
Thesis Dissertation

EXPLORING SWIFT AS A SERVERLESS LANGUAGE
ON OPENWHISK

Andreas Loizides

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2023

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

Exploring Swift as a Serverless Language on OpenWhisk

Andreas Loizides

Supervisor

Dr. Haris Volos

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2023

Acknowledgements

I would like to express my profound gratitude to a number of people whose support and

contributions were invaluable throughout the course of this thesis.

First and foremost, I would like to thank my supervisor and mentor, Dr. Haris Volos,

for his unwavering guidance and continuous support. Whenever issues arose, Dr. Vo-

los was always ready to thoroughly evaluate the problem, imparting not only his expert

knowledge but also a sense of shared purpose and curiosity. His dedication to my research

gave me the confidence and motivation to navigate the complex challenges that arose dur-

ing this thesis. It truly felt like we shared the same research goals and the drive to satisfy

curiosity which is crucial in a research context. His care and attention were instrumental

in enabling me to reach my research goals.

I am deeply grateful to my university for granting me access to the CloudLab’s in-

frastructure. This access was not just a privilege but a necessity. The comprehensive

results and the eventual completion of this thesis would not have been possible without

it. It provided a robust platform to explore Swift as a serverless language on OpenWhisk,

contributing significantly to the outcomes of my research.

Lastly, but by no means least, I would like to extend my heartfelt thanks to my par-

ents. Their unconditional faith in my abilities and their financial support provided a stable

foundation for my academic journey. It allowed me to comfortably pursue my interests

and devote my energy to my research. Their sacrifices and belief in my vision were a

beacon of light that guided me through the most challenging phases of this thesis.

To all of you, thank you. This accomplishment would not have been possible without

your collective support and belief.

1

Summary

This thesis delves into the potential of Swift in the rapidly growing field of serverless

computing. Serverless computing has gained significant attention due to its scalability

and cost-effectiveness, making the choice of programming language a crucial factor in

this context.

Swift, a language renowned for its popularity on Apple platforms, is known for its

speed, safety, and reliability. Despite its widespread use in the Apple ecosystem, Swift’s

potential as a serverless language remains largely unexplored. This thesis aims to bridge

this gap, driven by Swift’s promise of speed and safety.

The methodology for evaluating Swift’s capabilities as a serverless language involves

a two-pronged approach. Initially, a qualitative comparison is conducted with popular

serverless languages to investigate potential performance benefits Swift might provide.

Subsequently, Swift’s capabilities are evaluated through a case study, comparing a server-

less to a monolithic implementation of a synchronization system.

The key findings from the research indicate that while Swift holds promise, its lack

of community support and unstable Linux support with various functionalities missing,

make it unsuitable for production use as a systems language, let alone serverless. Further-

more, the case study highlighted OpenWhisk’s need to support intra-concurrency to fully

utilize the hardware and achieve real concurrency in invoking actions.

In terms of benefits, Swift is enjoyable to write in and is a very expressive language.

Most errors are caught at compile time, saving critical time and effort. Its seamless Copy-

on-Write (CoW) support has the potential to greatly benefit memory and performance-

critical environments, such as serverless. However, the limitations, particularly the lack

of community support and ambiguity in many features in regards to their Linux support,

pose significant challenges.

In conclusion, this thesis provides a comprehensive exploration of Swift as a serverless

language, contributing to the ongoing discourse in this area and highlighting areas for

further research.

2

Contents

Acknowledgements 1

1 Introduction 7
1.1 Background . 7

1.2 Swift in Serverless Computing . 8

1.3 Choice of Serverless Environment: OpenWhisk 8

1.4 Case Study: Synchronization System in eCommerce 8

1.5 Objective . 8

1.6 Research Questions . 9

1.6.1 Performance Overview . 9

1.6.2 Ease of Development . 9

2 Related Work 10
2.1 Introduction . 10

2.2 OpenWhisk . 10

2.3 Serverless Computing and Languages 11

2.4 Research Gaps . 11

3 Updating the Swift runtime 12
3.1 Introduction . 12

3.2 Overview of the officially supported Swift runtime in OpenWhisk 13

3.3 Swift 5.5 Enhancements and their Impact 13

3.3.1 Concurrency Support and Async/Await 14

3.3.2 Structured Concurrency . 14

3.3.3 Actor Model . 15

3.3.4 SwiftNIO 2 . 16

3.3.5 Impact on the Synchronization System Case Study 16

3.4 Understanding Runtimes in OpenWhisk 16

3.5 Actions in OpenWhisk . 16

3.5.1 Action Interface in OpenWhisk 16

3

3.5.2 ActionLoop Proxy in OpenWhisk 18

3.5.3 Compiling a Swift action with the ActionLoop Proxy 18

3.6 Process of Updating the Swift Runtime 19

3.7 Challenges Encountered . 22

4 Performance Overview 24
4.1 Value Types vs Reference Types and Copy-On-Write 24

4.1.1 Value Types . 25

4.1.2 Reference Types . 25

4.1.3 Copy-On-Write (CoW) . 25

4.1.4 Performance Benefits . 26

4.2 Qualitive Comparison with Go, Java, Javascript, and Python 26

4.2.1 Go . 27

4.2.2 Python . 28

4.2.3 Node.js (JavaScript) . 29

4.2.4 Java . 30

4.3 Summary . 31

5 Ease of Development 32
5.1 Language Simplicity and Syntax . 32

5.2 Available Libraries and Frameworks . 40

5.2.1 Web Development . 40

5.2.2 Developer community and support 43

5.2.3 Tooling and IDE support . 43

5.2.4 Integration with serverless platforms 43

5.2.5 Learning curve . 43

5.2.6 Linux Support . 43

6 Synchronization System Case Study 46
6.1 Introduction . 46

6.2 The Need for Synchronization . 46

6.3 Sync Algorithm . 47

6.4 Implementation and Deployment . 49

7 Benchmarking Case Study Implementations 51
7.1 Workload . 51

7.2 Experimental Setup . 51

7.3 Results and Discussion . 53

7.3.1 Without a Rate Limit . 53

4

7.3.2 Implementing a Rate Limit . 55

7.4 Improvements and Future Work . 56

7.5 Conclusion . 56

8 Conclusion 58

5

List of Figures

3.1 Abstract representation of the Action Interface in OpenWhisk. 17

3.2 Contents of the core folder of the Swift runtime 20

5.1 Invoking the action using Apache’s invoke.py tool 44

5.2 Crash witnessed by manually running the action executable in the runtime

container . 44

5.3 Debugging with LLDB to find the cause of the crash 45

6.1 A product is comprised of different variants 47

6.2 High level outline of the problem scenario 48

6.3 Steps 1-2: Fetching current data about the product 48

6.4 Steps 3-5: Apply any needed updates . 49

6.5 Serverless Deployment . 50

6.6 Monolithic Deployment . 50

7.1 Serverless Deployment . 52

7.2 Execution time comparison between serverless and monolithic implemen-

tations . 53

7.3 Median latency for a single model request, scaled for the monolithic im-

plementation . 54

7.4 Median latency for a single model request 54

7.5 QPS comparison between serverless and monolithic implementations . . 54

7.6 Rate-limited (100ms) comparison between serverless and monolithic im-

plementations . 55

7.7 Median latency for a single model request, scaled for the monolithic im-

plementation . 56

7.8 Median latency for a single model request 56

6

Chapter 1

Introduction

1.1 Background . 7

1.2 Swift in Serverless Computing . 8

1.3 Choice of Serverless Environment: OpenWhisk 8

1.4 Case Study: Synchronization System in eCommerce 8

1.5 Objective . 8

1.6 Research Questions . 9

1.6.1 Performance Overview . 9

1.6.2 Ease of Development . 9

1.1 Background

The landscape of computing has witnessed a paradigm shift in recent years, with the

emergence of serverless computing. Serverless computing enables developers to focus on

writing their application’s code without worrying about underlying infrastructure manage-

ment, provisioning, and scaling. As a result, serverless computing has gained popularity

as a cost-effective and scalable alternative to traditional web and application development

practices. Some of the many advantages of serverless computing include auto-scaling,

elimination of idle server costs, pay-per-use pricing, and seamless scaling to handle fluc-

tuating workloads.

In the realm of serverless computing, one’s choice of a programming language is cru-

cial. It affects not only the performance but also the ease of development and maintenance

of serverless applications. The focus of this thesis is the Swift programming language,

which has demonstrated its potential for speed, safety, and reliability, particularly in Ap-

ple platforms.

7

1.2 Swift in Serverless Computing

Swift is a statically typed, general-purpose, multi-paradigm programming language de-

veloped by Apple Inc. for iOS, macOS, watchOS, and other platforms. Since its release

in 2014, Swift has gained significant popularity and achieved acclaim for its efficiency,

safety, and ease of use. The Swift programming language demonstrates potential as a

viable serverless language due to its inherent speed, safety, and its compatibility with

OpenWhisk, which is the selected environment for this study.

1.3 Choice of Serverless Environment: OpenWhisk

OpenWhisk [12] is an event-driven, open-source serverless computing platform that sup-

ports a wide range of programming languages, including Swift, Python, Java, and Node.js.

The reasons for selecting OpenWhisk as the environment for this study include its widespread

adoption in serverless computing contexts, its flexibility, and its support for Swift as a

first-class language. For the purpose of the comparative analysis in this thesis, we will

examine the advantages and disadvantages of using Swift against other popular serverless

computing languages such as Python, Java, and Node.js, all of which have established

themselves in this domain.

1.4 Case Study: Synchronization System in eCommerce

A case study detailing a monolithic and serverless implementation of a synchronization

system in the eCommerce industry will be presented in this thesis. The synchronization

system serves a critical function in ensuring consistency and accuracy across online stores,

as it aids in maintaining inventory, order management, and customer accounts up-to-date.

This case study will help demonstrate Swift’s viability as a serverless language in a real-

world scenario and contribute to the broader discussion on the appropriateness of Swift

for serverless computing.

1.5 Objective

The overarching objective of this thesis is to provide a comprehensive analysis of Swift

as a serverless language, examining its potential for performance and ease of develop-

ment within the OpenWhisk environment. By conducting an in-depth comparison with

other common serverless languages and illustrating Swift’s applicability through a prac-

tical case study, this thesis aims to contribute valuable insights and perspectives, further

advancing the understanding of Swift’s role in serverless computing.

8

1.6 Research Questions

With the background and context established, this thesis will attempt to answer the fol-

lowing research questions:

1.6.1 Performance Overview

How would the performance of Swift in serverless computing compare to other languages,

such as Python, Java, and Node.js? This involves examining any potential benefits Swift

could provide over other languages in a serverless context, as well as any possible perfor-

mance limitations or challenges it may present.

1.6.2 Ease of Development

To what degree is Swift an accessible and efficient language for developers in a server-

less environment? This question will be addressed through evaluating the development

experience of Swift compared to other serverless languages, investigating aspects such as

language features, syntax, tooling, and libraries that impact the ease of development of

serverless functions in Swift.

9

Chapter 2

Related Work

This chapter provides a brief review of the existing literature relevant to the use of Swift

as a serverless language on OpenWhisk.

2.1 Introduction

The concept of serverless computing has gained considerable attention in recent years.

The promise of serverless is to simplify cloud programming by eliminating the need for

developers to manage servers and allowing them to focus solely on their application logic.

Jonas et al. [17] provide a thorough overview of this paradigm, tracing its history from

the early days of cloud computing to the present. They argue that serverless computing

is the next step in the evolution of abstraction in computing, comparing it to the shift

from assembly language to high-level programming languages. The authors also identify

areas where serverless computing is pushing the boundaries, as well as the challenges and

research opportunities that lie ahead. They predict that serverless computing will become

a predominant model in the future of cloud computing.

2.2 OpenWhisk

OpenWhisk, an open-source serverless platform, has been the subject of numerous stud-

ies. Castro et al. [13] provide an in-depth analysis of OpenWhisk’s architecture and capa-

bilities, offering valuable insights into its potential for hosting Swift-based serverless ap-

plications. This comprehensive study of OpenWhisk provides an essential foundation for

understanding the possibilities and constraints of running Swift applications in a server-

less environment.

10

2.3 Serverless Computing and Languages

The choice of programming language in serverless computing is an important aspect that

has significant implications on the performance and efficiency of serverless applications.

A study by [15] investigates the impacts of programming language selection on the perfor-

mance of serverless data processing pipelines. By implementing identical data processing

pipelines in multiple languages (Java, Python, Go, and Node.js), the authors demonstrate

that the performance of a pipeline can vary significantly based on the chosen language.

Their study concludes that there is no one-size-fits-all language for serverless comput-

ing. Instead, they suggest that the fastest and most efficient pipeline could be achieved

by adopting a hybrid approach, combining different languages to optimize various stages

of the pipeline. This underlines the importance of careful language selection and per-

formance profiling before deploying serverless applications, indicating that the choice of

language can have substantial consequences on the overall performance and efficiency of

serverless applications.

2.4 Research Gaps

Despite the wealth of knowledge available on serverless computing and OpenWhisk, there

is a noticeable gap in the literature when it comes to using Swift as a serverless language.

Few studies have specifically explored the performance, advantages, and challenges of

using Swift in a serverless context, particularly on the OpenWhisk platform. This thesis

aims to address this gap by providing an in-depth exploration of Swift as a serverless

language on OpenWhisk. The goal is to gain a deeper understanding of the potential of

Swift in this context and to contribute to the broader discourse on serverless computing

and language choice.

11

Chapter 3

Updating the Swift runtime

3.1 Introduction

In this chapter, we delve into the process of updating the Swift Runtime for OpenWhisk,

a critical component of our exploration of Swift as a serverless language. One of the

key elements of this exploration is the transition from Swift 5.4 to Swift 5.8. This ver-

sion update brings with it a wealth of new features that greatly enhance the capabilities

of Swift as a serverless language, including concurrency support (via async/await con-

structs), structured concurrency, the actor model, and SwiftNIO 2.

These features provide significant benefits when it comes to the development and

deployment of serverless applications. In particular, they have a profound impact on

our synchronization system case study. For instance, the async/await constructs, part of

the concurrency support, simplify the handling of asynchronous tasks, making the code

easier to write and understand. This was particularly beneficial in the development of

both a monolithic and a serverless implementation of the synchronization system, which

heavily relied on these constructs.

Runtimes in OpenWhisk are the backbone that enables the execution of actions in

the serverless environment. Key to this is understanding the Action Interface and the

ActionLoop Proxy. The ActionLoop proxy simplifies the development of new runtimes

by implementing most of the Action Interface specification, making it possible to create

a compliant and efficient runtime with fewer resources.

Updating the Swift runtime in itself was not complicated, but understanding how it

all works together was a challenge. In this chapter we dive into the details of how this is

achieved, to provide a reference point for future researches in understanding how Open-

Whisk runtimes work, and particularly the Swift runtime.

12

3.2 Overview of the officially supported Swift runtime in
OpenWhisk

Apache OpenWhisk supports a variety of programming languages for writing actions,

through the use of specific runtimes. As per the official documentation, the following

runtimes are currently supported [12]:

• .Net: OpenWhisk runtime for .Net Core 2.2.

• Go: OpenWhisk runtime for Go.

• Java: OpenWhisk runtime for Java 8 (OpenJDK 8, JVM OpenJ9).

• JavaScript: OpenWhisk runtime for Node.js v10, v12, and v14.

• PHP: OpenWhisk runtime for PHP 8.0, 7.4, and 7.3.

• Python: OpenWhisk runtime for Python 2.7, 3, and a 3 runtime variant for AI/ML

(including packages for Tensorflow and PyTorch).

• Ruby: OpenWhisk runtime for Ruby 2.5.

• Swift: OpenWhisk runtime for Swift 5.1, 5.3 and 5.4.

These runtimes are officially supperted by OpenWhisk, meaning one can deploy an

action in those languages by specifying with it the -kind option. Any docker image can

be used as a runtime to deploy actions, as long as it adheres to the Action Interface and

is a Docker image publicly available on DockerHub. Our updated version of Swift (v5.8)

is publicly available on dockerhub with the image tag andreas16700/swift58-1. Swift 5.4

lacks behind, notably Swift 5.5 which brings numerous crucial improvement which we’ll

explain below.

3.3 Swift 5.5 Enhancements and their Impact

We elucidate how these enhancements facilitated the development and benchmarking of a

monolithic and a serverless implementation in the synchronization system case study, with

a focus on the substantial use of the async/await constructs in the pre-existing monolithic

implementation.

13

3.3.1 Concurrency Support and Async/Await

In Swift 5.5, the introduction of concurrency support, in particular, the async/await con-

structs, revolutionized the way asynchronous code is written and understood. The async/await

model allows for the execution of asynchronous tasks in a manner that closely resembles

synchronous code, eliminating the complexity of nested callbacks and error-prone manual

threading.

Consider the following simple example of an asynchronous function:

func fetchUserData() async throws -> UserData {

// Asynchronous fetching here

}

You can then use the await keyword to call this function:

let userData = try? await fetchUserData()

This way, asynchronous code looks and behaves much like synchronous code, making

it much easier to understand and manage.

In the context of our synchronization system case study, this feature had a profound

impact. The pre-existing monolithic implementation was built with heavy use of asyn-

chronous constructs. With the transition to Swift 5.5, we could leverage the async/await

model to handle these tasks in a more readable and maintainable way, making the code

easier to comprehend and modify.

3.3.2 Structured Concurrency

Structured concurrency, another significant feature introduced in Swift 5.5, provides a

way to manage and control asynchronous tasks. It introduces new concepts like task

groups and task cancellation, which can be used to group related tasks and cancel them if

they are no longer needed.

Here is an example of how task groups can be used:

async let group = Task.Group { () -> Int in

for i in 1...5 {

let result = await performTask(i)

print("Task (i) completed with result (result)")

}

}

14

With structured concurrency, nested callbacks or "callback hell" can be avoided. Con-

sider a situation where you have three dependent tasks that need to be performed in se-

quence. In the old callback-based approach, this might look like:

performTask1 { result1 in

performTask2(result1) { result2 in

performTask3(result2) { result3 in

// handle final result

}

}

}

With the new structured concurrency and async/await model in Swift 5.5, this can be

simplified to:

let result1 = await performTask1()

let result2 = await performTask2(result1)

let result3 = await performTask3(result2)

// handle final result

This greatly improves code readability and maintainability.

For the synchronization system case study, structured concurrency helped ensure that

asynchronous tasks were well-managed and tidied up after completion. This reduced the

risk of memory leaks and made the system more efficient.

3.3.3 Actor Model

The actor model in Swift 5.5 provides a way to handle shared mutable state in concurrent

settings. It isolates state to individual actors and ensures that only one piece of code can

access that state at a time.

An example of an Actor could look like the following:

actor Counter {

private var value = 0

func increment() {

value += 1

}

func getValue() -> Int {

return value

}

}

15

In the context of the synchronization system, the actor model was invaluable in man-

aging shared resources, avoiding race conditions and thus increasing the robustness of the

system.

3.3.4 SwiftNIO 2

SwiftNIO 2, a low-level tool for building high-performance networking applications,

brought about enhancements that improved the performance and functionality of our

serverless implementation. It enabled the efficient handling of networking tasks in the

synchronization system, resulting in a performance boost and more robust networking

capabilities.

3.3.5 Impact on the Synchronization System Case Study

Overall, the enhancements in Swift 5.5 significantly improved the development and bench-

marking process for both the monolithic and serverless implementations of the synchro-

nization system. The async/await constructs, structured concurrency, the actor model, and

SwiftNIO 2 all contributed to a more efficient, maintainable, and robust system. They al-

lowed us to write cleaner, more understandable code, manage asynchronous tasks more

effectively, avoid common concurrency issues, and handle networking tasks more effi-

ciently. This demonstrated the potential of Swift 5.5 as a powerful language for serverless

computing.

3.4 Understanding Runtimes in OpenWhisk

We delve into the function and significance of runtimes in OpenWhisk, paying special

attention to the role of the ActionLoop proxy and Action Interface. We clarify how the

ActionLoop proxy aids in the creation of compliant runtimes by implementing most of

the specification, enabling the development of an efficient runtime in a short span of time.

3.5 Actions in OpenWhisk

3.5.1 Action Interface in OpenWhisk

The core concept in the OpenWhisk environment is an Action. Actions are the smallest

deployable units of code and primarily constitute two components: the user function and

its corresponding proxy. The user function represents the code logic to be executed, and

the proxy serves as an intermediary, implementing a canonical protocol to enable the

16

user function to interact with the OpenWhisk platform [10]. The proxy is the runtime.

Anything can be a runtime, as far as OpenWhisk is concerned, as long as it implements

the Action Interface, which specifies a behavior that OpenWhisk expects. In other words,

a runtime can be thought of a black box (docker container) that listens on two HTTP

routes: /init and /run on port 8080, which are used for deploying and executing actions,

respectively. OpenWhisk calls on the /init route with the action code to initialize an action.

Whenever the action is invoked, OpenWhisk will send a POST request to the /run route

with the action’s parameters as payload. The runtime should return the result of the action.

The behavior is shown abstractly in figure 2.1.

Runtime

/run

/init /init

/run

JSON
Initialization

Payload

Action
Parameters

Activation
Result

Initialization
Result

Figure 3.1: Abstract representation of the Action Interface in OpenWhisk.

The /init endpoint is tasked with container initialization and accepts a POST request

consisting of a JSON object that includes the action name, function to be executed, the

source code, and several environment variables. This initialization happens exactly once

and must be completed within a predefined time limit set by the platform [10].

Once initialization is completed successfully, the runtime transitions to a state where

it can activate the function. The /run endpoint is responsible for this task. It receives

an HTTP POST request with a new activation context and the function’s input param-

eters. The route needs to accept a JSON object and respond with one, adhering to the

OpenWhisk platform’s prescribed schema. Every action in OpenWhisk has a set time

limit, within which the activation must complete. If the function executes successfully,

the route responds with 200 OK, and the response body is recorded as the result of the

activation [12].

The runtime should flush all the logs generated during initialization and execution,

adding a unique frame marker at the end of each activation log stream. This marker is

necessary to avoid delayed or truncated activation logs [12].

17

3.5.2 ActionLoop Proxy in OpenWhisk

The ActionLoop proxy is a tool designed to simplify the process of creating new Open-

Whisk runtimes. While one can develop a new runtime by following the Action Interface,

the ActionLoop proxy offers a quicker and more efficient way to achieve this by imple-

menting most of the specification out-of-the-box [11].

The ActionLoop proxy is a runtime engine, developed in Go, initially designed to

support the OpenWhisk Go language runtime. However, its generic design allows it to be

adapted for other language runtimes such as Swift, PHP, Python, Rust, Java, Ruby, and

Crystal. It was engineered keeping both compiled and scripting languages in mind.

Using the ActionLoop proxy, one can develop a new runtime in a fraction of the time

it would take to create one from scratch. This is due to the fact that the ActionLoop proxy

requires the developer to write only a command line protocol instead of a full-fledged web

server, reducing complexity. Additionally, the ActionLoop proxy is known to significantly

enhance the performance of existing runtimes, providing speed improvements ranging

from 2x to 20x [11].

Since Swift, like all other language runtimes except Javascript, leverage it, under-

standing the ActioxnLoop proxy is crucial to be able to update the OpenWhisk runtime

to support the latest version of Swift, enhancing the potential for Swift to be used as a

Serverless language.

3.5.3 Compiling a Swift action with the ActionLoop Proxy

Runtimes are docker images. One of the features of the ActionLoop proxy is compiling

an action into a binary file that can then be used by the runtime to run the action. This

could be useful in debugging, as well as accelerating development. Having the ability

to compile locally is crucial in the development process. Developers can immediately

catch any compile-time errors, which in the context of Swift and most statically typed

languages, is especially useful since many errors are caught there. This effect is more

pronounced in the case of Swift, as we will see in later chapters where we explain some

of Swift’s safety features. Suppose the Swift runtime is built into the docker image tagged

as swift-one. With the following command we can build the binary for the action that runs

the fuction mainName:

docker run swift-one -compile mainName

The standard input of this command is the source file of our function. There are two cases

on where that function could reside:

Single File the function is contained in a single Swift file

18

Package the function is part of a Swift package

In the case of the Swift package, it should be zipped and be given as standard input to the

command. The Swift runtime expects to be able to unzip it, and in the resulting directory

run swift build -c release. This is extracted into a src directory inside the docker

container. In the parent folder there exists a sample swift package skeleton. In the case

that the contents of the zip file are nested inside another folder, when the runtime tries to

run the swift build command, unexpected behavior will occur. That is because the swift

compiler when it can’t find the Package.swift file in the current directory, it searches up the

hierarchy to find it, resulting in it trying to build the blank swift package (which will most

likely not contained the desired function). In our experience, this has caused countless

hours of debugging and trying to figure out what the problem is, because of unhelpful

feedback such as "function X not found". Fully understanding the inner workings of the

ActionLoop proxy and the Swift runtime was required. One could argue the simplicity

the ActionLoop proxy aims to provide is lost in this. The following command produces

the binary executable fun for the function fun() which is contained in the Swift package

which is zipped inside myPackage.zip:

docker run swift-one -compile fun <myPackage.zip >fun.zip

fun.zip contains a folder which contains the actual binary.

The behavior of the binary is as follows: It listens on standard output for the JSON

payload OpenWhisk will send it (which contains the parameters of the function). It writes

to standard output the result of the function. In case that the output is a Codable type, it

returns the JSON encoded text.

3.6 Process of Updating the Swift Runtime

The current Swift runtime repository [7] contains a folder called core which contains the

files necessary to build the image for each swift version.

Each folder contains the following files:

Whisk.swift A client for invoking actions, creating triggers, and most basic wsk func-

tionalities in Swift. It is not directly needed in the runtime, but it is useful as a

simple OpenWhisk SDK for swift.

build.gradle Contains some gradle options. Mainly the name of the docker image (which

will be built from this folder).

CHANGELOG.md The changelog for that version.

19

Figure 3.2: Contents of the core folder of the Swift runtime

main.swift Contains just a sample function, used for testing and an initial swift build.

Dockerfile The actual docker file for building the image. It is responsible for including

the ActionLoop proxy.

Package.swift Sample package file used for testing.

swiftbuild.py This file is used as the /bin/compile tool, as specified in the ActionLoop

proxy. It is responsible for creating the action binary.

swiftbuild.py.launcher.swift This is used as the /bin/compile.launcher file, as specified

in the ActionLoop proxy. This file contains all supported signatures for deploying

functions.

swiftbuildandlink.sh In the case of Swift, this just build the Swift executable

In order to actually update the runtime, a copy of any of the existing runtime folder will

do, and requires minimal changes:

Dockerfile Simply replace the swift image tag to the latest one (FROM swift:5.4 ->

FROM swift:5.8)

build.gradle Change the image tag to a new one: ext.dockerImageName = ’action-swift-

v5.4’ -> ext.dockerImageName = ’action-swift-v5.8’

20

swiftbuild.py.launcher.swift Replace the callback-based functions to async based ones

func _run_main<Out: Encodable>(mainFunction: (@escaping (Out?,

Error?) -> Void) -> Void, json: Data) {↪→

let resultHandler = { (out: Out?, error: Error?) in

if let error = error {

_whisk_print_error(message: "Action handler

callback returned an error:", error:

error)

↪→

↪→

return

}

guard let out = out else {

_whisk_print_error(message: "Action handler

callback did not return response or

error.", error: nil)

↪→

↪→

return

}

do {

let jsonData = try

Whisk.jsonEncoder.encode(out)↪→

_whisk_print_result(jsonData: jsonData)

} catch let error as EncodingError {

_whisk_print_error(message: "JSONEncoder

failed to encode Codable type to JSON

string:", error: error)

↪→

↪→

return

} catch {

_whisk_print_error(message: "Failed to

execute action handler with error:",

error: error)

↪→

↪→

return

}

}

let _ = mainFunction(resultHandler)

}

func _run_main<Out: Encodable>(mainFunction: ()async -> (Out?,

Error?), json: Data) async{↪→

let (out, error) = await mainFunction()

21

if let error = error {

_whisk_print_error(message: "Action handler callback

returned an error:", error: error)↪→

return

}

guard let out = out else {

_whisk_print_error(message: "Action handler callback

did not return response or error.", error: nil)↪→

return

}

do {

let jsonData = try Whisk.jsonEncoder.encode(out)

_whisk_print_result(jsonData: jsonData)

} catch let error as EncodingError {

_whisk_print_error(message: "JSONEncoder failed to

encode Codable type to JSON string:", error:

error)

↪→

↪→

return

} catch {

_whisk_print_error(message: "Failed to execute action

handler with error:", error: error)↪→

return

}

}

Now,

swiftbuild.py needs to be updated so that the code it injects calls the async function with

the await keyword:

code += f" _run_main(mainFunction: {main}, json: nil)\n" becomes: code

+= f" await _run_main(mainFunction: {main}, json: nil)\n"

3.7 Challenges Encountered

While updating the runtime in hindsight did not require many changes, understanding

how it all works together with the ActionLoop proxy to produce and run a binary required

considerable effort. Issues arose frequently. Small mistakes rarely yield useful feedback.

As mentioned before, a small change such as nesting the source file just one folder further,

leads to confusing behavior.

22

For instance, consider how the current swift runtime processes an input. It reads a

line from standard input, which is the JSON object OpenWhisk provides. That object,

contains the parameters of the activation under the key ’value’.

let jsonData = try JSONSerialization.data(withJSONObject:

parsed["value"] as Any, options: [])↪→

Deploying and activating function without parameters is supported by openwhisk and

very much possible. What happens when a Swift action is activated with no parameters?

The runtime tries to serialize the [value] key which in this case does not exist. The result

is that JSONSerialization’s data function throws an error, failing the activation.

23

Chapter 4

Performance Overview

4.1 Value Types vs Reference Types and Copy-On-Write 24

4.1.1 Value Types . 25

4.1.2 Reference Types . 25

4.1.3 Copy-On-Write (CoW) . 25

4.1.4 Performance Benefits . 26

4.2 Qualitive Comparison with Go, Java, Javascript, and Python 26

4.2.1 Go . 27

4.2.2 Python . 28

4.2.3 Node.js (JavaScript) . 29

4.2.4 Java . 30

4.3 Summary . 31

In

this chapter, we examine some qualities of Swift that could give it a performance edge

over other languages. What are those qualities? Do other serverless languages match

them with anything similar? We aim to answer those questions.

4.1 Value Types vs Reference Types and Copy-On-Write

First, we have to understand the differentiation of value and reference types. In pro-

gramming languages, value types and reference types represent two ways to handle data.

Understanding the difference between them and their performance implications is cru-

cial to making informed decisions when choosing a language for serverless applications.

Swift not only distinguishes between value and reference types, but also employs Copy-

On-Write optimization for most of its value types, including collections such as Arrays,

Dictionaries, and Sets. This differentiation allows Swift to provide "free" CoW for Value

24

types. That means a more efficient use of memory, which is more than crucial in memory-

constrained contexts such as serverless.

4.1.1 Value Types

Value types are types for which the value is stored directly in the memory. When a value

type is assigned or passed to a function, a separate copy of the value is created. The main

benefit of value types is that they are generally more efficient in terms of memory usage

and can result in more predictable performance. This is because allocation happens in

the stack, which tends to be much faster than heap allocation, which is what happens for

reference types. In Swift, the distinction between value and reference types is handled

through structs (value types) and classes (reference types).

4.1.2 Reference Types

Reference types represent data where the memory location (or reference) is stored, rather

than the data itself. When a reference type is assigned or passed to a function, the refer-

ence (memory address) is copied, not the actual data. This means that different variables

can point to the same data, potentially leading to unexpected behavior if the data is mod-

ified.

4.1.3 Copy-On-Write (CoW)

Swift uses Copy-On-Write (CoW) for most of its value types, including collections such

as Arrays, Dictionaries, and Sets. Collections whose Element type is also a value type

essentially leverage CoW for free. CoW is an optimization strategy where the copying of

a value type is delayed until it’s necessary, i.e., when the value needs to be modified.

This approach has several performance benefits when compared to simply copying the

data every time:

• Sharing the same data among multiple instances of a collection is more memory

efficient, as multiple copies of the same data are not required.

• When a value is not modified, the overhead of data copying is eliminated, resulting

in improved performance.

• Copying is performed only when modifications are made, avoiding unnecessary

data duplication.

25

4.1.4 Performance Benefits

The distinction between value and reference types, as well as Swift’s usage of CoW, has

several implications for performance:

• Value types with CoW can lead to more predictable performance, as the compiler

can make better optimization decisions when it knows that data cannot be shared

or modified externally. Furthermore, the actual data copying is delayed until it’s

necessary.

• Copying value types can be faster, as the memory layout is more predictable and

can often be associated with better cache utilization.

• Avoiding the overhead of managing memory references for reference types can

result in performance improvements, as fewer indirections are needed for memory

access.

For example, suppose in a backtracking algorithm, we execute a function on some data.

The function may or may not modify it. Suppose we pass a copy of this data to the

function, in order to later decide which one of the two to keep. If the one produced by

the function is not desired, we "backtrack" to the previous version. In other languages,

this copy of the data is guaranteed, even though the function may not modify it at all. In

Swift, no copying takes place unless the function actually modifies it.

In summary, the distinction between value and reference types in a language like

Swift, combined with the use of Copy-On-Write optimizations, provides developers with

fine-grained control over memory handling and potentially leads to better performance

when compared to languages that do not offer such a distinction. These aspects make

Swift an attractive choice for serverless applications where performance is critical.

4.2 Qualitive Comparison with Go, Java, Javascript, and
Python

Is the distinction between value types and reference types achievable in each language? Is

any benefit from the distinction possible in each language? In this section, we will com-

pare the distinction between reference and value types in Swift to Go, Python, Node.js

(JavaScript), and Java. We will examine whether these languages offer a similar distinc-

tion, and if any benefits from the distinction are achievable in each language.

26

4.2.1 Go

Go supports both reference types and value types. In Go, structs are used as value types,

while slices, maps, and channels are some examples of reference types.

Value types in Go: When a value type variable is assigned or passed to a function, a

copy of the value is created. Consider the following example:

package main

import "fmt"

type Point struct {

X int

Y int

}

func main() {

p1 := Point{1, 2}

p2 := p1

p2.X = 3

fmt.Println(p1) // Output: {1 2}

fmt.Println(p2) // Output: {3 2}

}

In this example, assigning p1 to p2 creates a separate copy of the value, hence chang-

ing p2.X does not affect p1.

Reference types in Go: While Go also has reference types, like slices, they behave

differently than reference types in Swift. Here’s an example using slices:

package main

import "fmt"

func main() {

s1 := []int{1, 2, 3}

s2 := s1

s2[0] = 9

27

fmt.Println(s1) // Output: [9 2 3]

fmt.Println(s2) // Output: [9 2 3]

}

In this case, assigning s1 to s2 creates a reference to the same slice. Modifying s2[0]

affects s1 as well.

Although Go has value and reference types, it does not support Copy-On-Write (CoW)

optimizations like Swift, limiting its potential for similar performance improvements.

4.2.2 Python

Python, being a dynamically typed language, does not explicitly provide separate value

and reference types. However, the distinction can still be made between mutable and

immutable objects, which relates to the concept of value and reference types.

Immutable objects: Immutable objects like tuples, strings, and frozensets behave sim-

ilarly to value types:

t1 = (1, 2)

t2 = t1

t2 += (3,)

print(t1) # Output: (1, 2)

print(t2) # Output: (1, 2, 3)

In this example, updating t2 by adding a new element does not affect t1.

Mutable objects: Mutable objects like lists, dictionaries, and sets behave more like

reference types:

l1 = [1, 2, 3]

l2 = l1

l2[0] = 9

print(l1) # Output: [9, 2, 3]

print(l2) # Output: [9, 2, 3]

Here, assigning l1 to l2 creates a reference to the same list. Modifying l2[0] affects

l1 as well.

28

Python’s performance characteristics are quite different from languages like Swift and

Go. As Python does not have a built-in CoW mechanism and is generally slower due to

its dynamic typing and interpreted nature, the benefits achievable from the distinction

between value and reference types are comparatively limited.

4.2.3 Node.js (JavaScript)

JavaScript, the language used in Node.js, is also dynamically typed and principally uses

reference types. All objects in JavaScript are reference types, including arrays and func-

tions.

Reference types in JavaScript: When an object is assigned or passed to a function, it’s

the reference that is passed, not the actual data:

let arr1 = [1, 2, 3];

let arr2 = arr1;

arr2[0] = 9;

console.log(arr1); // Output: [9, 2, 3]

console.log(arr2); // Output: [9, 2, 3]

In this example, assigning arr1 to arr2 creates a reference to the same array. Modi-

fying arr2[0] affects arr1 as well.

Simulating value types in JavaScript: Although JavaScript does not have native value

types, developers can simulate value-like behavior using techniques such as object cloning:

function clone(obj) {

return JSON.parse(JSON.stringify(obj));

}

let obj1 = { x: 1, y: 2 };

let obj2 = clone(obj1);

obj2.x = 3;

console.log(obj1); // Output: { x: 1, y: 2 }

console.log(obj2); // Output: { x: 3, y: 2 }

29

Despite being able to simulate value types, the distinction between value and reference

types in JavaScript is not as natural as it is in Swift. Furthermore, JavaScript lacks built-

in CoW optimizations, limiting the performance benefits that can be derived from the

distinction.

4.2.4 Java

Java, being an object-oriented language, primarily deals with reference types like classes

and interfaces. Primitive types in Java, like int, float, and boolean, are value types.

Value types in Java: Java’s primitive types are value types:

int a = 1;

int b = a;

b = 3;

System.out.println(a); // Output: 1

System.out.println(b); // Output: 3

In this case, assigning a to b creates a separate copy of the value. Changing the value

of b does not affect a.

Reference types in Java: Java’s objects behave as reference types:

List<Integer> list1 = new ArrayList<>(Arrays.asList(1, 2, 3));

List<Integer> list2 = list1;

list2.set(0, 9);

System.out.println(list1); // Output: [9, 2, 3]

System.out.println(list2); // Output: [9, 2, 3]

In this example, assigning list1 to list2 creates a reference to the same list. Modi-

fying an element in list2 affects list1 as well.

Java has a more explicit distinction between value (primitive types) and reference

types (objects). However, since Java does not have CoW optimizations like Swift, the

potential performance benefits from such distinctions are more limited in comparison.

30

4.3 Summary

In summary, all five languages – Swift, Go, Python, JavaScript (Node.js), and Java –

offer some degrees of distinction between value and reference types or related concepts

(mutable/immutable objects). The distinction is often more explicit in statically-typed

languages like Swift, Go, and Java, while dynamically-typed languages like Python and

JavaScript handle the distinction via mutable/immutable objects or using programmer-

provided methods for simulating value types.

However, the primary differentiator for Swift is its built-in Copy-On-Write (CoW)

optimization for value types. This feature allows Swift to offer performance benefits

for serverless applications that may not be as easily achievable in other languages under

comparison. Performance improvements, both in terms of memory usage and execution

time, can be derived from the proper understanding and application of the distinction

between value and reference types, as well as making the most of the CoW optimization

in Swift.

31

Chapter 5

Ease of Development

5.1 Language Simplicity and Syntax . 32

5.2 Available Libraries and Frameworks . 40

5.2.1 Web Development . 40

5.2.2 Developer community and support 43

5.2.3 Tooling and IDE support . 43

5.2.4 Integration with serverless platforms 43

5.2.5 Learning curve . 43

5.2.6 Linux Support . 43

How easy is it to develop serverless functions in Swift compared to other languages?

We can evaluate the development experience of Swift by comparing it with other server-

less languages.

5.1 Language Simplicity and Syntax

Swift is a modern, expressive, and safe programming language designed for performance

and ease of use. Its simplicity and syntax make it a strong candidate for serverless func-

tions. In this section, we will examine how Swift’s syntax compares to other languages

and how it contributes to a better development experience.

Simplicity in Swift

Swift’s syntax aims to be concise and clear, which can lead to shorter and more readable

code. For instance, consider the following example of declaring a constant in Swift:

let numberOfDays = 7

32

This is similar to Python:

number_of_days = 7

However, in Java, the declaration is more verbose:

final int numberOfDays = 7;

Swift’s simplicity becomes more evident when dealing with more complex constructs,

such as optional values. In Swift, optional values are handled using the ‘¿ and ‘¡ operators,

making it easy to declare and unwrap optional values:

let optionalValue: Int? = 42

let unwrappedValue: Int = optionalValue!

In comparison, Java uses ‘Optional‘ containers, which leads to more verbose code:

Optional<Integer> optionalValue = Optional.of(42);

int unwrappedValue = optionalValue.get();

Safety Features

Swift’s syntax includes features that promote safe programming practices and reduce the

likelihood of errors. One such feature is the guard clause. The guard statement allows

developers to perform early exits from a function or loop, simplifying the code and mak-

ing it more readable. With the compiler enforcing early exits, developers are less likely to

introduce errors.

Here’s an example of a guard clause in Swift:

func processInput(_ input: String?) {

guard let unwrappedInput = input else {

print("Invalid input")

return

}

// Continue processing with unwrappedInput

}

A similar function in Python might use a conditional statement:

33

def process_input(input: Optional[str]):

if input is None:

print("Invalid input")

return

Continue processing with input

While both versions are readable, the Swift version explicitly enforces the early exit,

making it less prone to errors.

Readability

Swift’s syntax and features contribute to more readable code. For example, Swift’s type

inference system allows developers to write cleaner code without explicitly declaring

types:

let message = "Hello, world!"

In contrast, Java requires explicit type declarations:

String message = "Hello, world!";

Additionally, Swift’s support for functional programming constructs, such as map,

filter, and reduce, can make code more readable and expressive. Here’s an example of

filtering and transforming an array in Swift:

let numbers = [1, 2, 3, 4, 5]

let evenSquares = numbers.filter { $0 % 2 == 0 }.map { $0 * $0 }

A similar operation in Java is more verbose and less expressive:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);

List<Integer> evenSquares = numbers.stream()

.filter(n -> n % 2 == 0)

.map(n -> n * n)

.collect(Collectors.toList());

Copy-on-Write (CoW)

Copy-on-write (CoW) is an optimization technique that Swift uses to minimize memory

usage and improve performance when working with value types like arrays, dictionaries,

and strings. CoW delays the copying of a value until it is modified, reducing unnecessary

copying and memory overhead.

Here’s an example of CoW in action:

34

var array1 = [1, 2, 3]

var array2 = array1

array2.append(4)

In this example, ‘array1‘ and ‘array2‘ initially share the same underlying storage.

When ‘array2.append(4)‘ is called, Swift detects that the storage is shared and creates a

separate copy of the storage for ‘array2‘ before appending the value.

A similar example in Java does not benefit from the CoW optimization:

List<Integer> list1 = new ArrayList<>(Arrays.asList(1, 2, 3));

List<Integer> list2 = new ArrayList<>(list1);

list2.add(4);

In this case, Java creates a new copy of the list immediately, regardless of whether

modifications are made, which can lead to higher memory usage and decreased perfor-

mance.

Extensions

Swift’s extensions allow developers to add new functionality to existing types, such as

classes, structures, or protocols, without modifying their original implementation. This

feature makes it simple to enhance types in a clean and modular way.

For example, consider adding a method to the ‘Int‘ type that checks if a number is

even:

extension Int {

var isEven: Bool {

return self % 2 == 0

}

}

let number = 42

print(number.isEven) // Output: true

Java does not have an equivalent feature, so a utility method or wrapper class would

be needed:

public static boolean isEven(int number) {

return number % 2 == 0;

}

35

int number = 42;

System.out.println(isEven(number)); // Output: true

Swift’s extension feature leads to more elegant and expressive code compared to Java

in this example.

Custom Operators

Swift allows developers to define custom operators, providing flexibility and expressive-

ness in the language. Custom operators can be created for arithmetic, comparison, logical,

and other operations, enhancing readability and simplifying complex expressions.

For example, consider defining a custom ‘**‘ operator for exponentiation:

infix operator **: MultiplicationPrecedence

func **(base: Double, exponent: Double) -> Double {

return pow(base, exponent)

}

let result = 2.0 ** 3.0 // Output: 8.0

In Java, you would need to use the ‘Math.pow‘ function directly, which may be less

expressive:

double result = Math.pow(2.0, 3.0); // Output: 8.0

In summary, Swift’s simplicity and syntax, safety features like guard clauses, support

for functional programming constructs, copy-on-write optimization, extensions, and cus-

tom operators contribute to writing simple, safe, and efficient code. These features enable

developers to create high-performance serverless functions while maintaining readability

and expressiveness.

Property Wrappers

Property wrappers in Swift are a powerful language feature that can significantly simplify

code by encapsulating common patterns and behaviors. They allow developers to create

reusable, composable, and declarative abstractions for property access patterns.

One prominent example of property wrappers is SwiftUI, a user interface toolkit for

building applications. SwiftUI extensively uses property wrappers, such as ‘@State‘,

‘@Binding‘, and ‘@ObservedObject‘, to manage state and data flow. These wrappers

enable developers to create complex and reactive UIs with concise and expressive code.

36

Another instance where property wrappers are beneficial is the Swift ‘Argument-

Parser‘ library. This library provides a straightforward way to parse command-line ar-

guments. By employing property wrappers like ‘@Option‘, ‘@Argument‘, and ‘@Flag‘,

developers can define command-line interfaces with minimal code, eliminating the need

to manually handle argument parsing. This results in a more readable and maintainable

codebase.

In the following Swift ‘ArgumentParser‘ example, a ‘transform‘ argument is used to

define a URL option and validate the input:

import ArgumentParser

struct ExampleApp: ParsableCommand {

@Argument(help: "Your name")

var name: String

@Option(help: "Your age")

var age: Int

@Argument(help: "URL of the PS (powersoft) Server", transform:

urlTransformer)↪→

var psURL: URL

func run() {

print("Hello, \(name)! You are \(age) years old.")

print("PS Server URL: \(psURL)")

}

}

let urlTransformer: (String) -> URL = { str in

guard let url = URL(string: str) else {

fatalError("\(str) is not a valid URL!")

}

return url

}

ExampleApp.main()

For comparison, let’s look at similar functionality in Python using the ‘argparse‘ li-

brary:

37

import argparse

import sys

from urllib.parse import urlparse

def url_transformer(str):

url = urlparse(str)

if not url.scheme or not url.netloc:

sys.exit(f"{str} is not a valid URL!")

return url

parser = argparse.ArgumentParser(description="Example command-line

application")↪→

parser.add_argument("name", help="Your name")

parser.add_argument("age", type=int, help="Your age")

parser.add_argument("psURL", type=url_transformer, help="URL of the

PS (powersoft) Server")↪→

args = parser.parse_args()

print(f"Hello, {args.name}! You are {args.age} years old.")

print(f"PS Server URL: {args.psURL}")

And in Java using the ‘picocli‘ library:

import java.net.MalformedURLException;

import java.net.URL;

import picocli.CommandLine;

import picocli.CommandLine.Command;

import picocli.CommandLine.Option;

import picocli.CommandLine.Parameters;

@Command(name = "ExampleApp", description = "Example command-line

application")↪→

public class ExampleApp implements Runnable {

@Parameters(index = "0", description = "Your name")

private String name;

@Option(names = {"-a", "--age"}, description = "Your age")

private int age;

38

@Parameters(index = "1", description = "URL of the PS (powersoft)

Server", converter = UrlConverter.class)↪→

private URL psURL;

public static void main(String[] args) {

int exitCode = new CommandLine(new

ExampleApp()).execute(args);↪→

System.exit(exitCode);

}

@Override

public void run() {

System.out.printf("Hello, %s! You are %d years old.%n", name,

age);↪→

System.out.printf("PS Server URL: %s%n", psURL);

}

public static class UrlConverter implements

CommandLine.ITypeConverter<URL> {↪→

@Override

public URL convert(String value) throws MalformedURLException

{↪→

URL url = new URL(value);

if (url.getProtocol() == null || url.getHost() == null) {

throw new MalformedURLException(value + " is not a

valid URL!");↪→

}

return url;

}

}

}

In the Python and Java examples, the code for validating and parsing the URL input

is more verbose compared to the Swift version. The Swift @Argument property wrapper,

combined with the transform argument, simplifies the code and enhances expressiveness.

In summary, Swift’s property wrappers contribute to the language’s simplicity and

expressiveness, making it an attractive choice for serverless development. Their ability to

39

provide powerful abstractions and code simplification is an advantage that might be more

difficult or impossible to achieve in other languages.

5.2 Available Libraries and Frameworks

Swift has a growing ecosystem that is constantly evolving and expanding. However, it

might not be as extensive as more established languages like Python, Java, and Node.js.

This could affect the availability of libraries and frameworks needed for specific use cases

in the context of FaaS. In this section, we will discuss some of the notable libraries and

frameworks available for Swift, as well as some of the challenges developers may face in

certain scenarios. [14]

5.2.1 Web Development

One of the most prominent Swift web frameworks is Vapor, which allows developers to

build web applications and APIs using Swift. While Vapor has gained popularity and

offers many useful features, it comes with its own set of challenges when compared to

popular frameworks or solutions available for Python, Node.js, and Java.

Popular Frameworks for Python, Node.js, and Java

In contrast to Swift’s Vapor, more established languages such as Python, Node.js, and Java

offer a wide range of popular frameworks and libraries that make web development easier

and faster. Some of these frameworks have been around for many years and have extensive

documentation, community support, and a large ecosystem of plugins and extensions.

Python

• Django: A high-level web framework that promotes rapid development and clean,

pragmatic design. It includes an ORM, authentication support, an admin interface,

and many other features out-of-the-box [1].

• Flask: A lightweight web framework that provides flexibility for developers to

choose their own components, such as databases and authentication systems [3].

Node.js

• Express: A minimal and flexible web application framework for Node.js that pro-

vides a robust set of features for web and mobile applications. Express is widely

used and has a large number of plugins and middleware available [2].

40

• Koa: A next-generation web framework for Node.js, created by the team behind

Express. Koa is designed to be more expressive and robust while being smaller and

more lightweight [6].

Java

• Spring Boot: A widely-used framework that simplifies the development and de-

ployment of Java-based web applications. Spring Boot provides built-in support for

embedded servers, security, data access, and more [9].

• JavaServer Faces (JSF): A Java web application framework that simplifies build-

ing user interfaces for Java EE applications. JSF provides a component-based ap-

proach, allowing developers to build UIs by assembling pre-built components [5].

Example Use Cases

1. User Authentication and Authorization: When building a web application, it is

common to require user authentication and authorization. Django includes built-in

support for user authentication, while Express has the popular Passport middle-

ware, and Spring Boot provides Spring Security. On the other hand, Vapor offers

authentication support, but it might not be as mature or feature-rich as these other

frameworks.

2. Database Integration: Many web applications require integration with databases.

Django comes with a built-in ORM, while Flask has SQLAlchemy and Spring Boot

offers JPA and Hibernate. In the Node.js ecosystem, Sequelize and TypeORM are

popular choices for database integration. Vapor has its own ORM called Fluent, but

it may lack the maturity, community support, and extensive documentation com-

pared to the other solutions.

3. Template Engines: Rendering server-side templates is a common task in web de-

velopment. Python’s Django and Flask both offer built-in template engines, while

Node.js’s Express supports various templating engines like Pug and EJS. In Java,

Thymeleaf is a popular template engine for Spring Boot applications. Vapor sup-

ports the Leaf template engine, but it may not have the same level of community

support or plugin ecosystem as the alternatives.

In summary, while Swift’s Vapor framework offers a powerful solution for web de-

velopment, it may face challenges in terms of maturity, community support, and available

plugins when compared to the popular frameworks and libraries available for Python,

Node.js, and Java. Developers should consider the specific requirements of their server-

less web applications and weigh the trade-offs between the available options.

41

Vapor and Swift Package Manager

Due to the way the Swift compiler and the Swift Package Manager currently work, re-

solving package dependencies can be time-consuming, as it happens sequentially. Even a

boilerplate Vapor app requires the compilation of more than 1,500 files. Additionally, the

Swift Package Manager has experienced stability issues, such as a bug related to updating

dependencies from a specific branch of a Git repository. Although the bug has now been

resolved, it demonstrates the growing pains Swift’s ecosystem is experiencing.

Documentation and Community Support

As a newer language, Swift’s documentation and community support might not be as

comprehensive as more established languages. Developers may face challenges in finding

appropriate resources or examples when working with specific libraries or frameworks in

the context of FaaS. This could lead to slower development and increased reliance on trial

and error to find solutions.

Despite these challenges, Swift’s ecosystem continues to grow and improve, and many

developers are contributing to its progress. With time and continued investment from the

community, Swift is likely to become a more mature and stable language for serverless

functions.

Example: Swift Package Manager Bug

One example that highlights Swift’s infancy and lack of maturity for production use

is a bug related to the Swift Package Manager. In the past, the Swift Package Man-

ager had an issue where the package cache would not get invalidated for recent com-

mits when a dependency was set to a branch of a Git repository (e.g., .package(url:

"https://github.com/andreas16700/OTModelSyncer_pub", branch: "main")).

This bug significantly hindered development, as developers were forced to resort to ob-

scure workarounds to manage their dependencies.

In the specific case mentioned, the project was divided into several packages, and

changes were committed frequently. Due to this bug, the development process became

considerably more challenging. The developer had to run unit tests and use Docker con-

tainers to ensure operational consistency with Linux, which resulted in increased devel-

opment time and effort.

Although the bug has now been fixed, it took more than three years since it first

appeared on the Swift forums [16] . This example demonstrates that while Swift is a

powerful and promising language, it still faces challenges due to its relative immaturity

compared to more established languages.

42

As the Swift ecosystem continues to grow and mature, it is likely that such issues will

become less common. However, developers should be aware of the potential challenges

they may face when adopting Swift for serverless functions and be prepared to invest

additional time and effort to address them.

5.2.2 Developer community and support

A robust developer community and available resources can contribute to the ease of de-

velopment. While Swift has a strong community, the serverless aspect of it might not be

as well-established as other languages.

5.2.3 Tooling and IDE support

Swift has great support in Xcode, which is the primary development environment for Ap-

ple platforms. However, developers who primarily work with other languages may not be

familiar with Xcode. There is also support for Swift in other IDEs, such as Visual Stu-

dio Code, but the level of support may vary compared to languages with more extensive

serverless development history.

5.2.4 Integration with serverless platforms

The ease of integrating Swift with serverless platforms like OpenWhisk, AWS Lambda,

or Google Cloud Functions may impact the development experience. Consider the avail-

ability of templates, plugins, and other tools that facilitate serverless development and

deployment.

5.2.5 Learning curve

The ease of development in a language also depends on an individual developer’s famil-

iarity and previous experience with that language. Swift is easy to learn for beginners, but

developers who have never used Swift may need some time to become proficient.

5.2.6 Linux Support

Swift’s support for Linux is relatively recent, and there are some features that are not

available or have limited functionality due to the absence of the Objective-C runtime.

Swift was designed to interoperate closely with Objective-C when it is present, but it was

also designed to work in environments where the Objective-C runtime does not exist [8]

. This means that some features that depend on the Objective-C runtime are not available

on Linux.

43

For example, when a Swift class on Apple’s platforms is marked @objc or subclasses

NSObject, you can use the Objective-C runtime to enumerate available methods on an

object or call methods using selectors. Such capabilities are absent on Linux because they

depend on the Objective-C runtime [8].

Developers might encounter unexpected limitations when developing serverless func-

tions due to these differences. The exact features that are not available on linux are not

well documented. While a program may compile and run fine on a Mac, it may either en-

counter a compiler-time error on linux or, albeit sparingly, crash at runtime. Developers

may need to resort to writing unit tests and running them in Docker containers to ensure

operational consistency between platforms.

An Example

While developing a crucial serverless function, compiling and deploying it raised no con-

cerns. But trying to invoke it elicited an unexpected error.

Figure 5.1: Invoking the action using Apache’s invoke.py tool

Note: This is using the invoke tool [4] provided by OpenWhisk for debugging runtimes.

Every action runs on a language runtime. A runtime is a docker image. Attaching

to the docker container and trying to run the binary to get more clues, we can see the

following issue:

Figure 5.2: Crash witnessed by manually running the action executable in the runtime

container

Due to the lack of Swift Linux IDEs and debuggers, not many options besides using

lldb exist.

Building the program again in debug mode (for easier debugging) and investigating

with lldb, an offending function is found and a breakpoint is set.

44

Figure 5.3: Debugging with LLDB to find the cause of the crash

The issue seems to arise after invoking the dataTask(with:) function of Founda-

tion’s URLSession. The networking part of Foundation made heavy use of Objective-C

and the Swift team, in the transition away from Objective-C, made a separate package

called FoundationNetworking just for Linux. Many networking parts of Foundation

are either poorly documented about their Linux support or silently unimplemented. The

true cause of the above crash is unknown.

This example demonstrates a significant hurdle in the development process that might

arise with no compiler warning, and made exceptionally more difficult with the sheer lack

of any sort of feedback.

Debugging serverless applications is already difficult enough, and Swift FaaS devel-

opers should expect it to be even more difficult (in the case of Swift) as they may find

themselves using lldb unexpectedly.

Swift’s Linux support continues to evolve, and the community is working on address-

ing these limitations. However, developers should be aware of the potential challenges

they may face when adopting Swift for serverless functions in a Linux environment and

be prepared to invest additional time and effort to overcome them.

45

Chapter 6

Synchronization System Case Study

6.1 Introduction . 46

6.2 The Need for Synchronization . 46

6.3 Sync Algorithm . 47

6.4 Implementation and Deployment . 49

In eCommerce, synchronization systems are often needed to ensure that the online

store reflects the current state of the store’s products’ logistics. Brick-and-mortar stores

manage their inventory with logistical software system. A synchronization system that

ensures the consistency and truthfulness of the online store is crucial. The main focus of

this chapter is on a practical comparison between serverless and monolithic implementa-

tions of such a synchronization system. Synthetic workloads are generated and two mock

servers, simulating a logistics system and a Shopify store are used.

6.1 Introduction

Suppose a brick-and-mortar store sells products, for example shoes. A shoe may have dif-

ferent variants: shoes of the same model could come in different colors and sizes. Variants

of the same product share some common product-level properties and each variant has its

own differentiating variant-level properties.

6.2 The Need for Synchronization

Each product has different variants. The store keeps track of its inventory with a logistics

system. That system provides an API endpoint with which one can query data and modify

it. The store wishes to have an online eCommerce store. The platform of the store has

46

Shoe1

Shoe1

Category

Tags

Brand/Vendor

Variant1

Price

Discount

SKU

Barcode

Variant1

Price

Discount

SKU

Barcode

Variant1

Price

Discount

SKU

Barcode

Figure 6.1: A product is comprised of different variants

an API endpoint for adding and modifying resources, such as the products. A system is

needed that ensures that the online store reflects the current state of the physical store.

That means that every product that exists on the physical store, should exist on the online

store with the correct quantity. If a product sells out on the physical store, it is the job of

the system to ensure that the lack of stock is present on the online store. We will not focus

on when the synchronization takes places but rather on how it would work.

6.3 Sync Algorithm

Since we’re working with two separate systems, and most of our operations are network

requests, there’s a lot that could go wrong: a request could time-out, an endpoint might

47

Physical Store
(PS)

eCommerce Site
(SH)

Logistics System

PS API SH API

Syncer

Figure 6.2: High level outline of the problem scenario

inexpectedly not accept a request or just be experiencing problems. Thus, we aim to min-

imize uncertainty. Firstly, the current state of the product is retrieved. As shown in Figure

6.3, all relevant information about it is requested from each endpoint: the product, its

variants and all its inventory listings. Continuing, we ensure the product-level properties

SyncerPhysical
Store

Online
Store1

Requests everything concerning the model
from the physical store. This includes the items

and their stock listings

2
Requests everything concerning the model

from the online store. Product may not exist at
all, variant may not exist.

Figure 6.3: Steps 1-2: Fetching current data about the product

are up to date. There is a case that an equivalent product on the online store might not

even exist. It is at this step that the syncer constructs and creates it. Next step, as shown

in Figure 6.4, is to do the same with the variant-level properties for each variant. The

previous step ensures that an equivalent product does indeed exist. This is important, be-

cause at step 4 it means that we can safely assume only two cases for a variant: it exists

or it doesn’t. Finally, at step 5 we update each variant’s inventory. Step 3 gaurantees that

an equivalent product exists, and step 4 guarantees that an equivalent variant exists. This

approach minimizes uncertainty. If any issues arise at any step, the sync is stopped, is

marked as failed, along with the error that caused it.

48

Syncer
Online
Store

3
Product-level Update

Syncer constructs and sends the necessary requests to ensure
that the equivalent product on the online store matches with the
ones on the physical store. If no such product exists, it creates it.

4
Variant-level Update

For each variant, the same is done as step 3, but
with variant-specific properties.

5
Inventory Update

For each variant, Syncer ensures that their inventory
listsings match with the physical store's inventories.

Figure 6.4: Steps 3-5: Apply any needed updates

6.4 Implementation and Deployment

Suppose we implement the above algorithm into a stateless function. It takes as input the

model code (identifier of the product) and returns a descriptive type, that includes any

possible errors and any modifications that it has done. We wish to use this function in a

monolithic and serverless implmenetation, so we can later compare them. Since the func-

tion is stateless, we can easily define it as an action on OpenWhisk (Fig. 6.5). The input

also contains the URLs of the PS and SH servers. As for the monolithic implementation,

we can set up a simple web server that exposes a route which accepts the same exact input

as the OpenWhisk action, runs the same sync function, and returns its output (Fig. 6.6).

49

Syncer

Physical
Store

(PS)

Online
Store

(SH)

OpenWhisk Action

Input

PS URL: https://
psserver.cloudlab.us

SH URL: https://
shserver.cloudlab.us

ModelCode: SHOE-1

Output

sourceData: ...

updates: <new variant1,

price changed for variant2,

stock updated for variant2, ...>

metadata: <dateStarted, errors,
...>

ModelCode: SHOE-1

Figure 6.5: Serverless Deployment

Syncer

Physical
Store

(PS)

Online
Store

(SH)

route /syncModel on Web Server

Input

PS URL: https://
psserver.cloudlab.us

SH URL: https://
shserver.cloudlab.us

ModelCode: SHOE-1

Output

sourceData: ...

updates: <new variant1,

price changed for variant2,

stock updated for variant2, ...>

metadata: <dateStarted, errors,
...>

ModelCode: SHOE-1

Figure 6.6: Monolithic Deployment

50

Chapter 7

Benchmarking Case Study
Implementations

Now that we have the two implementations, we wish to define a workflow that’ll be used

to benchmark them. The workflow should be deterministic, so we can recreate its exact

form for each implementation, and scalable, so we can steadily increase to see how each

version compares to increased load.

7.1 Workload

We’ve defined syncers that sync a single product across two services. We can say that

a workload is syncing all products. That means we have to generate the appropriate

resources on each service. This raises the question: for a product on the PS store, which

are the possible states on the online store? For any product on the PS store it can either

(a) be fully synced on the online store, (b) be partially synced or (c) not exist at all on the

online store. In other words, a workload of X products, some of them should be in the (a)

state, other on the (b) and the rest on the (c) state. A Pseudo-Random Number Generator

(PRNG) can be used for generating the data, as well as the number of models on the states

mentioned earlier.

Thus, a workload is defined by X, total number of models and S, the seed for the

PRNG. Now, we need to construct a benchmark program that will create workflows of

increasing size to measure the performance of each implmentation.

7.2 Experimental Setup

All the machines used in any experiments are of the same type, m510 on CloudLab.

CloudLab is a platform that allows researchers to reserve physical machines for a brief

51

Serverless

Physical
Store

(PS)

Online
Store

(SH)

Benchmark

Monolithic

1

2

3

Figure 7.1: Serverless Deployment

period of time to conduct experiments.

The experimental setup involved deploying the PS and SH servers on separate ma-

chines, the monolithic implementation on a single machine. The serverless implementa-

tion was deployed on 24 machines, of which 18 are invokers. In OpenWhisk, machines

are either invokers or core nodes. Invokers are machines that actually run the activations.

Core nodes are used for everything else, such as Kafka or nginx. The benchamrk pro-

gram, for a workload of size X goes through 3 steps for each implementation: 1. Set up

the servers: Configure the servers to a state mentioned earlier where some products need

syncing. 2. Use the implementation to sync all models 3. Reset the servers, removing all

data

52

7.3 Results and Discussion

In a given workload, sending the model sync request raised the following question: how

often should the model sync requests be sent? As the workload increases, should any

adjustments be made? As it currently stands, the benchmarker uses Swift’s TaskGroup

construct to send the requests.

7.3.1 Without a Rate Limit

First, we experimented with leaving it all up to the task group, which resulted in requests

being sent roughly all at once. The serverless implementation’s execution time increased

Time to Complete Workload

Ti
m

e
(s

ec
on

ds
)

0

8.75

17.5

26.25

35

Models (count)
50 150 250 350 450 550 650 750 850 950

1s

total(mono) total(serverless)

Figure 7.2: Execution time comparison between serverless and monolithic implementa-

tions

incomparably to the monolithic version, as seen on figure 5.1. While for both implemen-

tations the median latency did tend to increase, the serverless implementation’s latency

increased considerably faster, as seen in figures 5.2 and 5.3.

The above is explained by a much lower Queries per Second (QPS) by the serverless

implementation. As seen on figure 5.4, while the serverless implementation seems to have

53

Latency (median)

Ti
m

e
(m

illi
se

co
nd

s)

0ms

475ms

950ms

1,425ms

1,900ms

Models (count)
50 150 250 350 450 550 650 750 850 950

latMedian(mono) latMedian(serverless)

Figure 7.3: Median latency for a single

model request, scaled for the monolithic

implementation

Latency (median)

Ti
m

e
(m

illi
se

co
nd

s)

0s

5s

10s

15s

20s

Models (count)
50 150 250 350 450 550 650 750 850 950

latMedian(mono) latMedian(serverless)

Figure 7.4: Median latency for a single

model request

hit a limit of 28 QPS, the serverless implementation seems to hit a limit of 333, more than

ten times bigger.

Q
PS

0

100

200

300

400

Models (count)
50 150 250 350 450 550 650 750 850 950

28

333

QPS(mono) QPS(serverless)

Figure 7.5: QPS comparison between serverless and monolithic implementations

54

7.3.2 Implementing a Rate Limit

We use the Swift Rate Limitter, which is a custom made Swift rate limitter we have

developed [18], which is well tested, which allows us to send requests with a minimum

set delay between them. We utilized it to send the requests every 100ms. This will cap the

maximum QPS to 10 which ensures neither implementation will be stressed, hopefully

allowing us to have a clearer picture of the situtation.

With the rate limit both implementations take the same amount of time and bot achieve

roughly 10QPS. As evident from figure 5.5, a single model sync takes roughly 280ms

and 60ms on the serverless and monolithic implementations respectively. An interesting

Latency (median)

Ti
m

e
(m

illi
se

co
nd

s)

0ms

75ms

150ms

225ms

300ms

Models (count)
50 150 250 350 450 550 650 750 850 950

60ms

280ms

latMedian(mono) latMedian(serverless)

Figure 7.6: Rate-limited (100ms) comparison between serverless and monolithic imple-

mentations

finding, is that the P99.9% latency (figures 5.6 and 5.7), apart from being higher, it as less

stable on the serverless implementation. This is despite utilizing less than the third of its

maximum QPS.

Despite utilizing 18 machines for executing actions, the serverless approach did not

show any clear benefits. This may be attributed to the lack of support for "intra-concurrency"

in OpenWhisk runtimes, excluding NodeJS. This limitation significantly affects the scal-

55

Tail Latency (P99.9)

Ti
m

e
(s

ec
on

ds
)

0ms

50ms

100ms

150ms

200ms

50 150 250 350 450 550 650 750 850 950

latP99.9(mono) latP99.9(serverless)

Figure 7.7: Median latency for a single

model request, scaled for the monolithic

implementation

Tail Latency (P99.9)

Ti
m

e
(s

ec
on

ds
)

0s

1s

1s

2s

2s

50 150 250 350 450 550 650 750 850 950

latP99.9(mono) latP99.9(serverless)

Figure 7.8: Median latency for a single

model request

ing capabilities of the serverless implementation, which is a crucial aspect of the server-

less or FaaS promise. 18 machines achieving 28QPS means that on average, a request

takes 642ms to complete, which is more than double of the 280ms it takes, when the

system is not stressed.

7.4 Improvements and Future Work

There are potential avenues for improvement in the serverless system. Notably, updating

the Go proxy used by all OpenWhisk runtimes to support intra-concurrency could al-

low all language runtimes, including Swift, to support concurrent executions, potentially

dramatically increasing the maximum QPS.

7.5 Conclusion

The case study findings contribute to the overall conclusion of this thesis, suggesting that

the benefit of migrating to a serverless implementation is not always evident and should

be carefully assessed for each workflow. The case study also highlights the importance of

runtime support for intra-concurrency in realizing the full potential of serverless systems.

Without intra-concurrency, the requests stay in memory until a container is available to

serve them. The overheads of OpenWhisk may explain the 2 times slowdown of its request

completion under load. Notably, the Swift runtime was updated to the latest version to

leverage its native async/await features, which played a significant role in the serverless

implementation. A total of eighteen identical machines achieving a throughput of ten

56

times less than one single, identical machine is frankly unacceptable. Support for intra-

concurrency for the ActionLoop proxy should be a priority for the OpenWhisk project as

seamless, efficient scaling is the central promise of FaaS.

57

Chapter 8

Conclusion

In concluding, it is evident that Swift holds substantial potential as a serverless language,

albeit with several areas necessitating further development and exploration.

Swift’s expressiveness and simplicity render it a productive choice for developers,

offering a unique blend of performance and usability. However, a more comprehensive

practical comparison with other serverless languages such as Python, JavaScript, or Go is

imperative to fully comprehend its strengths and weaknesses in realistic serverless scenar-

ios. This will not only validate Swift’s theoretical advantages but also provide valuable

insights for its future development.

One important aspect to consider, is that the decision to utilize serverless architecture

should not be made lightly. While serverless computing offers scalability and reduces

the need for server management, in some cases, a shift from a serverless to a monolithic

architecture may lead to improved scalability, resilience, and cost-effectiveness, as was

the case with the Prime Video service [20]. This underscores the significance of a case-

by-case analysis when deciding on the architectural choice, which is a subject of ongoing

debate in the tech industry [19].

The current state of Swift as a serverless language is promising, but there are limita-

tions that need to be addressed. One of the key challenges is the lack of helpful feedback

for some errors, which contradicts Swift’s core promise of safety. Developers often find

themselves needing to use lldb on remote machines to troubleshoot, which can be a

significant hurdle in the development process.

Moreover, the need for better documentation and Linux support is evident. The ab-

sence of a built-in mechanism to ensure that all APIs used are supported on the Linux

platform is a significant drawback. Developers are currently left to rely on Docker tests

or discover at runtime if a feature is unsupported. Enhancing Linux support and pro-

viding comprehensive documentation would greatly improve Swift’s fitness as a systems

language and its viability as a serverless language.

In the context of OpenWhisk’s ActionLoop proxy, the importance of intra-concurrency

58

cannot be overstated. The case study results indicate that the lack of real concurrency

wastes much of the hardware’s potential and provides poor scaling, which is contrary to

the essence of serverless. As most runtimes use the ActionLoop proxy, its support of

concurrency is critically important for the efficient use of Swift in serverless settings.

Looking ahead, the future of Swift as a serverless language is bright, but it hinges on

addressing these challenges and capitalizing on its strengths. The journey of Swift in the

serverless landscape is just beginning, and with the right improvements, it can become

a powerful tool in the hands of developers. In this journey, it is vital to remember that

while serverless architecture offers many benefits, the decision between serverless and

monolithic architectures should be made with careful consideration ofthe specific context

and requirements of the project, as well illustrated by the case of Amazon’s Prime Video

service

59

Bibliography

[1] Django. https://www.djangoproject.com/.

[2] Express. https://expressjs.com/.

[3] Flask. https://flask.palletsprojects.com/.

[4] invoke tool. https://github.com/apache/openwhisk/blob/master/tools/

actionProxy/invoke.py.

[5] JavaServer Faces. https://www.oracle.com/java/technologies/

javaserverfaces.html.

[6] Koa. https://koajs.com/.

[7] Platform Support. https://github.com/apache/openwhisk-runtime-swift.

[8] Platform Support. https://swift.org/about/#platform-support.

[9] Spring Boot. https://spring.io/projects/spring-boot.

[10] Apache OpenWhisk - Action Interface. https://github.com/apache/

openwhisk/blob/master/docs/actions-new.md#action-interface, 2023.

[11] Apache OpenWhisk - ActionLoop Proxy. https://github.com/apache/

openwhisk/blob/master/docs/actions-actionloop.md, 2023.

[12] Apache OpenWhisk. Apache openwhisk documentation. https://openwhisk.

apache.org/documentation.html, 2023.

[13] P. Castro, G. Fox, C. McKeown, L. Ramakrishnan, and Y. Zhang. Openwhisk: A

serverless computing platform. Journal of Grid Computing, 18(2):221–238, 2020.

[14] Chromium OS. Sandbox. https://www.chromium.org/developers/

design-documents/sandbox.

60

https://www.djangoproject.com/
https://expressjs.com/
https://flask.palletsprojects.com/
https://github.com/apache/openwhisk/blob/master/tools/actionProxy/invoke.py
https://github.com/apache/openwhisk/blob/master/tools/actionProxy/invoke.py
https://www.oracle.com/java/technologies/javaserverfaces.html
https://www.oracle.com/java/technologies/javaserverfaces.html
https://koajs.com/
https://github.com/apache/openwhisk-runtime-swift
https://swift.org/about/#platform-support
https://spring.io/projects/spring-boot
https://github.com/apache/openwhisk/blob/master/docs/actions-new.md#action-interface
https://github.com/apache/openwhisk/blob/master/docs/actions-new.md#action-interface
https://github.com/apache/openwhisk/blob/master/docs/actions-actionloop.md
https://github.com/apache/openwhisk/blob/master/docs/actions-actionloop.md
https://openwhisk.apache.org/documentation.html
https://openwhisk.apache.org/documentation.html
https://www.chromium.org/developers/design-documents/sandbox
https://www.chromium.org/developers/design-documents/sandbox

[15] R. Cordingly, H. Yu, V. Hoang, D. Perez, D. Foster, Z. Sadeghi, R. Hatchett, and

W. J. Lloyd. Implications of programming language selection for serverless data

processing pipelines. In 2020 IEEE Intl Conf on Dependable, Autonomic and Secure

Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud

and Big Data Computing, Intl Conf on Cyber Science and Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech), pages 704–711, 2020.

[16] S. Forums. Dependency on (very) active branch doesn’t

pull new commits. https://forums.swift.org/t/

dependency-on-very-active-branch-doesnt-pull-new-commits/33204,

2020.

[17] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,

V. Shankar, J. Menezes Carreira, K. Krauth, N. Yadwadkar, J. Gonzalez, R. A. Popa,

I. Stoica, and D. A. Patterson. Cloud programming simplified: A berkeley view on

serverless computing. Technical Report UCB/EECS-2019-3, EECS Department,

University of California, Berkeley, Feb 2019.

[18] A. Loizides. Rate Limitter for Swift. https://github.com/andreas16700/

RateLimitingCommunicator, 2022.

[19] V. Review. Serverless vs monolith, 2023. [Online; accessed May-2023].

[20] P. V. Tech. Scaling up the prime video audio/video monitoring service and reducing

costs by 90[Online; accessed May-2023].

61

https://forums.swift.org/t/dependency-on-very-active-branch-doesnt-pull-new-commits/33204
https://forums.swift.org/t/dependency-on-very-active-branch-doesnt-pull-new-commits/33204
https://github.com/andreas16700/RateLimitingCommunicator
https://github.com/andreas16700/RateLimitingCommunicator

	Acknowledgements
	Introduction
	Background
	Swift in Serverless Computing
	Choice of Serverless Environment: OpenWhisk
	Case Study: Synchronization System in eCommerce
	Objective
	Research Questions
	Performance Overview
	Ease of Development

	Related Work
	Introduction
	OpenWhisk
	Serverless Computing and Languages
	Research Gaps

	Updating the Swift runtime
	Introduction
	Overview of the officially supported Swift runtime in OpenWhisk
	Swift 5.5 Enhancements and their Impact
	Concurrency Support and Async/Await
	Structured Concurrency
	Actor Model
	SwiftNIO 2
	Impact on the Synchronization System Case Study

	Understanding Runtimes in OpenWhisk
	Actions in OpenWhisk
	Action Interface in OpenWhisk
	ActionLoop Proxy in OpenWhisk
	Compiling a Swift action with the ActionLoop Proxy

	Process of Updating the Swift Runtime
	Challenges Encountered

	Performance Overview
	Value Types vs Reference Types and Copy-On-Write
	Value Types
	Reference Types
	Copy-On-Write (CoW)
	Performance Benefits

	Qualitive Comparison with Go, Java, Javascript, and Python
	Go
	Python
	Node.js (JavaScript)
	Java

	Summary

	Ease of Development
	Language Simplicity and Syntax
	Available Libraries and Frameworks
	Web Development
	Developer community and support
	Tooling and IDE support
	Integration with serverless platforms
	Learning curve
	Linux Support

	Synchronization System Case Study
	Introduction
	The Need for Synchronization
	Sync Algorithm
	Implementation and Deployment

	Benchmarking Case Study Implementations
	Workload
	Experimental Setup
	Results and Discussion
	Without a Rate Limit
	Implementing a Rate Limit

	Improvements and Future Work
	Conclusion

	Conclusion

