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Abstract 

 

This individual thesis project contains information about machine learning techniques in 

5G security. The fifth generation of cellular networks is the most advanced cellular 

technology deployed so far. 5G brings innovations in comparison to the previous 

generations like massive MIMO, the mmWave, Multi-access Edge Computing and 

Network slicing, while providing high data rates, low latency, and high bandwidth. The 

security of the fifth generation has been evaluated by many researchers. While its security 

has improved over the other previous generations, still has a few vulnerabilities that have 

been brought to broad attention. These vulnerabilities are presented in the thesis. 

 

Machine learning is considered a very powerful to fortify the security of 5G. In this thesis 

are presented some machine learning approaches, for example, federated learning for 

HetNets, and for network slicing. Another machine learning solution presented is about 

reinforced learning for multi-access edge computing. 

 

Furthermore, machine learning is a double-edged sword for security, since on the one 

hand it enhances it, but on the other side, machine learning models introduce their own 

vulnerabilities in the system. Vulnerabilities of machine learning models are included in 

this thesis too. 

 

Finally, conclusions about the security evaluation of the implication of machine learning 

in 5G are presented, as well as future works about machine learning models in wireless 

communications. 
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1.1 General introduction 

 

The innovative 5G technology took the world by storm this decade. The rapid spread of 

the fifth generation can be justified by the high bandwidth, high data rates and low latency 

it delivers. The new promising technologies introduced revolutionized the cellular 

networks technologies and paved the way for the upcoming generations. Massive MIMO 

and the mmWave enhanced the performance of the network by efficiently using 

resources, multi-access edge computing reduced latency, computational and energy 

requirements for end devices, while network slicing provided customization and isolation 

for network slices.  

 

The security of a such widely used cellular network was evaluated, and as expected there 

are some vulnerabilities presented just like in every other system. The vulnerabilities 

violate the CIA security triad, so researchers proposed multiple solutions to prevent that. 

Multiple solutions proposed use machine learning approaches to mitigate the security 

challenges introduced.  

 

Machine learning is commonly used for security purposes, but unfortunately, machine 

learning can also have vulnerabilities, so the networks implementing such solutions 
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inherit these vulnerabilities too. An adversary can exploit these vulnerabilities to attack 

the network, compromising its privacy and confidentiality.  

 

1.2 Motive 

 

There are several motives for conducting a literature review on machine learning in 5G 

security. To begin with, the fifth generation is already deployed and available to the 

public, meaning its threat surface should be addressed, with the motive being to stay on 

top of the latest advancements that can tackle these challenges. One of the emerging 

techniques to tackle security concerns are machine learning models, so another motive is 

to what machine learning models work first of all in the context of not only 5G networks, 

but also to enhance its security. Machine learning approaches were reviewed and 

presented in the literature review to highlight models that are applicable and can be 

integrated for security enhancement of different 5G technologies. Reviewing how 

machine learning can be used for securing 5G is a motive, but on the other hand, 

reviewing how machine learning can be used against 5G security is another motive, since 

even machine learning models can be vulnerable to attacks. These vulnerabilities are also 

presented in the literature review. Finally, motive for this literature review is also to 

identify research gaps for future works. 

 

1.3 Methodology 

 

For thesis follows a literature review methodology, meaning that there was a 

comprehensive study of existing relevant literature, and provided an overview of the 

information gathered. There are many research papers about 5G security that needed to 

be filtered based on their relevance on the research topic. The research of information 

started from a wider topic being the fifth generation of cellular networks, its innovations, 

architecture, and technologies, to understand the environment working on. Then, the 

research narrowed down to the threat landscape of 5G, in order to collect information 

about the vulnerabilities of this generation, how they can be exploited and what an 

attacker can gain from exploiting them, and a summary of the findings is provided in 

chapter 4. Finally, the research concluded on the topic of machine learning based security 

solutions for 5G, where various solutions for the previously studied vulnerabilities were 
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analyzed and an overview of these solutions is presented in chapter 5. The aim of this 

literature review was to present relevant research papers of the community that provide 

smart solutions to security problems of our current cellular network. 

 

1.4 Outline 

 

The thesis is structured as follows. In chapter 2 background information about the fifth 

generation of cellular networks is provided, including its history and features. Next, in 

chapter 3 is presented background information about the machine learning models that 

mentioned in chapter 5. The thread vectors of 5G are presented in chapter 4, while in 

chapter 5 machine learning approaches by various researchers are presented to mitigate 

the challenges previously mentioned. In chapter 6 the vulnerabilities of machine learning 

are mentioned. Finally, in chapter 7 conclusions and future work are presented. 
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2.1 History of cellular networks 

 

The history of cellular network communication dates to the early 1980s when the first 

generation of mobile networks (1G) was introduced [1]. The first generation only 

transmitted voice signals over a frequency modulated circuit switched network, with a 

maximum speed of only 2.4 kbps. In addition, since the first generation used to transmit 

analog signals, they were able to communicate over long distances, but the said analog 

signal would be degraded by factors like interference and noise. The debut of the first 

generation marked the beginning of the development of more advanced cellular networks 

that lead to today's cellular communication networks. 

 

Continuing, the second generation of cellular networks was launched in the early 1990s 

bringing a significant innovation over the first generation. From the second generation 

and beyond, the cellular networks switched from analog and frequency modulated 

schemes, to digital signalling and its according modulation schemes like Time Division 



5 

 

Multiple Access (TDMA) and Code Division Multiple Access (CDMA), increasing the 

capacity of the network and providing a more efficient use of the available spectrum [2]. 

Along with those innovating changes, the second generation introduced the Global 

System for Mobile Communications (GSM) standard, that included new features like 

Short Message Service (SMS), Subscriber Identity Module (SIM) cards, and international 

roaming. The second generation, even though its technological limitations, it paved the 

way for more advanced generations in the future.  

 

Following, the third generation of mobile network communication (3G) was introduced 

in the early 2000s. The third generation was a major leap from the previous generations 

since it switched from circuit to packet switching, increasing the peak data rate from 

384kbps to 2Mbps [3]. Since 3G is the first generation that is fully IP-based system, it 

brought advanced IP-based services, such as web browsing, Multimedia messaging 

service (MMS), streaming and location-based services. Overall, the third generation had 

significant advancements, and can be considered the foundation for the next generations 

of cellular networks.  

 

Moving onto, the fourth generation of cellular networks was developed in the late 2000s 

and deployed in the early 2010s. The fourth generation has all-IP architecture, making 

the IP-based system that introduced in the third generation more optimal. The all-IP 

architecture in combination with the use of unified-IP for all data traffic, enabled high 

speed communications by providing a higher maximum data rate of 1Gbps, lowered the 

latency of the network, and enhanced the flexibility of the mobile network. Finally, even 

though the fourth led to the latest cellular generation deployed, it is still extensively used 

today.  

 

2.2 Fifth Generation of Cellular Networks (5G) 

 

The most advanced cellular network to date is the fifth-generation mobile commination 

system. The fifth generation was introduced in the early 2010s, promising high data rates, 

low latency, and high bandwidth. The introduction of massive Multiple-Input Multiple-

Output (MIMO) in 5G increased the capacity allowing massive connectivity, which is a 

feature needed due to the increasing number of connected devices. Massive MIMO also 
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provided improved coverage and spectral efficiency in comparison to previous 

generations. This generation of cellular networks was the first to use the Millimetre-wave 

(mmWave) frequencies that provide wider bandwidth, hence faster data transfers rates. 

In addition, innovative technologies were introduced such as Multi-access Edge 

Computing (MEC), that helped reduce latency and preserve privacy, and network slicing 

that improved security. Overall, the fifth generation is a major leap forward for cellular 

communications, justifying its rapid spread with its promise of low latency, high speed, 

and new innovations. 

 

 1G 2G 3G 4G 5G 

Introduced 
Early 

1980s 
Early 1990s Early 2000s Late 2000s Early 2010s 

Year 

Deployed 
1979 1991 2001 2009 2018 

Data Rate 2,4 Kbps 64 Kbps 2 Mbps 1 Gbps 20 Gbps 

Features 

Voice 

only, 

Analog, 

FDMA 

Digital, 

TDMA & 

CDMA, 

International 

Roaming, 

SMS, SIM 

IP-based 

system, 

Web 

browsing, 

MMS, 

location-

based 

services 

All-IP 

architecture 

Massive 

MIMO, 

mmWave, 

MEC, 

Network 

slicing 

 

2.3 Architecture 

 

5G uses a Service-Based Architecture (SBA), which means that the communication in 

between network functions is done by a service-based interface [4]. The SBA provides 

flexibility, scalability, and heterogeneity to the network since it enables various services 

and devices. 

  

The 5g system can be divided into three components, the User Equipment (UE), the Radio 

Access Network (NG-RAN) and the Core Network (5GC) [5]. The UE is a device of a 



7 

 

user that is connected to the network, the NG-RAN is the radio transmitter that receives 

and transmits signals, and the 5GC that is responsible for the network functions, such as 

the Authentication Server Function (AUSF) which is responsible for authentication and 

key management, the Mobility Management Function (AMF) that is responsible for 

authentication and mobility of users, etc. 

 

2.4 Technologies of Fifth Generation 

 

2.4.1 Massive Multiple-Input-Massive-Output 

 

Massive Multiple-Input-Massive-Output (massive MIMO) is an enhanced MIMO system 

with a large quantity of antennas that was introduced in 5G [6]. This technology uses 

antennas that send and receive multiple signals simultaneously, and therefore can 

communicate with many users simultaneously, enhancing the capacity of the network.  

 

Also, Massive MIMO, due to the high number of antennas, enables 3D Beamforming [7], 

which is a technique for controlling the signal's direction. In a massive MIMO system, a 

base station can distinguish between users with the help of angle of arrival (AoA) and 

angle of direction (AoD) of a user's signal. This information helps beamforming to control 

the direction of a signal, in combination with adjusting and combining signals from using 

multiple antennas to add up constructively towards the node desired and destructive in 

the other directions, reducing interference and even jamming, and as a result increasing 

SINR. This technique increases signalling performance for devices indoors or in dense 

environments with multiple devices like in 5G.  
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Figure 2.4.1 - 1 Massive MIMO system [8] 

 

Concluding, Massive MIMO is an impressive innovation in 5G that with the usage of 

multiple antennas and beamforming increases reliability and data rates by providing more 

signal routes. 

 

2.4.2 Millimetre Wave 

 

The millimetre wave (mmWave) is the frequency range from 24GHz to 100GHz 

introduced in the fifth generation of cellular networks [9]. As the frequency increases, the 

wavelength decreases, and since the mmWave is classified the Extremely High Frequency 

(EHF) rage, its wavelength is one millimetre short. Since the mmWave works at higher 

frequencies, it provides bigger bandwidth, and therefore higher data rates to the network. 

The theoretical data rate referred can reach up to 4Gbps, and that enables services like 

ultra-high-definition video (UHDV) in 5G. 

 

2.4.3 Network Slicing 

 

The fifth generation is a heterogenous cellular network, with various devices, and 

therefore many differentiated services. All these differentiated services have different 

requirements of functionality and performance. To accommodate these requirements, 

network slicing was introduced. Network slicing is a network architecture that divides the 

network into many virtual networks over a shared infrastructure [10]. With the help of 

cloud computing and virtualization [11], the network can be divided into logical 
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networks, that even though they share resources, they are isolated in between them to 

enhance their security. In this way, the slices can have not only optimized requirements 

based on their custom needs, but also the slices can adapt to changing requirements. 

 

 

Figure 2.4.3 - 1 Example of Network Slicing Technology [12] 

 

2.4.4 Multi-access Edge Computing 

 

Multi-access Edge Computing (MEC) is a network architecture introduced in 5G, that 

brings computational and storing services closer to the end-users of the network [13]. One 

of the services included is computational offloading, where a mobile node offloads a 

computational complex task to the edge if the end node is not powerful enough to compute 

it on its own or to save energy. MEC also enables distributed caching, where an end node 

can fetch from the edge cached information, reducing the traffic from the backhaul to the 

core network. All these services reduce latency since the mobile nodes only need to 

communicate with the edge nodes which are in proximity. Concluding, services at edge 

provided by MEC, in a dense or data centric network, enable mobile nodes to access 

computational and storage resources faster, enhancing network performance, by reducing 

latency due to the proximity and increases data rates due to reduced traffic to the core 

network. 
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Figure 2.4.4 - 1 Multi-access Edge Computing [14] 

 

2.5 CIA triad 

 

CIA is a security model used to evaluate the security of systems and data. C stands for 

confidentiality, I stands for integrity and A stands for availability [15]. 

 

Confidentiality means that the sensitive data are protected to not be accessed by 

unauthorised adversaries. This can be achieved by encryption or by adding access 

restrictions.  

 

Integrity refers to ensuring the information has not been modified during the 

communication. It promises valid data to the receiver, that were unchanged from the 

moment they were send by the sender. Integrity can be achieved by digital signatures, 

and checksums. 

 

Availability ensures that the system and data is available anytime, meaning that 

whenever there are request for such services or information, the system is accessible. 

Availability can be achieved by ensuring fault tolerance and load balancing.  
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3.1 Reinforced Learning  

 

Reinforced Learning (RL) is a type of machine learning method that an agent learns by 

experience while interacting with its environment [16]. Through trial and error, the agent 

receives rewards or punishments by the critic of the environment, and its goal is to 

maximize the reward received.  

 

RL consists of the environment, the agent, or learner, and the actions an agent can take. 

Continuing, the environment provides the inputs, the critic that evaluates the actions 

taken, and the reinforced signal. The reward is maximized since, just like in human 

psychology, the agent tends to choose actions that previously received a higher reward. 

The reward received represents the reward of current action, not what is best for the long 

term. In addition, the agent should choose a policy, greedy, non-greedy, or balanced. The 

policy specifies how the agent should make decisions, by exploration or exploitation. 

Exploration means the agent chooses to explore new options, and exploitation means the 

agent uses its knowledge. Greedy policy is based on exploiting knowledge, non-greedy 

is based on exploring new states, and balanced is a combination of both. 
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As mentioned above, the agent learns with the goal of maximizing its cumulative reward. 

The decisions are made consulting the value, and weight function, where the value 

function helps the agent get the optimal known path to maximize reward. The value 

function takes into consideration whether future rewards are taken more into 

consideration than immediate rewards. The weight function helps the agent to determine 

the importance of the knowledge previously acquired, in order to apply it to make a better 

decision. The weights are updated according to the error function, which is calculated 

based on the reward received by the critic, meaning if the agent got higher reward, the 

error is lower, and if the agent gets punished, the error is higher, but in both situations the 

weights change accordingly based on the error. 

 

 

Figure 3.1 - 1 Simple RL model [16] 

 

3.2 Deep Learning 

 

Deep Learning is a machine learning method where the model learns based on training 

and testing data [17]. The training data is used to train and therefore create the model, and 

after many epochs to reach convergence, the testing data is used to evaluate the accuracy 

of the model on new data.  

 

The models consist of three kinds of layers, input layer, multiple hidden layers, and output 

layer. The models can have only one input and output layer but can have multiple hidden 

layers. For each link in between layers there are weights that are considered when 

computing the sum for the activation function at the nodes of the following layer. The 

activation function represents a threshold, and if the sum of the linked nodes based on 

their weights surpass the threshold, the node is activated. Finally, when reaching the 

output nodes, the node with the highest sum is activated and that node represents the 

actual output calculated by the model for the input. When the actual output is presented, 



13 

 

it is compared to the expected output from the training data. Then the model back 

propagates from the output layer back to the input layer, where in each layer it passes 

backwards, changes the weights of each node based on the error function, meaning based 

on the difference of the expected and actual output of the model. This is the training phase 

of a deep learning model, where this process is repeated for each entry of the training 

data, completing an epoch, and then the whole epoch is repeated multiple times until 

convergence.  

 

 

Figure 3.2 - 1 Deep Learning model with two hidden layers [18] 

 

Following, the testing phase just runs new data on the trained model and calculates the 

accuracy of the model by comparing the output of the model to the expected output. The 

issue of overfitting can be presented in testing, by observing high detection accuracy on 

training data but low detection accuracy on testing data. Overfitting is when the model 

has been overtrained, and instead of generalizing, it memorized the input and output 

result. Overfitting leads to bad performance of the model on data that was not a part of 

the training data, in other words unseen data. 

 

3.3 Deep Reinforced Learning  

 

Deep Reinforced Learning (DRL) is a Reinforced Learning machine learning method 

enhanced with a little bit of Deep Learning [19]. The environment is the same as 

Reinforced Learning, it still has the agent, the critic, and the reinforced signal. The 

difference between RL and DRL is in the policy and value functions [20]. In RL the policy 

and value functions are represented by an equation, in contrast to DRL that those 
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functions can be calculated through a DL model. For example, for the value function, the 

DL model takes as input the state and action of the agent and outputs the estimated 

expected reward. The cost function is introduced to evaluate and improve the accuracy of 

the estimated reward and it is based on the difference of the expected and actual reinforced 

signal. Moreover, if the DL model needs to represent the policy function, it takes as input 

the state and the output activated represents the action chosen based on agent’s policy. 

The weights of the DL model are still updated normally based on gradient descent to 

optimize the functions. Finally, even though DRL is not that different than traditional RL, 

the combination enhanced RL. 

 

3.4 Q-Learning  

 

Q-Learning is a Reinforced Learning algorithm that focuses on the maximization of the 

long-term cumulative reward, in contrast to RL where the discount factor defines whether 

the reward needed is based on the immediate or distant future [21]. Needless to mention 

that Q-Learning since it is a RL algorithm, it inherits the same logic of learning with a 

critic. The cumulative reward is represented by the Q-function. The downside of the 

algorithm is that in order to calculate the optimal Q-function, the model needs multiple 

iterations to update its lookup table with more knowledge [22].  

 

3.5 Deep Q-Network 

 

Deep Q-Network (DQN) is a combination of Reinforced Learning, that maximizes the 

reward, Q-Learning, that maximized the long-term cumulative reward, and Deep 

Learning, that optimizes the policy and value functions [23]. DQN enhances those models 

by improving the Q-function, by stabilizing the learning and minimizing the error of the 

Q-values. DQN uses DL to calculate the Q-function which returns the expected long-term 

reward, so an agent can choose more correctly which action to take based on the available 

inputs. Moreover, DQN uses experience replay to stabilize the learning process. In 

experience replay, a small batch of recent past experiences are saved and used during 

training to update parameters, with the goal to minimize the correlations between 

sequential data. DQN not only uses an error function for the expected and actual Q-value, 

but it also performs gradient descent to minimize the difference between the calculated 
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and actual Q-value of the model, and thus training the model with higher accuracy. Even 

though DQN is a combination of other algorithms, it brought innovative improvements 

that enriched the machine learning techniques. 

 

3.6 Federated Learning 

 

Federated learning is a machine learning approach where multiple nodes work 

independently on their models, in order to be aggerated into a shared model with 

comprehensive knowledge [24]. This is achieved by nodes sharing their trained model to 

a node called the aggregator. The aggregator is responsible for aggregating the parameters 

from all the models received by creating a global model. Then the global aggregated 

model is returned to the individual nodes by the aggregator, so the nodes have enhanced 

knowledge that came from other nodes. Later, the nodes send updates of their models to 

keep the global model up to date. Since the training is done at the nodes, and not done by 

a central unit, it is considered a decentralized approach. 

 

The benefit of federated learning is that, since the node only sends a trained model to the 

aggregator, the private local data that was used to train the model is not distributed, 

safeguarding the privacy of the node's data. In addition, another benefit is that a node has 

limited data to train a model, so its model's knowledge is enhanced by models from other 

nodes. 

 

Federated learning is a popular machine learning approach in wireless networks since 

conventional machine learning approaches are not appropriate for their complicated 

nature. It is not always possible in wireless networks to have a central node to store and 

process the training data, therefore this distributed machine learning solution is more 

suitable. Networks may also be resource restricted, federated learning combats this by 

sending models for aggregation instead of multiple data per node, reducing traffic in the 

network [25]. Federated learning is also appropriate for heterogenous networks, since 

each network can build its own model based on its attributes to be aggregated and 

distributed. Furthermore, federated learning is fault tolerant [26]because if a node leaves 

unexpectedly due to faults, the model can continue the aggregation normally when using 

an aggregation algorithm like FedAvg [27], which provides an average aggregation based 
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on the present nodes. The only negative of continuing without the faulty node is that if 

the node was a part of heterogenous network, the model will no longer have a complex 

sample. Finally, to not forget the main and most important benefit, that federated learning 

preserves the privacy of a node instead of sending confidential data for training, it sends 

a trained model. 

 

 

Figure 3.6 - 1 Federated learning training [28] 
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4.1 Authentication Key Agreement (5G-AKA) protocol 

 

The 5G-AKA, as specified in 3GPP TS 33.501 v0.7.0, is the protocol responsible for 

authentication and key agreement of a user to a serving network (SN), by establishing 

shared secret keys between them. The 5G-AKA is based on the previous generations 

AKA protocol, the EPS-AKA protocol from 4G LTE, but with enhanced privacy since 

the new generation's AKA uses asymmetric randomized encryption, since the User 

Equipment (UE) uses the public key of its Home Network (HN) to encrypt its 

Subscription Permanent Identifier (SUPI). The newly introduced asymmetric encryption 

protects the users against IMSI-catcher attacks, where an attacker eavesdrops on an 

authentication session to get the SUPI of a user and impersonate the user [29]. 

 

First, a normal execution [30] as seen in the Figure 4.1-1, the protocol starts with a user 

sending its Subscription Concealed Identifier (SUCI) from the HN to the SN Security 

Anchor Function (SEAF), to check user's identity before granting access in the SN. After, 

the SEAF sends a 5G Authentication and Authorization Request (5G-AIR) message to 

the Authentication Server Function (AUSF), to request authentication from the SN. The 

AUSF also sends an Auth-Info Request message to the Authentication credential 

Repository and Processing Function (ARPF) to request the authentication information of 

the user, including user's long-term subscriber key. Following, the ARPF responds to the 

AUSF with an Auth-Info Response containing the required authentication information, 

the AUSF generates an authentication vector that responds to SEAF with in the 5G 
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Authentication and Key Agreement Request (5G-AIA) message. The SEAF requests 

authentication from the UE via the Auth-Req message, and the UE replies with the Auth-

Resp, in order to authenticate and establish secure communication between the UE and 

the SN. Finally, the SEAF sent to the AUSF a 5G Authentication Challenge (5G-AC) 

message to verify that the UE has the correct session key to guarantee that the 

communication is secure. 

 

 

Figure 4.1 - 1 Normal Execution of 5G-AKA [30] 

 

The vulnerability presented in the 5G-AKA protocol is that the protocol does not specify 

any security for the channel from the HN to the SN's SEAF, so when the UE sends its 

SUCI to the SEAF, the communication may not be secure, as depicted in Figure 4.1-2, 

therefore an intruder can eavesdrop on it and steal the user’s SUCI. This vulnerability can 

lead to an impersonation attack. 

 

 

Figure42.1 - 2 Security of channels in 5G-AKA [30] 

 

An Impersonation attack is an integrity and confidentiality attack since an intruder can 

access confidential information or manipulate information by impersonating a legitimate 

user of the network. This attack can be achieved when a malicious actor starts two 
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concurrent authentication sessions, one session with the overheard SUCI of a legitimate 

user, and a session with their own SUCI. The execution proceeds as described above in 

the normal execution, until the AUSF receives two parallel Auth-Info responses from the 

ARPF. The Auth-Info has no binding to the authentication session it belongs to, meaning 

there is no SUCI on the message, so there is a race condition, which may cause the AUSF 

to respond the wrong 5G-AIA to the incorrect user, that contains the generated Kseaf key 

which is used for further authentication in the SN. Since the AUSF confused the 

concurrent sessions, the SEAF continues responding to the sessions with the wrong 

messages. In this way, an attacker can get the Kseaf of a legitimate user in the SN and can 

use it to impersonate the user in the SN. 

 

Acronym Role 

UE User Equipment Subscriber's physical device 

HN Home Network Subscriber’s service provider 

SN Serving Network Nearby network that controls the base station 

that the user is communicating 

SUPI Subscription 

Permanent Identifier 

Unique identifier for UE, assigned by the HN so 

it is only shared between the UE and HN, and it 

should never be exposed publicly 

SUCI Subscription 

Concealed Identifier 

To not expose the SUPI, authentication and 

authorisation process uses a SUPI encrypted 

with the public key of the HN 

SEAF Security Anchor 

Function 

Responsible for verifying user's identity to 

provide access to the network 

AUSF Authentication Server 

Function 

Responsible for the authentication and key 

agreement, and generates the authentication 

vector for the user creates an authentication 

vector for a user based on their SUCI 

ARPF Authentication 

credential Repository 

and Processing 

Function 

Stores the required authentication information 

for users 
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5G-AIR 5G Authentication and 

Authorization Request 

Requests authentication from the SN 

5G-AIA 5G Authentication and 

Key Agreement 

Request 

Provides the SEAF with the 5G-AIR requested 

authentication information 

5G-AC 5G Authentication 

Challenge 

Verifies that the UE has the correct session key 

to guarantee secure communication 

 

4.2 Network Slicing 

 

Network Slicing divides the physical network into multiple logical ones over a share 

infrastructure. One benefits for security provided by network slicing is the isolation of the 

slice.  Meaning that technically if a slice was compromised the attack should not spread 

to the other slices of the network. The thread vectors of network slicing can be divided 

according to the lifecycle of a slice, which consists of the preparation phase, installation, 

runtime, and decommissioning, and the other thread vectors can be divided into threats 

in the slice, intra-slice, and in between slices, inter-slice [31]. 

 

First of all, the preparation phase is when the slice template is created. The main 

vulnerability of this phase is if the design of the template was incorrect, injected, or not 

up to date to security standards, all the slices created following the template will inherit 

the vulnerabilities, affecting the integrity of the system, the isolation of slices, or 

confidential information. Moving to the installation phase of the lifecycle of a slice, where 

in this phase the slice is installed, configures, and activated. The main point of attack 

during this phase is to either reconfigure the slice, or create fake slices, which can be 

achieved by manipulating the API, in order to authorize an adversary into the network 

and tamper the slice. After activation, the next phase of the lifecycle is the runtime phase, 

where the API is still the point of attack. In this phase a slice is vulnerable to attack to 

compromise the availability of the system, for example DoS, and the confidentiality via 

privacy leaks. Another availability attack during the runtime phase is the deactivation of 

a slice that can lead to service disruption across multiple slices. The final stage of the 

lifecycle of a slice is the decommissioning phase, where the slice is being deactivated. 

Even though the slice is terminated there are still vulnerabilities linked to the phase. One 
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of the vulnerabilities is not handling the slice data properly at deactivation, which may 

lead that data to be available and ready to be exposed even after deactivation. Another 

vulnerability marked in the decommissioning phase is the usage of not freed resources of 

the slice in order to conduct a DoS attack against the slicing system. 

 

 

Figure 4.2 - 1 Lifecycle of a Network Slice [12] 

 

The next thread vector is the intra-slice threats, which can appear in the devices of the 

slice, in the services interface, and in the network functions. Starting from the devices in 

the slice, which are the weakest point of attack. A malicious device with unauthorize 

access brings privacy concerns for the other nodes within the slice, or even perform DoS 

from inside of the slice. Another threat within the slice, is the disruption of 

communication of the slice with services, by attacking the interface in-between them. By 

the disruption of the services an attacker can achieve damaging other services that are 

depended on it. The network functions of the slice can also be vulnerable to attacks, via 

physical attacks, and can be tampered to cause resource depletion. 

 

Even though network slicing promises isolation in between slices, there are still threats 

concerning the security inter-slice. To begin with the device of a slice. A device from a 

slice can try to gain access in another slice, which can be considered easier since the 

malicious device is already in the system. The intruder may attempt to conduct a DoS 

attack in order to consume reduces, and therefore reducing the resources for easier 

authorization. Furthermore, even if the slices are isolated in-between them, they still use 

the same services, so by damaging a service from a slice, the damage will spread to other 

slices that use that service, compromising the availability of the whole system. Finally, 

an important note for network slicing, is that the system is just as weak as the weakest 

slice, or sub-slice, since if an attacker can gain access or compromise a slice, the attack 

can spread through changing or leaking shared parameters or depleting shared resources. 
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4.3 Multi-access Edge Computing 

 

As mentioned previously in subchapter 2.3.4, Multi-access Edge Computing (MEC) is an 

innovative technology in 5G that brings computational and storage services on the edge, 

closer to the end users, reducing latency and enabling real-time applications. MEC brings 

many advancements in 5G, yet its security and privacy should be taken into consideration. 

Its threat vectors can be divided into three sections, threads in the Access Network, threats 

in Mobile Edge Network, and threats in the Mobile Core Network [32]. 

 

Starting from the access network, where the vulnerabilities can be detected in the end 

nodes and their communication channels. The Users' Equipment (UE) is a vulnerable 

component of MEC, since they can be easily affected by physical attacks or malware, 

which can lead to unauthorized access in the network or resource depletion. The UEs are 

interconnected in an ad-hoc manner, meaning the access network inherits the 

vulnerabilities of Device-to-Device (D2D) communication, for example Distributed 

Denial-of-Service (DDoS), eavesdropping, impersonation, etc. Another vulnerable link 

in the access network, is the one between the UEs and the Base Station (BS). The link 

can suffer from hijacking, jamming, or even malicious node injection.   

 

Next up is the threats of Mobile Edge Network (MEN), meaning the vulnerabilities of the 

MEC components in the edge and host level. A component of MEC is the Mobile Edge 

Host (MEH) which is responsible for computational and storage operations of mobile 

edge applications. When compromised the MEH can led to false resource allocation at 

the Mobile Edge Platform (MEP) and resource exhaustion at Virtualization Infrastructure 

(VI) due to service continuation. It can also lead to feeding inaccurate feedback to the 

Mobile Edge Platform Manager (MEPM), that can cause misconfigurations, service 

disruption and resource depletion. MEPM is responsible for MEH monitoring, resource 

monitoring and allocation, and due to infected applications can lead to device disruption 

and feeding wrong data to upper system components. Another component of MEC is the 

Virtualization Infrastructure Manager (VIM), which manages the virtualization 

resources. The compromise of VIM has the goal of resource exhaustion via Virtual 

Machine (VM) based attacks. Components of MEC are not the only things vulnerable in 
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MEC, channels of communications are also vulnerable. For example, the link between 

MEHs is vulnerable to injections, or to be infected by other MEHs. In addition, the 

channel connecting the MEHs to third party cloud servers can be vulnerable to attacks 

like Man-in-the-Middle, masquerading, injections, wormhole attack, or even packet 

sniffing compromising confidentiality. 

 

 

Figure 4.3 -  1 Structure and components of MEC [33] 

 

Acronym Role 

MEN Mobile Edge Network MEC components 

MEH Mobile Edge Host Responsible for computational and storage 

operations of mobile edge applications 

MEP Mobile Edge Platform Responsible for resource scheduling and 

allocation of mobile edge applications 

VI Virtualization 

Infrastructure 

Platform that provides virtual computational and 

storage resources for mobile edge applications 

MEPM Mobile Edge Platform 

Manager 

Responsible for MEH monitoring, and resource 

monitoring and allocation 

VIM Infrastructure Manager Manages the virtualization resources. 
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The last threat vector is the Core Network, which is the system level devices, all the way 

to the backhaul that connects to the Internet. Component of the Core Network is the User 

Application Life-Cycle Management Proxy (UALCMP) which is responsible to handle 

app requests from UEs and to manage their lifecycle, while linking UE applications to 

mobile edge applications. The attacks on UALCMP target service disruption due to 

DoS/DDoS or by increasing the lifecycle of apps, or they target obtaining unauthorized 

access by masquerading attacks. Mobile Edge Orchestrator (MEO) in the Core Network 

is the hypervisor of MEC, that manages the MEC hosts, resources, VMs, services, and 

traffic. The MEO acts as a hypervisor for the MEC system since it observes the MEC 

hosts, VMs and resources at the edge. Compromising the MEO of the system can lead to 

resource depletion or compromising the communication channel in between the MEO and 

the 5G Core, which is vulnerable to TCP/IP attacks such as eavesdropping, DoS and 

spoofing. The Operation Support System (OSS) is also a part of the Core. OSS is an 

important component since it is responsible of the requests that go through UALCMP and 

getting control information from MEPM and Mobile Edge Orchestrator (MEO), meaning 

the availability of the component shall not be compromised by a DoS or DDoS attack. In 

addition, OSS is responsible for authenticating requests to go through UALCMP, register 

while starting and ending the lifecycle of mobile edge applications, and approving nodes 

UALCMP User Application Life-

Cycle Management 

Proxy 

Responsible to handle app requests from UEs 

and to manage their lifecycle, while linking UE 

applications to mobile edge application 

MEO Mobile Edge 

Orchestrator 

Hypervisor of MEC, that manages the MEC 

hosts, resources, VMs, services, and traffic 

OSS Operation Support 

System 

Responsible of the requests that go through 

UALCMP and getting control information from 

MEPM and Mobile Edge Orchestrator (MEO), 

for authenticating requests to go through 

UALCMP, and register while starting and 

ending the lifecycle of mobile edge applications, 

and approving nodes to use said edge 

applications 
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to use mobile edge applications. A risk in the OSS is injection, since the application 

registers in the OSS, a malicious actor may try to inject code in the OSS or impersonate 

valid entries of applications to gain access. 
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Chapter 5 
 

Machine learning for secure communications 
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5.3 A Federated Learning Approach for Improving Security in Network Slicing ..... 32 

 

 

5.1 Federated Learning for 5G HetNet cooperation security 

 

This paper [34] proposes a Federated Learning approach to enhance the security of 

Heterogeneous Networks (HetNets). This approach incorporates attack detection in each 

layer and enriches the threat information with the cooperation of the layers. Given their 

diverse range of devices and distributed architecture, traditional security solutions are 

insufficient for HetNets. Therefore, this solution uses nodes from upper layers to enhance 

detection models of lower layers and uses other networks’ knowledge to improve the 

security of similar networks, taking advantage of the factors that complex Hetnet’s 

security.   

 

The solution based on federated learning aims to deploy attack detection in the end, edge, 

and cloud. Attack detection in the end nodes is used for to secure the local access network. 

This Deep Reinforced Learning (DRL) detection model will be only deployed on end 

nodes with efficient computational power since the end nodes of the network are 

computationally restricted. Besides, the end nodes only have partial knowledge, based on 

their experiences, but full knowledge is needed when it comes to security. As a result, an 

edge node from upper layer will aggregate the end nodes’ local trained models to create 

a detection model with full knowledge, and it will return the integrated model with 

enhanced dataset to end nodes. 
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The detection model in the end nodes will be trained using the Deep Q-Network (DQN) 

algorithm, due to its adaptability in dynamic environments. The knowledge needed for 

DQN is the current states, the action selected a, the reward r from environment after the 

action a, and the next state s’. The states of the end nodes are represented by the features 

of the transmitted packages in the local network. An action a is represented by the values 

0 and 1, where 0 means that the node does not detect a risk and 1 that node detects a risk. 

The reward r can take 4 values, 1, -100, -1, and 100. If the end node takes a correct action 

in a secure network, then it is rewarded with the value 1, but if the node takes a wrong 

action in a secure network, then it is given the punishment of -1. In the scenario where 

the local network is in a risk, and the node takes a correct action, it is rewarded with 100, 

but when the network is at risk and end node take a wrong answer, it is punished by -100. 

The current network is updated based on the gradient descent of loss function of DQN: 

Li(θi) = E(s, α, r, s’) [ (r+ γmaxα‘ Qtarget(s’, α’; θi) -Q(s, α; θi))
2]  

where E is the expected value of sampled experiences in the replay buffer, γ is the 

discount factor, Qtarget is the target network which is a more stable copy of the Q-

network due to periodic updates, θ is the parameters of the node i, and r, a, s are the 

reward, action and state accordingly as mentioned above. In addition to the information 

aggregation, the edge node calculates the parameters θ of the nodes, meaning the update 

of the weight and biases of the nodes, and then informs the end nodes the updated 

parameters. With such detection model, an end node after completing training can not 

only perform attack detection, but also share to an edge node its model parameters to be 

shared to other nodes. 

 

Continuing to the edge, the bridge in between the end and the cloud. The edge connects 

the local access network to the 5G backbone network. As a result, the edge has full 

knowledge of the security in the local access network, but only has partial knowledge 

about the cloud’s security. The edge node's role apart from decreasing the training speed 

due to model aggregation for the end nodes, is to also attack detection for itself, since the 

edge is battling threads from both the local and the backbone network. In addition, just 

like previously in the end nodes, in the edge layer too the upper layer, meaning the cloud, 

aggregates the models from the edge and returns to them an enhanced model.  
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The detection model of the edge is based on Deep Learning. The training data of the 

model has as input transmitted packets and as output the verdict if the packets are 

malicious or not. The model is updated using the gradient descend with the goal to 

minimize the average cumulative error: 

Ek = | yk
out – yk

lab | 

where Ek is the error of node k, yk
out is the expected output of the given input of node k, 

and yk
lab is the actual output of the model with the given input of node k. 

∑
Ek
m

m

 

where E is the average cumulative error, Ek is the error of node k, and m is the number 

of training inputs. 

Any attack samples detected by an edge or from the end nodes are stored in a local 

database and the edge nodes share those samples to the cloud to aggregate them in order 

to produce a more accurate model.  

 

Moreover, since Heterogeneous Networks are characterized by their heterogeneity, not 

all models’ parameters can be aggregated and intergraded into other local access 

networks. The cooperation of the cloud in this federated learning approach is to match 

parameters of the edge models to other networks, and to aggregate appropriate threat 

information for matching networks. This can be achieved because when an edge sends to 

the cloud an attack detection model to aggregate, it also sends information to the cloud 

about the environment of the local access network such as security level, density, 

topology, etc. Then all the information of the local access networks is stored in a database 

and compared with the other networks’ information. In that way, the aggregated model is 

constructed based on networks with matching environments, and thus the appropriate 

enriched model is returned to the appropriate networks. 

 

The authors of the paper also add the performance of their machine learning solution. 

They present that initially in the local access network, each training set of a node contains 

packets of both malicious from various attacks and non-malicious packets, therefore 

nodes got initially partial knowledge. The results shown in Figure 5.1-1, of the converge 

shows that over multiple epochs the federated learning cooperative scenario with ten end 

nodes had reached higher reward over fewer iterations in comparison to the same scenario 
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with less nodes which was the second that reached the high continuous reward, and over 

the other schemes. Though this performance it can concluded that when using the 

cooperating proposed federated learning solution the convergence time needed is less 

rather than when having a non-cooperative scheme or traditional federated or distributed 

learning, and the solution is more effective when having more cooperating nodes. A graph 

about the detection error is also presented in Figure 5.1-2 from where it can be concluded 

that the scheme proposed with the higher cooperation has the lowest error, meaning 

higher accuracy, in comparison the same scheme with lower cooperation or even to 

traditional scenarios. Furthermore, the authors of the paper state that the solution can be 

adapted and applied for intrusion prevention and vulnerability scanning, apart from attack 

detection. 

 

 

Figure 5.1 - 1 The average reward of the end nodes [34] 
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Figure 5.1 - 2 Error rate of the edge nodes based on cooperation periods [34] 

 

Concluding, the authors proposed a federated learning solution for 5G heterogeneous 

networks where the end, edge and cloud cooperate to improve the attack detection, 

decrease training time, and aggregate models of matching network environments. This 

solution improved the security in such distributed network, while preserving privacy of 

nodes. The performance of the approach shows that the HetNet can be secured over less 

epochs and with less errors than traditional security solutions. Finally, the solution can be 

adapted for other security purposes such as intrusion prevention and vulnerability 

scanning, thus enhancing 5G HetNets security. 

 

5.2 Reinforced Learning for mobile offloading against jamming in Multi-access 

Edge Computing 

 

Multi-access Edge Computing (MEC) is a new emerging technology of 5G. MEC brings 

closer to end users’ computation and storage resources by placing edge nodes in-between 

end nodes and the cloud. As a result, MEC reduces latency and bandwidth requirements. 

MEC also enables mobile edge caching and offloading. Mobile edge caching reduces the 

traffic load and therefore the latency of the network by reducing duplicate transmissions. 

Offloading improves the performance of an application in a mobile device by transferring 

the application to an edge node with higher computational power. 
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In addition, MEC can improve the security of the network by monitoring and by bringing 

closer to the end devices security functions. On the other hand, as a distributed system, 

MEC introduces a new threat environment in 5G. Some vulnerabilities presented in MEC 

offloading include compromising weak nodes to infiltrate the network and attack other 

nodes, jamming, rogue node, eavesdropping, man-in-the-middle and smart attacks, and 

in MEC caching privacy leakage can be presented. As per the authors in [35], MEC 

security need better solutions since most of them are fixed on a network or attack model 

or are not practical since the parameters are not only difficult to be gathered by an edge 

node, but also change over time for optimization. Their proposed solution is to secure 

offloading against jamming attacks by using Reinforced Learning (RL). 

 

Each mobile device in a MEC system must decide on its offloading policy, determining 

parameters like the data to offload, the channel and transmit power, and the which edge 

node to transmit. The policy is based on maximizing Signal-to-Interference-plus-Noise 

Ratio (SINR) and minimizing Bit Error Rate (BER) of the signals received by the edge 

nodes, mitigating the effects of jamming and interference, and therefore optimizing the 

quality of offloading. A mobile device can dynamically choose the optimal policy using 

reinforced learning, without having full knowledge about the jamming or MEC model. A 

Reinforced Learning (RL) model only needs as parameters the state of the device, its 

available actions, its chosen offloading strategy, and jamming sources. 

 

The state of the mobile device can be calculated from the received jamming power, 

bandwidth, and user density. The device’s decision on offloading policy in the presence 

of jamming can be guided using the Q-function, that calculates the reward for each action 

on the current state based on the current knowledge of the RL. The Q-function is updated 

each time the mobile node decides on an offloading policy and visits a new state, meaning 

new knowledge to take into consideration by the system. An e-greedy algorithm is 

recommended for mobile networks, to explore the dynamic environment leading to an 

optimal policy. 

 

Unfortunately, the disadvantage of Q-learning is its performance in a network, especially 

if smart attackers are present. Since the RL uses its prior knowledge that is based on 

explored states for the Q-function, the node would have to explore all its possible 
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combinations of actions and states to converge to an optimal solution, before the network 

state changes, or before the policy of the jammer changes. For those reasons, the author 

presents Dyna-Q, an extension of the Q-learning algorithm, that in addition to real defence 

experiences, it also uses virtual experiences to train the model. These virtual experiences 

may not always be accurate, but they decrease the learning duration of the model. A 

reinforced learning model needs accurate information with no delays, which can be a 

difficult task for a mobile node to gather fast the current network state to choose 

offloading policy. Moreover, the need for balance of exploration and exploitation of 

reinforced learning, leads the model to choose wrong policies in order to learn and to lead 

to the optimal solutions, especially in the early learning stages, marking this learning 

process as risky and dangerous when applied to edge security. 

 

On the other hand, this machine learning approach offers several benefits too, for instance 

it has low computational overhead, meaning it can be applied to both mobile and edge 

nodes of the MEC system. In addition, when using reinforced learning, the node does 

need any knowledge of the network nor attack model, which is an important benefit when 

dealing with MEC nodes with low computational, energy and storage requirements. 

Lastly, the implementation of Q-learning to a MEC system invaded by a jammer, 

guarantees to converge to the optimal solution, securing the network of jamming. 

 

5.3 A Federated Learning Approach for Improving Security in Network Slicing 

 

One of the new technologies introduced in 5G is network slicing. Network slicing is an 

architecture that allows the creation of multiple isolated logical networks over a common 

physical network. The division to multiple logical networks meets the need for the 

diversity of services’ requirements in the network. Many services have diverse 

requirements in terms of their latency, bandwidth, scalability, Quality of Service (QoS), 

and security. The logical division of the network optimizes resources of the network, 

while enhancing the security of the network due to slices isolation. The slicing isolation 

though poses a disadvantage for machine learning models, due to information isolation 

for privacy reservation in-between slices.  The approach proposed in [36] preserves the 

privacy of each slice, while improving security in a network slicing ecosystem, with the 

use of federated learning. The approach that promises pro-active security with a 
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centralized security orchestrator is called Federated Learning enabled Security 

Orchestrator (FLeSO). 

 

FLeSO uses a federated learning approach since this machine learning algorithm 

preserves the confidentiality of the slices by not sharing the data of the slice, but instead 

it aggregates individual models of the slices into a singular model. The approach promises 

pro-active security in the slices, since if an attack is detected in a slice, the other slices 

will be updated of the detected attack thought the model aggregation, marking federated 

learning a fitting method for the privacy requirements in network slicing. 

 

The FLeSO architecture promises features such as enhanced security, privacy, pro-active 

security, and centralized security management. Due to the distribution of the model 

information that FLeSO provides, the security of each network slice is enhanced by the 

distribution of the attack information by the aggregated model. Moreover, the privacy 

requirements of the network slicing ecosystem are achieved through the sharing of output 

model and not the sensitive information collected from each slice for model training. The 

approach is centralized managed, since in order the security operations can be performed 

by using the FLeSO architecture, and not the network slices. 

 

The model proposed consists of different components as seen in Figure 5.3-1. First of all, 

the Security Orchestrator Client (SOC) is a node in each slice that is responsible for the 

security operation of the slice, in addition to collecting the slice information for training, 

sending the local trained model for aggregation, and receiving the aggregated model. The 

Federated Management Component (FMC) collects models from the SOCs, aggregates 

them, and distributes the output model for the slices. The aggregation method used in this 

approach is FedAvg due to its simplicity. Next, there is the Slice Security Monitoring 

Component (SSMC) that collects data from the SOCs and forwards them to the Data 

Evaluation Component (DEC), that analyses the information collected for attack 

detection and determines the action needed to mitigate the detected attack, and Solution 

Life-Cycle Management Component (SLCMC), that manages the deployment of security 

operations of the slice under attack. In addition, there is the System Evaluation 

Component (SEC) that is evaluates the operations performed by the network slicing 

environment, and the Security Solution Deployment Component (SSDC) that 
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collaborates with the Networks Slice Manager (NSM) to manage the security operations 

in the slices. 

 

 

Figure 5.3- 1Model proposed for FLeSO [36] 

 

The evaluation of the model was carried out on a real-world slicing testbed. A balanced 

of Independently and Identically distributed (IID) data set was used to detect 5 classes of 

data: normal, Denial of Service (DoS), User to Root (U2R), Root to User (R2U), and 

probe. The first feature evaluated was the architecture's performance on data distribution 

through model sharing, in comparison to legacy security models. As seen in Figure 5.3-

2, the accuracy of FLeSO is overall higher than the legacy models. Next feature tested 

was the proactive security that the model provides. The network slice is supposed to detect 

attacks that were not present in the perspective slice. There were two experiments made 

for this feature, the first one each slice was presented with only one distinct attack, and 

the second scenario is that a slice can be affected by many attacks. In both scenarios, as 

seen in Figure 5.3-3 and Figure 5.3-4, the model was presented a combination of normal 

and attack data according to the scenario, with the results of both environments' network 

slices to be able to detect unseen for the slice attacks, meaning proactive security was 

achieved with security mechanisms in the environment. A downside of this feature is that 

to achieve such a result a lot of federated rounds are needed. Also, note that the U2R and 

R2U attack detection ratio is significantly lower, since there is a smaller amount of 

training data in the set for the two attacks. Following up, the convergence analysis of the 

model was based on different training IID data distributed to different slices and with 

different number of iterations. As shown in Figure 5.3-5, the models’ convergence 

independently of the attack distribution to the slices after many federated rounds, but prior 

to that the accuracy of IID distribution and many attacks per slices distribution were 
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higher than the scenario of one attack per slice distribution approach. A limitation 

presented during the performance is the increase of network slices reduces the accuracy 

of the model, since the larger number of slices means larger distribution of data which 

reduced the performance of machine learning models. 

 

 

Figure 5.3- 2 Accuracy of FLeSO [36] 

.  

Figure 5.3- 3 Attack detection, only one attack per slice scenario 

 

 

Figure 5.3- 4 Attack detection, multiple attacks per slice scenario [36] 

 



36 

 

 

Figure 5.3- 5 Convergence of FLeSO [36] 

 

In conclusion, the proposed solution of using federated learning for a more secure 

network slicing ecosystem, as it is tested on a real word network slicing environment, 

ensures not only enhanced security and privacy, but also pro-active slice security, with 

centralized security management. Finally, the FLeSO architecture outperforms the 

legacy security models, in terms of accuracy, data distribution in slices, and 

convergence, making it a great and feasible solution to implement in real world 

networks. 
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6.1 Label manipulation attack  

 

In label manipulation, the attacker has access to the training dataset, and is able to modify 

the labels of the input data [37]. This label modification takes place during the training 

process of the model, and reduces the accuracy of the model, therefore violating its 

integrity. Even modifying a small percentage of the labeling, for example 10%, the 

accuracy of the model reduces to 90%. 

 

6.2 Input manipulation attack 

 

Input manipulation is an attack targeting the integrity of machine learning, in which data 

is added to the model during runtime [38]. The poisoned data, also known as adversarial 

examples, inserted resembles the data provided by the model's environment, but the 

adversarial examples gradually shift the output, decreasing the accuracy of the model and 

leading to misclassification. For example, in reinforced learning, an agent can be led to 

choose the wrong policy, by inserting poisoned data that affects the gradient ascent 

function that achieves optimization.  
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6.3 Model poisoning 

 

One attack in federated learning is the model input manipulation attack [39]. In federated 

learning, the model is gradually taking as input models from nodes to aggregate. A 

malicious node can send to the aggregator a tampered model, and therefore spread the 

polluted data to the other nodes of the environment. Therefore, by poisoning a local 

model, the global model's integrity is affected. 

 

6.4 Model extraction 

 

An adversary can reconstruct the machine learning model via the model extraction attack. 

This can be achieved through black box querying. Black box adversaries have no 

information of the model’s parameters, architecture, or training data, but they can only 

query the model. By constantly querying the model and receiving output, the attacker can 

construct a similar new model, called shadow model [40], with the sample of data from 

the queries as training data. The sample data used for training constructs a model that 

imitates the target model with high accuracy. If the attacker has access to the class 

probabilities, the similarity of the adversary and target model increases, and the 

complexity of reconstruction decreases. The possession of an identical model affects the 

model’s integrity, due to adversarial example transferability, and confidentiality, due to 

model's information extraction.  

Adversarial example transferability is a property of machine learning models [41]. This 

property implies that there is a probability that if an adversarial example is misclassified 

by the adversary identical model, then the target will misclassify the adversarial example 

too, affecting the integrity of the target model.  

The extraction of the model's information can be achieved by the observation of the input 

and output data of the model. For example, model's parameters can be derived from the 

observation of the data. In addition, another issue with machine learning models is the 

unintentional memorization of data [42]. It is a rare occurrence that happens with unique 

sequences of the training data, which caused overfitting in the model. It is worth noticing 
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that the extraction of the model’s parameters can be done not only with the help of an 

adversary model, but it can also be done on the target model too. 

 

6.5 Membership attack 

 

This confidentiality attack reveals to the adversary whether the input presented was in the 

training set of the model. The membership attack is a black box attack, meaning the 

adversary has no information about the model, and they only can interact with the model 

by querying an input and observing its output. The adversary can determine if the input 

belongs to the training set by observing the probability vector of the classes in the output 

of the model [43]. The probability vector shows the model's confidence value that the 

input value belongs in the respective class. The higher the confidence value, the higher 

of the accuracy of the output. Moreover, machine learning models' accuracy tends to be 

higher in data that were already inputs of the model, and higher precision if the input was 

a part of the training data, which can be viewed as a result of model's overfitting. The 

membership attack takes advantage of this property of the models, by corelating that the 

input with high confidence value belongs to the training dataset.  

This attack affects the confidentiality of the model since the adversary can determine the 

private training data of the model that were collected from the environment of the model. 

 

6.6 Model evasion 

 

The model evasion attack goal is an adversary to evade detection by the machine learning 

model due to misclassification [44]. The attack is carried out during the testing phase of 

a model where the adversary must generate attack samples to evade the converged model. 

The adversarial data that will lead the model to misclassification can be perturbated in 

normal input data. The slight alteration of the malicious input cannot be observed by 

humans, but it still led to misclassification by a machine learning model, for example 

altering some pixels for a picture input in convolutional networks [45]. Model evasion by 

classifying adversarial data as benign affects the integrity of the model. 
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7.1 Future works 

 

Many machine learning models have been proposed to fortify the security of 5G. 5G is a 

heterogeneous network, something that should be kept under consideration. Therefore, 

more heterogeneous suitable machine learning approaches should be developed to be 

more realistic in a 5G network scenario. In addition, in order for the solutions to be more 

realistic, they should be tested on a real-world testbed. In addition, in a complex dynamic 

and scalable wireless network, like 5G, traditional machine learning will not be suitable 

since there is no continuous training. Online learning is a more realistic machine learning 

approach since online learning does not require a completed defined training set from the 

beginning, but instead it learns from batches of data [46]. Online learning benefits cellular 

networks since the machine learning model is not static but can scale and adapt based on 

the new data, new occurrences, or changes of the network.  

 

Furthermore, online learning could prevent machine learning model attacks, like model 

extraction. Since the model is dynamic, and even if an adversary acquired the model, the 

dynamic model is going to be changed over time, so the adversary obtained an older, 

unusable version of the machine learning model. Moreover, another tactic of preventing 

machine learning attacks, for example label or input manipulation and model evasion, is 

introducing validation of information of the training and testing sets. Another powerful 

tool to be considered to enhance the security of machine models is homomorphic 

encryption [47]. Homomorphic encryption enables the node to perform computations on 
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encrypted data. Homomorphic encryption ensures confidentiality since the data does not 

have to be decrypted in order to be used. On the other hand, these extra steps or turning 

the machine learning model into a dynamic one, would add additional computing and 

energy cost which may be critical in a network with restricted resources. 

 

7.2 Conclusions 

 

The introduction of 5G revolutionized cellular network technology, due to the new 

technologies introduced, such as massive MIMO, the mmWave, multi-access edge 

computing, and network slicing. It is beyond doubt that the fifth generation of cellular 

networks outperforms the previous generations, while also being the most secure 

compared to them. Also, even the vulnerabilities presented can be prevented by deploying 

various machine learning models. But machine learning is considered to be a double-

edged sword for security, because even though the models are deployed to prevent 

vulnerabilities of the network, machine learning itself introduces new model 

vulnerabilities in the network. Nonetheless, machine learning is recommended by various 

researchers to mitigate challenges in 5G, and therefore fortifying its security. Finally, the 

fifth generation not only impacted, but also paved the way for the upcoming generations 

of cellular networks. 
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