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Abstract 

 

 Integrity check in CPU voltage drop is important because it ensures the reliability and stability 

of the computer system. When the CPU voltage drops below the recommended level, it can 

cause errors and crashes, and may even damage the hardware components. The integrity check 

monitors the voltage levels and alerts the system if it falls below the safe threshold. This allows 

for timely intervention to prevent any potential damage or failure of the system.  

 Additionally, the integrity check can help identify any underlying issues that may be caused 

by the voltage drop, allowing for prompt troubleshooting and resolution. Therefore, the 

integrity check is crucial for maintaining the proper functioning of the CPU and ensuring the 

longevity of the computer system. 

 This thesis is specialized on expanding the integrity check of the characterization 

framework[6].  

We want to confirm the hypothesis that the voltage drop causes unwanted changes in the 

machine and more specifically in the data arrays.  in this research we discovered that in addition 

to the system crashes caused by the Vmin process, there are also other types of crashes that we 

tried to identify. In our attempt to create an additional level of integrity check we finally 

managed to identify bit flips in memory and confirm our initial hypothesis. 
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1.1 Motivation  

 There are many reasons for better integrity check. Large voltage noise is a threat to 

robust execution because when the supply voltage drops below a certain threshold, 

timing violations or bit flips may occur. This may lead to silent data corruption 

(SDC), application or system crashes and general system instability. Having a 

methodology that identifies the minimum operational voltage is crucial for the 

correct functionality of a By having a strong integrity check in place, it is possible 

to identify and troubleshoot any issues that may occur in these systems, helping to 

ensure that the device is operating correctly and efficiently. This can help to improve 

the overall performance and reliability of the device and can help to prevent 

problems that could impact the device's operation. 

 

1.2 Problem definition  

 The characterization framework[6] is used for Vmin tests. These tests can involve 

monitoring voltage levels during different CPU-intensive tasks or using specialized 

diagnostic tools to analyze the power delivery and voltage regulation of the CPU 

and associated components. The current implementation of the framework has 
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limitations regarding problem identification. In this research I tried to prove the 

existence of silent data corruptions that a di/dt virus may generate, check If they do 

not affect the correct functionality of the system and if that is the case, how to 

monitor them. 

 

1.3 Contributions  

 In the beginning, it was very important to understand how changes in the voltage 

and frequency affect power consumption. Then understand and study the hardware 

and software that was going to be used, especially GeST[5], Juno board[3] and the 

Characterization framework[6]. Furthermore, researching and studying past papers 

related to Integrity check and Vmin test characterization framework[6] to have a 

good background. And then finding out new configurations that would be interesting 

to test the performance and results of Vmin test. Also, finding problems that may 

occur throughout this process that were not identified previously. The purpose is to 

establish a methodology that will identify silent data corruptions during a Vmin test 

and the evaluate that methodology. 

 

1.4 Thesis structure 

Chapter 2:  

Short review of stress test and voltage noise (di/dt) viruses and explain what the 

Vmin test is and its uses.  

  

Chapter 3:  

Introduction to the Characterization framework[6], data structure, functionality, how 

is used and its applications. Explain how integrity check is part of it. 

  

Chapter 4:  

This chapter will define the integrity check and its functionalities. In addition, 

explain the usage and the reason behind the extension of the current integrity check 

and why there is the need of memory overload when is used.  
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Chapter 5:  

This chapter is focused on explaining how the characterization framework[6] and 

the integrity check are merged. To do this, the usage of signals comes in place. For 

the sake of better understanding the explanation of the new input parameters needs 

to be done and what they actually do. In case of expansion, there are certain things 

that need to be taken into consideration. 

  

Chapter 6:  

The combinations of the experiment’s scenarios held to monitor different 

performance metrics and statistics with different client-side configurations. Give a 

brief summary of the machine characteristics and the current setup.  

  

Chapter 7:  

The results, graphs, validations, and comparison in different experiments.  

  

Chapter 8: 

State the future work needed. 

 

Chapter 9:  

General conclusions, describing some lessons learned. 
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Chapter 2 

 

Background 
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2.1 Stress Test  

 A CPU (Central Processing Unit) stress test is a procedure for assessing its performance 

and stability under heavy workloads. It entails running specific software that strains the 

processor or putting the CPU to tax operations. The CPU's capacity to withstand high 

temperatures, maintain steady clock rates, and deliver reliable performance without faults 

or crashes is assessed by the stress test. This kind of test aids in evaluating the CPU's 

dependability, cooling effectiveness, and general capacity. 

 Stress testing a CPU is typically done in different situations as in System Stability 

Testing where Stress testing can assist guarantee that the CPU and other components are 

stable under high workloads before deploying a new system or after making hardware 

changes. It aids in the detection of any potential problems or instability, including 

overheating, abnormal voltage patterns, and system crashes. Additionally, stress testing 
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can be used for overclocking to improve performance. Overclocking entails raising the 

CPU's clock speed over its factory defaults. In this situation, stress testing is essential to 

confirming the stability and functionality of the CPU under the higher clock speeds. It 

aids in determining whether the overclocked settings can be maintained without leading 

to freezes, instability, or overheating of the machine. Furthermore, it serves as 

Benchmarking and Performance Evaluation: By subjecting a CPU to taxing workloads 

or running specialist software, stress tests can be utilized to benchmark a CPU's 

performance. This makes it possible to compare various CPUs or combinations, giving 

information about their varying performance levels. To continue with, Temperature and 

Cooling Assessment can be used to measure the CPU's temperature under demanding 

conditions. Users can assess the performance of their cooling solution and determine 

whether any adjustments are required to maintain ideal temperature levels by keeping an 

eye on the temperature throughout the test. Overall, stress testing a CPU helps to assure 

system stability, evaluate performance, analyze overclocking capability, and confirm the 

efficacy of cooling methods. For gamers, hobbyists, and professionals who need high-

performance computing and want to push their computers to their limits, it is especially 

pertinent. 

 CPU stress tests are generally safe when used appropriately and with the appropriate 

safety measures. To avoid overheating, it's crucial to keep a constant eye on the CPU 

temperature throughout the test. To efficiently dissipate the heat, adequate cooling 

systems should be in place, such as fans or liquid cooling. In order to support the growing 

power needs, it is also imperative to guarantee a consistent and adequate power supply. 

There is a small chance of system breakdowns or instability during stress testing, which 

try to assess system stability. The risk of data loss can be reduced by having backup files 

and stored work. The safety of the CPU and entire system can be preserved by being 

aware of these elements and keeping an eye on the system while the test is running. 

 Several factors may trigger a CPU to fail a stress test. Overheating is one frequent cause, 

as stress tests place intense workloads on computers that produce a lot of heat. The CPU 

may overheat and fail the test if the cooling system is insufficient or broken. An unstable 

or insufficient power source can cause voltage instability, which is another factor that 

might affect CPU performance. Inadequate cooling, such as obstructed airflow or 

malfunctioning fans, might prevent heat from being dissipated and result in an abnormal 

rise in CPU temperature during the stress test. Additionally, instability may happen if the 
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CPU has been overclocked above its safe limits, leading to test failures or system crashes. 

Stress testing may potentially reveal hardware flaws or manufacturing problems that 

result in failures. To ensure a steady and effective stress test, the root reason must be 

found and any cooling, power supply, overclocking, or hardware issues must be resolved. 

 

2.1.1 Applications 

 CPU stress testing are useful in a variety of circumstances. In order to assure the CPU's 

stability under severe workloads and find any potential problems or instabilities, they are 

frequently used for system stability testing during system assembly, configuration 

changes, or hardware upgrades. Stress tests are used by overclockers to verify the stability 

and performance of their CPUs under conditions that are more demanding than the default 

settings. Stress tests, which subject the CPU to heavy workloads, produce useful data for 

performance benchmarking and comparison, assisting in the choice of CPUs based on 

processing speed, multitasking ability, and power economy. It is also essential for 

assessing the efficacy of cooling solutions since they keep an eye on temperature levels 

and guarantee optimum cooling under prolonged, high workloads. 

 Furthermore, in software development and testing environments, stress tests aid in 

assessing program performance, identifying bottlenecks, and gauging CPU resource use. 

In conclusion, CPU stress tests are critical tools for evaluating stability, overclocking, 

performance, cooling, and software optimization. 

 

2.2 Voltage noise 

 Voltage noise is defined as undesirable variations or disruptions in the electrical voltage 

level. It is distinguished by fast fluctuations or variations in the voltage signal that differ 

from the expected or desired level. These fluctuations can occur in a variety of electronic 

systems or components, such as power supply, circuitry, or communication channels. 

Voltage noise can be caused by a variety of factors, including electromagnetic 

interference, circuit noise, or insufficient power control. It can have an impact on the 

performance and dependability of electronic devices, perhaps resulting in signal 

degradation, data mistakes, or malfunctions. Shielding, correct grounding, and effective 
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power management techniques are used to reduce voltage noise and ensure the steady 

and reliable operation of electronic equipment. 

 

2.2.1 Voltage noise virus 

 “Voltage-noise” or “dI/dt” viruses try to increase CPU voltage variations and they are 

used to characterize the worst-case voltage droop. Stress tests try to produce a quick 

transition from extremely low to very high current consumption rather than maintaining 

a continuous high current consumption. Because low voltage operation might cause 

malfunctions, dI/dt viruses are excellent timing-error stability tests. The lowest voltage 

at which a dI/dt virus works correctly can be used to determine where to set the CPU's 

operational voltage (for a certain operating frequency). 

 

2.3 Vmin 

  2.3.1 Explain 

 "Vmin" typically refers to the minimum voltage level in a given system or electronic 

component. It represents the lowest allowable voltage that the system or component can 

operate at while still maintaining proper functionality. Vmin is an important parameter to 

consider, as operating below this minimum voltage level can lead to performance 

degradation, instability, or even complete failure of the device or system. It is often 

specified by manufacturers to ensure proper operation and reliability of electronic 

components. By adhering to the specified Vmin, designers and users can ensure that the 

system or component operates within the acceptable voltage range and functions as 

intended.  

 To utilize Vmin successfully, first obtain the Vmin requirements from the electronic 

component or system's manufacturer or datasheet. The minimum voltage level required 

for proper operation is specified in these specifications. Next, select a power supply 

capable of providing voltages greater than the specified Vmin and guarantee its stability 

and regulation. To maintain the voltage within an acceptable range, use voltage control 

techniques such as voltage regulators or monitoring circuits. Verify that all components 

are intended to operate within the specified Vmin range throughout system integration. 
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To ensure stability and reliability, thoroughly test and validate the system under a variety 

of voltage circumstances, including near or slightly below the Vmin level. Monitor the 

voltage levels in the system continuously and perform regular maintenance to prevent 

voltage decreases below the minimum threshold. Vmin can be used efficiently to assure 

the appropriate operation and longevity of electronic components and systems by 

following these methods. 

 

 2.3.2 Usage 

 The minimum voltage level, or Vmin, is used in a variety of settings to assure the 

dependable and optimal operation of electronic components and systems. It is determined 

throughout the design and manufacturing processes, and it specifies the minimum voltage 

at which the component may perform properly. Vmin is taken into account during system 

integration, to ensure that the power supply produces voltages over the set minimum for 

all components, ensuring proper functionality. Vmin is considered in power management 

strategies for efficient operation, particularly in battery-powered devices, by using 

power-saving measures and voltage scaling. Furthermore, voltage margin testing can be 

used to examine system reliability under different voltage situations, ensuring that the 

system remains stable even when it is close to or slightly below the stipulated Vmin. 

Following the prescribed Vmin values provided by component manufacturers are critical 

for preserving the dependability, longevity, and functionality of electronic systems 

throughout their lifecycle. 
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3.1 Characterization Framework    

 The Characterization Framework[6] is a framework designed to implement the 

Vmin test procedure. Essentially, it is a guide for defining the actions and controls 

that are performed in the experiment. It also determines what the data will be and 
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what the results will be at the end of each experiment. Also, through this the 

communication between the host pc and the Juno board[3] is achieved.  

 It’s written in python, and it uses Json as input format. It accepts as inputs 

parameters like frequency, Vmin steps, workloads and performs a Vmin test. It 

returns the Vmin of the system along with the type of errors it encounters. This 

framework is tested on a Juno board[3] but it can be easily extendable for other 

platforms. 

 

3.1.1 Input / Output 

 First of all, since there is a connection between the host pc and the Juno board[3], the 

proper input needs to be validated to make sure that the connection can be established. 

For that, all the necessary information is passed through (for example the Juno board IP 

address, the serial port that is connected to). 

 Also, the experiments need to be defined in the file. For that, it contains all the necessary 

data to determine the aspects of the experiment. For example, it must specify on which 

processor and on which processor cores the experiment is to be carried out, its duration, 

the parameters that are used, the starting and finishing voltage and how many repetitions 

of the experiment are to be performed. 

 To talk about the output, it is saved in a mongo DB database, the column of which is 

determined from the Json input file and needs to be renamed after every experiment. To 

be able to read the output, the printPassSDCcrashes.py file needs to be run.  

 

Example input: 

Experimental setup: 1st experiment 

 

Target hostname:10.16.20.171 

Target SSH username: 

Target SSH password: 

Serial port: COM8 
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MongoDB: Juno 

Mongo Col: asioko01a53_virus_5_repetitions (Save folder) 

Platform: juno_a53 

Cores frequency: [950, 0, 0, 950, 950, 950] 

Repetitions: 5 

Start voltage: 1000 

End voltage: 0 

Voltage decrement: 10 

Virus: 107_5330_26s 

 

Example output: 

PASS 920 107_5330_26s EXEC_TIME 30.46 WORKLOAD [0] DOC 

6448fdc09230876dd5152828 

PASS 920 107_5330_26s EXEC_TIME 30.45 WORKLOAD [3] DOC 

6448fdc09230876dd5152828 

PASS 920 107_5330_26s EXEC_TIME 30.45 WORKLOAD [4] DOC 

6448fdc09230876dd5152828 

PASS 920 107_5330_26s EXEC_TIME 30.46 WORKLOAD [5] DOC 

6448fdc09230876dd5152828 

PASS 910 107_5330_26s EXEC_TIME 30.46 WORKLOAD [0] DOC 

6448fe489230876dd5152829 

PASS 910 107_5330_26s EXEC_TIME 30.46 WORKLOAD [3] DOC 

6448fe489230876dd5152829 

PASS 910 107_5330_26s EXEC_TIME 30.45 WORKLOAD [4] DOC 

6448fe489230876dd5152829 

PASS 910 107_5330_26s EXEC_TIME 30.45 WORKLOAD [5] DOC 

6448fe489230876dd5152829 

SYSTEM_CRASH 900 31 
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 In this example of output, the information that is provided helps identify what happens 

in each step of the integrity check experiment. In each line information about the state, 

the current voltage, which is the virus that is running, the execution time and at what CPU 

core the virus is running are provided. Also, if a crash appears, it identifies its type and 

at what voltage it was caused. 

 

3.1.2 Data Structures 

The characterization framework[6] consists of several subprograms used to 

implement its purpose. Some of the main structures that are used are under the files 

Executor.py, serialHandler.py, Workload.py, printSDCcrashes.py and 

mongoDBhandler.py. Briefly, I am going to present some classes that are part of the 

Executor.py. 

Executor.py 

Under the Executor.py folder, many sub-classes are implemented. Some of the most 

important and most used ones are: 

• NextVoltageGenerator: Helper class that returns the next voltage. Also, it helps 

in comparing between random and incremental steps. 

Parameters: 

- highVoltage 

- lowVoltage 

- voltageStep 

- method 

- voltageList[] 

Functions: 

- Cal_next 

- Get_vol 

 

• SSHhandler: Class that handles ssh commands to the target machine 

Parameters: 
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- targetHostName 

- targetSSHusername 

- targetSSHpassword 

Functions: 

- lastCommandStatus 

- lastCommandOut 

- lastCommandErr 

- hasCommandFailed 

- executeCommand 

 

• workloadHandler: Class that handles each workload 

Parameters: 

- experimentID 

- submitFromFramework 

- processIDtable[] 

- integrityPID (This project’s implementation) 

- Many signals that represent different situations  

SUCCESS 

FAIL 

CHK_ALIVE_FREQ 

BIT_FLIP (This project’s implementation) 

WORKLOAD_SCRIPT_ABORTED 

SYSTEM_CRASHED 

WORKLOAD_SCRIPT_FINISHED_SUCCESFULLY 

MAX_CHK_ALIVE_TRIES 

UNRESPONSIVE_TIMEOUT 

Functions: 

- setVoltageOfObservation 

- getVoltageOfObservation 

- startWorkload 

- calculateCPUPowerSSH 
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- calculateCPUPowerSerial 

- calculateMeasurementValues 

- calculateErrorInfo 

- calculateWorkloadStatus 

- waitWorkloadToFinish: In this function, the integrity check takes place using 

the LinkedList.cpp program. 

 

• Executor: Class that handles each execution 

Parameters: 

- DEF_TARG_HOST 

- DEF_USER 

- DEF_PASSWD 

- WAIT_FOR_AUTO_RESTART 

- AUTO_RESTART_LOW_THRESH 

- MAX_FREQUENCY 

- CORE_PER_PMD 

- RELATIVE_FREQ 

- CONTINUE_AFTER_APP_CRASH_SDC 

- Many signals that represent different situations 

ALIVE 

APP_CRASH 

SYSTEM_CRASH 

SDC_OCCURED 

SUCCESS 

FAIL 

 

- Execute_full_exp: In this function, the initialization of the integrity check 

takes place using the LinkedList.cpp program. 
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- convertJsonToObject: In this function, the program identifies which file to 

use for integrity check and what other parameters need to be initialized for 

this process. 

- configureJunoA53 

- sendRebootCommand 

- printRunOutput 

 

3.1.3 Functionality 

 The framework has many different functions that serve different purposes. Some of the 

most important ones are under the Executor.py folder. I choose to present the parts that I 

have edited to create the integrity check. 

 

Execute_full_exp function under Executor class 

if measureIntegrity: 

                integrity_check_command = self.integrityCheckScript + " &" 

                print(integrity_check_command) 

                code = self.serial.sendCMD(integrity_check_command, 

waitTime=WorkloadHandler.UNRESPONSIVE_TIMEOUT); 

                ser_out = self.serial.read() 

                pId = ser_out.split('\n')[1].split()[1] 

                self.integrityPID = pId 

                while not "Initialized Complete" in str(ser_out): 

                    ser_out = self.serial.read() 

                    print(ser_out) 

                    time.sleep(5) 

                print(ser_out) 
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In this part of the function, the program IF it must perform an integrity check, it follows 

the code above. Firstly, the command that is sent through the serial port has to be 

established. Then, the process ID must be saved in the integrity check PID. Finishing, the 

program waits until the initialization finish.  

 

waitWorkloadToFinish function under workloadHandler class 

if measureIntegrity: 

                    print(self.userVoltage) 

                    from setVoltageThroughSerial import setVoltage 

                    setVoltage(1, float(self.userVoltage) / 1000, JUNO_DEBUG_PORT) 

                    integrity_check_command_kill = "pkill -SIGUSR1 LinkedList" 

                    code = self.serial.sendCMD(integrity_check_command_kill, 

                                               

waitTime=WorkloadHandler.UNRESPONSIVE_TIMEOUT); 

                    ser_out = self.serial.read() 

                    while not "Integrity Check Complete" in str(ser_out): 

                        ser_out = self.serial.read() 

                        print(ser_out) 

                        time.sleep(5) 

                    print(ser_out) 

                    if "FAIL" in str(ser_out): 

                        return WorkloadHandler.BIT_FLIP 

 

In this part of the function, the program IF it must perform an integrity check, it follows 

the code above. Firstly, the voltage needs to be set to nominal to perform the integrity 

check. Then, the command (signal) that wakes up the LinkedList.cpp program needs to 

be formed and then sent along with the serial command. Finishing, the program waits 
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until the integrity check finishes and respond with its answer (see section 6.1.2 for more 

information). 

 

convertJsonToObject function under Executor class 

try: 

            integrityCheckScript=data["integrityCheckScript"] 

            userVoltage=data["userVoltage"] 

        except(AttributeError,KeyError) as err: 

            integrityCheckScript=None 

            userVoltage=None 

 

In this part of the function, the Json file parameters that matter for the integrity check get 

converted to object. The integrity check file name gets saved to integrityCheckScript 

parameter, and the user test voltage gets saved to userVoltage parameter. 

 

3.2 Introduction to integrity check in characterization framework    

3.2.1 System crash / Data crash 

  In the world of computer systems and data management, the terms "application crash" 

and "system crash" are not widely accepted or established. However, if we read them 

broadly, we can distinguish between data loss and system failure. 

  A system crash is an unexpected and sudden failure of a computer system in which the 

operating system or vital software components become unresponsive or encounter severe 

faults, causing the system to malfunction. It happens when the system's usual operation 

is disrupted, resulting in a total or partial system failure. System crashes may express 

themselves in a variety of ways, including freezing, becoming unresponsive, displaying 

error messages, or requiring a system reboot. System crashes can happen for a variety of 

causes. System crashes can be caused by software-related causes such as flaws, 

programming problems, or conflicts between software components. Hardware concerns, 
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such as broken components, overheating, or power supply issues, can also cause crashes.

  Furthermore, system crashes can be caused by outside causes such as incompatible 

device drivers, insufficient system resources (such as memory or storage), or malware 

infestations that disrupt the system's normal operation. System crashes can occur at any 

moment, although they are most often when performing resource-intensive tasks such as 

operating complicated software applications, playing graphics-intensive games, or 

conducting significant computations. They can also happen on their own, with no obvious 

cause. System crashes can vary in frequency and severity based on the underlying causes 

and system setup. In general, system crashes are disruptive occurrences that necessitate 

thorough investigation and resolution in order to restore system functionality and 

maintain a reliable computing experience. 

  On the other hand, when the data on a computer system or storage media becomes 

corrupted, illegible, or unavailable, this is referred to as a data crash. This may happen 

for a variety of triggers, including hardware problems, software malfunctions, power 

surges, incorrect shutdowns, malware infections, cosmic radiations, alpha particles or 

voltage droops Σ. When a data crash occurs, vital files, documents, databases, or any 

other type of digital information might get lost or corrupted. Data losses, operational 

disruptions, financial consequences, and potential legal or regulatory difficulties can all 

result from data crashes. Data recovery from a crash can be a complex and difficult 

procedure that frequently requires the use of specialized data recovery techniques or the 

assistance of professional data recovery services. To reduce the danger of data crashes, it 

is critical to keep antivirus software up to date, use dependable hardware components, 

and adhere to safe computing practices. Utilizing data backup systems and following to 

data management best practices can help limit the risks associated with data failures while 

also ensuring the availability and integrity of vital information. Another mitigation 

mechanism for data corruption is ECC, error detection correction code in DRAMS and 

caches. 
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3.2.2 Running virus 

 3.2.3 Reference output in different running voltages 

 As shown in the sample, the output of the program consists of many data. Observing 

column 1, the possible outputs are PASS or FAIL, and for column 2, the output is the 

number of voltages in which Juno runs. As the program receives PASS in status, it leads 

to the voltage decreasing by 10 until it reaches a crash. 

 A reference output represents a result that is anticipated or expected to be produced from 

an input or test case. It acts as a benchmark for comparing the real output that the software 

under development generates, assisting in the detection and correction of any differences 

or faults.  

 In this version of the integrity check, we only check the integrity of registers. We run the 

virus under normal settings and generate a reference output. Then for each voltage level 

we test and compare the reference output with the current output. If differs then that 

means that we have an application crash. 

 

3.3 Application / Usage of the Characterization Framework    

3.3.1 System in idle state  

 I recorded power consumption measurements while changing the voltage manually. All 

measurements were taken without any program running at the background (idle state). 

 

 Dynamic Power Consumption formula: 

Given by the proportionality: P=𝐶 𝑉^2 𝐴𝑓 

Capacitance (C): Capacitance largely depends on the wire lengths of on-chip 

structures (smaller wires, smaller Capacitance) 

Supply voltage (V): Depends on the power-aware design. V has dropped steadily 

with each technology generation 

Activity factor (A): The activity factor is a fraction between 0 and 1 that refers to 

how often wires actually transition from 0 to 1 or 1 to 0 
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Clock Frequency (𝑓): Maintaining higher clock frequencies may require 

maintaining a higher supply voltage. 

 

Expected consumption calculation: 

 Because the system is idle, I only get static power consumption. The power consumption 

reduces linearly with voltage because of that. 

 

Power consumption on Juno board when changing voltage. 

 

 

Graph 1: Power consumption on Juno board when changing voltage 

Voltage(V)         1 0.99 0.98 0.97 0.96 0.95 

Juno board expected power 

consumption(W) 

0.056 0.05544 0.05488 0.05432 0.05376 0.0532 

Juno board experiment power 

consumption (W) 

0.056 0.056 0.054 0.052 0.052 0.05 
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 In conclusion, based on the experiment conducted in which the computer was running in 

an idle state, it can be observed that changes in voltage did not have a significant impact 

on power consumption. When a computer is idle, it operates at a lower power state, and 

the workload on the CPU is minimal. As a result, variations in voltage levels do not lead 

to substantial changes in power consumption. 

 

  3.3.2 Vmin for di/dt virus 

I executed characterisation framework which uses the dI/dt virus. 

 

Results: 

 

1st iteration: System crash in 0.890W 

 

 

2nd iteration: App crash in 0.900W 
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3rd, 4th and 5th iteration: After 910 voltage the iteration finishes, since the 

program knows that the next one is the higher voltage that was found in the current 

experiment. 

 

Time VS State of the System: 

 

Graph 2: Crash time graph 

 

From the collected results, I can understand that for every passing state the program lasted 

around 30.45 secs. The SYSTEM_CRASH was found early and caused the program to 

continue to the next iteration since it appeared in the first 10 secs. On the other hand, 

APP_CRASH caused the system a delay since it wasn’t responding until it understand 

that a crash was issued. To be able to continue, the process needs to be manually killed 

from the console. 

 An interesting observation is that application crashes (bit flips), occur at higher voltage 

than system crashes which suggest that data corruption has higher Vmin. The virus is 

stacked in an infinite loop, that’s why it took longer. This might might be a result of a bit 

flip. 
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Chapter 4  

 

Integrity Check 
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4.1 Introduction  

 Integrity checks in PC applications refer to mechanisms or processes that verify the 

integrity or correctness of data or files. These checks are typically performed to ensure 

that the data or files have not been tampered with, corrupted, or modified unintentionally. 

To achieve this, I created an integrity check program that is held on the Juno board[3]. 

 Integrity checks involve comparing the current state of data or files with a known 

reference or expected state. This comparison can be done using various methods, such as 

checksums, hash functions, digital signatures, or other algorithms. In the current 

implementation, to ensure that the data has not been changed, the comparison is 

happening in a linked list data structure. 
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 During the integrity check, the application compares the initial values with the final 

values. If the values match, it indicates that the data has not been altered. However, if 

there is a mismatch, it suggests that the data have been modified or corrupted. 

4.1.1 How does it expand current integrity check 

 The thought between the creation of an integrity checking program is to expand the 

current integrity check that is minimal. As noted, the framework only checks and reports 

crashes that occur and divides them into two types, system crashes and app crashes. Those 

two categories alone are not sufficient to convince us that there is indeed no other crash 

that remains undetected, thus the need for a better integrity check.  

 The expansion has a goal to check whether any data crashes occur in the memory. To do 

this, the memory needs to be filled with values that are known to the program, and after 

each run of the virus those values need to be unchanged. With this method the memory 

is checked for bit flips, that previously may be undetected, and add another layer of 

control. To be more specific, since TAGS, TLBs, DATA and CACHES are being 

manifested in the memory, that means that a bit flip can be catch in any of them. 

 

4.2 Integrity check 

4.2.1 Input / Output 

 The integrity check is implemented in the file LinkedList.cpp that is under the Juno 

board[3] directory. The program to start the integrity check, it needs to be called by a 

signal that the characterization framework sends. Thus, the only receiving input is that. 

The other modification that can happen manually is the adjustment of the size of the 

linked list (constant N). 

 As an output, the program returns to the framework a message after every call, with the 

results of the integrity check regarding possible bit flips, in the form of a string. If a bit 

flip occurs, the program returns the message “Integrity Check Complete” alongside the 

identification message “FAIL” and if not, the identification message is not sent. Also, as 

the program is divided into two main functions, the initialization of the linked list and the 

integrity check, a message notifying that the initialization is complete is also sent 

(message: “Initialized Complete”). The framework is using every message accordingly 

to create the final report. 
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4.2.2 Data Structures 

 The data structure that is used in the integrity check program is called Node and it 

represents the linked list. The structure has a pointer on another node (Node* next), that 

achieves the connection between the elements of the linked list, and another variable 

(uint64_t data) that saves the value of each node. 

 

4.2.3 Functionalities 

 Integrity check has only some basic functions. CreateList() that is used to create the 

Linked list, lfsr_init() that creates the random values that are included in the linked list, 

the lfsr_check() that checks for bit flips and the function printList() that is used for 

debugging reasons to print the values of the linked list. 

 

CreateList() function 

Node *createList() 

{ 

  Node *head = nullptr; 

  Node *current = nullptr; 

  for (int i = 0; i < N; i++) 

  { 

    Node *newNode = new Node(); 

    newNode->data = lfsr_init(); 

    newNode->next = nullptr; 

    if (head == nullptr) 

    { 

      head = newNode; 

      current = newNode; 

    } 
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    else 

    { 

      current->next = newNode; 

      current = newNode; 

    } 

  } 

  return head;} 

 This function is called to create the linked list, and with the help of the lfsr_init() function, 

fill it with certain values. 

 

Lfsr_init() function 

uint64_t lfsr_init() 

{ 

  static uint64_t x = 1; 

  uint64_t bit = ((x >> 0) ^ (x >> 1) ^ (x >> 3) ^ (x >> 4) ^ (x >> 64)) & 1; 

  x = (x << 1) | bit; 

} 

 

 This function creates the values of the linked list using linear-feedback SHIFT register 

(LFSR) algorithm. It returns a random number between 0 and 2^64-1 (inclusive) (See 

section [4.1] for LFSR). 

 

Lfsr_check() function 

 bool lfsr_check(Node *head) 

{ 

  Node *current = head; 
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  uint64_t bit; 

 

  while (current != nullptr) 

  { 

    static uint64_t x=1; 

    bit = ((x >> 0) ^ (x >> 1) ^ (x >> 3) ^ (x >> 4) ^ (x >> 64)) & 1; 

    x = (x << 1) | bit; 

   

    if (current->data != x) 

      return true; 

   

    current = current->next; 

  } 

  return false; 

} 

 

 This function is used to check the linked list values for bit flips. It receives as a parameter 

every node of the linked list, and if there is a difference in a value, let’s say the value of 

the node is 8 and the LFSR value is a different number, it means that a bit flip was 

discovered. In that case the function returns true, otherwise if there is no bit flip in the 

whole linked list, the function returns false. 

 

PrintList() function 

void printList(Node *head) 

{ 

  Node *current = head; 
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  while (current != nullptr) 

  { 

    cout << current->data << " "; 

    current = current->next; 

  } 

  cout << endl; 

} 

 

 This function prints the values of the whole linked list. 

 

4.2.3.1 LFSR 

 As mentioned above, the linked list values are calculated with the LFSR algorithm. The 

LFSR algorithm is a technique used to generate pseudorandom sequences or streams of 

bits. It involves using a shift register, which is a sequence of flip-flops or registers, to 

generate a new bit based on the current state of the register. The sequence of bits 

generated by the LFSR algorithm depends on the initial seed value and the configuration 

of the feedback function. 

 LFSRs can produce sequences with long periods and good statistical properties, making 

them useful in pseudorandom number generation. For this project I intended to create 

random numbers to fill the linked list. This will help to ensure that the generated sequence 

is diverse and free of repeating patterns. This way there is a reduced chance to have same 

amount of 1s and 0s bits in sequential numbers. The sequence cycle depends on the seed 

that I choose for the implementation. 

 LFSR is deterministic. It will always generate the same sequence of instructions for the 

same seed. This is the reason I used it because I do not have to save anywhere the 

reference output. 
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4.3 Need of memory overload 

 In theory, the linked list must contain the appropriate number of elements to fill Juno’s 

DRAM. That is needed because only if the memory is full of known values, the check 

can be valid, otherwise a bitflip may occur on a part of the memory that is not monitored, 

and lead to an undetected problem. Juno contains 2GB of DRAM. The bit flip is actually 

happening in the CPU registers and it is propagated to DRAM. 

 At first glance, I thought that this size would lead to a long time delay due to the fact that 

the initialization of the linked list happens at each iteration of the framework (at each 

voltage drop). 

 Using some N-size examples I calculated that the time needed for initialization is 

proportional to the N-size. I showed that approximately every 500 000 numbers, it takes 

100ms. 

Graph 3: Initialization time of the linked list in different linked list size values 

 

 Using the above, I managed to validate the size of the linked list. 2GB of DRAM is 

equivalent to 2,147,483,648 bytes, and each number I add to the Linked list (since it is of 

type uint64_t) takes up 8 bytes of space.  
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 So theoretically, I would need a linked list size of around 2,147,483,648 / 8 = 

268,435,456 (THEORETICAL N-size). 

 Based on the calculation in the previous slide, it will take 268,435,456 / 500 000 = 

53000ms (53 seconds) for each initialization, which is not a large number by the 

standards of the framework. 

 After I calculated the theoretical time and saw that it satisfied me, I ran the program with 

the appropriate size and saw that indeed the time the initialization takes is about what I 

calculated. 

For N=255 million (because the theoretical calculation did not take into account the size 

of the Linked List), it takes 50615ms, so 50,615 seconds. 
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5.1 Control Flow 

5.1.1 New Input Parameters 

 Changes were made to the framework in order to serve the purpose of the project, 

and some of them were related to the insertion of new input parameters. 

 The extra integrity check layer needed to be optional, meaning that the framework 

was meant to be running either with or without the new integrity check. To do this, I 

used a parameter that was working as a Boolean value named measureIntegrity. If 

the value of it is set to true, the framework is using the integrity check, and if the 

value is false, the framework is running without it. 

 Since the requirements of the program changed, I needed to ensure that the 

framework and the integrity check were running properly. To do this I inserted a 

parameter named integrityPID. This parameter keeps track of the ID of the current 

process. Then, whenever a problem occurs in an experiment, I have the option to 

manually kill it. 
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 The characterization framework needed to have a way to call the integrity check to 

start working. To do this, the integrity check script is called through the serial port 

commands. So, the path of the script is saved on the integrityCheckScript parameter 

and whenever is needed, the calling command is formed and called with the 

self.serial.sendCMD command. 

 Another factor I took into consideration is the voltage where the initialization and the 

integrity check operations are happening. To be able to modify it, it gives user the 

option to pick whatever value he wants for the nominal voltage. That can happen in the 

asioko01junoA53_virus.json which holds the workload, by changing the parameter 

userVoltage.  

  

5.1.2 Main memory initialization and integrity check in nominal voltage 

 As stated above, the characterization framework is running a Vmin test and the Vmin 

test at the end of each of its steps, force the running voltage of the Juno board to drop. 

Since the voltage is dropping, there is no guarantee that the voltage drop does not affect 

the properties of the integrity check. To make sure that none of the bit flips occur for 

that reason, the initialization of the main memory and the integrity check are happening 

at nominal voltage (which is set by the user).  

 

5.2 Signals  

 The characterization framework and the integrity check are not under the same directory. 

In fact, the framework is located in the host pc files and the integrity check is located in 

the Juno board files. Because of that, I needed to find a way for those two to interact. 
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 The most important thing to understand is when each one of them is operating. The 

control flow goes as follows: 

Figure 1: Connection between host and target 

 

 As mentioned in Figure 1, there are two different ways for the program to interact. The first 

one is throughout the serial commands. The characterization framework has the ability to 

call the integrity check through the serial port and more specifically with the commands: 

integrity_check_command = self.integrityCheckScript + " &" 

code = self.serial.sendCMD(integrity_check_command, 

waitTime=WorkloadHandler.UNRESPONSIVE_TIMEOUT);                 

 In the integrityCheckScript parameter, the path of the file is located: 

"integrityCheckScript":"/media/oldDisk1/root/integrity_check_scripts/LinkedList" 

 

 In the second situation, the framework has to “wake up” the integrity check, which is 

paused since the initialization finished. To do this the following signal is sent: 
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integrity_check_command_kill = "pkill -SIGUSR1 LinkedList" 

code = self.serial.sendCMD(integrity_check_command_kill, waitTime= WorkloadHandler. 

UNRESPONSIVE_ TIMEOUT); 

The signal “-SIGUSR1” is responsible to re-start the integrity check. 

 

 

Figure 2: Control flow 

 

 

 

 

 

 

 

 

 



35 

 

Chapter 6  

 

Methodology of Experiments  

 

 

  

6.1 Methodology                               35 

                       6.1.1 Machine characteristics      35  

            6.1.2 Setup                                                                                                38 

6.1.3 Workloads                                                                              39 

 

  

6.1 Methodology  

 The experiments took place on one of the two CPUs of the Juno board, cortex A53. To 

be able to run the framework on the Juno board, a connection needed to be established 

between it and the host pc. The Vmin test operation is running at the same time as a 

running virus. In the current project the di/dt virus that is used is the 107_5330_26s, that 

was created with GeST[5]. 

 

6.1.1 Machine characteristics  

 The ARM Juno board is a platform for development made by ARM, a well-known 

manufacturer of semiconductors and software. The 64-bit Cortex-A CPUs used 

in ARM-based systems, are the focus of the Juno board's architecture. 

 The Juno board offers a complete development and testing environment for ARM-

targeted software and hardware solutions. It features a system-on-chip (SoC) design 

with multiple ARM Cortex-A processors, including big.LITTLE architecture, which 

combines high-performance cores with power-efficient cores for optimal 

performance and energy efficiency. 
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Juno board configurations 

Hardware • Arm Cortex-A72 MPCore (Juno r2) 

• Arm Cortex-A53 

• Arm big.LITTLE technology 

• Arm Mali graphics processor for 3D Graphics 

acceleration and GP-GPU compute 

• 4-lane Gen 2.0 PCI-Express 

• A SoC architecture aligned with Level 1 (Server) 

Base System Architecture 

Software  • System initialisation, cold boot flow and 

controls clocks, voltage, power gating. 

• Delivered as binary through Linaro with public 

programmers interface 

• Application Processor Software – all delivered 

as source through Linaro 

• Arm Trusted Firmware – supporting PSCI 

power controls and trusted execution 

environments 

• Choice of UEFI or U-Boot firmware 

• Linux – support for both latest kernel and 

Linaro Stable Kernel which includes Mali GPU 

drivers and Android patch set 

 

Table 1: Juno board configurations 

As mentioned above the software is running on the cortex A53 processor. 

Cortex A53 configurations 

Architecture Armv8-A 

Multicore 1-4x Symmetrical Multiprocessing (SMP) within a 

single processor cluster, and multiple coherent SMP 

processor clusters through AMBA 4 technology 
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Characteristics • The Armv8-A architecture provides 64-bit data 

processing, extended virtual addressing, and a 

64-bit general purpose registers. 

• The first Armv8-A processor aimed at providing 

power-efficient 64-bit processing. 

• In-order, 8-stage, dual-issue pipeline 

• Improved integer, Neon, Floating-Point Unit 

(FPU), and memory performance. 

• The Cortex-A53 can be implemented in two 

execution states: AArch32 and AArch64. The 

AArch64 state allows execution of 64-bit 

applications. The AArch32 state allows 

execution of existing Armv7-A applications. 

 

Table 2: Cortex A53 configurations 

 

Figure 3: Juno board components 
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6.1.2 Setup 

 For the correct operation of the experiments, the connection and communication 

between the host pc and the board is essential. The framework software is located 

on the host, while the integrity check software is located on the Juno. As the 

experiments are initialized by the framework and then communicated to the board 

in order to be executed, it becomes clear how important the communication 

between the two is. 

 

 

Figure 4: Host pc 

 

 

 Figure 5: Target - Juno board 

 

The Juno board is connected to the host pc with serial connection and can be accessed 

through the Putty client (COM9: DOS Firmware Commands - cfg command, COM8: 

Linaro Distribution (Linux)). 
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 In order to read/set power, frequency and voltage, what has to be done is the connection 

to the serial port with DOS environment (PORT9) and then enter debug mode. 

 

6.1.3 Workloads 

 The workload is defined in  a Json file named asioko01junoA53_virus.json is used that 

includes all the parameters that need to be initialized. 

The workload that is used for the experiments of the project is the following: 

 

    "targetHostName":"10.16.20.171", 

    "targetSSHusername":" 

    "targetSSHpassword":" 

    

"sysLogParsingScript":"/media/oldDisk1/root/chf_scripts/printErrorsWithinTimestamps

", 

    "helperScriptSetup":"/media/oldDisk1/root/chf_scripts/chf_helper_freq_taskset.sh", 

    "helperScriptWorkload":"/media/oldDisk1/root/chf_scripts/chf_helper_workload.sh", 

    

"workloadStatusOutput":"/media/oldDisk1/root/chf_scripts/chf_helper_tmp/workload_s

tatus", 

    "integrityCheckScript":"/media/oldDisk1/root/integrity_check_scripts/LinkedList", 

    "userVoltage": 1000, 

 

    "measurePowerScript": null, 

    "serialPort":"COM8", 

    "mongoDB":"juno", 

    "mongoCol":"asioko01a53_virus_Save", 
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    "experiments":[ 

        { 

            "workloads":[ 

                { 

                    "work_dir":".", 

                    

"cmd_line":"/media/oldDisk1/root/benchmarks/a53emVirusGood26s/107_5330_26s", 

                    "toKillName":"107_5330_26s", 

                    "conventionName":"107_5330_26s", 

                    "cores":[0], 

                    

"originalOutput":"/media/oldDisk1/root/benchmarks/a53emVirusGood26s/ref.out", 

                    "type":"singleThread", 

                    "runOutput":"/media/oldDisk1/root/chf_scripts/chf_helper_tmp/0_out", 

                    "inputs":null, 

                    "VM":false, 

                    "stdin":null 

                }, 

 

                { 

                   "work_dir":".", 

                    

"cmd_line":"/media/oldDisk1/root/benchmarks/a53emVirusGood26s/107_5330_26s", 

                    "toKillName":"107_5330_26s", 

                    "conventionName":"107_5330_26s", 

                    "cores":[3], 
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"originalOutput":"/media/oldDisk1/root/benchmarks/a53emVirusGood26s/ref.out", 

                    "type":"singleThread", 

                    "runOutput":"/media/oldDisk1/root/chf_scripts/chf_helper_tmp/1_out", 

                    "inputs":null, 

                    "VM":false, 

                    "stdin":null 

                } , 

 

                { 

                    "work_dir":".", 

                    

"cmd_line":"/media/oldDisk1/root/benchmarks/a53emVirusGood26s/107_5330_26s", 

                    "toKillName":"107_5330_26s", 

                    "conventionName":"107_5330_26s", 

                    "cores":[4], 

                    

"originalOutput":"/media/oldDisk1/root/benchmarks/a53emVirusGood26s/ref.out", 

                    "type":"singleThread", 

                    "runOutput":"/media/oldDisk1/root/chf_scripts/chf_helper_tmp/2_out", 

                    "inputs":null, 

                    "VM":false, 

                    "stdin":null 

                }, 

 

                { 

                   "work_dir":".", 
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"cmd_line":"/media/oldDisk1/root/benchmarks/a53emVirusGood26s/107_5330_26s", 

                    "toKillName":"107_5330_26s", 

                    "conventionName":"107_5330_26s", 

                    "cores":[5], 

                    

"originalOutput":"/media/oldDisk1/root/benchmarks/a53emVirusGood26s/ref.out", 

                    "type":"singleThread", 

                    "runOutput":"/media/oldDisk1/root/chf_scripts/chf_helper_tmp/3_out", 

                    "inputs":null, 

                    "VM":false, 

                    "stdin":null 

                } 

            ], 

            "platform":"juno_a53", 

            "core_to_freq":[950,0,0,950,950,950], 

            "repetitions":1, 

            "run_type":"all", 

            "start_voltage":1000, 

            "end_voltage":0, 

            "vol_inc":10, 

            "inc_wait_time":10, 

            "vmin_component":"CORE" 

        } 

      ] 

  } 
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 Explaining the workload from top to bottom, firstly to be able to connect to the Juno 

board, the IP along with the username, password and the serial port are essential to 

establish a connection. 

 The second most important thing is to initialize the parameters. In this case the path to 

the integrity check (integrityCheckScript), the nominal checks voltage (userVoltage) and 

the output file name (mongoCol). 

 The actual workload needs to be set up for all four cores of the cortex A53. To do this, 

all the specifications are applied for every single core (0,3,4,5). In the end, the nominal 

frequency of the A53 is set (950MHz) for every core, the number of repetitions that the 

experiment will execute, the start voltage and the end voltage and how much voltage to 

drop after every repetition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

Chapter 7 

 

Results   

 

 

  

7.1 Results                         44  

                         7.1.1 Validations                        45  

                         7.1.2 Graphs Description – Results without integrity check    46  

                         7.1.3 Graphs Description - Results with integrity check  48 

                         7.1.4 Comparison     49 

 

 

7.1 Results  

 Every experiment consists of many runs, and in each run, there are many voltage steps. 

The reporting – the result of every run is reported as follows: 

- PASS: If no crash is detected, the run continues normally. 

- SYSTEM_CRASH: The run ends abnormally, and the Juno board needs to 

reboot to continue to the next run. 

-  APPLICATION_CRASH: The integrity check detects a crash due to 

different possible reasons (software bug, memory conflict, hardware problem). 

To be able to continue the run to the next voltage step, the user must manually 

kill the virus process. 

- BIT_FLIP: The new integrity check finds different values in main memory 

than the initial. Again, to be able to continue the run to the next voltage step, 

the user must manually kill the virus process. 

 After Executing the Experiments stated in the Methodology chapter, Ι collected the 

following data. As predicted bit flips occur in the CPU and get propagated to DRAM 

during the executions, and they are identified by the implementation.  
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7.1.1 Validations 

 To be able to validate that the experiments are correct, I made some compulsory checks. 

First of all, I had to check that the characterization framework was running correctly at 

nominal voltage, meaning that I am expecting no crashes or bit flips while the voltage is still 

at nominal value. 

Graph 4: Nominal voltage experiment 

 According to the results of the experiment shown in graph 4, when running at nominal voltage, 

the status of the execution running is PASS for every core that is used (0,3,4,5). That means 

that without the voltage dropping, no crashes or bit flips appear confirming that the experiment 

is not affected by other factors. 

 Then, I had to check that my implementation is doing what it is supposed to do, and by that 

meaning that it must have the ability to identify bit flips when they occur. To be able to check 

if this procedure is executed correctly, I forced the program to create cases that bit flips appears 

100% at the end of every repetition. To be able to do this, I changed the implementation of the 

function lfsr_check() in the integrity check, and manually swapped the values of the compared 

values so that they are different from each other. 
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Graph 5: Force bit flips experiment 

 

 The results in Graph 5, show the results of the above experiment for one repetition. As I am 

swapping the values, the framework can identify the bit flip and then report it. By that, I can 

ensure that the implementation is correct. 

 

7.1.2 Graphs Description – Results without integrity check 

 To be able to compare the results between the previous implementation of the 

characterization framework and the new one with the integrity check, I needed to run 

some experiments in both versions. To begin with, the following graph’s data are taken 

from experiments without the integrity check. 
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Graph 6: Experiments without integrity check 

  

The experiments’ results of Graph 6 are taken from 10 repetitions of the workload. 

Results without the integrity check, after running the framework for a few times, can be 

predictable. As you can observe, the framework tends to crash at 0.890 Watts, as every 

repetition stops the voltage drop at that point meaning that the system cannot work under 

that voltage barrier as every crash is a system crash. 

  In certain, but few situations, the type of crashes was not system, but application. An 

application crash occurs when a software program unexpectedly terminates or stops 

functioning correctly. It can be caused by various factors, including software bugs, 

memory issues, conflicts with other programs or system components, insufficient 

resources, or external factors such as hardware failures. Since the implementation of the 

extra integrity check was not included, the appearance of application crashes reinforces 

the idea that there may be crashes related to the memory that are not being properly 

monitored. 

Graph 7: Application crashes repetition 

840
860
880
900
920
940
960
980

1000
1020

V
o

lt
ag

e 
(W

at
ts

)

Status

Application crashes



48 

 

 As you can see in Graph 7, in that certain repetition the crashes were application crashes 

and occurred in two different cores (core 0 and core 4). Whenever the crash was an 

application crash the flow of the framework stacked at the 

WORKLOAD_HELPER_SCRIPT and to continue I had to manually kill the current 

running process manually.  

 

7.1.3 Graphs Description – Results with integrity check 

 The goal of the extra layer of integrity check was to be able to identify and monitor any 

data array corruptions in main memory. As I mentioned, the appearance of application 

crashes gave me the hope that maybe bit flips can occur and get detected. 

Graph 8: Bit flip occurrence 

 

 As you can see in Graph 8, a bit flip was identified after the second repetition of the 

program. The bitflip was found before the system crash, but at low voltage in relation to 

where the voltage drop starts, leading to the belief that maybe the voltage drop can be 

considered as one of the possible causes of the bit flip. As with application crashes, 

whenever the crash was a bit flip the flow of the framework stacked at the 

WORKLOAD_HELPER_SCRIPT and to continue I had to manually kill the current 

running process manually. 
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 The voltage at which bit flip occurs is higher than the voltage of system crash, leading 

to the conclusion that Vmin is higher when taking into consideration silent data 

corruption. 

 

7.1.4 Comparison 

 In comparison, there are some differences between the characterization framework with 

and without the extra integrity check.  

 First, the main difference is that now the application crashes can be identified as data 

corruption main memory. Since bit flips were identified, we could see the purpose behind 

the project. 

 Characterization framework with the integrity check takes much more execution time 

than without it, and that is because the initialization of the memory of the Juno boards 

takes some time. Combine the time needed with the multiple iterations that occur, those 

add enough extra simulation time. 

 Finally, there was a marked difference in the frequency of bit flip occurrences while 

running the framework with the new integrity check, compared to the frequency of 

application crash occurrences that appeared without the new version of the integrity 

check. 

 Experiments without the new 

integrity check 

Experiments with the new 

integrity check 

Experiments 30 15 

Runs 300 150 

Amount of 

application crashes 

7 1 

Amount of bit flips - 10 

Amount of system 

crashes 

23 14 

Table 3: Crash frequency 
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With the new integrity check, in fewer runs, more application crashes + bit flips happen. 

Also, as you can see in table 3, whenever a bit flip occurs, a system crash follows. 
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Chapter 8 

  

Future Work         51 

  

 

  

 As mentioned many times in this paper, this project is specified on data arrays corruption 

during Vmin tests. For future work it could be really interesting to expand the integrity 

check either by searching for other types of errors, or by expanding the current version to 

be able to be more specific. Maybe it can categorize the kind of memory that the bit flip 

occurs in, or maybe it can provide more details according to how, in what value etc. the 

bit flip was found. 

 Also, to expand the current version to be able to accept more parameters, simple changes 

can be made to the input file of the framework as well as the executor, to be able to receive 

extra information the user wants that can be helpful for him. 

 Another thing that can maybe be improved is the methodology used by creating 

multithreaded integrity check that checks the caches of each core. 

 Finally, changes can be made regarding the replacement policy. Linked list can be 

accessed in a manner so that the data are first visited in the caches before fetching 

something from main memory. 
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Chapter 9 

 

Conclusion 

  

 

  

9.1 Conclusions                52 

9.2 Lessons Learned                52

 

 

 9.1 Conclusions 

 Silent data corruption can occur in a Vmin test. I developed a methodology that can 

identify some of them. To be able to verify that indeed the crashes were happening 

because of bit flips in data arrays, many preconditions had to be respected, from 

characterization framework preconditions to integrity check and memory preconditions. 

The main memory had to be overloaded, so it could be monitored by the integrity check 

and to do that a proper data structure should have been chosen to fill that memory. The 

usage of LFSR was also important because it gave the program the randomness it needed.  

 

9.2 Lessons Learned 

In the end of this thesis, I have to say that I’ve learned a lot about this topic and I believe 

that I managed to undergo many problems that motivated me in the belief that there is 

nothing too difficult until you believe that you can do it. The biggest problem that I’ve 

faced was when I could not find a way to interconnect the framework with the integrity 

check on Juno board. After trying many different approaches that I read about, in the end 

the correct way to do it was way simpler than any other way I’ve tried before. From then 

and on, I try to use simpler solutions that I come up with first and don’t give up after a 

failure. 
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