
Thesis Dissertation

EVALUATION AND ANALYSIS OF A
COLLABORATIVE MISBEHAVIOUR MODEL

Nikolas Venizelou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2023

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

Evaluation and analysis of a collaborative misbehaviour model

Nikolas Venizelou

Supervisor

Dr. Vasos Vasilliou

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2023

Acknowledgments

I would like to thank my supervisor Dr. Vasos Vasiliou for providing me such an in-

teresting thesis project and guiding me throughout the problems that I faced during my

research, but most importantly I am really glad for our back and forth conversations dur-

ing the thesis meeting where he never failed to listed to my opinion and thinking process.

Moreover, I need to thank Dr Marios Thoma who was kind enough to provide my with

his implementation of the model as well as answer questions that came up when I trying

to understand his PhD thesis.

Additionally, I would like to thank the Computer Science department, especially the

teaching staff that managed to pass me valuable knowledge will also sharing their passion

for computer science.

Finally I want to thank my family for supporting me throughout the years and my

friends with whom I cherish valuable memories created in the last couple of years while

attending this University.

1

Abstruct

Distributed Denial of Service attacks is the major thread on the availability of resources

in computer networks for at least the last 20 years, due the the challenging problem of

distinguish such attacks, as attackers continue to evolve with detection mechanisms and

defence techniques. This thesis aims to evaluate and analyze a model for detection of

collaborative misbehaviour users in DDoS attacks, that detects early signs of abnormal

user behaviour based on the frequency of the users requests in correlation with time.

This document will explain why the successful identification of collaborative misbehaving

users can be used to detect early sign of DDoS attacks and the underline method used in

the original paper. Furthermore, a new implementation of the model written in python will

also be provided and explain the reason for creating such implementation even though the

original model’s code was kindly provided by the author.

Most importantly this document will analyse the selection of a time interval for which

the users requests are observed and measured in order to determine if users are collabo-

rators, by selecting and measuring the accuracy of the original program, using different

time intervals.

This thesis argues that the selection of a correct time interval has the most significant

role on accurately detecting collaborative users of the model, and also with the use of real-

world data result measurements and other logical realizations, questions the accuracy and

correctness of the model’s algorithm. This thesis concludes that the simple logic proposed

in the original paper has overlooked many factors which in turn are observable by deeply

analysing the model.

2

Contents

1 Introduction 8
1.1 Main idea and contribution . 8

1.2 Thesis structure . 9

2 Background 10
2.1 General . 10

2.2 DDoS attacks . 10

2.2.1 DDoS in OSI Layers . 11

2.2.2 DDoS Techniques . 12

2.2.3 DDoS Ramp-up strategy . 13

2.3 Collaborative misbehaviour model . 13

2.3.1 Hidden markov models . 13

2.3.2 Approach . 15

3 Implementation 17
3.1 Algorithm - Logic . 17

3.1.1 Flash Crowd Detection . 21

3.2 Implementation analysis . 23

3.2.1 High-level idea of original implementation 23

3.2.2 Motivation for implementation - Differences 24

3.2.3 High-level idea of new implementation 25

3.2.4 Proof of correctness . 26

4 Analysis 27
4.1 Base line - Simple test . 27

4.2 Caida Dataset Testing . 28

4.2.1 Low-rate CAIDA DDoS . 28

4.2.2 High-rate CAIDA DDos . 31

4.3 Observations . 33

3

5 Model evaluation 35
5.1 Uniqueness of this method . 35

5.2 Complexity . 36

5.3 Time interval selection . 36

5.4 Collaborator Identification . 37

6 Future Work 38

7 Conclusion 40
.1 Appendix A: Original Implementation flash crowd detection 44

.2 Appendix B: Implementation of the model in python 45

4

List of Figures

2.1 HMM1 and HMM2 . 15

3.1 Algorithm Flowchart . 21

3.2 Original Implementation diagram . 23

3.3 Correctness timestep matrix . 26

4.1 ddos2007_135936 Wireshark I/O graph 29

4.2 ddos2007_141436 Wireshark I/O graph 32

5

List of Tables

3.1 Timestep matrix . 17

4.1 Simple test results . 27

4.2 ddos2007_135939 Results - 87 users . 29

4.3 ddos2007_140436 Results - 24 users . 30

4.4 ddos2007_140839 Results - 11 users . 30

4.5 ddos2007_142936 Results - 9 users . 32

4.6 ddos2007_141436 Results - 926 users 32

4.7 ddos2007_144936 Results - 903 users 33

4.8 ddos2007_145436 Results - 916 users 33

6

List of Algorithms

1 Detection model main algorithm . 19

7

Chapter 1

Introduction

1.1 Main idea and contribution

This thesis extends and is based on the previous work done on detecting collaborative mis-

behaviour in DDoS attacks [11], where the paper focuses on identifying collaborators in

a network by observing network traffic and the time interval between each user request.

This results in a systematic method of collecting valuable meta-data about the network

traffic in general which is easily applied to detect malicious users or collaborators due

to the nature of DDoS attacks. In practice the model determines if a user is a collabora-

tor with another user, by finding users that issue requests approximately simultaneously

based on the relation between the user’s expected frequency (of requests) and measured

frequency with a mathematical approach based on the theory of hidden Markov models.

This thesis purpose is to re-create a clean and understandable implementation of the

model in a modern programming language as well as analyse and evaluate the model with

the possibility of proposing improvements to the underline methodology described in the

original paper.

More specifically this study aims to find if a time interval, to measuring the frequency

of users requests, exists for which there are improvements in the detection rate and ac-

curacy. To achieve this an implementation of the method was provided by the author of

the original paper and with some modification results were taken to demonstrate this the

difference between time intervals, by using a real botnet data. Furthermore, proposed

improvements will be mentioned in the practical implementation of the model as well as

the ability of integrating this model to existing infrastructures will be questioned.

8

1.2 Thesis structure

The structure consists of a total of 7 sections, in section 2 the collaborative misbehaviour

model is further explained with a subsection providing a basic understanding of the hidden

Markov model theory and how it used in the model, as well as a general background in

DDoS attacks and how an attacker might deploy such attacks. Furthermore, section 3 will

provide a python implementation of the model, as well as the practical implementation

reasoning which will help to understand the detection mechanism as well as some of its

shortcoming. Continuing, section 4 provides an analysis on the time interval selection,

using the implementation and the CAIDA DDoS attack dataset [1]. Section 5 includes the

evaluation of the model, which explains the uniqueness of the model in contrast to other

detection mechanisms, and also explains the problems found in the logic of the proposed

algorithm while mentioning ways of improvement. Finally, section 6 describes the future

work that could be done and section 7 concludes this thesis.

9

Chapter 2

Background

2.1 General

In order to understand how the collaborative misbehaviour model’s [11] time interval se-

lection can be a major factor in the model’s detection and accuracy, how the model can

be compared with other detection techniques and how it can be implemented to coexists

with existing infrastructures, one must first understand the model itself and also the math-

ematical reasoning used to create the model. General knowledge on DDoS attacks and

variations is also expected, to provide the basic knowledge on understanding the detection

itself.

2.2 DDoS attacks

Distributed Denial of Service (DDoS) attacks are a major threat to many organizations,

ranging from small businesses to large corporations and government agencies. These

attacks can cause significant disruption to an organization’s online services, resulting in

lost revenue, damage to reputation, and other negative consequences. DDoS attacks are

targeting the availability of resources by overwhelming a network with useless traffic and

ultimately prevent legitimate users from accessing the service. In a DoS attack, a single

computer or network is used to flood the targeted site or network with an excessive amount

of traffic, causing it to crash or become unavailable. A DDoS attack is similar, but instead

uses a large network of computers, often controlled by a botnet, to flood the targeted

service with traffic from multiple sources. The severity of the attack is dependent on the

amount and type of traffic generated, and the defenses in place to mitigate it. Both DDoS

and DoS attacks can have significant impacts on the targeted service, such as lost revenue,

damaged reputation, and disrupted operations. These attacks can be initiated by botnets

and other compromised devices, making it challenging to identify and mitigate them, in

10

this section we take a look at the different types of DDoS attacks and their characteristics.

2.2.1 DDoS in OSI Layers

DDoS attacks can occur in multiple network layers of the Open Systems Interconnection

(OSI) model, namely the network (Layer 3), transport (Layer 4), and application (Layer 7)

layers. In the network layer, DDoS attacks typically exploit protocols such as the Internet

Protocol (IP) and the Internet Control Message Protocol (ICMP). These attacks involve

overwhelming the target’s network resources with a high volume of traffic or exploiting

IP fragmentation vulnerabilities. In the transport layer, attacks focus on protocols such

as the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP) [6],

aiming to exhaust server resources or disrupt the communication between network hosts.

Application layer attacks occur at Layer 7 and target vulnerabilities specific to the ap-

plication itself, such as the Hypertext Transfer Protocol (HTTP) or the Domain Name

System (DNS) [8].

Effective detection and defense techniques vary across network layers. In the network

layer, common techniques include traffic anomaly detection, source IP filtering, or imple-

menting routers with access control lists to filter unwanted traffic. In the transport layer,

techniques such as rate limiting, SYN cookies, or connection tracking can help identify

and mitigate attacks [6]. At the application layer, specialized web application firewalls

(WAFs) and behavior-based anomaly detection are commonly used to detect and block

malicious traffic [8].

Each layer attack differs in terms of the specific vulnerabilities they exploit and the

impact on the targeted system. Network layer attacks primarily focus on overwhelm-

ing network resources, causing congestion and disrupting normal network operations.

Transport layer attacks aim to exhaust server resources by exploiting vulnerabilities in

connection establishment or teardown processes. Application layer attacks directly target

the functionality or resources of the application, impacting the service’s availability or

performance. While the effectiveness of each attack may vary depending on the target

and the specific attack technique employed, application layer attacks are often considered

more effective as they can directly affect the desired service or functionality.

11

2.2.2 DDoS Techniques

Distributed Denial of Service (DDoS) attacks employ various techniques in addition to se-

lecting one or multiple layer to attack. These techniques are often employed by attackers

to exploit vulnerabilities and evade detection, making defense more challenging.

One prevalent technique used by attackers is the utilization of botnets. Botnets con-

sist of a network of compromised devices, or bots, under the control of an attacker. By

coordinating the actions of these bots, attackers can generate a massive volume of traffic

directed towards the target. The distributed nature of botnets makes it difficult to pinpoint

the source of the attack and mitigating its impact, as the attack traffic appears to origi-

nate from multiple sources. Furthermore, the attacker can issue commands to the botnet,

controlling and adjusting the attack strategy as needed. This technique enables attackers

to overwhelm the target’s resources, such as bandwidth, processing power, or memory,

leading to service disruption or unavailability [4].

Another technique employed by attackers is low-rate attacks. These attacks are char-

acterized by their slow and subtle consumption of the target’s resources over an extended

period. By maintaining a low traffic rate, attackers aim to evade detection mechanisms

that rely on monitoring for sudden spikes in traffic. Instead, they gradually exhaust the tar-

get’s resources, making it challenging to differentiate between legitimate and malicious

traffic. The goal of low-rate attacks is to cause a long-term degradation of the target’s

performance, often resulting in a complete denial of service over time [9].

Reflective attacks represent another commonly used technique by attackers. These

attacks take advantage of vulnerable network protocols that can be abused to amplify the

volume of attack traffic. Attackers send requests to a large number of reflective servers,

forging the source IP address to that of the target. The reflective servers, unaware of the

forged source, respond by sending their replies to the target. Due to the amplification

effect, the responses from the reflective servers are much larger than the initial request,

resulting in an overwhelming flood of traffic towards the target. Reflective attacks enable

attackers to maximize the impact of their attacks using fewer resources and amplifying

the traffic volume by exploiting vulnerable protocols [3].

In addition to these attack techniques, attackers employ various evasion tactics to

avoid detection and hinder defense efforts. One such tactic is IP spoofing, where the

source IP address is forged to make it appear as if the traffic originates from legitimate

sources. This technique makes it difficult to trace the origin of the attack, as the source IP

address does not accurately represent the attacker’s identity. Defenders face the challenge

of distinguishing legitimate traffic from spoofed traffic, complicating the detection and

mitigation process.

12

2.2.3 DDoS Ramp-up strategy

Ramp-up is a unique prominent strategy deployed by the majority of today’s Distributed

Denial of Service attacks. DDoS attack ramp up involves a carefully orchestrated escala-

tion of attack intensity over time. Instead of overwhelming the target instantly, attackers

gradually increase the attack’s scale, duration, or diversity of attack vectors. This incre-

mental approach exploits the thresholds and limitations of target systems, effectively over-

whelming their infrastructure and extending the disruptive effects. By deploying various

attack vectors in a staggered manner, such as volumetric, protocol, or application-layer at-

tacks, perpetrators heighten the chances of circumventing defensive measures and further

prolonging the attack’s impact. The adoption of DDoS attack ramp up stems from several

motivations. Initially launching a milder attack allows attackers to evade early detection

and mitigation efforts employed by target organizations. This strategic approach enables

probing the resilience of defenses, adapting attack vectors accordingly, and capitalizing

on any identified weaknesses during the ramp-up phase. The gradual nature of the at-

tack also serves to assess the target’s response capability, potentially inducing fear in the

victim and increasing the likelihood of achieving intended objectives, such as extortion,

service disruption, or gaining competitive advantage [2].

2.3 Collaborative misbehaviour model

In this section a background about the methodology of the collaborative misbehaviour

model will be provided as well as an explanation of the underline mathimatical reasoning

of Hidden markov models in simple terms in-order to grasp the practical implementation

if this method.

2.3.1 Hidden markov models

A discrete time Markov chain is a mathematical model used to describe a system that

changes over time and transitions between a finite set of states. It follows the Markovian

property, which states that the probability of transitioning to a particular state at the next

time step only depends on the current state.

In this model, we have a set of states Θ and a transition probability matrix P that

determines the likelihood of moving from one state to another. At the beginning, there is

an initial probability distribution π0 that represents the chances of starting in each state. As

time progresses, the probabilities of being in different states can be calculated iteratively

using the transition probability matrix and the previous probabilities.

13

The Markovian property states as an equation

Pr(Xn = xin |X0 = xi0 , . . . ,Xn−1 = xin−1)

= Pr(Xn = xin |Xn−1 = xin−1),
(2.1)

where Pr

If the transition probabilities do not change over time (homogeneous Markov chain),

the probabilities can be calculated simply by multiplying the previous probabilities with

the transition probability matrix. This matrix is column stochastic, meaning that the prob-

abilities for transitioning from each state to all other states sum up to 1.

A hidden Markov model (HMM) extends the concept of a Markov chain by introduc-

ing the idea of observed outputs. In addition to the states and transition probabilities, an

HMM includes a set of possible output symbols and an emission probability matrix. This

matrix determines the probability of observing a particular symbol given the current state.

Each state is associated with a specific output symbol.

The HMM is useful for modeling systems where we have observable outputs that are

influenced by underlying states, but we cannot directly observe the states themselves. By

analyzing the observed outputs and using the HMM, we can make inferences about the

hidden states and their transitions.

In summary, a discrete time Markov chain is a model that represents how a system

transitions between states over time. The hidden Markov model extends this concept by

incorporating observed outputs and the probability of emitting those outputs from each

state. These models are widely used in various fields, including speech recognition, bioin-

formatics, and natural language processing.

14

2.3.2 Approach

HMM 1

1

1

‘’1’’

r

1-r2 3

‘’0’’ ‘’0’’

1

1

‘’1’’

2 3

‘’0’’

1-r

4

‘’1’’ ‘’0’’

1-q 1-r

1-qr

2q/5 r/4 q/4

3r/43q/5

HMM 2

3q/4

Figure 2.1: HMM1 and HMM2

The paper [10] concluded that using the 2 hidden Markov models shown above, correla-

tion between users can be identified by observing the time a user has sent a packet or not

(indicated by a 1 or a 0) in order to come identify users or a group of users as collaborators

in a network. In order for this to happen, a sufficient N must be selected which represent

the time slots for which we check if a user has sent data to the network or not. This is a

really important part of the detection model and essentially the main question we want to

answer in this paper is that if there is such a value for N for which we can have the best

accuracy, and if such a value exists if it is bound to specific network traffic or not.

The value N that was previously mentioned will be refer to as ts, which is defined as

the time slot for which determine if a user has send a packet or not, indicating 1 or 0

respectively. If Ts is used to denote the total length of the inspection window (for example

the length of the dataset, measured in time) we have that:

ts =
Ts

n
(2.2)

Where n denotes the total number of timesteps. By using hidden markov models,

linear algebra and other mathematical reasoning the original paper [11] proved the fol-

lowing: lets assume that we have a MxN matrix where M is the number of users (unique

IPs) and N is the total number of timesteps (n described on the previous equation), de-

note that each row of the matrix can be considered as y[k] ∈ 0,1, ∀k≥ 0 and represent the

activity of a user. For some user 1 and some user 2 we have

15

• For user 1, let û1 the empirical frequency where user 1 sends a packet (number of

terms where we have y1[k] = 1) :

û1 =
number o f terms where y1[k] = 1

n
.

• For user 2, let û2 the empirical frequency where user 2 sends a packet (number of

terms where we have y2[k] = 1) :

û2 =
number o f terms where y2[k] = 1

n
.

• For both, let û the comparable frequency for which both user1 and user2 send

packets at the same timeslot k :

û =
number o f terms where y1[k] = y2[k] = 1

n
.

• We also have the relative frequency û12 which corisponds to the product of û1 û2 :

û12 = û1û2

By comparing the comparable frequency and relative frequency of 2 users we can un-

derstand if the users are collaborative or not. If 2 users are independent (non-collaborative)

then the relative frequency and comparable frequency should be close to equal û12 ≃ û

for n→ ∞.

In the original article, it is emphasized that the knowledge of Hidden Markov Mod-

els (HMMs) for modeling user behavior is not necessary for the implementation of the

proposed approach. The primary focus of the analysis lies in the utilization of the only

observable information available to us, namely the network requests made by users, in

order to detect any anomalous activities. This is achieved by calculating the discrepancy

between the relative frequency and the comparable frequency, thereby serving as an in-

dicator of the correlation degree between the requests. It should be noted that the exact

quantification of the correlation between users, in terms of specific values, is not explored

within the scope of the present study. Additionally, the authors suggest the exploration of

correlations over time periods by applying the same methodology to shifted versions of

the sequences

16

Chapter 3

Implementation

In this section we will take a look at the practical implementation of the model, which

has a complexity of O(n2 ∗m), with n and m denoting the number of users and timesteps

respectively. The implementation was provided by the author of the original paper, and

some improvements and suggestions for the advancement of this model will be included

in this section. It is important to note, that even though hidden Markov models were an

important part in the original research, in-order to provide a mathematical model of the

collaborative user detection problem, it it not relevant beyond the point of proving that

by observing the comparable and relative frequency of users we can understand it the

users are in collaboration. Thus, the implementation does not contain any programmatic

implementation of hidden Markov models nor is their a reason to put such an effort on

implementing them. Continuing, this section we will describe the pseudo-algorithm used

in the implementation, an abstract view of the implementation itself, how the network

traffic is being processed as well as some limitation of the current implementation.

3.1 Algorithm - Logic

Users / Timesteps 1 2 3 4 5 6 7 8 9 10

IP 1 1 0 1 0 1 0 1 0 1 0

IP 2 0 1 0 1 0 0 1 0 1 1

IP 3 0 0 1 0 0 1 0 0 1 0

IP 4 1 1 1 1 1 1 1 1 1 1

IP 5 1 1 1 1 0 0 0 0 0 0

IP 6 0 0 0 0 1 1 1 0 1 0

Table 3.1: Timestep matrix

17

Assuming that we have a matrix like 3.1 where each column represents a timestep

from 1 to n (recall n from equation 2.2, and the rows a unique IP in the network traffic.

Every time a columns of matrix has a value of one, it is indicated that the IP of that

row has network activity for the given timestep. By creating such a matrix for a network

for which we want to examine if collaborators in the network exist, the original paper

proposed the following algorithm (the algorithm removes some unnecessary complexity

in-order to simplify the logic and appear more understandable while still produce the same

results).

The algorithm 1 shows the basic function form of the proposed algorithm with some

modifications. The algorithm focuses on creating and comparing the frequency of activity

of each user by using the equations described in section 2.3.2, this frequency are later used

to identify depended (collaborative) and independent (non-collaborative) users, simple by

comparing their values.

The algorithm assumes that we have a matrix as described in table 3.1, as well as an

array with the unique IP addresses of the users that are active in the network at the time

of the analysis (or in the corresponding data-set/network traffic PCAP).

With the two nested for loops shown in the algorithm, we can make all comparisons

between pairs of unique IPs.

For each pair, we compute the probability û1 (corresponding to prob_ip1), û2 (cor-

responding to prob_ip2), and the comparable frequency/probability û (corresponding to

comparable). After calculating the necessary probabilities, we then compare the compa-

rable frequency with the relative (prob_ip1× prob_ip2) in order to identify the pair as

collaborators. For every identification of a user pair a counter is used (dep and indep)of

the times each user was found depended and independent respectively.

After a user is compared with all other users (after the end of the nested loop j)

the user i is added in the depended or independent set by comparing dep[i] ≥ indep[i]

or dep[i] < indep[i]. An important criterion that is also added is the identification of the

pair as collaborators in the case of û1 = û2 = û, which ultimately means that the pair has

exactly the same activity, in this case the counters are not used for the identification but

rather the pair is automatically added to the depended set and assumed to be collaborators.

18

Algorithm 1 Detection model main algorithm
1 function COMPUTEPROBABILITIES(matrix, unique_ips)

2 num_ips← length(unique_ips)

3 num_columns← length(matrix[0])

4 depended←{}
5 independent←{}
6 dep← length(unique_ips)

7 indep← length(unique_ips)

8 for i← 0 to num_ips−1 do
9 ip1← unique_ips[i]

10 prob_ip1← count_ip1
num_columns

11 count_ip1← number of times ip1 has 1 in a timestep

12 if ip1 ∈ depended then
13 independent.add(ip1)

14 for j← i+1 to num_ips−1 do
15 ip2← unique_ips[j]

16 count_ip2← number of times ip2 has 1 in a timestep

17 count_both← number of time ip1 = ip2 = 1 in a timestep

18 prob_ip2← count_ip2
num_columns

19 comparable← count_both
num_columns

20 relative← (prob_ip1) · (prob_ip2)

21 if prob_ip1 == prob_both and prob_ip2 == comparable then
22 depended.add(ip1)

23 depended.add(ip2)

24 continue
25 else if comparable > relative then
26 dep[i]++

27 dep[j]++

28 else
29 indep[i]++

30 indep[j]++

31 if ip1 ∈ depended then
32 continue
33 else if indep[i] > dep[i] then
34 independent.add(ip1)

35 else
36 depended.add(ip1)

37 return

19

The author of the original paper also included detection for other groups of users

which seem to be irrelevant or inaccurate as will be seen in the analysis section. The total

groups identification in the original algorithm included:

• Depended users: Which are users that we consider to be in collaboration with

either one or multiple users. This is determined as already mentioned by comparing

the relative and comparable frequency Fcomparible (same as û) > Frelative (same as

û12). This comparison is different from the original û12 ≃ û since in the practical

implementation of this method we do not have n→ ∞

• Independent Users: Similarly no collaborative users are also detected with the

exception that the comparison is Fcomparible ≤ Frelative

• Abnormal Users: Are considered users with abnormally high activity with the pro-

posal identification of such users being that they have observed packet rate higher

that 0.9 (with 1 being the maximum). This essentially means that in the case we

have 10 timesteps, if the user shows activity in at-least 9 of them, the it is considered

an abnormal user

• No-activity Users: Are easily described as users that have 0 activity through-out

the analysis / detection model

• Flash-crowd: Considered as the most problematic user category, a flash crowd can

be described as a sudden surge in legitimate user traffic towards a specific web

resource or service and will be explain in more detail in section 3.2, for now, these

users are identified by having a packet rate higher that the mean packet rate.

The flowchart diagram, figure 3.1, shows a logic of the algorithm 1 will also adding

identification for flash crowd and abnormal users with the criteria described by the author.

As already mentioned, we found it was at best interest to consider group identification

beyond depended and independent users (collaborative / non-collaborative) out of scope

in the new implementation, the reason being that other groups were more prone to produce

inaccurate results due to the following reasons:

• No-activity users: This is consider irrelevant due to the simple reason that if a user

have no activity it will simply not appear in the data-set or pcap file used for the

detection.

• Abnormal users: Generally abnormal traffic is considered traffic that differentiate

from normal operation traffic, such as DDoS attacks, port scanning, botnet activ-

ities. In the original paper, abnormal users are considers users with packet rate

higher than 0.9 (with 1 being the case of having activity on every timestep), with

20

the every organization deploying rate limiting on network users, detecting for ab-

normal users or rather detecting high traffic users, is a very basic and out-of-scope

identification for this detection model as we should sorely focus on the detection

of collaborators rather than create a "jack of all trades" DDoS detection model as

there already many papers that focus entirely on abnormal traffic detection [12].

Figure 3.1: Algorithm Flowchart

3.1.1 Flash Crowd Detection

As already mentioned flash crowds pose significant challenges in DDoS detection due to

their unique characteristics and the difficulties in differentiating them from actual DDoS

traffic. A flash crowd refers to a sudden surge in legitimate user traffic to a particular

website or online service, typically triggered by a popular event or viral content. From a

DDoS detection perspective, this category of users is considered the most problematic.

The primary reason for the challenge lies in the similarities between flash crowds

and DDoS attacks. Both scenarios involve a sudden increase in incoming traffic, which

can overwhelm the target infrastructure and disrupt normal operations. This similarity

makes it inherently difficult to distinguish between benign flash crowd traffic and mali-

cious DDoS traffic based solely on traffic volume or patterns.

21

Moreover, flash crowds intensify the detection challenge by exhibiting high degrees of

similarity to DDoS attacks in terms of traffic characteristics, such as packet rate, payload

size, and distribution. This similarity further complicates the task of accurately identify-

ing and mitigating DDoS attacks, as it becomes crucial to differentiate between legitimate

traffic from interested users and the coordinated malicious traffic of a DDoS attack.

The original paper’s approach of detecting flash crowds, is simply comparing the

user’s packet rate with the average packet rate, by having a higher packet rate than the

average the user is then consider part of the flash crowd group. What it is believe to be

overlooked is that is not a characteristic that is unique to flash crowd users but rather it is

valid for both DDoS / DoS users, meaning in a normal network traffic having higher than

normal packet rate means that the source is either part of a DDoS attack or part of a flash

crowd. Inherently this simple criteria does not solve the bigger problem of distinguishing

DDoS attacks from flash crowds and it can be easily proven by observing the results of

the original implementation, where even though no flash crowd traffic was present, for

logical time-interval selection it was almost certain that a user will be identified as flash

crowd. In the original paper, it was determined that a flash crowd user is most certainly

a depended user (can be seen in appendix 1), but the interpretation may overlooked the

important aspect that in contrast to botnet controlled DDoS attacks, flash crowds are not

necessarily deployed in a collaborative manner, since each user might be active in an en-

tirely different timestep. The key factor that is overlooked is that flash crowds are much

more harder to identify that simply comparing the mean packet rate and is something that

could be researched further by incorporating probability metrics detection described in [5]

22

3.2 Implementation analysis

In this subsection we will provide the motivation for re-implementing the collaborative

misbehaviour model, the differences between the 2 models including in terms of complex-

ity and efficiency. Finally a prove of correctness will be provided that will compare the

results from both the models in-order to make sure that no modifications were made that

could affect the results and conclusions of this paper. It also worth mentioning that even

though the new implementation will be used in the later sections for analysing the model,

the original implementation will also be considered since future section will compare the

results taken from the original paper [11].

Any implementation of this model, will ultimately need to implement some basic

operations in-order to create the logic of the model. The main logic can be broken down

into 4 major section:

1. Identifying unique users

2. Selection of time-interval and calculation of total timesteps

3. Creating the timestep matrix like table 3.1

4. Calculating probabilities and differentiate user groups

3.2.1 High-level idea of original implementation

function
FINAL_TEST_NOE16_V2
(mean_packet_rate,d
iktis_round)

 function
[pinakas_new_u,
COUNT,metrics_p
inakas_new_u,su
m_metrics_pinak
as_new_u,new_f1

47,epipleon]=
nea3_proseggisi
(mean_packet_ra
te)

function[pinakas_n
ew_u,new_f147,metr
ics_pinakas_new_u,

epipleon]=
sira_anadiataksi(
pinakas_new_u,new_
f147,metrics_pinak
as_new_u)

function
PLOT_TRAFFIC(sum_metrics_pi
nakas_new_u,plot_sum_metric
s_pinakas_new_u,mean_packet
_rate,metrics_pinakas_new_u
)

function
[INDEPENDENT_USERS,UBNORMAL_BEHAVIOUR_USERS,F

LASH_CROWD_USERS,DEPENDENT_USERS]=
no_activity_new_u_bio_graph5_03DEC2016(new_u,
size_i,mean_packet_rate,prob_MATRIX_PROBABILI
TY,nosteps,sum_metrics_pinakas_new_u,new_f147
,epipleon)

1 2
3

45

67

Figure 3.2: Original Implementation diagram

23

The original implementation’s diagram can be seen on figure 3.1 where it is important

to mention that the original model was implemented in Matlab (an expressive proprietary

multi-paradigm programming language) as it is a simple enough to learn, offer data vi-

sualization (for debugging and understanding the programming logic) and also provides

easy interface for creating charts. As it can be seen from figure 3.1 the implementation is

broken down into 5 different files, where each file can be seen as a different function or

method.

The control flow of the program goes as follows, with FINAL_TEST_NOE16_V2

referred as the main function:

1. The main function takes the input file containing the dataset and calls "nea3_proseggisi"

function

2. "nea3_proseggisi" takes the dataset and with the help of "sira_anadiataksi" function

creates the matrix described in table 3.1

3. Later with the use of "PLOT_TRAFFIC" the traffic is plotted and also calculates

the mean packet rate and user mean packet rate

4. Control is transfered back to the main function were the "no_activity..." function is

called

5. "no_activity..." creates a matrix where it contains probabilities and if the user is

part of abnormal, no-activity or flash crowd group. It also creates a graph with the

relationships between users and finally prints the percentage of each group.

It is worth noting that the whole Matlab program come in total of 1300 lines of code.

3.2.2 Motivation for implementation - Differences

There are many reasons for the re-implementation of the model, but most importantly it

is worth noting the original model was model meant to be used to prove the theoretical

work of Dr. Marios Thoma in the paper [11] was working and to provide some obser-

vations and parts that could be improved with the underline methodology and variable

selection in future works. A logical approach was to implement the model in a more

modern and functional programming language in-order to re-write it in a more clean and

straight forward manner while also improving some bugs that were found in the original

implementation.

24

Some important bugs that were found were:

• The matrix that was scanned from the data-set files was mapped incorrectly in terms

of data types in the program’s matrix. This resulted in IP addresses represented by

a double value instead of a string, which had a big effect on the overall detection

accuracy since the unique IP addresses were not identified correctly.

• The program did not used the user’s IP as identifier for the users, making it hard

to understand the results of the method since the identifiers used had no correlation

with the actual data-set. This made the analysis of the model extremely difficult

since no observation could be made about the false positives / false negatives with-

out modifying the code

• Finally, the code responsible for producing the timestep matrix produced invalid

results with users appearing to be inactive when that was in fact impossible since a

user must exist in the data-set in-order to be included in the timestep matrix.

Overall the program was understandably hard to read, improve and fix, since it went

through many modification in the original research process. This made the implemen-

tation that was receive include unnecessary code and complexity but also many coding

blocks that were not used at all in the methodology, creating the motivation for imple-

menting the model.

3.2.3 High-level idea of new implementation

As already mentioned the new implementation is written in python 3 with one of its

goals, being to write an easily readable and understandable code, that can be encapsulate

the detection’s logic in a simple program. The new implementation also fixed the bugs

that were found in the original implementation which in turn, deemed the experimental

results found on the original paper as invalid, since the data-set parsing of the original

implementation produced a different timestep table both in terms of users and timestep

activity as mentioned on the previous section.

The new implementation comes to a total of 120 lines of code, and it is measured

to be at least 5 times faster that the original implementation, possibly due to the use of

more efficient data structures such as sets and lists. It important to mention that this im-

plementation does not in fact identifies abnormal, no-activity or flash crowd users as it

was already explained why it is believed that the proposed criteria for such identifica-

tion is considered unnecessary/out-of-scope or inaccurate on section 3.1. The probability

calculation and user identification of this implementation explicit follows the algorithm

described rather than the flowchart and produces the following results:

25

• The total number of unique users

• The total number of timesteps for the selected time-interval that is taken as an ar-

guments

• The percentage of depended and independent users

• Depended and Independent set of users that are identified by using IP

3.2.4 Proof of correctness

Figure 3.3: Correctness timestep matrix

In order to prove that the implementation that was made for this thesis produces the same

results with the original implementation, consider the figure 3.3 which represents the

timesteps matrix for an example network activity of 7 users. The rows of the table repre-

sent the unique source (user) and the columns represent the timesteps which are 40 in

total, each unique color of the boxes containing a 1 digit shows that the these users share

activity on the selected timestep (column). From the previous section that we explain

how the implementation of the method works, we can observe that user 1 and user 2 are

definitely collaborative.

The results of the implementations of the model were both the same and concluded

that all users except user 3 and user 4 are collaborative. It is important to note that this

small test is not focuses on the accuracy of the model but rather to proof that both imple-

mentations produce the same outputs.

The outcome of the both implementations were exactly the same, since the bugs of

the original implementation were found on the parsing of the data-set and creation of the

timestep matrix, where in this case was already provided as an input. By this test we

assume that the detection model behaves and results the same in both implementation,

with the new implementation being proven to sufficient to be used in the analysis of the

model.

26

Chapter 4

Analysis

This section focuses on the analysing the model in terms of accuracy and correctness.

More specifically in this section we focus on providing an analysis of the results that the

model produces using real-world DDoS attack data-sets, but also we will be testing differ-

ent time-intervals in-order establish if a time-interval value exists for which we have the

most accurate results. The sections will start by examining the results taken from the cor-

rectness results of the implementation section and then later will continue by examining

the CAIDA data-set on both low-rate and high-rate DDoS attacks. Finishing compari-

son of the results with the original implementation will be provided as well as some final

observations about the analysis itsself.

4.1 Base line - Simple test

As already mentioned we will try to explain the results taken from section 3.2.4 and also

provide a first test / analysis of the model. The model was run using the timestep matrix

shown on figure 3.3 and the results were the following:

Total users Total timesteps Collaborators
(users %)

Non-
Collaborators
(users %)

Results 7 40 71.43 28.57

Table 4.1: Simple test results

The results concluded that from the 7 users that participated in the detection model,

5 of them were collaborative. To first glance the results appear as simple incorrect since

only 2 of the users show on the timestep table are undeniably collaborators (user 1 and

user 2) although, many of the other users seem also have common network activity with

a small time-shift. The explanation for the behaviour described is simply that the model

27

was not designed to be run on such a small amount of timesteps, due to the fact that with

small timesteps the basic reasoning of the model is compromised since there is a higher

chance for a user be active at a same timestep which another user. This is in agreement

with the observation made from the original author that in-order to get reliable results

from the model we must have a timestep number higher than 103−104

4.2 Caida Dataset Testing

This analysis used the widely evaluated CAIDA dataset [1], which includes a total of 13

files containing 5-minute duration (equivalent to 300 seconds) of anonymized network

traffic from a DDoS attack that occurred on August 4, 2007. These data-sets specifically

captures the traffic related to the attack, including both the attack traffic directed at the vic-

tim and the corresponding response from the victim. Non-attack traffic has been filtered

out to the greatest extent possible. According to a study by Moore [7], an attack is consid-

ered high-rate if it involves more than 10,000 packets per second across the network. On

the other hand, if the attack involves 1,000 attack packets per second, accounting for 60%

of the total attack traffic, it is categorized as a low-rate attack. In this subsection we will

test different time-intervals for different data-sets of the CAIDA data-set family, broken

down into 2 categories : Low-rate and high rate in accordance to Moore [7]. It should

also be pointed out that since the data-sets contained only traffic produced by the attacker,

following the model’s logic and approach a successful result would be the majority of the

users to be identified as collaborators, of course this is inline with the precondition that

the number of timesteps is high enough to avoid multiple packets on the same interval, as

well as inaccurately increasing the comparable frequency.

4.2.1 Low-rate CAIDA DDoS

Here we will test 3 of the 13 CAIDA files, that can be consider as low-rate DDoS since

the attacker’s packet rate per second is in the range of 1,000. The files that will be tested

are:

• ddos2007_135936

• ddos2007_140436

• ddos2007_140839

As already mentioned each file has 300 second of DDoS attack traffic with the peak

packet rate being about 1600 packets per second. On figure 4.1 an example traffic graph

28

taken from wireshark I/O graph can be seen, which proves that the data-sets contain low-

rate DDoS traffic.

Wireshark	I/O	Graphs:	ddostrace.20070804_135936.pcap

0 50 100 150 200 250 300
Time	(s)

250

500

750

1000

1250

Pa
ck
et
s/
1	
se
c

Figure 4.1: ddos2007_135936 Wireshark I/O graph

Below the tables with the result of each data-set can be seen. The results were taken

from the implementation described at section 3 but in-order to make sure that no false-

observation are made, they were also checked with the original implementation which

confirmed their correctness by resulting in similar results (no entirly the same due to the

reason described at section 3.2.2). : At table 4.2 the results of the data-set 135939 can

be seen, were it contain a total of 118049 packets and 87 unique IPs. Table 4.3 shows the

results of the data-set 140839 can be seen, were it contain a total of 105861 packets and

24 unique IPs Finally table 4.4 shows the results of the data-set 140436, were it contain a

total of 109170 packets and 11 unique IPs

Time-interval / metrics Total timesteps Collaborators
(users %)

Non-
Collaborators
(users %)

3 seconds 100 62.07 37.93

2 seconds 150 54.02 45.97

1 seconds 300 33.33 66.66

100 msec 3000 14.94 85.06

10 msec 30000 4.60 95.40

1 msec 299995 1.15 98.85

Table 4.2: ddos2007_135939 Results - 87 users

29

Time-interval / metrics Total timesteps Collaborators
(users %)

Non-
Collaborators
(users %)

3 seconds 100 87.50 12.50

2 seconds 150 83.33 16.66

1 seconds 300 70.83 29.16

100 msec 3000 41.66 58.33

10 msec 30000 20.83 79.16

1 msec 299995 4.16 95.83

Table 4.3: ddos2007_140436 Results - 24 users

Time-interval / metrics Total timesteps Collaborators
(users %)

Non-
Collaborators
(users %)

3 seconds 100 90.90 9.09

2 seconds 150 63.64 36.36

1 seconds 300 63.64 36.36

100 msec 3000 54.54 45.45

10 msec 30000 36.3 63.64

1 msec 299995 54.54 45.45

Table 4.4: ddos2007_140839 Results - 11 users

Conclusions: From the above tables we can conclude that the accuracy detection

model is completely and entirely depended on the selection of the time-interval. This

can be seen on all of the tables above as with the time-interval increasing, we observe

that the accuracy decreases, even though we have more timesteps and should in theory

reached the steady state of the detection, we in fact observe the opposite. Another major

conclusion is that with increasing users we also have a lower accuracy since the users are

more possible to be independent most of the time, and even if they are found depended

for multiple times the algorithm will dictate them as independent.

30

4.2.2 High-rate CAIDA DDos

Similarly to the previous subsection, we will be testing the 4 different CAIDA files that

include a high-rate DDoS attack. Each of the selected files includes traffic with average

packet rate at the scale of 100 000 packets per second (as shown in which is more than

enough to be considers a high-rate attack. Since the model exhibits a quadratic time com-

plexity, specifically O(n2 ∗m) where n corresponds the number of unique users and m the

number of timesteps, the complexity indicates that its execution time increases propor-

tionally with the square of the number of the unique users. For this reason, it was decided

to follow the approach of the original paper, where instead of using the whole data-set to

produce the results, a small sample of the data-set is used with size of 1000 packets. Al-

though this is not optimal, using the whole data-set files to produce the results introduces

a lot of problems and could be considered a data science problem, this observation is one

of the major disadvantages of implementing and using the current model in real world

scenarios and will be taken largely into consideration on the evaluation section.

Due to the high amount of traffic in the files that we will be testing, it was not possible

to use the same time-intervals that were used in the low-rate testing of the model, simply

due to the fact that many user activity will be overlooked as the intervals used before are

too large for the amount of traffic per second in this data-set. The author of the paper

also came into the same realization and in the original implementation that I received

the timestamps were multiplied by a factor of 10 000 in-order to achieve a comparable

timestep. This is equivalent of using a time interval in the class of nano-seconds and

essentially proves on its own that an optimum time-interval for this model cannot exist.

As already mentioned each file has 1000 packages and the files that we will be testing

are:

• ddos2007_141436 : 9 Unique IPs, results shown at table 4.5

• ddos2007_142936 : 926 Unique IPs, results shown at table 4.6

• ddos2007_144936 : 903 Unique IPs, results shown at table 4.7

• ddos2007_145436 : 916 unique IPs, results shown at table 4.8

31

Wireshark	I/O	Graphs:	ddostrace.20070804_141436.pcap

100 150 200 250 300
Time	(s)

0

25000

50000

75000

100000

125000

150000
Pa
ck
et
s/
1	
se
c

Figure 4.2: ddos2007_141436 Wireshark I/O graph

Time-interval / metrics Total timesteps Collaborators
(users %)

Non-
Collaborators
(users %)

10 msec 287 55.55 44.44

1 msec 2858 44.44 55.55

100 nsec 28568 11.11 88.88

10 nsec 285668 22.22 77.77

1 ns 2856665 0 100

Table 4.5: ddos2007_142936 Results - 9 users

Time-interval / metrics Total timesteps Collaborators
(users %)

Non-
Collaborators
(users %)

10 msec 2 100 0

1 msec 8 99.78 0.22

100 nsec 62 94.70 5.30

10 nsec 610 66.74 33.26

1 nsec 6083 0 100

Table 4.6: ddos2007_141436 Results - 926 users

32

Time-interval / metrics Total timesteps Collaborators
(users %)

Non-
Collaborators
(users %)

10 msec 2 100 0

1 msec 7 99.55 0.44

100 nsec 60 94.02 5.98

10 nsec 583 64.23 35.77

1 nsec 5815 0 100

Table 4.7: ddos2007_144936 Results - 903 users

Time-interval / metrics Total timesteps Collaborators
(users %)

Non-
Collaborators
(users %)

10 msec 2 100 0

1 msec 7 99.78 0.22

100 nsec 61 95.20 4.80

10 nsec 592 65.28 34.72

1 nsec 5907 0 100

Table 4.8: ddos2007_145436 Results - 916 users

Conclusions: The conclusion of the high-rate data-set is the same to the conclusion

reached on the low rate data-set analysis. This can be seen from the number of timesteps

that were used on each case, where for similar number of timesteps we have a similar

detection rate. Since in this case we have almost 10 times the amount of users compared to

the low rate testing, the accuracy is basically 0 when we have a large number of timesteps.

4.3 Observations

The major observation of this analysis is that a constant time-interval which can be used

on different data-sets to accurately identify collaborative users does not exist. But most

importantly the detection model’s detection rate seem to decline exponentially with the

increase of timesteps and number of users, the reason for this could be easily explained

by considering the structure timestep matrix and the algorithm’s logic respectively.

An observation about the correlation between the timestep number and accuracy, that

could be logically realized by understanding the detection’s logic is that with an increase

in the number of timesteps, meaning a smaller time-interval, the activity of a user is

more finely represented in the timestep matrix. This results in a harder identification of

33

collaborators since a small time difference in a user’s activity could result in having a

completely different active timestep. In contrast, by having a small number of timesteps

(small time-interval) user is more possible to be active at the same timestep as other users

since each timestep represents a larger duration for users to be active in.

Regarding the correlation between the number of users and accuracy, by understand-

ing the implementation logic we can observe that with a smaller number of users the cases

that the user is found depended has more "weight" in the overall identification of the user.

To understand this, imagine the simple scenario of having 100 non-collaborative users

and 10 collaborative users, the algorithm provided in the original paper clearly states that,

in-order for a user to be considered a collaborator (depended), the user must be found

as depended more times than independent. In this simple scenario even though the user

is in collaboration with 10 users, the result would be to be identified as independent as

the number found in collaboration is 10 times smaller than the number found being non-

collaborative. This posses a major flaw in the logic of the model, that is believe to be

overlook by the author.

34

Chapter 5

Model evaluation

This section will include the final evaluation of the model, by considering all of the as-

pects of the model and the observations made both from the analysis but also from the

implementation of the model. After excessively, researching and fully understanding the

logic of the collaborative misbehavior model, the final conclusion is that the model can

not be used in-order to detect any collaborative activity at its current form and further

research as well as practical experimenting needs to take place for this model to come as

close on DDoS detection as effective proven detection methods.

5.1 Uniqueness of this method

This model in comparison with other DDoS detection models, has the uniqueness of being

relying only in the utilization of the only observable information available to us, namely

the network requests made by users, in order to detect any anomalous activities, with out

the need of packet inspection or any other information.

Considering this is the innovative part of this detection model, the question that should

be asked is if getting more data that are easily available to a DDoS detection model inside

a network infrastructure is considered to be inefficient. For example, getting the packet

size or other information that is easily available could benefit in differentiating a normal

user by an abnormal one and even help the detection model accuracy by lowering the

number of users that need to be compared.

35

5.2 Complexity

With the detection model having a complexity of O(n2 ∗m) where n and m is denoted

as the number of users and m the number of time-steps, it is deemed very hard to be

considered as a detection model that can be used in today’s infrastructures containing

1000 of users as the computation would require capable hardware and with fast execution

time being a necessity for quick decision making. This makes the model in its current

state a computationally inefficient solution, as it was seen in the high-rate CAIDA data-

set testing, were the total execution time of a minute of network traffic required a day

(although the data-set contain a very high packet-per-second rate which is definitely

abnormal in normal operations).

A possible solution for the computation intensity of this method, is to make use of

the parallelism of the program in-order to achieve a substantial decrease in the execution

time of the program, by using common parallel programming techniques like using vector

registers, multi-threading architectures and GPU programming like CUDA, which could

easily be incorporated in the python implementation.

5.3 Time interval selection

As already mentioned in the abstract of this thesis, the initial goal of this project was to

identify a time-interval constant for which maximizes accuracy of the model. The con-

clusion of the analysis using the CAIDA data-set, revealed the logical realization, that

such a value does not exist. The reason being, that the model’s underlying algorithms

or mathematical techniques may not be able to adequately capture and differentiate the

nuanced distinctions among the timestamp values. Consequently, the identification pro-

cess becomes challenging or even impossible when dealing with extremely small differ-

ences in timestamps. In contrast, there is the possibility of selecting a time-interval for

which, small differences in user activity may be overshadowed, causing the model to in-

correctly classify pairs as similar. This can result in a higher occurrence of false positives,

where user activity that is actually dissimilar is erroneously identified as similar due to

the model’s low time-step number which causes user activity to be more possible to occur

at the same time-step.

The criteria which is thought to be the most accurate when selecting a time-interval, is

to select an interval as close to the data-set’s mean packet rate. The reason being that since

the mean packet rate represents the packet rate of most users, by selecting a time-interval

based on that value, the time-steps are more possible to be able to match the user activity

on a unique timestamp.

36

5.4 Collaborator Identification

As it was explained extensively throughout this thesis, the collaborator identification is

not based sorely on the comparison of the relative and comparable frequency, but rather

a more generalized rule is used in the practical implementation where a user to be col-

laborative must be found more times as a collaborator with other users rather that a non-

collaborator. This is a clear assumption of the original author, and resulted in a very in-

accurate results in the analysis section, simply because it is highly unlikely for every user

having the same exact traffic even if all users are instructed by the same botnet master due

to other overlooked variables that occur in general networking operation (like delays and

re-transmissions).

More importantly this is a very insufficient criteria of identifying a group of collab-

orators in the normal operations of network, since most definitely the users in the col-

laboration group will be found as non-collaborators most of the time in normal network

traffic. The criteria will result in establish that the users are collaborators since the times

found in collaboration were less than those found as non-collaborators.

37

Chapter 6

Future Work

In this section we will mention areas on which further research can be done, concerning

the collaborative misbehaviour model, even though the outcomes obtained from the anal-

ysis did not meet the desired level of satisfaction. First of all, the algorithmic logic model

has to be re-evaluated as in its current state cannot be deemed as a valid DDoS detection

model. More specifically, the model’s collaborative identification that compares the times

a user found in collaboration and non-collaboration, is as proven an invalid criteria mov-

ing forward, and a more concrete identification needs to be researched and implemented.

Furthermore, a future research could be the creation of weighted relationships between

users, where the collaboration with a user that is more possible to be part of a DDoS

attack, will have more weight in comparison to the comparison with other users. This

could be done additionally to also adding more information in the model, to identify users

as abnormal not with just making use of the timestamp of the user’s requests.

An aspect that was inadvertently overlooked in both research studies is the analysis

of the model’s accuracy when applied to a more complex dataset encompassing traffic

originating from both DDoS attackers and normal users. This examination is crucial to

demonstrate the practical applicability of the model in real-world scenarios where the

ability to differentiate between normal users and DDoS attackers holds significant im-

portance. By evaluating the model’s performance in such diverse and realistic datasets,

researchers can ascertain its effectiveness and reliability in distinguishing malicious traf-

fic from legitimate user behavior. This evaluation would not only validate the model’s

viability in practical environments but also provide valuable insights into its robustness

and potential limitations when confronted with complex and heterogeneous network traf-

fic. Incorporating an assessment of accuracy under these circumstances will enhance the

comprehensiveness and practical relevance of the research findings.

38

Moving forward, future work for this research will focus on enhancing the imple-

mentation efficiency by leveraging parallel programming techniques and other strategies

such as vector registers. This is particularly crucial due to the observed complexity of

O(n2 ∗m), which indicates a quadratic relationship between the input size and the compu-

tational time required. By employing parallel programming paradigms, such as utilizing

multiple cores or distributed computing resources, the computational tasks can be divided

and executed concurrently, leading to significant performance improvements. Addition-

ally, exploiting vector registers can allow for efficient data manipulation and processing

by leveraging SIMD (Single Instruction, Multiple Data) operations. By optimizing the

implementation through these techniques, the aim is to reduce the overall computational

complexity and enhance the efficiency of the research’s proposed methodology.

39

Chapter 7

Conclusion

In conclusion, this research has examined the proposed detection methodology and eval-

uated its effectiveness in accurately identifying and distinguishing collaborative misbe-

haviour users in a DDoS attack setting. The findings of this study have shed light on

several shortcomings of the current state of the detection methodology, highlighting its

limitations and inadequacies in achieving accurate results.

The analysis revealed that the proposed methodology falls short in accurately dif-

ferentiating between users that are collaborative in a network by having similar traffic

with non-collaborative users. The model’s performance exhibited significant deficiencies,

leading to a notable number of false positives and false negatives. This lack of accuracy

raises concerns about the practical usability of the methodology in real-world scenarios,

where the precise identification of DDoS attacks is of utmost importance.

Moreover, the research uncovered certain challenges associated with the complexity

of network traffic patterns, particularly when confronted with diverse and heterogeneous

datasets. The detection methodology is proved to struggle to adapt and accurately clas-

sify instances in scenarios where the traffic patterns exhibited substantial variations or

overlapped with legitimate user behavior.

These findings indicate the need for further improvements and refinements in the de-

tection methodology. Future research endeavors should address the identified shortcom-

ings and explore alternative approaches to enhance the accuracy and robustness of DDoS

attack detection. Possible avenues for improvement include the incorporation of advanced

parellel programming techniques, utilization of more comprehensive and diverse datasets,

and the exploration of innovative algorithms to better capture the unique characteristics

of DDoS attacks.

In summary, while the proposed detection methodology serves as a starting point for

identifying and mitigating DDoS attacks, this research has conclusively demonstrated

its current limitations and lack of accuracy. The identified shortcomings underscore the

significance of ongoing research and development efforts to advance the state-of-the-art

40

in DDoS attack detection and ensure its practical viability in real-world scenarios.

41

Bibliography

[1] Caida ddos 2007 attack. https://catalog.caida.org/dataset/ddos_attack_

2007.

[2] Ddos attack detection and wavelets.

[3] Reflective ddos. https://catalog.caida.org/dataset/ddos_attack_2007.

[4] C. Douligeris and A. Mitrokotsa. Ddos attacks and defense mechanisms: classifica-

tion and state-of-the-art. Computer Networks, 44(5):643–666, 2004.

[5] K. Li, W. Zhou, P. Li, J. Hai, and J. Liu. Distinguishing ddos attacks from flash

crowds using probability metrics. In 2009 Third International Conference on Net-

work and System Security, pages 9–17, 2009.

[6] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense mechanisms.

ACM SIGCOMM Computer Communication Review, 34, 05 2004.

[7] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage. Inferring internet

denial-of-service activity. ACM Trans. Comput. Syst., 24(2):115–139, may 2006.

[8] M. Rehman, S. Raza, and A. Masood. Ddos attacks in the application layer: A

review. Journal of Network and Computer Applications, 75:423–440, 2016.

[9] A. Shevtekar, K. Anantharam, and N. Ansari. Low rate tcp denial-of-service at-

tack detection at edge routers. IEEE Communications Letters, 9(4):363–365, Apr.

2005. Funding Information: Manuscript received August 16, 2004. The associate

editor coordinating the review of this letter and approving it for publication was Dr.

Chuan-Kun Wu. This work has been supported in part by the New Jersey Commis-

sion on Science and Technology via NJWINS. The authors are with the Advanced

Networking Laboratory, ECE Dept., NJIT, Newark, NJ (e-mail: ansari@njit.edu).

Digital Object Identifier 10.1109/LCOMM.2005.04008. Copyright: Copyright 2018

Elsevier B.V., All rights reserved.

42

https://catalog.caida.org/dataset/ddos_attack_2007.
https://catalog.caida.org/dataset/ddos_attack_2007.
https://catalog.caida.org/dataset/ddos_attack_2007.

[10] M. Thoma and C. N. Hadjicostis. Detection of collaborative cyber-attacks through

correlation and time dependency analysis. In 2016 18th Mediterranean Electrotech-

nical Conference (MELECON), pages 1–6, 2016.

[11] M. Thoma and C. N. Hadjicostis. Detection of collaborative misbehaviour in dis-

tributed cyber-attacks. pages 28–41, 2021.

[12] A. Vikram and Mohana. Anomaly detection in network traffic using unsupervised

machine learning approach. In 2020 5th International Conference on Communica-

tion and Electronics Systems (ICCES), pages 476–479, 2020.

43

.1 Appendix A: Original Implementation flash crowd de-
tection

In the code snippet below, the original implementation has a "PINAKAS_EIDIKOU_BAROUS"

matrix were it contained a mixture of variables, including the comparable frequency (col-

umn 2), relative frequency (column 3), if the user was part of a flash crowd (column 4

indicated with 1)

1

2

3 f3=find(prob_MATRIX_PROBABILITY (:,2) >=mean_packet_rate);

4 length_f3=length(f3);

5 for i=1: length_f3

6 PINAKAS_EIDIKOY_BAROYS(f3(i) ,4)=1;

7 %O SIMPLIRONETE O SINTELESTIS BAROYS GIA TO

mean_packet_rate (FLASH CROWD) STIN STILI 4 TOY

PINAKAS_EIDIKOY_BAROYS

8 end

9

10 %%BASIKI LOGIKI. H TIMI POY EMFANIZETAI STIN STILI 4 (FLASH

CROWD) KAI STIN STILI 3 (DEPENDENT), O SYNDIASMOS TOYS MAZI

EXEI MEGALYTERO EIDIKO BAROS APO TIN TIMI POY EMFANIZETAI

STIN STILI 2 TOY PINAKA EIDIKOY BAROYS (INDEPENDENT). AYTO

PRAKTIKA SIMAINEI OTI OTI STIS PERIPTOSEIS AYTES H TIMI TIS

STILIS DEPENDENT MIDENIZETAI OSTE NA ISXYEI H IERARXISI

FLASH CROWD PIO SIMANTIKI APO DEPENDENT H LOGIKI EINAI OTI

AYTOS POY EINAI FLASH CROWD SIGOYRA EINAI DEPENTENT.

11

12 f5=find((PINAKAS_EIDIKOY_BAROYS (:,4) ==1)&(

PINAKAS_EIDIKOY_BAROYS (:,3)>PINAKAS_EIDIKOY_BAROYS (:,2)

));

13 False_negative_f5=find((PINAKAS_EIDIKOY_BAROYS (:,4) ==1)&(

PINAKAS_EIDIKOY_BAROYS (:,3)>PINAKAS_EIDIKOY_BAROYS (:,2)

));

14 f5_clear_flash_crowd=find(PINAKAS_EIDIKOY_BAROYS (:,4) ==1)

;

15 False_positive=find((PINAKAS_EIDIKOY_BAROYS (:,4) ==1)&(

PINAKAS_EIDIKOY_BAROYS (:,2)>PINAKAS_EIDIKOY_BAROYS (:,3)

));

44

.2 Appendix B: Implementation of the model in python

1 import math

2 import sys

3 from collections import OrderedDict

4

5 def process_file(filename , time_interval):

6 seen_ips = set()

7 unique_ips = []

8 timestamps = []

9 with open(filename , ’r’) as file:

10 for line in file:

11 parts = line.strip().split ()

12 timestamp = float(parts [0])

13 source_ip = parts [1]

14

15 if source_ip not in seen_ips:

16 unique_ips.append(source_ip)

17 seen_ips.add(source_ip)

18

19 timestamps.append ((timestamp , source_ip))

20

21

22

23 min_timestamp = timestamps [0][0]

24 max_timestamp = timestamps [-1][0]

25 num_columns = math.ceil((max_timestamp - min_timestamp) /

time_interval)+1

26

27 matrix = [[0 for _ in range(num_columns)] for _ in range(

len(unique_ips))]

28

29 sum_matrix = [[0] * num_columns for _ in range(len(

unique_ips))]

30

31 ip_index = OrderedDict ((ip, i) for i, ip in enumerate(

unique_ips))

32

33

34 for timestamp , source_ip in timestamps:

45

35 column = math.floor((timestamp - min_timestamp) /

time_interval)

36 row = ip_index[source_ip]

37 matrix[row][column] = 1

38 sum_matrix[row][column] += 1

39

40

41 mean_packet_rate = len(timestamps)/(max_timestamp -

min_timestamp)

42 print("Total packets: ",len(timestamps))

43 return matrix , sum_matrix , unique_ips , mean_packet_rate

44

45

46

47 def compute_probabilities(matrix , unique_ips):

48 num_ips = len(unique_ips)

49 num_columns = len(matrix [0])

50 # counter [i][1] = counts time user was depended

51 # counter [i][2] = counts time user was independed

52 counter = [[0, 0] for _ in range(num_ips)]

53 depended = set()

54 independed = set()

55 for i in range(num_ips):

56 ip1 = unique_ips[i]

57 if ip1 in depended:

58 continue

59 for j in range(i+1, num_ips):

60 ip2 = unique_ips[j]

61

62 count_ip1 = sum(matrix[i])

63 count_ip2 = sum(matrix[j])

64 count_both = sum(1 for column in range(

num_columns) if matrix[i][column] >= 1 and

matrix[j][column] >= 1)

65

66 prob_ip1 = count_ip1 / num_columns

67 prob_ip2 = count_ip2 / num_columns

68 prob_both = count_both / num_columns

69 if prob_ip1 == prob_both and prob_ip2 ==

prob_both:

46

70 depended.add(ip1)

71 depended.add(ip2)

72 elif prob_both > (prob_ip1*prob_ip2):

73 counter[i][0] +=1

74 counter[j][0] +=1

75 else:

76 counter[i][1] +=1

77 counter[j][1] +=1

78

79 if ip1 in depended:

80 continue

81 elif counter[i][0] >= counter[i][1]:

82 depended.add(ip1)

83 else:

84 independed.add(ip1)

85

86 return depended , independed

87

88

89

90

91

92 print("

=="

)

93 filename = "input.txt" # Replace with the actual filename

94 time_interval = float(sys.argv [1]) # Time interval in

seconds

95 timesteps_matrix , sum_packet_matrix , ip_table , packet_rate =

process_file(filename , time_interval)

96

97 depended , independed = compute_probabilities(timesteps_matrix

, ip_table)

98 num_ips = len(ip_table)

99 print("Total unique IPs: ",num_ips)

100 print("Total timesteps: ", len(timesteps_matrix [0]))

101 print("Depended: ",(len(depended)/num_ips)*100,"%")

102 print("Independed: ",(len(independed)/num_ips)*100,"%")

103 print("

=="

47

)

104 print("Depended; ", depended)

105 print("Independed; ", independed)

Listing 1: "Implementation of the model python code"

48

	Introduction
	Main idea and contribution
	Thesis structure

	Background
	General
	DDoS attacks
	DDoS in OSI Layers
	DDoS Techniques
	DDoS Ramp-up strategy

	Collaborative misbehaviour model
	Hidden markov models
	Approach

	Implementation
	Algorithm - Logic
	Flash Crowd Detection

	Implementation analysis
	High-level idea of original implementation
	Motivation for implementation - Differences
	High-level idea of new implementation
	Proof of correctness

	Analysis
	Base line - Simple test
	Caida Dataset Testing
	Low-rate CAIDA DDoS
	High-rate CAIDA DDos

	Observations

	Model evaluation
	Uniqueness of this method
	Complexity
	Time interval selection
	Collaborator Identification

	Future Work
	Conclusion
	Appendix A: Original Implementation flash crowd detection
	Appendix B: Implementation of the model in python

