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Abstract 

 

Internet of Things is vastly spreading as an industry, at a very rapid pace, transitioning to smart 

our homes, work environments or even commercial infrastructures. Although, by growing so 

fast, the networks face an increasing appearance of new challenges, as the communications 

become more as well. Between these challenges is the effective system management, while 

guaranteeing security for the devices’ identities and interactions. The conventional methods 

that have been used so far by the broad mass of the industry, turn out to encounter some serious 

vulnerabilities, such as centralized servers that cause bottlenecks or even single point of 

failures, which are usually subject to exploitation by intruders. 

 

The technology of Blockchain, is promising new decentralized platforms that can provide 

safety and independency. As it follows a peer-to-peer architecture, blockchain introduces the 

term of the distributed ledger, where every detail regarding any transaction that has ever taken 

place in the network  is kept. In blockchain, consensus mechanisms are implemented too, 

according to which, some special nodes serve the network by providing consensus on its state 

at any moment, by following specific algorithms that usually involve computations and demand 

of high processing power.  

 

In this thesis, research is conducted to check whether there is a possibility of integrating the 

Blockchain technology into the access management of an IoT network of constrained devices, 

aiming to gain from the benefits that it goes along with. Within this effort, a proof of concept 

was invented and conceptualized before its implementation was executed. The developed 

system performs a small-scale access management for constrained IoT devices on the 

blockchain of Ethereum. The intended scope was a worldwide range of its application. System 

performance, specifically response time of its functions, seemed to be dependent by the number 

of the clients, but not at a great extent as the relation was linear. The obtained results reflect 

only up to a point the system’s deployment to the public Ethereum network, such in real life 

applications, while the tests were conducted on a private Ethereum blockchain that ran locally 

where no consensus mechanisms were implemented. However, many other factors remained 

stable and thus this setup can be considered as representative. The acting nodes of the system 

were simulated by different Ethereum accounts, provided by the environment used for the 

development, so the examination could take place. Both the limitations and the benefits that 

were gained from the integration, have been described in detail.  
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Chapter 1 

Introduction 

 

 

1.1 Blockchain and potential in IoT         1 

1.2 Motivation            2 

1.3 Objectives            2 

 

 

1.1  Blockchain and potential in IoT 

 

The emergence of blockchain technology has revolutionized the way we think about 

decentralization, security, and trust in a digital world. Satoshi Nakamoto's invention of Bitcoin 

in 2009 introduced the concept of blockchain[9], which enabled secure and immutable 

transactions without the need for intermediaries. Since then, blockchain technology has 

evolved and expanded into various domains, including healthcare, finance, and supply chain 

management. 

 

However, the potential of blockchain technology extends beyond cryptocurrencies. It has 

enabled the creation of decentralized platforms, such as Ethereum and Stellar, that allow the 

execution of code and the development of decentralized software programs. These platforms 

can be used to build decentralized applications (dApps) that can potentially solve some of the 

existing problems in the centralized systems. 

 

In this thesis, we aim to explore the potential of using Ethereum blockchain to power 

constrained devices in the Internet of Things (IoT) ecosystem. The IoT has the potential to 

transform various industries by enabling the interconnectivity of devices and machines, but it 

also poses significant challenges, such as security and privacy concerns, data ownership, and 

interoperability. We propose to leverage blockchain technology to address some of these 

challenges by implementing a proof-of-concept access management system that can operate 

globally. 
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1.2  Motivation 

 

The current state of IoT systems heavily relies on centralized or brokered paradigms that 

demand substantial computational and storage capabilities. Unfortunately, these centralized 

approaches come at a high cost and struggle to scale efficiently to accommodate the ever-

increasing number of IoT devices. Complicating matters further, there is a lack of a unified 

platform that facilitates seamless communication between devices while ensuring 

compatibility across different manufacturers' offerings. 

 

The conventional client-server model falls short when applied to the intricate IoT ecosystem, 

which necessitates a decentralized communication approach capable of mitigating the expenses 

associated with server infrastructure and upkeep. Enter blockchain technology—a promising 

solution to this predicament. By harnessing a peer-to-peer decentralized communication 

approach, blockchain enables the sharing of processing power and storage requirements among 

a vast network of IoT devices without necessitating additional resource allocation. 

 

Employing blockchain as an underlying platform for IoT yields several noteworthy advantages. 

Firstly, it establishes a secure, immutable, and decentralized ledger, instilling transparency and 

trust among all participants within the network. Secondly, it fosters interoperability between 

devices and services offered by various manufacturers, thereby fostering innovation and 

healthy competition within the IoT landscape. 

 

1.3  Objectives 

 

Currently, in the management of Internet of Things (IoT) devices, there is a reliance on 

centralized Authentication, Authorization, and Accounting (AAA) servers that handle user 

requests for accessing various resources of constrained devices. However, this approach falls 

short in meeting the global interoperability needs of the IoT, especially considering that certain 

devices may be part of separate management communities during their lifecycle. 

 

The primary objective of this thesis is to explore a more autonomous and shared approach to 

identity and access management for IoT devices, eliminating the dependence on a single entity 

for securely storing all data. Our study delves into the distinctions between conventional device 

management processes and the utilization of blockchain as a database, seeking to shed light on 

the potential benefits and drawbacks of this alternative approach. 
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This thesis aims at answering the following research questions:  

 

1. Can we develop a blockchain-based IoT device management system to operate at a 

worldwide scale? 

2. How does blockchain technology benefit IoT? 
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Chapter 2 

Literature Review 

 

 

There are many other related papers, that have researched this particular field in a similar way; 

In [13] various access control technologies are examined. Along the examination, modern 

access control solutions for IoT networks are discussed, both for the industrial and for the 

research sector. But the paper doesn’t deal with the work already done by standardization 

organizations in the field of access management for IoT networks. Study [16] conducts short 

review of conventional architectures that are currently adopted in the management of IoT. 

Nevertheless, no any of the included proposals follows any strong standard. 

 

This thesis provides an alternative blockchain-based IoT network management system, 

following a custom architecture. The work conducted within this thesis differs in several 

aspects from other similar works like [16] and [14] that deal with IoT management frameworks 

using blockchain. The developed system, was implemented by specifying policy in only one 

smart contract using only one blockchain network. Unlikely, [14] promoted the creation of 

many smart contracts, one for each resource-requester pair. Additionally, [14] doesn’t use 

smart contracts at all and just proposes a new architecture that is based on the use of 

blockchain’s composite layer between the IoT devices and the industrial applications. Last but 

not least, both [16] and [14] put the IoT devices into blockchain, while the architecture that 

was invented within this research keeps them out and offers communication through 

intermediary entities, called Managers. Although conceptually it sees the devices as nodes that 

operate internally in the network, technically they don’t share the distributed ledger to perform 

the transactions between each other. 
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Chapter 3 

Methodology 

 

 

3.1 Data Science Research           5 

3.2 Advantage             6 

 

 

This chapter explains the methodology followed by this thesis in addressing the problem 

described in Introduction along with the reasons that this methodology was preferred over 

others. The chosen methodology is Design Science Research (DSR).  

 

3.1  Design Science Research 

 

As described by [3], DSR indicates the following steps: 

 

1. Problem identification and motivation: Definition of the research problem and 

justification of the value of the proposed solution. The justification has to aim the 

motivation of the audience to appreciate researcher’s understanding of the problem. 

The researcher should be able to know the state of the problem and the importance of 

its solution.  

2. Define the objectives for a solution: The objectives of a solution can occur from the 

problem’s definition and knowledge and have to be feasible. They may be quantitative, 

e.g., how a desirable solution would be better than the conventional one, or qualitative, 

e.g., how the produced artifact is expected to provide solutions to challenges that 

haven’t been addressed yet. Any objective should be inferred by problem’s 

specification logic. 

3. Design and development: Implementation of an artifact as an object of any design 

where research contribution is embedded. At this point the artifact’s functionality and 

architecture should be determined, before its creation. 

4. Demonstration: One or more instances of the problem should be solved. This can be 

done through experiments, simulations, case studies, proofs, or other appropriate 

activity. 

5. Evaluation: A measurement of whether the artifact actually provides a solution to the 

researched problem. A comparison usually takes place between the objectives of the 
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proposed solution and the actual results of the artifact in context. There are many forms 

that the evaluation could take, and this has to do with the nature of the problem and the 

artifact. A rebound to step 3 may be needed to improve effectiveness or this extra 

activity may be left for future work of other projects. 

6. Communication: Publishment of all the value that flows out of the research, regarding 

every aspect of the problem and the designed artifacts, to all the relevant stakeholders. 

 

 

Figure 3.1: DSR Process Model[3] 

 

3.2  Advantage 

 

Firstly, DSR is a problem-centric methodology with which real world problems can be solved 

through design and innovative artifacts. By following DSR’s steps we are explicitly focusing 

on addressing the problem of blockchain-based IoT device management, ensuring that our 

research and implementation directly contribute to solving the identified challenges. 

 

Secondly, it  is an iterative and incremental approach, allowing us to refine and improve our 

solution over time. For such complex problems like IoT device management, where there are 

multiple iterations of design, implementation, and evaluation in order to achieve an optimal 

solution, this is particularly beneficial. We are let to learn from each iteration and incorporate 

feedback and insights into subsequent iterations. 

 

We can additionally say that DSR’s structure is based on a design-oriented mindset that 

emphasizes on the creation of artifacts as means to generate new knowledge and solve 
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problems. This enables to us the design and implementation of a prototype system that 

demonstrates feasibility and effectiveness on the proposed solution and so the validation of the 

use of blockchain for IoT management on a global scale. 

 

Furtherly, this methodology has also some practical relevance and application in real-world 

settings. With its use we don’t just expect the development of a theoretical understanding of 

the problem but also the creation of a practical solution, feasible to implement and evaluate. 

We are guaranteed that our research contributes to the advancement of knowledge while also 

provides  tangible benefits for practitioners in IoT device management. 
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Chapter 4 

Blockchain 

 

 

4.1 Introduction to Blockchain Technology and Its Applications      8 

4.2 Architecture          10 

4.3 Consensus Mechanisms         19 

4.4 Double Spending          23 

 

 

4.1  Introduction to Blockchain Technology and Its Applications 

 

Blockchain technology has garnered much attention since its introduction in 2009 with the 

launch of Bitcoin, a decentralized digital currency. The technology has come a long way since 

then, and its potential uses are being explored by various industries, including finance, 

healthcare, supply chain management, and more recently, the Internet of Things (IoT). In this 

section, we will provide an overview of blockchain technology, how it works, and its potential 

applications. 

 

Blockchain is a decentralized, immutable, and transparent ledger that records all transactions 

in a distributed network. It uses cryptographic techniques, specifically the cryptographic hash 

function SHA256, to secure transactions and maintain the integrity of the network. The 

blockchain consists of a series of blocks, each containing a set of transactions, and each block 

is connected to the previous block, forming a chain of blocks. This structure ensures that once 

a block is added to the chain, it cannot be altered or deleted without invalidating the entire 

chain. The system supports a feature called Smart Contract, ensuring that each party is in 

compliance with the conditions. 

 

One of the most significant advantages of blockchain technology is its decentralization. Instead 

of relying on a central authority, such as a bank or government, to validate transactions, 

blockchain uses a network of nodes to verify and validate transactions. This means that 

transactions can be processed faster, and there is no need for intermediaries, thereby reducing 

costs and increasing transparency. 
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Depending on the level of access to which users are involved in the Network, Blockchains have 

been categorised as three main types. [4] categorizes it into public blockchains, private 

blockchains and consortium blockchains. Public Blockchains are those in which anyone can 

participate and read; consortium or permissioned blockchains are the ones that selected their 

own miners ahead of time, resulting in part decentralisation. Private blockchains are those that 

can be read by anyone but written to only by private parties such as organisations. The main 

intention of this thesis is to ensure that the wider system has a mix of Consortium and Public 

Blockchains. However, the smaller proof of concept used by this thesis will also use a privately 

funded Blockchain in order to test it. 

 

Blockchain technology has various potential applications. In the financial sector, where it is 

used to develop decentralised digital currencies such as Bitcoin and Ethereum, it is one of the 

most popular uses. These currencies have been popular because of their decentralised nature 

and they are not subject to inflation or government intervention. 

 

The management of supply chains has also been identified as one area where the use of 

blockchain technology is being investigated. Companies will benefit from using blockchain 

technology in real time to monitor the movement of goods between manufacturer and user, 

making it more transparent, reducing costs and improving efficiency. 

 

Blockchain technologies are also being explored by the healthcare sector. For healthcare 

providers, the use of blockchain will enable them to protect their patient's records and ensure 

that patients are able to manage access to medical data in order to improve privacy and security. 

 

One of the most promising applications of blockchain technology is in the Internet of Things 

(IoT). The IoT is a network of interconnected devices that can communicate with each other 

and exchange data. By using blockchain technology, devices in the IoT network can securely 

communicate and exchange data without the need for intermediaries, reducing costs and 

increasing efficiency and scalability. 

 

In the following subchapters we get into details of the operation of blockchain technology and 

its real world implementations. 
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4.2  Architecture 

 

Blockchain technology is a distributed database system that provides a secure and transparent 

platform for recording and verifying transactions. The architecture of blockchain is based on a 

decentralized, peer-to-peer network known as P2P (on the top of the network layer), where all 

nodes work together to maintain the integrity of the transaction ledger. 

 

The blockchain network is composed of nodes, which are essentially individual computers that 

are connected to each other over the Internet. These nodes are meant to reach a consensus on 

the state to have some copy of the blockchain available at all times, meaning that there is no 

central authority with responsibility for managing the network. 

 

The transaction ledger, or blockchain, is a continuously growing list of records, called blocks, 

which are linked and secured using cryptography. Each block contains a cryptographic hash of 

the previous block, along with a timestamp and a record of new transactions. By linking blocks 

in this way, the blockchain creates an immutable, tamper-proof record of all transactions on 

the network. This is actually the fundamental element of the blockchain. 

 

To add a new block to the blockchain, the network of nodes must reach consensus. It means 

the new block has to be agreed by a majority of nodes that it is valid and must be added to the 

chain. This process is called 'mining', and it entails dealing with a complicated mathematical 

problem in which considerable computing power is required. When it has been mined, the 

block is distributed to all nodes and each of them will verify its validity before they add it to 

their copy of the blockchain. 

 

The decentralized and distributed nature of blockchain technology provides several benefits, 

including increased security, transparency, and resilience. Because there is no central point of 

control, the network is much harder to hack or attack. Additionally, because all nodes have a 

copy of the blockchain, it is extremely difficult to tamper with or alter the records. 
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4.2.1  Network Architecture 

 

 

Figure 4.1: Blockchain Network Architecture[15] 

 

4.2.2  Nodes 

 

In a blockchain network, nodes are the individual computers or devices that participate in the 

network by communicating with one another to maintain the integrity and security of the 

system. Nodes can be run by anyone who wants to participate in the network, and they can 

perform a variety of functions depending on their configuration and the role they play in the 

network. 

 

One of the most common roles that nodes play in a blockchain network is that of miners. The 

miners are in charge of adding blocks to the blockchain using a process known as proof of 

work. For the purpose of solving complicated mathematical equations, this requires a 

considerable amount of energy and computing power. 
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However, not all nodes in a blockchain network are miners. In fact, there are many different 

types of nodes, each with their own specific functions and responsibilities. Some nodes are 

responsible for routing transactions between different parts of the network, while others are 

responsible for storing the blockchain data and keeping it up-to-date. 

 

There are three main types of nodes in a blockchain network: full nodes, SPV (simple payment 

verification) nodes, and web clients. Full nodes are the most powerful and secure type of node, 

as they download and store a complete copy of the blockchain on their computer. This allows 

them to verify transactions and blocks independently and ensure that the network is functioning 

properly. 

 

SPV nodes, on the other hand, do not download the entire blockchain. Instead, they only 

download a small part of the blockchain, such as the block headers, which allows them to verify 

transactions without using as much computational power. This makes them ideal for mobile 

devices or other low-power devices. 

 

Finally, web clients are nodes that connect to the blockchain network through a web interface 

or API. These nodes do not download the blockchain or perform any mining or validation 

functions, but they can still interact with the network to send and receive transactions. 

 

The node will begin to search for additional nodes that are connected to a specific TCP port as 

soon as it has entered into the Blockchain Network. It shall thus be capable of communicating 

and sharing information about transactions, blocks or additional important data with others in 

the network. Nodes help to ensure the safety, decentralisedness and resilience of the blockchain 

network through their cooperation. 

 

4.2.3  Transactions 

 

In blockchain, transactions are the basic building blocks of the network. A transaction refers to 

any movement of value or information that is recorded on the blockchain. These transactions 

can include sending and receiving cryptocurrency, storing data on the blockchain, and 

executing smart contracts. They are actually stored data structures, not encrypted and  typically 

linked to previous transactions, thus forming a chain. 

 

Technically, a transaction is a digital message that is broadcast to the network and contains 

information about the sender, recipient, and the amount or type of asset being transferred. When 
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a transaction is created, it is signed with the private key of the sender to ensure its authenticity 

and to prevent any unauthorized changes to the transaction. 

 

Once a transaction is set up, it will be broadcast to the network and detected by nodes or miners 

who are validating transactions and confirming them. Verification of the sender's financial 

ability to make a transaction, verification of digital signatures and ensuring that transactions 

comply with the rules of the blockchain protocol shall be part of the validation process. 

 

Once validated, the transaction is added to a pool of transactions which have not been 

confirmed yet and are expected to be included in this block. The transactions in this pool are 

competing with each other to join a block that will be added to the blockchain. The miners, 

who are responsible for the creation of new blocks and to integrate them into the blockchain, 

choose their transactions from this pool based on transaction fees and priority. 

 

Once a transaction is included in a block, it is considered confirmed and becomes a permanent 

part of the blockchain. The block containing the transaction is broadcast to the network and is 

added to the blockchain by other nodes or miners who validate and confirm the block. 

 

In Table 4.1, we see the typical information included in a blockchain transaction. It's worth 

noting that different blockchains may have slightly different transaction formats and fields. 

 

Size 

(Bytes) 
Field Name Description 

4 Version The version number of the transaction format. 

1-9 Input Count The number of transaction inputs. 

Variable Inputs 
The inputs of the transaction. Each input includes the previous 

transaction output being spent and a script that unlocks it. 

1-9 
Output 

Count 
The number of transaction outputs. 

Variable Outputs 

The outputs of the transaction. Each output includes an amount of 

cryptocurrency and a locking script that specifies the conditions 

under which the funds can be spent. 

4 Locktime 
The block height or timestamp after which the transaction can be 

included in a block. 

4 Witness Size 
The size of the witness data, used for segregated witness 

transactions. 

Variable Witness Data The witness data, used for segregated witness transactions. 

4 
Transaction 

Size 
The size of the entire transaction, including all fields. 

Table 4.1: Information included in a blockchain transaction 
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4.2.4  Blocks 

 

In blockchain, a block refers to a collection of verified and validated transactions that are added 

to the blockchain ledger. These blocks serve as a permanent and unalterable record of all the 

transactions that have taken place on the blockchain network. 

 

Each block is linked to the previous block through the cryptographic hash function SHA256, 

creating a chain of blocks, hence the name "blockchain". This makes it extremely difficult for 

any party to alter any transaction that has been recorded on the blockchain, as it would require 

changing the hashes of all subsequent blocks as well. The linking continues all the way up to 

the first block in the blockchain, called “genesis” block, usually hardcoded.  

 

In Figure 4.2, we see the genesis block marked dark blue. The current active blockchain 

consists of the light blue blocks along with the genesis block. The blocks marked in grey are 

called “stale” blocks and are actually not part of the blockchain from a point and on. When 

multiple nodes or miners in a blockchain network produce valid blocks at the same time, the 

network can temporarily split into different chains. This situation is called a fork. Eventually, 

only one of the chains will become the main blockchain, while the other blocks will be 

considered stale blocks. 

 

Figure 4.2: Blocks in the blockchain[2] 

 

There are several important pieces of information in blocks, such as transaction data, timestamp 

and a unique cryptographic hash which is used to identify the block. In addition, a nonce that 

is an arbitrary value used during the extraction process to generate valid block hash can be 

present in blocks. In Table 4.2 we see a detailed structure of a block. In Table 4.3 we see 

furtherly the information that is included in a block header. 
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Size 

(bytes) 
Field Description 

Variable Block Size 

A 32-bit integer that represents the size of the block in bytes. 

This field is included to ensure that blocks do not exceed the 

maximum block size allowed by the network. 

80 Block Header Consists of several fields, as shown in Table 2.3. 

Variable Transactions 

A variable-length list of all the transactions included in the block. 

Each transaction includes information about the sender, recipient, 

amount, and any fees paid to the miner. 

1-9 
Transaction 

Counter 
Number of transactions included in a block. 

Table 4.2: Structure of a block 

 

Block sizes can change according to the particular network in question, but most blockchains 

have a minimum block size so that they do not get overwhelmed by massive blocks. A 

maximum block size of 1 MB can be found in bitcoin. 

 

 

Size 

(Bytes) 

Field 

Name 
Description 

4 Version 
A 32-bit integer that specifies the version of the software that the 

miner used to create the block. 

32 
Previous 

Hash 

A 256-bit hash of the previous block's header. This ensures that all 

blocks are linked together in the correct order, forming the 

blockchain. 

32 
Merkle 

Root 

A 256-bit hash of all the transactions included in the block. The 

Merkle root is used to verify that the transactions included in the 

block are valid and have not been tampered with. 

4 Timestamp 

A 32-bit integer that represents the time when the block was created. 

The timestamp is important for maintaining the integrity of the 

blockchain, as it ensures that blocks are created in the correct order. 

4 Difficulty 

A 32-bit integer that represents the difficulty level of mining the 

block. The difficulty level is adjusted automatically by the network to 

ensure that blocks are created at a steady rate. 

4 Nonce 

A 32-bit integer that is randomly generated by the miner in order to 

create a valid hash for the block. The nonce is used in combination 

with the other fields in the block to create a unique hash that meets 

the difficulty level required by the network. 

Table 4.3: Information included in a block header 

 

Miners, who are nodes on the blockchain network that compete to add new blocks to the 

blockchain, play a crucial role in the creation of new blocks. They use powerful computing 
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resources to perform complex mathematical calculations in a process known as mining, which 

helps to validate transactions and create new blocks. The transactions verification process 

miners compete for is connected with the timestamp, difficulty and nonce fields. 

 

Once the block has been mined and inserted to the blockchain, it will remain a permanently 

embedded part of the network where there is no change in its content. This creates a high level 

of safety and tamper resistance for the blockchain technology. 

 

The validation process of the blocks that leads to the addition of a block to the blockchain takes 

place in the following sequence. The system shall first verify whether a prior block hash that 

is currently referenced by an existing block has been maintained. This time stamp shall be 

checked as the block must have a value which is higher than or equal to that of the previous 

block and less than 2 hours into the future. The validity of proof-of-work is then checked. The 

new block is added to the blockchain when the condition of the previous block returns true, 

compared with the list of transactions. 

 

4.2.5  Merkle Trees 

 

Merkle Trees are a data structure used in blockchain technology to efficiently and securely 

store and verify large amounts of data. 

 

The purpose of a Merkle Tree is to provide a way to confirm that a large set of data has not 

been tampered with. The tree is constructed by recursively hashing pairs of transactions until a 

single root hash is obtained, which represents the entire set of transactions[1]. Each layer of 

the tree represents a set of hashes from the layer below it, and the root hash is the final result. 

This creates a hierarchical structure where each node is a hash of its children, leading up to the 

root hash at the top.  

 

Merkle trees are used to store and verify the integrity of all transactions in a block in the context 

of the blockchain. Each transaction is hashed and added to the Merkle Tree. The root hash of 

the Merkle Tree is then included in the block header, which is itself hashed and used as a 

component in the proof-of-work algorithm. This ensures that all subsequent hashes in the 

Merkle Tree will need to be recalculated if any change is attempted on a block transaction, 

thereby making it computationally impossible to manipulate data. In Figure 4.3 we see how 

Merkle Trees are used in transactions in a block of blockchain. 
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By facilitating the efficient and safe checking of large sets of data, Merkle Trees are playing a 

crucial role as part of the safety of Blockchain technology. This allows for a way to ensure that 

the block's information remains valid and has not been damaged, which is vital if we are to 

maintain trust in the Blockchain network. 

 

 

 

 

Figure 4.3: Merkle Trees in a block[11]  

 

It is not necessary to have a copy of the whole tree because every Merkle root contains a hash 

of all transactions in the block.  

 

4.2.6  Mining 

 

Mining in blockchain refers to the process of adding new blocks to the blockchain by solving 

complex mathematical puzzles through the use of computational power. In essence, miners 

compete to solve the mathematical problem first, and the winner gets to add the next block to 

the blockchain and receive a reward in the form of cryptocurrency. 

 

It is a competitive process, with many miners racing to solve the problem and claim the reward. 

This competition ensures the security and decentralization of the network, as no single entity 

can control the majority of the mining power.  
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A block may also have the possibility of being generated by two or more miners 

simultaneously. This leads to the formation of the “stale” blocks. Each blockchain 

implementation deals differently with these blocks.  

 

The steps involved in mining a block are as follows: 

 

1. Transaction validation: The first step in the mining process is to validate the 

transactions that are included in the new block. This involves verifying that each 

transaction is valid and has not been previously spent. 

2. Creating a block header: The miner then creates a block header, which includes the 

previous block hash, a timestamp, a nonce, and a list of transactions. 

3. Finding a nonce: The miner then begins the process of finding a nonce that, when added 

to the block header, produces a hash value that meets a specific difficulty target. This 

process involves trial and error, as the miner must repeatedly hash the block header 

with different nonce values until a valid hash is found. 

4. Broadcasting the block: Once a valid hash is found, the miner broadcasts the new block 

to the network. Other nodes on the network then verify the new block and add it to their 

copy of the blockchain. 

5. Block reward: As a reward for their efforts, miners receive a block reward in the form 

of new cryptocurrency units. In the case of Bitcoin, for example, the block reward is 

currently 6.25 BTC per block.  

 

The biggest known example of blockchain mining has been Bitcoin mining. In Bitcoin, miners 

are competing to solve a mathematical problem in which they attempt to find the hash value 

that meets certain criteria. The computational power required to run this operation is 

significant, and the math problem that miners are going to have to solve with growing networks 

also becomes more difficult. At the moment it is just profitable to mine bitcoins with specially 

designed mining equipment, like ASICs (application-specific integrated circuits). 

 

By contrast, Ethereum is using a different algorithm for its mining operations called Ethash, 

which has been designed to be more memory intensive and is aimed at preventing special 

mining equipment from dominating the network. There are still GPUs that could be used for 

Ethereum mining, although ASICs have already been developed for Ethash. 

 

There are two types of mining: solo mining and pool mining. Solo mining involves an 

individual miner using their own resources to mine and validate transactions. Pool mining, on 
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the other hand, involves a group of miners combining their resources to increase their chances 

of solving the mathematical problem and earning the reward and is more common than solo 

mining, as it allows miners to share the costs and risks associated with mining. 

 

4.3  Consensus Mechanisms 

 

In distributed systems, consensus mechanisms have a critical role to play and are particularly 

important in the blockchain ecosystem. In order to guarantee consistency and safety, a 

distributed system requires that each node agrees on the position of the system at present. A 

consensus mechanism makes it possible for nodes to agree with one another on the current state 

of the scheme without having to have a centralised body at their disposal. In a blockchain 

network, consensus is required to verify and add new blocks to the blockchain, ensuring that 

all participants have the same copy of the distributed ledger. 

 

Blockchain networks use various consensus mechanisms, each with its own unique set of 

benefits and drawbacks. These mechanisms are designed to ensure that the network remains 

secure, decentralized, and resistant to attacks. Some of the most commonly used consensus 

mechanisms include Proof of Work (PoW), Proof of Stake (PoS), and Delegated Proof of Stake 

(DPoS). Each of these mechanisms uses different algorithms and incentives to achieve 

consensus among the network participants. 

 

In the following sections, we will explore these consensus mechanisms in more detail, 

including their advantages, disadvantages, and how they operate in a blockchain network. 

 

4.3.1  Proof of Work 

 

The PoW algorithm involves a competition between nodes to solve a mathematical problem 

known as the hash puzzle. The puzzle requires miners to find a nonce, a random number, that 

when added to the transaction data of a block, produces a hash value that meets a specific set 

of criteria[5]. The criteria are set by the network difficulty level and are adjusted regularly to 

maintain a consistent rate of block creation. PoW is really a brute force crack on a SHA256 

hash algorithm. This works as a proof that the miner has used some heavy duty computing 

resources. The exact condition is that the double hash of every block must be less than the 

difficulty target. 
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The first miner to solve the hash puzzle and find a valid nonce broadcasts the block to the 

network, and other miners verify the solution. Once verified, the block is added to the 

blockchain, and the miner is rewarded with a specific amount of cryptocurrency, which 

incentivizes miners to participate in the network. 

 

However, the PoW algorithm has several drawbacks, including high energy consumption and 

the centralization of mining power among a few large mining pools. Another major drawback 

of PoW is the possibility of a 51% attack. This occurs when a single miner or a group of miners 

control more than 50% of the network's computing power, enabling them to manipulate the 

blockchain. In such a scenario, the attacker(s) can potentially reverse transactions, exclude 

certain transactions from being included in new blocks, or even double-spend coins. This 

undermines the trust in the network and reduces its reliability. As a result, many blockchain 

networks have been exploring alternative consensus mechanisms such as Proof-of-Stake (PoS) 

and Proof-of-Authority (PoA). 

 

PoW continues to be a widely used consensus mechanism, especially on the Bitcoin network, 

which uses it to verify transactions and insert new blocks into the blockchain despite its 

limitations. 

 

4.3.2  Proof of Stake 

 

In PoS, validators (sometimes called "forgers" or "minters") are chosen to validate transactions 

and add new blocks to the blockchain based on the amount of cryptocurrency they hold or 

"stake" in the network. The more cryptocurrency a validator has, the greater their chances of 

being selected to create a new block. 

 

Validators are incentivized to act honestly and maintain the integrity of the network, as they 

risk losing their staked cryptocurrency if they engage in malicious behaviour such as attempting 

a double-spending attack. 

 

The process of creating a new block in PoS typically involves the following steps: 

 

1. Validators place a certain amount of cryptocurrency into a special wallet known as a 

"staking wallet". 

2. Validators are randomly selected to validate transactions and add new blocks to the 

blockchain. 
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3. The selected validator creates a new block, validates transactions, and signs the block 

with their staked cryptocurrency. 

4. Other validators on the network check the block for accuracy and vote to accept or 

reject it. 

5. If the block is accepted, the validator who created it receives a reward in the form of 

newly minted cryptocurrency. 

 

As anyone with a cryptocurrency can take part in consensus process, PoS will have better 

energy efficiency and more transparent distribution of rewards than PoW. However, PoS is not 

without its drawbacks, such as the potential for centralization, if a small number of validators 

hold a large percentage of cryptocurrencies, and the possibility of "nothing at stake" attacks, if 

validators have nothing to lose by creating a fork. 

 

Several prominent blockchain networks, including Ethereum, Cardano, and Binance Smart 

Chain, have adopted or are in the process of transitioning to a PoS consensus mechanism. 

 

4.3.3  Delegated Proof of Stake 

 

DPoS is a modification of the Proof-of-Stake (PoS) consensus algorithm that seeks to increase 

scalability and reduce the risk of centralization. It combines PoW and PoS characteristics, using 

a decentralized voting system [8] . 

 

A number of delegates for validating transactions and creating new blocks can be chosen by 

token holders in the DPoS network. The network is maintained by these delegates and they 

receive compensation in the form of transactions fees as well as blocks. The more tokens a user 

holds, the more voting power they have, which enables them to participate in the election of 

delegates. 

 

DPoS aims to achieve faster transaction speeds and a more democratic governance system than 

traditional PoS. By electing delegates to perform the validation, the network can avoid the need 

for every node to validate every transaction, which can significantly increase the network's 

transaction throughput. 

 

DPoS, however, has come under fire for imposing a degree of centralisation on the blockchain 

network. Because only a select few nodes are responsible for validating transactions and 
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creating new blocks, these nodes hold significant power over the network's operation. This can 

lead to possible problems such as collusion and vote-buying among the elected delegates. 

 

4.3.4  Proof of Authority 

 

In PoA, instead of relying on miners to validate transactions and add new blocks to the chain, 

a set of pre-approved validators (referred to as authorities) are responsible for this process. 

 

For instance, the authorities of PoA are typically designated with their public keys and they're 

estimated to hold a limited amount of digital currency so as to be authorised to confirm 

transactions and insert new blocks into the chain. The fact that the authorities are financially 

incentivised to act in good faith and in the best interest of the network, as any unlawful 

behaviour could leave them with a decrease in their shareholding. 

 

The process of adding new blocks in a PoA network is similar to that of PoW and PoS networks, 

where a consensus algorithm is used to determine which authority will validate the next block. 

However, unlike PoW and PoS, the PoA consensus algorithm does not require complex 

computations or significant amounts of computational power. Instead, it relies on a round-robin 

process where each authority takes turns validating transactions and adding new blocks to the 

chain. 

 

One of the advantages for PoA is that it offers more energy efficiency than PoW, because it 

does not need a lot of computational power. Moreover, due to the fact that PoA networks are 

relying on a pre-approved set of validators, which requires more validation and verification 

steps, they can be faster and more effective as compared with other consensus mechanisms. 

 

As the PoA network is based on only a limited number of pre-approved validators to verify 

transactions and add new blocks to the chain, one of its biggest disadvantages is that it's more 

centralized[10]. If too many authorities cooperate or compromise each other, they can put the 

network at risk of attacks. In addition, questions on decentralization and censorship resistance 

can arise if a set of approved validators are used. 

 

 

 

 

 



23 

 

4.4  Double Spending 

 

Double spending[9] is a potential issue in digital transactions where a user can spend the same 

digital asset (such as cryptocurrency) more than once before the transaction is confirmed and 

recorded in the ledger. This can happen because digital assets can be easily replicated, unlike 

physical assets. 

 

In blockchain technology, double spending is prevented by the decentralized consensus 

mechanism. When a user initiates a transaction, it is broadcasted to the entire network. The 

network's nodes then validate the transaction and update their copy of the ledger. Once the 

transaction is validated and recorded in the ledger, it becomes a permanent part of the 

blockchain, and the digital asset associated with the transaction is transferred from the sender 

to the receiver. 

 

If a user tries to spend the same digital asset again, the network's nodes will detect the double 

spend attempt because the ledger will already contain a record of the original transaction. The 

nodes will reject the second transaction as invalid, and the sender will not be able to double 

spend the same digital asset. 
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Chapter 5 

Blockchain Implementations 

 

 

5.1 Bitcoin           24 

5.2 Ethereum           25 

 

 

5.1  Bitcoin 

 

Bitcoin is a decentralized digital currency that enables peer-to-peer transactions without the 

need for a central authority, such as a bank or government. It was created in 2009 by an 

anonymous individual or group under the pseudonym Satoshi Nakamoto and has since become 

the world's most widely-used cryptocurrency. 

 

Unlike traditional currencies, bitcoin is based on a decentralised system of ledgers, blockchain, 

and maintained by computer networks around the world. The transactions are stored on a 

blockchain that is safe and confidential, which makes it difficult for any data to be distorted or 

manipulated. 

 

Bitcoin can be acquired through mining or purchased on exchanges or received as payment for 

goods and services. 

 

One of the unique features of Bitcoin is its fixed supply, which is limited to 21 million coins. 

This scarcity, combined with the decentralized nature of the network, has led to volatility in its 

price, with large swings in value over relatively short periods of time. 

 

Bitcoin has also been associated with controversy, with some critics arguing that it is used for 

illicit activities such as money laundering and drug trafficking. Proponents of this currency are, 

however, advocating its potential to be a decentralised, boundaryless currency that could 

empower individuals and undermine conventional financial systems. 
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5.1.1  Bitcoin Network 

 

The Bitcoin network is a decentralized peer-to-peer network that enables the transfer of bitcoins 

between users. It consists of a group of nodes, each running the Bitcoin software, which 

communicates with each other to maintain a shared ledger of all Bitcoin transactions. 

 

The consensus mechanism of PoW, which serves as a basis for verifying transactions and 

adding new blocks to the blockchain platform, is employed on the Bitcoin network. In this 

process, a complicated mathematical problem is to be resolved that demands significant 

computing power. The first node to solve the problem broadcasts its solution to the rest of the 

network, and if the other nodes agree that the solution is valid, a new block is added to the 

blockchain and the node that solved the problem is rewarded with newly minted bitcoins. 

 

Three main categories of nodes are able to be classified in the Bitcoin Network: Full Nodes, 

Lightweight Nodes and Mining Nodes. Full nodes store a complete copy of the blockchain and 

validate all new transactions and blocks, while lightweight nodes rely on full nodes to provide 

them with transaction information. Mining nodes, as mentioned earlier, are responsible for 

creating new blocks and are typically equipped with specialized hardware (ASICs) to perform 

the necessary computations. Bitcoin’s block time, meaning the time it needs to be mined, is 10 

minutes. 

 

Before adding them to the blockchain, transactions in the Bitcoin network are distributed on 

the network and validated by nodes. To prevent double spending, each transaction is recorded 

in a block, which is then added to the blockchain in a sequential and immutable manner. This 

makes it impossible to delete or modify transactions when they are added to the blockchain. 

 

A system of incentives to promote node involvement and block formation is also included in 

the Bitcoin network. Fees that users pay to have their transactions processed more quickly and 

newly minted bitcoins awarded to mining nodes so they can successfully add new blocks to the 

Blockchain are included in this. 

 

5.2  Ethereum 

 

Ethereum is a blockchain-based decentralized platform that enables developers to build 

decentralized applications (DApps). Launched in 2015, it has quickly become one of the most 
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popular blockchain platforms in the world, thanks to its innovative technology and broad 

community support. 

The fact that it can execute smart contracts is one of the key features of Ethereum. Smart 

contracts are self-executing contracts in which the terms of the contract between the buyer and 

the seller are written directly into code. A wide variety of processes, from finance transactions 

to voting systems and supply chain management, can be automated with their use. 

 

Developers can write smart contracts using a programming language called Solidity, which is 

specifically designed for the Ethereum platform. Solidity allows developers to create complex 

logic that can be executed on the Ethereum Virtual Machine (EVM), which is the runtime 

environment for smart contracts on the Ethereum network. 

 

Ethereum also has its own cryptocurrency, called Ether (ETH), which is used to pay for 

transactions on the network and incentivize miners to validate new transactions and add them 

to the blockchain. The Ethereum network has a block time of around 15 seconds, which is 

much faster than Bitcoin's 10-minute block time, making it more suitable for applications that 

require faster transaction times. 

 

5.2.1  Ethereum Accounts 

 

Ethereum Accounts are objects with a unique 20-byte address as identifier on Ethereum 

network and state transitions, the data transferred between two accounts. There are two types 

of accounts: Externally Owned Accounts (EOA) and contract accounts. 

 

Externally owned accounts are controlled by private keys and can be used to send ether and 

interact with smart contracts. They've got a balance in the ether and they can be created by 

anyone. The transaction shall be signed with the private key associated to the account, when it 

is sent by an external owned account. 

 

Contract accounts are created by deploying a smart contract to the Ethereum network. They do 

not have a private key and are controlled by the rules programmed into the smart contract. They 

hold code and data and can interact with other contracts or externally owned accounts. 

 

There are two fundamental units of Ethereum: Transactions and messages. 
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A transaction represents a transfer of Ether from one account to another. It can also contain 

data and instructions for executing smart contracts. The fields included in a transaction are 

[19]: 

• from – the address of the sender, that will be signing the transaction. This will be an 

externally-owned account as contract accounts cannot send transactions. 

• recipient – the receiving address (if an externally-owned account, the transaction will 

transfer value. If a contract account, the transaction will execute the contract code) 

• signature – the identifier of the sender. This is generated when the sender's private key 

signs the transaction and confirms the sender has authorized this transaction 

• nonce - a sequentially incrementing counter which indicates the transaction number 

from the account 

• value – amount of ETH to transfer from sender to recipient (denominated in WEI, where 

1ETH equals 1e+18wei) 

• data – optional field to include arbitrary data 

• gasLimit – the maximum amount of gas units that can be consumed by the transaction. 

The EVM specifies the units of gas required by each computational step 

• maxPriorityFeePerGas - the maximum price of the consumed gas to be included as a 

tip to the validator 

• maxFeePerGas - the maximum fee per unit of gas willing to be paid for the transaction 

(inclusive of baseFeePerGas and maxPriorityFeePerGas) 

 

Transactions require a fee and must be included in a validated block. We discuss about Gas in 

Subchapter 5.2.2, where Smart Contracts are furtherly analysed. 

 

On the other hand, a message is a similar concept to a transaction, but it is used to invoke the 

code of a smart contract without necessarily involving a transfer of Ether. It can be sent between 

contracts or from an EOA to a contract. The fields included in a message are similar to those 

in a transaction, but they do not include the value field. 

 

5.2.2  Smart Contracts 

 

Nick Szabo firstly introduced and defined the term of Smart Contract in 1994, within his effort 

to create a self-enforcing and perpetual computer software that would replace the standard legal 

contract.  

 

https://ethereum.org/en/developers/docs/evm/opcodes
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“A smart contract is a computerized transaction protocol that executes the terms of a contract. 

The general objectives of smart contract design are to satisfy common contractual conditions 

(such as payment terms, liens, confidentiality, and even enforcement), minimize exceptions 

both malicious and accidental, and minimize the need for trusted intermediaries. Related 

economic goals include lowering fraud loss, arbitration and enforcement costs, and other 

transaction costs[20].” 

 

In the context of Ethereum, a smart contract is a self-executing contract with the terms of the 

agreement between buyer and seller being directly written into code and stored on the Ethereum 

blockchain. Smart contracts enable the creation of decentralised applications (DApps) that can 

be operated independently and transparent in a manner which does not require intermediaries. 

 

Working on a broad range of tasks, from managing digital assets like tokens to executing 

complicated financial transactions and the creation of autonomous decentralised organisations 

(DAOs), can be carried out through smart contracts in Ethereum. 

 

When a smart contract is deployed on the Ethereum network, it becomes a permanent part of 

the blockchain and can be accessed and interacted with by anyone with an internet connection. 

Transactions that involve smart contracts can be initiated by anyone on the network, and the 

results of these transactions are recorded on the blockchain, providing a high level of 

transparency and security. 

 

We can clearly see that in the case of Ethereum, a smart contract is more like an application 

with instructions that is invoked when a transaction takes places to the corresponding Ethereum 

account, rather than just an agreement between two sides.  The instructions are written on a 

high level, Turing complete and Object-oriented scripting language (Solidity) that is executed 

on the Ethereum Virtual Machine (EVM).  
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Figure 5.1: Cycle of Smart Contract execution[18] 

 

To measure the computational effort required to execute a transaction or smart contract, 

Ethereum network uses the unit of Gas. Every operation in the EVM requires a certain amount 

of gas, which is paid for using ether. 

 

Gas is also a measure for preventing denial-of-service (DoS) attacks on Ethereum network, as 

the consumed computational resources have to be paid by the users. The amount of gas required 

for a transaction or contract execution depends on the complexity of the operation being 

performed. The more complex an operation is, the more gas is needed.  

 

Gas price is the amount of ether a user is willing to pay per unit of gas and is usually set by the 

developer. Since they can get more ether from the inclusion of these transactions in the 

blockchain, mutinous miners are prioritising transactions with higher gas prices. Consequently, 

higher gas prices will generally be established by users who wish to have their transactions 

completed as soon as possible. 

 

When a transaction runs out of gas during execution, all changed made to the blockchain are 

rolled back. This ensures that the network remains stable and secure, as it prevents unfinished 

transactions from being included in the blockchain. 

 

Each operation consumes a fixed amount of gas. Table 5.1 shows the gas amounts consumed 

by various standard operations. 

 



30 

 

Operation Gas Consumed (Units) 

ADD 3 

MUL 5 

SUB 3 

DIV 5 

EXP 10 

AND 3 

OR 3 

Table 5.1: Gas consumed for each operation 
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Chapter 6 

Management in IoT networks 

 

 

6.1 Protocols and Standards in IoT                  31 

6.2 IoT on Blockchains                   33 

 

 

6.1  Protocols and Standards in IoT 

 

Internet of Things as a term was firstly introduced by Kevin Ashton in 1999, while presenting 

at Procter & Gamble company. He suggested the linking of the then-unheard-of idea of putting 

wireless sensors on the products to the then-red-hot-topic of the Internet. The IoT refers to a 

network of physical objects or "things" that are embedded with sensors, software, and other 

technologies that enable them to connect and exchange data with other devices and systems 

over the internet. These objects can range from household appliances and wearable devices to 

industrial machinery and infrastructure. Its goal is to enable a vast network of interconnected 

devices to communicate with each other and to provide valuable insights and services that can 

improve efficiency, productivity, and quality of life. 

 

An IoT network’s main core of devices consists of Resource Constrained Devices (also known 

as sensors, smart objects, or smart devices) with limited CPU, memory, and power resources. 

These devices can’t run demanding but essential protocols and implement extra functionalities. 

Security protocols that are too heavy are delegated to the gateway which acts as an intermediary 

to support security measures. Given that data retrieval from them is challenging, this thesis will 

furtherly discuss about CoAP application layer protocol in the following subsections. 

 

6.1.1  Constrained Application Protocol (CoAP) 

 

CoAP is a specialized web transfer protocol designed for constrained devices in the IoT 

ecosystem. It is designed to use minimal resources, such as memory, processing power, and 

network bandwidth to facilitate machine-to-machine (M2M) communication in low-power, 

low-cost devices with limited processing capabilities. Common applications for CoAP include 

smart energy and smart building automation. 
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CoAP operates on top of the User Datagram Protocol (UDP) instead of the Transmission 

Control Protocol (TCP), which makes it lightweight and suitable for  the resource constrained 

devices, using a response/request model similarly to HTTP. 

 

Messages of the protocol contain a code, a method, an identifier, and an optional payload. 

CoAP supports four request methods: GET, POST, PUT, and DELETE, which allow devices 

to perform read, write, and delete operations on resources. It also offers features that make it 

perfect for the use of IoT applications like caching, observation, block transfer and group 

communication. 

 

6.1.2  Lightweight M2M (LWM2M) 

 

LWM2M is a protocol designed for device management of IoT devices. It was created by the 

Open Mobile Alliance (OMA) and is used for remote management of sensors, smart meters, 

and other IoT devices. The protocol is based on and running on the top of CoAP and compatible 

with any device working with CoAP as its transport protocol. 

 

The LWM2M standard will allow for the communication of IoT devices to management 

platforms, so that they can be managed remotely over the Internet. This specifies a set of 

common objects and resources which can be used to configure devices, such as device 

registration, the update of software or monitoring its status and performance. 

 

Support for device firmware updates via air (FOTA) has been one of the major features of 

LWM2M. This means that software updates can be forwarded remotely to the device and you 

don't have to physically access it. This is a key element for IoT devices that may be deployed 

in remote or difficult to reach locations. 

 

In order to ensure that communications between devices and management platforms are secure 

and reliable, the LWM2M also contains security elements such as Transport Layer Security 

(TLS)  and message integrity checks. 

 

There are three main parts that form the architecture of LWM2M protocol. A bootstrap server 

that configures the client before  accessing the LWM2M server, a LWM2M server that 

manages the clients through management commands and a client that is usually a constrained 

device. Following four logical interfaces are defined  between the server and client [17]:  
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1. Bootstrap: allows LWM2M Bootstrap Server to manage  the keying, access control and 

configuration of a device to enrol with a LWM2M Server.  

2. Device Discovery and Registration: allows an LWM2M Client device let the LWM2M 

Server know its existence and register its capability.  

3. Device Management and Service Enablement: allows the LWM2M Server to perform 

device management and M2M service enablement by sending operations to the Client 

and to get corresponding responses from the LWM2M Client.  

4. Information Reporting: allows the LWM2M Client to report resource information to 

the LWM2M Server; can be triggered periodically or by events.  

 

 

Figure 6.1: LWM2M Architecture[17] 

 

There are 2 well known implementations of LWM2M protocol by Eclipse, both in Java and C, 

called Leshan and Wakaama accordingly. 

 

6.2  IoT on Blockchains 

 

Blockchain, as an immutable ledger of transactions, can provide fertile ground for the secure 

co-ordination and communication between billions of IoT devices. By its nature, as described 

in depth in the previous sections, blockchain can operate in trustless environments and is 

difficult to manipulate. 

 

This thesis suggests viewing the IoT devices as blockchain nodes. There is no need of the 

devices to trust each other, while the consensus mechanisms of the blockchain let them so. 
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Independently of their technical characteristics,  any of the IoT devices can interact with others 

through a common network. If this takes places worldwide, a user centred behaviour on the 

web could be established in oppose with the existing device centred behaviour. Some 

constrained IoT devices, with limited resources, may not have the capacity to host a blockchain 

node and so they may be used as lightweight clients. If they do have the proper capacity, they 

may be used as representative blockchain nodes for the others. Under this mentality, new hard-

to-achieve use cases could be generated where the devices can take the control and management 

of networks and become autonomous. For example, a smart thermostat could detect when a 

user has left the house and adjust the temperature accordingly, while a smart lock could 

automatically lock the doors when the user is away. 
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Chapter 7 

Proof of Concept 
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In order to prove the successful development and operation of a blockchain-based management 

system for constrained IoT devices, a small-scale prototype was implemented. Specifications 

regarding the logic behind the choice of the used technologies and the architecture of the 

developed system are discussed in more extent in the following subsections. Should be noted 

that the rationale of the system was influenced by [12]. 

 

7.1  Rationale behind technology 

 

In order to create a peer-to-peer distributed system with the demanded characteristics, a 

blockchain network had to be chosen. Ethereum emerged as the most suitable out of all the 

available blockchain networks that are broadly offered for development, for various reasons. 

 

First and foremost, Ethereum supports the execution of smart contracts. It is the most 

widespread platform for smart contract deployment and execution worldwide, with a built-in 

environment dedicated to these processes. In this way, by creating a dApp, we can more easily 

implement the device management logic in a decentralized and automated way. It is also 

remarkable that the Solidity language that was used within the implementation’s context for 

the development of the logic, is very flexible and easy-to-learn. 

 

What’s more, Ethereum has a relatively very fast transaction processing, with its block time 

fluctuating around several seconds, unlike other blockchains’ ones that takes minutes e.g., 

Bitcoin that has 10 minutes for block time. This is particularly important for IoT devices, which 

require low-latency and real-time responsiveness. 
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7.2  Architecture 

 

This thesis aims to provide a solution for the management of a very large number of 

interconnected IoT devices. The management system that was invented within this context is 

analysed in detail in the current subchapter. A high-level overview of the conceptualized 

architecture is provided in Figure 7.1 below. 

 

 

Figure 7.1: Architectural Overview 

 

The IoT devices of the network are constrained and so they do not have the capability to host 

an Ethereum ledger on their own, due to storage limitations. As illustrated in [12], a solution 

to this challenge is the set up of some representative devices with greater resource 

inventories, through which the devices of the network can request queries from the public 

blockchain. These representative nodes are Managers and are connected to that public 

network, having an administrative role. Each constrained device has to be registered under a 

Manager’s control in order to be able to interact with the network and the access control that 

Transaction/Query 

Transaction/Query 
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they are permitted is specified by the assigned Manager. Managers have to be registered in 

the network as well. Figure 7.2 illustrates a use case diagram of the system. 

 

 

 

Figure 7.2: Use Case Diagram 

 

It should be noted that Managers do not act as intermediary proxies where managing 

decisions are taken. They are more like hubs that forward devices’ requests to the public 

blockchain network, where decisions are approved in a decentralized manner by the miners, 

depending on the governing smart contract’s policy. This thesis only deals with only a simple 

policy within the context of the small-scale prototype and only several management functions 

are offered. More details are analysed in the relevant subchapter that follows. No 

misunderstanding should occur, the architecture does not agree to any semi-centralized 

management structure but to a completely centralized one with full dependency on the 

decentralized environment of blockchain and smart contracts. 

 

When applied to any more complex real-life application, the proposed system could be 

compatible with any policy, indicated by the smart contract or left dependent to be statically 

configured on the Manager’s device. On such occasion, the system could adopt a semi-

centralized character which may be a more suitable solution depending on the application. 

However, the proposal of this thesis is to maintain a completely independent and 

decentralized approach, with blockchain as the governing component. Many more terms and 

conditions could be added in the smart contract, related to any characteristic of the network’s 

stakeholders such as device specifications e.g., location, vendor, version, system 
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specifications etc., to implement any custom logic. The management would be based on this 

core and the decisions would be taken around what is true and what is not in comparison with 

the contract’s rules. Figure 7.3 visualizes the flow of the logic from policy to smart contract, 

along with exemplary content. 

 

 

Figure 7.3: From Policy to Smart Contract Flow 

 

Generally, Ethereum uses a discovery protocol in order for the nodes to find each other. They 

continuously try to find peers to connect until a specified number of peers is connected. 

Another way to accomplish the connection, is using Static nodes that are manually connected 

to each other. This small system follows the latter approach in order to simulate the 

blockchain based behaviour. It was preferred so unpredictable situations are prevented and 

better control of the simulation falls under us. 

 

7.3  Components 

 

The main acting components of the system are the constrained IoT devices, the Managers, 

and the smart contract.  

 

Assumption: This implementation does not involve any simulation for the requesting devices 

and assumes that their activity is just an arbitrary and asynchronous request to the Manager. 

IoT devices, that usually belong to Wireless Sensor Networks (WSNs), communicate with the 

network using the CoAP protocol. The CoAP message is translated then into Remote 

Procedure Call (RPC) messages to be understandable by the blockchain nodes. Up to this 
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part, every process is excluded from the implementation and is considered as given. The 

simulation begins since the Manager receives the request and forwards it to the blockchain. 

There is no networking to be configured between the Manager and the blockchain network, 

while the whole simulation was developed to run on a local environment. 

 

 

7.3.1  Local Environment 

 

The basis of our artifact consists of a local blockchain, which is achieved through using 

Ethereum Virtual Machine (EVM) by running a local blockchain node via the development 

environment and testing framework of Truffle. EVM was chosen instead of the actual 

Ethereum blockchain for various practical reasons. 

 

First of all, running a local Ethereum node allows us to control the development and testing 

environment. We can more easily set up, configure and manage the network according to our 

specific needs. This benefits us especially in the development phase by enabling faster 

iterations and debugging. EVM has excellent compatibility with JavaScript, which was used 

to develop the backend, through specialized libraries. 

 

The actual Ethereum network is costly, requiring the use of real Ether (ETH) for transactions 

and smart contract interactions. This involves costs including gas fees, fact that makes the use 

of the real platform impractical considering the testing and experimentation purposes we 

work for. In contrast, a local Ethereum node lets us simulate the behaviour of the Ethereum 

network without real costs. 

 

Furthermore, EVM is much faster and efficient than interacting with the actual Ethereum 

network, as it is optimized for local execution. Latency for transactions on local node is much 

lower and so smart contracts have much faster response times. In this way we win quicker 

development and testing cycles. 

 

Customizability and control of the network like custom configuration of block times, gas 

limits and mining difficulty to suit better our specification requirements were also considered 

when choosing EVM. This let us create scenarios that closely resemble real-world conditions 

and specific use cases. 
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Last but not least, local Ethereum node deployment is much simpler and more 

straightforward process than setting up connections to interact with the Ethereum network. 

We gained reduced complexity of the development and testing process and thus ease in 

focusing on the objectives of our research. 

 

When a local node of EVM runs on a device through Truffle environment, Ethereum 

accounts attached to their corresponding private keys are provided. In our simulation we 

consider each account to be assigned a participating device. As explained earlier, each device 

is considered as a blockchain node. In Figure 7.4 we see the Ethereum addresses provided by 

Truffle environment after initiating the run of a local EVM node. 

 

 

Figure 7.4: Ethereum Accounts by Truffle 

 

Beyond the blockchain, next comes the backend that is implemented on a local NodeJS 

express server. The server allows to the developed Application Programming Interface (API) 

to run locally and hosts its endpoints to receive requests from the frontend interface, an 

HTML page with scripts of JavaScript, that receives input from the user.  

 

The HTML page is hosted on a local HTTP server and the requests that it invokes reach again 

the smart contract all the way through the backend, in order to receive and show a response to 

the user. When the endpoints receive a request, they call the corresponding JavaScript 

functions that interact with the smart contract on the local blockchain, using the specialized 

library Web3. 
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Technical details regarding the implementation of the involved components are more 

extensively provided in the following subchapters, related to each one separately. 

 

7.3.2  Component: Manager 

 

Managers have the main acting role of the three system components. Managers have access 

to the smart contract’s memory and are able to invoke functions that lead to transactions that 

make changes or make calls in order to retrieve data from the memory, known as queries. The 

actions performed by the Managers have as follows: 

 

• Register and deregister other Managers to and from the blockchain 

• Register and deregister constrained devices to and from the blockchain 

• Add and remove rules for the devices under their management to and from the 

blockchain 

• Query the blockchain 

 

The actions are furtherly discussed later in the subchapter of Smart Contract, as the functions 

that describe its operation. 

 

Managers are responsible for many constrained IoT devices so the latter  can actively operate 

in the network, and so they should be capable of hosting a copy of the blockchain and thus 

work as full nodes. This features a storage requirement that must be met by the Managers’ 

devices.  

 

Technically, Managers performance is visualised through an HTML form-looking page that 

invokes JavaScript scripts in order to interact with the backend and with the smart contract by 

extension. It should be mentioned that the Manager’s interface is the point of view of a 

specific Manager that is specified at the very top of the page as “Requesting (Current) 

Manager”. The Manager, such as any device in the network, has to be assigned an Ethereum 

address from the pool provided by Truffle. Smart contract-wise, the requesting Manager is 

the message sender of the transaction or call. This visualization takes place only with purpose 

to make the concept of the Manager clear and in a more framed real-world application of the 

system such an interface would not be necessary. The Manager interface is presented in 

Figure 7.5, where the Manager’s available actions are distinguished along. 
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Figure 7.5: Manager Interface 

 

Note: For usability purposes, for any user that may use this interface, automatically updated 

dropdown lists are used to provide the available addresses and IDs of each time. Given this, 

some functions may lose some from their functionality, but the concept remains the same. For 

example, no check for an unregistered device can take place as in the corresponding 

dropdown list only the addresses of the registered devices are available. 
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7.3.3  Component: Smart Contract 

 

The system’s operation is governed by the actions that are defined in a specific smart 

contract. As discussed earlier, every node of the network hosts the smart contract, specifically 

through their manager, and here is where the term of the distributed application (dApp) 

appears. The smart contract that was implemented within the current simulation, defines each 

operation that is allowed by the outlined management system, as it appears in the manager 

interface. The management function set of the system was influenced by [12] and is shown 

below in Table 7.1. 

Name Method Description 

Register 

Manager 
Transaction Registers a Manager into the system 

Register 

Device 
Transaction Registers a Device into the system 

Add Manager 

to Device 
Transaction Registers a Device under a Manager’s control 

Remove 

Manager from 

Device 

Transaction Deregisters a Device from a Manager’s control 

Add Rule Transaction 

Adds an access control rule under a device, using resource, 

access rights and access duration (time measured in blocks) 

as parameters 

De-Register 

Manager 
Transaction 

De-registers a Manager from the system. Business-wise, 

the Manager should not manage any device before being 

removed from the system 

De-Register 

Device  
Transaction De-registers a Device from the system 

Revoke 

Permission 
Transaction Deletes a policy rule from the system 

Get Manager Call Returns a Manager’s information 

Query 

Permission 
Call 

Checks if a Device can access the resources of another 

device and returns the access’ information 

Check whether 

a device is 

registered 

Call Checks if a Device is registered and returns its information 

Table 7.1: Management Function Set 

 

The smart contract was written in Solidity, the Turing complete programming language 

supported by the Ethereum platform. As described earlier, the desired management policy 

was coded into smart contract in Solidity in order to utilize the logic. Each operation of Table 
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5.1 exists as a function in the developed smart contract and is governed by many restrictions, 

so the processes follow the proper logic and thus the system’s operation makes sense.  

 

As distinguished in Table 7.1, there are two types for a smart contract function. Some 

functions are triggered by network’s transactions incurring fees and delays while others just 

request queries without cost. Transactions are validated by miners and alter network’s state 

while Calls simply retrieve data from the smart contract’s memory. Both types are passages 

for messages from nodes to the smart contract. An Ethereum contract address is assigned to 

the smart contract when it is deployed, which is used by the nodes to send the messages to. 

The processes for both messages, transactions and calls are illustrated in Figure 7.6 

 

 

Figure 7.6: Transaction and Call processes 
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This chapter deals with the testing of the system aiming to conclude whether our artifact, the 

proof-of-concept system that was developed provides an actual solution to the problem as it 

was defined by the objectives of this thesis. The used methodology DSR, suggests that a 

comparison between the objectives and the actual results should take place. To do so, the 

system is tested, and the results are compared to our expectations, so we can evaluate our 

proposal. There are two types of testing though, Functional and Non-Functional testing and 

this evaluation takes under consideration both. 

 

8.1  Functional Testing 

 

Functional testing is used to check the system with a business-wise approach, meaning 

requirements that are more external. Specifically, in functional testing tests the system for bugs 

and errors and ensures that its functions operate according to plan. As about the bugs and errors, 

from the smart contract’s point of view we should consider the system bug-free since it has 

made it to run successfully. The Truffle environment that was used for the development of the 

dApp has built-in compilation system along with an automated testing framework. For the rest 

system, meaning the frontend and backend components that allow the user to interact with the 

application, no further testing was conducted to locate errors as it is beyond the scope of this 

thesis. The web technologies for that aspect were adopted following as many best practices 

were in knowledge and up to a limit and since the aimed functionality was achieved, no more 

examination was done. Regarding the proper and expected operation of the system’s functions, 

the methodology of use cases was followed, through various scenarios.  
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8.1.1  Scenarios 

 

According to different use cases of the system, several management scenarios were invented 

and run on the developed simulation. The scenarios are completely random but based on 

rational and possible use cases of such a management system, even in real-life applications. 

Scenarios are presented below, each along with a brief description and a list of the system 

functions that need to be activated. Based on the response of the system, we make observations 

and decide whether the system successfully and correctly satisfied the needs.  

 

Note: For testing with the following scenarios, we will be limited to the 10 given Ethereum 

addresses, representing 10 network nodes, as they were provided by Truffle environment. 

Possibility to add more is given, but they are considered enough to prove the functionality of 

the system. 

 

Assumption: While every function needs a message sender to be called and for that Requesting 

(Current) Manager is set, when initializing the network and there is no Manager or Devices 

registered, we assume an initial Boot Manager with standard address that is responsible for 

letting other Managers and Devices to join the network so it can begin operating. In a real-life 

application this Boot Manager could be a provided device with hardcoded static address only 

for serving this purpose. 

 

Scenario 1:  

 

Description:  

 

Devices with names “SONY BRAVIA KD43X72K” and “Apple HomePod 2” and IDs 1 and 

2 are registered under Manager “HP Pavilion 14”. Device with name “Haier I-Pro Series 5” 

and ID 3 is registered under Manager “ASUS ROG G16”. Device 3 requests through its 

Manager to check whether Device 1 is registered in the network. At the same time, Device 2 

requests through its Manager to get the information of Manager “ASUS ROG G16”. The 

Ethereum address assigned to each device can be seen in Table 8.1. 
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Device Name Device 

ID 

Device Address 

SONY BRAVIA 

KD43X72K 

1 0xcca78d041635e4786dfbc4bf123b3daa6165c43d 

Apple HomePod 2 2 0x8efd131991fdbc9c7263ac09a4af981ae1a37902 

Haier I-Pro Series 5 3 0xc7a73a9a49d9926aee63039a16db3e4c7342f9c1 

HP Pavilion 14 - 0x295359de363f0396929d929c05169a83081b2495 

ASUS ROG G16 - 0xf9004b6adaf067dc8a16d24e2021aa6fd00c2bcd 

Boot Manager - 0x4cb943e4e3207b3f7a5c463ca64e61bec8e0ee09 

Table 8.1: Ethereum addresses of the involved devices 

 

Actions: 

 

1. Managers have to be registered in the network along with their assigned Ethereum 

addresses. Function used: Register Manager. 

2. Devices have to be registered in the network along with their assigned Ethereum 

addresses. Function used: Register Device. 

3. Device 1 and 2 have to be added Manager “HP Pavilion 14” 

(0x295359de363f0396929d929c05169a83081b2495). Function used: Add Manager to 

Device. 

4. Device 3 have to be added Manager “ASUS ROG G16” 

(0xf9004b6adaf067dc8a16d24e2021aa6fd00c2bcd). Function used: Add Manager to 

Device. 

5. Device 3 checks whether Device 1 

(0xcca78d041635e4786dfbc4bf123b3daa6165c43d) is registered. Function used: 

Check whether a device is registered. 

6. Device 2 asks for Manager’s “ASUS ROG G16” 

(0xf9004b6adaf067dc8a16d24e2021aa6fd00c2bcd) information. Function used: Get 

Manager. 

 

Simulation of the Scenario 1 is illustrated in the following screenshots, presented as Figures: 
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Figure 8.1: Register Manager “HP Pavilion 14” using Boot Manager 

 

 

 

Figure 8.2: Register Manager “ASUS ROG G16” using Boot Manager 

 

 

Figure 8.3: Register “SONY BRAVIA KD43X72K” with ID:1 using Boot Manager 

 

 

Figure 8.4: Register “Apple HomePod 2” with ID:2 using Boot Manager 

 

 

Figure 8.5: Register “Haier I-Pro Series 5” with ID:3 using Boot Manager 
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Figure 8.6: Add Manager “HP Pavilion 14” to Device 1 

 

 

Figure 8.7: Add Manager “HP Pavilion 14” to Device 2 

 

 

 

Figure 8.8: Add Manager “ASUS ROG G16” to Device 3 

 

 

Figure 8.9: Check whether Device 1 is registered (Device 3) and get its information 

 

 

Figure 8.10: Get Manager’s “ASUS ROG G16” information (Device 2) 

 

Observations: Every function was executed successfully. Managers and Devices were normally 

registered to the network as expected. When Devices requested queries from the system, there 

information retrieved from the network was correct.  
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Evaluation: Success 

 

Scenario 2: In continuation to Scenario 1: Device 3 deregisters itself from the network. Another 

Device with name “SAMSUNG GALAXY S20 FE” and ID 3 is registered and added under 

the management of Manager “HP Pavilion 14”. This device requests the deregistration of 

Manager “ASUS ROG G16” and Device 2 requests access to Device 3, on resource 8595, with 

access rights “read and write” (rw) and expiration block 100. The Ethereum address assigned 

to new device can be seen in Table 8.2. 

 

Device Name Device ID Device Address 

SAMSUNG 

GALAXY S20 

FE 

3 (after deregistration 

of previous device with 

ID: 3) 

0xb60fdfc9427f26ce7372181a8be1fa548d68a3b3 

Table 8.2: Ethereum address of the new device 

 

Actions: 

 

1. Deregister Device 3. Function used: De-register Device. 

2. The new Device has to be registered in the network with its assigned Ethereum 

address. Function used: Register Device. 

3. Device 3 (new) have to be added Manager “HP Pavilion 14” 

(0x295359de363f0396929d929c05169a83081b2495). Function used: Add Manager to 

Device. 

4. Device 3 requests deregistration of Manager “ASUS ROG G16”          

(0xf9004b6adaf067dc8a16d24e2021aa6fd00c2bcd). Function used: De-register 

Manager. 

5. Device 2(0x8efd131991fdbc9c7263ac09a4af981ae1a37902) requests access to 

Device 3(0xb60fdfc9427f26ce7372181a8be1fa548d68a3b3), on resource 8595, with 

access rights “read and write” (rw) and expiration block 100. Function used: Add rule. 

 

Simulation of the Scenario 2 is illustrated in the following screenshots, presented as Figures: 

 

 



51 

 

Figure 8.11: De-register Device 3 (in the screenshot it seems to be Device ID: 1 as selected 

because the dropdown list was updated after the deregistration of Device 3) 

 

 

Figure 8.12: Register “SAMSUNG GALAXY S20 FE” with ID: 3 using Boot Manager 

 

 

Figure 8.13: Add Manager “HP Pavilion 14” to Device 3 

 

Figure 8.14: De-register Manager “ASUS ROG G16” from the network (in the screenshot it 

seems to be Manager Address: 0x295359de363f0396929d929c05169a83081b2495 as 

selected because the dropdown list was updated after the deregistration of Manager “ASUS 

ROG G16”) 

 

 

Figure 8.15: Add rule for access from Device 2 to Device 3 

 

Observations: Every function was executed successfully. Managers and Devices were normally 

registered and deregistered as expected. When Device 2 asked for access to Device 3, the rule 

was added. 

 

Evaluation: Successful 

 

Scenario 3: In continuation to Scenario 2: Manager “ASUS ROG G16” re-joins the network. 

A new Device with name “Sunlight LED” and ID 4 is registered in the network and added 

under the management of “ASUS ROG G16”. Device 1 asks to see whether there is access 
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from Device 2 to Device 3 and access from Device 2 to Device 4. Then, Device 2 and Device 

4 ask for deletion of the permission rule between Device 2 and Device 3. The Ethereum address 

assigned to new device can be seen in Table 8.3. 

Device Name Device ID Device Address 

Sunlight LED 4  0xe03ffff6a47d84c770e4547c0da8a89445eb1627 

Table 8.3: Ethereum address of the new device 

 

Actions: 

 

1. Manager “ASUS ROG G16” has to be re-registered in the network with its assigned 

Ethereum address. Function used: Register Manager. 

2. The new Device has to be registered in the network with its assigned Ethereum 

address. Function used: Register Device. 

3. Device 4 has to be added Manager “ASUS ROG 

G16”(0xf9004b6adaf067dc8a16d24e2021aa6fd00c2bcd). Function used: Add 

Manager to Device. 

4. Device 1 queries permission between Device 

2(0x8efd131991fdbc9c7263ac09a4af981ae1a37902) and Device 3 

(0xb60fdfc9427f26ce7372181a8be1fa548d68a3b3). Function used: Query 

Permission. 

5. Device 1 queries permission between Device 

2(0x8efd131991fdbc9c7263ac09a4af981ae1a37902) and Device 

4(0xe03ffff6a47d84c770e4547c0da8a89445eb1627). Function used: Query 

Permission. 

6. Device 2 and Device 4 ask for permission revoke between Device 

2(0x8efd131991fdbc9c7263ac09a4af981ae1a37902) and Device 

3(0xb60fdfc9427f26ce7372181a8be1fa548d68a3b3) (simultaneously). Function used: 

Revoke permission. 

 

Simulation of the Scenario 3 is illustrated in the following screenshots, presented as Figures: 

 

 

Figure 8.16: Register Manager “ASUS ROG G16” using Boot Manager 
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Figure 8.17: Register Device 4 using Boot Manager 

 

 

 

Figure 8.18: Add Manager “ASUS ROG G16” to Device 4 

 

 

Figure 8.19: Query permission between Device 2 and Device 3 (Device 1) 

 

 

Figure 8.20: Query permission between Device 2 and Device 4 (Device 1) 

 

 

Figure 8.21: Revoke permission between Device 2 and Device 3 (Device 4) 

 

 

Figure 8.22: Revoke permission between Device 2 and Device 3 (Device 2) 

 

Observations: Every function was executed successfully. Managers and Devices where 

registered normally as expected. When Device 1 performed queries on the permission 

between devices, system responded correctly that access permission is allowed from Device 2 

to Device 3 along with its specifications and that no rule exists from Device 2 to Device 4. 

Also, when Device 4 asked to revoke the permission from Device 2 to Device 3 the request 
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was declined because Device’s 4 Manager is not the one that created the rule (as indicated by 

the policy of the network). Instead, when Device 2 asked to revoke the permission, it did 

successfully as its Manager is the one that created the rule. 

 

Evaluation: Successful 

 

 

The above scenarios cover the whole spectrum of system’s functionality. We observed that 

each function worked as expected and we can describe the outcome as successful. Therefore, 

functional testing of our application was successful too. 

 

8.2  Non-functional Testing 

 

Non-functional testing tests functional aspects of the system such as Scalability, Performance, 

Mobility, Concurrency and Security. This kind of testing can be thought more important than 

functional testing here, since these characteristics are more substantial considering this thesis’ 

aim, to provide a solution that is applicable on a real-life global scale environment. In this 

subchapter, we discuss about the non-functional testing that was carried out for the system, 

covering some of the mentioned properties. 

 

8.2.1  Hardware 

 

The machine that was used to perform the non-functional testing of the system is a NodeJS 

server running on 64-bit Microsoft Windows 10 Home operating system. The processor is an 

Intel i7-6700HQ with 4 multithread cores and maximum frequency 3.50 GHz. The RAM is 

16.0 GB. 

 

8.2.2  Testbed Settings 

 

Our small-scale prototype is implemented on a private blockchain network on EVM, thus it is 

evaluated there as well. As said earlier, there are two types of node discovery in Ethereum. A 

dynamic one where a protocol is used to detect the peers and a static one where the connections 

are manually configured. The fact that we adopted the second method is the reason why we 

needed to assume the Boot Managers in subchapter 7.1 to let the new nodes join and discover 

their peers. In functional testing, in the scenarios that were checked, we needed to configure 1 

Boot Manager, we had another 2 Managers involved and 5 IoT devices in total. But these 
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settings have no impact to our results neither to functional nor to non-functional testing, as each 

of these entities is virtual and not configured differently in the network. For example, if we set 

some Managers to act as miners too, then the network’s parameters would be affected. 

However, as this this is a simulation and we used private Ethereum network where the 

consensus mechanism is typically not implemented, we were satisfied as we had a small group 

of nodes that trust each other. This is an admission within this thesis, that the proof of concept 

does not consider security, but this requires only a configuration to do so. For this reason, there 

is going to be a noticeable difference on the non-functional results that we obtain, with the 

more realistic implementation. Our prototype may not capture the full complexity and scale of 

the actual Ethereum network, but it still allows us to simulate the interactions and test various 

scenarios within the limitations of our local setup. So, our simulation can provide a relative 

representation of a decentralized network and the results that we obtain mainly in the non-

functional testing have a relevance to the properties of the live environment of public Ethereum 

network, although its complexity is reduced. 

 

8.2.3  Performance 

 

The performance of the system plays a huge role in the value of its implementation in a real 

environment. Response time is a usual metric to clearly describe the performance of a system. 

As in the case of our simulation, where response times of one of its functions were used in 

order to determine how well it performs. To do so, we recorded the response time of the API 

calls in increasing number of simultaneous requests to one of the system’s functions. 

 

More specifically, a tool called Apache JMeter was used to create a test plan to the system’s 

API backends. The tool allows to configure API calls specifying any variable parameter each 

time, even with .csv files, and to create threads for independent simultaneous calls on the 

application called “users”. After the settings are done a run of the test plan can be executed 

and the results can be recorded even as a graph, as the tool provides built-in automatic graph 

creation. 

 

Firstly, scripts were written to generate a .csv file with the API parameters for 100 new 

devices to be registered in the network. Each line represented a device in the following form: 

deviceAddress,deviceName,deviceID,currentManagerAddress. We can see how the file 

looked like in Figure 8.23. 
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Figure 8.23: Generated .csv file 

 

Then the test plan was run for HTTP requests on the .csv file on the URL of our application, 

hosted locally, for the corresponding function call to register new devices. For 100 devices, 

100 calls API calls took place. The Apache JMeter setting looked as in Figure 8.24. 

 

 

Figure 8.24: Apache JMeter configuration 

 

An initial run for the registration of the devices was conducted first. The obtained results in 

the form of graph are presented in Figure 8.25. 
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Figure 8.25: Response time (ms) of the API call to register devices as function of increasing 

number of calls 

 

Then, the test plan was executed another time on the same devices, meaning that this time the 

system would reject by reverting their double registration, as policy of the network. The 

corresponding results are presented in the form of graph in Figure 8.26. 

 

 

Figure 8.26: Response time (ms) of the API call to register devices as function of increasing 

number of calls – Revert 

 

From the two graphs, we can make the following observations: 

 

1. In any of the two cases, we can see that the system performs satisfactorily, 

considering the expectations or standards of the industry from such a system. The 
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response time in both graphs is fluctuating approximately to half a minute or less, for 

such a high number of device registrations. Comparing the system's response times 

with conventional systems would provide more valuable context and insights for its 

performance. 

2. In the first graph, where devices were registered, the response times are greater than 

in the second graph when there was revert. This indicates a relation between the kind 

of the process that is caused from the call and the response time. The process of 

invoking a smart contract’s function is more demanding in time than revert, as 

expected. 

3. In the first graph the response times are rapidly increased and then stabilized on a 

specific value with just a negligible increase as calls become more. In the second 

graph, the response time is linearly increasing. This indicates that the process of a 

smart contract’s invoked function may be dependent on other parameters, that rise its 

response time to a certain value, and then and then increases very little due to the 

factor of increased calls. In contrast, the process of revert seems to be not dependent 

on other factors and only the increased demand in calls rise its response time. 

 

Summarizing this small experiment, we can extract some value from this proof of concept, as 

it seems to respond successfully to an increasing load of requests. The scenario under which 

the requests were conducted was more realistic as JMeter allowed simultaneous threads to 

touch them off. Additionally, we should mention the probable dependence of smart contract’s 

functions’ response time from other factors than increasing load, which rise it to higher values 

and in a way stabilize it there. Also, the obvious difference in response time between a function 

that was invoked and a function that was reverted, should not be unnoticed, with the latter to 

has much lesser than the other. We could be more precise in our conclusions about performance 

if we compared our results to corresponding ones of a conventional IoT management system. 

We could also be if we tested more functions of the system. In such a case we would be able 

to compare the response time between functions with different complexity and make 

conclusions about the relevance between response time and complexity. 

 

8.2.4  Scalability 

 

Scalability can also be considered as one of the high-priority requirements of the system. It is 

the ability of the system to handle increased workloads or growing demands while maintaining 

or improving its performance, efficiency, and reliability. Since we aim our proof-of-concept to 

take global dimensions, we have to take scalability under serious consideration.  
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Based on the results of the experiment that took place within subchapter 7.2.5 to check 

performance, we can draw conclusions about the scalability of the prototype too. This is 

because we tested the system in increasing workload, such as a growing number of devices or 

simultaneous requests. Under these conditions we observed that the system maintained 

acceptable performance. We saw that the response times remained relatively stable or increased 

linearly with the workload. This suggests that the system is handling the increased workload in 

a scalable manner. 

 

8.3  Security 

 

The implemented system, as well as blockchain-based decentralized applications in general, 

faces various vulnerabilities that threaten their safety and security. This subchapter discusses 

some of these issues. 

 

8.3.1  Denial of Service with failed call 

 

External calls in smart contracts may fail accidentally because of programming errors or 

intentionally by intruders. If many calls in a single transaction are executed using a loop can 

prevent nodes from interacting with the smart contract [6]. EVM has a stack for calls limited 

up to 1024. Regarding the proof of concept that uses EVM, in such a case of repeating calls, it 

is even possible to reach the stack’s depth limit and completely control the smart contract. 

 

8.3.2  Denial of Service with gas limit 

 

In Ethereum, each block has an upper bound of gas that can be spent for computation. If the 

gas spent exceeds that limit, the system is lead to DoS and the transaction fails. When there are 

arrays of unknown size that increases over time and there is a loop over them, we should plan 

it to take multiple blocks and thus multiple transactions. If every computation takes place in a 

single transaction, there is a high risk of DoS and this becomes extremely dangerous when an 

intruder can manipulate the amount of needed gas [6]. 

 

8.3.3  Re-entrancy 

 

Re-entrancy attack is also known as recursive call attack and refers to the case where a 

malicious contract calls back into the original one before the invocation of the function is done. 
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Different invocations of the same function may interact with each other maliciously. In this 

way, an attacker can execute withdrawals in repetition while letting his balance stay unaffected 

[7]. 

 

8.3.4  Sybil Attack 

 

Distributed applications do not adopt any user identity verification measure. Users can just 

create accounts, having the possibility to create as many as they will. If a user gets the chance 

to act as many simultaneously, means that attackers can insert into the network many clients 

under their control, with result to be able to manipulate which blocks are refused or not in their 

favour [7].  

 

8.3.5  Malicious Managers 

 

Within the proof of concept, the term of Managers was described as hubs between the 

constrained IoT devices with limited capabilities, and the blockchain network. It was explained 

that Managers do not take decisions but only forward the messages to the smart contract. But 

still, a malicious Manager could drop transactions or even send wrong ones. Here comes a trust 

assumption, that Managers are trustworthy, presumably configured by the owners of the IoT 

network. Of course, there are many measures to control this vulnerability, such as mechanisms 

to ensure the integrity of transactions by the Managers like cryptographic techniques or digital 

signatures and access control mechanisms to restrict Managers’ privileges. These securities 

though, are kept beyond the scope of this thesis. 

 

8.4  Limitations 

 

We have seen from the previous chapters and subchapters that in many aspects the system is 

limited. Some limitations may arise from the implementation itself while some others from the 

nature of the technologies that were used. Since the setup varies from application to application, 

and as the subject of assessment of the thesis is the system as a concept in terms of technologies 

and not of execution, we will focus on the limitations that govern the technology behind, in 

context of public application of the system. In more detail, they are described in the next 

paragraphs. 
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8.4.1  Block time 

 

If our implementation is escalated into the public Ethereum network, it will have to face its 

standard limitations, along with the time that it is needed to create a block, meaning the time it 

waits in the queue to be picked up and the time the miner needs to verify it. Ethereum block 

time is currently around 12 seconds. If any IoT device needs to urgently access another node 

through the management system, this would be a great issue. 

 

8.4.2  System changes 

 

System allows transactions based on a specific smart contract’s policy. If this policy changes 

or the logic in which the system deals with these transactions, the system will have to be rebuilt 

all the way from the beginning. Gas costs are likely to incur, as well as the smart contract’s 

memory will be reset, and its data lost. 

 

8.4.3  Time measurement 

 

Our proposal uses block number to give the sense of time, so access is expired after a defined 

duration. But in a real-life application this wouldn’t be a case. IoT management systems use 

the measurement units that people use too in their everyday lives. System would have to 

become more complex to use the sense of time within the blockchain application. 
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Chapter 9 

Discussion 

 

 

By conducting this thesis, we set from the very beginning the objective to provide a secure and 

scalable up to a global level access management solution for constrained IoT devices, that is 

also independent from any central authority. We specifically defined some questions to be 

answered. 

 

1. Can we develop a blockchain-based IoT device management system to operate at a 

worldwide scale? 

 

Within this thesis we utilised blockchain technology for device identity authentication, device 

access management, transaction processing and data protection and storage in a decentralized 

manner. The distributed nature of the blockchain technology facilitates for achieving this 

decentralization. There are many applications that can be implemented out of this model, to 

satisfy a wide range of needs in the industry market. 

 

2. How does blockchain technology benefit IoT? 

 

1. Equal stakes: The great impact of blockchain in the economic sector is more than obvious. 

We have all seen the wide spread of cryptocurrencies into the society, in our everyday lives. 

Implementations such as Bitcoin and Ether, as they were investigated in the background 

information provided by this thesis, have been adopted by  a vast group of businesses and 

individuals as commercial currency. In the same way, blockchain can be implemented to 

IoT networks to allow to billions of devices to communicate without any intermediary 

infrastructure. At the same time, utilizing blockchain will take under consideration the issue 

of owner and authority for each stakeholder, making sure that the shares are equally given, 

resulting thus to equal stakes. 

 

2. Security: Blockchain technology offers a strong and reliable framework for safeguarding 

IoT devices and data. Its decentralized structure guarantees that information stored on the 

ledger cannot be tampered with or altered without proper authorization. This fortifies the 

integrity and credibility of IoT systems, minimizing the chances of data breaches and 

unauthorized entry. 
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3. Decentralization: The concept of decentralization is a key feature enabled by blockchain 

technology in the context of IoT. It eradicates the necessity for a central authority or 

middleman, allowing IoT devices to communicate and interact directly with one another. 

This eradication of centralized servers and intermediaries has significant benefits, including 

improved system resilience, scalability, and the elimination of vulnerable single points of 

failure. 

 

4. Data Integrity and Transparency: The transparency and decentralized characteristics of 

blockchain contribute to improved data integrity and transparency within IoT networks. 

Each transaction or data modification is meticulously documented on the blockchain, 

generating a traceable and verifiable history of events. This fosters accountability and 

guarantees that all involved parties have access to precise and current information. 

 

5. Trust and Identity Management: Blockchain technology offers a robust and decentralized 

solution for managing trust and identities within the realm of IoT. By leveraging the 

blockchain, each IoT device can possess a distinctive digital identity, which is securely 

recorded on the decentralized ledger. This approach ensures the authenticity of devices and 

facilitates the implementation of efficient access control mechanisms. Through blockchain-

based identity management, trust is fostered among devices, enabling secure and reliable 

interactions within IoT networks. 
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Chapter 10 

Conclusion and Future Work 

 

 

The ultimate goal of this thesis was to research and analyse in the maximum possible depth the 

blockchain technology and investigate whether and how its employment within the access 

management of IoT networks of constrained devices was feasible.  We managed to design and 

create a small-scale proof of concept of such a system, intended for operation on the Ethereum 

platform, in a global range. To achieve this, extensive research was required in order to choose 

the most proper and suitable technology. Within the limited, small-scale system that we aimed 

to, the offered choices were also limited to satisfy its requirements correspondingly, and given 

this, an additional consideration was taken. Although, the smooth flow of research development 

in the developed system wasn’t affected at all. Instead, the outcome of the system’s evaluation 

was positive, proving that a blockchain-based IoT management system may excel beyond the 

conventional management systems in IoT networks. We have repeated the benefits from the 

use of blockchain technology many times along the paper’s extent. 

 

When evaluating the system, we also came across some limitations, which however have to do 

with the blockchain technology or even the technologies that the system used in general and 

not with the implementation itself. For example, if in a real-life application, in an urgent case 

where a device requests access in hurry and the system takes 12 seconds, Ethereum’s average 

block creation time, or even more to respond, a big issue will be caused against the client. 

Limitations like this, regarding the non-functional properties of the system such as Performance 

and Scalability, were discussed in detail. These issues have to be solved so we are let to apply 

the system at a greater scale, on the real and public Ethereum network. Concluding, although 

blockchain technology is still relatively new in terms of development, there are so many 

benefits to be gained with its application, offered for a great spectrum of the industry sectors. 

When the technical barriers are successfully faced, blockchain is promising for changing to the 

better a vast number of systems in the near future.  

 

Regarding any future elaboration of the current work, it would be of great interest to evaluate 

the present proof of concept in advance. More performance tests could be executed, to be more 

precise and correct about the related observations and conclusions which have a lot to say about 

the value of the accomplished work. For example, more functions could be tested through API 
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calls in order to obtain information about the comparison between the performance and the 

complexity of the functions. 

To furtherly work on this research, it would be worth the effort to see the performance of the 

system under real conditions too. More specifically, to test the properties such this one, when 

the invented technology is applied on actual constrained IoT devices that operate as physical 

nodes. Our prototype treated the nodes as virtual components with an Ethereum account 

assigned to them, on a private EVM node that runs locally through the environment of Truffle. 

Consequently, the whole setup may have proven the functionality and the utilization of the 

theory and been an honest and relevant representation but as mentioned in Chapter 7, 

Evaluation, it can’t reflect the real data. If real data were obtained, the real-world implications 

of the system could be clarified. 
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Appendix A 

 

This appendix provides information about the tools and technologies used within this thesis. 

 

Truffle Framework 

 

Development framework for Ethereum that provides several tools to help with developing, 

compiling and deploying smart contracts. It was used to run a local blockchain network on 

Ethereum EVM, so then the smart contract created for the proof of concept was deployed and 

we could interact with it in a development environment. 

 

Solidity 

 

Programming language made specifically for writing smart contracts on Ethereum. It is 

commonly used to define how smart contracts behave and the policy that governs them. We 

used Solidity to serve this purpose, as the smart contract is responsible for controlling all the 

rules and operations of our blockchain-based IoT management system. 

 

HTML  

 

Hypertext Markup Language, is a standard language for creating structure and content for 

webpages. Within the thesis it satisfied the need for the design and structure of the Manager’s 

interface. HTML allowed us to define the layout, elements and components of the user interface 

of our application. 

 

JavaScript 

 

A widely-used programming language that brings interactivity and dynamic features to web 

applications. It was used to implement the dynamic features of Manager’s application. This 

involved procedures such as API calls, handling user interactions and updating the front-end 

dynamically based on data from the back-end. 
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Web3 

 

A JavaScript library that provides an interface for interacting with smart contracts based on 

Ethereum. It lets the connection to an Ethereum node, sending transactions and interacting with 

smart contracts using JavaScript code. Within the thesis, we utilized Web3 to establish a 

connection between the back-end application and the smart contract hosted on the local 

blockchain node. In this way we achieved communication and interaction with the contract. 

 

Node.js 

 

Open source, server-side JavaScript runtime environment. It allows the execution of JavaScript 

code on the server rather in a web browser. It also provides an event-driven architecture and a 

non-blocking I/O model, making it well-suited for building scalable and efficient web 

application. It was used as the runtime environment for our back-end application, that handled 

the processing and execution of the server-side logic. This involved defining routes, handling 

API requests, interacting with the smart contract and the local blockchain node and performing 

necessary computations and data manipulations. 

 

Apache JMeter 

 

Open-source tool used for testing the performance and scalability of web applications. It helped 

us to conduct non-functional testing of the system, with focusing specifically on performance. 

It allowed the simulation of multiple requests happening simultaneously and therefore the 

measurement of the system’s response time under different loads. In this way we could obtain 

valuable insights into the performance characteristics of the system. 
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Appendix B 

 

This appendix provides a manual for running the system, including each step that has to be 

followed, detailed. 

System Requirements: 

• Operating System: Windows, Linux, or macOS 

• Node.js and npm installed (version 12 or higher) 

• Truffle Framework installed (version 5 or higher) 

Step 1: Download the System Files 

1. Download the system files provided to you as a ZIP (available from 

https://github.com/ageorg47/dissertation.git) 

2. Extract the files to a directory of your choice. 

Step 2: Install Dependencies 

3. Open a terminal or command prompt. 

4. Navigate to the root directory of the system files (\dissertation-main). 

5. Run the following command to install the necessary dependencies: 

 npm install 

Step 3: Run the Local Blockchain Node 

6. Open a terminal or command prompt. 

7. Navigate to the backend directory of the system files (\backend). 

8. Run the following command to start the Truffle development network: 

 truffle develop 

9. Once the development network is running, you will see a list of Ethereum addresses. 

Take note of these addresses as they will be needed later. 

Step 4: Compile and Deploy the Smart Contract 

10. In the same terminal or command prompt, run the following command to compile and 

deploy the smart contract: 

https://github.com/ageorg47/dissertation.git
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 migrate 

Step 5: Start the Backend Server 

11. Open a new terminal or command prompt. 

12. Navigate to the backend directory of the system files (\backend). 

13. Run the following command to start the backend server: 

 npm run dev 

Step 6: Start the Frontend Server 

14. Open another terminal or command prompt. 

15. Navigate to the frontend directory within the system files (\frontend). 

16. Run the following command to start the frontend server: 

 http-server 

Step 7: Access the Manager's Interface 

17. Open a web browser. 

18. Enter the following URL in the address bar: 

         http://127.0.0.1:8080 

19. The Manager's interface page should now be displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


