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Abstract 

 

The thesis investigates the influence of emotions and precommitment on self-control 

behavior using a computational model. Drawing from Banfield's (2006) work on 

precommitment and Nikodemou's (2020) research on emotional arousal, the study aims 

to understand how these factors interact and affect self-control. The computational model 

employs an iterated version of the Prisoner's Dilemma game called the Iterated Prisoner's 

Dilemma (IPD) game to simulate the conflict between the higher (prefrontal cortex) and 

lower (limbic system) brain regions involved in self-control. Two agents representing 

these regions are trained using the Q-Learning algorithm to achieve mutual cooperation 

(CC), a measure of successful self-regulation. The effects of emotions are simulated by 

the change of the values in IPD’s payoff matrix T (Temptation), R (Reward), P 

(Punishment), and S (Sucker) which are reinforcement signals the agents receive and are 

in turn affected by the specified intensity value and interval of change (number of rounds 

between each change of the payoff values). Additionally, precommitment is simulated by 

adding a differential bias, denoted by ψ, to the diagonal terms of the payoff matrix at the 

beginning of the game to simulate low (ψ=0.01) and high (ψ=0.9) levels of 

precommitment. The findings demonstrated that high precommitment coupled with 

positive emotions had a notable influence on facilitating self-control behavior, surpassing 

the impact of low precommitment. This effect was particularly pronounced when 

employing a larger interval of change and utilizing a smaller positive intensity value, 

resulting in a decreased magnitude at a less frequent rate. To address negative emotions 

and precommitment, the results indicated that precommitment can once again serve as an 

effective strategy for enhancing self-control by mitigating the impact of negative 

reinforcement on the agents. This effect was particularly enhanced in the cases of negative 

and positive punishment (decreasing R and increasing T) when high precommitment was 

paired with a sufficiently large interval of change and a small intensity value. In contrast, 

when explicit negative emotions were induced by providing a negative intensity value to 

S and P, the scenarios where high precommitment still managed to achieve self-control 

and provided the best results were those where a higher negative intensity value was given 

in a large interval of change. 
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Chapter 1  
 
Introduction 
 

 

 

1.1. INTRODUCTION .................................................................................................. 1 

1.2. THESIS OUTLINE ................................................................................................ 3 

 

 

1.1. Introduction  

 

The purpose of this thesis is to investigate the effects of precommitment in combination 

with emotional arousal on self-control behavior. Self-control is a fundamental concept in 

cognitive psychology, referring to the ability to resist smaller sooner (SS) rewards in favor 

of larger, later (LL) rewards something crucial for individuals trying to achieve their long-

term goals but challenging as it involves overcoming the temptation of an immediate 

reward. One example of this concept can be when a person opts for a healthy meal instead 

of an unhealthy one, resisting in this way the immediate pleasure of indulging in some 

junk food in favor of the long-term goal of remaining in good health. This conflict 

between the desire for immediate gratification and the need to pursue long-term goals has 

been heavily studied and associated with the interaction that takes place between the 

higher (prefrontal cortex) and lower (limbic system) parts of the brain, which are 

responsible for the cognitive processed responses (long-term) and intuitive processed 

(short-term) responses, respectively (Rachlin, 2000). 

 

 The second key aspect which is discussed in my thesis is the concept of precommitment 

and how it relates to self-control. Precommitment refers to the act of making a 

commitment in advance to follow a specific course of action to bias future choices 

towards the larger, later reward (desired goal). Banfield (2006) argues that exercising 

precommitment can help overcome self-control problems as it will help individuals resist 

the temptation of the smaller, immediate reward in favor of the long-term one. This is 
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based on the idea that precommitment can make it easier to choose the larger, later reward 

by reducing the conflict between the higher and lower parts of the brain. 

 

The third aspect is emotional arousal in self-control behavior. Nikodemou (2020) 

suggests that as self-control is a human process it is bound to be linked with emotions and 

that a person’s emotional state can have a significant impact on their ability to exercise 

self-control. For example, positive emotions can promote self-control whereas negative 

emotions impair it. This is based on the idea that positive emotions can increase people’s 

willingness to pursue their long-term goals, while negative emotions can make them more 

susceptible to giving in to the temptations of immediate rewards which is an implication 

that, as Nikodemou (2020) states, turns out to be more complicated for the reason that 

negative emotions can also have positive effects on self-control (e.g., feelings of fear and 

guilt) and positive emotions negative ones. 

 

Despite the extensive research mentioned before on self-control in relation to 

precommitment and emotions separately, no studies have examined the interaction 

between precommitment and emotions in a computational model of self-control. This 

research gap is significant because it limits our understanding of how these factors interact 

with each other to influence self-control behavior.  

 

To explore this interaction, I developed a computational model based on the findings of 

Nikodemou (2020) and Banfield (2006). The model uses a general-sum game of the 

Prisoner's Dilemma (Kavka, 1991), where each agent can insist on maximizing its own 

reward by defecting, but the best outcome for both of them is achieved only when the 

agents cooperate. The agents do not know what the other one will choose: to cooperate 

(C) or defect (D). All the combinations of states in which the agents can result are CC, 

CD, DC, and DD where the state of self-control is represented by the CC state. The agents 

are trained using the Q-Learning algorithm with the addition of rewards/punishers to 

simulate emotions and the use of a differential bias on the payoff matrix of the agents to 

simulate precommitment. Earlier studies by Banfield (2006) and Cleanthous (2010) also 

modeled self-control behavior using neural networks, but it was found that the use of 

biologically realistic spiking neural networks was not necessary for the successful 

modeling of self-control, as demonstrated by Christodoulou et al. (2010). 
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1.2. Thesis outline 

 

Chapter 1 serves as an Introduction to the thesis. In Chapter 2, the Epistemological 

Background of the research is discussed, focusing on self-control behavior in 

neuroscience and psychology. The chapter presents the Prisoner's Dilemma (PD) and its 

variation, the Iterated Prisoner's Dilemma (IPD), along with the rationale for choosing it 

to simulate the self-control structure in our model. The Reinforcement Learning algorithm 

chosen for the model is also explained. Additionally, the chapter introduces the concepts 

of emotions and precommitment, providing definitions that aid in simulating their effects 

on our self-control model. Chapter 3 focuses on the design and implementation of the Q-

Learning model, with detailed explanations of simulating positive and negative emotions 

and incorporating high and low levels of precommitment. In Chapter 4, the results of the 

simulations are presented, including comparisons between high and low levels of 

precommitment and highlighting key findings. Finally, Chapter 5 provides an overview 

of the study, explains the findings in relation to existing literature, and proposes future 

research directions facilitated by this study. 
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Chapter 2 

 
Epistemological Background 
 

 

 

2.1 SELF-CONTROL .................................................................................................. 4 

2.1.1 The top-down model of self-control ............................................................... 5 

2.1.2 Other Approaches to Self-control ................................................................... 6 

2.2 THE PRISONER’S DILEMMA (PD) ...................................................................... 7 

2.2.1 Iterated Prisoner’s Dilemma (IPD) ................................................................. 9 

2.3 REINFORCEMENT LEARNING .......................................................................... 10 

2.3.1 The Q-Learning Algorithm ........................................................................... 11 

2.3.2 The ε-greedy policy ...................................................................................... 12 

2.4 PRECOMMITMENT IN SELF-CONTROL............................................................. 13 

2.4.1 Precommitment implementation using a differential bias ............................ 14 

2.5 SELF-CONTROL AND EMOTIONS ...................................................................... 15 

2.5.1 Self-control and Positive Emotions .............................................................. 16 

2.5.2 Self-control and Negative Emotions ............................................................ 17 

 

 

 

2.1  Self-control 

 

Self-control refers to the ability to regulate and alter one's own responses, including 

thoughts, emotions, and behaviors, in order to achieve internalized goals or standards. 

Self-control is a concept that has received great attention from psychologists, behavioral 

economists, and neuroscientists in the search for its understanding (Muraven et al., 1999) 

and although the exact mechanisms have not been fully defined, the importance of self-

control has been established through numerous studies. For example, a study found that 

young people with high levels of self-control invest more time in academics, have higher 

school attendance and focus, and as a result, earn higher grades (Duckworth & Seligman, 

2005). On the other hand, low self-control has been linked to a variety of problems, such 
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as academic underachievement, unhealthy lifestyle, procrastination, and legal issues 

(Moffitt et al., 2011). 

 

Despite the challenges of self-control, it is not a fixed trait and can be developed and 

improved with practice (Muraven et al., 1999). The study mentioned earlier found that 

students who performed simple self-control tasks regularly for two weeks showed 

significant improvements in their self-control compared to participants who did not 

practice self-control. 

 

2.1.1 The top-down model of self-control 

 

We can think of self-control as a trade-off between short-term and long-term goals and a 

classic example of this dilemma is the choice people face between a larger later (LL) 

reward and a smaller sooner (SS) one. When faced with this dilemma, people have to 

choose whether they want to disregard the larger future reward and settle with the more 

immediate smaller reward, saving them in this way the trouble of waiting but making 

them miss out on a larger reward.  

 

This trade-off has also faced great attention from the field of cognitive neuroscience 

where self-control behavior is thought of as an internal process that occurs within a 

person’s mind - Figure 2.1 (Rachlin, 2000) and is modeled by two agents. The first one 

is the prefrontal cortex (higher brain) which is responsible for rational thinking, and it is 

involved in the process of self-control by assessing the potential consequences of different 

actions before deciding and the second one is the limbic system (lower brain) which is 

responsible for generating emotions and it is involved in self-control by selecting actions 

based on them. 

 

During the model process shown in Figure 2.1, the prefrontal cortex (PFC) and the limbic 

system interact with each other to reach a decision for taking an action. After making this 

decision feedback is received from the external environment in the form of stimuli 

(reward or punishment), guiding the agents toward the desired outcome. The PFC may 

then use information from the stimuli about the potential consequences of different 
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actions, while the limbic system may influence behavior by generating emotional 

responses to the stimuli. 

 

 

Figure 2.1: A model of self-control behavior based upon Rachlin (2000). The PFC interprets the 

state of the environment (1) and with influence from the limbic system, an action is generated (2). 

The action is then rewarded or punished by stimuli from the external environment (3). 

 

2.1.2 Other Approaches to Self-control 

 

While the top-down model of self-control is widely recognized and empirically verified, 

various approaches to self-control highlight other components of the process. The bottom-

up model of self-control, for example, posits that self-control is predominantly driven by 

automatic processes of attention, perception, and response selection rather than deliberate 

decision-making processes (Hofmann et al., 2012). Self-control is viewed as a learned 

talent that is gained by repeated practice and feedback in this paradigm, rather than as a 

fixed attribute. 

 

The strength model is another approach to self-control, which contends that self-control 

is a finite resource that can be exhausted through repeated use, lowering performance on 

subsequent tasks that call for self-control (Baumeister et al., 1998). This model places a 

strong emphasis on the need to conserve and replenish self-control resources through 

tactics like sleep, relaxation, and glucose ingestion. 

 

Despite their differences, all these models acknowledge that self-control is crucial for 

achieving long-term objectives and controlling impulsive behaviors. Each model offers a 

distinctive viewpoint on the underlying self-control mechanisms and suggests various 

methods for enhancing self-control. The top-down model of self-control, however, is 
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especially relevant to my approach because it places a strong emphasis on the use of 

deliberate decision-making processes and cognitive strategies to resist temptation and 

accomplish long-term objectives. 

 

2.2  The Prisoner’s Dilemma (PD) 

 

One of the ways that self-control has been modeled is through the Prisoner's Dilemma 

(PD) game. In the PD game, two agents are faced with a choice between cooperating for 

a common good outcome or defecting for their personal benefit making the perfect way 

to model the internal conflict that happens between the two parts of the brain 

 

The scenario on which the PD game is based is that two suspects are arrested for a crime 

and interrogated by the police. During the interrogation the suspects are given two 

options, to remain silent (cooperate) or to confess by testifying against the other suspect 

(defect). The outcome of the game then breaks down into four main scenarios that are 

dependent on the choices of both suspects. The first scenario is that if one of the suspects 

confesses and the other does not, the confessor will be freed, while the other will be 

sentenced to a longer prison term because of the testification against him (Cooperate – 

Defect). The second scenario can be seen as an exact mirror of the first one where one 

suspect defects and the other cooperates and as a result, the outcomes for each suspect are 

reversed (Defect – Cooperate). The third scenario occurs when both suspects confess and 

they will both receive a shorter prison sentence than if only one of them confesses, but 

still longer than if they both cooperated and remained silent (Defect – Defect). The last 

and most optimal scenario is when both suspects remain silent, in which case they will 

receive the shortest prison term (Cooperate – Cooperate). The dilemma arises from the 

fact that the best outcome, mutual cooperation, is not guaranteed as both suspects may 

choose to defect for personal gain. 

 

Kavka (1991) applied the PD game to show how individuals experience value conflicts. 

The goal is always to maximize their reward. The outcome of the PD game is determined 

by the choices of both agents. If both agents choose to cooperate, the outcome will be a 

common good outcome with a larger reward (lower prison sentence) than if both choose 

to defect. However, if both choose to defect, the reward will be lower than if only one 
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defects. The strategy that is chosen by the players and from which nobody wants to 

deviate is called a Nash equilibrium (Nash, 1950). In the PD game, the Nash equilibrium 

is mutual defection, which is considered the only Nash equilibrium. 

 

In Figure 2.2 we can see the payoff matrix of the Prisoner's Dilemma game, where a 

payoff is calculated based on the combination of actions performed by the agents. Based 

on the matrix there are four main outcomes of the PD game: 

 

1. Both agents cooperate: In this case, both agents receive a Reward payoff (R). 

2. Both agents defect: In this case, both agents receive a Punishment payoff (P). 

3. One agent cooperates and the other defects: In this case, the agent who cooperated 

receives the Sucker's payoff (S) and the agent who defected receives the 

Temptation payoff (T). 

4. One agent defects and the other cooperates: In this case, the agent who defects 

receives the Temptation payoff (T) and the agent who cooperated receives the 

Sucker's payoff (S).  

 

The payoffs must satisfy the following ordering: 

 

Temptation > Reward > Sucker's > Punishment  (1) 

 

This means that the temptation to defect (and receive the highest payoff) is greater than 

the reward for mutual cooperation, which is greater than the sucker's payoff for being the 

only one to cooperate, which is in turn greater than the punishment for mutual defection. 
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Figure 2.2:  The matrix outlines the potential outcomes for each player based on their decision 

to either cooperate or defect. If both players choose to cooperate, they both receive a rewarding 

payoff (R). However, if they both defect, they both receive a punishing payoff (P). On the other 

hand, if one player chooses to cooperate while the other defects, they receive the Sucker's payoff 

and Temptation payoff, respectively. 

 

2.2.1 Iterated Prisoner’s Dilemma (IPD) 

 

A variation of the PD game that is used to model how individuals or agents handle 

decisions in environments where the consequences of each decision will not appear until 

later on in the game, is called the Iterated Prisoners Dilemma (IPD). The main difference 

between the two variations is that a game of IPD is played over multiple rounds allowing 

the players to learn from their previous mistakes before deciding to adapt and achieve the 

best outcome. This way the IPD can provide insights into how cooperation can occur in 

a complex environment. 

 

During each round of the IPD, the agents must decide whether to cooperate or defect 

based on their own self-interest considering that the outcome of each round is affecting 

the reward of the next one. This way the IPD allows agents to follow different strategies 

for making decisions, such as always cooperating or always defecting. 

 

One key characteristic of the IPD that distinguishes it from the standard PD game is the 

payoffs. The payoffs in the IPD satisfy the inequality, 

     

2R > T + S  (2) 
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which means that mutual cooperation is the best outcome for both players overall. This is 

because mutual cooperation leads to a higher total reward (2R) than either player 

defecting (which results in a total reward of T+S). 

 

This feature of the IPD is important because it allows for the possibility of cooperation to 

emerge between the two players over multiple rounds of the game. While the immediate 

temptation to defect may be strong, the possibility of gaining a higher total reward through 

mutual cooperation over time incentivizes players to cooperate with each other. 

 

The IPD has been used to study how cooperation can emerge in complex environments, 

such as in the evolution of cooperation in biological systems. Axelrod and Hamilton 

(1981) conducted a famous tournament of IPD strategies, in which they invited 

researchers to submit their best strategies for playing the IPD. The winning strategy was 

a simple tit-for-tat strategy (cooperating during the first move and then mirroring the 

opponents last move), which showed that cooperation can emerge without central control 

or communication between agents. 

 

In addition to the IPD, other general-sum games such as the Battle of the Sexes game 

(BoS) or Rubinstein's Bargaining Game (RBG) (Rubinstein, 1982) have been used to 

simulate interactions between the higher and lower brain. However, empirical evidence 

suggests that the PD game is currently the optimal option for modeling self-control 

internal conflict as shown in studies conducted by Banfield (2006), Cleanthous (2010), 

and Christodoulou et al. (2010). 

 

2.3  Reinforcement Learning 

 

Reinforcement Learning (RL) refers to a type of machine learning algorithm where we 

have an agent interacting with a dynamic environment through the use of reward signals. 

These signals simulate how humans learn new skills as they observe a new environment 

and think about how to act to achieve their desired goals which are to maximize these 

reward signals (Stone, 2010). This is the main point that distinguishes RL from other 

types of learning such as supervised and unsupervised where the models are trained 
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through labeled data (supervised) and by learning to recognize patterns in a given data 

structure (unsupervised). 

 

In RL, the agent does not know the optimal policy and must explore the environment to 

learn through trial and error. This exploration-exploitation trade-off is essential in RL, as 

the agent must balance between exploring new actions to learn and exploiting its current 

knowledge to achieve its goal (Woergoetter & Porr, 2008).  

 

Finally, for our model, we use Temporal-difference (TD) learning which is a popular RL 

algorithm that combines the benefits of both dynamic programming (DP) and Monte 

Carlo methods. TD methods learn directly from raw experience and update estimates 

without waiting for the outcome like DP. The update rule of TD is based on the Bellman 

equation and can be expressed as follows (Sutton, 1988): 

 

V(St) ← V(St) + a [ Rt+1 + γ V(St+1) −V(St)]  (3) 

 

In equation 1, α refers to the constant step-size parameter, γ to the discount factor, Rt+1 to 

the newly obtained reward, V(St) to the current state’s estimated value, and V(St+1) to the 

next state's estimated value. 

 

2.3.1 The Q-Learning Algorithm 

 

One of the classic model-free algorithms for reinforcement learning from delayed reward 

is the Q-Learning algorithm (Watkins, 1989). It is one of the most basic methods to 

estimate Q-value functions and its update rule is based on the sum of two parts at the end 

of each step. The update rule is as follows: 

 

Q(St, At) ← Q(St, At) + η [ Rt+1 + γ maxaQ(St+1, a) - Q(St, Αt) ]  (4) 

 

where Q(St, At) is the new Q-value of the state-action pair. At time t+1, it makes a useful 

update by using the observed reward Rt+1 by taking action At, state St and the discounted 

estimate of optimal future reward. That is, the term maxaQ(St+1, a) returns the maximum 

Q-value in the next state St+1 over all actions a. This future reward is discounted by the 
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parameter γ ∈ [0, 1]. Values of the γ parameter closer to 0 indicate that the agent focuses 

on the immediate (or SS) rewards, whereas values closer to 1 indicate that the agent 

focuses on the future (or LL) rewards. The η term is the learning rate, which determines 

to what extent we weigh the two parts of the sum into the new Q-value. 

 

Taking the maximum across all actions makes learning independent of the starting policy 

and allows keeping this policy throughout the whole learning process. This is the reason 

Q-Learning is an off-policy TD control algorithm, in contrast to the state, action, reward, 

state, action (SARSA) method (Rummery & Niranjan, 1994), which continuously updates 

its policy during learning (on-policy update). In other words, the Q-Learning update rule 

guarantees that the optimal policy and the optimal value function are found, a property 

that makes convergence control much easier. 

 

The effectiveness of the Q-learning algorithm, when applied to non-spiking neural 

networks to simulate self-control, was first demonstrated by Vassiliades et al. (2011). 

Later, a simple Q-Learning model as well as the SARSA method were deployed by 

Georgiou (2015) to simulate self-control behavior and examine its relationship with 

consciousness. Georgiou’s (2015) results showed that the agents learned to exercise self-

control more easily with the Q-Learning algorithm in comparison with the SARSA 

algorithm. The SARSA method had good results only when it was combined with hill-

climbing techniques. For the purposes of this thesis, we will only deploy the Q-learning 

algorithm since it is more effective, as previous work revealed, and it is more easily 

handled. 

 

2.3.2 The ε-greedy policy 

 

The exploration-exploitation dilemma is a crucial issue in reinforcement learning, as 

agents must balance exploring new options and exploiting their current knowledge to 

maximize rewards. One common solution to this problem is the ε-greedy policy (Sutton 

& Barto, 2018). This policy works by choosing an action based on the probability of 

exploring new options (ε) versus exploiting the current knowledge (1-ε). 
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When applying the ε-greedy policy, the agent selects an action randomly with probability 

ε, which may result in exploring new moves and payoffs. Alternatively, the agent selects 

the action with the highest estimated value (based on past experiences) with probability 

1-ε, which means that it will exploit its current knowledge to maximize rewards. This 

way ε can determine the balance between exploring and exploiting past knowledge and 

is often set to a small enough value allowing that way for some exploration from the 

agent. 

 

The ε-greedy policy is widely used in reinforcement learning and has been applied in 

many applications, including robotics (Kober et al., 2013) and game playing (Silver et al., 

2016). Despite its popularity, the ε-greedy policy is not without limitations. For example, 

it may not be suitable for problems where the optimal action changes frequently, or in 

cases where exploration is essential to finding the optimal solution (Sutton & Barto, 

2018). 

 

2.4  Precommitment in Self-control 

 

Precommitment is a strategy used to overcome short-term temptations in favor of long-

term goals by deciding in advance to influence future behavior (Ainslie, 1975). The main 

idea is that binding oneself to a certain set of actions will make it much harder to deviate 

from that course later on. This is why precommitment is also thought of as a form of self-

regulation, as it sets up barriers from temptations. It is also worth noting that 

precommitment can be viewed as costly, as it may restrict flexibility and impede 

spontaneous decision-making which can have implications for individual well-being and 

autonomy. 

 

Concerning self-control, precommitment can be thought of as a way of overcoming the 

temptation to engage in short-term and impulsive behaviors and instead follow through 

on the long-term goals you have set. One example of this is a person who wants to lose 

weight can pre-commit to steering away from buying junk food or make a commitment 

to exercise regularly making it that way harder for them to deviate from their long-term 

goal.  
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Finally, while precommitment can be an effective way to follow through on our long-

term goals, it is important to acknowledge that it can also have limitations and costs 

associated with it. Thaler & Shefrin (1981) argue that precommitment can be costly 

because it involves modifying an individual's preferences in order to achieve a desired 

outcome thus limiting flexibility, which can have implications for individual well-being 

and autonomy. However, research by Banfield (2006) on the topic of precommitment and 

self-control using a computational model showed that increasing precommitment can lead 

to a higher probability of cooperating with oneself in the future and this way leading to 

self-control behavior. This suggests that the benefits of precommitment may outweigh 

the costs and that it can be an effective way to overcome short-term temptations and 

achieve long-term goals.  

 

2.4.1 Precommitment implementation using a differential bias 

 

This chapter will focus on Banfield's (2006) self-control model using a differential bias 

to simulate the effect of precommitment on the model. The experiment used a 

computational model that competed in games where the payoffs were not entirely 

unfavorable or entirely favorable to either part of the brain (PFC and the limbic system) 

and a payoff matrix was used to calculate the payoffs for two artificial neural networks 

(ANNs) during the game. The matrix included a differential bias, represented by the 

symbol ψ, which simulates the effect of precommitment on the model and is added only 

to the diagonal terms of the matrix (Figure 2.3). 

 

The purpose of the experiment was to examine the effect of modeling a bias towards 

future long-term rewards as a variable bias applied to the payoff. This bias, with a value 

between 0 and 1, was assigned to the payoff matrix for both ANNs to calculate the 

differential payoff and is fixed for the duration of the trial. 

 

The research results showed that by increasing precommitment, which biases choices 

towards a larger reward in the future, the probability of cooperating with oneself in the 

future increases suggesting that precommitment can enhance self-control as it promotes 

long-term goals. Furthermore, the study was able to show that the level of the differential 
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bias had a high correlation with the level of cooperation between the ANNs. More 

specifically, as the differential bias increased, the level of cooperation also increased 

which suggests that the strength of one's commitment towards a long-term goal highly 

determines how effective the use of precommitment is as a strategy for achieving self-

control. 

 

 

 

 

Figure 2.3:  A bias towards future rewards implemented as a differential bias ψ  applied to the 

payoff matrix. 

 

2.5  Self-control and Emotions  

 

Nikodemou (2020) discusses the role of emotions in self-control, drawing on the 

cognitive arousal theory by Schachter and Singer (1962) and the work of computational 

neuroscientist Edmund T. Rolls (2018). Emotions are defined as complex mental 

constructions that motivate thoughts and behavior and are often indicators of how well a 

person adapts to challenges in their environment. According to Schachter and Singer 

(1962), emotions occur when a person feels aroused due to an event that is appraised as 

concern-relevant in a specific way. 

 

Rolls’ (2018) approach suggests that emotions are states elicited by rewards and 

punishers, or instrumental reinforcers, with rewards being anything for which one will 

work and punishers being anything that one will try to escape or avoid. For our 

computational model of self-control Nikodemou (2020) explains that the values of the 

payoff matrix, including Temptation, Reward, Sucker's, and Punishment values, serve as 

rewards and punishers that cause the agents' emotions. Positive emotions are elicited by 
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positive rewards, such as a warm hug, while negative emotions are elicited by negative 

punishers, such as the death of a loved one. 

 

Nikodemou (2020) notes that events unrelated to a task can also influence one's emotional 

state and impair self-control abilities, affecting overall performance. For example, a 

student who is experiencing psychological pain due to a loved one's declining health or 

being bullied may receive negative feedback or fail on other school-related assignments, 

affecting their emotions and behavior. These internally generated emotions can affect all 

decisions, actions, and behavior. 

 

2.5.1 Self-control and Positive Emotions 

 

As Nikodemou’s (2020) model suggests, positive emotions are a necessary component in 

computational models of self-control. Additionally, researchers propose that positive 

emotions also have a great impact on a person’s self-control as they can help restore their 

capabilities allowing them that way to exert self-control with greater ease (Baumeister et 

al., 2007; Ren et al., 2010; Tice et al., 2004).  

 

More specifically, Nikodemou’s (2020) computational model of self-control is modeled 

in a way that incorporates positive emotions proving that they play a key role in 

determining the degree of self-control a person exhibits as they provide the ability to resist 

immediate temptations. This aligns with previous research that suggests that positive 

emotion can help individuals better control their urges and resist temptations to achieve 

their desired goals (Hofmann et al., 2012). 

 

Furthermore, Nikodemou (2020) also notes that the context as well as the type of 

emotions also play a key role in experiencing self-control as people that experience 

positive emotions which are related to one’s goals can be beneficial for self-control but 

positive emotions which are unrelated to one’s goal can have the opposite effect. Two 

examples can be someone who is feeling excited about achieving a long-term goal (related 

emotion) and someone who is just feeling happy after eating a chocolate (unrelated 

emotion). 
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2.5.2 Self-control and Negative Emotions 

 

While positive emotions can help people gain better control of their behavior by restoring 

their self-control resources, negative emotions can lead to their depletion (Baumeister et 

al., 2007; Nikodemou, 2020) making them a crucial component in a self-control model. 

However, their impact is complex as Nikodemou (2020) shows through her 

computational model of self-control. 

 

In addition,  Nikodemou's (2020) computational model of self-control incorporates 

negative emotions and suggests that the impact of negative emotions on self-control may 

depend on the context and the type of emotion experienced. For example, emotions like 

guilt and shame can be more effective at promoting self-control behavior than emotions 

such as anger and sadness which aligns with previous research that has found guilt and 

shame to be associated with increased self-control and better decision-making (Tangney 

et al., 2007). In addition, as mentioned before Nikodemou's (2020) model also suggests 

that negative emotion leads to a depletion of self-control resources making individuals 

more inclined to choose instant satisfaction over long-term rewards which is again 

something that is in line with previous findings (Baumeister et al., 2007). 

 

Nonetheless, it is important to note that the impact of negative emotions on self-control 

is not always negative as there are some cases where negative emotions can enhance self-

control, especially in cases where the emotions are related to an individual’s goals (Tamir, 

2016). For example, when confronted with an obstacle that gets in the way of achieving 

your desired long-term goal, feeling angry or frustrated can motivate you to persist in 

overcoming it. 

 

 

 

 

 

 

 

 



 
 18   
 

Chapter 3 

 

Design and Implementation 
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3.1  Introduction 

 

In this chapter, we will discuss a computational model that simulates the connection 

between emotions and precommitment in a self-control model. Similar to the work of 

Georgiou (2015), we are using the Q-Learning algorithm to develop an agent that 

competes in games with variable payoffs. However, we are also implementing the concept 

of precommitment as introduced by Banfield (2006) into the model. The precommitment 

is simulated by adding a differential bias, denoted by psi (ψ), to the diagonal terms of the 

payoff matrix used in the game. This allows us to investigate how emotions and 

precommitment interact to influence decision-making in the model. The programming 

language used for the implementation of the model is Java, and two main classes are being 

used: Player and MainProgram, which were developed by Georgiou (2015) and extended 

by Nikodemou (2020). 

 

3.2  Simulating precommitment  

 

Psychologists have long studied the concept of self-control and believe that 

precommitment is a useful technique to help individuals overcome self-control problems 

and stick to their goals or plans. Banfield's (2006) empirical research provides further 

support for this concept. This is why, in my implementation, I have incorporated the effect 
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of precommitment using a parameter called "psi" on the model. The value of ψ is defined 

at the beginning of the testing and is fixed for the duration of the testing having each 

player learn to make decisions that are consistent with the level of precommitment (ψ = 

0.01 for low level of precommitment and ψ = 0.9 for high level of precommitment). The 

decision to utilize such a small value for low precommitment (0.01) is based on the 

understanding that even a slight inclination towards immediate rewards can impact 

decision-making and self-control. This choice aligns with the empirical research 

conducted by Banfield (2006), where the same value was employed to study the impact 

of low precommitment. 

 

The value of ψ represents a differential bias that is applied to the payoff matrix to calculate 

the differential payoff. As Banfield (2006) notes, low levels of precommitment can make 

it difficult for individuals to stick to their goals or plans, while high levels of 

precommitment can help individuals stay on track and achieve their desired outcomes. It 

is also worth noting that while precommitment affects the same two out of the four payoff 

values as emotions do it has a distinct meaning because it is added at the beginning of the 

game and remains fixed for the duration of the game in contrast with emotions which are 

added at different intervals throughout the game.  

 

In the implementation, ψ is added or subtracted to the corresponding matrices of each 

agent using the equations lower.setPayoff_matrix(R, T-psi, S+psi, P) for the agent 

simulating the lower part of the brain and higher.setPayoff_matrix(R, S-psi, T+psi, P) for 

the agent simulating the higher part of the brain. By doing this, the player values more 

immediate rewards (higher S value) and fewer future rewards (lower T value) in the case 

of the lower player, and more future rewards (higher T value) and fewer immediate 

rewards (lower S value) in the case of the higher player. 

 

This way, the behavior (C, D) is promoted, making it more similar to the reward for 

mutual cooperation for the agent simulating the higher part of the brain. Similarly, the 

behavior (D, C) is also promoted, making it more similar to the reward for mutual 

defection for the agent simulating the lower part of the brain. As a result, instead of four 

classes of rewards, the players are faced with just two, one with a tendency for 
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cooperation and one with a tendency for defection, making it easier to choose the one for 

mutual cooperation.  

 

3.3  Simulating emotions  

 

For my research, I am following the implementation of Nikodemou's (2020) Q-learning 

model that simulates emotions by manipulating the values of the payoff matrix. The idea 

behind this approach is that positive emotions can promote self-control, while negative 

emotions can impair it. 

 

To simulate the presence of positive emotions, Nikodemou (2020) incrementally 

increased the R payoff (positive reinforcement) and decreased the T payoff while 

incrementing the P and S payoffs (negative reinforcement). This means that cooperative 

behavior was more rewarded (higher R payoff), and defective behavior was more 

punished (lower T payoff). By doing this, the model was encouraged to learn cooperative 

behaviors and avoid defection. 

 

Conversely, to simulate the presence of negative emotions, Nikodemou (2020) 

incremented the T payoff while decrementing the P and S payoffs (positive punishment) 

and decremented the R payoff (negative punishment). This means that cooperative 

behavior was punished more (lower R payoff), and defective behavior was rewarded more 

(higher T payoff). By doing this, the model was encouraged to learn defective behaviors 

and avoid cooperation. 

 

Nikodemou (2020) experimented with different ratios in which the values of the payoff 

matrix were changed and the number of rounds that elapsed before changing the values 

again. By doing so, the model was able to simulate different emotional states such as 

happiness, anger, fear, and sadness. 

 

Additionally, Nikodemou (2020) used different approaches to simulate emotions. For 

example, to simulate happiness, Nikodemou (2020) increased the Reward value for 

mutual cooperation. To simulate anger, Nikodemou (2020) increased the Temptation 

value for mutual defection. To simulate fear, Nikodemou (2020) decreased the Sucker 
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value for being exploited by the opponent. To simulate sadness, Nikodemou (2020) 

decreased the Reward value for mutual cooperation. 

 

This approach allows for the modeling of emotional states in decision-making scenarios, 

which can provide insight into the role of emotions in shaping behavior. It also provides 

a framework to investigate the effect of emotions on learning and decision-making 

processes. 

 

3.4  The Q-Learning agents  

 

The Q-Learning agents in the implementation are represented by instances of the Player 

class, and they are designed to simulate the interaction between the lower and higher parts 

of the brain through the IPD game. Each agent corresponds to one of these parts and has 

its own set of parameters, including the learning rate (η), epsilon value (ε) for the ε-greedy 

policy, discount factor (γ), Q-table for state-action pairs, payoff matrix, and current action 

taken by the agent. The discount factor is set differently for each agent to distinguish 

between them, as explained in Section 2.3.1. 

 

The Q-table has dimensions of 4 rows and 2 columns, signifying the 4 possible states 

(CC, CD, DC, DD) and 2 actions (C, D) available to the agent. The Player class 

constructor initializes the Q-table and payoff matrix. Moreover, the class contains 

methods for setting and getting the values of each agent's parameters as shown in equation 

(3). 

 

To address the exploration-exploitation dilemma, the e-greedy policy (Section 2.3.2) is 

used, which is implemented in the choose_action() method of the Player class. This 

method uses the epsilon value and the Q-values in the Q-table to determine whether the 

agent should choose a random action (explore) or exploit the Q-values to pick the most 

optimal action. 

 

The update_Q() method is the central component of the Q-Learning algorithm and is 

responsible for updating the Q-values in the Q-table based on the rewards received from 



 
 22   
 

the IPD game. This method employs the update rule discussed in Section 2.3.1 to modify 

the values in the Q-table and promote learning for the agents. 

 

3.5  The Q-Learning model  

 

The Q-learning model is implemented in the MainProgram class, which initializes three 

arrays to hold the states, rewards, and overall payoff of the agents during learning. Each 

agent is created through the Player class constructor, where the payoff matrix values for 

both agents and the epsilon value for the epsilon-greedy exploration are set. For the first 

500 rounds of the game, the value of epsilon for both agents is set to 0.1, which means 

that each agent will randomly select an action with a probability of 10%. However, for 

the next 500 rounds, the value of epsilon is set to 0, which means that both agents will 

always select the action that has the highest estimated value according to their Q-values. 

This change in the epsilon value allows the agents to explore the environment and learn 

from their experiences in the early stages of the game, while gradually shifting towards a 

more deterministic strategy as they gain more knowledge about the game. The discount 

factor (γ) is also set for each agent, with the agent representing the lower part of the brain 

(limbic system) having a discount factor of 0.1, which focuses on short-term rewards, and 

the agent representing the higher part of the brain (prefrontal cortex) having a discount 

factor of 0.9, which focuses on long-term rewards. 

 

The parameters that define how the values of the payoff matrix change are then set. These 

parameters include the ratios for the Punishment value (ratio_P), the Reward value 

(ratio_R), the Sucker's value (ratio_S), the Temptation’s value (ratio_T), the number of 

rounds (rounds) that need to elapse between each usage of the ratios and the ψ value (psi) 

used in the initialization of the matrix to simulate the existence of precommitment. It is 

important to note here that the update of each value of the payoff matrix takes place only 

if the two rules of the IPD game are satisfied. 

 

The program then runs for 15 trials of 1000 episodes each, and the results are stored in 

text files for further analysis. At each round, both agents select an action based on their 

current state, which is used to update their Q-table. During learning, the state and reward 

obtained by each agent at each round are saved in the arrays. After 1000 episodes, the 
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results are uploaded to two text files, payoffs.txt, and states.txt. The payoffs.txt file 

contains three columns that show the accumulated payoff of the lower brain agent, higher 

brain agent, and their sum, respectively. The states.txt file contains four columns that 

show the average percentage of the frequency of the CC, CD, DC, and DD states, 

respectively. 

 

To analyze the data, two types of figures are produced. The first figure is a line plot with 

four traces, one for each outcome, which shows how the changing payoff values affect 

the outcomes throughout the rounds. For example, it shows whether one outcome is 

surpassed by the other and on which round, or how fast the system converges to a certain 

outcome. The second figure is a bar plot that shows the overall average outcomes, which 

is the percentage of the appearance of each state. This chart only shows the difference 

between the outcomes and which state dominated at the end.  
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4.1 Introduction 

 

This chapter tests the effectiveness of the methods described in Chapter 3 in simulating 

emotions and precommitment in a self-control model. Q-learning agents will compete in 

a game of IPD, exposed to emotional stimuli and precommitment in order to assess how 

emotions and precommitment impact the agents' decision-making and ability to exercise 

self-control. 
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4.1.1 Constant payoff matrix 

 

This section establishes the baseline results for our future experiments, using a constant 

payoff matrix (Figures 4.1.1-4). The model of self-control we are using, as described in 

the thesis of Georgiou (2015), and enhanced later on by Nikodemou (2020), sets the 

learning rate and epsilon value of 0.1 for the first 500 rounds, and 0 for the remaining 500 

rounds for both agents. In addition, the γ parameter, or the discount factor, is set to 0.1 

for the lower agent and 0.9 for the higher agent as values of the γ parameter closer to 0 

indicate that the agent focuses on the immediate (or SS) rewards, whereas values closer 

to 1 indicate that the agent focuses on the future (or LL) rewards. The initial payoff matrix 

values for all experiments are T=5, R=4, P=-2, S=-3, which correspond to “an internal 

conflict of moderate intensity” (Cleanthous, 2010). This indicates that the choices 

presented to the agents involve a moderate level of conflict, where neither the options are 

clear and straightforward (strong conflict) nor excessively complex or similar (weak 

conflict). The model runs 15 trials of the IPD game, with each game consisting of 1000 

rounds (500 rounds before and 500 after). Two types of figures are produced for our 

experiment. Figure 4.1.1 presents the average of the outcomes and Figure 4.1.2 shows the 

average outcomes after 1000 rounds under low precommitment. Similarly, Figure 4.1.3 

presents the average of the outcomes and Figure 4.1.4 shows the average outcomes after 

1000 rounds under high precommitment. In analyzing the results, it is important to note 

that when the percentage of CC (Cooperate-Cooperate) states exceeds 50%, it indicates 

that self-control is achieved, as both agents consistently choose cooperation over 

defection. 

 

 

 

 

 

 



 
 26   
 

 

Figure 4.1.1: Average outcomes CC, CD, DC, and DD during 1000 rounds of the Q-learning 

agents playing the IPD game with the constant payoff matrix T=5, R=4, P=-2, S=-3, under low 

precommitment. 

 

 

Figure 4.1.2: Overall average outcomes of CC, CD, DC, and DD during 1000 rounds of the Q-

learning agents playing the IPD game with the constant payoff matrix T=5, R=4, P=-2, S=-3, 

under low precommitment. 
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Figure 4.1.3: Average outcomes CC, CD, DC, and DD during 1000 rounds of the Q-learning 

agents playing the IPD game with the constant payoff matrix T=5, R=4, P=-2, S=-3, under high 

precommitment. 

 

 

 

 

 

Figure 4.1.4: Overall average outcomes of CC, CD, DC, and DD during 1000 rounds of the Q-

learning agents playing the IPD game with the constant payoff matrix T=5, R=4, P=-2, S=-3, 

under high precommitment. 
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4.2  Simulating Precommitment in a Positive Emotional State 

 

In 4.1.1, we used a constant payoff matrix to produce the baseline results, and the model 

is now ready to be tested with a non-constant matrix in order to test whether 

precommitment paired with positive emotions improve self-control or impair it. In order 

to simulate the level of precommitment the value of ψ will be alternating between 0.01 

and 0.9 and for the presence of positive emotions, some payoff matrix values (T, R, P, S) 

will gradually change through the 1000 rounds of the IPD game. More specifically, 

positive emotional state is affected by the increment or decrement between each value 

(positive intensity value or negative intensity value) and the number of rounds between 

each change (interval of change). The same initial payoff matrix, learning rates and 

epsilon values as in section 4.1.1 are being used. 

 

4.2.1 Increasing the Reward payoff 

 

We implemented two different scenarios to simulate the increment of the Reward payoff 

in different levels of precommitment. By increasing the R value, we establish a stronger 

connection with positive emotions, as individuals are more motivated and rewarded for 

engaging in cooperative behaviors. The first scenario was a moderate positive intensity 

value (0.25) in moderate interval of change (25 rounds). The results were promising as 

they showed that the combination of a moderate positive intensity value, moderate 

increment, and high levels of precommitment (ψ=0.9) provides better results in contrast 

with low precommitment (ψ=0.01). By comparing the graphs in Figure 4.2.1 with the 

baseline results we can see that there is a slight increment in low precommitment without 

it managing to reach self-control (49.7%) while high precommitment achieves a 

percentage of 59.7% in CC states 
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Figure 4.2.1: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 1000 

rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.25, Interval=25 rounds. 

 

For the second scenario we tried a small positive intensity (0.1) in an infrequent interval 

(50 rounds). The results in Figure 4.2.2 showed an small change in low precommitment 

(ψ=0.01) with 50.5% in CC states, thus achieving self-control and a rather significant one 

in high precommitment (ψ=0.9) reaching 72.3% in CC states. Therefore, a smaller 

positive intensity value given infrequently paired with high precommitment status 

improves self-control behavior. 
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Figure 4.2.2: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 1000 

rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.1, Interval=50 rounds.       

 

4.2.2 Increasing the Punishment payoff        

 

We implemented three different scenarios to simulate the increment of the Punishment 

payoff in different levels of precommitment and thus simulating the decrement of 

negative emotional states. Increasing the Punishment value implies stronger penalties for 

defective behaviors thus discouraging individuals from engaging in actions that go 

against cooperative behavior. The first scenario was a small positive intensity value (0.1) 

in a small interval of change (10 rounds). The results showed that high interval with the 

combination of small positive intensity value, and high levels of precommitment (ψ=0.9) 

managed to achieve self-control rather than with low precommitment (ψ=0.01) where 

self-control behavior was not achieved (Figure 4.2.3). By comparing the graphs in Figure 

4.2.3 with the baseline results we can see that there is a large decrement in low 

precommitment and a small decrement in high precommitment (52%). 

 

Figure 4.2.3: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 1000 
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rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.1, Interval=10 rounds. 

 

For the second scenario we tried a small positive intensity value (0.1) in a large interval 

of change (50 rounds). The results in Figure 4.2.4 showed a change in both low (53.4%) 

and high precommitment (61.0%) testings with both of them achieving self-control and 

exceeding the baseline results. Therefore, a smaller positive change given infrequently 

paired with high precommitment status achieves self-control behavior, but it is not as 

effective as increasing the R value paired with high precommitment. 

 

 

 

 

 

Figure 4.2.4: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 1000 

rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.1, Interval=50 rounds. 

 

 

Lastly, for the third scenario we compared the average outcomes CC, CD, DC, and DD 

during the 1000 rounds between a small positive intensity value (0.1) in a high interval 

(50 rounds) and a large positive intensity value (0.5) in a high interval (50 rounds). Both 

outcomes were obtained in high precommitment status (ψ=0.9), and we can see that the 
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model that received a smaller positive intensity value (Figure 4.2.5) in Punishment 

consistently provided better results than the one with a larger intensity value (Figure 

4.2.6). 

 

 

 

Figure 4.2.5: Average of the outcomes CC, CD, DC, and DD during 1000 rounds of the Q-

learning agents playing the IPD game under high precommitment. Increasing the P payoff. 

Positive Intensity value=0.1, Interval=50 rounds. 
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Figure 4.2.6: Average of the outcomes CC, CD, DC, and DD during 1000 rounds of the Q-

learning agents playing the IPD game under high precommitment. Increasing the P payoff. 

Positive Intensity value=0.5, Interval=50 rounds. 

 

 

 

4.2.3 Increasing the Sucker’s payoff 

 

We implemented three different scenarios to simulate the increment of the Sucker’s 

payoff in different levels of precommitment and thus simulating the decrement of 

negative emotional states. Increasing the Sucker's payoff (smaller negative value) 

promotes cooperation by reducing vulnerability and  negative emotions associated with 

exploitation. The first scenario was a small positive intensity value (0.1) in a small 

interval of change (10 rounds). The results showed that high frequency with the 

combination of small intensity, and high levels of precommitment (ψ=0.9) managed to 

achieve self-control rather than with low precommitment (ψ=0.01) where we had a total 

self-control failure. By comparing the graphs in Figure 4.2.7 with the baseline results we 

can see that there is a large decrement in low precommitment and a small decrement in 

high precommitment (51.9%). 

 

Figure 4.2.7: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 1000 

rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.1, Interval=10 rounds. 
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For the second scenario we tried a small positive intensity value (0.1) in a large interval 

of change (50 rounds). The results in Figure 4.2.8 showed a significant change in both 

low (ψ=0.01)  and high precommitment (ψ=0.9) testing with low making a big leap 

towards achieving self-control (45.3%) and in the case of high precommitment 

overpassing the baseline results with a percentage of 67% in CC states. Therefore, a 

smaller positive change given infrequently paired with high precommitment status 

achieves self-control behavior, but again it is not as effective as increasing the R value 

paired with high precommitment. 

 

 

 

 

Figure 4.2.8: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 1000 

rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.1, Interval=50 rounds. 

 

 

Lastly, for the third scenario we compared the average outcomes CC, CD, DC, and DD 

during the 1000 rounds between a small positive intensity value (0.1) in a high interval 

of change (50 rounds) and a large intensity value (0.5) in a high interval (50 rounds). Both 

outcomes were obtained in high precommitment status (ψ=0.9), and we can see that the 

model that received a smaller increment (Figure 4.2.9) in Sucker’s consistently provided 

better results than the one with a larger increment (Figure 4.2.9). 
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Figure 4.2.9: Average of the outcomes CC, CD, DC, and DD during 1000 rounds of the Q-

learning agents playing the IPD game under high precommitment (ψ=0.9). Increasing the P 

payoff. Positive Intensity value=0.1, Interval=50 rounds. 

 

 

Figure 4.2.10: Average of the outcomes CC, CD, DC, and DD during 1000 rounds of the Q-

learning agents playing the IPD game under high precommitment (ψ=0.9). Increasing the P 

payoff. Positive Intensity value=0.5, Interval=50 rounds. 
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4.2.4 Decreasing the Temptation payoff 

 

Another way of implementing positive emotional state is through the decrement of 

negative aspects as is Temptation (T payoff). Lowering the T payoff decreases the 

attractiveness of selfish behavior, leading to positive emotional states and encouraging 

cooperative actions. For the decrement of Temptation, we tried using the results obtained 

from Section 4.2.1 to see whether there is a correlation between increment and decrement 

of payoffs. That is why for our first scenario we used a moderate negative intensity value 

(0.25) in moderate interval of change (25 rounds). The results made it challenging to draw 

conclusive comparisons because even though self-control is achieved the graphs showed 

great similarity between the two levels of precommitment (Figure 4.2.11). 

 

Figure 4.2.11: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Negative Intensity value=0.25, Interval=25 rounds. 

 

 

For the second scenario we tried a small negative intensity value (0.1) in a large interval 

of change (50 rounds). The results in Figure 4.2.12 showed an insignificant change in low 

precommitment (53.9%) and a rather significant one in high precommitment (ψ=0.9) 

reaching 65.7% in CC states. Therefore, a correlation between the small infrequent 



 
 37   
 

increment of Reward and the small infrequent decrement of Temptation paired with high 

precommitment appears to exist as it improves self-control behavior. 

 

 

 

Figure 4.2.12: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.1, Interval=50 rounds. 

 

 

4.2.5 Decreasing the Temptation and increasing the Punishment and Sucker’s 

payoff 

 

The last used method was a combination of the three previous methods for the decrement 

of negative emotion, that is decreasing the T and increasing the P and S, all at the same 

time while changing the precommitment status in each testing to see under which scenario 

we produce the best results. We set the intensity value to 0.1 for all the three values, since 

for all three it was the value that gave the best performance and a 50 rounds interval to 

provide an large interval of change. As expected the results showed the best performance 

out of all the methods for both low and high precommitment by reaching 60.4% and 75% 

respectively (Figure 4.2.13). 
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Figure 4.2.13: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Negative Intensity value=0.1 for T payoff, Positive Intensity value=0.1 for S, P payoffs 

Interval=50 rounds   

 

One could argue that the approach of increasing temptation and decreasing punishment 

and sucker's payoff follows a similar principle to incorporating precommitment into the 

lower agent, as described in Section 3.2. In order to gain a deeper understanding of the 

individual effects of precommitment and emotions, it would be valuable to establish a 

new baseline scenario where precommitment is entirely excluded. By comparing the 

results of this new baseline with the previous approach that involved precommitment, we 

can observe the significant impact of precommitment on achieving self-control. The 

baselines, which did not incorporate precommitment, managed to reach a success rate of 

57.1% (Figure 4.2.14). This comparison underscores the importance of precommitment, 

as it clearly demonstrates that precommitment and emotions have distinct and 

complementary effects in promoting self-control. 
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Figure 4.2.14: Overall average outcomes after 1000 rounds of the Q-learning agents playing the 

IPD game with no precommitment (ψ=0). Negative Intensity value=0.1 for T payoff, Positive 

Intensity value=0.1 for S, P payoffs Interval=50 rounds   

 

4.2.6 Summary and discussion on Precommitment in a Positive Emotional State 

 

The first method used to test self-control was to increase the presence of positive emotions 

through positive reinforcement (increased R) at different levels of precommitment. The 

results indicated that positive reinforcement, when paired with high precommitment, had 

a significant impact on achieving self-control behavior compared to low precommitment 

(Figure 4.2.1). This effect was particularly pronounced when the interval of change 

(rounds) was sufficiently large, and the positive intensity value was small enough to 

provide a smaller magnitude at a more infrequent rate (Figure 4.2.2). The same pattern 

was observed when negative reinforcement methods were used to ease internal conflict 

(decreased T) and explicitly eliminate negative emotions (increased P, S) at different 

levels of precommitment. More specifically, a negative intensity value of 0.1 for T 

(Figure 4.2.12) and positive intensity value of 0.1 for P and S (Figures 4.2.4 & 4.2.8) was 

found to be the most effective when given infrequently in a high precommitment state, as 

values greater than this impaired self-control behavior and, in some cases, led to total 

self-control failure. Finally, as it was expected when combining the results of all three 

methods of negative reinforcement in both low and high precommitment self-control was 

achieved with high precommitment achieving the highest percentage of CC states of 75% 
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(Figure 4.2.13). Overall, the results showed that precommitment paired with positive 

emotions can be an effective strategy to improve self-control behavior. 

 

 

Payoff Value Precommitment Intensity Interval CC states 

Reward (R) Low (ψ=0.01) Positive (0.1) 50 rounds 50.5% ▲ 

Reward (R) High (ψ=0.9) Positive (0.1) 50 rounds 72.3% ▲ 

Punishment (P) Low (ψ=0.01) Positive (0.1) 50 rounds 53.4% ▲ 

Punishment (P) High (ψ=0.9) Positive (0.1) 50 rounds 61.0% ▲  

Sucker (S) Low (ψ=0.01) Positive (0.1) 50 rounds 45.3% ▼ 

Sucker (S) High (ψ=0.9) Positive (0.1) 50 rounds 67.0% ▲ 

Temptation (T) Low (ψ=0.01) Negative (0.1) 50 rounds 53.9% ▲ 

Temptation (T) High (ψ=0.9) Negative (0.1) 50 rounds 65.7% ▲ 

P, S & T 

Combined 
Low (ψ=0.01) 

Positive (0.1) 

for P & S 

Negative (0.1) 

for T 

50 rounds 60.4% ▲ 

P, S & T 

Combined 
High (ψ=0.9) 

Positive (0.1) 

for P & S 

Negative (0.1) 

for T 

50 rounds 75.0% ▲ 

 

Figure 4.2.15: Summary of the best results of each scenario tested in relation to the affected 

payoff value, the level of precommitment, intensity and interval of change. The outcome is given 

in the form of a percentage indicating the overall percentage of CC states achieved throughout 

the course of the game. The symbols "▲" and "▼" indicate whether self-control was achieved or 

not, respectively, with "▲" denoting successful self-control (percentage exceeding 50%) and "▼" 

indicating a lack of self-control. 
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4.3 Simulating Precommitment in a Negative Emotional State 

 

We have tested whether precommitment paired with positive emotions improves self-

control or impairs it, now we can test the same regarding negative emotions. In order to 

simulate the level of precommitment the value of ψ will be again alternating between 0.01 

and 0.9 and for the presence of negative emotions, some payoff matrix values (T, R, P, 

S) will gradually change through the 1000 rounds of the IPD game. More specifically, 

negative emotional state is affected by increment or decrement between each value 

(positive intensity value or negative intensity value) and the number of rounds between 

each change (interval of change). Again, the same initial payoff matrix, learning rates and 

epsilon values as in section 4.1.1 are being used. 

 

4.3.1 Decreasing the Reward payoff 

 

We implemented two different scenarios to simulate the decrement of the Reward payoff 

in different levels of precommitment. By decreasing the R value, the connection with 

positive emotions weakens, as individuals receive fewer rewards and motivation for 

engaging in cooperative behaviors diminishes. Following our previous findings on 

increasing the reward payoff we tested a small negative intensity value (0.1) in a large 

interval of change (50 rounds). The results were promising as they showed that high 

precommitment (ψ=0.9) is sufficient enough to counter the subtle decrement in positive 

emotional state when given in an infrequent rate (Figure 4.3.1) in contrast with low 

precommitment (ψ=0.01) where self-control was not sustained through the course of the 

game and was, in the end, not achieved (Figure 4.3.2). By comparing the graphs in Figure 

4.3.1 with the baseline results we can see that there is a decrement in low precommitment 

with CC state reaching only 39.6% whereas high precommitment manages to achieve a 

percentage of 58.4% in CC states. 
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Figure 4.3.1: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 1000 

rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Negative Intensity value=0.1, Interval=50 rounds. 

 

 

 

Figure 4.3.2: Average of the outcomes CC, CD, DC, and DD during 1000 rounds of the Q-

learning agents playing the IPD game. Decreasing the R payoff. Negative Intensity value=0.1, 

Interval=50 rounds in low precommitment (ψ=0.01). 

 

For the second scenario we tried a larger negative intensity value (0.5) in a large interval 

of change (50 rounds). The results in Figure 4.3.3 showed that larger increments, even 
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when provided in an infrequent rate, have a great impact on self-control as both low and 

high precommitment scenarios were not able to sustain self-control and only achieved an 

overall percentage of 22.9% and 26.0% respectively. Therefore, a larger negative 

emotional change experienced in an infrequent rate cannot be overcome by high 

precommitment (ψ=0.9). 

 

 

Figure 4.3.3: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 1000 

rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Negative Intensity value=0.5, Interval=50 rounds. 

 

4.3.2 Decreasing the Punishment payoff  

 

To provide the agent with a greater magnitude of negative signals we tried decreasing the 

Punishment payoff. Decreasing the Punishment payoff weakens the penalties imposed on 

defective behaviors, which can decrease the overall commitment to cooperative behavior. 

Since though there is small difference (1 point) between the Punishment’s and Sucker’s 

payoffs no values larger than 0.5 were tested as it will break the game’s first rule after 

only a few changes. Firstly, we tested the negative intensity value of 0.1 in three different 

intervals (10, 25 and 50 rounds) under both low and high precommitment. The results 

showed that as the number of rounds increase, meaning the frequency rate gets lower, the 

results get better (Figure 4.3.4), something which is further enhanced by the addition of 

high precommitment (Figure 4.3.5). 
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Figure 4.3.4: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with Negative Intensity value=0.1, Interval=10 rounds. (middle) Overall average 

outcomes after 1000 rounds of the Q-learning agents playing the IPD game with Negative 

Intensity value=0.1, Interval=25 rounds. (right) Overall average outcomes after 1000 rounds of 

the Q-learning agents playing the IPD game with Negative Intensity value=0.1, Interval=50 

rounds.  Low precommitment (ψ=0.01). 

 

Figure 4.3.5: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with Negative Intensity value=0.1, Interval=10 rounds. (middle) Overall average 

outcomes after 1000 rounds of the Q-learning agents playing the IPD game with Negative 

Intensity value=0.1, Interval=25 rounds. (right) Overall average outcomes after 1000 rounds of 

the Q-learning agents playing the IPD game with Negative Intensity value=0.1, Interval=50 

rounds.  High precommitment (ψ=0.9). 

 

Secondly, we tested the negative intensity value of 0.25 in the three different intervals 

tested before (10, 25 and 50 rounds) under both low and high precommitment. The results 

showed that as the numbers of rounds increase, meaning the frequency rate gets lower, 
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the results get better (Figure 4.3.6), something which is further enhanced by the addition 

of high precommitment (Figure 4.3.7). 

 

Figure 4.3.6: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with Negative Intensity value=0.25, Interval=10 rounds. (middle) Overall average 

outcomes after 1000 rounds of the Q-learning agents playing the IPD game with Negative 

Intensity value=0.25, Interval=25 rounds. (right) Overall average outcomes after 1000 rounds 

of the Q-learning agents playing the IPD game with Negative Intensity value=0.25, Interval=50 

rounds.  Low precommitment (ψ=0.01). 

 

Figure 4.3.7: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with Negative Intensity value=0.25, Interval=10 rounds. (middle) Overall average 

outcomes after 1000 rounds of the Q-learning agents playing the IPD game with Negative 

Intensity value=0.25, Interval=25 rounds. (right) Overall average outcomes after 1000 rounds 

of the Q-learning agents playing the IPD game with Negative Intensity value=0.25, Interval=50 

rounds.  High precommitment (ψ=0.9). 

 

Finally, we tested the negative intensity value of 0.5 in the three different intervals tested 

before (10, 25 and 50 rounds) under both low and high precommitment. Even though the 

results were confusing when tested with low precommitment (Figure 4.3.8), after testing 

the same values in high precommitment (Figure 4.3.9), we could see that as the numbers 
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of rounds increase, meaning the interval gets larger the results get better with low 

precommitment reaching a max percentage of 52.9% and  high of 66.5 in CC states.  

Figure 4.3.8: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with Negative Intensity value=0.5, Interval=10 rounds. (middle) Overall average 

outcomes after 1000 rounds of the Q-learning agents playing the IPD game with Negative 

Intensity value=0.5, Interval=25 rounds. (right) Overall average outcomes after 1000 rounds of 

the Q-learning agents playing the IPD game with Negative Intensity value=0.5, Interval=50 

rounds.  Low precommitment (ψ=0.01). 

 

Figure 4.3.9: (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing 

the IPD game with Negative Intensity value=0.5, Interval=10 rounds. (middle) Overall average 

outcomes after 1000 rounds of the Q-learning agents playing the IPD game with Negative 

Intensity value=0.5, Interval=25 rounds. (right) Overall average outcomes after 1000 rounds of 

the Q-learning agents playing the IPD game with Negative Intensity value=0.5, Interval=50 

rounds.  High precommitment (ψ=0.9). 
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4.3.3 Decreasing the Sucker’s payoff 

 

To provide the agent with even greater magnitudes of negative signals we tried decreasing 

Sucker’s payoff. Decreasing the Sucker's payoff weakens the deterrent against 

exploitative behaviors, reducing the motivation for individuals to engage in cooperative 

actions. Since S is not restricted by any of the rules of the IPD game three different 

negative intensity values like 0.1, 0.5 and 1,0 were tested in a frequency rate of 10 and 50 

rounds interval. Firstly, we tested the ratio of 0.1 in the two different intervals under both 

low and high precommitment. The results showed that high frequency with the 

combination of small negative intensity value, and high levels of precommitment (ψ=0.9) 

managed to achieve self-control rather than with low precommitment (ψ=0.01) where we 

had a self-control failure (Figure 4.3.10). By comparing the graphs in Figure 4.3.10 with 

the baseline results we can see that there is a large decrement in low precommitment 

(ψ=0.01) and a small decrement in high precommitment. However, when the interval of 

change is larger (Figure 4.3.11) low managed to make a leap toward self-control by 

reaching a percentage of 46.2% in CC states and high managed to achieve self-control 

with a percentage of 56%. 

 

Figure 4.3.10: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Negative Intensity value=0.1, Interval=10 rounds. 
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Figure 4.3.11: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Negative Intensity value=0.1, Interval=50 rounds. 

 

For the second scenario we tried a larger negative intensity value (0.5) in the two different 

intervals under both low and high precommitment. The results in Figure 4.3.12 showed 

that in small intervals of change neither of the two levels of precommitment could manage 

to achieve self-control behavior and instead led to a total self-control failure. In contrast 

in Figure 4.2.13 we can see for a large interval, low precommitment (ψ=0.01) did not 

manage to pass the threshold and achieve self-control (35.9%) whereas high 

precommitment reached percentage of 60% in CC thus achieved self-control. Therefore, 

a larger negative intensity value given infrequently (large interval) paired with high 

precommitment (ψ=0.9) status can achieve self-control behavior. 
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Figure 4.3.12: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Negative Intensity value=0.5, Interval=10 rounds. 

 

Figure 4.3.13: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Negative Intensity value=0.5, Interval=50 rounds. 
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Lastly, we tried an even larger negative intensity value (1.0) in the two different intervals 

under both low and high precommitment to see whether this large increment in negative 

emotional state could still be handled by precommitment. The results in Figure 4.2.14 

were not promising as they showed that for such a large increment neither of two 

precommitment levels could achieve self-control but instead led to a total self-control 

failure reaching as high as 84.2% in CD states. Similarly, in Figure 4.2.15 we can see that 

even though a larger interval of change provided better results it was still not enough to 

achieve self-control behavior with CC states reaching a max of 38.5%. Therefore, a very 

large negative intensity value given cannot be countered with precommitment. 

 

Figure 4.3.14: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Negative Intensity value=1.0, Interval=10 rounds. 
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Figure 4.3.15: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Negative Intensity value=1.0, Interval=50 rounds. 

 

 

4.3.4 Increasing the Temptation payoff 

 

Another way of implementing negative emotional state is through the increment of 

negative aspects as is Temptation (T payoff). Increasing the Temptation payoff increases 

selfish behavior, as it makes it more tempting to prioritize immediate personal gains over 

cooperative actions. For our testing we used two different positive intensity values like 

0.1 and 0.5 in intervals of change of 10 and 50 rounds. Firstly, we tested the intensity 

values of 0.1 in the two different intervals under both low and high precommitment. The 

results showed that large intervals with the combination of small positive intensity values, 

and high levels of precommitment (ψ=0.9) managed to achieve self-control (Figure 

4.3.17) reaching a percentage 65.4% in high precommitment. In contrast, under small 

intervals of change (Figure 4.3.16) both low and high precommitment could not manage 

to overtake the negative impact of Temptation and thus did not achieve self-control. 
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Figure 4.3.16: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.1, Interval=10 rounds. 

 

Figure 4.3.17: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.1, Interval=50 rounds. 

 

For the second scenario we tried a larger positive intensity value (0.5) in the two different 

intervals under both low and high precommitment. The results in Figure 4.3.19 showed 

that even though there was an increment in CC states when the intervals of change were 
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larger (50 rounds) and precommitment was high, none of the scenarios managed to 

achieve self-control behavior. Therefore, negative emotional state experienced through 

the increment of negative aspects can be overcome with precommitment only when the 

interval of change is low (10 rounds), and the positive intensity value is small enough 

(0.1). 

 

Figure 4.3.18: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.5, Interval=10 rounds. 

 

Figure 4.3.19: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.5, Interval=50 rounds. 
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4.3.5 Increasing the Temptation and decreasing the Punishment and Sucker’s 

payoff  

 

The last used method was a combination of the three previous methods for the increment 

of negative emotion, that is increasing the T and decreasing the P and S, all at the same 

while changing the precommitment status in each testing to see under which scenario we 

produce the best results. We set a positive intensity value to 0.1 for T and a negative 

intensity value of 0.5 for P,S, since they were the value that gave the best performance 

and a 50 rounds interval to provide an large interval of change. The results showed that 

high precommitment was able to prevail by achieving self-control with percentage of CC 

states reaching 57.8% (Figure 4.3.20) whereas low precommitment could’t manage to 

achieve the same results with only achieving a percentage of 34.2%. 

 

 

Figure 4.3.20: (left) Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game with low precommitment (ψ=0.01). (right) Overall average outcomes after 

1000 rounds of the Q-learning agents playing the IPD game with high precommitment (ψ=0.9). 

Positive Intensity value=0.1 for T payoff, Negative Intensity value=0.5 for S, P payoffs, 

Interval=50 rounds 

 

 

One could argue that the approach of increasing temptation and decreasing punishment 

and sucker's payoff follows a similar principle to incorporating precommitment into the 

higher agent, as described in Section 3.2. In order to gain a deeper understanding of the 

individual effects of precommitment and emotions, it would be valuable to establish a 
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new baseline scenario where precommitment is entirely excluded. By comparing the 

results of this new baseline with the previous approach that involved precommitment, we 

can observe the significant impact of precommitment on achieving self-control. The 

baselines, which did not incorporate precommitment, only managed to reach a success 

rate of 30.9% (Figure 4.3). This comparison underscores the importance of 

precommitment, as it clearly demonstrates that precommitment and emotions have 

distinct and complementary effects in promoting self-control. 

 

 

Figure 4.3.21: Overall average outcomes after 1000 rounds of the Q-learning agents playing the 

IPD game with no precommitment (ψ=0). Positive Intensity value=0.1 for T payoff, Negative 

Intensity value=0.5 for S, P payoffs, Interval=50 rounds 
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4.3.6 Summary and discussion on Precommitment in a Negative Emotional State 

 

The first method used to test self-control involved increasing negative emotions through 

negative punishment (decreasing R) at different levels of precommitment. The results 

showed that negative punishment, when paired with high precommitment, can still lead 

to self-control behavior, but only if the interval of change (rounds) was sufficiently large 

and the negative intensity value was small enough to provide a smaller magnitude at a 

more infrequent rate (Figure 4.3.1). The same pattern was observed when a positive 

punishment method (increased T) was used to increase the presence of negative emotions. 

More specifically, the most effective approach was a positive intensity value of 0.1 for T 

and a negative intensity value of 0.1 for R, provided they were given in a large interval 

of change (50 rounds) under high precommitment (Figures 4.3.1 & 4.3.17). In contrast, 

larger intensity values in both scenarios impaired self-control and, in some cases, led to 

total self-control failure (Figures 4.3.2 & 4.3.19). When explicit negative emotions were 

induced by providing a negative intensity value to S and P, the scenarios where high 

precommitment still managed to achieve self-control and provide the best results were 

those where a higher negative intensity value (0.5) was given in a large interval of change 

(50 rounds) which interestingly contradicts the smaller positive intensity value that was 

used in T even though all three payoffs increment the presence of negative emotions 

(Figures 4.3.9 & 4.3.13). Finally, when combining the results of all three methods of 

negative reinforcement in both low and high precommitment the model successfully 

achieved self-control when precommitment was high, with a reaching percentage of 

57.8% for CC states (Figure 4.3.20). In conclusion, these findings indicate that 

precommitment is crucial for achieving self-control in a negative emotional state, thus 

promoting precommitment may be an effective strategy for enhancing self-control when 

faced with negative reinforcements. 
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Payoff Value Precommitment Intensity Interval CC states 

Reward (R) Low (ψ=0.01) Negative (0.1) 50 rounds 39.6% ▼ 

Reward (R) High (ψ=0.9) Negative (0.1) 50 rounds 58.4% ▲ 

Punishment (P) Low (ψ=0.01) Negative (0.5) 50 rounds 52.9% ▲ 

Punishment (P) High (ψ=0.9) Negative (0.5) 50 rounds 66.5% ▲ 

Sucker (S) Low (ψ=0.01) Negative (0.5) 50 rounds 35.9% ▼ 

Sucker (S) High (ψ=0.9) Negative (0.5) 50 rounds 60.0% ▲ 

Temptation (T) Low (ψ=0.01) Positive (0.1) 50 rounds 40.4% ▼ 

Temptation (T) High (ψ=0.9) Postive (0.1) 50 rounds 65.4% ▲ 

P, S & T 

Combined 
Low (ψ=0.01) 

Negative (0.5) 

for P & S 

Positive (0.1) 

for T 

50 rounds 34.2% ▼ 

P, S & T 

Combined 
High (ψ=0.9) 

Negative (0.5) 

for P & S 

Positive (0.1) 

for T 

50 rounds 57.8% ▲ 

 

Figure 4.3.22: Summary of the best results of each scenario tested in relation to the affected 

payoff value, the level of precommitment, intensity and interval of change. The outcome is given 

in the form of a percentage indicating the overall percentage of CC states achieved throughout 

the course of the game. The symbols "▲" and "▼" indicate whether self-control was achieved or 

not, respectively, with "▲" denoting successful self-control (percentage exceeding 50%) and "▼" 

indicating a lack of self-control. 
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Chapter 5 
 

Conclusions and Future Work 
 

 

 

5.1 OVERVIEW AND CONCLUSIONS ....................................................................... 58 

5.2 FUTURE WORK ................................................................................................ 61 

 

 

5.1 Overview and conclusions 

 

The thesis aimed to explore the potential effects of combining precommitment and 

emotional arousal on self-control in a computational model. Banfield's (2006) work on 

precommitment and Nikodemous's (2020) research on emotional arousal both provide 

valuable insights into self-control behavior. However, a gap was identified regarding how 

the combination of these two concepts could affect self-control behavior. To address this, 

a general-sum game called the Prisoner's Dilemma (PD) game was utilized to simulate 

the interaction between the upper and lower parts of the brain in an iterated version of the 

game known as the Iterated Prisoner's Dilemma (IPD). The objective of the game is to 

collaborate, which is indicative of successful self-regulation behavior. By incorporating 

both precommitment and emotional arousal, this computational model provides a 

platform to investigate how these two factors can impact self-control behavior. 

 

Banfield (2006) argues that precommitment can be an effective strategy to overcome self-

control problems by reducing the conflict between the higher and lower parts of the brain, 

which makes it easier to choose the larger, later reward. Emotional arousal is also a critical 

component of self-control behavior. Nikodemou (2020) suggests that emotions are 

inherently linked to self-control, with positive emotions promoting self-control and 

negative emotions impairing it. However, the relationship between negative emotions and 

self-control is more complex, as feelings of fear and guilt can have positive effects on 

self-control, while positive emotions can have negative effects. Considering the results of 

Nikodemou’s (2020) and Banfield’s (2006) research we can conclude that it is necessary 
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to consider both precommitment and emotional arousal to gain a more comprehensive 

understanding of self-control behavior. 

 

For my thesis, we employed the Q-Learning algorithm, similar to Nikodemou (2020), to 

train two agents representing the two parts of the brain, to cooperate and achieve the 

optimal solution (CC state). The simulations were initiated with the same starting values 

for the payoff matrix, learning factors, and epsilon values. However, the two agents 

representing the two parts of the brain had different discount factors, which distinguished 

them from each other. One agent focused on short-term rewards (γ = 0.1), while the other 

agent focused on long-term rewards (γ = 0.9). After the initialization phase, three critical 

factors changed. Firstly, we varied the precommitment status of the simulations, which 

determined whether the agents faced low precommitment (ψ=0.01) or high 

precommitment (ψ=0.9). This factor was added as the first step of the simulation. 

Secondly, we introduced intensity values, which were added to the values of the payoff 

matrix to simulate the presence of emotions. The intensity values could be positive or 

negative, depending on whether they were added or subtracted from the values. Finally, 

we varied the intervals of change, which were the rounds that needed to elapse between 

each addition or decrement of intensity values.  

 

After running the simulation with different combinations of intervals of change (rounds) 

and intensity values under both low and high precommitment we came to some interesting 

conclusions regarding how the pairing of precommitment and emotions affects self-

control behavior. In terms of the effects of positive emotions, the simulation revealed that 

the combination of precommitment and positive reinforcement can significantly improve 

self-control behavior. More specifically, positive reinforcement (increment of R) was 

found to be particularly effective when paired with high precommitment. This means that 

when individuals commit themselves to a goal or behavior, and positive emotions are 

present, they are more likely to achieve self-control behavior. Additionally, the intensity 

and frequency of positive reinforcement were also found to be essential, with a smaller 

magnitude of positive intensity given infrequently leading to the most significant impact 

on self-control behavior. Similarly, negative reinforcement methods were used to ease 

internal conflict and eliminate negative emotions, such as decreasing T and increasing P 

and S. The study found that negative intensity values of 0.1 for T and positive intensity 
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values of 0.1 for P and S were the most effective when given infrequently (50 rounds) in 

a high precommitment state. When values greater than this were used, self-control 

behavior was impaired, and, in some cases, total self-control failure was observed. 

Finally, combining all three methods of negative reinforcement in both low and high 

precommitment states led to achieving self-control behavior with high precommitment 

achieving  the highest percentage of CC states at 75%. 

 

Now, turning to the testing of negative emotions and precommitment, the first method 

used involved increasing negative emotions through negative punishment (decreasing R) 

at different levels of precommitment. The findings revealed that negative punishment, 

when paired with high precommitment, can still lead to self-control behavior, but only if 

the interval of change (rounds) was sufficiently large and the negative intensity value was 

small enough to provide a smaller magnitude at a more infrequent rate. Similarly, positive 

punishment was used to increase the presence of negative emotions. The most effective 

approach for each case was a positive intensity value of 0.1 for T and a negative intensity 

value of 0.1 for R, provided they were given in a large interval of change (50 rounds) 

under high precommitment as larger intensity values in both scenarios impaired self-

control. When explicit negative emotions were induced by providing a negative intensity 

value to S and P, the scenarios where high precommitment still managed to achieve self-

control and provide the best results surprisingly were those where a higher negative 

intensity value (0.5) was given in a large interval of change (50 rounds) contrasting with 

the lower intensity value (0.1) needed to elicit negative emotions using the Temptation 

payoff. Finally, when combining the results of all three methods of negative 

reinforcement in both low and high precommitment, the model achieved self-control 

when precommitment was high, with a reaching percentage of 57.8% for CC states. These 

findings suggest that precommitment is crucial for achieving self-control in a negative 

emotional state, and promoting precommitment may be an effective strategy for 

enhancing self-control when faced with negative reinforcements. 

 

In conclusion, this thesis aimed to investigate the impact of precommitment and 

emotional arousal on self-control behavior, using a computational model of the Iterated 

Prisoner's Dilemma game. The findings of this research suggest that both precommitment 

and emotional arousal are crucial components of self-control behavior, and their 
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interaction can significantly influence the ability to regulate self-control behavior 

effectively.  It is also noteworthy that despite the recognition that precommitment can 

sometimes be costly and may restrict flexibility, the results demonstrated that in the tested 

scenarios, precommitment not only managed to retain self-control but also enhance it. 

This outcome suggests that under certain conditions, precommitment can effectively help 

in overcoming self-control problems. Additionally, concerning emotions, the simulation 

results demonstrated that both positive and negative emotions, paired with high 

precommitment, can improve self-control behavior significantly. The study also found 

that the intensity and frequency of reinforcement methods, both positive and negative, 

play an essential role in shaping self-control behavior. Overall, the results of this research 

have significant implications for understanding self-control behavior and developing 

interventions to enhance self-regulation in order to help individuals and society as a whole 

to overcome self-control problems and achieve more positive outcomes. 

 

5.2 Future Work 

 

The present research managed to incorporate the findings of Nikodemou (2020) and 

Banfield (2006) regarding the effects of emotions and precommitment on self-control in 

order to show that the two concepts can interact to influence self-control behavior in a 

computational model of self-control as is the Iterated Prisoner’s Dilemma. However, in 

order to assess cognitive adequacy of the model in relation to the results presented in this 

thesis, it would be beneficial to correlate the results with relevant psychological findings, 

that specifically explore the relationship of the combination of emotions and 

precommitment and its effect on self-control behavior. To the best of our knowledge, no 

such findings have been published, but further in-depth literature review is probably 

needed. Furthermore, as mentioned in previous chapters the initial payoff matrix values 

used for all experiments were T=5, R=4, P=-2, S=-3, which correspond to “an internal 

conflict of moderate intensity” (Cleanthous, 2010) leading to a gap in our understanding 

of how different types of conflict, specifically strong and weak, may impact this 

interaction. 

 

Strong conflict refers to a scenario where there is a clear conflict between two options 

and the choice is relatively straightforward whereas weak conflict refers to a scenario 
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where the choice is more complex as the choices are similar to each other. More 

specifically, regarding our implementation, prior research (Cleanthous, 2010) has 

established that the level of conflict among agents in the IPD game is directly proportional 

to the difference between the payoff for Temptation to Defect (T) and Sucker's Payoff 

(S). Additionally, the extent of conflict could also reflect the level of complexity involved 

in the task that agents need to accomplish for exercising self-control (CC state). 

 

With this in mind, further research could explore the behavior of the model when using a 

payoff matrix with a strong conflict, such as T=15, R=4, P=-2, and S=-13, or one with a 

weak conflict, such as T=3, R=2, P=1, and S=0. Both of these scenarios maintain the rules 

of the IPD game (T>R>P>S, 2R > T+S), but the former involves a larger disparity 

between Temptation and Sucker's Payoff, while the latter features a smaller gap between 

these two rewards.  

 

By exploring the effects of strong and weak conflict on precommitment and emotional 

arousal in self-control behavior, we may gain a better understanding of how individuals 

make decisions in different types of situations. For example, we might find that 

precommitment is more effective in situations with strong conflict, where the temptation 

to choose the smaller, immediate reward is much greater. Alternatively, we might find 

that emotional arousal has a greater impact on self-control behavior in situations with 

weak conflict, where the difference between the temptation and sucker payoffs is 

relatively small. 

 

Furthermore, it would be beneficial to explore the simultaneous effects of positive and 

negative emotions on self-control behavior. The current research focused on either 

positive or negative emotions separately, but in real-world situations, individuals often 

experience a combination of both positive and negative emotions concurrently. 

Investigating how the interplay between positive and negative emotions influences self-

control behavior can provide a more comprehensive understanding of the complex 

relationship between emotions and self-control. This could involve manipulating both 

positive and negative intensity values in the payoff matrix and examining their combined 

effects on precommitment and self-control behavior. 
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In addition to these directions, it would also be valuable to explore the effect of costly 

precommitment on self-control. Acknowledging that precommitment can have 

limitations and can be costly, we can incorporate the cost factor into the precommitment 

strategy used in the simulations. By varying the cost associated with precommitment and 

analyzing its impact on self-control outcomes, we can better understand the trade-offs and 

limitations involved. This investigation would provide insights into how a possible cost 

of precommitment influence its effectiveness in achieving long-term goals and 

overcoming short-term temptations, shedding light on the dynamics of self-control 

behavior. 

 

Finally, another potential direction for future research is to explore the effectiveness of 

simulating precommitment using different values within the acceptable margins, ensuring 

this way that the conditions of the IPD game remain unbroken (equations 1 & 2). The 

original model allowed for precommitment values ranging from 0 to 0.99, but this range 

may be too restrictive to accurately reflect real-world scenarios. By expanding the range 

of precommitment values, we could gain a better understanding of how different levels 

of commitment affect self-control. For example, a precommitment value of 5.0 would 

represent a complete commitment to a particular action or behavior, a value of 2.5 would 

indicate a moderate level of commitment and 1.0 a low level. 
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Appendix A 
 

The development of the basic Q-Learning model (Appendices A-B) is by Georgiou 

(2015).  

  

Class MainProgram.java 

import java.io.BufferedWriter; 
import java.io.File; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.util.InputMismatchException; 
import java.util.Scanner; 
 
/** 
 * Created by jeannettechahwan & annageorgiou on 20/01/15. 
 */ 
public class MainProgram{ 
 
    public static Player lower; 
    public static Player higher; 
 
    public static double[][][] states_results; 
    public static double[][][] payoff_results; 
    public static double[] overall_payoff; 
 
    public static double[] overall_payoff_neutral; 
    public static double[][][] payoff_results_neutral; 
 
    public static double T, R, P, S; 
 
    public static int get_state(int action_lower, int action_higher) { 
        int next_state; 
 
        if(action_lower==0 && action_higher==0) 
            next_state = 0; 
        else if(action_lower==0 && action_higher==1) 
            next_state = 2; 
        else if(action_lower==1 && action_higher==0) 
            next_state = 1; 
        else 
            next_state = 3; 
 
        return next_state; 
    } 
 
    public static void update_states_results(int episode, int state, int trial){ 
        states_results[episode][trial][0] = states_results[episode-1][trial][0]; 
        states_results[episode][trial][1] = states_results[episode-1][trial][1]; 
        states_results[episode][trial][2] = states_results[episode-1][trial][2]; 
        states_results[episode][trial][3] = states_results[episode-1][trial][3]; 
        states_results[episode][trial][state]++; 
    } 
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    public static void update_payoff_results(int episode, double lower_payoff, double 
higher_payoff, int trial){ 
        payoff_results[episode][trial][0] = payoff_results[episode-1][trial][0]; 
        payoff_results[episode][trial][1] = payoff_results[episode-1][trial][1]; 
 
        payoff_results[episode][trial][0] += lower_payoff; 
        payoff_results[episode][trial][1] += higher_payoff; 
 
        // for neutral emotion 
        if ((lower_payoff == S && higher_payoff == T) || (lower_payoff == T && higher_payoff == S)) 
{ 
            payoff_results_neutral[episode][trial][0] = payoff_results_neutral[episode - 1][trial][0]; 
            payoff_results_neutral[episode][trial][1] = payoff_results_neutral[episode - 1][trial][1]; 
 
        } else { 
            payoff_results_neutral[episode][trial][0] = payoff_results_neutral[episode - 1][trial][0]; 
            payoff_results_neutral[episode][trial][0] += lower_payoff; 
 
            payoff_results_neutral[episode][trial][1] = payoff_results_neutral[episode - 1][trial][1]; 
            payoff_results_neutral[episode][trial][1] += higher_payoff; 
        } 
    } 
 
    public static void statistics(int numberOfTrials, int numberOfEpisodes){ 
        int e, t, s, p; 
        double sumAll_states; 
        double sumAll_payoffs; 
 
        for(e=0; e<numberOfEpisodes; e++){ 
            for(t=0; t<numberOfTrials; t++){    // find sum of states visits from each trial of current 
episode and save in last column 
                for(s=0; s<4; s++){     // states 
                    states_results[e][numberOfTrials][s] += states_results[e][t][s]; 
                } 
 
                for(p=0; p<2; p++){     // payoffs 
                    payoff_results[e][numberOfTrials][p] += payoff_results[e][t][p]; 
                    payoff_results_neutral[e][numberOfTrials][p] += payoff_results_neutral[e][t][p]; 
                } 
            } 
 
            sumAll_states=0; 
            sumAll_payoffs=0; 
 
            for(s=0; s<4; s++){     // sum of state fields in last column (#trials+1) 
                sumAll_states += states_results[e][numberOfTrials][s]; 
            } 
 
            for(s=0; s<4; s++){     // normalise 
                states_results[e][numberOfTrials][s] /= sumAll_states; 
            } 
 
            for(p=0; p<2; p++){     // sum of payoff fields in last column (#trials+1) 
                sumAll_payoffs += payoff_results[e][numberOfTrials][p]; 
            } 
 
            overall_payoff[e] = sumAll_payoffs/numberOfTrials; 
        } 
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    } 
 
    public static void print_statistics(int numberOfTrials, int numberOfEpisodes){ 
        int e, s, p; 
 
        // states 
        for(e=0; e<numberOfEpisodes; e++){ 
            for(s=0; s<4; s++){ 
                System.out.printf("%.4f ", states_results[e][numberOfTrials][s]); 
            } 
            System.out.println(); 
        } 
 
        // payoffs 
        for(e=0; e<numberOfEpisodes; e++){ 
            for(p=0; p<2; p++){ 
                System.out.printf("%.4f ", payoff_results[e][numberOfTrials][p]); 
            } 
            System.out.println(); 
        } 
    } 
 
    public static void printToFile_statistics(int numberOfTrials, int numberOfEpisodes){ 
        int e, s, p; 
 
        // write results to file 
        try { 
            File file_s = new File("states_results.txt"); 
            File file_p = new File("payoff_results.txt"); 
 
            // if file doesnt exists, then create it 
            if (!file_s.exists()) { 
                file_s.createNewFile(); 
            } 
 
            if (!file_p.exists()) { 
                file_p.createNewFile(); 
            } 
 
            FileWriter fw_s = new FileWriter(file_s.getAbsoluteFile()); 
            FileWriter fw_p = new FileWriter(file_p.getAbsoluteFile()); 
            BufferedWriter bw_s = new BufferedWriter(fw_s); 
            BufferedWriter bw_p = new BufferedWriter(fw_p); 
 
            for(e=0; e<numberOfEpisodes; e++){ 
                for(s=0; s<4; s++){ 
                    bw_s.write(Double.toString(states_results[e][numberOfTrials][s])); 
                    bw_s.write(" "); 
                } 
                bw_s.write("\n"); 
 
                for(p=0; p<2; p++){ 
                    bw_p.write(Double.toString(payoff_results[e][numberOfTrials][p]/numberOfTrials)); 
                    bw_p.write(" "); 
                } 
                bw_p.write(Double.toString(overall_payoff[e])); 
                bw_p.write(" "); 
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                bw_p.write(Double.toString(overall_payoff_neutral[e])); 
                bw_p.write("\n"); 
            } 
 
            bw_s.close(); 
            bw_p.close(); 
        } catch (IOException ex) { 
            ex.printStackTrace(); 
        } 
    } 
 
    public static void main(String[] args) { 
        int initial_state, current_state, next_state; // Takes values 0-3 
        int i; 
        int episodes_before = 500, episodes_after = 500; 
        int trials = 15; 
        states_results = new double[episodes_before + episodes_after][trials+1][4]; 
        payoff_results = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff = new double[episodes_before + episodes_after]; 
 
        payoff_results_neutral = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff_neutral = new double[episodes_before + episodes_after]; 
 
        double psi = Double.parseDouble(args[0]); 
        double ratio_R = Double.parseDouble(args[1]); 
        double ratio_T = Double.parseDouble(args[2]); 
        double ratio_P = Double.parseDouble(args[3]); 
        double ratio_S = Double.parseDouble(args[4]); 
        int rounds = Integer.parseInt(args[5]); // interval rounds between the changes of the payoff 
values 
 
 
        T=5; R=4; P=-2; S=-3; 
 
 
        for(int t=0; t<trials; t++) { 
            T=5; R=4; P=-2; S=-3; 
            // short-term 
            lower = new Player(); 
            lower.setDiscount(0.1); 
            lower.setLearning_rate(0.1); 
            lower.setEpsilon(0.1); 
            lower.setPayoff_matrix(R, T-psi, S+psi, P); 
 
            // long-term 
            higher = new Player(); 
            higher.setDiscount(0.9); 
            higher.setLearning_rate(0.1); 
            higher.setEpsilon(0.1); 
            higher.setPayoff_matrix(R, S-psi, T+psi, P); 
 
            initial_state = (int) (Math.random() * 4); 
            current_state = initial_state; 
            states_results[0][t][current_state]++; 
 
            for (i = 1; i <= episodes_before; i++) { 
 
                lower.setCurrent_action(lower.choose_action(current_state)); 
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                higher.setCurrent_action(higher.choose_action(current_state)); 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                //update lower player 
                double R_lower = lower.getPayoff_matrix(0); 
                double T_lower = lower.getPayoff_matrix(1); 
                double S_lower = lower.getPayoff_matrix(2); 
                double P_lower = lower.getPayoff_matrix(3); 
 
 
                if ( i%rounds==0 && 
                        ((T_lower+ratio_T) > (R_lower+ratio_R)) && 
                        ((R_lower+ratio_R) > (P_lower+ratio_P)) && 
                        ((P_lower+ratio_P) > (S_lower+ratio_S)) && 
                        (2*(R_lower+ratio_R) > ((T_lower+ratio_T) + (S_lower+ratio_S))) 
                ) { 
                    System.out.print("BEFORE Lower\n"); 
                    R_lower = R_lower + ratio_R; 
                    T_lower = T_lower + ratio_T; 
                    S_lower = S_lower + ratio_S; 
                    P_lower = P_lower + ratio_P; 
                    lower.setPayoff_matrix(R_lower, T_lower, S_lower, P_lower); 
 
                } 
                //update higher player 
                double R_higher = higher.getPayoff_matrix(0); 
                double S_higher = higher.getPayoff_matrix(1); 
                double T_higher = higher.getPayoff_matrix(2); 
                double P_higher = higher.getPayoff_matrix(3); 
 
 
                if ( i%rounds==0 && 
                        ((T_higher+ratio_T) > (R_higher+ratio_R)) && 
                        ((R_higher+ratio_R) > (P_higher+ratio_P)) && 
                        ((P_higher+ratio_P) > (S_higher+ratio_S)) && 
                        (2*(R_higher+ratio_R) > ((T_higher+ratio_T) + (S_higher+ratio_S))) 
                ) { 
                    System.out.print("BEFORE Higher\n"); 
                    R_higher = R_higher + ratio_R; 
                    T_higher = T_higher + ratio_T; 
                    S_higher = S_higher + ratio_S; 
                    P_higher = P_higher + ratio_P; 
                    higher.setPayoff_matrix(R_higher, T_higher, S_higher, P_higher); 
                } 
 
                current_state = next_state; 
 
                update_states_results(i, current_state, t); 
                update_payoff_results(i, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
 
            // Set epsilon = 0 and initial payoff matrix 
            lower.setEpsilon(0); 
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            higher.setEpsilon(0); 
            T=5; R=4; P=-2; S=-3; 
            lower.setPayoff_matrix(R, T-psi, S+psi, P); 
            higher.setPayoff_matrix(R, S-psi, T+psi, P); 
 
            for (i = 1; i <= episodes_after; i++) { 
 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                //update lower player 
                double R_lower = lower.getPayoff_matrix(0); 
                double T_lower = lower.getPayoff_matrix(1); 
                double S_lower = lower.getPayoff_matrix(2); 
                double P_lower = lower.getPayoff_matrix(3); 
 
 
                if ( i%rounds==0 && 
                        ((T_lower+ratio_T) > (R_lower+ratio_R)) && 
                        ((R_lower+ratio_R) > (P_lower+ratio_P)) && 
                        ((P_lower+ratio_P) > (S_lower+ratio_S)) && 
                        (2*(R_lower+ratio_R) > ((T_lower+ratio_T) + (S_lower+ratio_S))) 
                ) { 
                    System.out.print("AFTER Lower\n"); 
                    R_lower = R_lower + ratio_R; 
                    T_lower = T_lower + ratio_T; 
                    S_lower = S_lower + ratio_S; 
                    P_lower = P_lower + ratio_P; 
                    lower.setPayoff_matrix(R_lower, T_lower, S_lower, P_lower); 
 
                } 
                //update higher player 
                double R_higher = higher.getPayoff_matrix(0); 
                double S_higher = higher.getPayoff_matrix(1); 
                double T_higher = higher.getPayoff_matrix(2); 
                double P_higher = higher.getPayoff_matrix(3); 
 
 
                if ( i%rounds==0 && 
                        ((T_higher+ratio_T) > (R_higher+ratio_R)) && 
                        ((R_higher+ratio_R) > (P_higher+ratio_P)) && 
                        ((P_higher+ratio_P) > (S_higher+ratio_S)) && 
                        (2*(R_higher+ratio_R) > ((T_higher+ratio_T) + (S_higher+ratio_S))) 
                ) { 
                    System.out.print("AFTER Higher\n"); 
                    R_higher = R_higher + ratio_R; 
                    T_higher = T_higher + ratio_T; 
                    S_higher = S_higher + ratio_S; 
                    P_higher = P_higher + ratio_P; 
                    higher.setPayoff_matrix(R_higher, T_higher, S_higher, P_higher); 
                } 
 
                current_state = next_state; 
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                update_states_results(episodes_before+i-1, current_state, t); 
                update_payoff_results(episodes_before+i-1, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
        } 
 
        statistics(trials, (episodes_before+episodes_after)); 
        printToFile_statistics(trials, (episodes_before+episodes_after)); 
 
    } 
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Appendix B 
 

Class Player.java 

/** 
 * Created by jeannettechahwan on 20/01/15. 
 */ 
 
public class Player { 
 
    private double learning_rate; 
    private double epsilon; 
    private double discount; 
    private double[][] Q_table; 
    private double[] payoff_matrix; 
    private int current_action; 
 
    public Player(){ 
        this.Q_table = new double[4][2]; 
        this.payoff_matrix = new double[4]; 
    } 
 
    public void setDiscount(double value){ 
        this.discount = value; 
    } 
 
    public double getDiscount(){ 
        return this.discount; 
    } 
 
    public void setEpsilon(double value){ 
        this.epsilon = value; 
    } 
 
    public double getEpsilon(){ 
        return this.epsilon; 
    } 
 
    public void setLearning_rate(double value){ 
        this.learning_rate = value; 
    } 
 
    public double getLearning_rate(){ 
        return this.learning_rate; 
    } 
 
    public void setQ_table(int row, int column, double value){ 
        this.Q_table[row][column] = value; 
    } 
 
    public double getQ_table(int row, int column){ 
        return this.Q_table[row][column]; 
    } 
 
    public void setPayoff_matrix(double value1, double value2, double value3, double value4){ 
        payoff_matrix[0] = value1; 
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        payoff_matrix[1] = value2; 
        payoff_matrix[2] = value3; 
        payoff_matrix[3] = value4; 
    } 
 
    public double getPayoff_matrix(int row){ 
        return this.payoff_matrix[row]; 
    } 
 
    public void setCurrent_action(int action){ 
        this.current_action = action; 
    } 
 
    public int getCurrent_action(){ 
        return this.current_action ; 
    } 
 
    public int choose_action(int state){ 
        int action; 
        double random = Math.random(); 
 
        if(random<epsilon){    //explore 
            action = (int) (Math.random() * 2);    // values: 0(cooperate) or 1(defect) 
        } 
 
        else {    //exploit 
            // find best known action 
            if (this.getQ_table(state, 0) > this.getQ_table(state, 1)) 
                action = 0; 
            else if(this.getQ_table(state, 0) < this.getQ_table(state, 1)) 
                action = 1; 
            else 
                action = (int) (Math.random() * 2);    // values: 0(cooperate) or 1(defect) 
        } 
 
        return  action; 
    } 
 
    public void update_Q(int current_state, int next_state){ 
        double max, Q; 
 
        // find maximum value from Q table 
        if(this.getQ_table(next_state,0) >= this.getQ_table(next_state,1)) 
            max = this.getQ_table(next_state, 0); 
        else 
            max = this.getQ_table(next_state, 1); 
 
        // Calculate Q and set value in player's Q table 
        Q = ((1 - this.learning_rate) * this.getQ_table(current_state, this.getCurrent_action())) 
                + (this.learning_rate * (this.getPayoff_matrix(next_state) + (this.getDiscount() * max))); 
         
        this.setQ_table(current_state, this.getCurrent_action(), Q); 
    } 
 
} 
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