

Thesis Dissertation

Accelerating Quality Diversity Algorithms

using K-Means Clustering

Andreas Pattichis

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

Μay 2023

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

Accelerating Quality Diversity Algorithms using K-Means Clustering

Andreas Pattichis

Supervisors

Dr. Chris Christodoulou

Dr. Vassilis Vassiliades

Thesis submitted in partial fulfillment of the requirements for the award of a Bachelor of

Science degree in Computer Science at University of Cyprus

May 2023

Acknowledgements
I would like to thank my supervisors, Dr. Chris Christodoulou and Dr. Vassilis Vassiliades, for

their guidance and assistance throughout my Bachelor Thesis project. Their help was

invaluable, and I am very appreciative of the time and effort they invested in assisting me to

complete it.

Abstract

Quality Diversity (QD) algorithms, with their aim of finding diverse, high-quality solutions

across solution spaces, present a unique approach to optimization, distinctly different from other

traditional techniques. Despite their advantages, these algorithms struggle to navigate non-

convex elite hypervolumes characterized by complex and irregular geometries. This research

proposes an adaptive strategy to overcome this challenge, focusing on the context of MAP-Elites,

a well-known QD algorithm. Our solution centers on integrating K-Means clustering into the

emitter selection process, crucial for generating diverse, high-performing solutions. We

evaluated our strategies through a series of experimental scenarios, focusing on both exploration

and exploitation capabilities. Comparative analysis with the established Iso+LineDD emitter

demonstrated varying performance across different scenarios and performance metrics. While

our techniques outperformed the Iso+LineDD emitter in some cases, they did not always produce

improved performance, indicating the need for further enhancement and exploration of

alternative clustering strategies.

Contents

CHAPTER 1 INTRODUCTION .. 1

1.1. EVOLUTION OF QUALITY DIVERSITY ALGORITHMS .. 1

1.2. MOTIVATION ... 2

1.3. PREVIOUS QUALITY DIVERSITY RESEARCH RELATED TO OUR WORK ... 2

1.4. OBJECTIVES .. 3

1.5. POTENTIAL IMPACT ... 3

CHAPTER 2 BACKGROUND ... 4

2.1. MATHEMATICAL FOUNDATIONS ... 4

2.1.1. Function ... 4
2.1.2. Discovering the Field of Mathematical Optimization .. 4
2.1.3. Rastrigin Function ... 4
2.1.4. Distance Metrics .. 6
2.1.5. Mathematical field of Probability theory ... 6
2.1.6. Stochastic Variables .. 7
2.1.7. Distributions .. 7

2.2. EVOLUTIONARY ALGORITHMS .. 9

2.2.1. Overview of Evolutionary Algorithms ... 9
2.2.2. Application of Genetic Algorithms .. 9

2.3. CLUSTERING ... 11

2.3.1. Introduction to Cluster Analysis .. 11
2.3.2. K-Means Clustering algorithm .. 11

2.4. QUALITY-DIVERSITY BACKGROUND ... 15

2.4.1. Introduction to Quality Diversity algorithms .. 15
2.4.2. QD Problem Formulation .. 15
2.4.3. Illumination ... 16
2.4.4. Initial QD Algorithms .. 17
2.4.5. Introduction to QD Optimization framework .. 18
2.4.6. Key Components of the QD Optimization Framework .. 19
2.4.7. Evaluation Metrics for Assessing QD Algorithms' Success ... 21
2.4.8. Elite Hypervolume ... 21
2.4.9. Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) ... 23
2.4.10. Emitters .. 25

CHAPTER 3 METHODOLOGY ... 28

3.1. PROBLEM FORMULATION .. 28

3.2. PROPOSED CLUSTERING-BASED EMITTER ... 29

3.3. JAX AND QDJAX LIBRARY .. 31

3.4. K-MEANS FOR JAX IMPLEMENTATION ... 31

3.5. IMPLEMENTATION ... 34

3.5.1. Implementation of Iso+LineDD Emitter on QDJAX.. 34
3.5.2. Adapting Iso+LineDD Emitter through Reduced Batch Sampling .. 35
3.5.3. Enhancing Emitter Selection Process through K-Means Clustering Integration 37

3.6. EXPERIMENTAL SETUP .. 44

3.6.1. Problem domains ... 44
3.6.2. Experimental Scenarios ... 45
3.6.3. Key Metrics for Evaluating Performance .. 47

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION.. 49

4.1. INTRODUCTION ... 49

4.2. RESULTS FOR 2-DIMENSIONAL PROBLEM DOMAINS ... 49

4.2.1. Scenario 1 with 100x100 Grid Size for 2-D Robotic Arm Problem ... 50
4.2.2. Scenario 2 with 100x100 Grid Size for 2-D Rastrigin Function .. 57
4.2.3. Scenario 3 with 400x400 Grid Size for 2-D Robotic Arm Problem ... 64
4.2.4. Scenario 4 with 400x400 Grid Size for 2-D Rastrigin Function .. 71

4.3. RESULTS FOR HIGHER-DIMENSIONAL PROBLEM DOMAINS ... 78

4.3.1. Scenarios 5 - 6 with 100x100 Grid Size for 10-D Problem Domains .. 78
4.3.2. Scenario 7 - 8 with 100x100 Grid Size for 100-D Problem Domains.. 92

4.4. MAIN FINDINGS .. 105

CHAPTER 5 CONCLUSIONS AND FUTURE WORK .. 107

5.1. CONCLUSIONS ... 107

5.2. FUTURE WORK .. 108

REFERENCES... 109

APPPENDIX A IMPLEMENTATIONS .. A-1

A.1 IMPLEMENTATION OF K-MEANS CLUSTERING ON JAX ... A-1

A.2 IMPLEMENTATION OF ISO+LINEDD EMITTER ON QDJAX .. A-5

A.3 IMPLEMENTATION OF ISO+LINEDD EMITTER WITH REDUCED BATCH SAMPLING A-8

A.4 IMPLEMENTATION OF STRATEGY 1 .. A-12

A.5 IMPLEMENTATION OF STRATEGY 2 .. A-18

1

Chapter 1
 Introduction

1.1. EVOLUTION OF QUALITY DIVERSITY ALGORITHMS .. 1

1.2. MOTIVATION ... 2

1.3. PREVIOUS QUALITY DIVERSITY RESEARCH RELATED TO OUR WORK 2

1.4. OBJECTIVES ... 3

1.5. POTENTIAL IMPACT ... 3

1.1. Evolution of Quality Diversity Algorithms

Unlike standard optimization algorithms that aim to find one best solution, Quality Diversity

(QD) algorithms strive for a diverse group of high-performing alternatives [1]. As time has

passed, these QD algorithms have undergone several improvements, with new strategies and

techniques being introduced to enhance their overall efficiency and effectiveness.

Lehman and Stanley introduced the Novelty Search algorithm in 2008 [1], which is one of the

earliest examples of QD algorithms. Instead of focusing on the fitness of solutions, the Novelty

Search algorithm promoted the exploration of the search space by prioritizing the novelty of the

solutions for the first time. Other QD algorithms have been developed since then, such as Multi-

dimensional Archive of Phenotypic Elites (MAP-Elites) proposed by Mouret and Clune in 2015

[2].

In order for QD algorithms to fulfill their objective of exploring the search space, they maintain

and optimize a population of solutions with diverse behaviors and traits [2]. By doing so, QD

algorithms are able to discover a set of solutions that cover a wide range of behaviors, instead of

solely focusing on a single optimal one [3].

Particularly, QD algorithms investigate regions referred to as non-convex elite hypervolumes,

which are regions of the solution space that contain high-performing solutions but have complex

and irregular geometries [4]. Their non-convex nature presents challenges, as these areas may

include multiple peaks and valleys that make searching for solutions more difficult [5].

QD algorithms have proven to be an essential addition to optimization algorithms due to their

ability to identify solutions that other regular optimization algorithms may overlook. In multi-

objective optimization situations for example, when multiple conflicting objectives must be

optimized concurrently, QD algorithms can identify solutions that cover a large range of trade-

offs between the objectives [2].

2

Recent years have seen the introduction of emitters, such as the Iso+LineDD emitter. Emitters

are components that guide the search process more efficiently, helping to explore new regions of

the solution space in many QD algorithms [4].

1.2. Motivation

Quality Diversity algorithms, especially in complex environments, often encounter difficulty

when attempting to navigate non-convex elite hypervolumes [5]. These complex regions,

although rich in high-performing solutions, present complex geometries that make navigation

difficult [5]. Despite the success of QD algorithms like MAP-Elites in discovering diverse

solutions in high-dimensional search spaces, their reliance on user-defined boundaries for the

behavior space limits their effectiveness in adapting to the shape of these non-convex regions

[6]. This limitation restricts the discovery and optimization of diverse, high-performing solutions

in these crucial areas of the search space.

Tackling this challenge has significant implications. If QD algorithms can adapt more efficiently

to the shape of the behavior space, they would be better equipped to identify superior solutions

in complex and high-dimension spaces [6]. This adaptability would make them even more

powerful tools for a wide range of optimization tasks. As a result, the motivation of our work is

to develop an adaptive strategy capable of addressing these difficulties associated with exploring

and optimizing non-convex elite hypervolumes.

1.3. Previous Quality Diversity Research related to Our Work

One approach of addressing this issue stated in section 1.2. was introduced with the Cluster-

Elites algorithm [7]. This algorithm utilizes a clustering technique based on density to maximally

spread a set of centroids on a potentially non-convex manifold in the behavior space. The

behavior space is partitioned into clusters of similar solutions using this density-based clustering

3

method, and the centroids of these clusters serve as the representative solutions in the MAP-

Elites algorithm. The centroids are updated at each generation. In a maze navigation problem,

the Cluster-Elites algorithm was found to perform comparably or better than other algorithms

such as MAP-Elites. This successful use of clustering methods implies that they have the

potential to improve the performance of numerous QD algorithms. That said, it is necessary to

conduct further research to explore the possibility of integrating alterative clustering techniques

into existing QD algorithms for an overall enhancement in performance.

1.4. Objectives

The primary goal of this research is to improve the exploration of high-performing behaviors in

the behavior space, to better comprehend potential system behaviors, and to optimize non-convex

elite hypervolumes using Quality Diversity algorithms.

To tackle these challenges, we selected a variety of distinct objectives in my thesis proposal in

order to investigate the new strategies in exploring and optimizing these non-convex regions.

First and foremost, the research aims to investigate two new methods for enhancing the emitter

selection process in MAP-Elites through the integration of clustering techniques such as K-

Means. The novel strategies’ applicability and performance will be assessed in various

experimental scenarios focusing on both their exploration and exploitation capabilities. The

performance of the proposed strategies will also be assessed by comparing them to the

Iso+LineDD emitter, on which the new strategies are based on. This comparison will help

determine any improvements in key metrics achieved by the proposed strategies. Finally, the

research aims to offer insights into the scalability of the proposed strategies, as well as their

capacity to manage complex, higher-dimensional problem domains.

1.5. Potential Impact

By addressing these objectives, these strategies could lead to a more effective exploration of

varied behaviors in the behavior space as well as provide significant insights into the potential

behaviors of a system. By integrating clustering techniques into the emitter’s selection process,

the proposed methods can potentially also lead to the discovery of high-performing solutions that

may not have been found using other methods. The ultimate objective is to develop a strategy

capable of identifying superior solutions in complex and high-dimensional spaces, with the

potential to surpass current techniques in revealing novel, high-performance solutions.

4

Chapter 2
 Background

2.1. MATHEMATICAL FOUNDATIONS .. 4

2.2. EVOLUTIONARY ALGORITHMS .. 9

2.3. CLUSTERING .. 11

2.4. QUALITY-DIVERSITY BACKGROUND ... 15

2.1.Mathematical Foundations

2.1.1. Function

A function 𝑓 is a mathematical correlation that assigns a distinct element from a set 𝑋 (commonly

referred to as the function's domain) to a unique element in a set 𝑌 (known as the function's co-

domain) [8]. The aforementioned association may be represented as 𝑓: 𝑋 → 𝑌 [8].

2.1.2. Discovering the Field of Mathematical Optimization

The domain of function, let's assume 𝑓, is frequently used to find the optimal solution. This has

led to the emergence of the field of mathematical optimization. The objective of an optimization

problem is to maximize or minimize the value of a given function, depending on the specific goal

of the problem [9].

The procedure involves determining the optimal solution 𝑥* ∈ ℝ within the domain of the

function [9]. The constraints differ depending on whether the optimization problem has the

objective of maximizing value of its function, meaning that it is a maximization problem, or

whether it tries to minimize the function value, meaning that it is a minimization problem [9].

Formally, the aforementioned categories of optimization problems are denoted as [9]:

1. For Maximization problems: 𝑓(𝑥*) ≥ 𝑓(𝑥) for all 𝑥 ∈ ℝ

2. For Minimization problems: 𝑓(𝑥*) ≤ 𝑓(𝑥) for all 𝑥 ∈ ℝ

2.1.3. Rastrigin Function

The Rastrigin Function is a mathematical function commonly used as a benchmark for

optimization algorithms [10]. It is a non-convex function with multiple local minima and a global

minimum at the origin [10]. The Rastrigin Function is often used to test the performance of

optimization algorithms due to its complex and multi-modal nature [10].

5

Being one of the most popular benchmark functions in the optimization research, the Rastrigin

Function can be characterized by its non-linear and multimodal nature, which can put to the test

many for optimization algorithms [11]. The function dates back to 1974, where L.A. Rastrigin

introduced a test problem, aiming to assess the efficacy of optimization problems [10].

The Rastrigin function is mathematically defined as follows:

𝑓(𝑥) = 𝐴 ⋅ 𝑛 + ∑[𝑥𝑖
2 − 𝐴 𝑐𝑜𝑠(2𝜋𝑥𝑖)]

𝑛

𝑖=1

where:

• “n” represents the number of dimensions,

• “A” is a constant (usually set to 10)

• “xi” is the ith component of the input vector x

As explained, the Rastrigin Function is known to possess a multitude of local minima, thereby it

poses a significant challenge for optimization algorithms to locate the global minimum,

particularly in scenarios where the number of dimensions escalates [10].

Figure 2.1 Rastrigin Function of two variables (n=2), retrieved from [11]

6

2.1.4. Distance Metrics

2.1.4.1. Pythagorean Theorem

The Pythagorean theorem, an essential principle in mathematics, relates to right-angled triangles

[12]. Mathematically, this theorem can be denoted as an equation also called Pythagorean

Equation [12]:

𝑐2 = 𝑎2 + 𝑏2

where:

• “a”, “b” represents the lengths of the two legs of the right-angled triangle

• “c” represents the length of the hypotenuse

2.1.4.2. Euclidean Distance

The Euclidean distance is one of the most widely used distance metrics. It calculates the distance

between two data points in the space [13]. This is done by measuring the straight-line distance

between the two [13].

In order to calculate the Euclidean distance ||p - q|| between two data points p and q in a 2-

dimensional space, with coordinates (x1, y1) and (x2, y2) respectively, we use the Pythagorean

theorem to calculate the value of the formula given by the square root of the sum of the squares

of the differences between the x-coordinates and y-coordinates of the two points [13].

Generalized for a higher dimensional space n, the Euclidean distance ||p - q|| between two data

points p and q can be calculated as [13]:

‖𝑝 − 𝑞‖ = ∑ √(𝑝𝑖 − 𝑞𝑖)2
𝑛

𝑖=1

In the following sections, we see its importance in determining the similarity or dissimilarity

between objects or data points.

2.1.5. Mathematical Field of Probability theory

The study of random phenomena and the quantification of uncertainty are topics covered in the

mathematical field of probability theory [14]. It essentially offers a framework for modeling the

probability of events and their results.

In this subject, a random process, also known as an experiment, is a method that generates a

single outcome from a set of potential outcomes [14]. The collection of all potential results from

such an experiment is referred to as the sample, which is subdivided into events [14]. Each event

corresponds to one or multiple outcomes [14].

7

Events are given as probabilities, typically denoted as p, which can take real values ranging from

0 to 1 inclusive [14]. A probability of 0 denotes an impossibility, whereas a probability of 1

denotes certainty in the event. The sample space's total set of probabilities for all potential

outcomes equals one [14].

2.1.6. Stochastic Variables

A random variable, also referred to as a stochastic variable, is a quantifiable function associated

with a probability space [15]. Random variables can be characterized as real single valued

functions that are defined within a probability space. The probability distribution of one is

determined by its distribution function [15].

When a random variable assumes a finite number of values, each with the corresponding

probabilities, its probability distribution is considered discrete and can be calculated by summing

the probabilities of the individual values it assumes [15]. The discrete probability distribution

formula is given as:

𝑃𝑥(𝐴) = ∑ 𝑃𝑛

𝑥𝑛∈𝐴

where:

• “A” is an event in the sample space

• “Pn” is the probability of the value “xn”

On the other hand, if a function called the probability density (PDF) exists such that the random

variable's probability distribution is determined by integrating this function over a given interval,

the distribution is referred to as continuous [15]. The formula for the continuous probability

distribution is:

𝑃𝑥(𝐵) = ∫ 𝑝𝑥(𝑥) ⅆ𝑥

𝐵

where:

• “B” is an is an interval in the sample space

• “px(x)” is the probability density function

2.1.7. Distributions

2.1.7.1. The Uniform Distribution

The Rectangular Distribution, commonly referred to as the Uniform Distribution, is a type of

probability distribution in which all possibilities fall within a specified range and have an equal

8

chance of happening [16].

Mathematically, the PDF of a continuous uniform distribution can be expressed as:

𝑝(𝑥) = {

1

𝑏 − 𝑎
, 𝑥 ∈ [𝑎, 𝑏]

0, 𝑥 ∉ [𝑎, 𝑏]

Where “a” and “b” are the lower and upper bounds of the range, respectively.

Figure 2.2 PDF of the uniform probability distribution, retrieved from [17]

The Uniform Distribution is frequently used in optimization algorithms and simulations where

random sampling from a known range with equal probabilities is required.

2.1.7.2. The Normal distribution

The Gaussian Distribution, also referred to as the Normal Distribution, is a well-known

continuous probability distribution recognized for its symmetric bell-shaped curve [18].

The Gaussian Distribution's PDF is formulated as follows [18]:

𝜑(𝑥) =
1

𝜎√2𝜋
⋅ ⅇ−(𝑥−𝜇)2∕2𝜎2

In this equation:

• “μ” denotes the mean

• “σ” indicates the standard deviation

Figure 2.3 displays a variety of Normal Distribution Probability Density Functions (PDFs) with varying

means μ, and variances, σ², retrieved from [18]

9

2.2.Evolutionary Algorithms

2.2.1. Overview of Evolutionary Algorithms

Inspired by nature's evolutionary processes, Evolutionary Algorithms (EAs) are a group of

optimization class designed to find the most effective solutions for complex optimization

challenges [19]. These challenges often involve determining the ideal value for a specific

objective function while following a pre-established set of constraints [19]. While the techniques

involved may vary, the core concept behind EAs remains constant. Their ability to discover the

best feasible solution makes them highly beneficial for search and optimization tasks [20].

EAs' optimization procedure involves exploring the solution space to locate the most favorable

outcome by assessing the fitness value of each potential solution through an evaluation process.

To calculate the fitness value of each candidate solution, the evaluation utilizes the fitness

function [21]. This value represents the extent to which a solution achieves the goals of the

problem being addressed [21]. Solutions with higher fitness values have increased opportunities

to reproduce and transmit their genetic material to the following generation, while those with

lower fitness values are less likely to do so [21].

2.2.2. Application of Genetic Algorithms

Genetic Algorithms (GAs) are a widely used form of EA that draw inspiration from Charles

Darwin's theory about natural selection [21]. They simulate the natural selection process to

produce solutions to problems. The standard approach for EAs, including GAs, involves the

incremental evolution of a set of candidate solutions over time by applying genetic operators

such as selection, crossover, and mutation [21].

In order to employ a genetic algorithm, it is necessary to encode the problem and represent

potential solutions as chromosomes, which are commonly binary number strings [22]. The

objective is to optimize the fitness function, which may involve either maximizing or minimizing

its value [23]. A final solution is considered acceptable upon fulfillment of a specified

terminating condition, such as a maximum number of iterations or a fitness threshold [23].

The initial stage of the process involves the creation of a set of potential solutions. Following the

creation of the population, each member undergoes an evaluation utilizing a fitness function that

is customized to the specific problem being addressed. This fitness function then produces a

numeric output that represents the potential of an individual to serve as a viable solution. The

generation after that gets determined through the process of selection, through which the

individuals that demonstrate the highest level of fitness are selected [21].

10

To create the population of the next generation, the selected parents are utilized by

combining their traits via genetic operators such as crossover and mutation, in order to create the

new offspring solutions. Crossover involves combining the genetic material of two parents to

create new offspring, introducing diversity into the population through novel genetic material

combinations [21]. Mutation, the other genetic operator, introduces random changes to an

individual's genetic material, further enhancing population diversity, and it is a common

approach to avoid being trapped in local optima [21, 23]. The algorithm must terminate

eventually, either after reaching a maximum runtime or a performance threshold, at which point

a final solution selected and returned [21].

Figure 2.4 The evolutionary cycle, retrieved from [21]

In conclusion, understanding the principles and mechanisms of EAs is necessary and can be used

as a strong foundation for exploring more advanced optimization techniques. As we progress to

the following sections on Clustering and Quality-Diversity optimization, it is demonstrated how

these methodologies utilize the fundamental principles of EAs to generate novel solutions for a

diverse set of problems.

11

2.3.Clustering

2.3.1. Introduction to Cluster Analysis

Cluster analysis is a powerful technique for categorizing objects into groups based on the specific

attributes they share [24]. The goal of clustering is to assemble similar objects together while

separating dissimilar ones into different groups, thus achieving high internal homogeneity and

external heterogeneity for clusters [24].

Figure 2.5 A clustering algorithm aims to identify clusters of similar data by analyzing raw groupings

based on shared characteristics, figure retrieved from [25]

The similarity of two objects can be assessed using numerous metrics, which determine their

distance in a given space. Euclidean distance is a common metric often used for this purpose

[24], which was also touched upon in the Mathematical section earlier.

There are several clustering strategies, each with its own set of advantages and disadvantages.

For instance, hierarchical clustering gradually breaks down data until the desired cluster

formation emerges [24]. This method can be implemented in either an agglomerative (bottom-

up) or divisive (top-down) approach [24]. Another popular method is partitioning clustering,

which includes algorithms such as K-Means and seeks to determine a cluster structure that

minimizes certain error criteria [24].

In the next section, we will explore in greater detail one of these two highly popular algorithms:

The K-Means Clustering.

2.3.2. K-Means Clustering algorithm

The K-Means clustering algorithm is a widely employed partitioning clustering approach that

aims to divide a dataset into a predetermined number (k) of distinct, non-overlapping clusters

[26]. The center of each cluster signifies the mean of its data points [26]. Placing these centers

wisely is crucial, as different locations can yield varying outcomes [26]. This algorithm is

especially suitable for scenarios where the number of clusters is known beforehand, and the

clusters are anticipated to be spherical and of similar sizes [26]. This section offers a

comprehensive understanding of the K-Means clustering algorithm, exploring its underlying

principles, the involved steps, and a few of its practical applications.

Before diving into the details of the K-Means clustering algorithm, it is essential to understand

12

its primary structure and the objective it aims to achieve. The algorithm follows a series of

iterative steps to optimize the placement of clusters, ultimately with the objective of minimizing

the within-cluster sum of squares [26]:

𝐽 = ∑ ∑ 𝑤𝑖𝑘‖𝑥𝑖 − 𝜇𝑘‖
2

𝐾

𝑘=1

𝑚

𝑖=1

where:

• ‘m’ is the total number of data points in the dataset

• ‘K’ is the total number of clusters

• ‘xi’ is the ith data point in the dataset

• ‘μk’ is the centroid of the kth cluster

• ‘wik’ is a binary indicator variable that equals 1 if the data point xi belongs to the kth

cluster, and 0 otherwise

• ‘‖𝒙𝒊 − 𝝁𝒌‖
𝟐
’ is the squared Euclidean distance between the data point xi and the

centroid μk of the kth cluster

Given a set of data points X = [x1, x2, x3, ..., xn] and a set of cluster centers V = [v1, v2, ..., vc], the

K-means algorithm proceeds as described below [26]:

1. First, ‘c’ cluster centers are randomly selected from the dataset. Next, the distance between

each data point and the cluster centers is computed. Each data point is then assigned to the

closest cluster center among all available centers.

2. The cluster centers are subsequently updated using the formula:

𝑣𝑖 = (1 ∕ 𝑐𝑖) ∑ 𝑥𝑖

𝐶𝑖

𝑗=1

In this formula, ‘ci’ refers to the number of data points in the ith cluster, and ‘Ci’ represents

the set of data points in the ith cluster.

3. Following this, the distance between each data point and the revised cluster centers is

recalculated. The process continues by iterating between assigning data points to the nearest

cluster center and updating the cluster centers until no data points are reassigned.

13

Figure 2.6 Snippets from the development of raw data to clusters, from [27]

A key challenge in implementing the K-Means algorithm is determining the optimal number of

clusters (k). Several methods have been proposed to identify the best value for k, such as the

elbow method and the average silhouette method [24].

The elbow method, shown in Figure 2.7, is a widely used technique for determining the

appropriate number of clusters. It involves examining a plot displaying the within-cluster sum of

squares against the number of clusters [24]. The ideal number of clusters is identified at the point

where the curve forms a distinct "elbow"-like bend [24]. The rationale behind choosing this point

is that adding more clusters beyond the elbow does not yield significant improvements in the

clustering structure, as there is no considerable decrease in the within-cluster sum of squares

[24].

Figure 2.7 Elbow method for figuring the optimal number of clusters, obtained from [24]

14

Another method for identifying the optimal number of clusters is the average silhouette method.

This approach, as shown in Figure 2.8, evaluates the quality of clustering by calculating the

average silhouette value for each cluster. A higher average silhouette value is indicative of a

superior clustering structure [24]. When using this method, the optimal number of clusters is

determined by the point at which the average silhouette value reaches its maximum [24]. By

selecting the value of k that maximizes the average silhouette value, a more cohesive and well-

separated clustering structure can be achieved [24].

Figure 2.8 The silhouette method, also for figuring the optimal number of clusters, retrieved from [24]

K-means is a straightforward yet effective clustering algorithm with a variety of applications.

For instance, it has been employed in medical diagnosis to support doctors' decision-making

processes and enhance diagnostic accuracy [27]. In other fields such as those of the delivery

systems, K-means can be used to determine the number and location of delivery stores within a

region [27]. Additionally, it is commonly utilized for customer segmentation, dividing customers

into groups based on similar interests [27]. There are numerous other interesting applications of

the K-means algorithm that showcase its versatility.

Despite its usefulness, K-means is not without limitations [27]. From not being well-suited for

high-dimensional data, as the data may become sparse in higher dimensions, to being prone to

local optima, meaning the clustering result may be affected by the initial cluster assignment,

these are just a few of the limitations that make the algorithm far from perfect [27].

15

2.4.Quality-Diversity Background

2.4.1. Introduction to Quality Diversity algorithms

Quality-Diversity (QD) algorithms represent a novel class of optimization techniques that differ

from traditional optimization approaches [1]. Their primary goal is to discover an array of

diverse, high-quality solutions throughout the entire solution space, placing equal importance on

both the quality and the diversity of the solutions obtained [3]. QD algorithms assume that

addressing these two objectives simultaneously is likely to be more efficient than performing

independent constrained optimizations.

The motivation behind developing QD algorithms comes from the desire to explore a wide

variety of solutions in complex domains, such as robotics. These algorithms have proven to be

highly effective in such areas [27]. The evaluation of a QD algorithm's overall effectiveness

involves three primary factors. Firstly, the extent of coverage within the feature space, which

illustrates the diversity of the solutions [3]. Secondly, the evenness of the coverage in the feature

space [3]. And thirdly, the performance of individual solutions found within the feature space

[3]. By maintaining diversity among solutions, QD algorithms can facilitate innovation, improve

adaptability, and enhance the overall robustness of the system that is being optimized.

QD algorithms are characterized by several key components, including the concept of niches,

selection mechanisms, and the balance between exploration and exploitation. Niches allow QD

algorithms to focus on distinct regions of the solution space, while selection mechanisms enable

the identification of high-quality solutions within those regions [3]. The balance between

exploration and exploitation ensures that the algorithm can effectively search the solution space

without getting trapped in local optima [3].

QD optimization presents several unique challenges, such as maintaining diversity, avoiding

local optima, and efficiently exploring large search spaces [28]. Overcoming these challenges

often requires the development of specialized algorithms tailored to the specific requirements of

the problem domain. This section serves as an introduction to the broader discussion of QD

algorithms and their applications.

2.4.2. QD Problem Formulation

As explained in section 2.4.1, QD optimization aims to discover a diverse set of high-quality

solutions in the solution space by simultaneously considering both the quality and diversity of

the solutions. The objective function in QD:

𝑓𝜃, 𝑏̂𝜃 ← 𝑓(𝜃)

16

returns a fitness value, and a behavioral descriptor (or feature vector) [29]. Assuming that the

fitness function is maximized, the goal in QD optimization is to find for each point 𝑏̂ ∈ B the

parameters 𝜃 that maximize the fitness value:

This formulation states that, for each point 𝑏̂ in the feature space B, we aim to find the parameters

𝜃 that provide the maximum fitness value 𝑓(𝜃) while satisfying the constraint 𝑏̂ = 𝑏(𝜃), where

𝑏(𝜃), is the behavioral descriptor for the given parameters 𝜃 [29].

When the BD is two-dimensional, the result is often displayed as a colored image or heatmap

[29]. In the context of Evolutionary Algorithms, a QD solution is referred to as an organism,

phenotype, or individual, and it serves as the representation used in the algorithm to generate

other solutions [30]. The actions performed by the organism, or solution, are the organism's

behavior, which creates the previously defined behavioral descriptor. The performance of a QD

algorithm is called fitness, and the expression, or function that provides the fitness value is known

as the fitness function.

By using this mathematical representation, we can clearly define the problem of QD optimization

as the search for parameters 𝜃 that maximize the fitness function 𝑓(𝜃) while preserving the

desired behavior described by the behavioral descriptor 𝑏(𝜃) [29].

2.4.3. Illumination

The concept of "illumination" in QD optimization sets it apart from other optimization

approaches like Global Optimization, which focuses on finding a single global optimum, and

Multimodal Optimization, which aims to discover multiple optima in the parameter space.

Illumination algorithms, such as the Multi-dimensional Archive of Phenotypic Elites (MAP-

Elites), concentrate on uncovering a diverse set of high-performing solutions throughout the

feature space instead of just seeking optimal solutions [29].

Figure 2.9 Difference between the three Optimization approaches, retrieved from [29]

17

MAP-Elites was the pioneering algorithm in QD to be classified as an "illumination algorithm,"

underlining the progression of QD algorithms over time [29]. By illuminating the feature space

with the highest performing solutions, illumination algorithms illustrate the trade-offs between

performance and the features of the solutions of interest [29].

2.4.4. Initial QD Algorithms

2.4.4.1. Stochastic Sampling

One of the fundamental methods employed across various different problems is stochastic

sampling, which involves randomly selecting solutions from the solution space for evaluation

using objective and behavioral functions [2]. This technique is primarily used as a benchmark

for comparing performance against novel algorithms in diverse areas [2].

2.4.4.2. Novelty Search + Local Competition (NS+LC)

Novelty Search (NS) is an initial Quality-Diversity algorithm introduced by Lehman and Stanley

[1], that prioritizes the discovery of innovative solutions over optimizing a specific objective. By

calculating the novelty of a solution based on its behavior, NS encourages the exploration of

diverse regions within the solution space [31]. This approach has yielded groundbreaking

solutions, particularly in complex search spaces where conventional optimization algorithms risk

becoming trapped in local optima.

Despite its potential, NS has a key limitation: it overlooks the quality of solutions. To tackle this,

Lehman and Stanley introduced the Novelty Search + Local Competition (NS+LC) algorithm

[32], which combines novelty search with a local competition mechanism, evaluating both

novelty and quality. The NS+LC fitness function considers not only the novelty but also the

solution's performance relative to its neighbors, allowing for exploration while maintaining a

focus on high-quality solutions [32]. NS+LC promotes diversity in the feature space by ensuring

solutions compete on performance only with nearby neighbor solutions, recognizing that each of

the solutions might have unique features and constraints [32].

Despite its advantages, NS+LC faces several limitations. Firstly, it requires a computationally

demanding neighbor search with a complexity of 𝑛 ∙ 𝑙𝑜𝑔(𝑛) [33]. Moreover, the algorithm could

"cycle" by returning to the same feature space region repeatedly [30]. Last but not least, because

NS+LC's search strategy unevenly focused on areas with unknown or useful solutions, it may

miss important regions [30]. These shortcomings emphasized the need for more advanced

Quality Diversity algorithms capable of overcoming these challenges.

18

2.4.4.3. Multi-Objective Landscape Exploration (MOLE)

Multi-Objective Landscape Exploration (MOLE) is another initial QD algorithm that seeks to

address the QD problem. Proposed by Clune, Mouret, and Lipson [34], MOLE focuses on

exploring the search space using multi-objective optimization techniques. By optimizing

multiple objectives simultaneously, MOLE aims to find diverse and high-quality solutions [34].

This approach allows the algorithm to efficiently navigate complex search spaces, overcoming

the limitations of single-objective optimization methods, and promoting the discovery of

innovative solutions [34].

However, MOLE also has some disadvantages. As a multi-objective approach, it may require

more computational resources compared to single-objective algorithms [30]. Moreover,

determining the appropriate balance between different objectives can be challenging, which

might lead to difficulties in finding the optimal trade-off between quality and diversity [30].

2.4.5. Introduction to QD Optimization Framework

The QD optimization framework, developed by Cully and Demiris [28], serves as a unifying

modular approach, aiming to simplify the design, implementation, and analysis of the QD

algorithms, in order to encourage innovation and progress within the field [28]. The framework

makes it easier to develop and customize QD algorithms by providing a clear understanding of

the concepts, elements, and procedures that support them, thus promoting the sharing and

reusability of algorithmic components.

Figure 2.10 Pseudocode Snippet of QD Optimization Algorithm, retrieved from [28]

19

The high-level algorithm consists of the following iterative steps:

1. Generate a new set of candidate solutions, known as offspring, by applying selection

operators on a population of existing solutions.

2. Evaluate the performance and behavior of each offspring using an objective function and

a behavioral function, respectively.

3. Update the container, a data structure used for storing discovered solutions, by potentially

adding the new offspring based on their performance and behavioral scores.

4. Update the population scores, which guide the selection and exploration of the solution

space.

By following these steps and making informed choices for the container, selection operators, and

population scores, researchers and practitioners can tailor QD algorithms to suit their specific

needs and application domains. The QD optimization framework, therefore, provides a flexible

and systematic approach to the study and development of QD algorithms.

2.4.6. Key Components of the QD Optimization Framework

The QD optimization framework is composed of several critical components that shape the

behavior and performance of QD algorithms. These components include among others the

containers, the selection operators, and the population scores.

2.4.6.1. Containers

Containers are data structures used to store discovered solutions in QD algorithms. Two primary

types of containers used are N-Dimensional Grid and Centroidal Voronoi Tessellation containers.

The N-Dimensional Grid containers partition the behavioral space into cells of an N-dimensional

grid and store the highest performing solutions within each cell [6]. Each cell represents a unique

region of the behavior space, and the grid-like structure enables for a more efficient organization

and retrieval of solutions. Gaier et al. [35] applied this container type in the surrogate-assisted

illumination of aerodynamic design exploration, while Justesen et al. [36] utilized it in MAP-

Elites for noisy domains by adaptive sampling.

20

Figure 2.11 MAP-Elites container, adapted from [6]

Vassiliades et al. [6] also introduced the Centroidal Voronoi Tessellation container, which

employs Centroidal Voronoi Tessellations to scale up the MAP-Elites algorithm. CVT-based

containers dynamically partition the behavior space into irregularly shaped cells, adapting to the

underlying structure of the solution space [6]. This approach results in a more balanced coverage

of the space, leading to better performance and diversity in the discovered solutions. By using

this container, the MAP-Elites algorithm can effectively cover larger solution spaces, thus

improving the overall performance of the algorithm [6].

Figure 2.12 CVT-MAP-Elites container, adapted from [6]

2.4.6.2. Selection Operators

Selection operators also play a crucial role in QD algorithms, as they influence how candidate

solutions are selected from the population to generate the offspring solutions. Two important

selection operators are the Uniform Random and Score Proportionate selections, where each

offers distinct advantages and exploration-exploitation trade-offs.

The Uniform Random Selection operator assigns equal probabilities to all candidate solutions

when selecting them for the offspring generation [30]. This approach ensures an unbiased

exploration of the solution space, enabling the algorithm to consider a wide range of potential

solutions. On the other hand, the Score Proportionate Selection operator prioritizes high-scoring

solutions by selecting candidates with probabilities proportional to their scores [30]. By favoring

promising solution areas, this method enhances the exploitation of high-performing regions

within the solution space.

21

2.4.6.3. Population Scores

In QD algorithms, population scores are critical guiding indicators for the selection and

exploration stages. Among the various scores employed in QD algorithms, fitness, novelty, and

curiosity scores are particularly common and informative.

The fitness score evaluates a solution's performance in relation to the objective function of the

problem [30]. The novelty score evaluates a solution's uniqueness in comparison to other

solutions in the population [30]. Finally, the curiosity score assesses a solution's ability to lead

to the discovery of novel, high-performing solutions [30].

2.4.7. Evaluation Metrics for Assessing QD Algorithms' Success

Evaluating the success of QD algorithms involves various metrics, with two fundamental and

commonly used criteria providing a solid foundation for assessing their performance.

The first criterion, performance, measures the quality of solutions discovered by the algorithm,

typically based on objective function values [2]. This metric is essential for measuring the

algorithm's ability to converge towards optimal or high-performing solutions and attaining the

desired optimization goals.

The second criterion, coverage, examines the algorithm's capacity to explore diverse areas of the

solution space and generate a broad range of high-performing solutions [2]. As the pursuit of

diversity is highly important to QD optimization, this metric offers valuable insights into the

algorithm's effectiveness in achieving its objectives and promoting innovation across the solution

space.

2.4.8. Elite Hypervolume

The Elite Hypervolume is a concept introduced by Vassiliades and Mouret [4] in the context of

QD optimization. It refers to a specific subset of the genotypic space that includes the highest

performing solutions, or elites, within the search space [4]. This section will dive deeper into the

Elite Hypervolume, discussing its definition, rationale, and its impact on the development and

enhancement of QD algorithms.

Vassiliades and Mouret [4] observed that the best performing solutions identified by MAP-Elites

tend to be concentrated in a particular region of the genotypic space. This phenomenon occurs

because many genotypes can map to the same cell in the feature space, given the non-linear

relationship between a genotype and its corresponding behavior [4]. Therefore, the top

performing solutions are often located in close proximity to each other. This insight led to the

introduction of the Elite Hypervolume concept, which characterizes the regions of the genotypic

22

space that contain these high-performing solutions.

Mathematically, the Elite Hypervolume is defined as [4]:

It includes a set of m individuals, each representing the highest performing solution (elite) in its

corresponding area or niche within the feature space [4]. In this equation, Ci is a subset of X that

represents the portion of the genotype space corresponding to the ith region in the feature space.

The index i ranges from 1 to q, with q being less than or equal to k (k being the niche capacity).

The goal of a QD algorithm incorporating the Elite Hypervolume is to identify the set E, as

computing H is computationally demanding [4].

Figure 2.13 Illustration of the Elite Hypervolume, retrieved from [4]

In Figure 2.13, the Elite Hypervolume is illustrated within the genotypic space, showing the

distribution of high-performing solutions (elites) surrounded by the Elite Hypervolume. The

figure demonstrates how these elites are concentrated in a specific area of the genotypic space,

validating the observations made by Vassiliades and Mouret [4]. By visually representing the

Elite Hypervolume, this image provides a clearer understanding of the concept and its

implications for developing and enhancing QD algorithms.

Understanding and leveraging the properties of the Elite Hypervolume has significant influence

23

in the design and improvement of QD algorithms, particularly concerning MAP-Elites and its

directional variation operators [4]. By effectively utilizing the characteristics of the Elite

Hypervolume, it is possible to develop more efficient and powerful strategies for discovering

high-performing solutions in the search space.

In the subsequent sections, we will examine the MAP-Elites algorithm in more detail, focusing

on how the Elite Hypervolume concept is integrated with directional variation operators to

enhance the algorithm's performance and effectiveness in solving optimization problems.

2.4.9. Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)

The MAP-Elites algorithm is a well-known Quality-Diversity algorithm introduced by Mouret

and Clune [2]. It aims to discover a diverse set of high-performing solutions in the search space

while considering multiple objectives or features [2]. This section will provide an in-depth

overview of MAP-Elites, its algorithmic structure, important applications, and the development

of variations that have been developed since its introduction.

MAP-Elites is designed to maintain an archive of high-performing solutions, where each solution

is assigned to a cell in an N-dimensional grid based on its feature values [2]. The algorithm's

primary objective is to find the best performing solution for each cell, resulting in a diverse set

of high-performing solutions across the search space [2]. The archive is continuously updated as

the algorithm iterates, replacing solutions within cells if a better-performing candidate is found.

The MAP-Elites algorithm consists of the following steps [2]:

1. Initialize an empty archive with a predefined grid structure based on the problem's feature

dimensions.

2. Generate an initial population of candidate solutions.

3. Evaluate the performance and features of each candidate solution.

4. Insert each candidate into the corresponding cell in the archive if the cell is empty or if

the candidate outperforms the current occupant.

5. Select parents from the current archive using a selection operator (e.g., random selection,

tournament selection).

6. Apply variation operators (mutation, crossover) to the selected parents to generate

offspring.

7. Evaluate the offspring's performance and features, and then insert them into the archive

following the same rules as in step 4.

24

8. Iterate steps 5-7 for a predefined number of generations or until a stopping criterion is

met.

For a clearer understanding of the MAP-Elites algorithm, refer to Figure 2.12, which presents a

pseudocode description of its simple, default version. This pseudocode outlines the key steps

involved in MAP-Elites, including initialization, evaluation, archive updating, and the use of

variation operators to generate offspring solutions. By following this algorithm, MAP-Elites can

effectively explore the search space and maintain a diverse set of high-performing solutions [2].

Figure 2.14 MAP-Elites algorithm pseudocode, adapted from [2]

MAP-Elites has been applied to various problem domains, showcasing its versatility and

effectiveness. The algorithm has proven capable of uncovering high-performing solutions across

diverse areas of the search space, fulfilling its QD objectives.

As shown in Figure 2.15, MAP-Elites searches inside a high-dimensional space for the best

performing solutions in a low-dimensional feature space defined by user-selected dimensions.

As further detailed in section 2.4.3., the term "illumination algorithm" refers to its ability to

illuminate the fitness potential of different areas within the feature space, taking into account

trade-offs between performance and features of interest.

25

Figure 2.15 MAP-Elites algorithm visualized, revealing optimal solutions in user-defined dimensions

while considering trade-offs between performance and features, retrieved from [2]

Since the introduction of MAP-Elites, researchers have developed several variations to address

specific challenges or improve its performance. One area of focus has been the development of

novel emitters, particularly directional variation operators, to guide the exploration and

exploitation of the search space more effectively. These emitters and directional variation

operators will be discussed in greater detail in the following sections.

2.4.10. Emitters

Emitters are an innovative concept introduced by Vassiliades and Mouret [4] in the context of

the MAP-Elites algorithm. They facilitate efficient exploration of the search space by leveraging

the elite hypervolume and interspecies correlations [4]. These emitters generate new candidate

solutions by sampling the search space and directing the search towards regions with higher

potential for improvement. By doing so, they enhance the overall performance of the algorithm

[4].

2.4.10.1. Introduction to the concept of Emitters

A key component of emitters is directional variation operators, which allow them to produce new

candidate solutions by perturbing existing ones in the search space [4]. These operators enable

the search process to be guided in specific directions, leading to a more targeted exploration and

exploitation of the search space. In their work, Vassiliades and Mouret [4] proposed three types

of directional variation operators, namely Iso, LineDD, and Iso+LineDD.

26

2.4.10.2. Directional Variation Operators

The Iso emitter is the most straightforward of the three proposed operators. It works by applying

an isotropic Gaussian distribution to collect new candidate solutions around a single genotype,

ignoring the second elite. MAP-Elites algorithm [4] employs this operator to ensure that the

search process keeps its attention on a particular direction for efficient exploration of the search

space and facilitating the discovery of high-performing solutions.

The LineDD (Distance-Dependent Line Variance) emitter builds on the Iso emitter by

leveraging correlation among two elites to sample a new candidate solution near the first

genotype, limited to the line connecting both elites [4]. As a result, by considering multiple

directions, the LineDD emitters can more efficiently identify regions of the search space that

contain elite solutions and provide a more comprehensive exploration.

The third emitter called Iso+LineDD is a combination of the Iso and LineDD operators,

combining their individual advantages. It produces a new candidate solution from two-parent

elites by sampling near the first elite using an isotropic Gaussian distribution, while biasing the

search towards the direction of correlation of the second elite [4]. This strategy takes into account

the correlation between the two elites, allowing for a more targeted exploration of the search

space and the discovery of solutions with higher performance.

To implement the Iso+LineDD emitter, first, the emitter selects two elite genotypes 𝑥𝑖 and 𝑥𝑗

uniformly from the container. Then, it generates a new genotype 𝑥𝑖
′ by calculating the result of

the variation formula as follows [4]:

𝑥𝑖
′ = 𝑥𝑖 + 𝜎1 ⋅ 𝑁(0,1) + 𝜎2 ⋅ (𝑥𝑗 − 𝑥𝑖) ⋅ 𝑁(0,1)

This operator's direction is considered positive (𝑥𝑗 − 𝑥𝑖), but a negative direction (𝑥𝑖 − 𝑥𝑗) could

also be used to investigate various regions of the search space [4].

Figure 2.16 Iso, LineDD & Iso+LineDD emitters' approaches, retrieved from [4]

27

Figure 2.16 illustrates the three emitters' approaches to biasing the mutation of an elite p1 in the

direction of correlation with another elite p2 [4]:

A. Approach A, as shown in the figure, involves the Iso emitter sampling from an isotropic

Gaussian distribution that is centered at p1. This approach disregards any correlations

between the two points.

B. Approach B on the other hand, demonstrates the LineDD emitter sampling along the

correlation direction between p1 and p2 with a variance that depends on the distance. This

approach concentrates on exploring the search space in a more focused manner, but it

does not investigate all directions surrounding p1.

C. Regarding the approach denoted as C in the figure, it demonstrates the utilization of

Iso+LineDD emitter, that samples from a multivariate Gaussian distribution with p1 as

the center and p2 as the direction vector. This approach now enables the algorithm to

explore the search space surrounding p1 while also exploiting the correlations between

p1 and p2, thereby leading to a more successful search process.

28

Chapter 3
 Methodology

3.1. PROBLEM FORMULATION .. 28

3.2. PROPOSED CLUSTERING-BASED EMITTER ... 29

3.3. JAX AND QDJAX LIBRARY .. 31

3.4. K-MEANS FOR JAX IMPLEMENTATION ... 31

3.5. IMPLEMENTATION ... 34

3.6. EXPERIMENTAL SETUP .. 44

3.1. Problem Formulation

As mentioned in chapter 2, QD algorithms have gained significant attention in recent years as a

powerful approach for exploring and optimizing complex and high-dimensional search spaces.

Instead of focusing on finding a single optimal solution, QD algorithms aim to discover a diverse

set of high-performing solutions, providing valuable insights into the potential behaviors of a

system across a wide range of characteristics [3]. A key component of QD algorithms is the

emitter, which is responsible for generating new solutions by guiding both the exploration and

the optimization, and ultimately shaping the algorithm's ability to effectively navigate the search

space [4].

A major challenge faced by QD optimization algorithms, such as MAP-Elites, is exploring and

optimizing regions within the search space that exhibit complex geometries, non-linear

relationships between variables, and complex structures [5]. Traditional QD algorithms, such as

MAP-Elites, rely on user-defined bounds and grids in the behavior space to guide exploration

and optimization [5]. While this approach can be effective in certain scenarios, it may fail to

capture the underlying structure of more complex search spaces, resulting in inefficient

exploration and exploitation [5].

To address this issue, there is a growing interest in developing more adaptive algorithms that can

better understand and leverage the structure of the search space, ultimately leading to improved

exploration and optimization efficiency. In this study, we propose a novel method for enhancing

the exploration and optimization capabilities of QD algorithms by modifying the Iso+LineDD

emitter. We have chosen to modify the Iso+LineDD emitter in particular, as it is designed to

handle challenging search spaces, making it well-suited for the task of improving exploration

and optimization in complex domains [4]. Our approach involved incorporating clustering

techniques, such as K-Means, for a more targeted search process.

29

The primary goal of our proposed clustering-based emitter is to enable the QD optimization

algorithm to better adapt to the complex geometries of complex search spaces. By employing

clustering techniques to identify more promising areas of the archive, where clusters of similar

solutions are found, our proposed emitter aims to discover a diverse set of high-performing

solutions potentially overlooked by other approaches.

In this research, we use the QD optimization framework and the Iso+LineDD emitter to

investigate the challenges of complex search spaces further. By using the K-Means clustering

algorithm, our focus is to incorporate clustering techniques into the emitter’s selection process.

By doing so, our aim is to improve the exploration and exploitation capabilities of the QD

optimization algorithm, facilitating the discovery of high-performing solutions and providing a

more comprehensive understanding of a system's potential behaviors.

As we proceed with our discussion in this chapter, we will provide a detailed overview of our

proposed clustering-based emitter and describe its algorithm implementation within the QD

optimization framework. We will also discuss the experimental setup, performance evaluation,

and comparison of our clustering-based emitter to other existing emitters, including the

Iso+LineDD emitter. Through this analysis, we aim to demonstrate the advantages of

incorporating clustering techniques into the emitter in order to effectively address the challenges

posed by complex search spaces.

3.2. Proposed Clustering-Based Emitter

In this section, we introduce our proposed clustering-based emitter, which aims to enhance the

exploration and exploitation capabilities of the QD optimization framework. This new emitter

builds upon the principles of the Iso+LineDD emitter and employs clustering techniques for a

more efficient and targeted search in the solution space.

The primary objective of our clustering-based emitter is to enable the QD optimization algorithm

to better adapt to the tricky search spaces characterized by complex geometries. By leveraging

clustering techniques, our proposed emitter seeks to explore and exploit the search space more

efficiently, leading to the discovery of a diverse set of high-performing solutions that may not

have been identified previously by other similar approaches.

In this thesis, our primary focus is on the implementation and testing of the clustering-based

emitter utilizing the K-Means clustering algorithm. It is worth noting that our original plan was

to start with K-Means clustering and then, depending on the outcomes, optimize the clustering

algorithm or potentially employ alternative clustering techniques such as Hierarchical clustering.

30

Unfortunately, we encountered unexpected challenges during the setup of our experiments,

which resulted in a substantial loss of time. To maintain adherence to our project deadlines, we

strategically decided to concentrate solely on K-Means clustering. With these experiences and

findings in hand, we are able to see many potential opportunities for future research to investigate

the applicability of other clustering algorithms as well.

The clustering-based emitter operates by integrating clustering techniques into the generation

process of offspring solutions while retaining the same offspring generation formula as the

Iso+LineDD emitter. The key distinction lies in the method of selecting elites used to produce

offspring solutions. Instead of randomly selecting two elites from the archive, as the Iso+LineDD

emitter does, our approach aims to incorporate clustering within the non-empty solutions of the

archive at each generation before the selection.

Specifically, in our proposed approach, we introduce a two-step process for selecting elites to

generate offspring solutions. The first step involves uniformly sampling a small number of elites

from the archive, which will serve as the foundation for generating new offspring. These elites

are chosen randomly to maintain the algorithm's diversity and will later be perturbed towards the

direction of correlation of other elites identified through the K-Means clustering process in each

iteration.

The second step involves applying K-Means clustering to the archive, generating clusters of elites

that illustrate similar features. This enhancement to the Iso+LineDD emitter’s implementation is

hoped to allow for more effective guidance in generating new diverse solutions. Instead of

creating offspring solutions that go in random directions, we focus on perturbing the selected

elites towards the direction of correlation of other elites located closer to the cluster centers,

where high-performing elites of the elite hypervolume are more likely to be concentrated [4]. It

is hoped that these cluster centers can better represent the features characterizing the elites within

the selected clusters. Thus, by employing this modification, we aim to use these elites to generate

offspring solutions with better diversity and higher fitness levels.

We evaluate two distinct strategies for perturbing towards the direction of correlation of the

baseline elites selected in Step 1. The first strategy focuses on utilizing intra-cluster members for

the variation process, specifically the elites closest to the cluster centers, as these solutions are

the most representative of each cluster's characteristics and performance. The second strategy

involves using the cluster centroids as the target for perturbation. These centroids represent the

average position of the elites within each cluster, capturing the central tendencies of the grouped

solutions and their characteristics [26].

31

By incorporating either of these strategies, we anticipate enhancing the algorithm's performance

metrics, leading to improved exploration and exploitation capabilities in the search space. Our

approach targeted to provide a more effective method for navigating complex problem domains

and discovering diverse, high-performing solutions.

3.3. JAX and QDJAX Library

In today's world, due to the rapid growth of areas such as Artificial Intelligence and Machine

Learning, there is an unprecedented need for hardware acceleration [30]. This need arises from

the necessity to manage and process the vast amounts of data used in tasks within this field [30].

During the investigation of techniques to improve the performance of the used hardware, it was

discovered that GPUs offered a significant improvement in performance, especially when

compared to CPU. This discovery has led to the development of machine learning frameworks

like JAX, which take advantage of GPUs and other hardware to improve their performance,

further accelerating progress in the fields of machine and deep learning [30].

The QDJAX library is a specialized implementation of QD algorithms within the JAX

framework. The aim of the library is to facilitate the exploration of the potential benefits of

specialized hardware in the field of Quality Diversity by researchers. It is an experimental tool

for investigating novel ideas, offering the flexibility to be easily modified based on the goals of

the experiment at hand. It is currently being supervised by the CYENS Research Center of

Excellence - Learning Agents and Robots (LEAR) MRG.

The proposed new clustering-based emitter leverages the capabilities of the QDJAX library,

which is built on the JAX framework. This library supports a variety of QD emitters, making it

a versatile tool for conducting experiments. The library is also used to evaluate the performance

of the proposed emitters with common test functions in optimization and machine learning.

3.4. K-Means for JAX Implementation

This section provides a more comprehensive explanation of the JAX-based K-Means

implementation utilized in the emitter, as discussed in Section 3.2. With the goal of fulfilling the

specific requirements of this study, this K-Means implementation for JAX has been adapted from

an existing GitHub repository (https://github.com/creinders/ClusteringAlgorithmsFromScratch).

The algorithm’s implementation is divided into three main classes: BaseAlgorithm,

KMeansBase¸ KMeansJax. For reference and more details, refer to Appendix A.1 which

includes the complete implementation.

https://github.com/creinders/ClusteringAlgorithmsFromScratch

32

The BaseAlgorithm class lays the groundwork for further algorithm implementations. It includes

two main attributes: verbose, which is a Boolean flag that controls the display of progress

information during algorithm execution; callback, which is an optional callback function invoked

at certain points throughout the optimization process.

The KMeansBase class, derived from the BaseAlgorithm class, sets the foundation for K-Means

clustering algorithms. It introduces new attributes specific to K-Means: n_clusters representing

the number of clusters to create, max_iter indicating the maximum number of iterations to

perform, early_stop_threshold serving as a threshold for early stopping when the change in

centroids falls below this value, and rng as a random number generator utilized for initializing

centroids.

Additionally, this class implements methods like init_clusters, which initializes centroids by

randomly selecting data points; prepare, which reads input data and initializes centroids; and fit,

which applies the K-Means algorithm to input data, returning centroids and cluster assignments.

The _main_loop method, responsible for defining the main loop of the K-Means algorithm, is

left to be implemented by subclasses.

The KMeansJax class inherits from KMeansBase and offers a JAX-based K-Means clustering

algorithm. The method init_clusters has been adapted to override the original, with the aim to

allow centroid initialization either randomly or by accepting them as parameters. This change

enables faster convergence and increased control over initial centroids in our implementation.

Furthermore, the fit method is overridden to accept the initial centers as optional parameters.

In essence, two main modifications were made to the original K-Means implementation. Firstly,

a method named closest_points_to_center was added to the KMeansJax class, that calculates

the closest points from a specific cluster center after applying the K-Means algorithm to the data.

This method uses specific terms, which are explained as follows:

1. Mask: A mask is essentially a binary array that functions to filter or select particular

elements from another given array (in this scenario data points), and it does so based on

certain conditions, where if an element meets the condition, it receives a value of 1.

Otherwise, it receives a value of 0.

2. Large value mask: To prevent specific data points from having a significant impact on

later calculations within the input array of data points, it was necessary to create a large

value mask and assign those particular elements with higher numerical values to eliminate

33

any influence from external points beyond the given cluster i.

3. Masked data points: Masked data points are the result of applying a mask to an array of

data points. In this case, masked data points are obtained by adding the values of the input

data array X and the large value mask L for each corresponding cell, effectively removing

the influence of points outside cluster i on the distance calculations.

The algorithm for determining the closest points to a cluster center is as follows:

Figure 3.1 Pseudocode of the method that returns the k closest points of the specified cluster center

The procedure starts by creating a mask, M, which identifies data points belonging to the

specified cluster i. Subsequently, a large value mask, L, is created, assigning a large value to

points outside cluster i to eliminate their influence when calculating the closest points. The

masked data points, Y, are then computed by adding the values of both the input data array X and

the large value mask L for each corresponding cell. Next, the squared Euclidean distance, D,

between the masked data points Y and the centroid Ci of the specified cluster i is calculated. The

distance is computed as the sum of the squared differences between each data point yj and the

corresponding centroid coordinate cij for all j from 1 to n. Once D is obtained, it is sorted in

ascending order, and the indices I of the sorted array are extracted. The procedure then returns

the top k closest data points the specified cluster i from the input array X.

The second modification in the K-Means implementation, as mentioned before, involves

34

adapting the algorithm to support the initialization of cluster centers either randomly or by

passing them as parameters. In the context of the emitter, the K-Means algorithm is called

multiple times. During the first iteration, the centers are initialized randomly. However, for

subsequent iterations, the initial centers are set to the returned centers of the previous iterations.

In section 3.5, an in-depth analysis of the introduction of clustering techniques to the selection

process of the emitter is discussed. For now, it should be noted that our aim behind this approach

is to accelerate the process by utilizing the knowledge gained from previous iterations and

incrementally finding the optimal clusters in the input data with fewer maximum iterations.

Consequently, the algorithm converges faster, reducing the computational overhead and

enhancing the execution time performance of the emitter.

3.5. Implementation

3.5.1. Implementation of Iso+LineDD Emitter on QDJAX

This section dives deeper into the implementation of the Iso+LineDD emitter within the QDJAX

library, highlighting its integration within the framework and the various components involved.

The complete implementation of the emitter can be found in Appendix A.2.

The algorithm of the Iso+LineDD emitter consists of the following steps:

Figure 3.2 Pseudocode of the Iso+LineDD Emitter

The QDJAX implementation of the emitter consists of three distinct classes within the module:

EmitterParams, EmitterState, and IsoLineEmitter. These classes serve various purposes,

such as defining the parameters and states used by the emitter and implementing the core

functionality of the emitter:

35

1. The EmitterParams class defines the parameters used by the algorithm and allows for

manual modification outside the emitter. This class includes the initial solution vector x0,

isotropic variance iso_sigma, directional variance line_sigma, and the lower and upper

bounds of the search space.

2. The EmitterState class defines the state of the emitter that should exclusively be used

and modified by the emitter itself. In the case of the Iso+LineDD emitter, this class is left

empty as there is no need for specific state information.

3. The IsoLineEmitter class serves as the primary class that implements the Iso+LineDD

emitter. It inherits from the EmitterBase class and overrides necessary methods to deliver

the specialized functionality of the emitter. The ask and tell methods are the key functions

driving the emitter's behavior.

The ask method is in charge of generating new solutions according to the outlined algorithm. It

begins with the selection of two elite solutions from the archive, xi and xj. Subsequently, it

generates new offspring by perturbing xi as per the provided formula. The new solutions are

clipped to ensure they stay within the specified bounds of the search space.

The tell method is used to update the archive with newly generated solutions, their fitness values,

and behavioral descriptors. The function updates the archive with the help of the add_to_archive

function.

To initialize the Iso+LineDD emitter, the init method is invoked with the appropriate random

number generator key. This method sets the default EmitterParams and EmitterState values for

the emitter instance.

The following sections detail the modifications made to the emitter's selection process and the

different stages that are followed to accomplish the intended functionality.

3.5.2. Adapting Iso+LineDD Emitter through Reduced Batch Sampling

In this section, we introduce the first modification to the Iso+LineDD emitter as an intermediate

step for incorporating clustering techniques in future work. This modification is focused on

changing the selection process of elites during offspring generation to optimize the integration

with clustering, which is better explained in the following section.

The original Iso+LineDD emitter uniformly samples two elites from the solution space for each

offspring generation. In the QDJAX library, two sets of elites, B1 and B2, are randomly selected

from the solution space. Both sets contain an equal number of elites. For each offspring, an elite

from B1 and another from B2 are chosen to undergo the variation process.

36

In the modified implementation, the sampling method for the B1 set of elites was adjusted.

Instead of selecting an equal number of elites as in B2, the emitter now targets a smaller number

of elites to include in B1. Consequently, the elites in B1 will be used for generating multiple

offspring solutions, unlike in the original implementation where each elite is used only once. The

motivation behind this modification is to maintain diversity in elite selection while targeting

more promising regions in the solution space in the next step. When K-Means clustering was

introduced later, this approach was expected to generate diverse, high-fitness solutions, as the

offspring solutions would be better characterized by the traits of the elites sampled through the

K-Means clustering. The decision behind the selection of different batch sizes of elites for B1,

was implemented to allow more flexibility in experimentation with different B1 batch sizes,

which can help to determine the optimal size for guiding the emitter in exploring more effectively

the promising regions.

Figure 3.3 Pseudocode of the adaptation on the original Iso+LineDD Emitter implementation through

reduced batch sampling for future clustering integration in the selection process

By reducing the batch size of B1, we establish a foundation for integrating clustering techniques

with better results in future work. In particular, with this first modification we expect that the

integration of K-Means clustering will have a greater effect on the generated solutions in each

iteration. Because the batch size of B1 is smaller, the same elites from B1 will be allowed to

inherit traits from different clusters represented by the elites in B2. In essence, this approach aims

to maintain diversity in the offspring generation, while focusing more on the promising regions

in the solution space, as represented by the clusters. By combining these traits from the same B1

elites with different B2 elites, it is hoped that the offspring solutions will better represent the

37

characteristics of the clusters created by the clustering algorithm, which can potentially lead to a

more efficient exploration of the search space and improved performance of the Iso+LineDD

emitter. However, this approach is anticipated to yield worse results than the original IsoLineDD

emitter in this stage as the clustering technique has not yet been introduced to the selection

process.

In our implementation, we introduce the get_rand_elites_for_reduced_batch method to

generate a batch of elite solutions from the archive by randomly selecting a specified number of

elite solutions (num_of_rand_elites) and repeating each solution to fill the batch_size. The ask

method incorporates changes in the selection process, while the tell method is updated to insert

entries into the archive. This follows the same structure as the original implementation.

The full implementation of this modified emitter and the new method can be found in Appendix

A.3. This modification serves as a preparatory step towards exploring more advanced techniques,

such as clustering, to further enhance the performance of the Iso+LineDD emitter.

3.5.3. Enhancing Emitter Selection Process through K-Means Clustering Integration

In this section, we explore the integration of K-Means clustering into the selection process of the

elites forming the second batch, B2. Building upon the modifications introduced in Section 3.5.2,

which reduced the number of selected elites in batch B1, our primary goal is to refine the emitter's

selection process for more effective exploration of promising regions in the solution space,

resulting in diverse offspring solutions with high-fitness values.

An overview of the clustering-based adjustment to the selection procedure, utilizing the K-Means

implementation on JAX (as discussed in Section 3.4), is provided in this section. Then, in

subsections 3.5.3.1 and 3.5.3.2, respectively, detailed explanations of the two different strategies

of this implementation are provided. It is important to emphasize that the only difference between

these two versions lies in the selection process of the elites that form batch B2; all other aspects

of the implementation still follow the same principles of the Iso+LineDD emitter.

Both versions employ unique strategies for perturbing the direction of the baseline elites selected

in batch B1, while following the principles of the original Iso+LineDD emitter, including the

variation process and formula. Contrary to the random selection of non-empty solutions from the

archive, our approach groups the elites of the archive into clusters based on their similarity before

the emitter's selection process starts. The number of clusters is determined by a predefined

parameter. Once clustering is complete, the emitter selects a specific number of intra-cluster

members from each cluster to form the batch B2.

38

The two versions of the implementation differ in their methods of choosing these cluster

members: one selects elites closest to the cluster centers, while the other samples directly the

centroids of the clusters. The rationale for both implementations is to guide the emitter's selection

process towards regions in the solution space more likely to yield candidate solutions exhibiting

higher fitness and diversity. By focusing on elites near the cluster centers, we expect these

solutions to better represent the elites within each cluster, owing to their distinct features and

representation of various regions of the solution space.

Subsection 3.5.3.1 provides an in-depth analysis of the first strategy that focuses on the elites

closest to the cluster centers and perturbs them based on the Iso+LineDD variation process.

Subsection 3.5.3.2 examines the implementation that uses centroids as the target for perturbation,

also following the Iso+LineDD variation formula.

As discussed in Section 3.2, the clustering-based emitter seeks to enhance the exploration and

exploitation capabilities of the QD optimization framework through the incorporation of

clustering techniques in the selection process of the emitter. By implementing either strategy

outlined in subsections 3.5.3.1 and 3.5.3.2, we anticipate improved algorithm performance

metrics, leading to a more efficient approach for navigating complex problem domains and

uncovering diverse, high-performing solutions.

3.5.3.1. Strategy 1: Perturbation Towards Elites Closest to Cluster Centers

This strategy aims to enhance the Iso+LineDD emitter selection process by incorporating K-

Means clustering, which guides the perturbation of baseline elites (from batch B1) towards the

elites nearest to the cluster centers. This updated emitter is based on the modified Iso+LineDD

emitter presented in Section 3.5.2, which maintains reduced batch sampling for B1 to preserve

diversity while focusing on more promising regions of the solution space. The full

implementation of Strategy 1 can be found in Appendix A.4.

39

The high-level pseudocode of the modified emitter offers a clear illustration of the differences

mentioned in this section, between this version and the previous one:

Figure 3.4 Pseudocode of the adaptation on the modified Iso+LineDD Emitter implementation

mentioned in section 3.5.2 with K-Means clustering integration in the selection process and the usage of

the elites closer to the cluster centers

The main objective of integrating K-Means clustering into the selection process is to identify

promising regions in the solution space, thus generating diverse offspring solutions with high-

fitness values. To achieve this, we apply K-Means clustering to the non-empty solutions in the

archive before choosing elites for batch B2. This step involves clustering the elites based on their

similarities, with the number of clusters determined by a predefined parameter. Once the

clustering process is complete, we select a specific number of intra-cluster members from each

cluster to form batch B2, by targeting the elites that are nearest to the cluster centers.

By choosing elites close to the cluster centers, we expect these solutions to better represent the

elites within each cluster due to their distinct features and coverage of various regions in the

solution space. Consequently, this strategy aims to guide the emitter's selection process towards

regions with a higher likelihood of producing candidate solutions exhibiting increased fitness

and diversity.

To implement the first strategy, we modified the Iso+LineDD emitter and developed a new

method to select the elites closest to each cluster center, forming batch B2. One of the main

changes is the usage of EmitterState class to store and initialize cluster centers for the K-Means

clustering algorithm. The EmitterState is a data class that holds information about the emitter's

state, which should not be modified by the user. In this case, it stores the cluster centers from the

40

previous iterations. The EmitterState is initialized with an array of zeros for the cluster centers,

which will be updated during the ask method.

The initialization of the required parameters, such as archive, x0, iso_sigma, line_sigma,

batch_size, num_of_clusters, and num_elites_to_repeat, takes place in the

IsoLineKmeansVariationEmitter class. In addition to this, the EmitterState class is also

initialized through the init method, which assigns to the variable of the class an initial array

consisting of only zeroes to serve as the cluster centers. The verification of the presence of

exclusively zero values in the centers array of the EmitterState class is performed within the ask

method of the emitter. This check is crucial to determine whether the K-Means clustering

instance's centers in the present iteration need to be randomly initialized or if they should be

assigned to the values of the final centers from the previous iteration.

The modified Iso+LineDD emitter now includes an additional step in the ask function that tries

to enhance the selection process by performing K-Means clustering and selecting the nearest

elites to the cluster centers to form batch B2. This crucial step is executed by invoking the

get_closest_elites_kmeans method in the ask method. This method returns the selected elites for

batch B2 which are subsequently employed to guide the perturbation of the baseline elites from

batch B1. After obtaining the selected elites and the new cluster centers from the

_archive.get_closest_elites_kmeans method, the method updates the EmitterState with the

new centers. The updated EmitterState is then used in the next iteration of the ask method to

guide the K-Means clustering process faster.

41

Figure 3.5 Pseudocode of the method that is utilized to return the closest elites to each cluster center

from the archive to the ask function of the emitter

Regarding specifically the get_closest_elites_kmeans method that is implemented within the

archive class of the library, it works by calling the static _get_closest_elites_kmeans method,

which begins by reshaping the objective values in the archive state into a 2D fitness grid and

identifying the indices of non-empty cells. K-Means clustering is subsequently applied to non-

empty solutions of the archive, initializing the cluster centers randomly if init_centers is None or

using the provided initial centers. Once the clustering process is complete, the method calculates

the number of elites to select from each cluster based on the batch size and the number of clusters.

It then chooses the nearest elites to each cluster center using the closest_points_to_center

function from the K-Means implementation. In the final step, the method concatenates the

selected elites to form batch B2 and returns it, along with the cluster centers.

42

3.5.3.2. Strategy 2: Perturbation Towards Cluster Centroids

Strategy 2 focuses on perturbing solutions towards the direction of correlation of the centroids

of clusters instead of selecting the closest elites from each cluster center, as in Strategy 1. The

centroids are not necessarily actual solutions in the archive; however, they represent the average

behavior within each cluster and can potentially guide the search in the behavior space more

effectively. This section presents a detailed explanation of Strategy 2, its method,

implementation, and how it differs from Strategy 1.

Figure 3.6 Pseudocode of the method that is utilized to return the centroid to each cluster center from

the archive to the ask function of the emitter

The method used for Strategy 2 involves K-means clustering to obtain centroids as elites. The

GetCentroidElitesKmeans procedure is responsible for generating a batch of elites B2

consisting of centroids from selected clusters. In the implementation, the corresponding method

get_centroid_elites_kmeans calls the static _get_centroid_elites_kmeans, which starts by

finding the indices of non-empty cells in the archive. Similar to Strategy 1, it begins by reshaping

the objective values in the archive state into a 2D fitness grid and identifying the indices of non-

empty cells, extracting the corresponding elites. K-means clustering is then performed on these

elites, providing cluster centers C and assignments P. An empty batch B is initialized to contain

the selected elites.

43

Depending on the number of elites Ne and clusters Nc, the method determines how many times

each centroid should be repeated in the final batch B, in order to fill the batch size. If the number

of elites to be returned Ne is less than the number of clusters Nc, then the method uniformly

samples Ne clusters from C and appends the centroid of each selected cluster to B. Otherwise,

each centroid is repeated nc times, where nc is the result of dividing Ne by Nc. Then the remaining

nr centroids are appended to batch B. Finally, the batch containing the selected elites is returned,

along with the cluster centers.

The steps of the modified Iso+LineDD Emitter using Strategy 2 are listed in Figure 3.7. The main

difference between Strategy 2 and Strategy 1 lies in the selection of elites for the second parent

batch B2. Instead of selecting the closest elites to the cluster centers, we directly use the centroids

themselves.

Figure 3.7 Pseudocode of the adaptation on the modified Iso+LineDD Emitter implementation

mentioned in section 3.5.2 with K-Means clustering integration in the selection process and the usage of

the centroids the clusters

In the modified Iso+LineDD Emitter, we first sample a batch of Ne elites uniformly from the

archive to form the first parent batch B1. Next, we call GetCentroidElitesKmeans to obtain the

centroids of the selected clusters. These centroids are used as the second parent batch B2. The

rest of the procedure remains the same as in Strategy 1, where we generate offspring by

perturbing the first parent according to the formula in line 9.

The full implementation of Strategy 2 can be found in Appendix A.5. Note that the

implementation details may differ from the pseudocode for readability purposes.

44

In conclusion, Strategy 2 uses cluster centroids as the reference points for generating offspring

solutions through perturbation, providing an alternative approach to Strategy 1, which selects the

closest elites to the cluster centers.

3.6. Experimental Setup

This section outlines the experimental setup employed to assess the proposed strategies for

improving emitter selection through the integration of K-Means clustering. We provide details

on the problem domains chosen for the experiments, namely the Arm Repertoire and the

Rastrigin Function. These problem domains are selected due to their complexity and diverse

solution spaces, which allow for a comprehensive evaluation of the exploration and exploitation

capabilities of the modified Iso+LineDD Emitter with the proposed clustering-based strategies.

All experiments are conducted using MAP-Elites' Grid Archive.

3.6.1. Problem domains

Two distinct problem domains are selected for the experiments: the Robotic Arm Repertoire and

the Rastrigin Function. Both domains were implemented in the QDJAX library, together with

their respective objective and behavioral description functions and gradients. It is important to

note that these objective functions determine the goals of optimization problems by quantifying

the quality of solutions. Behavioral descriptor functions, on the other hand, describe the features

of solutions, enabling comparisons and categorization based on their characteristics.

The implementations can be found in the problem_definitions.py and qd_functions.py files.

For the experiments conducted in this thesis, their normalized version is used.

3.6.1.1. N-Dimensional Robotic Arm Repertoire

The first problem we address is the control of a simulated N-Degree-of-Freedom (N-DoF) robotic

arm. The objective function of the problem aims to minimize the joint angles' variance, while the

behavioral descriptor function represents the end-effector positions (x, y) of the robotic arm. The

overall goal of this task is to discover how to access all reachable points by the arm while

minimizing the variance between the different angles applied in each of its DoF. The optimal

joint angles should be as close to each other as possible, resulting in a smooth curve for the arm's

final position. We set N to be 2, 10, and 100 for the experiments.

The implementation of the problem can be found in the get_norm_arm_info function in

problem_definitions.py and the corresponding functions norm_arm_fit and norm_arm_beh

in qd_functions.py.

45

3.6.1.2. N-Dimensional Rastrigin Function

The second problem domain is the N-Dimensional Normalized Rastrigin Function, known for its

numerous local minima. By using the Rastrigin Function, the experiment aims to tackle a general

optimization problem with a multimodal landscape, posing a different set of challenges for the

proposed algorithms. For the purposes of the experiments conducted, N is set to be 2, 10, and

100.

The implementation of the problem can be found in the get_norm_rastrigin_info function in

problem_definitions.py and the corresponding functions norm_rastrigin_fit and

norm_rastrigin_beh in qd_functions.py.

3.6.2. Experimental Scenarios

To assess the performance of the proposed strategies for enhancing emitter selection through the

integration of K-Means clustering, we designed several experimental scenarios. These scenarios

encompass various configurations and combinations of the two problem domains, the N-

Dimensional Robotic Arm Repertoire and the N-Dimensional Rastrigin Function, and the two

strategies, Perturbation Towards Elites Closest to Cluster Centers (Strategy 1) and Perturbation

Towards Cluster Centroids (Strategy 2), as well as the modified version without clustering that

was used as an intermediate step towards our final goal.

The following hyperparameters were used for all scenarios:

• Isotropic variance σ1: 0.02

• Directional variance σ2: 0.2

• Batch size for batch B2: 27

• Number of clusters: 22, 24, 26,28

• Repetitions: 10

• Evaluations: 106

The scenarios 1 and 2 are organized into two primary categories, distinguished by grid size:

Scenarios featuring a 100x100 grid size, and those utilizing a 400x400 grid size. These scenarios

address 2D problem domains, with a focus on assessing the impact of changing the number of

clusters and elites for each set of elites in batch B1. Within each category, the performance of

the emitters are evaluated based on exploration and exploitation capabilities, allowing for

comparisons across diverse configurations of problem domains, strategies, and hyperparameters.

46

3.6.2.1. Scenarios 1 - 2 with 100x100 Grid Size for 2-D problem domains

For each of the following scenarios, the respective problem is addressed using the different

emitters and a grid size of 100x100, while varying the number of elites in batch B1 and examining

the impact of the number of clusters on emitter performance.

Scenario 1A: 2-D Robotic Arm with 22 Elites

Scenario 1B: 2-D Robotic Arm with 24 Elites

Scenario 1C: 2-D Robotic Arm with 26 Elites

Scenario 2A: 2-D Rastrigin Function with 22 Elites

Scenario 2B: 2-D Rastrigin Function with 24 Elites

Scenario 2C: 2-D Rastrigin Function with 26 Elites

3.6.2.2. Scenarios 3 - 4 with 400x400 Grid Size for 2-D problem domains

For each of the scenarios that follow, the problem is handled utilizing different emitters and a

grid size of 400x400, while modifying the number of elites in batch B1 and investigating the

impact of cluster size on emitter performance.

Scenario 3A: 2-D Robotic Arm with 22 Elites

Scenario 3B: 2-D Robotic Arm with 24 Elites

Scenario 3C: 2-D Robotic Arm with 26 Elites

Scenario 4A: 2-D Rastrigin Function with 22 Elites

Scenario 4B: 2-D Rastrigin Function with 24 Elites

Scenario 4C: 2-D Rastrigin Function with 26 Elites

3.6.2.3. Additional Scenarios: Higher-Dimensional Problems

To further evaluate the performance of the proposed strategies, we apply the different emitters to

higher-dimensional problems. The N-Dimensional Robotic Arm and N-Dimensional Rastrigin

Function problems are addressed with N set to 10 and 100. These scenarios provide insights into

the scalability of the strategies and their ability to handle more complex problem domains.

In each of these higher-dimensional scenarios, all four emitters (Iso+LineDD, Modified

Iso+LineDD without K-Means Clustering, Strategy 1, and Strategy 2) are compared, with a focus

on the impact of changing the number of clusters and elites in higher-dimensional problems. The

performance of the emitters are assessed in terms of exploration and exploitation capabilities,

enabling us to compare the results across different configurations and hyperparameter settings in

higher-dimensional problem domains. Note that the experiments in this section are performed on

MAP-Elites Grid Archive with dimensions 100x100. Initially, our objective was to also test the

emitters with a larger grid size 400x400 as in 2-D problem domains. However, these experiments

47

require significant time to execute, and running them for multiple repetitions will exceed the

deadline of this paper.

By investigating a wide range of experimental scenarios with different problem domains,

strategies, and hyperparameter settings, we aim to provide a comprehensive evaluation of the

proposed strategies for enhancing emitter selection through the integration of K-Means clustering

with the MAP-Elites Grid Archive.

For each of the following scenarios, the respective problem is addressed using the different

emitters and varying the number of elites in batch B1, examining the impact of the number of

clusters on emitter performance in higher-dimensional problem domains.

Scenarios 5 – 6 with 10-Dimensional Problems:

Scenario 5A: 10-D Robotic Arm with 22 Elites

Scenario 5B: 10-D Robotic Arm with 24 Elites

Scenario 5C: 10-D Robotic Arm with 26 Elites

Scenario 6A: 10-D Rastrigin Function with 22 Elites

Scenario 6B: 10-D Rastrigin Function with 24 Elites

Scenario 6C: 10-D Rastrigin Function with 26 Elites

Scenarios 7 – 8 with 100-Dimensional Problems:

Scenario 7A: 100-D Robotic Arm with 22 Elites

Scenario 7B: 100-D Robotic Arm with 24 Elites

Scenario 7C: 100-D Robotic Arm with 26 Elites

Scenario 8A: 100-D Rastrigin Function with 22 Elites

Scenario 8B: 100-D Rastrigin Function with 24 Elites

Scenario 8C: 100-D Rastrigin Function with 26 Elites

3.6.3. Key Metrics for Evaluating Performance

To evaluate and compare the performance of the proposed strategies, we use several performance

metrics, including:

1. Coverage: The percentage of cells in the behavior space that have been explored, giving a

measure of the exploration capability of the algorithm [37].

2. Max fitness: The highest fitness value found in any cell of the archive, indicating the best

solution found by the algorithm [37].

3. Mean fitness: The average fitness value of the solutions in the archive, providing an

indication of the algorithm's exploitation capability.

48

4. QD score: A quality diversity measure that sums the finesses of all solutions in the archive,

taking into consideration both the quality and the diversity of the algorithm [37]. Two

algorithms may produce archives with equal QD Scores, but one may have different

Coverage or Max Fitness score from the other [37].

In the plots, the color of the emitter lines is determined by the performance of the QD score. The

emitter with the highest score is assigned the color blue, the second highest gets orange, the third

highest is given green, and the fourth highest is represented by red. To visualize the metrics, each

plot provides an overview of the emitter's performance across all repetitions. Instead of showing

separate lines for each repetition, the plot processes the data across all repetitions and displays

the aggregated results for each emitter. In particular, the median, q25 (25th percentile), and q75

(75th percentile) values are calculated for each metric and each emitter by considering all the

repetitions. With these values, each plot is able to show the central tendency as well as the spread

of the performance data for each emitter, while also taking into account all the repetitions.

By employing these performance metrics, we can obtain a comprehensive evaluation of the

proposed strategies' effectiveness in enhancing emitter selection through the integration of K-

Means clustering with the MAP-Elites Grid Archive.

49

Chapter 4
 Experimental Results and Discussion

4.1. INTRODUCTION ... 49

4.2. RESULTS FOR 2-DIMENSIONAL PROBLEM DOMAINS .. 49

4.3. RESULTS FOR HIGHER-DIMENSIONAL PROBLEM DOMAINS ... 78

4.4. MAIN FINDINGS ... 105

4.1. Introduction

This chapter is structured to first present the results for 2-dimensional problem domains in

Section 4.2, specifically addressing Scenarios 1 - 4 with grid sizes of 100x100 and 400x400.

Following that, Section 4.3 discusses the results obtained for higher-dimensional problem

domains, covering Scenarios 5 - 8, which involve 10-dimensional and 100-dimensional

problems. Finally, Section 4.4 concludes the chapter by listing the main findings of our research,

summarizing everything that we have learned.

4.2. Results for 2-Dimensional Problem Domains

In this section, we present the experimental results for 2-dimensional problem domains,

specifically addressing Scenarios 1 - 4 with grid sizes of 100x100 and 400x400. The performance

of the proposed strategies, Perturbation Towards Elites Closest to Cluster Centers (Strategy 1)

and Perturbation Towards Cluster Centroids (Strategy 2), along with the Modified Iso+LineDD

without K-Means Clustering, is analyzed and compared against the baseline Iso+LineDD emitter.

The key performance metrics used for the evaluation include Coverage, Max Fitness, Mean

Fitness, and QD Score. As mentioned in the Methodology chapter, the emitter with the highest

QD score in each experiment is assigned the color blue, the second highest gets orange, the third

highest is given green, and the fourth highest is represented by red.

50

4.2.1. Scenario 1 with 100x100 Grid Size for 2-D Robotic Arm Problem

The first scenario, Scenario 1, refers to a two-dimensional Arm problem. The analysis focuses

on a problem domain that is characterized by a grid size of 100x100.

Beginning with Scenario 1A, it was shown that when utilizing a small number of clusters with

the K-Means clustering algorithm, all metrics amongst each emitter recorded relatively

similar performance. One possible explanation for this is that the division of the solution space

into sub regions is limited when the number of clusters is smaller. Consequently, the

performance of the four emitters matches up in terms of coverage, fitness, and QD score. It

is possible that the benefits of K-Means clustering, and the proposed strategies are not yet

pronounced enough to have any substantial impact.

As the number of clusters increases, the strategies divide the solution space into finer sub regions.

In this case, the graphs show that the coverage score is lower for the proposed strategies

when compared to the baseline Iso+LineDD emitter. This suggests that the proposed strategies

could potentially get "stuck" in local optima, limiting their ability to explore other regions of the

solution space. In contrast, the baseline Iso+LineDD emitter may maintain a more balanced

exploration-exploitation trade-off as the coverage is significantly higher. This allows the emitter

to accomplish substantially greater coverage across the solution space.

Regarding the mean fitness metrics observed in this scenario, a progressive increase in the

score has been observed across all the emitters, indicating that they are increasing the quality

of their solutions over time. However, for larger numbers of clusters, a significant delay was

observed for the two proposed strategies, which can again be attributed to the emitters focusing

on local optima or spending additional time optimizing their search within the clusters.

When it comes to the maximum fitness metric however, regardless of the number of

clusters, all emitters achieve the same maximum fitness. This demonstrates that the proposed

strategies are still capable of identifying optimal solutions in the search space, despite the

differences shown in other metrics such as coverage and mean fitness.

Last but not least, as the number of clusters increased, the QD score of the proposed

strategies decreased, indicating a decline in the algorithm's overall quality and diversity and

verifying the results of the other metrics.

Moving on, the comparison between Scenario 1A results with those from Scenarios 1B and 1C

indicates that the emitters’ performance remains consistent regardless of how many elites

are sampled in batch size of B1. This suggests that for the case of this problem domain, the

51

search space may be relatively simple, allowing the emitters to achieve comparable performance

regardless of the batch size.

As for the overall comparison between the two proposed strategies, they both performed in

a very similar way. The occasional faster convergence to the best score by one of the two

emitters could be attributed to a lucky initialization or a more effective exploration of the search

space in that specific set of runs.

Scenario 1A: 2-D Robotic Arm with 22 Elites

Number of clusters: 22

Number of clusters: 24

52

Number of clusters: 26

Number of clusters: 28

53

Scenario 1B: 2-D Robotic Arm with 24 Elites

Number of clusters: 22

Number of clusters: 24

54

Number of clusters: 26

Number of clusters: 28

55

Scenario 1C: 2-D Robotic Arm with 26 Elites

Number of clusters: 22

Number of clusters: 24

56

Number of clusters: 26

Number of clusters: 28

57

4.2.2. Scenario 2 with 100x100 Grid Size for 2-D Rastrigin Function

The second scenario, referred to as Scenario 2, involves a two-dimensional Rastrigin problem.

The analysis concentrates on a problem domain characterized by a 100x100 grid size.

Similar to Scenario 1, this scenario's results indicate that the proposed emitters struggle to match

the efficacy of the Iso+LineDD emitter.

In Scenario 2A, when the number of clusters was set to 4 the performance across all metrics

was analogous to that of the baseline emitter. This suggests, as before, that the benefits of K-

Means and the proposed strategies cannot have a significant impact when a limited number of

clusters is used.

Moving to the assignment of 16 clusters in the same scenario, the proposed emitters were

able to achieve metrics that were similar to the baseline emitter yet again. However, the

convergence to the highest scores was delayed for both strategies, with Strategy 2

converging slightly faster. In particular, the mean fitness of the proposed strategies follows the

same trend as the original emitter initially, but this trend ultimately declines after a period of

time, resulting in decreased mean fitness values. In this regard, Strategy 2 still outperforms

Strategy 1.

As the number of clusters produced by the K-Means algorithm increases, the performance

of the proposed strategies deteriorates even further. As seen in the plots, the coverage is

substantially lower, falling short of achieving the same maximal fitness as Iso+LineDD.

Likewise, for the QD result. As far as the mean fitness scores are concerned, the proprosed

emitters exhibit similar behavior to the assignment of 16 clusters.

When comparing Scenario 2A to both Scenario 2B and 2C, with batch sizes of 16 and 64

elites in B1 respectively, it was shown that the proposed emitters exhibit the same behavior

as in Scenario 2A. However, there was one exception where this was not the case. To be more

specific, in a particular experiment in scenario 2B in which there are 16 clusters, the emitter

employing Strategy 2 performs similarly to the emitter employing Iso+LineDD across all

metrics, and significantly outperforms the emitter employing Strategy 1.

58

Scenario 2A: 2-D Rastrigin Function with 22 Elites

Number of clusters: 22

Number of clusters: 24

59

Number of clusters: 26

Number of clusters: 28

60

Scenario 2B: 2-D Rastrigin Function with 24 Elites

Number of clusters: 22

Number of clusters: 24

61

Number of clusters: 26

Number of clusters: 28

62

Scenario 2C: 2-D Rastrigin Function with 26 Elites

Number of clusters: 22

Number of clusters: 24

63

Number of clusters: 26

Number of clusters: 28

64

4.2.3. Scenario 3 with 400x400 Grid Size for 2-D Robotic Arm Problem

Scenario 3 deals with the 2-D Robotic Arm problem with a grid dimension of 400x400, thereby

expanding the problem's search space. Despite the change in grid size, many of the

observations from Scenario 1 (grid size of 100x100) still hold true.

When the number of clusters is relatively small in Scenario 3A, the efficacy of the proposed

emitters matches up to that of the Iso+LineDD emitter. However, unlike for the 100x100 grid

size, we can see a slight impact of K-Means in the proposed strategies, as the convergence time

of the mean fitness score is slightly slower when compared to the baseline emitter, even for

this small number of clusters. One possible reason for this minor change could be attributed to

the fact that the emitters are now dealing with a more complex search space. Another reason

could be that the emitters following the proposed strategies are more sensitive to their initial

placement in the search space due to the increased complexity.

As the number of clusters increases, the effectiveness of the proposed strategies falls

short of that of the Iso+LineDD emitter in all metrics yet again, with the exception of

max fitness score, which remains unchanged across all emitters. This could suggest that the

proposed emitters are concentrating more on exploiting their respective sub-regions, resulting in

a reduced coverage and delayed convergence time for the mean fitness score, while still achieving

a similar maximum fitness score to the Iso+LineDD emitter.

When the number of clusters is small, the efficacy of the emitters in Scenarios 3B and 3C

is nearly the same. Interestingly, the emitter without K-Means clustering experiences a faster

convergence to the highest mean value when compared with Scenario 3A. In addition, the

maximum fitness remains consistent across all scenarios, regardless of the number of elites

in B1. However, the mean fitness performance differs depending on the batch size of B1 and the

number of clusters. In the case of 16 clusters, Strategy 2 converges faster than Strategy 1 for

both 16 and 64 elites (scenarios 3B and 3C) in B1. Moreover, for 16 number of clusters in

scenario 3C, Strategy 2 also demonstrates significantly better performance in coverage and

QD scores. The performance trends for larger clusters match those observed in Scenario 3A,

with the proposed strategies underperforming when compared to the Iso+LineDD emitter.

65

Scenario 3A: 2-D Robotic Arm with 22 Elites

Number of clusters: 22

Number of clusters: 24

66

Number of clusters: 26

Number of clusters: 28

67

Scenario 3B: 2-D Robotic Arm with 24 Elites

Number of clusters: 22

Number of clusters: 24

68

Number of clusters: 26

Number of clusters: 28

69

Scenario 3C: 2-D Robotic Arm with 26 Elites

Number of clusters: 22

Number of clusters: 24

70

Number of clusters: 26

Number of clusters: 28

71

4.2.4. Scenario 4 with 400x400 Grid Size for 2-D Rastrigin Function

In Scenario 4, the 2-D Rastrigin Function is evaluated on a 400x400 grid size. This scenario

produced a number of insightful observations.

In each scenario (4A, 4B, and 4C), the results demonstrated that the metrics for the small

number of clusters were very similar across all emitters. Nonetheless, for the first time

across all the experiments, the proposed strategies began with a mean fitness score that

exceeded that of the Iso+LineDD emitter. This advantage diminished as the number of

iterations increased, most likely due to K-Means' limited impact when dealing with a small

number of clusters. Regardless, it hinted at the possibility for better results in higher number of

clusters.

Furthermore, the mean fitness score for the proposed strategies was considerably higher

than that of the Iso+LineDD emitter, for larger number of clusters, regardless of the batch

size in B1. In some scenarios, such as Scenario 4A, Strategy 1 performed better than Strategy 2,

while in others, such as Scenario 4B, Strategy 2 performed better. However, both strategies

yielded fairly similar results. This marked an important progress, as it is the first time the

proposed strategies have demonstrated a higher mean fitness than the Iso+LineDD emitter.

This improvement may be related to the increased complexity of the search space, which may

have made the Iso+LineDD emitter less effective, allowing the proposed strategies to find better

mean fitness scores in this scenario. This improvement may also be attributed to the Rastrigin

function, which is characterized by multiple local optima. The function may be more favorable

towards the proposed emitters' search strategy, allowing them to investigate space more

efficiently.

However, this also had an effect on the proposed emitters' max fitness score metrics. While they

managed to still find the highest maximum fitness or a score very close to the maximum

fitness of the Iso+LineDD emitter, their convergence rate was slightly slower.

Aside from these findings, no other significant differences were observed compared to the

previous scenarios.

72

Scenario 4A: 2-D Rastrigin Function with 22 Elites

Number of clusters: 22

Number of clusters: 24

73

Number of clusters: 26

Number of clusters: 28

74

Scenario 4B: 2-D Rastrigin Function with 24 Elites

Number of clusters: 22

Number of clusters: 24

75

Number of clusters: 26

Number of clusters: 28

76

Scenario 4C: 2-D Rastrigin Function with 26 Elites

Number of clusters: 22

Number of clusters: 24

77

Number of clusters: 26

Number of clusters: 28

78

4.3. Results for Higher-Dimensional Problem Domains

In this section, the discussion for the experimental results continues for higher dimensional

problem domains, specifically addressing Scenarios 5 - 8, which involve 10-dimensional and

100-dimensional problems. We evaluate the performance of the proposed strategies, Perturbation

Towards Elites Closest to Cluster Centers (Strategy 1) and Perturbation Towards Cluster

Centroids (Strategy 2), along with the Modified Iso+LineDD without K-Means Clustering, by

comparing them against the baseline Iso+LineDD emitter. The evaluation focuses again on key

performance metrics, including Coverage, Max Fitness, Mean Fitness, and QD Score. Same with

previous experiments, the emitter with the highest QD score in each experiment is denoted with

the color blue, followed by the second highest in orange, the third highest in green, and the fourth

highest in red. Through these set of experiments, we aim to gain further insights into the

effectiveness of the proposed strategies in more complex, higher-dimensional problem domains

4.3.1. Scenarios 5 - 6 with 100x100 Grid Size for 10-D Problem Domains

In this section, the results for both Scenario 5 and Scenario 6 are discussed together, as they did

not produce any significant differences when compared to each other. These scenarios deal with

10-dimensional problem domains, specifically the 10-dimensional Robotic Arm problem and the

10-dimensional Rastrigin Function.

As also observed in previous scenarios, when the number of clusters is small, the metrics for

the Iso+LineDD emitter and the proposed emitters are nearly identical. However, when

tested with a larger number of clusters, the performance of the proposed strategies varied.

In the case of the 10-dimensional Robotic Arm problem (Scenario 5), the proposed

strategies failed to match the performance of the Iso+LineDD emitter for most metrics,

except for a few specific cases. From the plots, it can be seen that the proposed strategies

managed to achieve the same max fitness as the baseline emitter in all cases, except when the

number of clusters was 256; in this case, Strategy 2 failed to reach the same max fitness, and its

convergence was much slower.

For the 10-dimensional Rastrigin Function (Scenario 6), the performance of the proposed

strategies was mixed. Strategy 2 matched the highest max fitness of the Iso+LineDD emitter in

Scenario 6A, while Strategy 1 did not. The opposite occurred in Scenario 6B, where Strategy 1

matched the highest max fitness, but Strategy 2 did not. In other cases, the proposed emitters

failed to achieve the same max fitness as the baseline emitter.

79

The proposed emitters managed to match the performance of the Iso+LineDD emitter in

other metrics on a few occasions for both scenarios. This occurred in Scenario 5B with

16 clusters (Strategy 1), Scenario 6A with 16 clusters (Strategy 2), and Scenario 6B with

16 clusters (Strategy 1). Here, our strategies matched the baseline emitter's performance in

coverage, average fitness, and QD scores. But outside of these instances, the proposed emitters

showed slower convergence and lower scores for these scenarios.

The difference in performance between Scenarios 5 and 6 and our proposed emitters can

be attributed to several factors. One possibility is that 10-dimensional problem domains are

more complex than 2-dimensional problem domains, which could result in more difficult search

spaces. This makes it more challenging for our proposed emitters to match the Iso+LineDD

emitter's effectiveness. The greater complexity of these problem domains may also imply that

our proposed emitters are more affected by their initial placement in the search space, which

could result in varying performance outcomes, as observed in the different scenarios. There is

also the possibility that our strategies are better tailored towards particular problem domain types,

or that the selected parameters for these experiments, such as cluster number may not be optimal

for the 10-dimensional problem domains.

Scenario 5A: 10-D Robotic Arm with 22 Elites

Number of clusters: 22

80

Number of clusters: 24

Number of clusters: 26

81

Number of clusters: 28

Scenario 5B: 10-D Robotic Arm with 24 Elites

Number of clusters: 22

82

Number of clusters: 24

Number of clusters: 26

83

Number of clusters: 28

Scenario 5C: 10-D Robotic Arm with 26 Elites

Number of clusters: 22

84

Number of clusters: 24

Number of clusters: 26

85

Number of clusters: 28

Scenario 6A: 10-D Rastrigin Function with 22 Elites

Number of clusters: 22

86

Number of clusters: 24

Number of clusters: 26

87

Number of clusters: 28

Scenario 6B: 10-D Rastrigin Function with 24 Elites

Number of clusters: 22

88

Number of clusters: 24

Number of clusters: 26

89

Number of clusters: 28

Scenario 6C: 10-D Rastrigin Function with 26 Elites

Number of clusters: 22

90

Number of clusters: 24

Number of clusters: 26

91

Number of clusters: 28

92

4.3.2. Scenario 7 - 8 with 100x100 Grid Size for 100-D Problem Domains

Both Scenario 7 and 8 with 100x100 grid size for 100-D problem domains, offered additional

insights into the performance, scalability, and robustness of the strategies.

From the plots, it is evident that the impact of K-Means becomes more pronounced, even for the

small numbers of clusters. The performance of the Iso+LineDD emitter was matched in most

of the cases by the proposed strategies for Scenario 7 across all the metrics. In particular,

Strategy 2 was substantially more effective in all cases, as it converged to the highest scores

faster, and in some cases achieved the highest scores. Interestingly, for Scenario 7C, Strategy

2 managed to slightly outperform the Iso+LineDD emitter, scoring a higher QD score. This

can be attributed to the fact that Strategy 2 may be better at investigating and exploiting

the various sub regions of this more complex search space, resulting in a more diverse set of

high-performing solutions. Even though the difference is minimal, the slightly greater QD score

is an important improvement when compared to the previous experiments. For the small

number of clusters in Scenario 8, the proposed strategies had similar behavior to the

Iso+LineDD emitter, although the latter performed better. This might suggest that the K-

Means clustering did not have a significant impact on these small numbers of clusters for the

100-D Rastrigin problem.

Another noteworthy observation on the results is that, for a larger number of clusters in

Scenario 7, the emitter that follows Strategy 1 appears to achieve maximum fitness quicker

than the iso+LineDD emitter from the very start. However, this was not the case for the

emitter employing strategy 2, as it was unable to locate the same maximum fitness as the other

emitters and instead discovered a lower value. This was not the case for Scenario 8 as the

proposed strategies found lower max fitness value than the Iso+LineDD emitter. It should

be noted that between the 2 strategies, Strategy 2 managed to find higher max fitness.

Regarding the other metrics for larger numbers of clusters, in Scenario 7, the mean fitness of

the proposed strategies is lower than the Iso+LineDD emitter but remains relatively high

for all numbers of clusters. The coverage and QD score do not remain high in Scenario 7; as

the number of clusters increases, the coverage and QD score decrease. For Scenario 8, the

proposed strategies do not manage to match the scores of the Iso+LineDD emitter. In contrast

to Strategy 7, the proposed strategies achieve a relatively high coverage and QD score, but

the mean fitness is much lower. This could indicate that the proposed strategies are finding a

diverse set of solutions, but these solutions are not as optimal as those found by the Iso+LineDD

emitter. Additionally, Strategy 2 still outperforms Strategy 1 in this case.

93

Scenario 7A: 100-D Robotic Arm with 22 Elites

Number of clusters: 22

Number of clusters: 24

94

Number of clusters: 26

Number of clusters: 28

95

Scenario 7B: 100-D Robotic Arm with 24 Elites

Number of clusters: 22

Number of clusters: 24

96

Number of clusters: 26

Number of clusters: 28

97

Scenario 7C: 100-D Robotic Arm with 26 Elites

Number of clusters: 22

Number of clusters: 24

98

Number of clusters: 26

Number of clusters: 28

99

Scenario 8A: 100-D Rastrigin Function with 22 Elites

Number of clusters: 22

Number of clusters: 24

100

Number of clusters: 26

Number of clusters: 28

101

Scenario 8B: 100-D Rastrigin Function with 24 Elites

Number of clusters: 22

Number of clusters: 24

102

Number of clusters: 26

Number of clusters: 28

103

Scenario 8C: 100-D Rastrigin Function with 26 Elites

Number of clusters: 22

Number of clusters: 24

104

Number of clusters: 26

Number of clusters: 28

105

4.4. Main Findings

The diverse range of experimental scenarios across the various problem domains and dimensions,

utilizing different grid sizes and running multiple repetitions for each experiment, enabled us to

gain an in-depth understanding of the proposed emitters. Their comparison to the Iso+LineDD

emitter was important, as the two new strategies followed the emitters' underlying principles

while employing different selection strategies for the parent solutions. In this section, we provide

a summary of everything we have learned from this research and emphasize the most important

findings.

The following are the most important findings:

1. Small numbers of clusters:

In cases where the number of clusters is small, 4 in our experiments, the performance of

the proposed strategies (Strategy 1 and Strategy 2) is similar to that of the Iso+LineDD

emitter in the majority of instances. This can be attributed to the limited impact of K-

Means clustering in the selection process of the proposed emitters in these cases.

However, as the number of clusters increases, the effectiveness of the suggested

methodologies tends to decline. This is likely due to the fact that as the number of clusters

gets bigger and the effect of K-Means is more pronounced, the proposed strategies focus

more on exploiting their respective sub regions or getting "stuck" in local optima, which

may result in decreased coverage and a longer convergence time for the mean fitness

score.

2. Higher mean fitness score in 2-D Rastrigin function:

In Scenario 4, the proposed emitters exhibited a higher mean fitness score when compared

to the Iso+LineDD emitter on a 2-D Rastrigin Function with a 400x400 grid size. This

observation suggests that the proposed strategies may exhibit better performance in

specific problem domains and grid sizes, particularly those characterized by numerous

local optima and large search spaces. The larger grid size in particular provides the

proposed strategies with a more complex search space to navigate. This might enable

them to outperform the Iso+LineDD emitter in terms of mean fitness in this specific case.

3. Performance variation depending on batch size and number of clusters:

We observed that neither of the two proposed strategies consistently demonstrated

superior performance on a particular metric or across all metrics when compared to the

other. We noticed occasions when Strategy 1 outperformed Strategy 2, but we also saw

the opposite. This demonstrates that neither of the two proposed strategies is universally

106

applicable, and that their selection should be based on the specific problem domain and

its characteristics.

4. Challenges in higher-dimensional problem domains:

For higher-dimensional (10-D and 100-D) problem domains, the proposed strategies

struggled to match the success of the Iso+LineDD emitter, particularly as the number of

clusters increased. This can be due to the more complex nature of these problem domains

and the 100x100 grid size which creates more challenging search spaces for the emitters.

It is possible that the proposed emitters' selection process and the K-Means algorithm are

also more sensitive to the initial placement of the centroids in the search space, leading

to a broader range of performance outcomes.

5. K-Means clustering impact in complex problem domains:

Overall, we saw that the impact of K-Means generally increased with higher numbers of

clusters. This was not the case however for more complex problem domains, like the

100-D Robotic Arm problem, where the influence of clustering algorithm was seen

across all the cluster numbers. Regarding the question of whether the introduction of K-

Means had a positive or a negative impact in the performance of the emitters, the answer

is that generally the algorithms did not improve emitter’s performance with the exception

of a few instances, like in Scenario 4. Even if in scenarios with higher dimensions such

as Scenario 7C, where Strategy 2 outperformed the Iso+LineDD emitter in terms of QD

score, K-Means clustering had a negative impact overall on the selection process of the

proposed emitters in these more complex search spaces, as they were unable to

outperform or even match the Iso+LineDD emitter in terms of convergence rate or

overall performance.

107

Chapter 5
 Conclusions and Future Work

5.1. CONCLUSIONS ... 107

5.2. FUTURE WORK .. 108

5.1.Conclusions

The proposed strategies have demonstrated potential for enhancing both the exploitation and

exploration of the search space in QD optimization problems. However, their performance varies

and depends highly on factors such as the number of clusters, problem domain complexity, and

the batch sizes in the selection process, which may require additional adjustments for consistent

effectiveness.

The impact of the K-Means clustering algorithm became more pronounced with an increased

number of clusters in 2-D problem domains, yet it did not consistently improve the performance

of the proposed strategies. In fact, introducing K-Means often resulted in the proposed strategies

falling short of the Iso+LineDD emitter's performance in terms of score value and convergence

time. An exception was observed in the 2-D Rastrigin function with a larger grid size, where the

proposed strategies outperformed the Iso+LineDD emitter in mean fitness, suggesting potential

advantages in complex search spaces with numerous local optima. However, this advantage was

not observed everywhere, highlighting the need for additional research.

In terms of their robustness and scalability, the proposed strategies performed inconsistently in

higher-dimensional problem domains, such as the 10-D and 100-D problem domains.

Interestingly, the impact of K-Means clustering was observed even with a smaller number of

clusters in these higher-dimensional domains. Despite this, the proposed strategies generally

struggled to match the performance of the Iso+LineDD emitter, highlighting the difficulty of

successfully applying these strategies to search spaces with an increased level of complexity.

The varying performance of the strategies across different metrics and scenarios highlights the

need for changes in the selection process of the proposed strategies in order to consistently

improve their performance across a broader range of problem domains. By addressing all of the

shortcomings brought up in this study, the proposed strategies have the potential to significantly

improve the selection process of Iso+LineDD and other emitters, thereby leading to the

advancement of QD optimization algorithms that are more adaptable and efficient, potentially

benefiting a wide range of applications.

108

5.2.Future Work

This study opens two major opportunities for future research, one concentrating on

computational efficiency and the other on improving the performance of the presented

approaches.

1. Enhancing computational efficiency: Due to its adaptability and flexibility for specific

experimental needs, both of the proposed emitters were implemented on the QDJAX

library. However, the necessary setup for the use of GPU acceleration was not completed

for these experiments, preventing its use and resulting in longer experiment execution

durations. Future work could involve the implementation of the proposed strategies in

additional libraries, such as QDAX. Because QDAX also makes use of hardware

accelerators such as GPUs/TPUs for massive parallelism and drastically reducing the

runtime of QD algorithms [38], using such libraries could enable faster experimentation

and more extensive testing across a wider range of problem domains, cluster numbers,

and parameter settings.

2. Improving strategies' performance: The K-Means clustering algorithm did not

consistently enhance the performance of the proposed strategies in this research. A

promising direction for future work could involve adapting the selection process of

emitters, particularly with regard to the initialization of centroids in the K-Means

algorithm. Currently, the initial centroids are randomly selected; however, modifying this

to a selection process that is more biased towards diverse and high-performing elites

could potentially result in significant improvements. The initialization of centroids is

critical to the algorithm's performance; therefore, this change could result in different and

potentially more successful outcomes. Furthermore, in our research, K-Means clustering

was applied for the selection of the second batch B2 of elites. A novel direction for future

research could involve applying the same clustering technique for the selection of the first

batch B1 of elites instead. This adjustment could provide a different perspective on how

K-Means clustering impacts the overall performance of our proposed strategies.

Additionally, the integration of alternative clustering techniques, such as Hierarchical

clustering or DBSCAN, could also be explored.

In conclusion, the future work outlined above represents promising avenues for continuing this

research. As we continue improving these strategies, it is hoped that their full potential will be

realized, leading to substantial improvements in the optimization process across diverse

application domains.

109

References
[1] J. Lehman and K. O. Stanley, "Exploiting open-endedness to solve problems through the

search for novelty," in Alife, 2008.

[2] J. Mouret and J. Clune, "Illuminating search spaces by mapping elites," arXiv Preprint

arXiv:1504.04909, 2015.

[3] J. K. Pugh, L. B. Soros and K. O. Stanley, "Quality diversity: A new frontier for

evolutionary computation," Frontiers in Robotics and AI, vol.3, Article No. 40, 2016.

[4] V. Vassiliades and J. Mouret, "Discovering the Elite Hypervolume by Leveraging

Interspecies Correlation," in Proceedings of the Genetic and Evolutionary Computation

Conference, 2018, pp. 149-156.

[5] M. C. Fontaine and S. Nikolaidis, "Differentiable Quality Diversity," arXiv. [Online].

Available: https://arxiv.org/abs/2106.03894.

[6] V. Vassiliades, K. Chatzilygeroudis and J. Mouret, "Using centroidal voronoi tessellations

to scale up the multidimensional archive of phenotypic elites algorithm," IEEE

Transactions on Evolutionary Computation, vol. 22, no. 4, pp. 623-630, 2017.

[7] V. Vassiliades, K. Chatzilygeroudis and J. Mouret, "A comparison of illumination

algorithms in unbounded spaces," in Proceedings of the Genetic and Evolutionary

Computation Conference Companion, 2017, pp. 1578–1581.

[8] S. Edition and K. H. Rosen, "Discrete Mathematics and Its Applications," 7th ed., vol. 1.

New York, NY: McGraw-Hill, 2012.

[9] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge

University Press, 2004.

[10] L. A. Rastrigin, "Systems of extremal control," Nauka, Moscow, 1974.

[11] "Rastrigin function," Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Rastrigin_function. [Accessed: April 09, 2023].

[12] "Pythagorean theorem," Encyclopedia of Mathematics. [Online]. Available:

http://encyclopediaofmath.org/index.php?title=Pythagorean_theorem&oldid=40035.

[Accessed: April 09, 2023].

[13] "Euclidean Distance," Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Euclidean_distance. [Accessed: April 09, 2023].

[14] A. A. Bennett, "Theory of probability," Electrical Engineering, vol. 52, (11), pp. 752-757,

1933.

[15] "Random Variable," Encyclopedia of Mathematics. [Online]. Available:

https://encyclopediaofmath.org/index.php?title=Random_variable&oldid=43639.

[Accessed: Mar. 30, 2023].

[16] "Uniform Distribution," Encyclopedia of Mathematics. [Online]. Available:

https://encyclopediaofmath.org/wiki/Uniform_distribution. [Accessed: March 30, 2023].

https://arxiv.org/abs/2106.03894
https://en.wikipedia.org/wiki/Rastrigin_function
http://encyclopediaofmath.org/index.php?title=Pythagorean_theorem&oldid=40035
https://en.wikipedia.org/wiki/Euclidean_distance
https://encyclopediaofmath.org/index.php?title=Random_variable&oldid=43639
https://encyclopediaofmath.org/wiki/Uniform_distribution

110

[17] "Continuous Uniform Distribution," Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Continuous_uniform_distribution. [Accessed: April 09,

2023].

[18] "Normal Distribution," Encyclopedia of Mathematics. [Online]. Available:

https://encyclopediaofmath.org/wiki/Normal_distribution. [Accessed: March 30, 2023].

[19] X. Yu and M. Gen, Introduction to Evolutionary Algorithms. Springer: London, 2010.

[20] "Introduction to Evolutionary Algorithms: Genetic Algorithm," Brainyloop. [Online].

Available: https://brainyloop.com/introduction-to-evolutionary-algorithms-genetic-

algorithm-neuro-evolution/. [Accessed: March 31, 2023].

[21] M. Preuss, "Introduction: Towards Multimodal Optimization," in Multimodal

Optimization by Means of Evolutionary Algorithms, M. Preuss, Ed., Cham, Switzerland:

Springer, 2015, pp. 1-25.

[22] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence. MIT Press, 1992.

[23] D. Soni, "Introduction to Evolutionary Algorithms," Towards Data Science. [Online].

Available: https://towardsdatascience.com/introduction-to-evolutionary-algorithms-

a8594b484ac. [Accessed: April 10, 2023].

[24] R. de Silva, "Introduction to Clustering Methods," Medium. [Online]. Available:

https://medium.com/@ramindu2797/introduction-to-clustering-methods-9ecc7041aba1.

[Accessed: April 08, 2023].

[25] P. Patel, "K-Means Clustering Algorithm," Medium. [Online]. Available:

https://medium.com/@imparth/k-means-clustering-algorithm-34807a7cec71. [Accessed:

April 10, 2023].

[26] M. Dogra, "K-means Clustering Algorithm: Explained and Implemented," Medium.

[Online]. Available: https://immohann.medium.com/k-means-clustering-algorithm-

explained-and-implemented-307161adcc61. [Accessed: April 08, 2023].

[27] S. Zhao, "K-means Clustering Clearly Explained," Medium. [Online]. Available:

https://medium.com/@luo9137/k-means-clustering-clearly-explained-44746ccc3621.

[Accessed: April 08, 2023].

[28] A. Cully and Y. Demiris, "Quality and diversity optimization: A unifying modular

framework," IEEE Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 245-

259, 2017.

[29] K. Chatzilygeroudis et al, "Quality-diversity optimization: A novel branch of stochastic

optimization," in Black Box Optimization, Machine Learning, and no-Free Lunch

Theorems, Springer, P. M. Pardalos, V. Rasskazova, and M. N. Vrahatis, Eds., Springer:

Cham, 2021, pp. 109–135.

[30] V. Pariza, "Fast Learning of Diverse Robotic Skills," B.S. Thesis, Dept. Computer

Science, University of Cyprus, Cyprus, 2022.

https://en.wikipedia.org/wiki/Continuous_uniform_distribution
https://encyclopediaofmath.org/wiki/Normal_distribution
https://brainyloop.com/introduction-to-evolutionary-algorithms-genetic-algorithm-neuro-evolution/
https://brainyloop.com/introduction-to-evolutionary-algorithms-genetic-algorithm-neuro-evolution/
https://towardsdatascience.com/introduction-to-evolutionary-algorithms-a8594b484ac
https://towardsdatascience.com/introduction-to-evolutionary-algorithms-a8594b484ac
https://medium.com/@ramindu2797/introduction-to-clustering-methods-9ecc7041aba1
https://medium.com/@imparth/k-means-clustering-algorithm-34807a7cec71
https://immohann.medium.com/k-means-clustering-algorithm-explained-and-implemented-307161adcc61
https://immohann.medium.com/k-means-clustering-algorithm-explained-and-implemented-307161adcc61
https://medium.com/@luo9137/k-means-clustering-clearly-explained-44746ccc3621

111

[31] J. Mouret, "Novelty-based multiobjectivization," in New Horizons in Evolutionary

Robotics: Extended Contributions from the 2009 EvoDeRob Workshop, 2011.

[32] J. Lehman and K. O. Stanley, "Evolving a diversity of virtual creatures through novelty

search and local competition," in Proceedings of the 13th Annual Conference on Genetic

and Evolutionary Computation (GECCO '11), N. Krasnogor and P. L. Lanzi, Eds., Dublin,

Ireland, July 12-16, 2011, pp. 211–218. ACM, 2011.

[33] J. H. Friedman, J. L. Bentley and R. A. Finkel, "An algorithm for finding best matches in

logarithmic expected time," ACM Transactions on Mathematical Software (TOMS), vol.

3, (3), pp. 209-226, 1977.

[34] J. Clune, J. Mouret and H. Lipson, "The evolutionary origins of modularity," Proceedings

of the Royal Society B: Biological Sciences, vol. 280, no. 1755, pp. 20122863, 2013.

[35] A. Gaier, A. Asteroth, and J.-B. Mouret, "Aerodynamic Design Exploration through

Surrogate-Assisted Illumination," in 18th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference, Denver, CO, USA, June 5-9, 2017. doi: 10.2514/6.2017-3330.

[36] N. Justesen, S. Risi, and J.-B. Mouret, "MAP-Elites for noisy domains by adaptive

sampling," in Proceedings of the Genetic and Evolutionary Computation Conference

Companion, Prague, Czech Republic, July 13-17, 2019, pp. 121-122.

[37] M. Flageat et al, "Benchmarking Quality-Diversity Algorithms on Neuroevolution for

Reinforcement Learning," arXiv Preprint arXiv:2211.02193, 2022.

[38] B. Lim et al., "Accelerated Quality-Diversity through Massive Parallelism," Transactions

on Machine Learning Research, 01/2023, 2023.

A-1

Apppendix A
 Implementations

A.1 Implementation of K-Means Clustering on JAX

This appendix describes JAX library K-Means clustering implementation. As described in

section 3.4, the implementation has been modified from

https://github.com/creinders/ClusteringAlgorithmsFromScratch. This implementation integrated

K-Means clustering with the MAP-Elites Grid Archive in Strategy 1 and Strategy 2. The K-

Means clustering algorithm was implemented across three files: base_algorithm.py,

kmeans_base.py, and kmeans_jax.py. The following sections outline the contents of each file.

BaseAlgorithm
class BaseAlgorithm:

 def __init__(self, callback=None, verbose=False) -> None:

 self.verbose = verbose

 self.callback = callback

 def get_hook(self, name):

 return getattr(self.callback, name, None)

 def call_hook(self, name, *args, **kwargs):

 callback_op = self.get_hook(name)

 if callable(callback_op):

 callback_op(*args, **kwargs)

KMeansBase
import os

import sys

import numpy as np

from scipy.spatial.distance import cdist

from clustering.kmeans_jax.base_algorithm import BaseAlgorithm

class KMeansBase(BaseAlgorithm):

 def __init__(self,

 n_clusters,

 max_iter=100,

 early_stop_threshold=0.01,

 seed=None,

 callback=None,

 verbose=False

) -> None:

 super().__init__(callback=callback, verbose=verbose)

 self.n_clusters = n_clusters

 self.max_iter = max_iter

 self.early_stop_threshold = early_stop_threshold

 self.rng = np.random.RandomState(seed)

https://github.com/creinders/ClusteringAlgorithmsFromScratch

A-2

def init_clusters(self, X, n_clusters):

 n = X.shape[0]

 i = self.rng.permutation(n)[:n_clusters]

 centers = X[i]

 return centers

 def prepare(self, X):

 centers = self.init_clusters(X, self.n_clusters)

 return X, centers

 def _main_loop(self, X, centers):

 pass

 def tensor_to_numpy(self, t):

 return np.array(t)

 def finalize(self, centers, assignments):

 return centers, assignments

 def fit(self, X, method="centroids"):

 X, initial_centers = self.prepare(X)

 self.call_hook('on_main_loop_start')

 centers, assignments = self._main_loop(X, initial_centers)

 self.call_hook('on_main_loop_end')

 centers, assignments = self.finalize(centers, assignments)

 self.call_hook('on_epoch_end', self, X, centers, assignments)

 return centers, assignments

KMeansJax
import os

import sys

import chex

import jax

import jax.numpy as jnp

from jax import jit

from jax import random

from clustering.kmeans_jax.kmeans_base import KMeansBase

@jit

def cluster_update(cluster_index, old_cluster, assignments, X):

 q = assignments == cluster_index

 mask = q.astype(jnp.int32)

 c = jnp.sum(mask)

 s = jnp.sum(X * mask[:, None], axis=0)

 m = s / c

 return m

A-3

@jit

def step(X, centers):

 cluster_update_vmap = jax.vmap(cluster_update, in_axes=(0, 0, None,

None))

 distance = jnp.sum(jnp.square((X[:, :, None] - jnp.transpose(centers,

(1, 0))[None, ...])), axis=1)

 assignments = jnp.argmin(distance, axis=1)

 a = jnp.arange(centers.shape[0])

 new_centers = cluster_update_vmap(a, centers, assignments, X)

 diff = jnp.sum(jnp.square((new_centers - centers)))

 return new_centers, diff, assignments

class KMeansJax(KMeansBase):

 def __init__(self,

 n_clusters: int,

 max_iter: int = 100,

 early_stop_threshold: float = 0.01,

 seed: chex.PRNGKey = None,

 init_centers=None):

 super().__init__(n_clusters, max_iter, early_stop_threshold)

 self.rand_key = random.PRNGKey(seed) if seed is not None else

random.PRNGKey(0)

 self.init_centers = init_centers

 def init_clusters(self, X, n_clusters):

 if self.init_centers is not None:

 assert n_clusters == len(self.init_centers), "Number of initial

centers provided must match n_clusters"

 return self.init_centers

 assert n_clusters <= len(X)

 self.rand_key, subkey = random.split(self.rand_key)

 i = random.choice(subkey, jnp.arange(len(X)), shape=(n_clusters,),

replace=False)

 centers = X[i]

 return centers

 def prepare(self, X):

 centers = self.init_clusters(X, self.n_clusters)

 centers = jnp.asarray(centers)

 X = jnp.asarray(X)

 return X, centers

 def fit(self, X, method="centroids", initial_centers=None):

 if initial_centers is None:

 X, initial_centers = self.prepare(X)

 self.call_hook('on_main_loop_start')

 centers, assignments = self._main_loop(X, initial_centers)

 self.call_hook('on_main_loop_end')

A-4

 centers, assignments = self.finalize(centers, assignments)

 self.call_hook('on_epoch_end', self, X, centers, assignments)

 return centers, assignments

 def _main_loop(self, X, centers):

 @jit

 def while_step(arg):

 iteration, centers, assignments, diff = arg

 new_centers, diff, assignments = step(X, centers)

 new_centers = new_centers.astype(centers.dtype)

 return (iteration + 1, new_centers, assignments, diff)

 @jit

 def cond(arg):

 iteration, centers, assignments, diff = arg

 return (iteration < self.max_iter) & (diff >

self.early_stop_threshold)

 assignments = jnp.zeros(X.shape[0], dtype=jnp.int32)

 initial_diff = jnp.array(1000, dtype=jnp.float32)

 iteration, centers, assignments, diff = jax.lax.while_loop(cond,

while_step,(0,centers, assignments, initial_diff))

 return centers, assignments

 def closest_points_to_center(self, input, assignments, centers,

cluster_index, x):

 mask = (assignments == cluster_index)

 large_value_mask = jnp.expand_dims(large_value_mask, -1)

 cluster_points = input + large_value_mask

 distances = jnp.sum(jnp.square(cluster_points -

centers[cluster_index]), axis=1)

 sorted_indices = jnp.argsort(distances)

 return cluster_points[sorted_indices][:x]

A-5

A.2 Implementation of Iso+LineDD Emitter on QDJAX

This appendix describes the QDJAX library's Iso+LineDD emitter implementation. As explained

in section 3.5.1, the Iso+LineDD emitter is an advanced evolutionary strategy designed to exploit

the structure in the search space by introducing small mutations in the direction of differences

between solutions in the archive. In the module, EmitterParams, EmitterState, and

IsoLineEmitter implement the emitter. These classes define the emitter's arguments, states, and

functionality. The Iso+LineDD emitter was previously implemented in the QDJAX library, so

this part is for reference and to help comprehend the proposed adjustments.

Iso+LineDD Emitter in QDJAX
"""Provides the IsoLineEmitter.

Adapted from https://github.com/icaros-

usc/dqd/blob/main/ribs/emitters/_iso_line_emitter.py

"""

from typing import Tuple, List

import jax.numpy as jnp

from functools import partial

from flax import struct

from flax.struct import PyTreeNode

import jax

from qdjax.core.emitters.emitter_base import EmitterBase

from qdjax.types import *

import numpy as np

@struct.dataclass

class EmitterParams(PyTreeNode):

 """

 `Iso+LineDD Emitter Params`:

 Emitter Params define the parameters the algorithm uses

 and which can be changed manually outside of the

 of the Emitter.

 """

 x0: Params

 iso_sigma: float

 line_sigma: float

 lower_bounds: Array

 upper_bounds: Array

@struct.dataclass

class EmitterState(PyTreeNode):

 """

 `Iso+LineDD Emitter State`:

 Emitter State defines the state of the Emitter that is defined

 and used only by the Emitter (should not be changed by user).

 """

 None # Empty DataClass

A-6

class IsoLineEmitter(EmitterBase):

 """Emits solutions that are nudged towards other archive solutions.

 If the archive is empty, calls to :meth:`ask` will generate solutions

from an isotropic Gaussian distribution with mean ``x0`` and standard

deviation ``iso_sigma``. Otherwise, to generate each new solution, the

emitter selects a pair of elites :math:`x_i` and :math:`x_j` and samples

from

 .. math::

 x_i + \\sigma_{iso} \\mathcal{N}(0,\\mathcal{I}) +

 \\sigma_{line}(x_j - x_i)\\mathcal{N}(0,1)

 This emitter is based on the Iso+LineDD operator presented in

`Vassiliades 2018 <https://arxiv.org/abs/1804.03906>`_.

 """

 def __init__(self,

 archive,

 x0,

 iso_sigma,

 line_sigma,

 batch_size,

 bounds=None,

 **kwargs):

 # Static Parameters Describing Emitter

 self._emitter_name = "iso_line_emitter"

 self._uses_dqd = False

 self._evals_per_iter = self.get_evals_per_iterations(batch_size)

 # Static Parameters used in the Emitter that never change

 self._archive = archive

 self._solution_dim = len(x0)

 self._batch_size = batch_size

 # Default Parameters for EmitterParams dataclass

 self._x0 = np.array(x0, dtype=float)

 self._lower_bounds, self._upper_bounds = self.process_bounds(bounds,

self._solution_dim)

 self._iso_sigma = float(iso_sigma)

 self._line_sigma = float(line_sigma)

 @partial(jax.jit, static_argnames=("self",))

 def init(self, rand_key: RNGKey):

 """

 Initializes the instance with the defaule EmitterParams and

EmitterState

 """

 return (

 EmitterState(),

 EmitterParams(x0=self._x0,

 iso_sigma=self._iso_sigma,

 line_sigma=self._line_sigma,

 lower_bounds=self._lower_bounds,

 upper_bounds=self._upper_bounds)

)

 @staticmethod

 def get_evals_per_iterations(batch_size):

 return batch_size

 @partial(jax.jit, static_argnames=("self",))

 def _ask_clip(self, parents, lower_bounds, upper_bounds):

 return jnp.minimum(jnp.maximum(parents, lower_bounds), upper_bounds)

A-7

 @partial(jax.jit, static_argnames=("self",))

 def ask(self,

 emitter_state: EmitterState,

 emitter_params: EmitterParams,

 archive_state: Any,

 rand_key: RNGKey):

 """

 Generates ``batch_size`` solutions.

 """

 batch_size = self._batch_size

 solution_dim = self._solution_dim

 key_selection, key_variation = jax.random.split(rand_key, 2)

 # SELECTION #

 key_select_p1, key_select_p2 = jax.random.split(key_selection, 2)

 sols_1, _ = self._archive.get_rand_elites(archive_state, batch_size,

key_select_p1)

 sols_2, _ = self._archive.get_rand_elites(archive_state, batch_size,

key_select_p2)

 # VARIATION #

 key_iso, key_line = jax.random.split(key_variation, 2)

 iso_gaussian = jax.random.normal(key_iso,

 shape=(batch_size, solution_dim),

 dtype=float) * emitter_params.iso_sigma

 # expanded last dimension used for multiplication later

 line_gaussian = jax.random.normal(key_line,

 shape=(batch_size, 1),

 dtype=float) * emitter_params.line_sigma

 new_sols = sols_1 + iso_gaussian + (sols_2 - sols_1) * line_gaussian

 return emitter_state, self._ask_clip(new_sols,

 emitter_params.lower_bounds,

 emitter_params.upper_bounds)

 @partial(jax.jit, static_argnames=("self",))

 def tell(self,

 emitter_state: EmitterState,

 emitter_params: EmitterParams,

 solutions: Params,

 objective_values,

 behavior_values,

 skip_sols_mask: Array,

 archive_state: Any,

 rand_key: RNGKey):

 """

 Inserts entries into the archive.

 """

 archive_state, _ =

self._archive.add_to_archive(archive_state=archive_state,

 solutions=solutions,

 behavior_values=behavior_values,

 objective_values=objective_values,

 skip_sols_mask=skip_sols_mask)

 return emitter_state, archive_state

A-8

A.3 Implementation of Iso+LineDD Emitter with Reduced Batch Sampling

This appendix discusses the QDJAX library's modified Iso+LineDD emitter with reduced batch

sampling. As explained in section 3.5.2, this modification aims to alter the selection process of

elites during offspring generation to facilitate the integration of clustering techniques in future

work. The QDJAX library has been extended to support this modified Iso+LineDD emitter, and

the implementation includes a new module, iso_line_variation_emitter.py, and an additional

method, get_rand_elites_for_reduced_batch, in the MAP-Elites Grid Archive implementation

(grid_archive_base.py). By providing the implementation details for the modified Iso+LineDD

emitter with reduced batch sampling, this appendix serves as a reference for understanding the

adaptation and its potential for enabling the integration of clustering techniques.

Modified Iso+LineDD Emitter with Reduced Batch Sampling

from functools import partial

import numpy as np

from flax.struct import PyTreeNode

from qdjax.core.emitters.emitter_base import EmitterBase

from qdjax.types import *

class EmitterParams(PyTreeNode):

 x0: Params

 iso_sigma: float

 line_sigma: float

 lower_bounds: Array

 upper_bounds: Array

class EmitterState(PyTreeNode):

 None # Empty DataClass

class IsoLineVariationEmitter(EmitterBase):

 def __init__(self,

 archive,

 x0,

 iso_sigma,

 line_sigma,

 batch_size,

 num_elites_to_repeat,

 bounds=None,

 **kwargs):

A-9

 # Static Parameters Describing Emitter

 self._emitter_name = "iso_line_variation_emitter"

 self._uses_dqd = False

 self._evals_per_iter = self.get_evals_per_iterations(batch_size)

 # Static Parameters used in the Emitter that never change

 self._archive = archive

 self._solution_dim = len(x0)

 self._batch_size = batch_size

 self._num_of_elites_to_repeat = num_elites_to_repeat

 # Default Parameters for EmitterParams dataclass

 self._x0 = np.array(x0, dtype=float)

 self._lower_bounds, self._upper_bounds = self.process_bounds(bounds,

self._solution_dim)

 self._iso_sigma = float(iso_sigma)

 self._line_sigma = float(line_sigma)

 @partial(jax.jit, static_argnames=("self",))

 def init(self, rand_key: RNGKey):

 return (

 EmitterState(),

 EmitterParams(x0=self._x0,

 iso_sigma=self._iso_sigma,

 line_sigma=self._line_sigma,

 lower_bounds=self._lower_bounds,

 upper_bounds=self._upper_bounds)

)

 @staticmethod

 def get_evals_per_iterations(batch_size):

 return batch_size

 @partial(jax.jit, static_argnames=("self",))

 def _ask_clip(self, parents, lower_bounds, upper_bounds):

 return jnp.minimum(jnp.maximum(parents, lower_bounds), upper_bounds)

 @partial(jax.jit, static_argnames=("self",))

 def ask(self,

 emitter_state: EmitterState,

 emitter_params: EmitterParams,

 archive_state: Any,

 rand_key: RNGKey):

 """

 Generates ``batch_size`` solutions.

 """

 batch_size = self._batch_size

 num_of_elites_to_repeat = self._num_of_elites_to_repeat

 solution_dim = self._solution_dim

 key_selection, key_variation = jax.random.split(rand_key, 2)

 # SELECTION #

 key_select_p1, key_select_p2 = jax.random.split(key_selection, 2)

 b1, _ =

self._archive.get_rand_elites_for_reduced_batch(archive_state, batch_size,

num_of_elites_to_repeat, key_select_p1)

 b2, _ = self._archive.get_rand_elites(archive_state, batch_size,

key_select_p2)

A-10

 # VARIATION #

 key_iso, key_line = jax.random.split(key_variation, 2)

 iso_gaussian = jax.random.normal(key_iso,

 shape=(batch_size,

 solution_dim),

 dtype=float) * emitter_params.iso_sigma

 # expanded last dimension used for multiplication later

 line_gaussian = jax.random.normal(key_line,

 shape=(batch_size, 1),

 dtype=float) * emitter_params.line_sigma

 new_sols = b1 + iso_gaussian + (b2 - b1) * line_gaussian

 return emitter_state, self._ask_clip(new_sols,

 emitter_params.lower_bounds,

 emitter_params.upper_bounds)

 @partial(jax.jit, static_argnames=("self",))

 def tell(self,

 emitter_state: EmitterState,

 emitter_params: EmitterParams,

 solutions: Params,

 objective_values,

 behavior_values,

 skip_sols_mask: Array,

 archive_state: Any,

 rand_key: RNGKey):

 """

 Inserts entries into the archive.

 """

 archive_state, _ =

self._archive.add_to_archive(archive_state=archive_state,

 solutions=solutions,

 behavior_values=behavior_values,

 objective_values=objective_values,

 skip_sols_mask=skip_sols_mask)

 return emitter_state, archive_state

Extension of the Archive class to support the modified emitter
@partial(jax.jit, static_argnames=("self",

 "batch_size",

 "num_of_rand_elites"))

def get_rand_elites_for_reduced_batch(self,

 archive_state: ArchiveState,

 batch_size: int,

 num_of_rand_elites: int,

 rand_key: chex.PRNGKey,

 metadata: Dict[str, Any] = None) ->

Tuple[chex.Array, Dict[str, Any]]:

 """

 Generates a batch of elite solutions from the archive by randomly

 selecting 'num_of_rand_elites' solutions and repeating each solution to

 fill the 'batch_size'. Returns the repeated elite solutions along with

 their indices in the archive.

 """

A-11

 res = GridArchiveBase._get_rand_elites(self._grid_shape,

 archive_state,

 num_of_rand_elites,

 rand_key,

 metadata)

 elites, elite_metadata = res[0], res[1]

 repeats = batch_size // num_of_rand_elites

 remaining = batch_size % num_of_rand_elites

 # Repeat each elite solution 'repeats' times

 repeated_elites = jnp.repeat(elites, repeats, axis=0)

 if remaining > 0:

 extra_elites = elites[:remaining]

 repeated_elites = jnp.concatenate([repeated_elites, extra_elites],

 axis=0)

 # Repeat the indices accordingly

 repeated_indices = jnp.repeat(elite_metadata['elites_indices'], repeats)

 # If there are remaining solutions needed to fill the batch,

 # repeat the first 'remaining' elite indices

 if remaining > 0:

 extra_indices = elite_metadata['elites_indices'][:remaining]

 repeated_indices = jnp.concatenate([repeated_indices,extra_indices],

axis=0)

 return repeated_elites, {'elites_indices': repeated_indices}

A-12

A.4 Implementation of Strategy 1

Strategy 1 - Perturbation Towards Elites Closest to Cluster Centers is implemented in the QDJAX

library in this appendix. As mentioned in section 3.5.3.1, this technique used K-Means clustering

to improve the Iso+LineDD emitter selection process by perturbing baseline elites towards the

direction of correlation of the elites closest to the cluster centers. The implementation includes a

new module, iso_line_kmeans_variation.py, and an additional method,

get_closest_elites_kmeans, extended in the MAP-Elites Grid Archive implementation

(grid_archive_base.py).

Modified Iso+LineDD Emitter (Strategy 1)
"""

Provides the IsoLineKmeansVariationEmitter.

Adapted Iso+LineDD Emitter that introduces K-Means Clustering in the

selection step of the ask method. It selects the elites that are closer to

the cluster centers and samples from them. The implementation of K-Means

Clustering on JAX is used for this purpose.

"""

from functools import partial

from typing import Optional

import numpy as np

from flax.struct import PyTreeNode

from qdjax.core.emitters.emitter_base import EmitterBase

from qdjax.types import *

class EmitterParams(PyTreeNode):

 """

 `Modified Iso+LineDD Emitter Params`:

 Emitter Params define the parameters the algorithm uses

 and which can be changed manually outside of the

 of the Emitter.

 """

 x0: Params

 iso_sigma: float

 line_sigma: float

 lower_bounds: Array

 upper_bounds: Array

class EmitterState(PyTreeNode):

 """

 `Modified Iso+LineDD Emitter State`:

 Emitter State defines the state of the Emitter that is defined

 and used only by the Emitter (should not be changed by user).

 """

 centers: Optional[Array] = None

class IsoLineKmeansVariationEmitter(EmitterBase):

A-13

 """

 Adapted Iso+LineDD Emitter that introduces K-Means Clustering in the

 selection step of the ask method.

 """

 def __init__(self,

 archive,

 x0,

 iso_sigma,

 line_sigma,

 batch_size,

 num_of_clusters,

 num_elites_to_repeat,

 bounds=None,

 **kwargs):

 # Static Parameters Describing Emitter

 self._emitter_name = "iso_line_kmeans_variation_emitter"

 self._uses_dqd = False

 self._evals_per_iter = self.get_evals_per_iterations(batch_size)

 # Static Parameters used in the Emitter that never change

 self._archive = archive

 self._solution_dim = len(x0)

 self._batch_size = batch_size

 self._num_of_clusters = num_of_clusters

 self._num_elites_to_repeat = num_elites_to_repeat

 # Default Parameters for EmitterParams dataclass

 self._x0 = np.array(x0, dtype=float)

 self._lower_bounds, self._upper_bounds = self.process_bounds(bounds,

self._solution_dim)

 self._iso_sigma = float(iso_sigma)

 self._line_sigma = float(line_sigma)

 @partial(jax.jit, static_argnames=("self",))

 def init(self, rand_key: RNGKey):

 """

 Initializes the instance with the default EmitterParams and

 EmitterState

 """

 # Initialize the centers with zeros, for example.

 initial_centers = jnp.zeros((self._num_of_clusters,

 self._solution_dim))

 return (

 EmitterState(centers=initial_centers),

 EmitterParams(x0=self._x0,

 iso_sigma=self._iso_sigma,

 line_sigma=self._line_sigma,

 lower_bounds=self._lower_bounds,

 upper_bounds=self._upper_bounds)

)

 @staticmethod

 def get_evals_per_iterations(batch_size):

 return batch_size

 @partial(jax.jit, static_argnames=("self",))

 def _ask_clip(self, parents, lower_bounds, upper_bounds):

 return jnp.minimum(jnp.maximum(parents, lower_bounds),

 upper_bounds)

A-14

 @partial(jax.jit, static_argnames=("self",))

 def ask(self,

 emitter_state: EmitterState,

 emitter_params: EmitterParams,

 archive_state: Any,

 rand_key: RNGKey):

 """

 Generates ``batch_size`` solutions.

 """

 batch_size = self._batch_size

 num_of_clusters = self._num_of_clusters

 num_elites_to_repeat = self._num_elites_to_repeat

 solution_dim = self._solution_dim

 centers = emitter_state.centers

 # Check if the centers array contains all zeros

 is_centers_zeros = jnp.all(jnp.equal(centers, 0))

 key_selection, key_variation = jax.random.split(rand_key, 2)

 # SELECTION #

 key_select_p1, key_select_p2 = jax.random.split(key_selection, 2)

 b1, _ = self._archive.get_rand_elites_for_reduced_batch(

 archive_state,

 batch_size,

 num_elites_to_repeat,

 key_select_p1)

 def centers_zeros_true_fn(_):

 return self._archive. get_closest_elites_kmeans(archive_state,

 batch_size,

 key_select_p2,

 num_of_clusters,

 None)

 def centers_zeros_false_fn(_):

 return self._archive. get_closest_elites_kmeans(archive_state,

 batch_size,

 key_select_p2,

 num_of_clusters,

 emitter_state.centers)

 b2, centers, _ = jax.lax.cond(is_centers_zeros,

 None,

 centers_zeros_true_fn,

 None,

 centers_zeros_false_fn)

 # Update the EmitterState with the new centers

 emitter_state = emitter_state.replace(centers=centers)

A-15

 # VARIATION #

 key_iso, key_line = jax.random.split(key_variation, 2)

 iso_gaussian = jax.random.normal(key_iso,

 shape=(batch_size,

 solution_dim),

 dtype=float) *

emitter_params.iso_sigma

 # expanded last dimension used for multiplication later

 line_gaussian = jax.random.normal(key_line,

 shape=(batch_size,

 1),

 dtype=float) *

emitter_params.line_sigma

 new_sols = b1 + iso_gaussian + (b2 - b1) * line_gaussian

 return emitter_state, self._ask_clip(new_sols,

 emitter_params.lower_bounds,

 emitter_params.upper_bounds)

 @partial(jax.jit, static_argnames=("self",))

 def tell(self,

 emitter_state: EmitterState,

 emitter_params: EmitterParams,

 solutions: Params,

 objective_values,

 behavior_values,

 skip_sols_mask: Array,

 archive_state: Any,

 rand_key: RNGKey):

 """

 Inserts entries into the archive.

 """

 archive_state, _ =

self._archive.add_to_archive(archive_state=archive_state,

 solutions=solutions,

 behavior_values=behavior_values,

 objective_values=objective_values,

 skip_sols_mask=skip_sols_mask)

 return emitter_state, archive_state

Extension of the Archive class to support the modified emitter
@partial(jax.jit, static_argnames=("self",

 "batch_size",

 "num_of_clusters"))

def get_closest_elites_kmeans(self,

 archive_state: ArchiveState,

 batch_size: int,

 rand_key: chex.PRNGKey,

 num_of_clusters: int,

 init_centers: chex.Array = None,

 metadata: Dict[str, Any] = None) ->

Tuple[chex.Array, chex.Array, Dict[str, Any]]:

A-16

return GridArchiveBase._get_closest_elites_kmeans(self._grid_shape,

 archive_state,

 batch_size,

 rand_key,

 metadata,

 num_of_clusters,

 init_centers)

@staticmethod

def _get_closest_elites_kmeans(grid_shape: chex.Array,

 archive_state: ArchiveState,

 batch_size: int,

 rand_key: chex.PRNGKey,

 metadata=None,

 num_of_clusters: int = 3,

 init_centers: chex.Array = None):

 """

 Selects the closest elites from cluster centers using K-means

clustering.

 """

 # Build the Grid Archive's index elites map

 total_cells = archive_state.objective_values.shape[0]

 fitness_2d = archive_state.objective_values.reshape(grid_shape)

 # Find indices of non-empty cells

 indices = jnp.argwhere(jnp.logical_not(jnp.isnan(fitness_2d)),

 size=total_cells)

 indices = jnp.transpose(indices, axes=(1, 0))

 indices_1d = jnp.array(jnp.ravel_multi_index(indices,

 fitness_2d.shape,

 mode='clip')).astype(int)

 elites_order_indices = jax.random.randint(rand_key,

 shape=(indices_1d.shape),

 minval=0,

maxval=archive_state.num_of_sols)

 # Select the elites

 elites_indices = indices_1d.at[elites_order_indices].get()

 elites = archive_state.sols_archive.at[elites_indices].get()

 if init_centers is None:

 kmeans = KMeansJax(n_clusters=num_of_clusters,

 max_iter=10,

 early_stop_threshold=0.01,

 seed=rand_key[0])

 else:

 kmeans = KMeansJax(n_clusters=num_of_clusters,

 max_iter=4,

 early_stop_threshold=0.01,

 seed=rand_key[0],

 init_centers=init_centers)

 centers, assignments = kmeans.fit(elites)

 # Calculate the number of elites that should be taken per cluster and

the remainder

 if batch_size < num_of_clusters:

 # Calculate the number of elites that should be taken per cluster

 num_per_cluster = 1

 selected_elites = []

A-17

 # Randomly select batch_size clusters

 rand_key, subkey = jax.random.split(rand_key)

 selected_cluster_indices = jax.random.choice(subkey,

 jnp.arange(num_of_clusters),

 shape=(batch_size,),

 replace=False)

 # Get the closest num_per_cluster elite from each selected cluster

 for cluster_index in selected_cluster_indices:

 closest_points = kmeans.closest_points_to_center(elites,

 assignments,

 centers,

 cluster_index,

 x=num_per_cluster)

 selected_elites.append(closest_points)

 # Concatenate selected elites

 selected_elites = jnp.vstack(selected_elites)

 else:

 num_per_cluster = batch_size // num_of_clusters

 remainder = batch_size % num_of_clusters

 selected_elites = []

 # Get the closest num_per_cluster elites from each cluster

 for cluster_index in range(num_of_clusters):

 closest_points = kmeans.closest_points_to_center(elites,

assignments, centers, cluster_index,

x=num_per_cluster)

 selected_elites.append(closest_points)

 # Get the next closest elite from the first remainder clusters

 for cluster_index in range(remainder):

 next_closest_point = \

 kmeans.closest_points_to_center(elites,

 assignments,

 centers,

 cluster_index,

 x=num_per_cluster + 1)[-1]

 selected_elites[cluster_index] =

jnp.vstack((selected_elites[cluster_index],next_closest_point)

 # Concatenate selected elites

 selected_elites = jnp.vstack(selected_elites)

 return selected_elites, centers, {'elites_indices': None}

A-18

A.5 Implementation of Strategy 2

Strategy 2 - Perturbation Towards Cluster Centroids is implemented in QDJAX library in this

appendix. As explained in section 3.5.3.2, this strategy perturbs solutions towards the direction

of correlation of the centroids of clusters instead of the closest elites from each cluster center, as

in Strategy 1. The implementation includes a new method, get_centroid_elites_kmeans, extended

in the MAP-Elites Grid Archive implementation (grid_archive_base.py) and the new module

for the proposed emitter, iso_line_kmeans_centroids_variation.py.

Modified Iso+LineDD Emitter (Strategy 2)
"""

Provides the IsoLineKmeansCentroidsVariationEmitter.

Adapted Iso+LineDD Emitter that introduces K-Means Clustering in the

selection step of the ask method. Ít selects the centroids of the cluster

centers and samples from them, utilizing them as elites. The implementation

of K-Means Clustering on JAX is used for this purpose.

"""

from functools import partial

from typing import Optional

import numpy as np

from flax.struct import PyTreeNode

from qdjax.core.emitters.emitter_base import EmitterBase

from qdjax.types import *

class EmitterParams(PyTreeNode):

 """

 `Mofified Iso+LineDD Emitter Params`:

 Emitter Params define the parameters the algorithm uses

 and which can be changed manually outside of the

 of the Emitter.

 """

 x0: Params

 iso_sigma: float

 line_sigma: float

 lower_bounds: Array

 upper_bounds: Array

class EmitterState(PyTreeNode):

 """

 `Modified Iso+LineDD Emitter State`:

 Emitter State defines the state of the Emitter that is defined

 and used only by the Emitter (should not be changed by user).

 """

 centers: Optional[Array] = None

class IsoLineKmeansCentroidsVariationEmitter(EmitterBase):

 """

 Adapted Iso+LineDD Emitter that introduces K-Means Clustering in the

 selection step of the ask method.

 """

A-19

 def __init__(self,

 archive,

 x0,

 iso_sigma,

 line_sigma,

 batch_size,

 num_of_clusters,

 num_elites_to_repeat,

 bounds=None,

 **kwargs):

 # Static Parameters Describing Emitter

 self._emitter_name = "iso_line_kmeans_centroids_variation_emitter"

 self._uses_dqd = False

 self._evals_per_iter = self.get_evals_per_iterations(batch_size)

 # Static Parameters used in the Emitter that never change

 self._archive = archive

 self._solution_dim = len(x0)

 self._batch_size = batch_size

 self._num_of_clusters = num_of_clusters

 self._num_elites_to_repeat = num_elites_to_repeat

 # Default Parameters for EmitterParams dataclass

 self._x0 = np.array(x0, dtype=float)

 self._lower_bounds, self._upper_bounds = self.process_bounds(bounds,

self._solution_dim)

 self._iso_sigma = float(iso_sigma)

 self._line_sigma = float(line_sigma)

 @partial(jax.jit, static_argnames=("self",))

 def init(self, rand_key: RNGKey):

 """

 Initializes the instance with the default EmitterParams and

 EmitterState

 """

 # Initialize the centers with zeros, for example.

 initial_centers = jnp.zeros((self._num_of_clusters,

self._solution_dim))

 return (

 EmitterState(centers=initial_centers),

 EmitterParams(x0=self._x0,

 iso_sigma=self._iso_sigma,

 line_sigma=self._line_sigma,

 lower_bounds=self._lower_bounds,

 upper_bounds=self._upper_bounds)

)

 @staticmethod

 def get_evals_per_iterations(batch_size):

 return batch_size

 @partial(jax.jit, static_argnames=("self",))

 def _ask_clip(self, parents, lower_bounds, upper_bounds):

 return jnp.minimum(jnp.maximum(parents,

 lower_bounds),

 upper_bounds)

A-20

 @partial(jax.jit, static_argnames=("self",))

 def ask(self,

 emitter_state: EmitterState,

 emitter_params: EmitterParams,

 archive_state: Any,

 rand_key: RNGKey):

 """

 Generates ``batch_size`` solutions.

 """

 batch_size = self._batch_size

 num_of_clusters = self._num_of_clusters

 num_elites_to_repeat = self._num_elites_to_repeat

 solution_dim = self._solution_dim

 centers = emitter_state.centers

 # Check if the centers array contains all zeros

 is_centers_zeros = jnp.all(jnp.equal(centers, 0))

 key_selection, key_variation = jax.random.split(rand_key, 2)

 # SELECTION #

 key_select_p1, key_select_p2 = jax.random.split(key_selection, 2)

 b1, _ = self._archive.get_rand_elites_for_reduced_batch(

 archive_state,

 batch_size,

 num_elites_to_repeat,

 key_select_p1)

 def centers_zeros_true_fn(_):

 return self._archive.get_centroid_elites_kmeans(archive_state,

 batch_size,

 key_select_p2,

 num_of_clusters,

 None)

 def centers_zeros_false_fn(_):

 return self._archive.get_centroid_elites_kmeans(archive_state,

 batch_size,

 key_select_p2,

 num_of_clusters,

 emitter_state.centers)

 b2, centers, _ = jax.lax.cond(is_centers_zeros, None,

centers_zeros_true_fn, None, centers_zeros_false_fn)

 # Update the EmitterState with the new centers

 emitter_state = emitter_state.replace(centers=centers)

 # VARIATION #

 key_iso, key_line = jax.random.split(key_variation, 2)

 iso_gaussian = jax.random.normal(key_iso,

 shape=(batch_size, solution_dim),

 dtype=float) * emitter_params.iso_sigma

 # expanded last dimension used for multiplication later

 line_gaussian = jax.random.normal(key_line,

 shape=(batch_size, 1),

 dtype=float) * emitter_params.line_sigma

 new_sols = b1 + iso_gaussian + (b2 - b1) * line_gaussian

A-21

 return emitter_state, self._ask_clip(new_sols,

 emitter_params.lower_bounds,

 emitter_params.upper_bounds)

 @partial(jax.jit, static_argnames=("self",))

 def tell(self,

 emitter_state: EmitterState,

 emitter_params: EmitterParams,

 solutions: Params,

 objective_values,

 behavior_values,

 skip_sols_mask: Array,

 archive_state: Any,

 rand_key: RNGKey):

 """

 Inserts entries into the archive.

 """

 archive_state, _ =

self._archive.add_to_archive(archive_state=archive_state,

 solutions=solutions,

 behavior_values=behavior_values,

 objective_values=objective_values,

 skip_sols_mask=skip_sols_mask)

 return emitter_state, archive_state

Method:

def get_centroid_elites_kmeans(self,

 archive_state: ArchiveState,

 batch_size: int,

 rand_key: chex.PRNGKey,

 num_of_clusters: int,

 init_centers: chex.Array = None,

 metadata: Dict[str, Any] = None) ->

Tuple[chex.Array, chex.Array, Dict[str, Any]]:

 return GridArchiveBase._get_centroid_elites_kmeans(self._grid_shape,

 archive_state,

 batch_size,

 rand_key,

 metadata,

 num_of_clusters,

 init_centers)

A-22

Extension of the Archive class to support the modified emitter
@staticmethod

def _get_centroid_elites_kmeans(grid_shape: chex.Array,

 archive_state: ArchiveState,

 batch_size: int,

 rand_key: chex.PRNGKey,

 metadata=None,

 num_of_clusters: int = 3,

 init_centers: chex.Array = None):

 """

 Selects elites using K-means clustering. The method that returns a batch

 of batch_size elites where the elites are the centers (centroids) of the

 clusters created from kmeans. If the clusters that are created are less

 than the value of batch_size, it repeats each in the batch a specific

 amount of times in order to return batch_size elites and not less. On

 the other, if there are more clusters than the value of batch_size, it

 returns random batch_size centers as the batch:

 """

 # Build the Grid Archive's index elites map

 total_cells = archive_state.objective_values.shape[0]

 fitness_2d = archive_state.objective_values.reshape(grid_shape)

 # Find indices of non-empty cells

 indices = jnp.argwhere(jnp.logical_not(jnp.isnan(fitness_2d)),

size=total_cells)

 indices = jnp.transpose(indices, axes=(1, 0))

 indices_1d = jnp.array(jnp.ravel_multi_index(indices, fitness_2d.shape,

mode='clip')).astype(int)

 elites_order_indices = jax.random.randint(rand_key,

 shape=(indices_1d.shape),

 minval=0,

 maxval=archive_state.num_of_sols)

 elites_indices = indices_1d.at[elites_order_indices].get()

 elites = archive_state.sols_archive.at[elites_indices].get()

 if init_centers is None:

 kmeans = KMeansJax(n_clusters=num_of_clusters,

 max_iter=10,

 early_stop_threshold=0.01,

 seed=rand_key[0])

 else:

 kmeans = KMeansJax(n_clusters=num_of_clusters,

 max_iter=4,

 early_stop_threshold=0.01,

 seed=rand_key[0],

 init_centers=init_centers)

 centers, assignments = kmeans.fit(elites)

 if batch_size < num_of_clusters:

 # Randomly select batch_size clusters

 rand_key, subkey = jax.random.split(rand_key)

 selected_cluster_indices = jax.random.choice(subkey,

 jnp.arange(num_of_clusters),

 shape=(batch_size,),

 replace=False)

 # Get the closest num_per_cluster elite from each selected cluster

 selected_elites = centers[selected_cluster_indices]

A-23

 else:

 # Repeat the centroids if there are less than batch_size centers

 num_of_repeats = batch_size // num_of_clusters

 remainder = batch_size % num_of_clusters

 selected_elites = jnp.repeat(centers, num_of_repeats, axis=0)

 # Add the centers from the first remainder clusters to the batch

 if remainder > 0:

 selected_elites = jnp.vstack((selected_elites,

 centers[:remainder]))

 return selected_elites, centers, {'elites_indices': None}

	Acknowledgements
	Abstract
	Chapter 1 Introduction
	1.1. Evolution of Quality Diversity Algorithms
	1.2. Motivation
	1.3. Previous Quality Diversity Research related to Our Work
	1.4. Objectives
	1.5. Potential Impact

	Chapter 2 Background
	2.1. Mathematical Foundations
	2.1.1. Function
	2.1.2. Discovering the Field of Mathematical Optimization
	2.1.3. Rastrigin Function
	2.1.4. Distance Metrics
	2.1.4.1. Pythagorean Theorem
	2.1.4.2. Euclidean Distance

	2.1.5. Mathematical Field of Probability theory
	2.1.6. Stochastic Variables
	2.1.7. Distributions
	2.1.7.1. The Uniform Distribution
	2.1.7.2. The Normal distribution

	2.2. Evolutionary Algorithms
	2.2.1. Overview of Evolutionary Algorithms
	2.2.2. Application of Genetic Algorithms

	2.3. Clustering
	2.3.1. Introduction to Cluster Analysis
	2.3.2. K-Means Clustering algorithm

	2.4. Quality-Diversity Background
	2.4.1. Introduction to Quality Diversity algorithms
	2.4.2. QD Problem Formulation
	2.4.3. Illumination
	2.4.4. Initial QD Algorithms
	2.4.4.1. Stochastic Sampling
	2.4.4.2. Novelty Search + Local Competition (NS+LC)
	2.4.4.3. Multi-Objective Landscape Exploration (MOLE)

	2.4.5. Introduction to QD Optimization Framework
	2.4.6. Key Components of the QD Optimization Framework
	2.4.6.1. Containers
	2.4.6.2. Selection Operators
	2.4.6.3. Population Scores

	2.4.7. Evaluation Metrics for Assessing QD Algorithms' Success
	2.4.8. Elite Hypervolume
	2.4.9. Multi-dimensional Archive of Phenotypic Elites (MAP-Elites)
	2.4.10. Emitters
	2.4.10.1. Introduction to the concept of Emitters
	2.4.10.2. Directional Variation Operators

	Chapter 3 Methodology
	3.1. Problem Formulation
	3.2. Proposed Clustering-Based Emitter
	3.3. JAX and QDJAX Library
	3.4. K-Means for JAX Implementation
	3.5. Implementation
	3.5.1. Implementation of Iso+LineDD Emitter on QDJAX
	3.5.2. Adapting Iso+LineDD Emitter through Reduced Batch Sampling
	3.5.3. Enhancing Emitter Selection Process through K-Means Clustering Integration
	3.5.3.1. Strategy 1: Perturbation Towards Elites Closest to Cluster Centers
	3.5.3.2. Strategy 2: Perturbation Towards Cluster Centroids

	3.6. Experimental Setup
	3.6.1. Problem domains
	3.6.1.1. N-Dimensional Robotic Arm Repertoire
	3.6.1.2. N-Dimensional Rastrigin Function

	3.6.2. Experimental Scenarios
	3.6.2.1. Scenarios 1 - 2 with 100x100 Grid Size for 2-D problem domains
	Scenario 1A: 2-D Robotic Arm with 22 Elites
	Scenario 1B: 2-D Robotic Arm with 24 Elites
	Scenario 1C: 2-D Robotic Arm with 26 Elites
	Scenario 2A: 2-D Rastrigin Function with 22 Elites
	Scenario 2B: 2-D Rastrigin Function with 24 Elites
	Scenario 2C: 2-D Rastrigin Function with 26 Elites

	3.6.2.2. Scenarios 3 - 4 with 400x400 Grid Size for 2-D problem domains
	Scenario 3A: 2-D Robotic Arm with 22 Elites
	Scenario 3B: 2-D Robotic Arm with 24 Elites
	Scenario 3C: 2-D Robotic Arm with 26 Elites
	Scenario 4A: 2-D Rastrigin Function with 22 Elites
	Scenario 4B: 2-D Rastrigin Function with 24 Elites
	Scenario 4C: 2-D Rastrigin Function with 26 Elites

	3.6.2.3. Additional Scenarios: Higher-Dimensional Problems
	Scenarios 5 – 6 with 10-Dimensional Problems:
	Scenario 5A: 10-D Robotic Arm with 22 Elites
	Scenario 5B: 10-D Robotic Arm with 24 Elites
	Scenario 5C: 10-D Robotic Arm with 26 Elites
	Scenario 6A: 10-D Rastrigin Function with 22 Elites
	Scenario 6B: 10-D Rastrigin Function with 24 Elites
	Scenario 6C: 10-D Rastrigin Function with 26 Elites

	Scenarios 7 – 8 with 100-Dimensional Problems:
	Scenario 7A: 100-D Robotic Arm with 22 Elites
	Scenario 7B: 100-D Robotic Arm with 24 Elites
	Scenario 7C: 100-D Robotic Arm with 26 Elites
	Scenario 8A: 100-D Rastrigin Function with 22 Elites
	Scenario 8B: 100-D Rastrigin Function with 24 Elites
	Scenario 8C: 100-D Rastrigin Function with 26 Elites

	3.6.3. Key Metrics for Evaluating Performance

	Chapter 4 Experimental Results and Discussion
	4.1. Introduction
	4.2. Results for 2-Dimensional Problem Domains
	4.2.1. Scenario 1 with 100x100 Grid Size for 2-D Robotic Arm Problem
	Scenario 1A: 2-D Robotic Arm with 22 Elites
	Scenario 1B: 2-D Robotic Arm with 24 Elites
	Scenario 1C: 2-D Robotic Arm with 26 Elites

	4.2.2. Scenario 2 with 100x100 Grid Size for 2-D Rastrigin Function
	Scenario 2A: 2-D Rastrigin Function with 22 Elites
	Scenario 2B: 2-D Rastrigin Function with 24 Elites
	Scenario 2C: 2-D Rastrigin Function with 26 Elites

	4.2.3. Scenario 3 with 400x400 Grid Size for 2-D Robotic Arm Problem
	Scenario 3A: 2-D Robotic Arm with 22 Elites
	Scenario 3B: 2-D Robotic Arm with 24 Elites
	Scenario 3C: 2-D Robotic Arm with 26 Elites

	4.2.4. Scenario 4 with 400x400 Grid Size for 2-D Rastrigin Function
	Scenario 4A: 2-D Rastrigin Function with 22 Elites
	Scenario 4B: 2-D Rastrigin Function with 24 Elites
	Scenario 4C: 2-D Rastrigin Function with 26 Elites

	4.3. Results for Higher-Dimensional Problem Domains
	4.3.1. Scenarios 5 - 6 with 100x100 Grid Size for 10-D Problem Domains
	Scenario 5A: 10-D Robotic Arm with 22 Elites
	Scenario 5B: 10-D Robotic Arm with 24 Elites
	Scenario 5C: 10-D Robotic Arm with 26 Elites
	Scenario 6A: 10-D Rastrigin Function with 22 Elites
	Scenario 6B: 10-D Rastrigin Function with 24 Elites
	Scenario 6C: 10-D Rastrigin Function with 26 Elites

	4.3.2. Scenario 7 - 8 with 100x100 Grid Size for 100-D Problem Domains
	Scenario 7A: 100-D Robotic Arm with 22 Elites
	Scenario 7B: 100-D Robotic Arm with 24 Elites
	Scenario 7C: 100-D Robotic Arm with 26 Elites
	Scenario 8A: 100-D Rastrigin Function with 22 Elites
	Scenario 8B: 100-D Rastrigin Function with 24 Elites
	Scenario 8C: 100-D Rastrigin Function with 26 Elites

	4.4. Main Findings

	Chapter 5 Conclusions and Future Work
	5.1. Conclusions
	5.2. Future Work

	References
	Apppendix A Implementations
	A.1 Implementation of K-Means Clustering on JAX
	BaseAlgorithm
	KMeansBase
	KMeansJax

	A.2 Implementation of Iso+LineDD Emitter on QDJAX
	Iso+LineDD Emitter in QDJAX

	A.3 Implementation of Iso+LineDD Emitter with Reduced Batch Sampling
	Modified Iso+LineDD Emitter with Reduced Batch Sampling
	Extension of the Archive class to support the modified emitter

	A.4 Implementation of Strategy 1
	Modified Iso+LineDD Emitter (Strategy 1)
	Extension of the Archive class to support the modified emitter

	A.5 Implementation of Strategy 2
	Modified Iso+LineDD Emitter (Strategy 2)
	Extension of the Archive class to support the modified emitter

