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Summary

Fuzzing or fuzz testing is an automated software testing technique often used in software

development where the tested program is fed various inputs, with the goal of discov-

ering irregular behaviour such as crashes and vulnerabilities. Fuzzers have continuously

evolved to become more effective in identifying faults in software with smarter techniques

that replaced random inputs with mutation-based or generation-based inputs, and better

code coverage, allowing for the testing of obscure parts of a program.

A direct result of the evolution of fuzzers is a significant increase in the number of

faults that software developers and programmers must triage after a fuzzing session. The

overwhelming amount of crash reports that fuzzers generate presents a difficult challenge

in the prioritization of vulnerabilities or faults that need to be resolved first.

In this thesis, we explore the potential of vector embeddings, a popular technique used

in the field of Natural Language Processing, as a means of organizing the crash reports re-

turned by a fuzzing session into groups using unsupervised learning algorithms. The end

goal is to provide software developers and programmers with a framework that performs

grouping of crash reports into clusters, where each individual cluster contains reports

caused by the same bug in the program. By achieving this, the large number of faults re-

ported by fuzzers is reduced into a much smaller set of bugs, which as a result, simplifies

the investigation of each bug’s severity and ultimately, facilitates the prioritization of bugs

and their timely repair.

By training clustering algorithms on numerous datasets of stacktraces extracted from

crash reports, we produced clusters of stacktraces, and evaluated their quality. We de-

termine that there is promise in the use of vector embeddings and clustering algorithms

for crash report grouping and prioritization. We also hypothesize that the existence of

an extensive ground-truth dataset that could be used for training can further enhance the

quality of the resulting clusters.
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Chapter 1

Introduction

Software development is a large field of computer science that includes designing, im-

plementing, and maintaining software systems. Over the years, software has been tasked

with performing an increasing number of tasks, ranging from rather straightforward tasks

like calculators, to more elaborate and complex tasks like managing a device and its ap-

plications using operating systems. Regardless of the complexity of the task that is to

be performed, the software development process usually includes a common set of steps

that need to be followed. Although the order in which these steps are followed can vary

depending on the chosen development methodology for each development team, the steps

typically include planning, designing, implementing, testing, deploying, and maintaining

the software.

The content of this thesis pertains to the testing step of the software development

process, and more specifically, focuses on an automated software testing technique known

as fuzzing. Fuzzing works by repeatedly providing the program or software under test with

inputs, in a random or systematic number, in an attempt to uncover vulnerabilities or bugs

present in the code. As software has evolved to become more advanced, accommodating

for the increased complexity of the tasks that need to be performed, a mirroring effect

can be observed on fuzzers. New fuzzing techniques have replaced the previous standard

of providing random inputs to the program, with strategically mutating inputs, in order

to uncover a larger number of bugs with greater efficiency. Nowadays, state-of-the-art

fuzzers are able to reach and test even the most obscure code present in a codebase, and

as a result, can report more bugs and vulnerabilities in the tested software than ever before.

The wide variety of bugs that are uncovered by fuzzers can range from high-severity

bugs to low-severity bugs, or even false positives. High severity bugs pose a significant

security concern and could very likely be exploited by malicious actors to steal sensitive

data or gain authorized access to a system, giving them the opportunity to cause irrepara-

ble damage to individuals and organizations. Therefore, it is imperative that software

developers and programmers are able to correctly identify severe bugs and deal with them

10



in a timely manner.

This thesis aims to explore a possible solution to the problem of prioritizing bugs

from an ever growing list of bugs returned by a given fuzzing session. As described

above, fuzzers have continuously evolved over the years to the point of uncovering an

overwhelming number of bugs on a given fuzzing session, especially when the program

under testing contains multiple lines of code and performs complex operations. While

the great number of vulnerabilities that fuzzers report to software developers is indicative

of the quality of the program, it also can be a double-edged sword, since it hampers the

programmers’ ability to sift through them, organize them and address the most danger-

ous ones promptly. The software development process is cyclical, and software is tested

not only before release, but also after is has been deployed. In these cases, resolving

severe security vulnerabilities as fast as possible is incredibly important, as these same

vulnerabilities can be uncovered and exploited by malicious attackers.

The problem of grouping bugs into severe and non-severe, given a large collection of

crash reports returned by a fuzzing session is not trivial. The first reason is the lack of a

pre-existing publicly released dataset of crash reports that can be used by researchers in

order to perform bug prioritization or clustering. The release of such a dataset on behalf of

a software development team has several risks, particularly regarding the security of the

software itself, since crash reports often include important information about the program,

that can be used to understand its structure (e.g. functions/method stack traces), or even

understand the specific events or sequences that led to each crash in the first place. With

that in mind, making a dataset of crash reports publicly available can directly empower

malicious individuals to exploit the software and develop more effective attacks against

the software. Another reason why the problem of grouping bugs is quite difficult to solve,

is because there is no way to tangibly measure the severity of a bug, or a unanimously

used metric to compare two bugs with each other.

Various approaches have been followed in attempts to provide a solution to the prob-

lem of bug prioritization, which make use of various techniques. Dongsun Kim et al. [1]

used supervised machine learning to classify bugs as frequent or not frequent by leverag-

ing a dataset of past crash reports. This way, they can predict whether or not a new crash

report deserves immediate attention, if it is classified as frequent. Jiang et al. [2] devel-

oped Evocatio, a capability-guided fuzzer that explores the code around a crash point in

order to assess the severity of a bug. Spanos et al. [3] make use of text mining techniques

and supervised learning algorithms to predict the Common Vulnerability Scoring Sys-

tem (CVSS) [4] and Weighted Impact Vulnerability Scoring System (WVISS) [5] sever-

ity scores for vulnerabilities based on their text description in the National Vulnerability

Database (NVD), and achieved high prediction accuracy.

In this thesis, we leverage vector embeddings, a popular technique used in natural lan-
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guage processing, with the goal of creating clusters of crash reports, where each cluster

represents vulnerabilities caused by a single bug. Our approach aims to give a solution to

the phenomenon where fuzzers generate multiple crash reports that in reality are caused

by a single bug in the source code of the program under test. Therefore, the goal is to re-

duce the overwhelming number of crash reports returned by fuzzers into a much smaller,

manageable number of bugs that need to be addressed. Our approach is different in that

it does not require a training dataset, as we make use of unsupervised learning algorithms

for clustering. The only labelled dataset that is needed is a ground-truth dataset that can

be compared against the labels produced by the algorithm, in order to evaluate the algo-

rithms ability to clearly divide a large number of crash reports into a much smaller number

of bugs. More specifically, we extract the stack traces from each crash report produced

by a fuzzing session, and transform them into their numerical representation in the vec-

tor space, creating a dataset of vector embeddings. Then, with the use of unsupervised

learning algorithms, we create clusters of vector embeddings and evaluate their quality by

comparing the clusters against a manually produced labelled dataset.

Our results show that representing stack traces as vector embeddings is a promising

direction that can provide solutions to the problem of clustering and prioritizing bug re-

ports, as the calculated quality scores for the resulting clusters are quite high. (add the

scores here?)

Our contributions include a framework for extracting the corresponding stack traces

from a collection of crash reports reported by fuzzers, a simple parser for representing

stack traces originating from programs written in the C language with Python objects,

therefore facilitating further work into studying and devising comparison metrics between

stack traces.

In addition, we contribute an implementation of the full working process of training

a word embedding model with a collection of stack traces, retrieving their vector repre-

sentation, training and optimizing clustering algorithms to maximize the quality of the

produced clusters, and then evaluating the optimized clustering algorithms on various

datasets of stack traces.

Lastly, we contribute a sizeable dataset of stack traces originating from crash reports

generated by the mutation-based fuzzer AFL++ [6], a state-of-the-art fuzzer based on

American Fuzzy Lop (AFL) [7], performed on altered versions of Linux libraries, pro-

grams and utilities, injected with bugs with the use of the LAVA Vulnerability Injection

Framework [8].
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1.1 Thesis Structure

In the Background section we introduce basic concepts and terms that are necessary to

understand the research we present in this thesis.

The Architecture section follows, in which we propose an architecture for collecting

crash reports, training word embedding models to produce vector embeddings for stack

traces and using clustering algorithms to produce label assignments for each dataset of

crash reports.

In the Implementation section, we present our implementation of the described archi-

tecture, with technical details.

We evaluate our work in the Evaluation section, where we examine the quality of our

produced vector embeddings as well as the quality of the label assignments that were

computed by the clustering algorithms.

In the Future Work section, we identify and explain weaknesses with the work pre-

sented in this thesis, and propose ways in which these deficiencies can be overcome. We

also propose some future research directions that could give a better insight into the po-

tential of vector embeddings in crash report prioritization.
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Chapter 2

Background

In this section, background information necessary for the in-depth comprehension of our

work is explained. Key concepts and terms are defined, as well as brief overviews of the

clustering algorithms and metrics used. The goal of this section is to provide the necessary

knowledge for understanding the research we present in this thesis.

2.1 Crash Reports and Stack Traces

A crash occurs when a program or software stops operating properly and forcibly stops

execution. Most crashes can be attributed to bugs in the software source code, which differ

depending on the programming language used. Some crashes, especially memory-related

crashes such as buffer overflows indicate the existence of bugs that can be exploited by

malicious attackers to harm a software system and its users and jeopardize a system’s

confidentiality, integrity or availability.

Crash reports from a program can contain various information about the program,

such as the information about the system the program is running on, the stack trace of the

program at the time of the crash and a snapshot of the memory at the time of the crash.

The purpose of crash reports is to supply the programmers with as much information as

possible about the crash, in order to facilitate a timely response to bugs existent in the

program’s code.

In this thesis, our work is focused on using stack traces extracted from crash reports in

order to create groups of crashes, based on datasets of stack traces that have been encoded

into vector embeddings using word embedding models. The stack traces were collected

from crash reports that were generated by testing a collection of C programs using fuzzers;

a software testing technique we explain below.
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2.1.1 Stack Traces

A stack trace is a report that illustrates a snapshot of the call stack of a program during

execution. It provides a list of the functions or methods that were called before the crash,

along with additional information about memory addresses, line numbers (in the source

code) and parameters that each function was called with.

In a stack trace, function calls are sorted in decreasing order based on how recently

they were called, meaning that at the top of the stack trace sits the function most recently

called, and at the bottom the one least recently called. The full list provided by the stack

trace shows the sequence of nested functions that were called up until the crash occurred.

2.2 Software Testing

In software engineering, software testing is defined as the process of thoroughly examin-

ing and evaluating the behavior and functionality of a software system. This is performed

with the use of manual or automated techniques, which aim to ensure that the application

meets the required expectations and is not prone to erroneous or undefined behavior in

any conditions.

Software testing techniques, as described above, can be divided in two categories, au-

tomated and manual, depending on whether a specialized software tool is used to perform

testing, or the testing is performed by humans that perform manual steps.

2.3 Fuzzing

Fuzzing is an automated software testing technique that is used to discover bugs, errors

and security vulnerabilities in software. It involves a program, called a fuzzer, that repeat-

edly provides input to the program under test, and monitoring the program for unexpected

behavior, such as crashes, memory leaks, hangs, buffer overflows and more. Depending

on the type of fuzzer used, the inputs provided to a program under test can be random, or

generated in a more structured, smarter way, by mutating existing inputs, or generating

data in order to test a larger portion of the program.

Software that is typically tested by fuzzers shares the characteristic that it expects

some form of structured input on behalf of the user (e.g. images, videos, audio files).

Fuzzers can be categorized in different ways, either based on the way that they generate

and feed the inputs to the target program, based on their general awareness of the structure

of the program, or based on their awareness of the intended input structure. [9]
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2.3.1 Input generation strategy

Fuzzers typically fall into one of two categories, depending on the way they generate the

data that is fed to the program under test.

Mutation-based Fuzzers

A mutation-based fuzzer makes use of a pre-existing corpus of test cases during the

fuzzing process. The way these fuzzers generate inputs to test the program is by mu-

tating the pre-existing inputs, to create modified versions that are considered semi-valid.

The term semi-valid input refers to inputs that are not meaningful semantically (e.g. an

image that doesn’t necessarily depict anything to the human eye or that is different to a

valid comprehensible image in a very subtle way), but generally maintain the required

format and structure of the input expected by the target program. These semi-valid in-

puts are used to explore edge cases of the program, that are usually not thoroughly tested

through any other software testing techniques, and uncover unexpected behaviors, the

likes of which are mentioned above.

Generation-based Fuzzers

The main difference between mutation-based fuzzers and generation-based fuzzers is that

generation-based fuzzers generate inputs from scratch, without the need of a pre-existing

corpus of test cases. In cases where a program only expects structured input, the use of

such fuzzers can be quite inefficient, so what can be done is to break a valid input into

pieces (e.g. take apart an image into segments), and fuzz each piece randomly, so that the

generated inputs are accepted by the program under test.

2.3.2 Awareness of target program structure

A very common measure of effectiveness in fuzzers is code coverage, a metric that illus-

trates the percentage of the source code that has been executed. A fuzzing session that

achieved high code coverage tested a bigger portion of its source code, therefore there

is a smaller number of bugs that can remain undetected in the non-executed parts of the

code. Fuzzers that take into account the structure of the target program are able to achieve

higher code coverage, since they can test and uncover bugs that are dependent on this

structure.

Black-box Fuzzers

Black-box fuzzers, as the name suggests, are completely unaware of the target program’s

structure, and generate input as random. Due to this, black-box fuzzers are limited to dis-
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covering surface-level bugs, however, because of their simpler structure, they can execute

a larger number of inputs per second.

White-box Fuzzers

White-box fuzzers are aware of the structure of the program under test, and leverage

this knowledge in order to generate inputs that will test deeper in the source code of the

program, thus achieving higher code coverage than black-box fuzzers. This ability of

white-box fuzzers to test and uncover bugs that are hidden deeper in the program comes

at the cost of time, as they typically take a longer amount of time to perform program

analysis and generate adequate inputs.

Gray-box Fuzzers

Gray-box fuzzers are an attempt to combine elements from both approaches, in order

to achieve the efficiency of black-box fuzzers in addition to the effectiveness and code

coverage of white-box fuzzers. This in-between approach replaces program analysis, the

technique used with white-box fuzzers to retrieve information about the target program’s

structure, with instrumentation, which is defined as the addition of small pieces of code

in the source code or the binary file that can be used to keep track of events such as

function calls and memory usage. Of course, instrumentation adds some performance

overhead, but it comes with the added benefit of actively informing the fuzzer about the

code coverage it has achieved at any time.

2.3.3 Awareness of intended input structure

As previously explained, fuzzers are typically used to test programs that expects input

that abides by some sort of format. An effective fuzzer can generate semi-valid inputs

that abide by the same format so that they are accepted by the program under test, so that

they can investigate the behavior of a program and test edge cases that would otherwise

be difficult to test.

Smart Fuzzers

Smart fuzzers make use of the input structure the program requests, also called the input

model, to more efficiently create semi-valid inputs that can be accepted by the program’s

parser. In many cases however, the input model is difficult to be provided, in cases where

the software that is being tested is proprietary or complex.
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Dumb Fuzzers

Dumb fuzzers, on the other hand, do not explicitly require to know the input model of the

target program. Because of this, dumb fuzzers can be used on a wider variety of programs,

however, since they are not aware of the input model, they generate less semi-valid inputs.

As a result, dumb fuzzers implicitly perform testing on the parser of the target program; if

it exists. An example operation that can be performed by a dumb fuzzer to generate more

inputs, are random bit flips, a technique which is employed by AFL.

2.3.4 AFL

American fuzzy lop (AFL) [7] is a publicly available gray-box fuzzer that tests programs

by employing genetic algorithms. As a gray-box fuzzer, AFL works by injecting the target

programs with instrumentation in order to quantify the code coverage it has achieved and

to generate subsequent inputs, based on a collection of test cases that is given to the fuzzer

before execution. Because of the above, AFL is considered a mutation-based fuzzer.

The algorithm that AFL implements in its operation is described below [10]

1. Load initial test cases into the queue,

2. Take next test case from the queue,

3. Minimize the test case,

4. Mutate the test case, and add the new version to the queue if it leads to greater code

coverage,

5. Repeat from step 2.

For clarity, small explanations about how minimization and mutation is performed are

given.

Minimization

AFL removes blocks from each test case in the queue, and evaluates the code coverage

achieved with the truncated test case. If coverage is not affected, the original test case is

then replaced with its minimized alternative.

Mutation

The mutations performed by AFL do not take into account the input model of the target

program - hence why AFL can be categorized as a dumb fuzzer. There is a series of
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mutations applied to each input by AFL. Mutations applied by AFL include bit flipping,

deleting and duplicating blocks from the test case and splitting and concatenating test

cases from the input queue into new test cases. [11]

2.3.5 AFL++

AFL++ is a community-driven open source tool that started as a fork of AFL, and it in-

corporates various features unseen in AFL to facilitate state-of-the-art fuzzing. Amongst

other additional features, AFL++ incorporates various new mutators than the ones present

in the original version of AFL. More details about the implementation and new features

that AFL++ adds can be found in the original paper, which is cited in this thesis. [6]

2.4 Vector Embeddings

In Machine Learning, the task of applying algorithms to a dataset of records is not always

a straightforward procedure. A main reason for this is the fact that the data that is to be

processed often is complex, making it inefficient and difficult for an algorithm to extract

information about the records and achieve satisfactory performance.

The term vector embeddings refers to the transformation of such complex data (im-

ages, words, strings, or in our case, stacktraces) into a numerical representation where

each record of the dataset corresponds to a vector. This transformation is used in order to

reduce the amount of processing power and memory needed for machine learning mod-

els to be trained and used. Another advantage of transforming complex data into vector

embeddings is that the resulting vectors capture semantic value or hidden relationships

between data points that would otherwise be very difficult to capture using traditional

feature extraction techniques. A very popular example of vector embeddings being used

to capture underlying semantics and relationships in data are word embeddings, which are

widely used in Natural Language Processing (NLP) to perform a variety of tasks, such as

sentiment analysis, translation, grammar correction and more.

The transformation of complex data to vector embeddings is performed with the use

of an embedding model. There are numerous publicly available implementations for cre-

ating such models, which leverage artificial neural networks to automatically perform

feature extraction on the input data, something which previously could only have been

done manually.
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2.4.1 Stack Traces as Vector Embeddings

Our dataset consists of stack traces, which can be considered as complex data structures.

This is because, despite following a specific format (or formats, depending on the lan-

guage), there are textual features, such as function and parameter names, combined with

numerical features, such as addresses or parameter values. Another important property of

stack traces that constitute them as a complex data structure, is the relationship between

stack records in a stack trace. By this, we mean that each stack record in a stack trace is

directly related to its neighbouring stack records, as they indicate which function invoked

the current function, and which function the current function invokes.

Of course, in a machine learning task, capturing this relationship becomes very im-

portant, as stack traces with mostly different stack records may be caused by the same

bug in the source code. Two examples of such cases include: a) Stack traces with mostly

different stack records but similar exit records, which indicate that a bug in the source

code can be reached by different function, but it remains a single bug, and b) Stack traces

with mostly different stack records but very similar entry records, which indicate that a

bug is caused from a specific location in the code but materializes much later.

Capturing this relationship between stack records is crucial in order to improve triag-

ing of bugs, and in order to help software engineers focus their bug-fixing efforts on

specific locations in the code.

2.5 Unsupervised Learning

In the field of Machine Learning, unsupervised learning refers to a category of algorithms

that are used to analyze and learn patterns from unlabelled data. This means that the

input data fed into the algorithm is not tagged, therefore in training, the algorithm cannot

compare its computed result with the real result i.e. label and adjust its parameters to

achieve better performance. An unsupervised learning algorithm of this category attempts

to find underlying structure in the data, and often tries to organize the input data in clusters

or groups, where items in a cluster present some similar underlying features.

Unsupervised learning algorithms are used in a variety of applications, most notably,

natural language processing, recommendation systems and anomaly detection. The rele-

vant to us use of unsupervised learning, clustering is described in detail below.

2.6 Clustering

Clustering is defined as the task of grouping a set of items (called a dataset) into clusters,

such that items in the same cluster are more similar to one another than they are to items
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that belong to other clusters. This grouping of items is performed based on their charac-

teristics or properties, and allows for the identification of latent patterns in the input data

that would otherwise be difficult to distinguish.

In this thesis, our main task is to leverage a dataset of vectors, that correspond to

a collection of stack traces collected from buggy programs, to perform clustering and

examine the members of each stack trace to evaluate the quality of the resulting clusters.

The task of clustering can be performed by various clustering algorithms, with each

one processing and organizing the items in clusters based on different mathematical for-

mulas. In our work, we used the implementations of the below clustering algorithms from

Python’s scikit-learn library. [12]

2.6.1 K-Means Clustering

K-Means is an unsupervised learning algorithm widely used for partitioning a set of items

into clusters. The itemset is partitioned into a total of k clusters, where k is a parameter

given to the algorithm before execution. The algorithm works by trying to create k groups

of equal variance, by minimizing the within-cluster sum of squared Euclidean distances,

a term also called inertia. The K-means algorithm is also known as Lloyd’s algorithm.

Before describing the algorithmic steps of the algorithm, some terminology should be

defined.

Centroids

In mathematics and physics, the centroid (also known as geometric center of a figure) is

the arithmetic mean position of all points that belong to a figure.

The centroid of a figure with a finite number of points is

C =
x1 + x2 + ...+ xn

n
.

Inertia

As explained above, the K-means algorithm aims to create clusters in a way that mini-

mized the inertia, or within-cluster sum of squared Euclidean distances. The inertia of a

cluster is computed using the below formula:

Σ
n
i=0 min

µ j∈C
(||xi −µ j||2)

Algorithmic Steps

The K-means algorithm is split into 4 steps.

21



1. Choose the initial centroids by selecting k samples from the dataset.

2. Assign each sample of the dataset to its nearest centroid, thus populating the cluster.

3. Create new centroids by calculating the mean position of all samples assigned to a

centroid.

4. Loop between step 2 and 3 until centroids move less than a threshold.

Properties of K-Means

K-means is an algorithm that works best when the size of the resulting clusters is even,

and generally does not deal all that well with outliers.

K-means is characterized as a general-purpose clustering algorithm, and can be used

in both small and large datasets. However, K-means suffers from a phenomenon known

as the curse of dimensionality.

The Curse of Dimensionality

Because inertia, the metric that K-means aims to optimize by choosing new centroids at

each iterations, is not a normalized metric, meaning that it is not contained within a lower

and upper bound, its interpretation is entirely based on the use case. Generally, lower

inertia values are better and an inertia value of zero is optimal.

However, when dealing with data that is depicted with many features, which means

that K-means has to optimize the clusters in a high-dimensional space, Euclidean dis-

tances are inflated by the existence of so many features. In addition, in the domain of

machine learning, a high-dimensional dataset needs to contain a sufficiently large number

of records, such that there is enough training data for the algorithm to be able to generalize

for any unseen inputs.

Thus, a technique known as dimensionality reduction is very commonly applied be-

fore the clustering takes place to mitigate the impact of this problem. Dimensionality

reduction will be explained below, as we make use of it in our thesis for various purposes.

2.6.2 Hierarchical Clustering

Hierarchical Clustering is a clustering method that works by creating a "hierarchy" of

clusters. This means that clusters are created by the consecutive merging or splitting of

clusters, depending on the method used. There are two approaches to building clusters

using this method.
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Divisive Clustering

Divisive clustering, as the name implies, is a top-down approach that involves clustering

the data points in a collection by initially placing them all in the same cluster, then re-

cursively splitting the cluster into two, until the number of clusters, which is given as a

parameter to the algorithm, has been reached.

Agglomerative Clustering

Agglomerative clustering, is a bottom-up approach where initially, each data point is con-

sidered its own cluster, and clusters are merged successively until the desired number of

clusters is met.

Our work makes use of the agglomerative clustering approach for the grouping of the

stack traces.

Linkage Criteria

From the above definitions of divisive and agglomerative clustering, it is clear that clusters

are split or merged repeatedly, using some linkage criterion. There are numerous linkage

criteria, the most notable of which are briefly explained below. [13]

• Ward Linkage: Minimizes the sum of squared differences within all clusters. Aims

to reduce the within-cluster variance.

|A| · |B|
|A∪B|

∥µA −µB∥2 = ∑
x∈A∪B

∥x−µA∪B∥2 − ∑
x∈A

∥x−µA∥2 − ∑
x∈B

∥x−µB∥2

• Complete Linkage: Minimizes the maximum distance between data points in two

clusters. In agglomerative clustering, this means that the pair clusters with the

furthest observations that have the minimum distance are combined.

max
a∈A,b∈B

d(a,b)

• Average Linkage: Minimizes the average distance between data points in two clus-

ters. In agglomerative clustering, this means that the pair clusters with the minimum

average distance between any two observations are combined.
1

|A| · |B| ∑
a∈A

∑
b∈B

d(a,b)

• Single Linkage: Minimizes the minimum distance between data points in two clus-

ters. In agglomerative clustering, this means that the pair clusters with the closest

observations that have the minimum distance are combined.

min
a∈A,b∈B

d(a,b)
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Each cluster linkage criterion has its advantages and disadvantages, but in our case, ex-

perimenting with optimization will determine the the best criterion.

Properties of Hierarchical Clustering

Hierarchical clustering algorithms are scalable, meaning that they could be used for large

datasets as well as when there are a large number of clusters to be produced. Agglomer-

ative clustering can also be used with non-Euclidean distance metrics, which makes the

algorithm useful in a wider variety of cases.

2.6.3 DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [14] is a cluster-

ing algorithm that works by separating areas of high density using areas of lower density.

As it groups together observations that are close together in space, it is able to label distant

observations as outliers.

DBSCAN Algorithm

There are parameters that control how the algorithm perceives dense and sparse areas,

namely epsilon and minimum samples. Epsilon controls the maximum distance between

two observations that can be considered neighbors, and minimum samples controls the

number of observations that need to be in the neighborhood of an observation for the

observation to be considered a core point.

Starting with an arbitrary observation from the collection, the neighborhood of the the

observation is computed using a distance metric, which is also a parameter given to the

algorithm. If the neighborhood contains enough observations to be considered dense, it

is considered a cluster, else the selected observation is labelled as noise. An observation

that is sufficiently close to enough neighbors is considered a core sample.

A step-by-step explanation of the algorithm is explained below.

1. Find all core points and their neighbors in a distance dictated by epsilon.

2. Assign unassigned core points to new clusters.

3. For each core point, recursively find all its neighboring points and add them to the

same cluster.

4. Iterate through the remaining points in the dataset, and add them to clusters, if

possible. The remaining points are considered noise.
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Properties of DBSCAN

Because of the way DBSCAN produces clusters by separating high-density areas, it has

the ability to produce clusters of any shape, which in our case, is really important, since

the shape that our clusters of stack trace embeddings will resemble is unknown.

The additional ability of DBSCAN to categorize points as outliers is also quite promis-

ing, because when working with stack traces, it is entirely possible that a bug is triggered

only once, therefore, there is only one stack trace that originated from that bug, therefore,

we can avoid placing that observation in a cluster where its distance with other members

would be too large. As we will see in the Architecture and Implementation chapters, we

performed hyper-parameter optimization on the parameters of DBSCAN to produce the

best possible clustering results.

2.6.4 OPTICS

Ordering Points To Identify the Clustering Structure (OPTICS) [15], like DBSCAN, is a

clustering algorithm that works using density. It addresses one of the issues that DBSCAN

suffers from, which is its difficulty in finding clusters in areas where the density of the

points varies. It is considered a generalization of the DBSCAN algorithm, and replaces

the epsilon parameter with a range of values. The algorithm makes use of a reachability

graph, to which the ability to create clusters in areas of varying density is attributed.

2.6.5 Evaluating Clustering Algorithms

The evaluation of clustering algorithms can be harder than evaluating the performance of

a supervised learning algorithm, since there is not always a ground truth dataset that can

be compared to the computed clusters. Another obstacle that makes evaluation difficult is

the fact that even with a ground truth dataset that contains the optimal labels, an evaluation

metric has to somehow avoid comparing the numerical values of the labels assigned by

the clustering algorithm, as this will lead to an evaluation that is not representative of the

ability of the algorithm to separate the data into clusters. [16] [17]

There are two categories of clustering evaluation metrics: those that compare the re-

sulting labels with a collection of ground truth labels, called external evaluation metrics,

and those that evaluate the quality of the clusters using internal measures, called internal

evaluation metrics.

External Evaluation Metrics

In external evaluation, the resulting clusters are compared to pre-existing data that was not

used for clustering. The labels assigned to this data were assigned manually, or through
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some valid classification/labelling technique that is correct, and serve as ground-truth

labels that accurately reflect how the produced clusters should look.

Several such metrics exist, some of which are discussed below:

• Rand index: The Rand index [18] of a label assignment computes how similar the

label assignment is to a ground truth label assignment.

If C is a ground truth label assignment, and K the produced clustering, with a and

b defined as:

– a: The number of pairs of observations that are in the same cluster in C and in

the same cluster in K

– b: The number of pairs of observations that are in different sets in C and in

different sets in K

The rand index (RI) can then be calculated using the below formula:

RI =
a+b

C
nsamples
2

Where C
nsamples
2 is the total number of possible pairs in the dataset.

Rand index ranges from 0, which indicates random clusters, to 1, which indicates

identical clusterings to the ground truth data.

• Adjusted Rand Index: Rand index does not guarantee that a random assignment

of labels will get a score close to 0, a deficiency which Adjusted Rand Index (ARI)

aims to fix. [19]

The adjusted rand index of a clustering can be computed as follows:

ARI =
RI −E[RI]

max(RI)−E[RI]

Adjusted rand index ranges from -1 to 1, where 0 indicates random clustering, 1 in-

dicates perfect clustering, and -1 indicates clustering performance worse than ran-

dom.

Internal Evaluation Metrics

In internal evaluation, the produced clustering is evaluated based on the data that was

clustered itself, without the need for comparison against a ground-truth labelling. Such

measures typically include scoring clusters based on a low inter-class similarity and high

intra-class similarity. A weakness of such metrics is that they don’t exactly return a rep-

resentative score for how accurately data is labelled using a clustering algorithm.
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As in our work we make use of a ground-truth assignment to evaluate our clusters, we

only make use of one internal evaluation metric, silhouette coefficient. [20]

The silhouette coefficient for a labelling is a result of two scores1:

• a: The mean distance between an observation and all other observation in the same

cluster.

• b: The mean distance between an observation and all other observation in the near-

est cluster.

The silhouette coefficient for an observation can be calculated using the below formula:

s =
b−a

max(a,b)

The silhouette coefficient of a whole labelling is the mean of the silhouette coefficient for

each sample.

2.7 Dimensionality Reduction

Dimensionality reduction is defined as the transformation of data from a high-dimensional

to a low-dimensional space, in a way that the low-dimensional product retains some of

the information present in the original data. It is often perform to combat the difficulties

of working with high-dimensional data, a phenomenon known as the curse of dimension-

ality. [21] [22]

Two applications of dimensionality reduction, which we also utilize in our work are

data visualization and cluster analysis or clustering.

2.7.1 Principal Component Analysis

Principal component analysis [23], or PCA in short, is a dimensionality reduction tech-

nique used to reduce the dimensionality of a given dataset. PCA aims to retain as many

properties about the dataset as possible. PCA works by transforming the data into a coor-

dinate system of the desired dimensions, which are a parameter.

PCA is commonly used to enable the visualization of a dataset by reducing its dimen-

sions to 2 or 3, making the plotting of the data points in the space possible. By visualizing

the data in the space, it is possible to identify possible clusters that are formed in the data.

As a dimensionality reduction technique, PCA can also be used as a preprocessing

step before using a clustering algorithm on the dataset. PCA works by identifying a set

1The silhouette coefficient can be calculated using any distance metric.
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of orthogonal vectors, which are called principal components, that explain the maximum

possible amount of variance in the dataset. Each principal component is successively

selected in the direction of the data with the largest variance.

2.8 Similarity Metrics

Similarity metrics in this thesis were used primarily for purposes of evaluating the pro-

duced vector embeddings. As stack traces before their encoding into vector embeddings

were in plain text format, we made use of metrics for both string similarity, as well as

vector similarity.

2.8.1 Levenshtein Distance

Levenshtein distance [24], also referred to as edit distance, is a metric used for measuring

the difference between two strings. The Levenshtein distance between two strings is the

number of single-character edits that are needed to transform one string into the other.

In our work, we use the Levenshtein ratio [25], which is the normalized Levenshtein

distance of two strings, to make comparisons between pairs of stack traces in their text for-

mat, before they are encoded into vector embeddings using our trained embedding model.

Levenshtein ratio is bounded between [0,1], where 0 indicates a pair of two completely

different strings and 1 indicates a pair of identical strings.

2.8.2 Cosine Similarity

Cosine similarity is a similarity measure for comparing pairs of vectors. It can be com-

puted using the following formula:

cosθ =
A ·B

∥A∥∥B∥
Where ∥A∥, ∥B∥ is the magnitude of vector A, B respectively, and A ·B is the dot product

of vectors A and B.

2.9 Error Metrics

In our work, error metrics were used to evaluate the quality of the produced vector em-

beddings. Specifically, for each pair of stack traces, various error metrics were computed

to compare the cosine similarity of the pair to the Levenshtein distance of the pair.
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2.9.1 Mean Absolute Error

Mean Absolute Error (MAE) is calculated as the sum of absolute errors divided by the

size of the sample.

MAE =
∑

n
i=1 |yi − xi|

n
=

∑
n
i=1 |ei|

n
.

2.9.2 Mean Square Error

Mean Squared Error (MSE) is the average squared difference between the predicted val-

ues and the real values.

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2
.

2.9.3 Root Mean Squared Error

Root Mean Squared Error (RMSE) is defined as the square root of the mean square error.

RMSE =

√
∑

n
i=1(Yi − Ŷi)2

n
.

2.9.4 Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE), also known as Mean Absolute Percentage

Deviation (MAPD), is used to express the accuracy of a prediction using a ratio. It is

calculated using the following formula:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣Ai −Fi

Ai

∣∣∣∣
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Chapter 3

Architecture

The Architecture section first lists the basic tools and technologies used for our work,

specifically regarding our fuzzer of choice and the word embedding library used, and the

reasoning behind our choices. After that, a high-level overview of our working pipeline is

discussed, where we explain our working process through all stages, by including as few

implementation-specific details as possible.

3.1 Basic Tools

3.1.1 The use of AFL++ for fuzzing

In this thesis, AFL++ was our fuzzer of choice for the process of collecting the crash

reports from a set of target programs. The reason for this choice is that AFL++ integrates

features that stem from recent notable fuzzing research.

In addition to the implementation of some of the latest research, AFL++ was also

chosen because of its ease of use, and it allowed us to fuzz our target programs with

relative ease with regards to set-up and preparation. As a mutation-based fuzzer however,

AFL++ does require a pre-existing set of test cases, a requirement that we make sure to

satisfy before all fuzzing sessions.

3.1.2 The use of the FastText library for vector embeddings

FastText is a Python library, developed by Facebook, that can be utilized for creating word

embeddings. The main idea behind fastText is to represent words as bags of character n-

grams1, which allows fastText word embedding models to capture subword information.

FastText vector embedding models have the additional advantage of being able to produce

1character n-gram: a series of characters of length n. [26]
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vector embeddings for unseen words, as they don’t produce vector embeddings for each

specific word, but rather for n-grams, as described above. [27] [28] [29]

Why fastText?

Although stack traces are represented by strings in our approach, they are not words

in their entirety; They contain information such as address of the invoked function and

source code locations which are hexadecimal and decimal numbers respectively. How-

ever, because of fastText’s ability to capture subword information and produce vector

embeddings for out-of-vocabulary data, we deemed fastText as an adequate way to train

our vector embedding models to produce vectors even for unseen stack traces.

Taking into account the ability of fastText models to create embeddings for unseen

stack traces, we performed a train-test split on our stack traces before training a fastText

skipgram model. More details will be given on how our model was specifically trained in

the Implementation section.

3.2 High-level Overview of Pipeline

Figure 3.1: Schematic overview of the 5 pipeline stages

The work we performed can be separated into 5 distinct phases.

First, we had to create a collection of crash reports, by fuzzing a set of programs to

discover vulnerabilities.

After the dataset of crash reports is collected, we implemented tools that can retrieve

the stack trace that corresponds to each crash report, thus creating a dataset of stack traces,

which is the dataset actually used for the rest of our work.

Then, we perform preprocessing on the stack trace dataset, by formatting the stack

traces in such a way that a corpus appropriate for training our vector embedding model is

created. In parallel, we parse the stack traces into object representations, and implement

methods for stack trace object comparison.

Following that, we use our trained vector embedding model to produce vector em-

bedding representations for each stack trace in the dataset, and evaluate the quality of the
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embeddings by comparing stack trace similarity metrics between object representations

and vector representations, and perform clustering on the dataset of stack trace vector

embeddings using a variety of clustering algorithms, and optimize the algorithms using a

ground-truth assignment dataset.

In the last phase, we use other ground-truth assignment datasets in order to evaluate the

performance of the clustering algorithms, as well as the quality of the resulting clusters

and to which extent they are able to provide a solution to the problem of grouping the

stack traces based on the bug that caused them.

3.2.1 Creating a collection of crash reports

Figure 3.2: Schematic overview of the collection phase

In this first phase of our work, the goal is to produce a sizeable dataset of crash reports

that can be later leveraged to produce stack traces. The first step in this phase was to

identify a set of programs that are going to be the fuzzing targets, as well as choosing a

fuzzer.

Although most programs would be satisfactory as fuzzing targets, for the specific

purposes of maximizing the size of the dataset of produced crash reports, it is preferable

to choose target programs that are known to contain vulnerabilities, which is also the

approach we followed in our work.

As with target programs, there are no restrictions regarding the fuzzer that is selected
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for fuzzing the targets, however, considering our choice of vulnerable target programs,

mutation-based fuzzers can be very useful in speeding up the bug finding process, es-

pecially if a collection of inputs that trigger the bugs is available. This way, these test

inputs can be supplied to the fuzzer, and the fuzzer can generate mutations that could test

the buggy code faster. In our work, we selected the mutation-based fuzzer AFL++ for

fuzzing, to take advantage of the way mutation-based fuzzers work.

3.2.2 Extracting stack traces from crash reports

Figure 3.3: Schematic overview of the stack trace extraction phase

In order to create a dataset of stack traces, we first needed to leverage the generated crash

reports in order to retrieve stack traces for each crash. This can be done in various ways,

including running the target programs against the crashing inputs that are recorded by

fuzzers, or retrieving the stack traces directly from the fuzzer-generated core dumps.

In our specific case, AFL++ required a redirection of core dumps in order to function,

therefore we were not able to directly generate a collection of core dumps through fuzzing.

For this reason, we opted to make use of the generated crashing inputs that AFL++ stores

in the crashes/ directory, feeding them into the target program and retrieving each stack

trace individually.

It is important to store stack traces from each source in different files, or use a labelling

scheme to clearly separate stack traces based on the programs they were extracted from,

because during clustering, no stack traces from two different sources should be present
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in the same dataset fed into the clustering algorithm. Doing so defeats the purpose of

grouping the stack traces, as in a real-life scenario, programmers take on the task of

prioritization for a single program at a time.

3.2.3 Pre-processing stack traces and creating the train corpus

Figure 3.4: Schematic overview of the third phase

At the end of the previous phase, we were left with a collection of datasets of stack traces,

each one from a different fuzzed program. In order to produce vector embeddings for each

stack trace individually, we first need to create a training corpus for the vector embedding

model, in the appropriate format. For fastText, the requested format for train corpora is

a .txt file containing all information in plain text, therefore we need to pre-process the

collection of stack traces.

For pre-processing, we take all datasets of stack traces, rather than one dataset at a

time, and perform a stratified train-test split. It is recommended to perform a stratified

train-test split since it is very likely that the number of stack traces collected per program

is not equal. With the use of a stratified train-test split, the distribution of stack traces per

source program in the original dataset is retained in the resulting train and test datasets,

thus avoiding the phenomenon of unbalanced datasets and any other complications that

may arise due to randomized selection. We then flatten the train dataset, to create a large

single string that contains all stack traces for training, to abide by fastText’s requested

corpus format, and save it in a .txt file.

In parallel, we parse stack traces to create their object representations. This is impor-

tant, as we will implement stack trace object comparison methods to later evaluate the
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quality of the embeddings that the embedding model will produce. It should be noted

that we also create an adjacent train-test split for these objects, that perfectly matches the

above train-test split to facilitate the evaluation of the embeddings.

3.2.4 Embedding production and cluster optimization

Figure 3.5: Schematic overview of the clustering and optimization phase

This phase starts with the training of the vector embedding model using the previously

created training corpus of stack traces. The trained model is then used to compute stack

trace vector embeddings for each stack trace in our dataset, thus creating a dataset of

embeddings that belonged to the training set, and a dataset of embeddings that belonged

to the test dataset.

The produced embeddings are then evaluated against a reliable stack trace comparison

metric. Specifically, we compare the performance of the cosine similarity for a pair of

stack trace embeddings to the Levenshtein ratio for the same pair of stack trace objects,

for all pairs. This way, we are able to illustrate the difference between the two metrics

using a variety of error metrics, such as Mean Absolute Error and Root Mean Square

Error. Any metric can be used for comparison to the cosine similarity of the stack trace

embeddings, as long as it can be applied to stack traces.

Upon successful evaluation of the produced vector embeddings, we proceeded to clus-

tering. In our work, for optimizing various clustering algorithms, we make use of a spe-

cific dataset of stack traces for which the ground-truth label assignment is available, in or-

der to use external cluster evaluation metrics, such as the adjusted rand score. We perform
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hyper-parameter optimization for all selected clustering algorithms in order to maximize

the label assignment’s adjusted rand score. This phase concludes with the identification

of the best hyper-parameters for each clustering algorithm.

3.2.5 Evaluation of produced clusters

Figure 3.6: Schematic overview of the evaluation phase

In this last stage of our pipeline, we aim to use the optimized clustering algorithms to

perform grouping of stack traces from all target programs and evaluate the quality of the

produced clusters.

For each target program, we feed the stack trace vector embeddings produced by our

model into an optimized clustering algorithm and produce a label assignment. In the case

that for this target program there is no ground-truth label assignment available, we are

limited to evaluating the quality of the clusters using internal cluster evaluation metrics,

like the silhouette score. On the other hand, if the ground-truth label assignment is avail-

able, we are able to evaluate the clusters using a more reliable metric that better explains

how well the stack traces were separated.

In our case, ground-truth label assignments were not available for any target programs,

therefore, we manually created our own ground-truth label assignments. Limitations such

as the size of the program (in lines of code), as well as the number of stack traces, rendered

it difficult for us to manually create ground-truth assignments for all target programs, so

in our work we provide a limited number of ground-truth assignments for evaluation.
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Chapter 4

Implementation

In the Implementation section, we present the implementation details of our work from

start to finish. We go in depth about implementation choices we made regarding the

collection of the stack traces, the fuzzing sessions, the pre-processing of the stack traces

and training of the model, as well as the clustering algorithms used.

Our goal in this section is to provide a greater understanding about the specifics of our

working process, by explaining the detailed steps we took, and certain observations that

impacted our choices.

4.1 Implementation of Pipeline

As described in the Architecture section, our work can be separated into 5 phases. First

comes the phase of data collection, where we aim to collect crash reports by fuzzing a set

of programs to uncover vulnerabilities. Then, we implement and use tools that retrieve

the stack traces from each of these crashes and store them in separate text files depending

on the target program they originated from. The next phase includes the pre-processing

of the stack trace dataset, and the creation of the training corpus for the vector embedding

model. After that, we compute vector embeddings from the stack traces, and training

and optimize various clustering algorithms. Lastly, we evaluate the performance of the

clustering algorithms using some manually labelled ground-truth datasets.

The evaluation of the performance of the clustering algorithms is discussed in detail

in the Evaluation section.

4.2 Creating a collection of crash reports

In this first phase, we aimed to collect as many crash reports as possible by fuzzing various

programs whose source code was accessible. This task was not trivial, since our goal
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was to create a sizeable dataset of crash reports for each program, therefore, fuzzing any

ordinary program could have not sufficed, as publicly released versions of open-source

programs are typically well-maintained and collecting a large number of crash reports

would have been a very time-consuming effort.

For this reason, we carefully selected target programs that were either: a) intentionally

buggy, or b) injected with bugs. This choice was made to ensure that by fuzzing these

targets we would generate a sufficient number of crash reports in a considerably smaller

amount of time, and, provided that the programs were injected with multiple bugs, we

would discover crash reports stemming from a variety of bugs rather than a collection of

crash reports that all are caused by a very small number of bugs in the code.

4.2.1 Fuzzgoat

Fuzzgoat [30] is a buggy C implementation of a JSON parser adapted from udp/json-

parser, that has been deliberately written with 4 memory corruption bugs in order to

serve as a benchmark for fuzzers and other software testing tools. Fuzzgoat also supplies a

directory that contains input files for triggering each bug, which is very useful for fuzzing,

as they can be used to generate even more test cases that will result in crashes.

The 4 memory corruption bugs are located in the fuzzgoat.c source file, and are

commented in the source code for clarity. The comments and few surrounding lines of

code for each bug are shown below. The comments for each bug explain what type of bug

it is, as well as the input file that should be supplied to the program on execution in order

to trigger the bug.

121 if (value ->u.array.length == 0)

122 {

123

124 /* ***************************************************************

125 WARNING: Fuzzgoat Vulnerability

126

127 The line of code below frees the memory block referenced by *top

if

128 the length of a JSON array is 0. The program attempts to use

that memory

129 block later in the program.

130

131 Diff - Added: free(*top);

132 Payload - An empty JSON array: []

133 Input File - emptyArray

134 Triggers - Use after free in json_value_free ()

135 *************************************************************** */
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136

137 free(*top);

138 /****** END vulnerable code *********************************** */

139

140 break;

141 }

Listing 4.1: Bug 1 - Use-after-free bug triggered by test case emptyArray

237 case json_object:

238

239 if (!value ->u.object.length)

240 {

241 settings ->mem_free (value ->u.object.values , settings ->

user_data);

242 break;

243 }

244

245 /* **************************************************************

246 WARNING: Fuzzgoat Vulnerability

247

248 The line of code below incorrectly decrements the value of

249 value ->u.object.length , causing an invalid read when attempting

to free the

250 memory space in the if-statement above.

251

252 Diff - [--value ->u.object.length] --> [value ->u.object.

length --]

253 Payload - Any valid JSON object : {"":0}

254 Input File - validObject

255 Triggers - Invalid free in the above if-statement

256 *************************************************************** */

257

258 value = value ->u.object.values [value ->u.object.length --].

value;

259 /****** END vulnerable code *********************************** */

260

261 continue;

Listing 4.2: Bug 2 - Invalid free bug triggered by test case validObject

263 case json_string:

264

265 /* **************************************************************
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266 WARNING: Fuzzgoat Vulnerability

267

268 The code below decrements the pointer to the JSON string if the

string

269 is empty. After decrementing , the program tries to call mem_free

on the

270 pointer , which no longer references the JSON string.

271

272 Diff - Added: if (!value ->u.string.length) value ->u.string

.ptr --;

273 Payload - An empty JSON string : ""

274 Input File - emptyString

275 Triggers - Invalid free on decremented value ->u.string.ptr

276 *************************************************************** */

277

278 if (!value ->u.string.length){

279 value ->u.string.ptr --;

280 }

281 /****** END vulnerable code ************************************ */

282

283

284 /* ****************************************************************

285 WARNING: Fuzzgoat Vulnerability

286

287 The code below creates and dereferences a NULL pointer if the

string

288 is of length one.

289

290 Diff - Check for one byte string - create and dereference

a NULL pointer

291 Payload - A JSON string of length one : "A"

292 Input File - oneByteString

293 Triggers - NULL pointer dereference

294 *****************************************************************

*/

295

296 if (value ->u.string.length == 1) {

297 char *null_pointer = NULL;

298 printf ("%d", *null_pointer);

299 }

300 /****** END vulnerable code **************************************

*/

301

302 settings ->mem_free (value ->u.string.ptr , settings ->user_data);

303 break;
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Listing 4.3: Bugs 3 and 4 - Invalid free bugs triggered by test cases emptyString and

oneByteString respectively

The full source code of fuzzgoat is available on GitHub, and is referenced by our work.

Because of fuzzgoat’s simplicity, both in how it is smaller than the other fuzzed

targets and in how the bugs are clearly commented and distinguishable, the crash reports

that were produced from this fuzzing session were manually assigned labels by us and

served the purpose of a ground-truth assignment, primarily for clustering optimization

purposes.

4.2.2 The Rode0day competition

The aforementioned fuzzgoat program, although a good starting point for finding pos-

sible fuzzing targets that would result in the generation of crash reports, was not enough,

as we wanted to explore the quality of the clusters using stack traces from many different

target programs.

This prompted us to look into programs that, rather than being written with bugs

intentionally, were injected with bugs, thus counting a larger number of bugs present in

the source code, that would in return lead to more successful fuzzing sessions.

Rode0day [31] is a competition ran in collaboration between MIT, the MIT Lincoln

Laboratory, and NYU. Its purpose is to assist in the evaluation of different bug finding

techniques, including fuzzing, by regularly supplying the competitors with a dataset of

programs injected with bugs using the LAVA automated vulnerability injection frame-

work [32].

This competition, which ran about once per month beginning from July 2018 to May

2020, worked by releasing a set of programs, either in binary form or with a given source

code, which had been injected with bugs using LAVA. Teams could then perform program

analysis to discover bugs using any bug finding technique they preferred, and at the end

of the competition, results would be released that showed the score of each team, as well

as the percentage of the discovered bugs and which bugs they found first, if any.

In our work, we downloaded an archive of the all rode0day competitions that had

released the relevant dataset, other than the Rode0day-Beta competition. In detail, the

downloaded competition datasets were the following:

• 18.07 (July 2018)

• 18.09 (September 2018)

• 18.10 (October 2018)
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• 18.11 (November 2018)

• 19.01 (January 2019)

• 19.02 (February 2019)

• 19.03 (March 2019)

• 19.05 (May 2019)

• 19.06 (June 2019)

• 19.07 (July 2019)

• 19.09 (September 2019)

• 19.10 (October 2019)

We then investigated the programs that were released with each dataset, and decided to

select only the programs whose source code was provided. This choice was made be-

cause we want to take advantage of AFL++’s instrumentation capabilities to optimize our

fuzzing sessions, maximizing the code coverage achieved with each session.

Not all programs whose source code was available were selected, as there were some

programs that presented some difficulties in compilation due to a mismatch in libraries, or

other problems that rose during the fuzzing process. Although we attempted to resolve all

issues with libraries, there were some target programs whose issues could not be resolved.

We present a list of all fuzzed programs that were sourced from rode0day competitions,

as well as the competition they were sourced from.

• audiofileS, from competition 19.06

• fileS3, from competition 19.09

• fileS4, from competition 19.10

• jpegS2, from competition 19.05

Since these datasets were released after the end of the competitions, they were also sup-

plied with inputs that directly triggered the injected bugs. These inputs were placed in the

directory solutions/ contained in each competition archive.

In general, the format of each competition dataset is as follows:
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The main directory for each competition generally contains 4 common directories: download/,

solutions/, source/, and uploads/. For our work, the two relevant directories are

download/, and source/.

The download/ directory contains one subdirectory for each program included in the

competition dataset. If the name of the directory includes the letter ’S’, then the source

code is included. For example, the directory fileB2/ does not include the source code,

whereas the directory fileS2/ does. This is important as we only selected programs

whose source code was available, so we could leverage the instrumentation abilities of

AFL++.

Inside directories that contain the source code, there are 3 common subdirectories:

built/, inputs/ and src/. The built/ directory contains a compiled version of the

source code. The inputs/ directory contains a small collection of inputs, that are used

as the test corpus for the first of two fuzzing sessions for each target program. Lastly, the

src/ directory contains the source code of the program, and a Makefile to compile it.

Regarding fuzzing, we ran two fuzzing sessions on each of the above programs. The first

fuzzing session was performed using test inputs that we produced, or that were present

in the original release of the competition, and the second fuzzing session was performed

using the solution inputs. This was done to ensure that even if our first fuzzing session was

unsuccessful and produced no crash reports, the second fuzzing session would guarantee

the generation of some crash reports, thus populating our dataset.

4.2.3 The LAVA-1 and LAVA-M datasets

In the original publication of LAVA, the authors create two corpora of programs injected

with bugs, in order to evaluate the ability of the fuzzers to uncover these bugs. These two

corpora are called LAVA-1 and LAVA-M, and are available on Dolan-Gavitt’s website.

[33]

LAVA-1 contains 69 versions of the file(1) Linux utility injected with one bug each,

whereas LAVA-M contains 4 programs from the Linux coreutils suite: base64, uniq,

md5sum and who. There exists a backtrace/ subdirectory for each of these programs that

contains the stack traces that correspond to each bug, extracted from a core dump with

the use of gdb’s [34] backtrace command.

As these datasets already contain the stack traces for each bug, we simply parsed

these stack traces and added them to our dataset. This was performed using a simple tool

we implemented in Python, parse_backtraces.py. This short program receives the

directory where the stack traces are located and the output JSON file name as command

line parameters, and parses the stack trace files in the specified directory to retrieve the
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stack traces, saving them in a JSON file with the specified name.

A usage example of parse_backtraces.py is provided below.

1 $ python3 parse_backtraces.py <path_to_backtraces > <

output_file_name >

4.2.4 Preparing and starting a fuzzing session

For each fuzzing target, we create a directory inputs/ and outputs/. The input directory

is used for storing the initial test cases from which the fuzzer will generate new test cases,

and the output directory stores information generated by the fuzzing session, such as crash

reports and hangs. Hangs are defined as states where the program becomes unresponsive,

and do not concern our work in this thesis.

Since we chose fuzzing targets whose source code is available, we leverage compile-

time instrumentation to the binary that will be fuzzed by compiling the source code using

an alternative version of the gcc compiler provided by AFL++, called afl-gcc. In the

case the source code is compiled with the use of a Makefile, we set the default C com-

piler to afl-gcc by changing the value of the environment variable CC, and then executing

make.

In case the target program is compiled using a Makefile, instrumentation can be added

using the following command, in the same directory as the Makefile:

1 $ CC=afl -gcc make

If the target program is compiled without a Makefile, simply compile the program using

the afl-gcc compiler rather than the gcc compiler, as shown below:

1 $ afl -gcc [compiler_flags] <source_file >

Once the target program has been compiled into an executable, we started the fuzzing

session using the afl-fuzz command. The -i flag is used for specifying the test input

corpus directory, and the -o flag is used for specifying the output directory. In case the

program takes a file as input, the -f flag is used for specifying the filename that test cases

will assume upon starting the fuzzing session.

An example instruction for starting a fuzzing session on a binary named jpeg that

takes a JPEG image as a command line argument is shown below. The relative location of

the test corpus is inputs/ and the relative location of the output directory is outputs/.

The instrumented binary is located in the relative directory src/src/jpeg:
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1 $ afl -fuzz -i inputs/ -o outputs/ -f image.jpeg src/src/jpeg

image.jpeg

For the fuzzgoat program, the initial test corpus is comprised of the 4 JSON files pro-

vided in the GitHub repository, that trigger each of the 4 bugs present in the code.

For each of the programs found in the rode0day competition, we performed two

fuzzing sessions. In the first fuzzing session, we used the simple test cases that are

located in the <competition_name>/download/<program_name>/inputs/ directory,

whereas for the second fuzzing session we use the solution test inputs, provided in the

<competition_name>/solutions/<program_name>/ directory. As explained previ-

ously, fuzzing with the solution test corpus enables us to ensure crash reports will be

generated for each of the selected programs.

4.3 Extracting stack traces from crash reports

Now that we have collected a dataset of crash reports for each fuzzed program, we need

to somehow extract the information that is useful to us; the stack traces. This step does

not refer to the stack traces extracted from the LAVA-1 and LAVA-M corpora. We imple-

mented a tool for extraction of stack traces given a crashing input, called gdbscript.py.

4.3.1 gdbscript

gdbscript.py is the tool we implemented for extracting the stack trace from a crashing

input, as collected in our crash reports. What gdbscript.py does in short, is that it

is executed through the gdb debugger, and iterates over the directory that contains the

crash reports, executing the program with each crashing input that it finds. When the

program crashes, gdbscript.py extracts the stack trace using the backtrace command,

and stores them in .txt and .json files for later processing.

In more detail, gdbscript.py takes 2 parameters. The first parameter is a rela-

tive location of the directory where the crashing inputs, generated by the fuzzer are lo-

cated, and the second parameter is the prefix of each output file that will be generated by

gdbscript.py. The script then retrieves a list of all crashing input files located in the

directory, and removes the README.txt file that AFL++ adds.

The program then uses the function create_directories() to create the directo-

ries where the generated datasets will be placed. The function log_crash_filenames()

creates a text file and an adjacent JSON file that contain the filenames of the crashing

inputs. This function is primarily used for making sure that all crashing inputs were

45



ran against the target program. The bulk of the work is performed through the func-

tion execute_gdb_stacktraces(), which creates the command that will be executed

through gdb by concatenating gdb’s r command with each crashing input filename. The

commands are executed, and appended into a list for logging purposes. After the program

crashes, the script executes the bt command, short for backtrace, which returns the stack

trace of the crashed program. The returned stack trace is appended to a list of stack traces.

The generated outputs of the gdbscript.py Python program are as follows:

Consider output_prefix to be the name of the second parameter the program takes, that

specifies the prefix added to each output. The main output directory of the program is

<output_prefix>_information/, which contains two subdirectories: json/, and txt.

The two directories contain the exact same information, just in different file formats, so

we will explain only the json/ directory.

Inside the json/ directory 4 files will be generated:

• Prefix commands.json: Contains the gdb commands that the script executed for

running the target program against the crashing inputs.

• Prefix filenames.json: Contains the filenames of the crashing inputs, as found in

the outputs/default/crashes directory created by AFL++.

• Prefix stacktraces.json: Contains a dump of all retrieved stack traces in no

specific format. The contents of this file are not organized.

• Prefix org_stacktraces.json: Contains an organized JSON array of all stack

traces retrieved in a 2D array format. The file contains an array whose elements are

retrieved stack traces, where each retrieved stack trace is an array of stack records,

thus creating this 2-dimensional array. This file is used in the following stages of

our implementation.

How to use gdbscript.py

Usage of gdbscript.py is described in this small section. First, the script needs to

be placed in the same directory as the outputs/ directory generated by AFL++, as it

makes use of relative locations to access the crashing inputs. In addition to that, since the

program is executed through gdb, it cannot take command line parameters. To specify the

relative address of the crashing input directory, as well as the prefix added to all outputs

generated by the script, we needed to manually change the following lines1, located in the

main() function:

1The above lines were changed to fit each fuzzed program’s individual case.
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175 args = list()

176 args.append("outputs/default/crashes/")

177 args.append("<prefix >")

Listing 4.4: Setting the relative location of the crashing inputs directory and the output

prefix

To execute the script, we first needed to run gdb with the target program’s compiled and

instrumented executable, as shown below:

1 $ gdb ./<path_to_executable >

Then, in gdb’s interface, execute the following command:

1 (gdb) source gdbscript.py

4.4 Preprocessing stack traces and creating the train cor-
pus

With the completion of the previous phase, we now have a collection of files that contain

the retrieved stack traces for the fuzzed programs - one for each. In order to train our

vector embedding model, and produce embeddings, we first need to prepare and pre-

process the stack trace datasets.

4.4.1 Preprocessing of stack traces

We start by reading each stack trace dataset, and creating object representations of each

stack trace, using our implemented custom Python objects StackTrace and StackRecord,

which represent complete stack traces and singular stack records respectively. We go into

more detail about these in the Stack trace object representation subsection. These object

representations are used to evaluate the quality of the produced vector embeddings later

on.

Simultaneously to the above procedure, we "flatten" stack traces, meaning that we

concatenate all stack records of a stack trace to create a single continuous string that rep-

resents the stack trace, and store them back into other files - one for each source program.

A file containing the total collection of the preprocessed stack traces is also created. These

files follow the .csv format, and each record in the file consists of its index, the flattened

stack trace, and the source program from which the stack trace was extracted. The latter

is done so that we ensure a balanced train-test split before training our vector embedding

model, using a stratified split.
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Figure 4.1: Small sample of records from the full dataset CSV file

The total number of collected stack traces for each program is shown in the table

below.

Stack trace dataset
Source Program # of collected

stack traces
LAVA-1 and LAVA-M datasets

who 2136

md5sum 57

uniq 28

file 69

Fuzzed programs

audiofileS 104

jpegS2 95

fileS3 63

fileS4 165

fuzzgoat 37

Total 2754

Table 4.1: Collected stack traces per program
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4.4.2 Stack trace object representation

We implement two Python objects StackTrace and StackRecord, which represent stack

traces and their individual stack records respectively.

The StackRecord object contains the following fields:

• function_index: The index of the stack record in the stack trace.

• function_address: The address of the invoked function in memory at the time of

the crash.

• function_name: The name of the invoked function.

• function_params: Parameters passed to the function upon invocation.

• function_location: The location of the invoked function in the source code.

The StackTrace object contains the following fields:

• stack_records: A list of StackRecord objects, that constitute a complete in-

stance of a stack trace.

The StackTrace object is implemented in the source file stacktrace_object.py. In

the same source file, the function stacktraces_array_to_objects() is implemented,

which is used for parsing stack traces in the string format into their object representation.

This is performed through regular expression (RegEx) matching, which is implemented

in the function get_stackrecord_info_format(). Regular expression matching was

used for parsing because we observed that in our dataset of stack traces, there were 4

prominent formats for stack records, therefore, we could not parse the stack trace without

recognizing which format each stack record followed.

The 4 identified unique stack trace formats, along with highlighted examples from our

collected stack trace dataset, are shown in the next page:
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Stack trace format 1

1 #[ function_index] [function_address] in [function_name]

Figure 4.2: In-dataset example of stack record(s) that follows format 1

Stack trace format 2

1 #[ function_index] [function_address] in [function_name] ([

function_parameters] at [function_location]

Figure 4.3: In-dataset example of stack record(s) that follows format 2

Stack trace format 3

1 #[ function_index] [function_name] ([ function_parameters] at [

function_location]

Figure 4.4: In-dataset example of stack record(s) that follows format 3

Stack trace format 4

1 #[ function_index] [function_address] in [function_name] ([

function_parameters] from [function_location]
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Figure 4.5: In-dataset example of stack record(s) that follows format 4

As can be seen in Figure 4.5, there are cases where information is not present, with ques-

tion marks (??) taking its place. In such cases, the question marks are treated as the

piece of information that would take their place, according to the format the stack record

adheres to. For the above image, the question marks are parsed as the name of the func-

tion in each stack record. This is done in order to avoid incomplete fields in our object

representation.

4.4.3 Creating the train corpus for the vector embedding model

After preprocessing the stack traces into their current flattened format, we then use the

dataset that contains the full collection of stack traces (as shown in Figure 4.1), and per-

form a Stratified K-fold shuffle split, to ensure that the train-test splits retain the distri-

bution of the labels (in this case, the source program of each stack trace) in the original

dataset.

1 stacktraces = pd.readcsv("datasets/full_dataset.csv")

2

3 X = stacktraces["Stacktrace"]

4 y = stacktraces["Source"]

5

6 from sklearn.model_selection import StratifiedKFold

7

8 skf = StratifiedKFold(n_splits = 5, random_state = 42, shuffle =

True)

9 skf.get_n_splits(X,y)

Listing 4.5: Code snippet that performs a Stratified K-fold shuffle split over the full stack

trace dataset

The StratifiedKFold Python object can be used to obtain two lists of indices that con-

tain the indices of the records that were placed in the train and test set respectively.

We use these indices to create our balanced train-test split, as shown below.
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1 for train_index , test_index in skf.split(X,y):

2 train_indices.append(train_index)

3 test_indices.append(test_index)

4

5 x_train = X[train_indices [0]]

6 y_train = y[train_indices [0]]

7 x_test = X[test_indices [0]]

8 y_test = y[test_indices [0]]

Listing 4.6: Retrieving the train and test indices to create the train and test datasets

After that, we store the train and test datasets in their respective .csv files. In

addition to the columns found in the full dataset’s .csv, these two new files feature the

column Original_Index, which represents the index of each stack trace in the original

dataset.

Figure 4.6: Small sample of records from the train dataset CSV file

Then, the assigned train set is directly printed to a .txt file, in order to follow the re-

quested format for training fastText vector embedding models.

4.5 Embedding production and cluster optimization

4.5.1 Training the word embedding model

We then train a fastText word embedding model on the train dataset. Now that we have

a trained model, we produce the vector embeddings for all collected stack traces.

1 import fasttext
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2

3 model = fasttext.train_unsupervised("datasets/split/train_corpus.

txt",

4 model = "skipgram",

5 dim = 100,

6 epoch = 50)

Listing 4.7: Code snippet - Training a fastText vector embedding model

As shown in the above code snippet, we train our vector embedding model to produce

vector embeddings of 100 dimensions, which is the default parameter value for fastText

models. This is so that our vector embeddings do not have too many dimensions, thus

amplifying the effect of the curse of dimensionality, but also not too few, as we can still

apply dimensionality reduction techniques to reduce our dimensions if need be.

4.5.2 Evaluating vector embeddings

To evaluate our stack trace vector embeddings, we compared the cosine similarity of

stack trace embedding pairs to the Levenshtein ratio of stack trace object pairs. We aim

to achieve a cosine similarity between any two stack trace embeddings that is as close as

possible to the Levenshtein ratio between the corresponding stack trace objects.

We compare cosine similarity and Levenshtein ratio of all possible pairs in the train

and test dataset, and compute the Mean Absolute Error, Root Mean Square Error and

Mean Absolute Percentage Error between the two metrics.

We compute the Levenshtein ratio of stack traces by creating a string representation

of the StackTrace object, which includes the fields function_index, function_name

and function_location for each StackRecord object in the stack record array of the

stack trace. Function addresses and function parameters are not included, as there were

specific formats for which function addresses and/or parameters were not present, and

were denoted as null. The string representation of StackTrace objects is performed

with the use of the serialize_stacktrace() method of the StackTrace object.

29 def serialize_stacktrace(self):

30 #Get a single -line representation of the stacktrace

31 #The features kept are: index , function_name and location

32 serial_stacktrace = ""

33 for record in self.stack_records:

34 serial_stacktrace +=’ ’.join([ record.function_index ,

record_function_name , record_function_location ])

35 serial_stacktrace +=’ ,’

36

37 return serial_stacktrace
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Listing 4.8: Method definition of the serialize_stacktrace() method

The comparison of two StackTrace objects is facilitated through the compare() method.

The method returns a tuple consisting of two comparison metrics: Levenshtein distance

(distance), and Levenshtein ratio (norm_distance), the latter of which is used in our

work for the evaluation of the vector embeddings.

19 def compare(self , other_stacktrace):

20 #Compare Levenshtein distance between all records in the two

stacktraces

21 serial_stacktrace1_str = self.serialize_stacktrace ()

22 serial_stacktrace2_str = other_stacktrace.serialize_stacktrace

()

23

24 distance = Levenshtein.distance(serial_stacktrace1_str ,

serial_stacktrace2_str)

25 norm_distance = Levenshtein.ratio(serial_stacktrace1_str ,

serial_stacktrace2_str)

26

27 return distance , norm_distance

Listing 4.9: Method definition of the compare() method

The evaluation results of the vector embeddings are explained in detail in the Evaluation

section.

4.5.3 Training and hyper-optimizing clustering algorithms

As described in the stack-trace collection step, we created a labelled ground-truth assign-

ment for the stack traces extracted by fuzzing fuzzgoat.

It should be noted that the vector embeddings produced by fastText have 100 fea-

tures, meaning that they are very high-dimensional. With the curse of dimensionality in

mind, we also produced parallel datasets of embeddings of 3-dimensions using the PCA

dimensionality reduction technique.

1 from sklearn.decomposition import PCA

2

3 X = df_ground_truth_embeddings.iloc[:, :-1] #Remove the last

column and get the features

4 y = df_ground_truth_embeddings.iloc[:, -1] #Get the last

column - ground truth label

5

6 pca_2D = PCA(n_components = 2) #Reduce to 2 dimensions

7 pca_result_2D = pca_2D.fit_transform(X)
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8

9 pca_3D = PCA(n_components = 3) #Reduce to 3 dimensions

10 pca_result_3D = pca_3D.fit_transform(X)

Listing 4.10: Code snippet - Dimensionality reduction using PCA

As can be seen in the above code snippet, we performed dimensionality reduction twice.

The first time we reduced the dataset to 2 dimensions, and the second time we reduced

the dataset to 3 dimensions. By using dimensionality reduction, we were able to visualize

our stack trace embeddings in the 2-d and 3-d space respectively, thus getting a general

idea of how the produced clusters should look.

Figure 4.7: Visualization of ground-truth embeddings reduced to 2 dimensions

By observing Figure 4.7, we can see that there definitely are groups of stack trace em-

beddings, particularly in the top-right and bottom-right of the plot, however, in the left

side of the plot, we can see that stack traces from 2 different labels seem to be difficult to

separate, therefore, creating 2 optimal clusters for these labels would be very difficult.

With the simplicity of fuzzgoat’s stack traces in comparison to the stack traces of

other more complex fuzzed programs, we deduced that the dimensionality reduction of

vector embeddings down to 2 dimensions was too drastic, and it would negatively impact

the quality of our clusters.
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Figure 4.8: Visualization of ground-truth embeddings reduced to 3 dimensions

As seen above in Figure 4.8, the groups of stack traces are now much more defined and

distant from one another. This observation indicates that the dimensionality reduction of

stack trace embeddings down to 3 dimensions preserves enough information to allow for

optimal clusters to be computed. As a result, we perform clustering for both the 100-

dimensional dataset and the 3-dimensional dataset.

We train a variety of clustering algorithms on this ground-truth dataset, and attempt

to optimize them in order to maximize the adjusted rand score of the computed labelling.

Below is a list of the clustering algorithms that were optimized.

• K-Means: Selected because we know the number of labels/clusters for the ground-

truth assignment; a general-purpose clustering algorithm.

• Agglomerative Clustering: Selected because we know the number of labels/clus-

ters for ground-truth assignment.

• DBSCAN: Selected because DBSCAN works with clusters that are uneven or not

flat in shape. Also does not require the number of labels/clusters as an input param-

eter.

• OPTICS: Like DBSCAN, works with clusters that are uneven or not flat in shape.

Also does not require the number of labels/clusters as an input parameter.
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For each algorithm, we explain which parameters were optimized using hyper-parameter

tuning, provide the code snippet that performed the optimization, as well as the best esti-

mator’s adjusted rand score.

K-Means

The parameters of K-Means clustering that were subject to optimization are the following:

• n_clusters: The number of clusters to be formed by the algorithm.

• init: Centroid initialization method.

• n_init: Times the algorithm is ran using different starting centroids.

• max_iter: Maximum number of iterations for the K-Means algorithm for a run.

Agglomerative Clustering

The parameters of agglomerative clustering that were subject to optimization are the fol-

lowing:

• n_clusters: The number of clusters to be formed by the algorithm.

• linkage: The linkage criterion to be used. (See linkage criteria)

Since sklearn’s implementation of agglomerative clustering allows for the number

of clusters to not be passed as a parameter, we also optimized a different set of param-

eters for which the number of clusters was not pre-defined. In the following tables, this

optimization of agglomerative clustering is displayed as Agglomerative Clustering (Al-
ternative).

• metric: The metric used to compute the linkage. We used cosine similarity and

euclidean distance.

• linkage: The linkage criterion to be used.

• distance_threshold: The linkage distance threshold at or above which clusters

will not be merged.

DBSCAN

The parameters of the DBSCAN clustering algorithm that were subject to optimization

are the following:

• eps: The value of epsilon - maximum distance between neighboring samples.
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• min_samples: The number of samples required for a point to be considered a core

point.

• algorithm: Algorithm to be used for finding nearest neighbors.

OPTICS

The parameters of the OPTICS clustering algorithm that were subject to optimization are

the following:

• max_eps: The maximum epsilon value - maximum distance between neighboring

samples.

• min_samples: The number of samples required for a point to be considered a core

point.

• algorithm: Algorithm to be used for finding nearest neighbors.

Optimization results

The below table shows the best achieved adjusted rand index (ARI) for each of the 4

optimized algorithms, and the values of the parameters that achieved that result.

Optimization Results
Algorithm Best ARI on 100

dimensions
Parameters Best ARI on 3

dimensions
Parameters

K-Means 0.6367 n_clusters=2,

init=’kmeans++’,

n_init=10,

max_iter=100

0.6367 n_clusters=2,

init=’kmeans++’,

n_init=10,

max_iter=100

Agglomerative
Clustering

0.9909 n_clusters=5,

linkage=’single’

1.0 n_clusters=4,

linkage=’single’

Agglomerative
Clustering (Al-
ternative)

0.9849 metric=’euclidean’,

linkage=’single’,

distance thresh-

old=0.1

1.0 metric=’euclidean’,

linkage=’single’,

distance thresh-

old=0.1

DBSCAN 0.9849 eps=0.1,

min_samples=1,

algorithm=’auto’

1.0 eps=0.1,

min_samples=1,

algorithm=’auto’

OPTICS 0.3554 max_eps=0.1,

min_samples=7,

algorithm=’auto’

0.3554 max_eps=0.1,

min_samples=7,

algorithm=’auto’

Table 4.2: Best achieved adjusted-rand-index (ARI) scores for each clustering algorithm
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Visualization of results

We decided to visualize the label assignment for each algorithm on the ground-truth

dataset with 3 dimensions, to illustrate the difference in performance between clustering

algorithms.

Figure 4.9: Optimized K-Means assigned labels on ground-truth data

From Figure 4.9, it is visible that the best performance achieved by K-Means clustering

on the ground truth label assignment is not satisfactory, as it produces 2 clusters, rather

than the expected 4.

Figure 4.10: Optimized agglomerative clustering assigned labels on ground-truth data

On the other hand, Agglomerative Clustering (Figure 4.10) scored a perfect adjusted rand
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index score.

Figure 4.11: Optimized agglomerative clustering (alternative) assigned labels on ground-

truth data

The alternative Agglomerative Clustering algorithm, where the number of clusters is not

predefined also scored a perfect adjusted rand index score, managing a perfect label as-

signment, which can be seen in Figure 4.11.

Figure 4.12: Optimized DBSCAN assigned labels on ground-truth data

Similar to Agglomerative Clustering, DBSCAN (Figure 4.12) also managed a perfect

label assignment.
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Figure 4.13: Optimized OPTICS assigned labels on ground-truth data

Lastly, the OPTICS clustering algorithm (Figure 4.13) did not match the performance of

Agglomerative Clustering and DBSCAN, and seems to label a lot of stack trace embed-

dings as outliers (labelled with -1).

Interpretation of results

From Table 4.2 and Figures 4.9, 4.10, 4.11,4.12, 4.13 it became clear to us that the K-

Means and OPTICS algorithms achieve a significantly lower adjusted rand index score

compared to Agglomerative Clustering and DBSCAN, and are not suitable for use with

the larger and more complex datasets of stack traces that we have collected. This prompted

us to try to explain the reasons why these two algorithms performed considerably worse,

while at the same time justifying our choice to not use them for the final evaluation of our

work.

K-Means, although a widely used general-purpose clustering algorithm, performs best

in cases where the cluster size is even, and has been proved to lean towards creating

clusters of spherical shape. In our specific problem of clustering stack traces, there are no

indications that the formed clusters assume a spherical shape, so this property of K-Means

is detrimental to its performance.

OPTICS, despite being described as a generalization of DBSCAN, suffers from the

existence of near-duplicate points, which are very common among stack traces, since a

bug can be triggered multiple times, thus creating numerous very similar crash reports.

OPTICS makes use of a reachability matrix and reachability distances, which for very

similar points approach 0, therefore making it difficult to discern between high-density

and low-density areas.
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Chapter 5

Evaluation

In this chapter, we evaluate the performance of our proposed approach, both by mea-

suring the quality of the produced stack trace vector embeddings, and by evaluating the

performance of the clustering algorithms we used. More specifically, we discuss in detail

how the evaluation of each approach was performed, as well as the final results of each

evaluation.

As explained above, there were two milestones of our approach that were evaluated:

The quality of the produced vector embeddings, and the performance of the clustering

algorithms.

5.1 Evaluating the produced vector embeddings

To evaluate the produced stack trace vector embeddings, we compared the cosine simi-

larity of stack trace vector embedding pairs to the Levenshtein ratio of the corresponding

stack trace object pairs, for both the train and test dataset. In our work, we considered

the Levenshtein ratio of two stack traces as the standard stack trace comparison metric,

therefore, ideally, we wanted to achieve cosine similarity values that are as close as pos-

sible to the Levenshtein ratios, for each pair. In Subsection 4.5.2 of the Implementation

section, we thoroughly go over the necessary work we performed to facilitate the com-

parison of the two metrics, such as the creation of the stack trace object representation,

the StackTrace and StackRecord Python objects, as well as the implementation of the

compare() method, that returns the Levenshtein ratio of two StackTrace objects.

In this section, we go over the actual procedure of evaluating the vector embeddings,

which includes the computation of the cosine similarity of all stack trace pairs, and the

computation of the Levenshtein ratio for all corresponding stack trace object pairs, their

visualization using heatmaps, and finally, their evaluation using three error metrics: Mean

Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage
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Error (MAPE).

5.1.1 Computing Levenshtein ratio for all pairs in each dataset

Using the indices produced by StratifiedKFold when we performed the train-test split

of the dataset, we also performed an equivalent train-test split for the dataset containing

the stack trace object representation, thus producing train-test datasets parallel to the stack

trace embedding train-test datasets.

The following code snippets were used to compute the Levenshtein ratio of all pairs,

placing them in a 2-dimensional Python list.

1 #Create the 2D array of Levenshtein distances for both train and

test

2 train_levenshtein_distance = list()

3 test_levenshtein_distance = list()

4

5 #TRAIN

6 for x in stacktraceobj_train_corpus:

7 tmp = list()

8 for y in stacktraceobj_train_corpus:

9 tmp.append(x.compare(y)[1])

10

11 train_levenshtein_distance.append(tmp)

12

13 #TEST

14 for x in stacktraceobj_test_corpus:

15 tmp = list()

16 for y in stacktraceobj_test_corpus:

17 tmp.append(x.compare(y)[1])

18

19 test_levenshtein_distance.append(tmp)

Listing 5.1: Code snippet - Computing the Levenshtein ratio of all pairs in the train and

test datasets

In the above snippet of code, we make use of the implemented StackTrace object and

its compare() method. As a reminder, the compare() method returns a 2-tuple, which

contains the Levenshtein distance in index 0, and the Levenshtein ratio in index 1.

5.1.2 Computing cosine similarity for all pairs in each dataset

To compute the cosine similarity between a pair of stack trace vector embeddings, we

first define a cosine_similarity() function that takes two vectors as parameters and

returns their cosine similarity.
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1 def cosine_similarity(vec1 , vec2):

2 arr1 = np.array(vec1)

3 arr2 = np.array(vec2)

4 cosine = np.dot(arr1 , arr2) / (np.linalg.norm(arr1)*np.linalg.

norm(arr2))

5 return cosine

Listing 5.2: Code snippet - Cosine Similarity function

With the definition of this function, we can now compute the cosine similarity of all

stack trace vector embedding pairs, using the following snippet.

1 train_cosine_similarity = list()

2 test_cosine_similarity = list()

3

4 #TRAIN

5 for i in range(df_train_embeddings.shape [0]):

6 tmp = list()

7 for j in range(df_train_embeddings_shape [0]):

8 tmp.append(cosine_similarity(df_train_embeddings.iloc[i].

values , df_train_embeddings.iloc[j]. values))

9

10 train_cosine_similarity.append(tmp)

11

12 #TEST

13 for i in range(df_test_embeddings.shape [0]):

14 tmp = list()

15 for j in range(df_test_embeddings_shape [0]):

16 tmp.append(cosine_similarity(df_test_embeddings.iloc[i].

values , df_test_embeddings.iloc[j]. values))

17

18 test_cosine_similarity.append(tmp)

Listing 5.3: Code snippet - Computing the cosine similarity of all pairs in the train and

test datasets

5.1.3 Visualization of produced grids

In the above code snippets, we created 2-dimensional lists for each similarity metric, one

for the train dataset and one for the test dataset. Before calculating the error between the

two metrics, we visualized the produced grids using heatmaps, in order to get a visual idea

of how similar the values calculated by each metric are. The heatmaps offer a colorbar

on the legend that illustrates what the color gradient means, for each heatmap. Because

of the size of the train and test datasets, interpreting the produced heatmaps can be quite
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difficult, so our provided observations help to understand what is seen in the figures.

Figure 5.1: Levenshtein ratio heatmap for the train dataset

Firstly, the main diagonal of the grid is populated with values of 1.0, which is logical,

since the comparison is between the same StackTrace object. Most importantly, we can

see areas of higher similarity values, that are again situated on each side of the main diag-

onal. This is because these stack trace pairs were generated by crash reports originating

from the same fuzzed program, therefore they are more similar than stack traces that were

produced by crashes from two completely different programs.

65



Figure 5.2: Levenshtein ratio heatmap for the test dataset

Similar to the Levenshtein ratio heatmap for the train dataset shown in Figure 5.1, the

Levenshtein ratio heatmap for the test dataset has a main diagonal full of identical stack

traces. Also, there are the areas of higher similarity values of the same ratio, which can

be attributed to the StratifiedKFold split we performed to create the train-test dataset.
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Figure 5.3: Cosine similarity heatmap for the train dataset

In Figure 5.3, we observe that the cosine similarity heatmap for the train dataset,

although not identical to the Levenshtein ratio heatmap for the train dataset, shown in

figure 5.1, is very similar. Other than the main diagonal, we can still notice the higher

similarity areas around the main diagonal, which represent the stack traces originating

from the same source programs.

A difference that we noticed between the two heatmaps is that the cosine similarity

values of stack trace pairs are generally higher, which visually explains the lighter colors

of the heatmap. This observation is further supported by the colorbar of the figure, where

it can be seen that the lower range of the cosine similarity values is a little lower than 0.5,

whereas for Levenshtein distance, it is lower than 0.2.
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Figure 5.4: Cosine similarity heatmap for the test dataset

Our observations for the cosine similarity heatmap for the test dataset, compared to

the Levenshtein ratio heatmap for the test dataset, shown in figure 5.2, are the same as

above.

The above observations prompted us to investigate the maximum and minimum values

present in each grid for both metrics, for the train and test dataset.

Optimization Results
Levenshtein Ratio Cosine Similarity

Dataset Maximum obser-

vation

Minimum obser-

vation

Maximum obser-

vation

Minimum obser-

vation

Train 1.0 0.1254 1.0 0.4174

Test 1.0 0.1342 1.0 0.4324

Table 5.1: Maximum and minimum stack trace similarity metric values for train and test

dataset

The above table clearly illustrates the prevalent difference between the lower bound of

the computed cosine similarity and the Levenshtein ratio of stack traces. We hypothesize
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that a reason for this discrepancy is that stack trace vector embeddings always have the

same number of dimensions (100), whereas StackTrace objects might not have the same

length, when represented in string format. The Stack Trace objects are used for the

calculation of the Levenshtein distance. For this reason, for pairs of stack traces that are

very different in length, the Levenshtein ratio might be much lower than the corresponding

cosine similarity.

These differences in lower bounds may impact the results of our error metrics. For

this reason, we computed the errors between cosine similarity and Levenshtein ratio both

with the unchanged values, as well as with values scaled using Min-Max scaling. [35].

The values were scaled such that the minimum and maximum bounds became 0 and 1

respectively.

5.1.4 Calculating errors between two similarity metrics

As already stated, the 3 error metrics we used to evaluate our vector embeddings were

Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Per-

centage Error (MAPE). For all 3 of these error metrics, we aim for a value as low as

possible, which indicates that the cosine similarity values are as close as possible to the

Levenshtein ratio values for stack trace pairs.

The following table shows the evaluated performance of the produced vector embed-

dings, with and without Min-Max scaling.

Vector Embedding Evaluation Results
No Min-Max Scaling Min-Max Scaling

Dataset MAE RMSE MAPE MAE RMSE MAPE
Train 0.272 0.299 0.356 0.184 0.213 6.222×1011

Test 0.270 0.520 0.351 0.189 0.435 1.702×1012

Table 5.2: Computed error metrics for train and test stack trace datasets

From the above table, we observed that without using min-max scaling, the discrep-

ancy between values for cosine similarity and the values for Levenshtein ratio were a little

high, but could be explained by the difference in ranges the values took. When looking at

the discrepancy between values using min-max scaling, we notice that MAE and RMSE

are noticeable smaller, although MAPE is extremely high. However, this can be attributed

to the fact that Min-Max scaling reduces the values drastically, bringing values that are

close to the lower bound of a collection near zero. Therefore, the difference between val-

ues is greatly amplified, leading to the huge increase of the MAPE when using min-max

scaling.

We concluded that the quality of the stack trace vector embeddings is satisfactory, thus

allowing us to move on to clustering the stack traces using their vector embeddings.
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5.2 Evaluating the produced clusters

As explained in the Implementation section, we made use of a ground-truth dataset to

optimize the hyper-parameters of 4 clustering algorithms: K-means, Agglomerative Clus-

tering, DBSCAN and OPTICS. Through hyper-parameter optimization, we found out that

K-means and OPTICS could not match the achieved performance of Agglomerative Clus-

tering and DBSCAN, therefore we opted not to use them in further clustering tasks.

For the evaluation, we wanted to assess the quality of the clusters, as well as the

quality of the label assignment of the clustering algorithms using their optimized hyper-

parameters for the fuzzgoat ground-truth dataset. This is because in a real-life scenario,

a pre-optimized model could be transferred from a pre-existing training set to perform

clustering on new unseen stack traces.

The collection of stack traces we have is far larger than the stack traces that were

collected from fuzzgoat. In this section, we cluster the stack traces that were collected

from the rest of the fuzzed programs, and attempt to evaluate them using both internal and

external cluster evaluation metrics.

5.2.1 Evaluation process details

It is understandable that evaluating a clustering using external evaluation metrics requires

the existence of a ground-truth label assignment which can be directly compared to the

produced label assignment. As described, our dataset did not contain these ground-truth

datasets, and for hyper-parameter optimization of the adjusted-rand-index, which is an ex-

ternal evaluation metric, we manually created our own ground-truth dataset for fuzzgoat

stack traces.

Our approach here is no different. For 3 target programs, fileS3, uniq and jpegS2,

we manually created our own ground-truth label assignments, based on the criterion of

stack trace similarity. While an imperfect criterion, especially for more complex pro-

grams and stack traces, this method of manual assignment was chosen for fuzzgoat, and

returned accurate results. The choice of these 3 programs was made primarily based on

the total number of collected stack traces per program, as the task of manually assigning

stack traces to bugs becomes considerably harder the more stack traces and possible bugs

there are.

For the rest of the fuzzed programs, the evaluation is limited to internal evaluation

metrics, specifically the silhouette score of the resulting clusters.

We reiterate that the clustering algorithms were evaluated on the full dataset (not test

or train), and that the evaluated full datasets include both the 100-dimensional embed-

dings as well as the 3-dimensional embeddings produced through dimensionality reduc-

tion (PCA).
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For clarity we list the optimal parameters for DBSCAN and Agglomerative Cluster-

ing, as found through hyper-parameter optimization for the fuzzgoat ground-truth label

assignment. Alternative Agglomerative Clustering refers to the Agglomerative Clustering

algorithm where the number of clusters is not pre-defined and given as a parameter.

1 dbscan = DBSCAN(eps = 0.1, min_samples = 1, algorithm="auto")

2

3 agglomerative = AgglomerativeClustering(n_clusters = 4, linkage="

single")

4

5 alt_agglomerative = AgglomerativeClustering(n_clusters=None ,

linkage="single", metric="euclidean", distance_threshold =0.1,

compute_full_tree=True)

Listing 5.4: Optimal parameters for DBSCAN and Agglomerative Clustering

Before proceeding to the actual evaluation, it should be noted that we hypothesize

that the optimized Agglomerative Clustering algorithm is going to achieve the worst per-

formance, since it requires the number of clusters as a parameter. It is very clear and

understandable that in our evaluation, where we use different stack trace embeddings

than the ones used for optimization, the optimal number of clusters most likely is not the

same as the optimal number of clusters found while optimizing the algorithms for fuz-

zgoat specifically. This is why we include the optimized Agglomerative Clustering that

doesn’t require the number of clusters to be predefined, and we expect that variation of

the algorithm to outperform the original.

5.2.2 External cluster evaluation metrics

As explained above, for the 3 target programs for which we produced ground-truth label

assignments, we were able to evaluate the quality of the resulting clusters using adjusted-

rand-score, an external evaluation metric which compares the computed label assignment

to the ground-truth label assignment.

It is important to note that adjusted rand index is interpreted as the quality of the

produced assignment compared to a random assignment. An adjusted rand index of 0

indicates that the label assignment is as good as a random assignment, and a positive

adjusted rand index indicates an assignment that is better than normal. The adjusted rand

index implementation of sklearn is bounded between -0.5 and 1, where negative values

indicate an assignment that is even worse than a random assignment.

Evaluation was performed for both the 100-dimensional stack trace embeddings, as

well as the 3-dimensional vector embeddings which came as a result of dimensionality

reduction. The evaluation results for both are shown in the table below.
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External Cluster Evaluation Results (Adjusted Rand Index)
100 dimensions 3 dimensions

Source Program DBSCAN Agglomerative Alt. Agglomera-

tive

DBSCAN Agglomerative Alt. Agglomera-

tive

uniq 0.9639 0.5806 0.9639 1.0 0.4896 1.0

jpegS2 0.5224 0.1673 0.5224 0.5224 0.1527 0.5224

fileS3 0.7439 0.5009 0.7439 0.6148 0.5009 0.6148

Table 5.3: Adjusted-rand-index of computed clusters for different optimized clustering

algorithms

From the above table, we can see that the results follow our hypothesis, as the agglom-

erative clustering algorithm optimized to cluster the stack traces into 4 clusters performs

the worst. Another interesting observation is that DBSCAN and Agglomerative Cluster-

ing without a pre-defined number of clusters perform identically.

By comparing the performance of clustering algorithms for the 100-dimensional datasets

and the 3-dimensional datasets, we can see that there is no significant performance gain,

at least for the 3 datasets for which we created ground-truth assignments. On the contrary,

the performance of the clustering algorithms seems to suffer for fileS3. This indicates

that the reduction of dimensions to 3 might cause a significant loss of information.

5.2.3 Internal cluster evaluation metrics

Not all clusters could be evaluated with external cluster evaluation metric due to the lack

of a ground-truth label assignment. For these cases, silhouette score, which is an internal

cluster evaluation metric was used to evaluate the produced clusters. It should be noted

that the silhouette score was also calculated for the datasets for which a ground-truth label

assignment existed.

Similar to the external evaluation of the clusters, both 100 dimensional and 3 dimen-

sional datasets were used for clustering evaluation. The results of the evaluation are shown

in the table below.

Internal Cluster Evaluation Results (Silhouette Coefficient)
100 dimensions 3 dimensions

Source Program DBSCAN Agglomerative Alt. Agglomera-

tive

DBSCAN Agglomerative Alt. Agglomera-

tive

who 0.9234 0.5524 0.9234 0.7418 0.5617 0.7418

md5sum 0.7474 0.6949 0.7474 0.7794 0.7813 0.7794

uniq 0.8985 0.7149 0.8985 0.9358 0.7856 0.9358

file 0.5033 0.6070 0.5033 0.7257 0.6962 0.7257

audiofileS 0.7337 0.6461 0.7337 0.8386 0.5821 0.8386

jpegS2 0.7738 0.5838 0.7738 0.8234 0.2853 0.8234

fileS3 0.7592 0.7573 0.7592 0.8826 0.8318 0.8826

fileS4 0.8528 0.5806 0.8528 0.8245 0.6415 0.8245

Table 5.4: Silhouette score of computed clusters for different optimized clustering algo-

rithms
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By looking at the table, we can understand that in the general case, the silhouette

score of the clustering increased when reducing the dataset from 100 dimensions to 3.

Although the silhouette coefficient of a clustering does not indicate the quality of the

computed clusters based on a ground-truth assignment, it does indicate how similar the

items placed in each cluster are to each other, and how dissimilar they are to items placed

in different clusters.

With the above in mind, we can deduce that the quality of our clusters is satisfac-

tory, since the silhouette coefficient of the produced label assignments is quite high in

most cases. This indicates that the clustering algorithms can adequately distinguish sim-

ilar from dissimilar stack traces based on their produced vector embeddings, which in

turn shows that representing stack traces with word embeddings is a technique that can

potentially be used to solve the problem of bug prioritization.

5.3 Final Comments

In this section, we evaluated both our produced word embeddings as well as the clus-

ters produced by the various clustering algorithms we optimized in the Implementation

section.

The evaluation of the produced vector embeddings for stack traces showed that repre-

senting stack traces using word embeddings is a promising technique and is comparable

to representing stack traces using strings or text. The cosine similarity of stack trace em-

beddings was compared to the Levenshtein ratio of the stack traces, and we found that

the two techniques are comparable in terms of representing textual features of the stack

traces.

We then used the produced stack trace embeddings to perform clustering using var-

ious clustering algorithms that were optimized on the fuzzgoat ground-truth label as-

signment. Since a ground-truth label assignment was not available for any of the datasets,

we produced such ground-truth assignments for 3 of the datasets we collected. For these

3 datasets, we were able to evaluate the produced clusters using external evaluation met-

rics, which directly compare the produced labels with the ground-truth labels, however,

we also performed internal cluster evaluation for all datasets, which evaluates the pro-

duced clusters based on the intra-cluster and inter-cluster similarity of data.

The external cluster evaluation results were satisfactory, by consistently achieving

scores substantially better than a random assignment, even achieving a perfect label as-

signment for a dataset of stack traces. This indicates that there is potential in utilizing

vector embeddings and unsupervised learning to solve the problem of bug prioritization,

provided that there are ground-truth label assignments that can be used to train and opti-

mize clustering algorithms.
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The internal cluster evaluation results, although much harder to associate with the

actual performance of a label assignment produced by a clustering algorithm, show that

the produced clusters contain data points which are similar to each other, and different

to data points that belong to other clusters. This shows that vector embeddings capture

significant information about the stack traces which allows the clustering algorithms to

produce clusters which are clearly defined, further exhibiting the promising abilities of

vector embeddings in the space of bug prioritization.

What we overall notice regarding the evaluation of the produced clusters, regardless

of whether the evaluation was performed using external or internal criteria, is that the

performance of the clustering algorithms was inconsistent across different programs. This

can be attributed to the fact that the algorithms were trained on a ground-truth dataset for

a single program, and differences in the structure or complexity of the unseen stack traces

could play an underlying role in these inconsistencies.
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Chapter 6

Future Work

In this section, we state some deficiencies of our followed approach, possible solutions as

well as future work that could be done to further research the potential of vector embed-

dings in bug triaging and bug report prioritization.

The first improvement that we discern as a future possibility is the creation of a more

extensive crash report dataset, by collecting a larger number of programs to be fuzzed. A

big obstacle that we faced in our work was discovering buggy programs that could very

easily be fuzzed to produce a large number of crash reports. Limiting factors for our

choices of programs to fuzz were the size and functionality of the program, as well as the

number of bugs present in the source code, as programs with no known bugs could lead

to very long fuzzing times for the discovery of fewer bugs.

However, by fuzzing programs with unknown or "natural"1 bugs, we can collect stack

traces that are more representative of a real-life bug collection scenario, either as a result

of software testing, or crash reporting. By collecting crash reports in this way, there is

the possibility that the performance of the algorithms used for clustering might improve,

creating more accurate label assignments that would greatly help alleviate the problem of

bug prioritization and categorization. On the other hand, there is the prospect that real-life

crash reports originating from software more nuanced and complicated than the software

tested in our work might lead to the exact opposite regarding the clustering performance.

More work in this field is crucial in order to determine the best way to perform clustering

and assist in the categorization of bugs.

The rode0day competitions provided numerous such programs and their source code,

which could be fuzzed to produce an even larger dataset of crash reports. By fuzzing for a

longer period of time as well as fuzzing the binary files found in the dataset using binary

fuzzing techniques, we can amass more bug reports that could be used to produce stack

trace embeddings.

1"Natural": Bugs that are present due to programming errors, not a vulnerability injection framework
such as LAVA.
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Another difficulty that we faced in our work is the lack of a ground-truth label as-

signment that maps crash reports to the bug that caused them. As a result, we resorted

to creating our own ground-truth label assignments, where the labelling of stack traces to

bugs was made by grouping stack traces that are similar and assigning the same label to

them. Understandably, this is an imperfect approach, as it neglects one of the most impor-

tant problems that bug clustering aims to solve, which is the assignment of different crash

reports in the same cluster, if the bug that causes them is common. Another deficiency

of this approach is the fact that the produced ground-truth datasets were small in size,

which can be a contributing factor behind the inconsistent performance of the clustering

algorithms on stack traces originating across different programs. A real-life ground-truth

dataset that is sizeable enough to be used for cluster evaluation and optimization would

allow for the training of algorithms on the ground-truth dataset, and their transfer to an

unseen dataset with a similar and more consistent performance.

Lastly, the area of vector embedding production and evaluation is one where refine-

ments could be made. Further research into stack trace comparison techniques that ex-

amine the stack traces in depth, rather than using measures based on string similarity,

such as the Levenshtein ratio could be used to better evaluate the quality of the produced

vector embeddings, thus leading to refinements to their production process, which could

be accompanied by the production of stack trace vector embeddings that capture in-depth

details of each stack trace, which are currently not captured. Attempts at creating more

comprehensive stack trace comparison methods have been made, such as TraceSim by

Vasiliev et al. [36], which combines a variety of techniques, namely TF-IDF, Levenshtein

distance and machine learning, to improve performance compared to other baseline com-

parison methods. The application of these comparison methods as a means to evaluate

and optimize the produced stack trace vector embeddings might give a clearer insight into

the potential of using word embedding models to create stack trace representations.
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Chapter 7

Related Work

The problem of bug prioritization and categorization is one that is exacerbated by ad-

vancements in the field of software testing. As software testing techniques become more

nuanced and their ability to discover faults and errors in programs improves, the number

of crashes and bugs that software developers and programmers are asked to triage is over-

whelming. Thus, the prioritization and categorization of bugs can greatly ease the load

of programmers, allowing them to identify severe bugs faster and easier, greatly reducing

the time spent sifting through them and increasing the time spent actually dealing with

them.

There have been various attempts at tackling the problem of bug prioritization and

categorization. Dongsun Kim et al. [1] analyze a large dataset of crash reports, and create

numerous features based on information like the methods called, the complexity of the

stack traces etc.. These features are then encoded into feature vectors, and supervised

machine learning algorithms are leveraged in order to perform categorization of crash

reports into frequent or not frequent.

Jiang et al. developed a capability-guided fuzzer, Evocatio [2], that explores crash

reports and their circumstances, such as the input that caused the crash, to uncover pos-

sibilities in which the bug could be exploited by a malicious attacker. This helps in dis-

covering the severity of bugs, which is one of the crucial criteria taken into account when

prioritizing bugs.

Spanos et al. [3] leveraged text-mining techniques and supervised machine learning to

predict the severity of a vulnerability using information extracted from its description in

the National Vulnerability Database. Specifically, their work is focused on automatically

predicting the CVSS and WVISS severity score for each vulnerability.
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Chapter 8

Conclusion

In this thesis, we investigated the potential of the use of vector embeddings for crash

report clustering, as a solution to the problem of bug categorization and prioritization.

Our approach makes use of stack trace embeddings, which can be directly extracted from

crash reports.

In the Architecture section we propose an architecture for collecting crash reports,

producing and evaluating stack trace embeddings, and training clustering algorithms of

our choice for categorizing the stack traces into groups, where each group represents stack

traces that were caused by a common bug.

In the Implementation section, we follow the proposed architecture. We collect stack

traces using fuzzing, an automated software testing technique, which is used to find vul-

nerabilities and bugs in software. By fuzzing various programs with AFL++, an open

source state-of-the-art fuzzer, we generate a dataset of crash reports, from which the stack

traces are extracted. Stack traces were also found from pre-existing datasets, and were

pre-processed to follow a common format.

An object representation of stack traces was also implemented, allowing for the pars-

ing of stack traces into python objects, facilitating the comparison of stack traces.

We produce vector embeddings by training a fastText word embedding model on our

collected stack traces. We then evaluate the produced vector embeddings by comparing

their ability to compute stack trace similarity. The cosine similarity of stack trace vector

embedding pairs was directly compared to the Levenshtein ratio, a string comparison

metric, of the corresponding stack trace objects.

Using the produced stack trace embeddings, we train and optimize various clustering

algorithms on a manually created ground-truth label assignment, and then transfer the

optimized algorithms to perform clustering for each of the collected datasets of stack

traces.

In the Evaluation section, the quality of the produced clusters was evaluated using

both internal and external cluster evaluation criteria, those being silhouette coefficient
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and adjusted-rand-index respectively. By evaluating both the vector embeddings and the

quality of the produced clusters, we discover that there is potential in representing stack

traces as vector embeddings, in order to facilitate the process of crash report categoriza-

tion.

In the Future Work section, we identify weaknesses and deficiencies in our approach,

and outline possible refinements to our proposed work that could lead to better results.

We also briefly present possible research directions in this field that could lead to further

discoveries and solutions to this problem.
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Appendix A

Results

A.1 Visualization of stack traces before clustering

Figure A.1: Visualization of stack trace embeddings from who reduced to 3 dimensions
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Figure A.2: Visualization of stack trace embeddings from fileS3 reduced to 3 dimen-

sions

Figure A.3: Visualization of stack trace embeddings from fileS4 reduced to 3 dimen-

sions
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Figure A.4: Visualization of stack trace embeddings from file reduced to 3 dimensions

Figure A.5: Visualization of stack trace embeddings from md5sum reduced to 3 dimen-

sions
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Figure A.6: Visualization of stack trace embeddings from uniq reduced to 3 dimensions

Figure A.7: Visualization of stack trace embeddings from audiofileS reduced to 3 di-

mensions
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Figure A.8: Visualization of stack trace embeddings from jpegS2 reduced to 3 dimen-

sions
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A.2 Ground-truth label assignments

Figure A.9: Visualization of ground-truth label assignment of uniq reduced to 3 dimen-

sions
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Figure A.10: Visualization of ground-truth label assignment of fileS3 reduced to 3 di-

mensions

Figure A.11: Visualization of ground-truth label assignment of jpegS2 reduced to 3 di-

mensions
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A.3 Results of optimal DBSCAN clustering

Figure A.12: Clustering of stack trace embeddings using DBSCAN from who reduced to

3 dimensions
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Figure A.13: Clustering of stack trace embeddings using DBSCAN from fileS3 reduced

to 3 dimensions

Figure A.14: Clustering of stack trace embeddings using DBSCAN from fileS4 reduced

to 3 dimensions
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Figure A.15: Clustering of stack trace embeddings using DBSCAN from file reduced

to 3 dimensions

Figure A.16: Clustering of stack trace embeddings using DBSCAN from md5sum reduced

to 3 dimensions
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Figure A.17: Clustering of stack trace embeddings using DBSCAN from uniq reduced

to 3 dimensions

Figure A.18: Clustering of stack trace embeddings using DBSCAN from audiofileS

reduced to 3 dimensions
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Figure A.19: Clustering of stack trace embeddings using DBSCAN from jpegS2 reduced

to 3 dimensions
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A.4 Results of optimal Agglomerative clustering

A.4.1 Agglomerative Clustering with pre-defined number of clusters

Figure A.20: Clustering of stack trace embeddings using Agglomerative Clustering from

who reduced to 3 dimensions

Figure A.21: Clustering of stack trace embeddings using Agglomerative Clustering from

fileS3 reduced to 3 dimensions
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Figure A.22: Clustering of stack trace embeddings using Agglomerative Clustering from

fileS4 reduced to 3 dimensions

Figure A.23: Clustering of stack trace embeddings using Agglomerative Clustering from

file reduced to 3 dimensions
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Figure A.24: Clustering of stack trace embeddings using Agglomerative Clustering from

md5sum reduced to 3 dimensions

Figure A.25: Clustering of stack trace embeddings using Agglomerative Clustering from

uniq reduced to 3 dimensions
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Figure A.26: Clustering of stack trace embeddings using Agglomerative Clustering from

audiofileS reduced to 3 dimensions

Figure A.27: Clustering of stack trace embeddings using Agglomerative Clustering from

jpegS2 reduced to 3 dimensions
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A.4.2 Agglomerative Clustering without pre-defined number of clus-
ters

Figure A.28: Clustering of stack trace embeddings using Agglomerative Clustering from

who reduced to 3 dimensions

Figure A.29: Clustering of stack trace embeddings using Agglomerative Clustering from

fileS3 reduced to 3 dimensions
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Figure A.30: Clustering of stack trace embeddings using Agglomerative Clustering from

fileS4 reduced to 3 dimensions

Figure A.31: Clustering of stack trace embeddings using Agglomerative Clustering from

file reduced to 3 dimensions

Figure A.32: Clustering of stack trace embeddings using Agglomerative Clustering from

md5sum reduced to 3 dimensions
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Figure A.33: Clustering of stack trace embeddings using Agglomerative Clustering from

uniq reduced to 3 dimensions

Figure A.34: Clustering of stack trace embeddings using Agglomerative Clustering from

audiofileS reduced to 3 dimensions

Figure A.35: Clustering of stack trace embeddings using Agglomerative Clustering from

jpegS2 reduced to 3 dimensions
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