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Abstract

During recent years, there has been a massive interest in Distributed Ledger Technology

(Blockchains).  Distributed  Ledgers  are  decentralized  synchronized  databases  that

operate across multiple nodes or entities. They utilize technologies like blockchain to

provide transparency and security without relying on a central authority.  Distributed

Ledgers enable direct client interactions and ensure data integrity through consensus

mechanisms. To this respect several algorithms have been devised either for designing

distributed ledgers or for applications across ledgers. In this study we implement two

distributed algorithms designed to solve the Atomic Appends problem.  

The Atomic Appends problem emerges when several clients have records to append, the

record of each client has to be appended to a different Distributed Ledger, and it must

be guaranteed that either all records are appended or none.

The general solution of both algorithms is the use of a distributed reliable middleman

service, which is  trustworthy and tolerates  Byzantine faults. Byzantine faults refer to

the arbitrary behaviour displayed by components in a Distributed Computing System,

where  these  components  might  send  misleading  information  to  other  components,

which makes it very difficult to achieve consensus.

This study extends the study of Andreas Chrysanthou, who implemented a Graphical

User Interface for a Byzantine Tolerant Distributed Ledger Object. 
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Chapter 1

Introduction

1.1 Motivation   1

1.2 Objective and Contribution   2

1.3 Methodology   2

1.4 Document Organization   4

1.1 Motivation

In  recent  years  the  race  towards  trusted  and  secure  blockchain  systems  [12],  and

Distributed  Ledger  Technologies (DLTs)  in  general,  has  gathered  a  lot  of  interest

mostly  due  to  the  advances  in  cryptocurrencies  such  as  Bitcoin  [17].  This  interest

brought new innovations and variations of DLTs.

One of these innovations is  Distributed Ledger Object (DLO) [9], which encapsulates

the most essential elements of a blockchain. A DLO supports two operations, APPEND

and GET. The first adds a new record at the end of the ledger (sequence of records), and

the second one returns the sequence of records. 

In [10], the authors initiate a study of systems that consist of multiple DLOs that interact

with each other. In this study they define the Atomic Appends problem [3, 10] where a

number of clients have records to append to different DLOs, and it must be guaranteed

that either all records are appended or none. This guarantee must work with consensus

in mind, in order to tolerate Byzantine faults [3]. The authors come to the conclusion

that  in  order  to  solve  the  Atomic  Appends  problem,  the  use  of  a  middleman  is

necessary.

The  rise  of  digital  goods  and  assets,  like  Non-Fungible  Tokens  (NFTs)  [11]  and

cryptocurrencies, has made the development of a  system that allows clients to exchange
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assets securely and fairly,  very critical.  In this study we build an asynchronous and

Byzantine Fault-Tolerant system that solves the Atomic Appends problem.

1.2 Objective and Contribution

In [3], the authors propose two algorithms which use a distributed byzantine-tolerant

middleman service in order to solve the Atomic Appends problem. The names of these

algorithms are Helper Processes and Smart Byzantine Distributed Ledger Object (smart

BDLO). The two algorithms are very similar to each other, with the main difference

being that the middleman is an independent entity in the Helper Processes algorithm,

whereas in Smart BDLO, the middlemen is integrated within the BDLO. 

The  purpose  of  this  study  is  to  implement  these  algorithms  in  Java  Programming

Language [1]. To implement the algorithms we extend Antdeas Chrysanthou’s study

[2], where he implements a graphical user interface for an asynchronous DLO, which is

resilient to Byzantine faults. 

1.3   Methodology

At first we studied the work of Andreas Chrysanthou [2] who developed a prototype of

an  unbounded Byzantine Distributed Ledger Object  (unbounded BDLO) [3]. With the

term unbounded we mean that there is no limit on how many clients can be Byzantine .

At  the same time we studied some articles  on Asynchronous Byzantine Distributed

Ledgers [3, 9, 10] to get more familiar with the subject. 

Then we were facing the dilemma to either recreate Andreas Chrysanthou’s application

on Go Programming Language and expand it, or build on the existing code which was

already  written  in  Java  from Andreas.  For  practical  reasons,  we  chose  to  build  on

Andrea’s work since we are more familiar with Java, and it would require much more

effort and time to start over with Go. 

Later on, we made sure that the application was working as it should, even when the

servers (that consisted of the BDLO) were not on the same network (this was tested

using Virtual Machines) – and it did. 
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Then we realised that in order to implement the two algorithms of Atomic Appends, we

first had to develop a version of a BDLO called bounded BDLO, which is a different

variation of what was implemented in [2]. As the name suggests, a bounded BDLO

limits  the  number  of  clients  that  can  be  Byzantine.  We  started  working  on  the

implementation in November, and it was completed at the beginning of December.

The next step was to implement the first algorithm, which was the Helper Processes

algorithm. The main reason we chose to develop this algorithm first, was because it was

practically harder to implement and it  would make easier the implementation of the

Smart  BDLO  algorithm.  The  implementation  and  testing  started  in  the  middle  of

January,  and  it  was  completed  in  the  middle  of  March.  It  took  more  time  than

anticipated, with reason being that we faced some incompatibilities with the existing

code (more information is given in Sections 4.5 and 6.2). 

Subsequently, in late March, we begun developing the Smart BDLO algorithm, which

was completed much faster, due to the fact that part of the implementation was already

done in the Helper Processes code. 

After  testing  the  Smart  BDLO prototype,  we  decided  to  test  the  Helper  Processes

algorithm on Emulab [6], to verify that it was working on servers that were not on the

same network. 

The  writing  of  the  Individual  Thesis  started  from  the  beginning  of  Fall  semester.

However that was postponed when the development of the algorithms started, and it was

resumed in the beginning of April once the Emulab testing was completed. In Figure 1.1

we present a Gantt diagram which we used to plan and schedule our tasks.

Figure 1.1 : Gantt Diagram of our Scheduling 
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1.4   Document Organization

In  Chapter 2,  we provide definitions and background information necessary for the

material presented in later chapters. We also overview the BFT-Smart library that was

used  for  the  implementation  of  the  algorithms,  and  an  overview  of  Andreas

Chrysanthou’s study.

In  Chapter 3, we present the two Atomic Appends Algorithms, the Helper Processes

and  Smart  BDLO  and  in  Chapter  4,  we  provide  the  implementation  of  the  two

algorithms.

In  Chapter 5,  we provide a Visual Representation of both implementations, and an

experimental evaluation of the Helper Processes algorithm on Emulab [6]. 

In Chapter 6, we conclude with a summary of the study, a discussion on the challenges

addressed and possible future extensions of the work. 
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Chapter 2

Background

2.1 Byzantine Fault Tolerant Systems  5

2.2 Distributed Ledger Objects  7

2.3 Byzantine Tolerant Distributed Ledger Object  7

2.4 Atomic Appends Problem  8

2.5 Byzantine Atomic Broadcast and BFT-Smart  8

2.5.1 Byzantine Atomic Broadcast  8

2.5.2 BFT-Smart  9

2.6 Previous Individual Thesis 12

2.6.1 Unbounded BDLO 13

2.6.2 Visual Representation of the Prototype 15

2.6.3 Unit Tests 17

2.7 Emulab 18

2.1 Byzantine Fault Tolerant System

Byzantine Fault Tolerance [3] emerges from the Byzantine Generals Problem [13]. In

this hypothetical problem a Byzantine Army is divided into  n separate divisions and

each one is controlled by a General. All divisions have to make a common decision

whether or not they will attack the enemy. This is also called Byzantine Consensus [14].

The problem appears when we assume that some generals can be traitors/malicious. In

this scenario, the malicious general will tell to some generals to attack and to others to

retreat. This results as a defeat for the army. Keep in mind that when a General receives

ambiguous orders, they retreat. They will attack only when all orders are ATTACK.

They only win the battle, if every general decides to attack.
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Figure 2.1: Byzantine Generals Problem with n = 3

In Figure 2.1, an example of this problem with 3 Generals is shown. For this situation,

General  1  is  the  malicious  one.  General  1  sends  to  General  2  Attack order,  but  to

General 3 Retreat order. General 2 and  3 send to everyone Attack order. So General 3

has one Retreat and one Attack order. So from above, we understand that General 3 will

not attack. General received 2 Attack orders. So General 2 will attack.  Therefore the

battle will be lost.

It  has  been  proven  that  this  problem has  no  solution,  and  Consensus  can  only  be

achieved when there are at least n generals and f of them are malicious, where n≥ 3f + 1.

Byzantine Fault Tolerance (BFT) is the attribute of Distributed Systems that enables

them to reach Consensus even in the presence of Byzantine Faults. A Byzantine Fault is

considered a process (or a node), which deviates from its assumed behaviour based on

the algorithms it’s running. The goal of Byzantine Fault-Tolerant systems, is to function

how they normally would, even when  1/3 of the nodes act maliciously or arbitrarily.

Byzantine Fault Tolerant Systems and algorithms usually need make this assumption in

order to operate as they are meant to.
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2.2 Distributed Ledger Objects

A  Distributed  Ledger  Object  (DLO)  [9],  as  the  name  suggests,  is  a  ledger  that  is

distributed  to  different  servers.  Each server  has  an  instance  of  the  Ledger,  and the

records on each one of them must be the same and in a totally ordered sequence. A DLO

L has two main functionalities. 

• L.append(r)  :  The Record r  = <τ,p,v> will  be appended onto the Ledger,

where τ is a unique identifier of the record (maybe the hash code of p and v), p is

the identification of the process that appended the record and v is the value of the

record. 

• L.get() : Will return the sequence S of records that are currently in the Ledger

will be returned.

2.3 Byzantine Tolerant Distributed Ledger Object

A Byzantine-tolerant DLO (BDLO) [3], is a DLO which is able to function normally

even with the presence of Byzantine Faults. A server is considered Byzantine when it

acts arbitrarily, maliciously or doesn’t work at all. At any given time, for the BDLO to

work correctly, the servers n, must be n ≥ 3f +1 where f are the Byzantine servers. Also

a BDLO must satisfy 3 properties [3]:

• Byzantine Completeness (BC):  All  the GET and APPEND requests  from the

clients, eventually are completed.

• Byzantine Strong Prefix (BSP): If two clients C and C’ send a get request to the

DLO then if the returned sequence of records are S and S’ respectively, then S is

a prefix of S’ or S’ is a prefix of S.

• Byzantine Linearisability (BL):  Let G be the set of all complete get operations

issued  by  correct  clients.  Let  A  be  the  set  of  complete  append  operations

L.append(r) such that  r  S∈  and  S is the sequence returned by some operation

L.get()  G∈ . Then linearisability holds with respect to the set of operations G ∪

A.
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2.4 The Atomic Appends Problem

The  Atomic Appends problem [10] can be considered as a specific version of the fair

exchange problem. In the Atomic Appends problem, several  clients  have records to

append,  and  each  record  must  be  appended  in  a  different  DLO with  the  use  of  a

middleman. It must be guaranteed that either all records are appended to their respective

DLOs, or none. In our study we implement a specific version of the Atomic Appends

problem, where only 2 clients come into an agreement.

Example:

Let us consider clients p and q. Client p has a car that client q wants to buy using

cryptocurrency. For the car to be in the ownership of q, a record r must be appended on

the DLO Lcar from client p. For the client p to receive an amount of cryptocurrency from

q, then q must append a record r’ on the DLO Lcrypto. 

Cases

• In the perfect scenario both clients abide by their agreement, and they append

the correct records to the middleman. Then the middleman verifies that both

clients have appended their  records and continues by appending each one of

them to their appropriate DLO.

• In this scenario, client p appends its record to the middleman .  However, client q

pulls  out  of  the  agreement  and  doesn’t  append  its  record.  The  middleman

verifies that not all clients have appended their records, hence it doesn’t  append

the record of client p in its respective DLO.

In  Chapter 3 we present two algorithms that solve the Atomic Appends problem as they

are proposed in [3].

2.5 Byzantine Atomic Broadcast and BFT-Smart

2.5.1 Byzantine Atomic Broadcast

Atomic Broadcast  [16] is a messaging protocol that is used in distributed systems. Its

goal is to ensure that a message is delivered to all the nodes of a network. In an atomic

broadcast  system,  all  messages  are  delivered  to  all  participants  in  the  same  order,
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maintaining  consistency  across  all  nodes.  In  our  case,  the  atomic  broadcast  is

implemented and extended from the BFT-Smart library [5, 15] which makes it tolerable

to Byzantine failures. Hence it is called Byzantine Atomic Broadcast (BAB).

In [3], the authors use a BAB service for the server communication in order to solve the

Atomic Appends problem. This service satisfies the following properties:

- Validity :  if a correct server BAB-broadcasts a message, then it will eventually

  BAB-deliver it.

- Agreement : if a correct server BAB-delivers a message, then all correct servers

  will eventually BAB-deliver that message.

-  Integrity : a message is BAB-delivered by each correct server at most once,  

   and only if it was previously BAB-broadcast.

-  Total Order : the messages BAB-delivered by correct servers are totally or-

  dered; i.e.,  if  any correct server BAB-delivers message m before message  

    m’, then every correct server must do it in that order.

2.5.2 BFT-Smart

BFT-Smart  is  an open source library written in Java and its  purpose is  to replicate

Byzantine fault-tolerant machines. The project was implemented by researchers at the

University of Lisbon and we can find it in [5]. The library makes use of multithreading

and it’s relatively easy for someone to extend it using the API provided [15]. 

Developers implement specialized behaviours using a set of alternative calls, callbacks

or plug-ins both at client and server-side. In the thesis of Andreas Chrysanthou [2], the

library was extended in order to implement a BDLO, which consists of servers and

clients.

BFT-Smart Architecture

In Figure 2.2 we can see the architecture of BFT-Smart .
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Figure 2.2 : BFT-Smart Architecture [5]

All communication between threads in this architecture occurs via queues with a limited

capacity. The diagram illustrates which queues are responsible for data input and output

for each thread. 

A thread pool  offered by the Netty communication framework handles  the requests

made by clients. Upon receiving a message from a client, the system first determines if

it is an ordered or unordered request. If it is an unordered request, typically used for

read-only operations, the request is directly sent to the service implementation. On the

other hand, if  it  is  an ordered request,  it  is  forwarded to the client manager,  which

verifies the request's integrity and adds it to the appropriate queue for that particular

client.

The proposer  thread is  in  charge of  collecting a  group of  requests  and sending the

Propose  message  to  initiate  the  consensus  protocol.  In  BFT-Smart,  the  batch  is

populated with requests until it reaches a maximum size specified in a configuration file

or there are no more requests to add. This particular thread is only active in the leader

replica.
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To send a message m from one replica to another, it is first placed in an outgoing queue.

A  sender  thread  retrieves  the  message,  serializes  it,  generates  a  MAC  (message

authentication  code),  and  sends  it  over  TCP  sockets.  At  the  recipient  replica,  a

corresponding receiver thread reads the message, authenticates it,  deserializes it,  and

stores it in the incoming queue. All received messages from other replicas are stored in

this queue to be processed in sequence.

The  task  of  handling  messages  from the  BFT SMR protocol  falls  on  the  message

processor thread. This thread retrieves messages from the incoming queue and processes

them only if they belong to the ongoing consensus. If messages belong to a consensus

ahead of the current one, they will be processed later, when that consensus is initiated. If

messages do not fit into either of these categories, they are disregarded.

Once  a  consensus  is  completed  on  a  replica,  the  confirmed batch  is  placed on the

"decided" queue.  The delivery thread is  responsible  for  obtaining batches from this

queue, deserializing all requests in the batch, removing them from their corresponding

client  queues,  and marking the present  consensus as  completed.  Following that,  the

delivery  thread  calls  the  service  replica  to  execute  the  requests  and  produce  the

corresponding responses. Once the reply is generated, the service replica puts it into the

reply queue. The reply thread retrieves replies from this queue and sends them to the

corresponding clients.

BFT-Smart Configuration

There are two files that need to be configured in order for the library to be working as

expected. These two files are hosts.config and system.config.

The hosts file, is used to configure the IP addresses and ports of each server that belongs

to the system. In Figure 2.3, we can see the structure of the file.

Figure 2.3: Hosts.config Structure
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#server id, address and port (the ids from 0 to n-1 are the service replicas) 
0 155.98.37.45 11000 11001
1 155.98.37.64 11010 11011
2 155.98.37.50 11020 11021
3 155.98.37.49 11030 11031
4 155.98.37.47 11040 11041



The first column corresponds to the id of the server, the second to the IP address, the 

last two to the ports which are used to communicate with the rest of the replicas.

The system file is used to configure various functionalities and options of the library.

Table 2.4 contains the most important settings that are needed in our scenario.

Settings Description

1 system.communication.bindaddress The IP address that the replica binds to

2 system.servers.num Number of servers in the group 

3 system.servers.f Maximum number of faulty replicas

4 system.initial.view
Replicas ID for the initial view, separated by a comma (i.e.

1,2,3,4 for servers.num = 4)

5 system.bft For our case this needs to be set to true

6 system.communication.defaultkeys

Force all processes to use the same public/private keys pair and

secret key. For testing purposes this must be set to true, otherwise

must be false for security purposes

Table 2.4 : Most important parameters in system configuration file 

2.6 Previous Thesis

The  previous  thesis  [2],  had  as  purpose  to  create  a  working  prototype  which

implemented Byzantine Distributed Ledger Object. The author extended the BFT-Smart

library  by  writing  the  full  stack  code  for  server  and  client  side.  The  experimental

evaluation of the thesis, demonstrated that the BDLO properties, were satisfied only

when n ≥ 3f + 1. 

In Figure 2.5 we can see a visual representation of how a client communicates with the

servers, and how the servers communicate with each other within a BDLO. At first a

client sends a request to the first available server. On the second step the request is

broadcasted to the rest servers using the BAB. Then all servers (except N3 which is

Byzantine) , communicate with each other in order to verify that at least f + 1 of them

have received the same request.  In this case, it’s true so all  the servers commit the
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request that they received earlier. At last, if the request was executed, the client receives

an acknowledgement that their request was completed. 

Figure 2.5 : A visual representation of Clients Server Communication in a BDLO

2.6.1 Unbounded BDLO

The version of the BDLO that was implemented, is called unbounded BDLO.  With the

term unbounded, we mean that there is no limit on how many clients can be Byzantine.

We proceed to present the algorithms for the clients and the servers of an unbounded

BDLO. 

The clients p is connected to the unbounded BDLO L, and it wants to append the  record

r. The BDLO consists of n servers of which f of them are considered malicious, where  n

≥ 3f + 1. The client, runs the code shown in Figure 2.6.
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Figure 2.6: Client operations pseudocode [3]

When a client wants to perform an APPEND operation, it first increases a counter and

then sends request to a minimum of 2f + 1 (lines 8 and 9) servers to ensure that at least

f  + 1 correct servers receive the request.  For a GET operation, it  also increases the

counter, and sends the request to a minimum of 2f + 1 servers (lines 3 and 4). The client

receives the sequence S, only if it receives f + 1 same replies of the sequence S (line 5).

For an append operation, the client considers it complete when it receives  f+1 replies

from different servers (line 10). In both cases, the response from at least one correct

server is guaranteed. The counter is used to give a unique ID for every request.

The servers of the unbounded version run the code shown in Figure 2.7

Figure 2.7 :   The algorithm the servers run on unbounded-BDLO  [3]

The algorithm relies  on the BAB service,  which is  implemented by the BFT-Smart

library [15], to establish a complete order of messages exchanged among the servers.

Whenever a client sends an operation to the servers, it is BAB-broadcasted using the
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BAB service and is BAB-delivered eventually. A server processes an operation only

when it has been BAB-delivered f + 1 times by different servers, which ensures that at

least one correct server has sent the operation. The BAB service ensures that all the

correct  servers  receive  the  same  sequence  of  messages,  which  are  BAB-delivered,

therefore maintaining their state consistent and enabling them to process the operations

at the same point.

2.6.2 Visual Representation of the Prototype

In this section we present a visual representation of the implementation. As mentioned

before, a graphical user interface was developed both for the servers and clients.  In

Figure 2.8 we can see the GUI of a client.

Figure 2.8 : Graphical User Interface of a Client

The client’s graphical  user interface has two buttons,  which represent the two main

functionalities of appending a record,  and reading the sequence of records from the

BDLO. It also includes a text box, in which the clients insert the value of the record that

they want to append.

Say that the client wants to append a record on the ledger with the value record0. They

must  write  in  the  text  box  the  string  record0,  and  then  click  append.  The  request
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successful only if at least f + 1 servers receive the request and append the record. The

client doesn’t know what happens once it executes the APPEND request. For the client

the BDLO is a black box. Figure 2.9 shows the GUI of the client when it executes a

GET request, after the append request has been completed.

Figure 2.9 : Client GUI, after GET request, once record0 is appended

In  Figure 2.10, we see the GUI of a server when the append request for the record is

completed. All non-Byzantine servers have appended the record with value record0.
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Figure 2.10 : Server GUI, after the append request of record0 is completed

2.6.3 Unit Tests

For correctness check, the author [2] runs some unit tests. In addition to the client and

server code, a class that would act as a Byzantine server was implemented. This class

was used to replace functional  servers and test  if  the unbounded BDLO acted as it

should. The author ran different configurations of the BDLO, in which some satisfied

the condition n ≥ 3f + 1, and some did not. 

In all the configurations that the condition was met, all the Append and Get requests

were completed as they should and all servers had the same sequence of records. 

In  all  the  configurations  that  the  condition was not  satisfied,  the  requests  were  not

executed, which is what should happen.

For more details of the implementation, please check [2].
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2.7 Emulab

In Section 5.4 we present an experimental evaluation of the Helper Processes algorithm.

For  the  evaluation  we  use  Emulab  [6].  Emulab  is  a  network  testbed,  which  gives

researchers a wide range of environments and hardware in which they can develop and

evaluate their systems.

In order to test a system in Emulab, a user must first create an experiment profile. For

the profile it is necessary for the user to give it a name, and also create a topology for

the experiment. Figure 2.11 shows the user interface of the page that a user can create

an experiment profile from.

Figure 2.11 : Create Experiment Profile in Emulab

In Figure 5.27 we present the topology that we use for the experimental evaluation of

the Helper Processes algorithm. A topology is necessary in order to create the profile.

In order  to  set  up an experiment  we need to  request  a  reservation of  the hardware

needed for our experiment, at least one working day prior to the scheduled test (except

if we request a small number of nodes). Figure 2.12 shows the user interface of the page

where a client can reserve the nodes that are required for the experiment. 

If the request is granted, then our set up is complete and we run our tests the day we

scheduled the reservation. 

To connect to a node that we reserved, we can use either the user interface of Emulab

(terminal interface), or connect to it via SSH from our host machine. For the second

option, we must provide Emulab with the RSA Public Key of our machine. We provide

more information on our experimental evaluation in Section 5.4. 
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Figure 2.13 :  User Interface of Reservation Request page
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As we have seen in Section 2.6.1, an implementation of what we call unbounded BDLO

was developed. For the purposes of implementing solutions for the Atomic Appends

problem, we need to also implement what we call  bounded BDLO [3]. Therefore, we

first present bounded BDLO and then we proceed to the Atomic Appends solutions. 

3.1 Bounded Version of a BDLO

The term "bounded" refers to the fact that the fault tolerance of the system is limited,

and cannot handle an unlimited number of malicious clients.  A bounded BDLO is a

specific version of a BDLO, which in order to append a Record r, it must receive a

specific amount of append requests for the same record. More precisely, if the number

of clients that can send an append request to the BDLO is n, at least t + 1 clients must

send an Append Request for it, in order for it to be appended on the ledger. We denote t

by the maximum number of clients that can be Byzantine, where n ≥ 3t +1. In this way,

we ensure that the record, was not appended by accident or by a malicious client and the

system remains, tolerant to Byzantine failures.  This limitation is necessary to maintain

the security and integrity of the ledger, and to prevent attacks or breaches. 
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Figure 3.1:  The algorithm of a server in a b-BDLO

Figure 3.1 shows the algorithm of a server that is part of a bounded BDLO. When it

receives an append request for a record r,  it  first checks if the particular record has

already been appended on the ledger. If it has then it sends back an Acknowledgement

(line 5). If not, it stores it in a data structure, along with the amount of times the server

received an Append Request for the particular record. The record is appended once at

least f + 1 servers receive t + 1 append requests for the same record. The GET operation

of a bounded BDLO server is the same with the unbounded version, which is shown in

Figure 2.7. Additionally, the client code for the bounded BDLO is the same as in Figure

2.6. Later on, we modify the client code in order to solve the Atomic Appends problem,

which we explain in the next section.

3.2  Algorithms for the Atomic Appends Problem

As we presented in Section 2.4, in order to solve the Atomic Appends problem we are in

need  of  a  middleman  service.  The  objective  of  the  middleman  service  is  to  check

whether or not both clients have appended the records as they were supposed to. The

records  are  appended  onto  their  ledgers  only  when  the  middleman  verifies  that

everything has been appended as agreed.

As we can see from from Figure 3.2, the clients send their records to the middleman

service. After both records have been received, then the middleman service proceeds to
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append each record to the appropriate DLO. If a client doesn’t send its record, then

neither the other record is appended. Thus the Atomic Appends Problem, is resolved.

In the next sections we solve the Atomic Appends problem using two algorithms called

Helper Processes and Smart BDLO. As we can see from from the Figure 3.2, the clients

send their records to the middleman service. After both records have been received, then

the middleman service proceeds to append each records to the appropriate Ledger. If a

client doesn’t send their record, then neither the other records are appended. Thus the

Atomic Appends problem, is solved.

In the next sections we solve the Atomic Appends problem using two algorithms called

Helper Processes and Smart BDLO [3]. In the first algorithm, the Byzantine-tolerant

distributed middleman service is implemented using additional nodes we call “Helpers”,

while  in the second algorithm the service is  implemented using a special  type of  a

BDLO, called Smart BDLO.

Figure 3.2 : Visualization of how a middleman would work
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3.2.1 Helper Processes Algorithm

In  this  section  we  solve  the  Atomic  Appends  problem using  the  Helper  Processes

algorithm. In Figure 3.3 we can see a visual representation of how the algorithm works. 

The helper processes are in reality clients of all the DLOs. Their purpose is to read

periodically the Records of the unbounded BDLO, and search for matching records.

When they discover a pair of matching records, they append each record of the pair to

their respective bounded BDLO. Due to the reason that helper processes are a vital part

of the system, we must bound the maximum number of them that could be Byzantine.

So if the total number of helper processes is n, we say that there can at most t malicious,

where n ≥ 3t + 1. The helper processes algorithm is shown in Figure 3.4.

Figure 3.3: Visual Representation of Helper Processes Algorithm
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Figure 3.4 : The algorithm a helper process runs [3]

In Line 1, the Ox variable is used to store all the records that have already been appended

onto their respective ledger, to avoid appending them again. Line 2 is the beginning of

an infinite loop that is executed periodically.  The first thing that a helper process does

in the loop is to get the records from the unbounded BDLO, and store them into  Sx.

Subsequently,  it  iterates  through the  list,  and once it  finds  a  matching pair,  then it

appends each of them to their bounded BDLOs. Lastly the process adds the appended

records in the list Ox . A matching pair r and r’, have this value r=〈p, {p, q}, rp, Lp, rq〉

, and r′ =〈q, {p, q}, rq, Lq, rp〉. The first element in the value of a record is the ID of the

client who appended the record (in r.v is client p). The second element is a set of IDs of

the clients that have come into an agreement (in r.v this set is p and q ).  The third

element is the value that client p wants to append and  the fourth on which ledger the

record must be appended. The fifth element is the value of what client q is expected to

append, and the last element indicates on which ledger the record of client q is expected

to be appended.

3.2.2 Algorithm using Smart BDLO

The Smart BDLO algorithm is very similar to the previous one. The main difference is

that the work of the Helper Processes is being done within the unbounded BDLO, so the

extra instances that are used in the Helper Processes algorithm are not needed in this

one. Each server in the collection of the BDLO also acts as a clients for the bounded

BDLOs.  We can see the visualization of the algorithm in Figure 3.5.

As we can see, the Smart BDLO consists of n servers. The servers work exactly as they

would in the Helper Processes algorithm, but with the addition of searching matching

records,  and  appending  them  on  their  respective  ledgers.  We  can  see  the  Append

operation they run in Figure 3.6 (GET operation can same as Figure 2.7). Lines 5-10

represent  the  work  that  the  Helper  Processes  were  responsible  for  in  the  previous

implementation.
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Figure 3.5: Visual representation of the Smart-BDLO algorithm

Figure 3.6: Algorithm for Smart-BDLO (only append operation is shown)  [3]

3.3 Use Case Scenarios for Both Algorithms

From the previous sections, its very clear that the Smart BDLO algorithm needs less

instances (servers) to run. In Section 5.4 we prove that the Helper Processes algorithm is

significantly slower than the Smart BDLO algorithm due to the GET requests a Helper

Process needs to execute. 
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So if the main priority of a system is performance and the use of a small number of

servers then the Smart BDLO is perfect for this scenario. However, we cannot use the

Smart BDLO algorithm when the unbounded BDLO is a black box, since there is no

way for us to modify the server code to work as we want to. In this case the most

suitable algorithm would be the Helper Processes algorithm. A helper process would

just need to execute a GET request to read the Records of the unbounded BDLO, and

execute APPEND requests once it finds a matching pair. Therefore both algorithms can

be used in different projects with different criteria.

26



Chapter 4

Implementation

4.1 Record Class 27

4.2 Bounded-BDLO Implementation 29

4.3 Helper Processes Implementation 32

4.4 Smart-BDLO Implementation 34

4.5 Necessary Modifications 37

In this chapter we present the methods and classes we developed. First we  display the

Record class, which has similar structure to the Records that appear in the Figures 3.5

and 3.8. Then we continue with the implementation of the bounded BDLO, which as we

discussed before, it is a necessary component for the implementation of both Helper

Processes  and Smart  BDLO algorithms.  In  the  next  two sections  we carry  on with

showcasing the code that we developed in order to implement the Helper Processes and

Smart BDLO algorithm. Lastly we present some modifications that we made, in order

for an instance to be able to communicate with more than one ledger.

4.1 Record Class

The Record class is used to create objects that have similar structure to the Records that

we have seen in the pseudo-codes. A Record object has the following variables :

1. String Client1   – The ID of the client that sent the request

2. String Client2   – The ID of the client that came to an agreement with Client1

3. String Value1   – The value that Client1 wants to append

4. String Value2   – The value that Client2 is expected to append

5. String Ledger1 – On which ledger Client1 will append to
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6. String Ledger2 – On which ledger Client2 is expected to append to

Additionally  we  also  created  some  methods  that  would  help  us  implement  the

algorithms.

The  first  one  is  called  createMatchingRecord,  which  returns  another  Record.  That

record is  what  a  helper  process  looks  for  in  the  ledger  in  order  to  execute  append

Requests to the bounded BDLOs. In Figure 4.1 we see the code, which is simply just

swapping the variables of client1 with those of client2 for the given Record r.

  

Figure 4.1 : creatingMatchingRecord method

Another function we implemented was toString which is used for the user interface. We

can see the code in Figure 4.2.

Figure 4.2 : toString method  

Also we implemented the equals function, which is used to compare records. Without

this function, there could be instances, where two Record objects with the same values,

do not appear as equal.

Figure 4.3 : equals method
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1  public Record createMatchingRecord(Record r) { 
2          return new Record(r.getClient2(), r.getClient1(),r.getValue2(), r.getValue1(), r.getLedger2(), 
r.getLedger1());
3      }

1  public String toString(){
2          return ("Client1: " + this.getClient1() + ", Client2: " + this.getClient2() + ", Value1: " + 
this.getValue1() + ", Value2: " + this.getValue2() + ", Ledger1: " + this.getLedger1() + ", Ledger2: " + 
this.getLedger2());
3      }

 1  public boolean equals(Object value) {
 2          if (this == value) return true;
 3          if (value == null || getClass() != value.getClass()) return false;
 4          Record v = (Record) value;
 5          return this.value1.equals(v.getValue1()) && 
 6                 this.value2.equals(v.getValue2()) &&
 7                 this.getLedger1().equals(v.getLedger1()) &&
 8                 this.getLedger2().equals(v.getLedger2()) &&
 9                 this.getClient1().equals(v.getClient1()) &&
10                this.getClient2().equals(v.getClient2());
11      }



The final important method we implemented was the function hashCode. The creation

of this method was necessary because we used the class HashMaps in order to store

records  in  them.  If  this  method was not  implemented,  then the  contains  method of

hashMap would not have worked correctly. It is crucial for the contains method to work

as it is supposed to, because we use it in order to search for matching Records within the

HashMap variable. Before implementing the code presented in Figure 4.4, we tested the

Record class by adding a Record r in a HashMap. Then used another Record r’ which

had the same values as r, but the contains method returned False when we tried to search

for r  with r’.  This  happens because the default  hashCode method uses the memory

location of an object instead of its value to generate a Hash.

Figure 4.4: hashCode method

4.2 Bounded-BDLO Implementation

In this section we present the modifications that were made in order for a server to

append a request on its own ledger, when it only receives t + 1 same requests. For this

implementation, we had to add a configuration setting in the system.config file. That

setting is called system.clients.t which allows the servers to know the maximum number

of clients that can be Byzantine.

For the implementation, three new variables were necessary to be introduced. In Figure

4.5 we can see these variables.

Figure 4.5: New variables created to implement bounded-BDLO

The variable appendRequests(HashMap) is used to store the Records that have been

received so far along with a counter for each one. The key is the Record that was sent in

the append Request, and the value is an integer which indicates how many times this
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1  public int hashCode() { 
2          return this.toString().hashCode(); 
3      }

1  private Map<Record,Integer> appendRequests;
2  private int t;
3  private List<Record> LedgerFinal;



record was received. Furthermore the variable t is the maximum number of clients that

can be Byzantine. As mentioned before, the value is read from the system configuration.

The  last  variable  is  a  List  that  stores  all  the  Records  that  have  successfully  been

appended onto the ledger.

A bounded Server works the same way as an unbounded one, except when it receives an

append request. The method that had to be modified is called appExecuteOrdered, and

these are the case scenarios.

• The server receives an append request for the record r, for the first time. (Figure

4.6)

• The server receives an append request for the record r, for kth time, where k ≤ t.

(Figure 4.7)

• The server receives an append request for the record r, t + 1 times. (Figure 4.8)

• The server receives an append request for the record r,  for nth  time, where

n > t + 1. (Figure 4.9)

Figure 4.6 : The server receives the record r for the first time

In Figure 4.6, we see that when a Record r is appended for the first time, it is inserted in

the  appendRequests  HashMap(line  8)  with  value  1.  The  client  should  receive  the

message seen in line 11.
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 1  case APPENDLEDGER:
 2  
 3  Record key1 = (Record)objIn.readObject();
 4  System.out.println("The APPEND message with C="+key1+" has been delivered");
 5  value = (V)objIn.readObject();
 6  
 7  if (!appendRequests.containsKey(key1)){
 8  appendRequests.put((Record)key1, 1);
 9  System.out.println("New record inserted in appendsRequest with key "+ key1);
10  hasReply = true;
11  objOut.writeUTF("RECEIVED THE FIRST APPEND REQUEST FOR RECORD "+ key1);
12  }



Figure 4.7 : The server receives another request for record r, but has not reached

t+1 yet.

As shown in Figure 4.7, when the server receives another Record r for the k th  time,

where k < t+1 then it replaces the value of the previous record by adding 1 to the old

value (lines 2 and 3). The client who sends the k th request receives the message seen in

line 6.

Figure 4.8: The server receives t+1 append requests for the record r

In Figure 4.8, we can see the code for when the server receives total of  t + 1 append

requests for the Record r. Once it is received, it is appended onto the server’s ledger

(line 3), the value of the record in the HashMap its increased by one (line 4 and 5), and

the client who sent the t+1th request receives the message seen in line 7.

Figure 4.9 : The server receives another request, for an already appended record

Finally,  Figure  4.9  shows  when  a  client  sends  an  append  request  for  an  already

appended record it gets the message seen in line 2.
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1  else if (appendRequests.get(key1) < t){
2  int old_value = appendRequests.get(key1);
3  appendRequests.replace((Record)key1,(Integer)(old_value) , (Integer)(old_value+1));
4  System.out.println("Received another record for key "+key1+ "and now it has "+ 
appendRequest.get(key1)); 
5  hasReply = true;
6  objOut.writeUTF("RECEIVED ANOTHER APPEND REQUEST FOR RECORD " + key1);
7  
8  }

1  else if (appendRequests.get(key1) == t) {
2  System.out.println("The append request for the record "+ key1 + " has been received from at 
least t+1 clients. It has now been appended onto the ledger");
3  LedgerFinal.add((Record)key1);
4  int old_value = appendRequests.get(key1);
5  appendRequests.replace((Record)key1,(Integer)(old_value) , (Integer)(old_value+1));
6  System.out.println(LedgerFinal.size());
7  objOut.writeUTF("THE RECORD " + key1 + " HAS BEEN APPENDED ONTO THE LEDGER");
8  hasReply = true;
9  }

1  else {
2  objOut.writeUTF("THE RECORD " + key1 + " HAS ALREADY BEEN APPENDED ON THE 
LEDGER");
3  hasReply = true;
4   }



4.3 Helper Processes Implementation

The focus  of  this  section  is  to  present  the  implementation  of  the  Helper  Processes

algorithm that we saw in  Section  3.2.1. A helper process, as we mentioned before, is

essentially a client which reads the records of the unbounded BDLO, and when it finds

two matching records, it sends an append request to the appropriate ledgers.

To implement the helper process, we modified the client class that was created in the

previous thesis. In addition, for simplicity purposes, we assumed there were only two

bounded BDLOs. In reality there could be many more, and it would be fairly easy to

implement with more than two bounded BDLOs. The name for the bounded BDLOs is

“1” and “2”, respectively.

In Figure 4.10 we can observe the most important method of a helper process called

readLedger. Firstly a HashMap named alreadySent is initialized, before we enter the

infinite loop. The variable as the name suggests, is used to store all the records for

which the process has already sent an append request to the ledger it belongs. 

The infinite loop is executed every 10 seconds using the sleep method (line 42). At the

beginning of the loop, the process sends getRequest to the unbouded-BDLO (line 4),

and gets back a list of records. For complexity reasons, we decided to convert the list to

a HashMap (line 7), in order to access the records quicker. Afterwards we remove all

the records from the Map that are stored in the variable alreadySent, using the method

removAll(). The next step, is to iterate through the hashMap. For every record, it creates

the matching record, using the method we saw in Figure 4.1, so if that record also exists

in the map, then it should execute the appendsRequest (line 18). Since the request has

been sent, then the particular record is stored in the alreadySent map (line 30). 
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Figure 4.10 : Helper Process, searching and appending matching records

A helper  process  sends an appendRequest  using the method AppendLedger(Record,

Value).  This  method has been modified in order,  to send the request  to the correct

ledger. We can observe the code for the method, in the Figure 4.11.
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 1  public void readLedger(){
 2  Map<Record, Integer> alreadySent = new HashMap<>();
 3  while(true){
 4  List<Record> list =  GetLedger(calculateKey());
 5  if (list.size() > 0 ){
 6  
 7  map = list.stream().collect(Collectors.toMap(s -> s, s -> list.indexOf(s)));
 8  map.keySet().removeAll(alreadySent.keySet());
 9  map.forEach((key, value) -> {
10  Record temp = key.createMatchingRecord(key);
11   if(alreadySent.containsKey(key)){
12  System.out.println("Already Sent");
13  }
14  else if (map.containsKey(temp)){
15  System.out.println("Found Matching Records.");
16  System.out.println("Executing Atomic Appends");
17  try {
18  System.out.println(AppendLedger((K) key, (V) value));
19  } catch (ClassNotFoundException e) {
20  // TODO Auto-generated catch block
21  e.printStackTrace();
22  } catch (InterruptedException e) {
23  // TODO Auto-generated catch block
24  e.printStackTrace();
25  } catch (ExecutionException e) {
26  // TODO Auto-generated catch block
27  e.printStackTrace();
28  }
29  
30  alreadySent.put(key, value);
31  }
32  
33  });
34  
35  map.clear();
36  
37  }
38  else {
39  System.out.println("Nothing in Ledger yet");
40  }
41  try {
42  sleep(10000);
43  } catch (InterruptedException e) {
44  // TODO Auto-generated catch block
45  e.printStackTrace();
46  }
47  }
48  }



Figure 4.11 : AppendLedger method

In lines 16 and 18 is where the APPEND request is sent. A service proxy is a class that

comes with the BFT-Smart library, and is used to communicate with the BDLOs. The

serviceProxy1 is responsible for the communication for the bounded BDLO with ID 1,

and serviceProxy2 for the bounded BDLO with ID 2. Once those BDLOs receive t + 1

append requests for the same record, then they append it onto their ledger.

The result of the request is printed out to the helper process's terminal.

4.4 Smart-BDLO Implementation

A Smart-BDLO is essentially an unbounded-BDLO which has the capability to do the

work of a helper processes instantly. So it works as a server and a client at the same

time. More specifically the servers of the Smart-BDLO check their ledgers for matching
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 1  public String AppendLedger(K key, V value) throws ClassNotFoundException, InterruptedException, ExecutionException {
 2  try (ByteArrayOutputStream byteOut = new ByteArrayOutputStream();
 3        ObjectOutput objOut = new ObjectOutputStream(byteOut);) {
 4  
 5  objOut.writeObject(BRequestType.APPENDLEDGER);
 6  objOut.writeObject(key);
 7  objOut.writeObject(value);
 8  
 9  objOut.flush();
10  byteOut.flush();
11  System.out.println("The message APPEND with C=" + key + " has been broadcasted to the servers of the 
Ledger");
12  
13  byte[] reply;
14  Record temp = (Record) (key);
15  if (temp.getLedger1().equals("1")) {
16  reply = serviceProxy1.invokeOrdered(byteOut.toByteArray());
17  } else if (temp.getLedger1().equals("2")){
18  reply = serviceProxy2.invokeOrdered(byteOut.toByteArray());
19  }
20  System.out.println("The same reply from at least f+1 different servers for the " + key + " request have just 
arrived");
21  try {
22        if (reply.length == 0) {
23  return null;
24        }
25  
26        else {
27        try (ByteArrayInputStream byteIn = new ByteArrayInputStream(reply);
28  ObjectInput objIn = new ObjectInputStream(byteIn)) {
29  return objIn.readUTF();
30  }
31  
32        }
33  } catch (NullPointerException e) {
34     System.out.println("NULL POINTER EXCEPTION");
35  }
36  
37  } catch (IOException e) {
38  System.out.println();
39  }
40  return null;
41  }



records,  and  if  there  is  a  matching  pair,  then  they  execute  append  requests  to  the

bounded  BDLOs.  A  helper  process  would  have  to  request  the  ledger  from  the

unbounded servers, but since now the servers do all the work, that overhead is now

gone. 

For the implementation we used the library Runnable in order to use multithreading.

The extra thread is responsible for checking the ledger for matching pairs, and also for

the append requests. 

Also for complexity reasons, an addition had to be made for when the servers received

an append request. Until now, a record was put only in a list, now we also append it on a

HashMap  with  the  name  map,  which  allows  us  to  search  for  matching  records

quicker (O(1) specifically).

In Figure 4.12 we see the method readLedger, which is the code that the extra thread is

executing. This method is almost the same with the code seen in Figure 4.10. We use a

new HashMap called nmap, which in every iteration gets all the data that are currently

stored in the variable map. The main reason we do this is to avoid the scenario while we

iterate through the map, a record is appended onto it. If this happens, an error would

occur when the thread iterates though the map. 

Additionally, the servers must be able to send append requests as a client. So we add the

method AppendLedger, as seen in the Figure 4.11, on the server class. When a server

finds a matching pair of Records, as presented in Figure 4.12 (lines 13), it calls the

method  AppendLedger  (line  17)  which  sends  an  append  request  to  the  appropriate

bounded BDLO. The result of the request is printed out to the server’s terminal.

For a further understanding of the algorithm we can see the diagram presented in in

Figure 4.13.
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Figure 4.12 : readLedger method on a Smart-BDLO server

Figure 4.13 : Smart-BDLO architecture
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 1  public void readLedger(){
 2  Map<Record, Integer> nmap = new HashMap<>();
 3  Map<Record, Integer> alreadySent = new HashMap<>();
 4  while(true){
 5  nmap.clear();
 6  nmap.putAll(map);
 7  nmap.keySet().removeAll(alreadySent.keySet());
 8  nmap.forEach((key, value) -> {
 9  Record temp = key.createMatchingRecord(key);
10   if(alreadySent.containsKey(key)){
11  System.out.println("Already Sent");
12  }
13  else if (nmap.containsKey(temp)){
14  System.out.println("Found Matching Records.");
15  System.out.println("Executing Atomic Appends");
16  try {
17  System.out.println(AppendLedger((K) key, (V) value));
18  } catch (ClassNotFoundException e) {
19  // TODO Auto-generated catch block
20  e.printStackTrace();
21  } catch (InterruptedException e) {
22  // TODO Auto-generated catch block
23  e.printStackTrace();
24  } 
25  alreadySent.put(key, value);
26  }
27  
28  else {
29  System.out.println("Nothing in Ledger yet");
30  }
31  });
32  try {
33  sleep(5000);
34  } catch (InterruptedException e) {
35  // TODO Auto-generated catch block
36  e.printStackTrace();
37  }
38  }
39  }



4.5 Necessary Modifications

As it was previously implemented in [2], a node could only access one ledger while

running. But for our algorithms to work, a node must be able to have access to multiple

ledgers  at  a  time.  The way a  node was connecting to  a  ledger,  was  with  the  class

ServiceProxy,  which was implemented by the  BFT-Smart  library.  The serviceProxy

would read the servers from hosts.config (Figure 2.3), by default, and connect to the

ledger that consists of those servers. So in order to solve this, we decided that it would

be best to add a function in serviceProxy, which would allow us to connect to a ledger,

by reading a different configuration file other than hosts.config. For example, a helper

process would now read from 3 different configuration files. The first one would be the

file for the unbounded BDLO, the second one would be for the bounded BDLO for the

ledger with ID 1, and the last one for the bounded BDLO for the ledger with ID 2.

Figure 4.14 shows the two methods that were added in the serviceProxy class.

Figure 4.14 : Added constructors in Service Proxy class
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 1  public ServiceProxy(String filename, int processId, String viewName) {
 2  this(processId, null, null, null, null, filename, viewName);
 3  }
 4  
 5  
 6 public ServiceProxy(int processId, String configHome, Comparator<byte[]> replyComparator, Extractor 
replyExtractor, KeyLoader loader, String filename, String viewName) {
 7  
 8  
 9  if (configHome == null) {
10  init(processId, loader, filename, viewName);
11  } else {
12  init(processId, configHome, loader);
13  }
14  
15  replies = new TOMMessage[getViewManager().getCurrentViewN()];
16  
17  comparator = (replyComparator != null) ? replyComparator : new Comparator<byte[]>() {
18  @Override
19  public int compare(byte[] o1, byte[] o2) {
20  return Arrays.equals(o1, o2) ? 0 : -1;
21  }
22  };
23  
24  extractor = (replyExtractor != null) ? replyExtractor : new Extractor() {
25  
26  @Override
27  public TOMMessage extractResponse(TOMMessage[] replies, int sameContent, int 
lastReceived) {
28  return replies[lastReceived];
29  }
30  };
31  }



We use the property of Java, called overloading, which allows us to have methods with

the  same name but  different  parameters.  In  Figure  4.14,  we added two constructor

methods, which allow us to enter a a name of a configuration file, that includes the

servers of a ledger.

The serviceProxy extends the class TOMSender, and as seen in line 10, the constructor

of the second is called. So we also had to implement a method for that class as well.

Figure 4.15 : Added constructor in TOMSender class

In line 2 of Figure 4.15 is where the TOMSender creates the view of the ledger(which

servers  the  ledger  consists  of)  using  the  ClientViewController  class.  For  the

ClientViewController,  to  be  able  to  create  the  View,  we  must  also  manipulate  the

following classes:

• ViewController (Extended by ClientViewController)

• TOMConfiguration (Used by ViewController)

• Configuration (Extended by TOMConfiguration)

• HostsConfig (Used by Configuration)

The following figures show the added code for each one of these classes.

Figure 4.16 :  Added Code for ViewController  

Figure 4.17 : Added Code for TOMConfiguration
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1  public void init(int processId, KeyLoader loader, String filename, String viewName) {
2  this.viewController = new ClientViewController(processId, loader, filename, viewName);
3  startsCS(processId);
4  }

1  public ViewController(int procId, KeyLoader loader, String filename) {
2          this.staticConf = new TOMConfiguration(procId, loader,filename);
3      }

1  public TOMConfiguration(int processId, KeyLoader loader, String filename) {
2          super(processId, loader, filename);
3      }



Figure 4.18 : Added Code for Configuration

Figure 4.19 : Added Code for HostsConfig
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 1  public HostsConfig(String configHome, String fileName) {
 2          loadConfig(configHome, fileName);
 3      }
 4  
 5  private void loadConfig(String configHome, String fileName){
 6          try{
 7              String path =  "";
 8              String sep = System.getProperty("file.separator");
 9              if(configHome.equals("")){
10                     if (fileName.equals(""))
11                          path = "config"+sep+"hosts.config";
12                     else
13                          path = "config"+sep+fileName;
14              }else{
15                     if (fileName.equals(""))
16                          path = configHome+sep+"hosts.config";
17                     else
18                         path = configHome+sep+fileName;
19              }
20              FileReader fr = new FileReader(path);
21              BufferedReader rd = new BufferedReader(fr);
22              String line = null;
23              while((line = rd.readLine()) != null){
24                  if(!line.startsWith("#")){
25                      StringTokenizer str = new StringTokenizer(line," ");
26                      if(str.countTokens() == 4){
27                          int id = Integer.valueOf(str.nextToken());
28                          String host = str.nextToken();
29                          int port = Integer.valueOf(str.nextToken());
30                          int portRR = Integer.valueOf(str.nextToken());
31                          this.servers.put(id, new Config(id, host, port, portRR));
32                      }
33                  }
34              }
35              fr.close();
36              rd.close();
37          }catch(Exception e){
38              LoggerFactory.getLogger(this.getClass()).error("Could not load configuration file",e);
39          }
40      }
41  

 1   public Configuration(int procId, KeyLoader loader, String filename) {
 2   logger = LoggerFactory.getLogger(this.getClass());
 3   processId = procId;
 4   keyLoader = loader;
 5   init(filename);
 6  }
 7   
 8   protected void init(String filename) {
 9   logger = LoggerFactory.getLogger(this.getClass());
10   String filename1 = new String(filename);
11   try {
12   hosts = new HostsConfig(configHome, filename);
13   
14   loadConfig();
15   ...// THERE IS MORE CODE. THIS IS THE ONLY PART THAT I CHANGED
16   
17   }
18   



Figure 4.19 shows how a helper process would connect to all 3 ledgers that needs to

connect.

Figure 4.20 : Initialisation for ServiceProxy variables in a Helper Process

Also,  now the  original  clients  can  now send  Get  requests  to  the  bounded  BDLOs.

Previously the could get the ledger only from the unbounded.
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1  serviceProxy = new ServiceProxy("unbounded.config", clientId, "unbounded"); // connects to the Unbounded 
Ledger
2  serviceProxy1 = new ServiceProxy("ledger1.config", clientId, "ledger1"); // connects to Ledger with ID 1
3  serviceProxy2 = new ServiceProxy("ledger2.config", clientId, "ledger2");
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In this chapter we present a guide on how to prepare a system to run our prototype. We

give a visual  representation of  both Helper Processes and Smart  BDLO algorithms,

along  with  instructions  on  how to  launch  each  one.  At  the  end  of  the  chapter  we

compare the performance of the algorithms using an experiment which we executed on

Emulab [6].  

5.1 Prerequisites

In preparation for running the algorithms, we must do a couple of steps. The first step is

to install Java Runtime Environment 1.8 or greater, as it is required from the BFT-Smart

library.

Install JRE 1.8 on Debian Systems:

1. Open terminal

2. Execute the command sudo apt-get update

3. Execute the command sudo apt-get install openjdk-8-jdk

Install JRE 1.8 on Windows Systems:
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1. Open this link

2. Accept the Licence Agreement

3. Download the file

4. Install the executable

The second step is risky and should be avoided in any system that is in production. We

only  do  this,  because  the  programs are  only  prototypes,  and they  are  used  just  for

demonstration. That being said, the second step is to enable old protocols that may be

vulnerable to malicious attacks, but they are used in our system which doesn’t launch if

we don’t do this step. This was also a problem in the previous study [2]. Ideally we

would like to find a safer method to bypass this problem. However the handling of

network communication is  implemented within the BFT-Smart library,  and it  would

take a lot of effort and time to manipulate the library in order to work as we want to.

Steps on Debian Systems:

1. Locate the Java Security file ( usually in /usr/lib/jvm/java-8-openjdk/conf/security/ )

2. Use a text editor to open it ( for example nano java.security )

3. Find the following line 

4. Comment out the line

5. Save the file

Steps on Windows Systems:

1. Locate the Java Security file (usually in C:\Program Files\Java\jdk1.8\

jre\lib\security)

2. Open the java.security file

3. Find the following line 

4. Comment out the line
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1  jdk.tls.disabledAlgorithms=SSLv3, TLSv1, TLSv1.1, RC4, DES, MD5withRSA,
2      DH keySize < 1024, EC keySize < 224, 3DES_EDE_CBC, anon, NULL,
3      include jdk.disabled.namedCurves
4  

1  jdk.tls.disabledAlgorithms=SSLv3, TLSv1, TLSv1.1, RC4, DES, MD5withRSA,
2      DH keySize < 1024, EC keySize < 224, 3DES_EDE_CBC, anon, NULL,
3      include jdk.disabled.namedCurves
4  

https://www.oracle.com/java/technologies/downloads/#license-lightbox


5. Save the file

After these steps we are ready to launch the implementation of the algorithms.

5.2 Helper Processes Execution

In the section, we demonstrate the Helper Process implementation, but first we present

how configure and launch each instance.

5.2.1 Instructions on How to Launch the System

For our scenario, we have 4 servers on each ledger(unbounded-BDLO, bounded-BDLO

1,  bounded-BDLO  2)  and  4  helper  processes.  We  can  launch  each  instance  on  a

different system which its IP is accessible to the other systems, or we can launch all the

instances on the same system. 

Firstly we must configure the servers as seen in Section 2.5.2. For the BDLOs we only

need  to  configure  the  hosts  and  system configuration  files.  These  can  be  found  in

HelperProcessesImplementation/(ledger 1, ledger2, unbounded Version)/library/config.

Lastly we need to configure the helper processes and the clients. We need to configure

the following files, unbounded.config, ledger1.config, ledger2.config(IP Addresses to

connect  to  the  ledgers).  The  files  can  be  found  in  HelperProcessesImplementation

/helperProcesses/library/config  and

HelperProcessesImplementation/clients/library/config.

Now that we have configured everything, we instruct on how to launch each instance.

The instances must launch in this order:

1. bounded BDLOs

2. unbounded BDLO

3. Helper Processes

4. Clients
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In  order  to  launch  the  bounded  BDLOs,  we  must  go  to

HelperProcessesImplementation/ledger1/library  and   HelperProcessesImplementation

/ledger2/library, open a terminal and execute these commands.

./runscripts/smartrun.sh bftsmart/demo/blockchain/BServer 0 <IP of the Server>

./runscripts/smartrun.sh bftsmart/demo/blockchain/BServer 1 <IP of the Server>

./runscripts/smartrun.sh bftsmart/demo/blockchain/BServer 2 <IP of the Server>

./runscripts/smartrun.sh bftsmart/demo/blockchain/BServer 3 <IP of the Server>

We  do  the  same  for  the  unbounded  BDLO,  but  in  this  directory

HelperProcessesImplementation/unboundedVersion/library.

Now  we  are  going  to  launch  Helper  Processes.  We  must  go  to  the  directory

HelperProcessesImplementation/helperProcesses/library,  open  a  terminal  and  execute

the following commands.

./runscripts/smartrun.sh bftsmart/demo/blockchain/HelperProcess 0

./runscripts/smartrun.sh bftsmart/demo/blockchain/HelperProcess 1

./runscripts/smartrun.sh bftsmart/demo/blockchain/HelperProcess 2

./runscripts/smartrun.sh bftsmart/demo/blockchain/HelperProcess 3

And lastly we launch the clients. Keep in mind that the IDs of the clients must start from

the last ID of a Helper Process, otherwise the communication between the clients and

the servers will be problematic. So in this case, the first client will have ID 4. In this

scenario we will have just 2 clients. Launch the clients by opening a terminal in the

directory HelperProcessesImplementation /clients/library and executing the following

commands.

./runscripts/smartrun.sh bftsmart/demo/blockchain/ClientGui 4

./runscripts/smartrun.sh bftsmart/demo/blockchain/ClientGui 5

5.2.2 Demonstration of Helper Processes Implementation

First we launch the bounded BDLOs. Both of them must have 4 instances as seen in

Figure 5.1 (only this first server is shown).
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Now we launch the Unbounded BDLO. This  BDLO must  also have 4 instances as

presented in Figrue 5.2.

After launching the BDLOs, we can start the helper processes. Figure 5.3 shows the

terminal of the first helper process. 
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Figure 5.1 : Bounded BDLO once Launched. Only one server is shown.

Figure 5.2 : Unbounded BDLO once Launched. Only one server is shown



Finally, we launch the clients. As seen in Figure 5.4 we launch the clients with ID 4. 
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Figure 5.3 : Helper Processes once Launched. Only one Helper Process is shown.

Figure 5.4 : Clients GUI of Client with ID 4. Client 5 is also launched but not shown



A client, in order to append a record, has to enter the following information :

• otherClient : The ID of the other client(In this scenario client 4 will write 5 and

the opposite)

• otherLedger : In which ledger is the other client supposed to append

• myLedger : In which ledger the client is appending to

• otherValue : The expected value of the other’s client record

• myValue : The clients value of the record

The GET button returns the Ledger of the unbounded BDLO, the GETLedger1 button

returns the Ledger of the bounded BDLO with ID 1, and the GETLedger2 button returns

the Ledger of the bounded BDLO with ID 2.

Now that everything is up and running, we can start appending Records.

Let’s say the clients 4 and 5 have come to an agreement.

Client 4 wants to append a record with value “record0” to Ledger 1.

Client 5 wants to append a record with value “record1” to Ledger 2.  

Figure 5.5 shows the clients 4 append request structure.
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Once the Append Request of Client 4 is complete, the unbounded BDLO must have one

record, and the bounded BDLOs must have none. The following figures showcase this.

Figure 5.6 :  Unbounded BDLO after Client’s 4 Append Request
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Figure 5.7 : Bounded BDLOs after Client 4 Append Request. Servers 0 and 1 (only one BDLO 
is shown)



In order for the exchange to be completed, client 5 must append their record as shown in

Figure 5.9.

If even one of those attributes, do not correspond to what Client 4 has appended, then

none of them is appended to the bounded BDLOs.

But since Client 5 appends what was agreed, then both Records are appended to their

ledgers. The upcoming figures show how each record is appended.

Figure 5.10, shows the unbounded BDLO after we execute GET request from a client.

As we can see both records are in the Ledger.
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Figure 5.8 : Bounded BDLOs after Client 4 Append Request. Servers 2 and 3 (only one BDLO 
is shown)



Figure 5.9 : The Append Request of Client 5
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Figure 5.10 : GET request to the unbounded BDLO, once both Records have been

Appended

Figures  5.11  and 5.12,  show what  happens  when the  helper  processes  discover  the

matching records, and execute the Append Requests towards the bounded BDLOs.

Figure 5.11 :  Helper Process 1 Logs, once it discovers a Matching Pair
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Figure 5.12 :  Helper Processes 2,3 and 4 Logs, once they discover a Matching Pair
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As we can see in Figures 5.11 and 5.12, there are 4 helper processes. So only one of

them can be byzantine, and the records are appended on the bounded BDLOs, once they

receive two Append Requests(t+1 requests) for the same record. The 4 th Helper Process,

was the first to send the Append Requests, hence the message that we see “RECEIVED

THE FIRST APPEND REQUEST FOR RECORD…”. The 2nd Helper Process was the

one to send the second request, and that’s why we see the messages “THE RECORD …

HAS BEEN APPENDED ONTO THE LEDGER X”. The 1st and 3rd Helper Processes

sent  their  request  after  the  records  were  appended,  so  they  get  the  message  “THE

RECORD … HAS ALREADY BEEN APPENDED ONTO THE LEDGER X”.

Finally, we can see the bounded BDLOs. Figure 5.13 and 5.14 show the BDLO with ID

1, and Figures 5.15 and 5.16 show the BDLO with ID 2.

53

Figure 5.13 : The bounded-BDLO with ID 1, after the Atomic Appends execution from the 
Helper Processes ( only servers 0,1 and 2 are shown )



Figure  5.15 : The bounded-BDLO with ID 2, after the Atomic Appends execution

from the Helper Processes ( only servers 0,1 and 2 are shown )

54

Figure 5.14 : The bounded-BDLO with ID 1, after the Atomic Appends execution from the 
Helper Processes ( only server 3 is shown)



Figure  5.16 : The bounded-BDLO with ID 2, after the Atomic Appends execution

from the Helper Processes ( only server 3 is shown)

5.3 Smart BDLO Execution

After demonstrating the Helper Processes implementation, we can can carry on with the

Smart-BDLO implementation. 

5.3.1 Instructions on How to Launch the System

The instructions are very similar to those in Section 5.2.1. Again in this scenario, the

bounded BDLOs consist of four servers each. The Smart-BDLO – which replaces the

Unbounded BDLO – also consists of four serves.

We must configure the bounded BDLOs and the  clients,  the  same  way  they  were

configured  in  chapter  5.1.  As  for  the  Smart  BDLO,  we  need  to  go  the  directory

sbdlo/smart-BDLO/library/config and configure system.config, hosts.config(the servers

of the smbdlo), ledger1.config and ledger2.config.

Order to launch each instance:

1. bounded-BDLOs

2. Smart-BDLO

3. Clients

The bounded-BDLOs and Clients can be started the same way as we saw before( they

can also be found in the sbdlo folder). In order to launch the Smart-BDLO, we need to

go the directory sbdlo/smart-BDLO/library and execute the same commands we did for

the unbounded BDLO.
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5.3.2 Demonstration of Smart BDLO Implementation

All the interfaces look the same as they did in Helper Processes implementation. As for

the Smart-BDLO, it has the same interface as the unbouded-BDLO.

Let’s say the clients 4 and 5 have come to an agreement.

Client 4 wants to append a record with value “smart0” to the Ledger 2.

Client 5 wants to append a record with value “smart1” to the Ledger 1.

Their Append Requests can be seen in Figure 5.14 and 5.18 respectively.  

Figure 5.17 : Client’s 4 Append Request
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Figure 5.18 : Client’s 5 Append Request 

Once  the  smart  BDLO detects  the  matching  record,  it  starts  executing  the  Append

Requests. Figures 5.19 and 5.20, show the logs of the servers that the Smart BDLO

consists of, once they detect the matching records. As it is presented, the 1 st server of the

Smart  BDLO, was the first  to  execute  the Append Requests.  Hence the message it

receives “RECEIVED THE FIRST APPEND REQUEST FOR RECORD …”. The 4 th

server was the second one to send it’s Append Request, and it was this request that

made the bounded BDLOs to append the records on their Ledger. Consequently the

server received the message “THE RECORD … HAS BEEN APPENDED ON THE

LEDGER X”. The 2nd and 3rd server sent their requests after the records were appended,

so they received the message “THE RECORD … HAS ALREADY BEEN APPENDED

ON THE LEDGER X”.
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Figure 5.19 : Smart BDLO Logs once it identifies the Matching Records ( only servers 0,1 and 2 

are shown)



Figure 5.20 : Smart BDLO Logs once it identifies the Matching Records ( only

server 3 is shown)

Finally we can see in the upcoming figures, that each record has been appended on the

correct bounded BDLO. 
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Figure  5.21 : The bounded-BDLO with ID 1, after the Atomic Appends execution from the 

Smart BDLO ( only servers 0 and 1 are shown)
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Figure  5.22 : The bounded-BDLO with ID 1, after the Atomic Appends execution from the 

Smart BDLO ( only servers 2 and 3 are shown)

Figure  5.23 : The bounded-BDLO with ID 2, after the Atomic Appends execution from the 

Smart BDLO ( only servers 0 and 1 are shown)



5.4 Comparing the Performance of the Algorithms

The general idea for both algorithms is to use a distributed middleman that searches the

records the clients append, to find the matching ones. The algorithms are pretty similar

with each other, with the main difference being that a Helper Process needs to execute a

GET request to the unbounded BDLO. This is different in the Smart BDLO algorithm,

which has instant access to the ledger, since it works as an unbounded BDLO and a

helper process at the same time.

With that said, if we exclude the GET request of the Helper Processes, the performance

should be identical with each other. So we chose as an evaluation metric the overhead of

the GET requests that a Helper Process executes for a different number of records. To

measure the overhead,  we copied the existing Helper Processes implementation and

modified in order to find the time it takes for a GET request to complete. We used the
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Figure  5.24 : The bounded-BDLO with ID 2, after the Atomic Appends execution from the 

Smart BDLO ( only servers 2 and 3 are shown)



libraries Instant and Duration to calculate the time from the moment the GET request is

sent until it is executed. Figure 5.25 shows the added modification that was appended

on the code shown in Figure 4.10. 

Figure 5.26 : Added Modification that measures the time a GET request needs to

be completed

For the evaluation we used the testing environment of Emulab [6] with the the topology

seen in Figure 5.27. This is the architecture of the Helper Processes algorithm that we

saw before. As we can observe, we used 4 Helper Processes and each BDLO had 5

servers.  The  type  of  all  nodes  is  emulab-xen.  Emulab-xen  is  essentially  a  virtual

machine  (or  virtual  nodes)  which  runs  a  selected  operating  system.  For  our  virtual

nodes, we used Ubuntu 18. Additionally, all the virtual nodes have routable IP address,

which allows the instances to communicate through the Internet. Each node has at least

1GB of RAM, maximum 16GB of virtual disk.

For the testing we programmed the Helper Processes, to measure the amount of time a

GET request would take to complete, in milliseconds, for different number of records.

The number of records changed by modifying the server code to 5000 new records

every 10 GET requests it receives. Figure 5.28 presents the results of the testing. We

can see a steady increase of the overhead while the number of records also increase. The

number of records,  is  initially set  to 5000 and and increases by 5000 till  it  reaches

100000. For each number of records, the Helper Processes executed a GET request of

total 10 times, and we calculated the average time needed for completion.
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1  while(true){
2  start = Instant.now();
3  List<Record> list =  GetLedger(calculateKey());
4  end = Instant.now();
5  Duration duration = Duration.between(start, end);
6  // MORE CODE ...
7  }



Figure 5.27 : Topology of Helper Processes implementation used in Emulab

Figure 5.28 : GET Requests Overhead in Helper Processes for Different Number

of Records
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The results show that the overhead for 100000 records, is on average 1,8 seconds. This

is relatively a small number, however, blockchains nowadays tend to have millions and

millions of records, which in our scenario could have a very negative effect. This shows

that the Smart BDLO implementation could be a better choice for solving the Atomic

Appends problem. However, the Helper Processes algorithm might suit a project better

than the Smart BDLO. For example, when we don’t have access to the code of a BDLO

and cannot modify the servers in order to execute the Atomic Appends. We could use

the Helper Processes implementation just by modifying it to read the records from the

particular BDLO. Of course, for this to work, the BDLO must at least have an API

which allows clients to read and append records on the ledger.
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6.1 Summary

After studying various articles about Asynchronous Byzantine Distributed Ledgers, and

the Atomic Appends problem, we decided to extend Andreas Chrysanthous work, and

implement the Helper Processes and Smart BDLO algorithms as presented in Chapter 3.

We first developed the bounded version of a BDLO which was necessary in order to

implement  the  two algorithms.  Then,  we continued with  the  implementation  of  the

Helper  Processes  algorithm  which  was  the  longest  task  in  the  project,  due  to  the

modification that had to be made in order to make it work as it should. Afterwards we

continued with the Smart BDLO algorithm. This was much more easier to develop since

a lot of its code was already done for the previous algorithm. Finally, we tested the

overhead of the Helper Processes by computing the average time of a GET request to be

completed, for different amount of records that were stored in the unbounded BDLO.

6.2 Problems Encountered

The  first  problems  we  encountered,  was  with  the  Record  class.  In  the  BFT-Smart

library, all requests need to be converted into bytes first. However, in Java, in order for

a class to be converted into bytes,  it  needs to implement the Serializable class.  We

didn’t know this at first, but after some help from the stack overflow community [7], we
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managed to resolve this issue. Additionally, in our implementations, we used HashMaps

to store records. For efficiency we used the record to be the key, which is what the

Hashing Function takes as an input to generate an index for the underlying array. In

Java, when a variable is used for Hashing it uses the default HashCode method which is

provided by the class Object.  But in this way, the HashCode of two records that had the

same  value,  produced  two  different  hashes,  which  is  not  what  we  needed  for  the

implementation. We resolved this by implementing a hashCode method, in the class

Record, so that it would take as input the values of the records. 

Another problem we faced was when we had to implement a way for an instance to be

able to communicate with more than one BDLO. This took a lot of time and effort to

solve,  because  we  had  to  interfere  with  the  BFT-Smart  code,  which  is  low  level

programming. We solved this by adding the necessary methods that allowed an instance

to be able to read a set of IPs from other file than Hosts.config, and connect to them.

More details were given in Section 4.5.

Furthermore,  while  testing  the  methods  mentioned  above,  we  encountered  another

problem.  When  two  instances  connect  to  the  same  BDLO,  we  need  to  give  them

different IDs when launched. For example, if we launch four Helper Processes, they

must have IDs 0,1,2,3 respectively and they connect to every BDLO. The clients also

connect to all the BDLOs, so they need to have IDs that start from 4, in order to avoid

communication errors between the instances.

Lastly, we realised that the port of a client changes for every request. At first we wanted

to let the clients know when an Atomic Appends operation was completed, but due this

problem, we decided to let the clients execute GET requests to the bounded BDLOs.

6.3 Future Work

In this study we considered a specific version of the Atomic Appends problem, where

only two clients exchange records with each other and there are only two DLOs. This

problem can be generalized to k-Atomic Appends, involving k clients with k records and

up to k DLOs. So a next step could be to implement an algorithm which solves the k-

Atomic Appends. Our implementation could be used for the back-end but it would need
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to be modified in order to find the k-matching records. Additionally the frontend (GUI)

code would need to be reimplemented so that a client can append its record with the

correct structure.

Additionally, a program could be implemented that configures the configuration files

automatically. The manual configuration is mistake-prone, and takes a lot of time to

setup for a big number of servers and clients. 

In this study, we implemented a prototype. In the future, a system like ours could be

used in production by real clients, but a lot of things need to be done in order to reach

that  state.  Firstly,  the  system needs  to  be  implemented  on  a  modern  programming

language, since Java is outdated and slow.  Also, a user interface that can be accessed on

a browser (web application) must be developed. There, the clients would be able to

exchange digital goods with each other, see previous transactions and view the records

of any ledger they desire. Another challenge for this project would be to integrate the

various  ledgers  (i.e.  Bitcoin  ledger,  Ethereum  etc.)  within  the  system,  in  order  to

execute the requests correctly. This would be ambitious because there is a plethora of

ledgers currently in production and the API of the ledgers, that would allow the clients

to  execute  requests,  might  differ  from each other.  However,  this  problem could  be

avoided if the system only supports a number of ledgers. For example, a system that

would specialize in the trade of a cryptocurrency and a car ownership. In this case, only

two ledgers would have to be integrated within the system, the ledger of the chosen

cryptocurrency and the ledger of car ownership. Lastly, it is crucial for a system like this

to have robust security measures in  order  to  protect  its  clients  from hackers  and

system failures.
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