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Abstract 

 

This thesis presents an integrated approach to the development and performance 

evaluation of a traffic volume prediction application using the SparkEdgeEmu Emulation 

System, built on top of the Fogify Emulation Framework. The application aims to forecast 

traffic volume, a crucial factor in managing and planning urban traffic flow. It processes 

traffic volume data within a Spark standalone cluster on Docker, utilizing machine learning 

algorithms including Multilayer Perceptron Classifier, Gradient-Boosted Trees, and Random 

Forest Classifier. These algorithms were selected due to their effectiveness in handling large-

scale data, their capacity to model complex nonlinear relationships, and their robustness 

against overfitting. The application is subsequently deployed within SparkEdgeEmu, 

leveraging the Fogify Emulation Framework to conduct thorough experimentation and 

evaluation in a realistic edge computing environment. Performance metrics and resource 

utilization of each algorithm are analyzed in detail. This research underlines the potential of 

integrating advanced machine learning techniques with the SparkEdgeEmu and Fogify 

Emulation Frameworks for the development and optimization of intelligent transportation 

systems, addressing real-time traffic management and planning challenges effectively. 
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1. Introduction 

 

The advent of Internet of Things (IoT) devices and the corresponding surge in data 

generation have driven the need for inventive solutions capable of efficient data processing 

and analytics. Edge computing, often complemented by cloud computing, provides a 

promising framework for these tasks. However, the deployment and testing of such systems 

in real-world scenarios can be both expensive and time-consuming. This thesis aims to 

address this issue. 

This project harnesses a combination of technologies - Docker, Spark, and machine 

learning algorithms - to establish a scalable, real-time, and precise traffic prediction system 

for smart cities. Docker supplies the infrastructure for building and managing the application, 

while Spark, a distributed data processing system, serves as the backbone of the data 

analytics pipeline. For code development and testing, we employ JupyterLab, an interactive 

development environment. 

In addition, we utilize SparkEdgeEmu, an innovative tool that emulates edge 

computing environments and facilitates the evaluation of Spark analytic jobs without the need 

for a full-scale edge topology setup. SparkEdgeEmu provides parameterizable templates for 

edge infrastructures, enabling the creation of realistic, emulated environments. It also 

provides a unified and interactive programming interface, along with comprehensive metrics 

from the emulated topology and the executed queries. 

After local testing and debugging, the code of the project is deployed to Fogify, an 

emulation framework for fog and edge computing. With the support of SparkEdgeEmu, 

Fogify facilitates the emulation of the application's deployment on edge nodes distributed 

across a smart city, enabling the extraction and analysis of various benchmarks and edge 

metrics. 

The effective management of traffic flow is a critical challenge for modern cities. As 

the global population grows, so does the need for new – better traffic management strategies. 

Traffic volume predictors could be the key, providing valuable insights that can guide traffic 

management decisions. To this end, a traffic volume predictor that utilizes real-time traffic 

data to anticipate congestion and provide valuable insights for traffic management decisions 
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is developed. By analyzing traffic data in real time, we can discern patterns and trends, 

anticipate congestion, and propose solutions to alleviate it. 

The overarching goal of the project is to demonstrate the transformative potential of 

edge computing in evolving urban landscapes into smart cities. It is posited that this approach 

can deliver essential insights into traffic management, alleviate congestion, and ultimately 

contribute to a more sustainable urban environment. 

 

2. Related Work 

 

Traffic volume prediction plays a crucial role in traffic management and planning. 

The accuracy and reliability of these predictions have been significantly enhanced through 

the utilization of various predictive models. 

Among these, traditional models like the Autoregressive Integrated Moving Average 

(ARIMA) have been extensively employed for time-series forecasting, including traffic 

volume prediction [1]. ARIMA models are based on the idea that information in past values 

of the time-series can alone be used to predict the future values. However, these models often 

assume linear relationships and are usually characterized by constant variance over time, 

assumptions which may not sufficiently encapsulate the complexities and non-linearities 

inherent in traffic patterns. 

To surmount the limitations of these conventional models, machine learning 

algorithms have been introduced for traffic volume prediction. Algorithms ranging from 

decision trees and support vector machines to advanced deep learning techniques like 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been 

employed. Specifically, CNNs, known for their efficacy in image and speech recognition 

tasks, have been adapted to capture spatial dependencies in traffic data, whereas RNNs, 

especially Long Short Term Memory (LSTM) networks, have shown considerable promise in 

handling time-dependent patterns inherent in such datasets. 

In line with the advancements in big data processing, the application of Apache Spark 

for traffic prediction has gained momentum in recent studies, with the focus largely on real-

time traffic data streaming and processing using Spark Streaming. However, the integration 
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of Apache Spark with various machine learning models, for the explicit purpose of traffic 

volume prediction, remains an under-researched area. 

In the quest to create simulations that closely mirror real-world scenarios, emulation 

frameworks like Fogify and SparkEdgeEmu have emerged as invaluable tools. 

SparkEdgeEmu, which employs Fogify as its underlying emulation framework, has been 

particularly promising in deploying Spark applications in edge computing environments, 

replicating real-world network conditions and constraints. 

This project seeks to bridge the existing research gap by employing various machine 

learning models, including the Multilayer Perceptron Classifier, Gradient-Boosted Trees, and 

Random Forest Classifier, within the Apache Spark environment for traffic volume 

prediction. Explicitly, the project utilizes the iterative learning process of the Multilayer 

Perceptron, the powerful hierarchical nature of Gradient-Boosted Trees, and the robust and 

adaptable ensemble method of Random Forest Classifier to develop accurate predictive 

models. Furthermore, the project employs SparkEdgeEmu and Fogify to emulate real-world 

edge computing conditions, enabling a comprehensive evaluation of the performance and 

scalability of the developed models under various network conditions and workloads. 

 

3. Background 

 

This section provides a comprehensive understanding of the foundational 

technologies and concepts that are integral to this thesis. Platforms, frameworks, and 

concepts such as JupyterLab, Docker, Apache Spark, and Fogify are discussed, along with a 

variety of machine learning algorithms, edge computing paradigms, and smart cities. These 

topics contribute significantly to comprehending the context and impetus behind the research 

conducted in this thesis. 

 

3.1 JupyterLab 

 

JupyterLab is an open-source, web-based interactive development environment (IDE), 

providing a notebook interface for creating, editing, and executing Jupyter notebooks. 

JupyterLab was chosen as a key tool in this project due to its significant compatibility with 
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Apache Spark and Docker. Moreover, it provides a flexible workspace that enables 

interactive data visualization and integration of multiple languages. JupyterLab's extensive 

range of extensions further enhances its utility, facilitating tasks such as code versioning and 

formatting. The capacity to include narrative text, mathematical equations, and rich media 

within the same document makes JupyterLab an ideal platform for composing reproducible 

scientific documents and sharing the process of data exploration and analysis. 

 

3.2 Docker and Spark Standalone Cluster on Docker 

 

Docker, an open-source platform, has transformed the process of application 

development, deployment, and execution through the use of containers. Containers wrap an 

application and its dependencies into a lightweight and portable unit, ensuring consistent 

performance across various environments. Owing to its ease of use, scalability, and 

flexibility, Docker has become indispensable in modern software development. [1] 

For the purposes of this project, Docker enables the seamless deployment and 

orchestration of the traffic volume prediction application across a distributed computing 

environment. 

 

Key concepts in Docker include: 

a. Containers: Containers are lightweight, standalone, and portable units that contain an 

application and its dependencies. They run in isolation from one another, ensuring 

that the application behaves consistently across different environments. Containers 

provide a consistent and reproducible runtime environment, making it easier to 

develop, test, and deploy applications seamlessly across various stages of the software 

development lifecycle. [2] 

b. Images: Docker images are read-only templates used to create containers. They 

contain the application code, runtime, system tools, libraries, and settings required to 

run the application. Images are built from a set of instructions specified in a 

Dockerfile, which defines the base image, the application code, and other necessary 

components. Images can be stored in a registry, such as Docker Hub, allowing 

developers to share and distribute their images easily. [2] 
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c. Docker Compose: Docker Compose is a tool for orchestrating and running multi-

container Docker applications. It uses a YAML file to configure the application's 

services, networks, and volumes, allowing developers to manage the entire 

application stack with a single file. Docker Compose simplifies the process of 

deploying complex applications by enabling developers to define their application's 

infrastructure and dependencies in a structured and human-readable format. This 

approach promotes collaboration among team members and streamlines the 

deployment process, making it more efficient and reliable. [1] 

 

To accommodate the processing requirements of the traffic volume prediction 

application, a standalone Spark cluster is established within Docker. This setup provides an 

isolated environment, ensuring that dependencies and configurations for the Spark cluster do 

not interfere with other system components. This abstraction decouples the application logic 

from the underlying execution environment, boosting its portability and scalability. 

The Docker-based Spark Standalone cluster utilized in this project consists of a Spark 

master, two Spark workers, and JupyterLab. The cluster is orchestrated using Docker 

Compose, defining the dependencies and relationships among these components. The use of 

Docker simplifies the deployment and configuration of this Spark Standalone cluster, 

allowing for a quick setup of a reliable and consistent platform for the application. 

Furthermore, Docker facilitates efficient utilization and management of resources such as 

CPU and memory, ensuring the portability and reproducibility of the Spark Standalone 

cluster environment. Docker's capabilities thus enable the seamless integration of the Spark 

Standalone cluster with other project components, such as data ingestion and Spark 

processing, to efficiently conduct traffic volume prediction. 

 

3.3 Apache Spark 

 

Apache Spark is a distributed computing system designed for processing large-scale 

data fast and efficient. It offers a unified platform for big data processing, machine learning, 

graph processing, and stream processing. In this thesis, we are using Spark’s capabilities to 

implement and evaluate various machine learning algorithms, in a fog computing 

environment, using the PySpark library. 
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The main advantages of Apache Spark, which motivated its selection for this project, 

include: 

a. In-Memory Processing: Spark can store intermediate data in memory, which 

significantly reduces the time it takes to access and process the data. [3] This is 

particularly useful for machine learning tasks, where iterative algorithms and multiple 

data passes are common. 

b. Scalabiliy: Spark can scale out to handle large volumes of data by distributing the 

processing workload across multiple nodes in a cluster. This enables the application to 

handle the large-scale traffic data used, while maintaining good performance. 

c. Flexible APIs: Spark offers APIs in various programming languages, including 

Python. By using PySpark, machine learning algorithms could be easily implemented 

in a familiar language while still benefiting from Spark's powerful processing 

capabilities. 

d. MLlib: Spark provides MLlib, a built-in machine learning library that includes a wide 

range of algorithms and utilities. This allowed to easily experiment with different 

machine learning models and techniques for predicting high traffic conditions. [4] 

e. Integration with Cluster Managers: Spark can be deployed on various cluster 

management systems, such as the standalone cluster, which was used. This enabled 

the easy deploy in a Fog computing environment. [5] 

 

To the point, Apache Spark’s distributed processing capabilities allows to process the 

traffic volume data used in this project efficiently. It enables performing feature engineering 

like extracting new features without performance bottlenecks. This becomes particularly 

crucial when conducting experiments and benchmarking the performance of various machine 

learning algorithms. In addition, by using Spark’s distributed processing capabilities, the 

project could be deployed within the Fogify Emulation Framework, for the examination of its 

behavior in an edge topology.  

 

3.4 Emulation with Fogify and SparkEdgeEmu 
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Emulation is a critical aspect of modern computing that allows for the mimicking of 

specific system behavior, offering a pragmatic means to simulate real-world scenarios 

without the requirement of physical hardware or extensive resources. In this context, 

emulation frameworks such as SparkEdgeEmu and Fogify are invaluable for testing, 

optimizing, and evaluating applications under various conditions and constraints. 

SparkEdgeEmu is a tool tailored to aid researchers and practitioners in examining the 

performance of Spark analytic jobs within edge computing environments. This interactive 

framework removes the complexity of setting up an edge topology, instead offering 

parameterizable templates for edge infrastructures and real-time emulated environments with 

ready-to-use Spark clusters. SparkEdgeEmu also provides a unified and interactive 

programming interface for executing and submitting queries, along with metrics detailing 

both the utilization of the underlying emulated topology and the performance of the deployed 

queries. 

On the other hand, Fogify is a specialized emulation framework designed for fog 

computing environments. It empowers users to define, deploy, and scrutinize fog applications 

under practical network, compute, and storage conditions. This allows researchers and 

developers to ensure their applications are robust, scalable, and performant in real-world fog 

computing environments. 

In the context of this project, the traffic volume prediction application is deployed 

within Fogify. Using SparkEdgeEmu as an intermediary, Fogify emulates the conditions of 

an edge topology (smart-city scenario), enabling us to evaluate the application's performance 

under realistic conditions. This interplay between SparkEdgeEmu and Fogify provides a 

comprehensive toolset for the effective design, testing, and evaluation of fog and edge 

computing applications, which is a major focus of this thesis. 

 

3.5 Machine Learning Algorithms 

 

Machine learning algorithms are essential for the development of intelligent traffic 

prediction and management systems. In this thesis, we explore several machine learning 

algorithms, including Random Forest, Multilayer Perceptron (MLP), and Gradient Boosting 
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Machines (GBM). These algorithms have been widely used in various applications, including 

classification, regression, and clustering problems. 

In this thesis, the machine learning algorithms are applied to a regression problem, 

specifically predicting high traffic conditions. These algorithms have been chosen for their 

ability to model complex relationships between input features and the target variable in 

regression tasks. By training and optimizing these models, our goal is to develop an accurate 

and reliable traffic prediction system that can effectively handle the challenges posed by the 

fog computing environment. 

 

a. Random Forest: Random Forest is an ensemble learning method that constructs 

multiple decision trees during training and combines their output to improve the 

overall prediction accuracy and reduce overfitting. Random Forest handles missing 

values and outliers well, can model complex interactions between features, and is 

relatively robust to overfitting. Moreover, it provides a measure of feature importance, 

which can clarify the underlying relationships in the data. [6] 

 

b. Multilayer Perceptron (MLP): MLPs are a class of feedforward artificial neural 

network that consists of at least three layers of nodes. The input layer, a hidden layer, 

A second hidden layer which is not essential and an output layer. Aside from the input 

layer, each node is a neuron that uses a nonlinear activation function. MLP utilizes a 

supervised learning technique called backpropagation for training the network. MLPs 

are flexible and can be used for both regression and classification problems. They can 

model complex non-linear relationships and are particularly effective when dealing 

with high dimensional data [7]. In This case, The MLP algorithm used has four layers 

of nodes, and is used to classify high and low traffic. 

 

c. Gradient Boosting Machines (GBM): Gradient Boosting Machines are an ensemble 

learning technique that combines weak learners, typically decision trees, to form a 

strong learner. GBMs iteratively train weak learners, focusing on the errors made by 

previous learners in the sequence, and then combine their predictions using a 

weighted majority vote. This approach allows GBMs to model complex relationships 

between features and handle a wide range of data types. GBMs have shown excellent 
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performance in many machine learning tasks, but may require careful tuning of 

hyperparameters and can be prone to overfitting if not properly regularized. [8] 

 

3.6 Edge, Fog, and Cloud Computing 

 

Edge computing, fog computing, and cloud computing are different layers in a 

hierarchical computing architecture. Each of these layers serves different purposes, but they 

all work together to process and manage data in a distributed system. 

The closest layer to the data source, is the Edge layer. This can be IoT devices, 

sensors, or other data-generating devices. In this layer, data is typically processed directly on 

the devices themselves or on nearby edge servers. This allows for almost real-time data 

processing and decision-making, reducing latency and bandwidth usage. 

The next layer of the hierarchy is the fog layer. This layer acts as an intermediate 

layer between the edge and the cloud. It consists of fog nodes or gateways that aggregate data 

from multiple edge devices and perform additional processing and analytics. This layer can 

handle more complex computations than the edge layer and can make decisions about 

whether data should be sent to the cloud for further processing or discarded. Fogify, [3.6] 

operates primarily in this layer. 

The uppermost layer is the Cloud Layer. This layer is the most powerful layer in the 

hierarchy. It is used for heavy-duty processing tasks, long-term data storage, and complex 

analytics that can't be handled by the edge or fog layers. Data from the fog layer is sent to the 

cloud for these tasks. 

 

 

3.6 Smart Cities 

 

Smart cities are taking advantage of digital technologies, data analytics, and 

connectivity to improve the quality of life for their residents, optimize resource utilization, 

and enhance the efficiency services. Examples of smart city applications include intelligent 

traffic management, waste management, energy conservation, and public safety. 
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As of this thesis, smart cities provide the motivation for developing traffic prediction 

and management solutions that can help to avoid congestion and reduce pollution. By taking 

advantage of edge computing and machine learning techniques, we aim to create a scalable, 

real-time, and accurate traffic prediction system that can be integrated into smart city 

infrastructures. 

Edge computing has a crucial role in the context of smart cities, by enabling efficient 

data processing from IoT devices and sensors scattered throughout the urban landscape. This 

form of distributed computing architecture offers several key benefits to smart cities. 

Firstly, it provides the capacity for real-time traffic analysis and prediction. By 

processing traffic data from sensors and cameras at or near the source, edge computing 

enables instantaneous analysis and prediction of traffic conditions. The reduced latency 

allows for swift responses to changing traffic scenarios, which aids in the prevention of 

congestion and reduction in travel times. 

 

4. Methodology - pipeline 

 

In this section, we outline the methodology employed in this thesis to develop our 

application - the edge computing-based traffic prediction and management system for smart 

cities that we deployed in Fogify framework emulator. The methodology consists of the 

following steps: Dataset and Scenario Creation, Implementation and Local Execution, 

Emulation and Scalable Deployment, Experimentation, and Evaluation. 

 

4.1 Dataset and Scenario Creation 

 

The first step in the methodology involves selecting an appropriate dataset, preprocess 

it to be suitable to use for machine learning, and creating a realistic traffic scenario. 

To begin with, in data selection, a suitable traffic dataset is selected based on the 

available data columns. In order to develop accurate machine learning models, the dataset 

should have sufficient data points and cover a wide range of traffic conditions. The Metro 

Interstate Traffic Volume dataset [9] was chosen because it provided valuable information on 
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various traffic-related variables, such as hourly traffic volume, weather conditions, and time 

of the day, which were essential for the project. 

Moving on, the selected dataset is cleaned and preprocessed to remove any 

inconsistencies, missing values, and outliers. This step ensures that the data is suitable for 

training and testing the machine learning models. 

Lastly, a realistic traffic scenario is created based on the selected and preprocessed 

dataset. The scenario should simulate traffic conditions in a smart city, including factors such 

as peak hours, and weather conditions. By calculating the 75th percentile threshold for traffic 

volume, the model aims to predict whether the traffic volume will be above this threshold, 

indicating high traffic. This threshold was selected as it represents a significant deviation 

from the median traffic volume, therefore indicating a high level of congestion. This focus is 

representative of the traffic challenges faced by smart cities and allows for the evaluation of 

the effectiveness of an edge computing-based traffic prediction and management system in 

addressing these challenges. Through this, the model provides insights into potential traffic 

bottlenecks, demonstrating the value and potential applications of predictive modeling in a 

smart city context 

 

4.2 Implementation and Local Execution 

 

The next step in the methodology is the implementation and local execution of the 

project. This is performed using JupyterLab, the interactive development environment that 

was previously introduced. In this case, a .ipynb notebook is utilized to write and execute the 

code. The implementation is carried out using PySpark, a Python library for Apache Spark, 

which provides the ability to handle large datasets with ease. 

 

The selected dataset undergoes several preprocessing steps to make it suitable for 

machine learning. This includes converting date and time to a timestamp, extracting hours 

from the timestamp, calculating the average traffic volume per hour, and creating a binary 

target variable for high traffic. The categorical columns in the dataset are processed using 

StringIndexer, which converts categorical features to numerical ones, a necessary step for 

machine learning algorithms. The continuous variables, on the other hand, are standardized 
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using the StandardScaler to ensure that differing magnitudes among variables do not affect 

the performance of the machine learning models. Following preprocessing, the dataset is split 

into training and testing sets, a standard practice in machine learning to evaluate the 

performance of the models. 

The implementation makes use of a variety of machine learning algorithms, 

mentioned earlier. These algorithms were chosen for their diverse strengths and the ability to 

handle complex, non-linear relationships in the data. Each of these algorithms is trained on 

the training set, and their performance is evaluated on the testing set. 

Performance evaluation is carried out by calculating the area under the Receiver 

Operating Characteristic (ROC) curve for each model. The ROC curve is a common metric 

used in machine learning to evaluate the trade-off between correctly predicting positive 

instances and incorrectly predicting negative instances. A higher area under the ROC curve 

indicates better model performance, allowing us to determine which algorithm performs best 

for our traffic prediction scenario. 

 

4.3 Emulation and Scalable Deployment 

 

In this phase, we utilize the Fogify and SparkEdgeEmu tools to emulate our edge 

computing-based traffic prediction and management system for smart cities and to deploy it 

at scale. 

Fogify provides a testing bed for our edge computing solution, creating a simulated 

environment that can mimic various edge computing topologies. This environment enables us 

to assess the performance and efficiency of our solution in edge computing scenarios. The 

emulation process facilitated by Fogify captures crucial Apache Spark performance metrics, 

offering a holistic view of the application's behavior under different edge computing 

conditions. 

Meanwhile, SparkEdgeEmu plays a pivotal role in the deployment of the Spark 

application within these emulated edge environments. It aids in the examination of different 

machine learning algorithms' performance within diverse edge computing topologies. 
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Once deployed within the Fogify Emulation Framework, our traffic volume prediction 

application undergoes a significant transition. From running on a single machine or a 

traditional cluster, it now operates within an emulated edge computing environment. This 

environment closely resembles a real-world edge computing network, complete with various 

edge devices, network links, and associated latencies and bandwidth constraints. 

Throughout the emulation process, Fogify oversees the distribution of resources to the 

application's services, reflecting the edge computing scenario. These scenarios might include 

changes in network conditions, fluctuations in computational resources, or hardware failures. 

Fogify orchestrates the emulation environment and supports the gathering of metrics related 

to the Apache Spark application's performance and resource usage under these scenarios. 

The emulation process provides critical insights into the application's behavior and 

performance in a realistic edge computing environment. This allows us to thoroughly test and 

optimize the application before deploying it in a real-world setting, thus ensuring it is 

prepared for the challenges posed by edge computing. 

 

4.4 Experimentation 

 

The experimentation phase is a critical part of the methodology, offering an 

opportunity to evaluate the performance of the traffic volume prediction application under 

various edge computing conditions. This stage is instrumental in assessing the application's 

performance when using different machine learning algorithms within a specific edge 

computing topology. 

In the context of this project, the application is deployed within a particular edge 

computing topology using Fogify and SparkEdgeEmu. This approach facilitates 

understanding the influence of the network structure on the application's performance. The 

topology is designed to emulate real-world conditions in a smart city, exposing the 

application to an environment that includes varying network traffic, fluctuating 

computational resources, and dynamic load balancing across nodes. 

The experimentation phase places significant emphasis on the collection and analysis 

of performance metrics. These metrics provide invaluable insights into the application's 

behavior under different conditions. Specifically, these metrics include used memory per 
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node, number of tasks per node, shuffle read per node, shuffle write per node, and duration in 

seconds per node. By examining these metrics, a comprehensive understanding of the 

application's performance within the emulated edge computing environment can be achieved. 

Furthermore, the experimentation phase encompasses the evaluation of the 

application's scalability. This evaluation investigates how the application's performance 

adapts to changes in data volume or velocity. By analyzing the application's behavior under 

these conditions, crucial information regarding the application's capacity to handle increased 

loads is obtained. 

Lastly, the experimentation phase includes an analysis of resource utilization. This 

incorporates a detailed assessment of how the application leverages key computational 

resources - specifically, CPU, memory, and network bandwidth - under the influence of 

varying machine learning algorithms. Through this process, it becomes possible to pinpoint 

areas of potential constraint and unearth avenues for subsequent performance enhancements. 

Through careful experimentation, the robustness, performance, and suitability of the 

edge computing-based traffic volume prediction and management system for deployment in 

real-world smart city environments can be thoroughly assessed. 

 

4.5 Evaluation 

 

The evaluation stage of this project is designed to comprehensively assess the 

performance and effectiveness of the implemented traffic volume prediction application. It 

focuses on how well the application can predict traffic volume in a smart-city scenario, under 

the influence of different machine learning algorithms and within an emulated edge 

computing environment. 

Firstly, the application's performance is evaluated using the Receiver Operating 

Characteristic (ROC) curve. The ROC curve represents the trade-off between the true 

positive rate and false positive rate, providing a quantitative measure of the model's 

classification ability. The area under the ROC curve (AUC-ROC) is then calculated for each 

machine learning algorithm used, offering a comparison of their respective performances. 
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Next, the evaluation process looks at how well the application operates within an 

emulated edge computing environment. Using the Fogify and SparkEdgeEmu tools, the 

application is tested under various edge computing conditions. 

Performance metrics, including used memory per node, number of tasks per node, 

shuffle read per node, shuffle write per node, and duration in seconds per node, are collected 

and analyzed. This offers a detailed picture of the application's behavior under different 

conditions and reveals how efficiently it utilizes resources in the edge computing 

environment. 

Finally, the evaluation process includes an analysis of resource utilization under the 

influence of different machine learning algorithms. This part of the evaluation helps identify 

areas where resources are over or underutilized, highlighting potential bottlenecks and areas 

for further optimization. 

Overall, the evaluation stage provides a comprehensive assessment of the traffic 

volume prediction application's performance, and efficiency within an emulated edge 

computing environment. It offers valuable insights that can guide future improvements and 

optimizations, contributing to the development of a robust and effective traffic management 

solution for smart cities. 

 

5. Implementation and Local Execution details 
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5.1 Import required libraries and initialize the Spark session 

 

The first part of the code imports the necessary libraries for data processing, feature 

engineering, and machine learning tasks. It also initializes the Spark session. The Spark 

session is created with specific configurations like executor memory, driver memory, and 

others. The session is configured to handle the expected workload and resource allocation for 

the analysis. The Spark session is initialized with several specific configurations to optimize 

the application's performance. These configurations include: 

 

spark.executor.memory: This setting defines the amount of memory each Spark executor 

process can use. The memory is set to 512 megabytes. This is used for the smooth execution 

of the application, to avoid out-of-memory errors. 

 

spark.sql.debug.maxToStringFields: This setting controls the maximum number of fields 

to include in a string representation of a data frame or dataset. Here, it is set to 100. This 

configuration was useful because of the wide data frames that existed. 

 

#Import all the necessary libraries 

… 

# Initialize Spark session 

spark = SparkSession \ 

    .builder \ 

    .appName("pyspark-notebook") \ 

    .master("spark://spark-master:7077") \ 

    .config("spark.executor.memory", "512m") \ 

    .config("spark.sql.debug.maxToStringFields", 100) \ 

    .config("spark.driver.maxResultSize", "4g") \ 

    .config("spark.driver.memory", "8g") \ 

    .getOrCreate() 
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spark.driver.maxResultSize: This setting controls the maximum size of serialized results of 

actions. It determines the largest amount of data that the driver program can receive from the 

Spark executors. It is set to 4 gigabytes. 

 

spark.driver.memory: This setting determines the amount of memory that can be allocated 

to the driver process. This is important for operations that require collecting data from 

executors to the driver. It is set to 8 gigabytes. 

 

This initialization stage is vital as it determines how resources are allocated for the 

execution of Spark jobs and thus directly impacts the application's performance and 

efficiency. 
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5.2 Read and preprocess the data 

 

# Read CSV file 

path = os.path.abspath("data/Metro_Interstate_Traffic_Volume.csv") 

data = spark.read.csv(path=path, sep=",", header=True) 

 

# Convert the date_time column to a Timestamp type 

data = data.withColumn("Timestamp", to_timestamp("date_time", "yyyy-MM-dd 
HH:mm:ss")) 

 

# Extract the hour from the Timestamp 

data = data.withColumn("Hour", hour("Timestamp")) 

 

# Calculate the average traffic volume per hour 

grouped_data = 
data.groupBy("Hour").agg(avg("traffic_volume").alias("Average_Traffic_Volume")) 

 

# Calculate the 75th percentile threshold for traffic volume 

threshold = grouped_data.approxQuantile("Average_Traffic_Volume", [0.75], 0)[0] 

 

# Create a binary target variable for high traffic 

data = data.withColumn("High_Traffic", when(col("traffic_volume") > threshold, 
1).otherwise(0)) 

 

# Convert numeric columns to FloatType 

numeric_columns = ["temp", "rain_1h", "snow_1h", "clouds_all"] 

for column in numeric_columns: 

    data = data.withColumn(column, col(column).cast(FloatType())) 

 

# Use StringIndexer for categorical columns 

categorical_columns = ["weather_main", "weather_description"] 

indexers = [StringIndexer(inputCol=column, outputCol=column + "_index", 
handleInvalid="keep") for column in categorical_columns] 
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The data from the 'Metro Interstate Traffic Volume' CSV file is read and initially 

processed. The 'date_time' column is converted into a timestamp format, and the hour 

component is extracted for further analysis. This aids in identifying traffic patterns during 

specific hours of the day. 

Following this, an average hourly traffic volume is computed by grouping the data by 

the 'Hour' column. This approach enables a detailed understanding of traffic volumes across 

different time frames. A crucial aspect of this stage is determining the 75th percentile of the 

average traffic volume. This value acts as a threshold to distinguish between high and low 

traffic periods, thus facilitating the creation of a binary target variable, 'High_Traffic'. This 

binary variable, indicating whether traffic is high (1) or not (0), simplifies the classification 

problem, allowing machine learning algorithms to focus on predicting instances of high 

traffic. 

For compatibility with the later stages of machine learning model development, 

numeric columns in the dataset are converted to the 'FloatType' data type. Machine learning 

algorithms commonly require numeric input in this format to function effectively. 

Additionally, categorical columns in the dataset undergo transformation through a 

process known as 'indexing'. Utilizing the 'StringIndexer' function, categorical variables are 

encoded into numeric indices. This transformation is a necessary step in data preprocessing as 

machine learning algorithms require numerical input. By transforming these categorical 

variables into numerical indices, the machine learning models can leverage this information 

effectively in the prediction stage. 

 

 

 

5.3 Prepare the data for machine learning 
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The next stage is to prepare the data for machine learning by assembling the input columns 

into a single features vector and creating a pipeline with all the preprocessing steps. This step 

simplifies the application of the machine learning algorithms as we can input them without 

modifying the data for each one.  

Then, a pipeline is created to automate the preprocessing steps, which include 

transformations via StringIndexer and VectorAssembler. It ensures that the same sequence of 

transformations is consistently applied to both the training and testing datasets. This 

approach, reduces the errors due to the inconsistent data processing.  

# Prepare the data for machine learning 

input_columns = ["Hour"] + numeric_columns + [column + "_index" 

for column in categorical_columns] 

assembler = VectorAssembler(inputCols=input_columns, 

outputCol="features") 

 

# Create a pipeline with all preprocessing steps 

pipeline = Pipeline(stages=indexers + [assembler]) 

 

# Split the data into training and testing sets 

train_data, test_data = data.randomSplit([0.8, 0.2], seed=42) 

 

# Fit and transform the data using the pipeline 

pipeline_model = pipeline.fit(train_data) 

train_data = pipeline_model.transform(train_data) 

test_data = pipeline_model.transform(test_data) 

 

# Create features_df 

train_data = train_data.select(input_columns + ["High_Traffic", 

"features"]) 

test_data = test_data.select(input_columns + ["High_Traffic", 
"features"]) 
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Then, data is splitted into training and testing sets. The training set is used to train the 

models, while the testing set is used to assess their performance on new data. 

The pipeline then is fitted to the training data, and both training and testing data are 

transformed using the fitted pipeline model.  

Finally, the features_df is created. This contains only the necessary columns from the 

transformed training and testing data, and its purpose is to keep the data organized and make 

it easier to work with when they are fed into the machine learning models 

 

5.4 Scale the features 

 

 

In this phase, the StandardScaler is utilized, to normalize the input features by scaling 

them to unit variance. This ensures that the features have the same scale, enhancing the 

stability and convergance of the algorithms during training.  

Then, there is the transformation both training and testing data, using the 

fittedStandardScaler to obtain scaled features. This ensures the consistency and accuracy of 

the model of the predictions 

 

# Initialize the StandardScaler 

scaler = StandardScaler(inputCol="features", 

outputCol="scaled_features", withStd=True, withMean=False) 

 

# Fit the StandardScaler on the training data 

scaler_model = scaler.fit(train_data) 

 

# Transform both the training and testing data using the fitted 

StandardScaler 

train_data = scaler_model.transform(train_data) 

test_data = scaler_model.transform(test_data) 
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5.5 Train and evaluate the models 

 

The preprocessed data is used to train and evaluate machine learning models. Each 

model's training and evaluation process is outlined. 

 

1. Multilayer Perceptron Classifier (MLP) 

a. Define the layers for the MLP model by specifying the number of neurons in 

each layer. Input layer, first hidden layer, second hidden layer and output 

layer. 

b. Initialize the MLP classifier with the specified layers defined before, the 

scaled features as input and the High_Traffic column mentioned before as the 

target variable. 

c. Train the MLP model by fitting it on the training data. 

d. Test the MLP model by making predictions using the trained MLP model over 

the test data. 

e. Evaluate the performance of the MLP model by calculating the area under the 

ROC curve. (AUC) 

 

2. Gradient-Boosted Trees (GBT) 

a. Initialize the GBT model with the scaled features as input and the 

High_Traffic column as target variable. 

b. Train the GBT model by fitting it on the training data. 

c. Test the GBT model by making predictions using the trained GBT model over 

the test data. 

d. Evaluate the performance of the GBT model by calculating the area under the 

ROC curve. (AUC) 

3. Random Forest Classifier (RFC) 

a. Initialize the RFC model with the scaled features as input, the High_Traffic 

column as the target variable, and a seed for consistent results. 

b. Train the RFC model by fitting it on the training data 
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c. Test the RFC model by making predictions using the trained RFC model over 

the test data. 

d. Evaluate the performance of the RFC model by calculating the area under the 

ROC curve. (AUC) 

The AUC represents the probability that a randomly chosen positive instance will 

have a higher predicted probability of being positive than a randomly chosen negative 

instance/ A higher AUC indicates better model performance. 

 

5.6 Perform hyperparameter tuning 

 

Machine learning pipelines require hyperparameter tuning to determine the optimal 

set of hyperparameters for a given model. Hyperparameters are model parameters that are not 

learned during the training process but are set by the user. They influence the model's 

learning process, capacity, and generalization ability. Tuning these parameters can lead to 

improved performance of the model. 

In this project, hyperparameter tuning is performed using the CrossValidator class of 

the Spark ML Library. For each model, the hyperparameter grid and base model should be 

adjusted by fitting the crossValidator on the training data and retrieve the best model with the 

optimal hyperparameters. Then the best model is evaluated on the test data. 

Each of the machine learning models used in this project, has a unique set of 

hyperparameters that control their learning process. 

1. Multilayer Perceptron Classifier. The hypermeter parameters of the MLP, are the 

Number of Hidden Layers, the number of neurons in each hidden layer, the Activation 

function which can be the sigmoid, tanh, and the ReLU, the learning rate which 

determines the step size at each iteration while moving towards a local minimum of a 

gradient function and the Batch size which is the number of training examples utilized 

in one iteration. 

2. Gradient Boosted Trees. The hypermeter parameters of the GBT, are the number of 

Trees (trees to be modeled), the learning rate which is the same as MLP, the 

maximum depth of a tree, the Minimum Samples per leaf and the subsample. 
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3. Random Forest Classifier. The hypermeter parameters of the RFC, are the number of 

trees, the maximum features to consider when looking for the best split, the maximum 

depth, and the minimum samples per leaf and split. 

 

6. Emulation and Scalable Deployment details 

 

The emulation of the project was performed using SparkEdgeEmu. The emulation 

allowed for controlled experiments, crucial for assessing the performance of the machine 

learning models implemented. 

The emulation was a smart-city scenario. The smart city was designed with 9 nodes, 

distributed across three distinct “neighborhoods”. Each neighborhood represented a specific 

region of the city, with its unique traffic conditions and data generation rates. The nine nodes, 

including Raspberry Pi 3 and 4 models, and a small virtual machine, were chosen to represent 

a realistic heterogeneous edge environment, reflecting the variety of devices and 

computational resources that might be found in an actual smart city environment. 

The emulation was designed to test the performance of the chosen machine learning 

models under different conditions. The metrics collected during the emulation included 

memory usage, number of tasks, shuffle read, task duration, and shuffle write for each node. 

These metrics provided invaluable insights of the machine learning models in predicting high 

traffic conditions. In the following sections, the metrics derived from the emulation results 

will be discussed further to give a deeper understanding of the system’s performance in the 

realistic edge computing environment. 

 

Used Memory per Node: This is the amount of memory used by the application on each 

node (memory related metric). Memory usage is a crucial factor in performance, as 

insufficient memory can lead to issues such as increased disk I/O, slower processing speed, or 

even task failure. 

Tasks per Node: This is the number of tasks that each node is assigned (CPU related metric). 

In Spark, a task is the smallest unit of work. This provides insights into the load balancing of 

the Emulation. Ideally, tasks should be evenly distributed among the nodes, for optimal 

performance. 
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Shuffle Read per Node: This metric is about the volume of data that a node fetches from its 

peers during shuffle operations (network related metrics). Shuffling is an operation in Apache 

Spark that redistributes data so that all the data needed for a particular computation is located 

on the same node. Such operations, although that they are necessary, most of the time they 

demand resources that exercise significant load on network I/O and time. 

Shuffle Write Per Node: This metric represents the volume of data that a node writes to its 

storage during shuffle operations, destined to be fetched by another node (network related 

metrics). Like shuffle reads, shuffle write operations can be resource-intensive, with a high 

cost in terms of I/O and time. As a result, reducing shuffle write operations is a key strategy 

in performance optimization. 

Duration Seconds per Node: This metric is the cumulative duration taken for all tasks to 

complete on each node (CPU related metric). 
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6.1 Data Preprocessing – Emulation Metrics  

Figure 1: Emulation for preprocessing the data 
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Figure 1 shows the emulation results for preprocessing the data. The data 

preprocessing stage reveals interesting insights about the resource usage and task distribution 

across the nodes.  

The Raspberry Pi 3 nodes (rpi3-b-0 to rpi3-b-3) handle significantly more tasks than 

the Raspberry Pi 4 nodes (rpi4-2G-0 to rpi4-2G-3) and the small VM. There appears to be a 

potential imbalance in task distribution, resulting maybe, in longer processing times. This 

maybe indicates the need for enhanced load balancing strategies. 

Despite handling fewer tasks, the Raspberry Pi 4 nodes and the small VM require 

longer time durations to complete the tasks. This longer execution time could be attributed to 

factors such as hardware constraints, network latency, or the inherent complexity of the tasks 

assigned.  

Shuffle read operations are prominent in the Raspberry Pi 3 nodes and one Raspberry 

Pi 4 node (rpi4-2G-0), signaling data movement between these nodes. However, the 

remaining Raspberry Pi 4 nodes and the small VM do not engage in shuffle read operations. 

This variation impacts the network load and overall processing time. Therefore, optimizing 

shuffle operations can potentially enhance performance. 

The pattern repeats in the case of shuffle write operations, with Raspberry Pi 3 nodes, 

one Raspberry Pi 4 node (rpi4-2G-0), and the small VM involved. The data written by these 

nodes will be fetched by other nodes, affecting network I/O and potentially increasing 

processing times. 

Regarding memory usage, only two nodes (rpi4-2G-1, rpi4-2G-2) report significant 

memory usage during the data preprocessing stage. The other nodes, including all Raspberry 

Pi 3 nodes, another Raspberry Pi 4 node, and the small VM, report no memory usage. This 

pattern might suggest that these two nodes are handling more memory-intensive tasks, or it 

could reflect specific memory allocation strategies. 

In summary, these metrics offer a glimpse into potential areas for performance 

optimization, such as task distribution, task execution time, memory usage, and network 

efficiency. 
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6.2 Multilayer Perceptron Model – Emulation Metrics 

 

 

 

 

 

 

 

 

Figure 2: Emulation for Multilayer Perceptron Network 
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Figure 2 shows the emulation for Multilayer Perceptron Network. In the emulation of 

multilayer perceptron, the performance and resource usage reveal several points of interest. 

The execution of the model took 162 seconds, indicating a relatively high computational cost. 

Moreover, an error led to the loss of executor 0 on node rpi4-2G-2, likely due to the node 

exceeding resource thresholds or encountering network issues. 

The task distribution among the nodes displays a stark disparity. Node rpi3-b-1 is 

burdened with the majority of the tasks, executing more than 100 tasks, while the other nodes 

handle significantly fewer tasks. This uneven distribution could potentially lead to 

bottlenecks and inefficiencies in the system. 

The duration of task completion varies among the nodes as well, with the Raspberry 

Pi 4 nodes and the small VM taking longer than the Raspberry Pi 3 nodes. This longer 

duration on Raspberry Pi 4 nodes may reflect the inherent complexity of the tasks assigned, 

the hardware constraints, or network latency issues. 

In the context of network operations, node rpi4-2G-2 shows a significant volume of 

data fetched from peers during shuffle read operations, while other nodes engage much less 

in these operations. This discrepancy could lead to an increased network load on rpi4-2G-2 

and extend the overall processing time. Similarly, shuffle write operations are particularly 

high on some nodes (rpi3-b-0, rpi3-b-1, rpi3-b-2), indicating that these nodes are writing data 

to be fetched by other nodes, further affecting the network I/O and processing times. 

Finally, memory usage across the nodes does not show drastic differences. However, 

the Raspberry Pi 4 nodes and the small VM use slightly more memory than the Raspberry Pi 

3 nodes. This finding could be due to the nature of the tasks they are handling or to their 

specific memory allocation strategies. 

In summary, this stage reveals several areas for potential optimization, including task 

distribution, task execution duration, network operations, and memory usage. 
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6.3 Gradient Boosted Trees Model – Emulation Metrics 

  

 

 

 

 

 

 

 

 

Figure 3: Emulation for Gradient Boosted Trees Network 
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Figure 3 shows the emulation for Gradient Boosted Trees Network. The gradient 

boosted trees model's emulation took 156 seconds to complete, and unlike the previous 

stages, no errors were reported.  

The task distribution across the nodes in this stage was notably different from 

previous stages. The small-vm node was assigned a substantially higher number of tasks 

(about 150), while the other nodes were given considerably fewer tasks, with the lowest being 

two tasks for rpi4-2G-1 and rpi4-2G-2. This could lead to performance issues and could 

become a bottleneck in the system, considering the capacity of the small-vm. 

The completion time of tasks varied significantly across the nodes. The small-vm, 

assigned the highest number of tasks, took the longest duration (more than 50 seconds), 

which was considerably higher than the other nodes. This might be due to the large number 

of tasks assigned to it or other underlying system characteristics. 

The shuffle read and write operations displayed a significant disparity across the 

nodes. The small-vm node experienced the highest volume in both shuffle read and write 

operations. This could place a considerable load on the small-vm and might be a factor 

contributing to its longer task completion time. 

Memory usage was highest on the small-vm, reaching about 1,750,000 bytes, 

compared to the other nodes which had a memory usage between 15,000 and 25,000 bytes. 

Given the higher task load and increased shuffle read and write operations, the elevated 

memory usage on the small-vm is expected. 

In summary, the gradient boosted trees stage displays an uneven distribution of tasks, 

considerable differences in task completion time, and significant disparities in shuffle 

operations and memory usage. This highlights potential areas for performance optimization 

and system enhancements, particularly regarding the small-vm, which seems to bear the brunt 

of the computational load. 
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6.4 Random Forest Model – Emulation Metrics 

 

 

 

 

 

 

 

 

 

Figure 4: Emulation for Random Forest model 
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Figure 4 shows the emulation for Random Forest Model. The random forest model's 

emulation was completed in 137 seconds, however, an error was reported: the loss of 

executor 13 on rpi4-2G-0. This could be due to the node exceeding its capacity thresholds or 

experiencing network issues. 

Task distribution was notably uneven across the nodes, with rpi3-b-2 assigned a 

disproportionately high number of tasks (about 250), while rpi4-2G-0 did not have any tasks 

assigned. 

Task completion times varied widely across nodes, with the most noticeable delay on 

rpi3-b-2, taking  about 32 seconds. This node was assigned the highest number of tasks, 

which likely contributed to the longer completion time. 

Regarding shuffle operations, rpi3-b-2 demonstrated a significantly higher volume in 

both read and write operations, with about 1,150,000 and 1,200,000 bytes respectively, 

compared to the other nodes. This high volume of shuffle operations further indicates the 

high load on rpi3-b-2. 

In terms of memory usage, rpi3-b-2 used a significantly higher amount of memory 

(about 1,400,000 bytes) compared to the other nodes. This, in combination with the high 

number of tasks and shuffle operations, indicates that this node is likely the most burdened in 

the random forest stage. 

In conclusion, the random forest stage displays a marked imbalance in task 

distribution, shuffle operations, and memory usage, mainly concentrated on rpi3-b-2. The 

disassociation of rpi4-2G-0, which had no assigned tasks, raises questions about system 

stability and resource allocation efficiency. These factors present potential areas for system 

optimization and enhancements. 
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