement in IPC

over regular SRRIP. We will now try to determine why we see this improvement using

Figures 5.7 – 5.11. When inspecting Figure 5.7, we can see that our policy does better with

13.5 hits PKI opposed to 10.2% achieved by SRRIP with also achieving lower misses PKI,

shown in Figure 5.9. From Figure 5.10 we can see that our policy has a higher Hit rate in

LLC compared to SRRIP, with 53.80% over 40.72% which is expected. We will then have

a closer look to determine what makes our policy perform better than SRRIP. When

inspecting Figure 5.11 which illustrate the percentage of hits for each type of access

compared to the total number of hits, we can see that our policy decreases the percentage

of hits on Writeback accesses by 2% and increases the percentage of hits on Prefetch

accesses by the same amount. Load and RFO accesses don’t see much of change. This

indicates that blocks that originate from prefetch are more important than blocks that

originate from writebacks in this benchmark which in turn improves the Hit Rate increasing

the performance and the achieved IPC in this benchmark.

We then compare our best policy with LRU. We also used the Parest benchmark for this

comparison as we observed the most improvement in IPC. Looking at Figures 5.5 and 5.6

we can see that our best policy found has a 10.78% improvement in IPC over LRU. We

will now try to determine why we see this improvement using Figures 5.7 – 5.11. When

inspecting Figure 5.7, we can see that our policy does better with 13.5 hits PKI opposed to

7.6% achieved by LRU with also achieving lower misses PKI, shown in Figure 5.8. From

Figure 5.10 we can see that our policy has a higher Hit rate in LLC compared to SRRIP,

with 53.80% over 30.39 % which is expected. We will then have a closer look to determine

what makes our policy perform better than LRU. When inspecting Figure 5.11 that

illustrate the percentage of hits for each type of access compared to the total number of

 39

hits, we can see that our policy decreases the percentage of hits on Load accesses and

Writeback by 2% and 4% respectively and increases the percentage of hits on prefetch by

6%. RFO accesses don’t see much change. This indicates that blocks that originate from

Prefetch accesses are more important than blocks that originate from Writebacks and Load

accesses in this benchmark which in turn improves the Hit Rate increasing the performance

and the achieved IPC in this benchmark.

One interesting result is when we investigate the Lbm benchmark. As shown in Figure 5.6

our best policy yields ~6% improvement over SRRIP and LRU but does so with

significantly less hit rate ~10% over the two competing policies that have 42% and 43%

respectively, shown in Figure 5.12. We then investigated to uncover the reason why our

policy performed better. From Figure 5.9 we can see that Lbm benchmark has a high

intensity of RFO and Writeback accesses ~ 17 accesses PKI in both types, with load and

RFO only having ~3 accesses PKI. We then investigate the Hit percentage for each access

type across the competing policies shown in Figures 5.13. Looking at the percentages of

all LLC hits, LRU and SRRIP Writeback hits make up 96% of all LLC cache hits and RFO

only 1%. When looking at the same percentages when using our best policy, we can see

that the percentage of Writeback hits decreases to 42.5% and RFO hits increase to 42%.

From these results we can see that our policy balanced the LLC cache hits for RFO and

Writeback which as we discussed have the same intensity PKI, this in turn reduced our Hit

Rate but increased the performance.

Moving forward, we can see that our policy did not perform better in all benchmarks. From

Figure 5.6 we can see that for benchmarks cactuBSSN, Roms, x264 our policy was

outperformed by both SRRIP and LRU. Most notably, in benchmark Roms we saw a

decrease of performance by 2% over SRRIP and 2.6% from LRU. When inspecting the

misses PKI in LLC for the Roms benchmark we can see that our policy has 15 misses PKI

in the LLC while LRU and SRRIP managed ~12 misses PKI. This indicates that our policy

increased the number of LLC cache misses by 3 for every 1000 instructions, which in turn

contributes to the decrease in performance. Similarly, the same behavior can be observed

in benchmarks x264 and cactuBSSN.

 40

We then explore if the ability to use different policies for each benchmark was possible

how much improvement will each benchmark see, and how much would the overall

improvement we will see. In order to do determine the improvement, we first found which

policies performed the best in each benchmark, Table 5.4 shows for each benchmark which

policy performed best at it. As we can see we have 13 unique policies with Imagick and

Perlbench having the same policy as well as Mcf and Roms also having the same policy.

We then calculated the improvement in each benchmark using the formula Improvement =

(Best IPC – Reference IPC) / Reference IPC * 100. Figure 5.14 shows the best IPC we

achieved in each benchmark while Figure 5.15 shows the improvement compared to LRU

and SRRIP. As we can see most benchmarks achieved better performance with Imagick

and Perlbench being the only benchmark that had 0% improvement. Nevertheless, when

calculating the average improvement over the SRRIP and LRU, using different policies

improves the IPC by 2.11% on average over SRRIP and 2.5% on average over LRU. In

this point we would like to point out that running different experiments where the genetic

algorithm would search for the optimal policy for each individual benchmark, we would

probably see better improvement as the policies would be more specialized for each

benchmark as opposed to the policies created in this experiment that were specialized to

perform better in all benchmarks.

Benchmark Generation ID

Blender 50 2483

cactuBSSN 13 628

Cam4 45 2248

Fotonik3d 3 132

Gcc 10 488

Imagick 1 1

Lbm 43 2127

Mcf 33 1618

Omnetpp 38 1862

Parest 47 2305

Perlbench 1 1

Roms 33 1618

 41

Wrf 1 48

x264 4 157

Xalancbmk 1 46

Xz 40 1973

Table 5.6 Policies that achieved the best IPC for each benchmark

5.4.1 Figures used in the comparison

Figure 5.5 IPC comparison between best policy with SRRIP and LRU in benchmark suite

0

0.5

1

1.5

2

2.5

IP
C

Benchmark

IPC comparison with LRU and SRRIP

Best From our Research SRRIP LRU

 42

Figure 5.6 Improvement in IPC

Figure 5.7 Total Hits PKI comparison between best policy with LRU and SRRIP in benchmark suite

-4

-2

0

2

4

6

8

10

12
Im

p
ro

ve
m

en
t

%

Benchmark

Improvement

Improvement over SRRIP Improvement over LRU

0

5

10

15

20

25

30

35

H
it

s
P

K
I

Benchmark

Total Hits Per Kilo Instructions

LRU Best SRRIP

 43

Figure 5.8 Total Misses PKI comparison between best policy with LRU and SRRIP in benchmark suite

Figure 5.9 Accesses PKI for each access type

0

5

10

15

20

25

30

35

40

45
M

is
se

s
P

K
I

Benchmark

Total Misses Per Kilo Instructions

LRU Best SRRIP

0

5

10

15

20

25

A
cc

es
se

s
P

K
I

Benchmark

Accesses PKI

Load RFO Writeback Prefetch

 44

Figure 5.10 Parest benchmark Hit / Miss Rates

Figure 5.11 Parest benchmark percentage of LLC hits from different access types

0 10 20 30 40 50 60 70 80

Best

SRRIP

LRU

Rate %

R
ep

la
ce

m
en

t
P

o
lic

y

LLC Hit/Miss Rates Parest Benchmark

Miss Hit

0 10 20 30 40 50 60 70

Best

SRRIP

LRU

Perecentage from total Hits

R
ep

la
ce

m
en

t
P

o
lic

y

LLC hits Parest Benchmark

Prefetch Writeback RFO LOAD

 45

Figure 5.12 Lbm benchmark Hit / Miss Rates in LLC

Figure 5.13 Lbm benchmark percentage of LLC hits from different access types

0 10 20 30 40 50 60 70 80 90 100

Best

SRRIP

LRU

Rate %

R
ep

la
ce

m
en

t
P

o
lic

y

LLC Hit/Miss Rates Lbm Benchmark

Miss Hit

0 20 40 60 80 100 120

Best

SRRIP

LRU

Percentage from total Hits

R
ep

la
ce

m
en

t
P

o
lic

y

LLC hits Lbm Benchmark

Prefetch Writeback RFO LOAD

 46

Figure 5.14 IPC comparison between best policy for each benchmark with SRRIP and LRU

Figure 5.15 Improvement in IPC when using the best policy for each benchmark

0.0

0.5

1.0

1.5

2.0

2.5
IP

C

Benchmark

IPC comparison with LRU and SRRIP

Best Achived SRRIP LRU

0

2

4

6

8

10

12

14

Im
p

ro
ve

m
en

t
%

Benchmark

Improvement

Improvement over SRRIP Improvement over LRU

 47

5.5 Comparison with best from previous work

In this subsection we will compare the best policy created from the genetic algorithm

(Table 5.3) with the best policy created from previous work (Table 5.1) using SRRIP as

the base for our comparison. From Figure 5.15 we can see the IPC each policy achieved

in each benchmark. We first compare the improvement each policy achieved over SRRIP

using Figure 5.16 which illustrates the improvement in IPC achieved by each policy from

SRRIP. As we can see from the figure Both policies appear to perform better in the same

benchmarks with the exception of Wrf in which the best policy created from the genetic

algorithm shows 1.6% improvement over SRRIP wile the best policy from the previous

work appears to have 0.2% decrease in improvement over SRRIP. Moving forward, we

will compare the two policies head on, to do so we calculated the improvement in IPC the

best policy from the genetic algorithm achieved over the best policy from previous work.

Figure 5.17 illustrates the improvement, as we can see our policy generated by the

genetic algorithm shows improvement over 7 benchmarks while the best policy from

previous work is outperforming it in 5 benchmarks.

0

0.5

1

1.5

2

2.5

IP
C

Benchmark

IPC

Best from Previous Work SRRIP Best from GA

 48

Figure 5.15 IPC comparison between best policy from GA with best policy from previous work and SRRIP

Figure 5.16 Improvement comparison between best policy from GA with best policy from previous work over SRRIP

Figure 5.17 Improvement of best policy from GA over best policy from previous work

-4

-2

0

2

4

6

8

10

Im
p

ro
ve

m
en

t
%

Benchmarks

Improvement over SRRIP

GA Best improvement over SRRIP Previous Best improvement over SRRIP

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Im
p

ro
ve

m
en

t
%

Benchmark

GA Best policy improvement over previous work best policy

 49

Chapter 6

Related Work

6.1 Insertion Promotion Vectors... 49

6.1 Insertion Promotion Vectors

Another relevant work in the field of cache replacement policies for last-level

caches is “Insertion and Promotion for Tree-Based pseudoLRU Last-Level

Caches” [3]. IPVs propose to approach cache management by utilizing a tree-based

pseudoLRU (PLRU) scheme. Unlike traditional LRU, PLRU leverages a

hierarchical tree structure to overcome the challenges associated with cache size

scalability. A drawback of PLRU is the fact that is based on LRU, meaning it has

an inheritance insertion and promotion policy. However, in the paper that are many

choices in insertion and promotion that are not exploited by LRU or PLRU. The

basic idea of the paper is to explore the space of possible insertion and promotion

policies to choose a policy that will maximize the performance. The paper

generalizes the notion into the concept of an insertion/promotion vector or IPV. An

IPV vector that for a K-way associative cache has length of k+1 entries, each entry

has an integer ranging from 0...k-1 that determines what new position a block in

the recency stack should occupy when it is re-referenced and what position a new

block should occupy. Exploring using an exhaustive search for the vector providing

the best speedup would be practically impossible as for a k-way set associative

cache there are kk+1 possible insertion and promotion policies, e.g., for k=16 there

are 2.95 x 1020 different IPVs. Thus, the researchers used a heuristic technique and

 50

to be more specific they used a genetic algorithm to evolve a good IPV. In figure

6.1 you can see the best insertion/promotion vector found by the genetic algorithm

for a 16-way set associative last-level cache. We will now discuss the similarities

and what differentiates our work from the aforementioned. Firstly, our research

uses a very similar general approach in searching for a better replacement policy

for last-level cache, we also use a genetic algorithm in order to evolve a good

replacement policy as the search space is impossible to explore without a heuristic

approach. What differentiates our work besides than we search for an RRIP based

replacement policy rather than LRU one is that we specialized our replacement

policy to perform differently for each cache access type, in addition we defined 5

aspects that comprise a replacement policy and each one has the ability to perform

differently based on the function it implements.

Figure 6.1 Best IPV found by the genetic algorithm

 51

Chapter 7

Conclusion and Future Work

7.1 Conclusion .. 51

7.2 Future Work .. 52

7.1 Conclusion

In conclusion, this thesis has addressed the importance of cache replacement

policies in modern computer architectures and the need for specialized policies to

optimize cache performance for specific access patterns. Through the use of a

genetic algorithm, we have explored the viability of automating the search for such

specialized cache replacement policies. The results of our simulations have

provided valuable insights into the performance benefits of evolved cache

replacement policies. We have observed improved cache hit rates and overall

system performance compared to traditional policies, indicating the potential of

automated search techniques in optimizing cache efficiency. The findings

presented in this thesis contribute to the existing body of knowledge on cache

replacement policies and demonstrate the effectiveness of genetic search

algorithms in discovering specialized solutions. These results open avenues for

further research in cache replacement policy optimization, considering different

access patterns and evaluating the performance of evolved policies in real-world

scenarios.

 52

7.2 Future Work

In order to advance the field of cache replacement policies and optimize cache

performance in modern computer architectures, future work can be directed

towards several promising directions. Firstly, conducting experiments on real

hardware platforms would provide more accurate and practical insights into the

effectiveness of evolved policies. Additionally, expanding the search space by

using a larger set of candidate functions for cache replacement would allow for a

larger space of potential solutions. Furthermore, incorporating set dueling

techniques, which involve utilizing multiple policies in parallel and dynamically

selecting the most suitable one, could lead to further improvements in cache

efficiency. Moreover, exploring the application of machine learning techniques,

such as reinforcement learning or neural networks, as an alternative to genetic

algorithms would open new possibilities for automating the discovery of optimized

cache replacement policies. By following these avenues of investigation, we can

push the boundaries of cache optimization and contribute to the development of

smarter and more effective cache replacement strategies.

 53

References

[1] Jaleel, A. et al. (2010) High performance cache replacement using re-reference

interval prediction (RRIP). Available at:

https://people.csail.mit.edu/emer/media/papers/2010.06.isca.rrip.pdf

[2] Moinuddin K. Qureshi The University of Texas at Austin et al. (2007) Adaptive

insertion policies for high performance caching, ACM SIGARCH Computer

Architecture News. Available at:

http://www.jaleels.org/ajaleel/publications/isca2007-dip.pdf

[3] Jiménez, D. (2017) Insertion and Promotion for Tree-Based PseudoLRU Last-

Level Caches. Available at: https://people.engr.tamu.edu/djimenez/pdfs/p284-

jimenez.pdf

[4] ChampSim: Architectural Simulation. Available at:

https://github.com/ChampSim/ChampSim

[5] Z. Hadjilambrou, S. Das, P. N. Whatmough, D. Bull and Y. Sazeides,

(2019).GeST: An Automatic Framework For Generating CPU Stress-Tests.

Available.at :

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8695639&isnumber=

8695630

https://people.csail.mit.edu/emer/media/papers/2010.06.isca.rrip.pdf
http://www.jaleels.org/ajaleel/publications/isca2007-dip.pdf
https://people.engr.tamu.edu/djimenez/pdfs/p284-jimenez.pdf
https://people.engr.tamu.edu/djimenez/pdfs/p284-jimenez.pdf
https://github.com/ChampSim/ChampSim
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8695639&isnumber=8695630
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8695639&isnumber=8695630

