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Abstract 

 

The increasing frequency and complexity of cyber-attacks have made it challenging for 

organizations to analyze large volumes of data to identify threats and respond to them 

quickly. This thesis proposes the implementation of a platform for automating the data 

analysis of cyber-attacks. The platform allows the data analyst perform several operations on 

their datasets including feature selection as well as model training and tuning. The proposed 

platform is designed to be scalable, flexible, and easy to use, providing a comprehensive 

solution for organizations of all sizes. During this research, the platform was an effective tool 

in reducing the time and resources required for data analysis, while aiding in keeping the 

results in an organized fashion. 

Additionally, this research includes an analysis of several cyber-attack datasets to identify the 

most important network related features and correlations between them as well as the most 

efficient machine learning algorithms to detect such attacks. The results of this analysis 

demonstrate that certain features, such as the protocol, payload size, flow duration are 

critical in identifying and classifying attacks. Furthermore, tree-based machine learning 

algorithms such as Random Forest and Extreme Gradient Boost are effective in accurately 

detecting and classifying various types of cyber-attacks. 

The proposed platform, combined with the results of the analysis, represents a significant 

contribution to the field of cyber security and data science, and it has the potential to 

revolutionize the way organizations approach data analysis and threat detection. 
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1.1  Motivation 

 

In recent years, the frequency and severity of cyber-attacks have increased dramatically [40], 

leading to significant financial and reputational damage for affected organizations. These 

attacks pose a substantial risk to organizations, resulting in considerable financial losses and 

reputational damage. Among the most prevalent types of attacks, Distributed Denial of 

Service (DDoS) attacks have gained prominence. These attacks involve overwhelming a target 

system with an enormous volume of traffic from multiple sources. Detecting and analyzing 

such attacks present substantial challenges that demand advanced analytics tools and 

techniques.  

 

To address these challenges, I developed a comprehensive platform that automates critical 

tasks involved in the analysis of cyber-attack datasets. By doing so, the platform aims to 

empower data analysts, enhancing their efficiency and accuracy in identifying these attacks 

and their distinctive characteristics. Moreover, the platform provides capabilities for training 

and fine-tuning models, enabling data analysts to effectively respond and mitigate the impact 

of these attacks. By automating various aspects of the analysis process, the platform will 

significantly streamline the work of data analysts, allowing them to save time and resources. 

It will facilitate the swift and accurate identification of DDoS attacks, enabling timely 

countermeasures and reducing the potential damage inflicted on targeted systems. 
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The main problem my work addresses is the lack of tools available, that allow an easy and fast 

analysis of cyber-attack datasets. Most enterprise tools with similar functionality focus on 

deploying accurate machine learning models without providing much insight and information 

about the data processing. My platform is more research oriented, since it gives the analyst 

an insight into the datasets by allowing them to identify feature relationships, test several 

algorithms against several dataset configurations and experiment with different algorithms 

hyperparameters to better understand how they work.  

 

1.2  System Description 

 

The platform allows analysts to upload their network traffic datasets and perform several 

tasks to identify the characteristics of the attack. It includes a user-friendly interface that 

enables interaction with the system and access to the results of the analysis in real-time. 

The core of the platform is a machine learning engine that includes a variety of algorithms for 

cyber-attack classification. With the platform, data analysts can perform several tasks, 

including data preprocessing, feature analysis, feature selection, model training, model 

evaluation and model tuning. Furthermore, the platform allows analysts to download the 

results of the analysis, such as the identified attack characteristics, the performance and 

efficiency of the trained models as well as the values for the best hyper-parameter sets of 

their models, to further process them.  

 

1.3 Contribution 

 

The main contribution of this work is the development of a platform that automates the 

process of analyzing cyber-attack datasets. It provides a comprehensive solution for data 

analysts to identify attack characteristics quickly and accurately, enabling them to take 

effective action to mitigate the attacks. 

 

In my chosen use case on cyber-attacks which mainly include DDoS attacks but also brute 

force and port scans, I have demonstrated the effectiveness of the platform in analyzing real-

world datasets efficiently and quickly reporting the findings of the analysis as well as being 

able to organize and visualize them in an easy to interpret way on the platform. 
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In addition, I have conducted a series of experiments on 2 publicly available datasets (CIC-

DDoS2019 [3], CIC-IDS2017 [4]) using the platform to evaluate it and enrich the research 

community with my conclusions. Specifically, I compared the performance of 2 feature 

correlation algorithms (Spearman vs Pearson), 2 best-feature selection algorithms (Mutual 

Info. vs ANOVA) and 5 machine learning algorithms (DTC vs RFC vs XGBC vs KNN vs LDA) on 

the aforementioned datasets. My experiments and conclusions form an important 

contribution to the research community. 

 

1.4 Chapter Outline  

 

Firstly, Chapter 2 is focused on explaining several types of cyber-attacks analyzed in this use 

case, their characteristics from the network traffic perspective and the existing approaches 

used for distinguishing malicious traffic from the normal. In addition, it discusses the different 

approaches used by data analysts to process and analyze traffic and the potential benefits of 

automation. 

 

Chapter 3 includes some other systems with similar functionality and their contribution in 

automation and discusses how my platform compares to their functionality. 

 

Chapter 4 includes the complete architecture of the system, including the platform design, 

backend processing as well as the connectivity with the database. It will describe the overall 

structure, components, and functionalities of the platform. 

 

In chapter 5, I am discussing the datasets used to evaluate the platform, as well as the 

experiments performed and my results. I provide an analysis of the performance and 

effectiveness of the platform in analyzing cyber-attacks while making the job of the data 

analyst easier and more efficient. 

 

Closing, in chapter 6 I summarize the key findings and conclusions from my study. I supply an 

overall assessment of the platform, its strengths and limitations, and its potential 

applications. Additionally, I discuss future work that can be done to further improve and 

develop the platform as well as further analysis that can be performed on the analyzed data. 
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2.1 Cyber Attacks Landscape 

 

[2] Cyber-attacks are malicious activities carried out by individuals or groups with the 

intention of stealing or damaging data, disrupting services, or causing other types of harm. 

The landscape of cyber-attacks is constantly evolving, with new threats and vulnerabilities 

appearing all the time. To better understand the types of attacks that can occur, it is 

important to examine some of the most common ones. The following section supplies a 

thorough explanation of DDoS attacks to better understand their inner workings. 

 

2.1.2 DDoS Attacks 

 

[1] A DDoS (Distributed Denial of Service) attack is a type of cyber-attack that targets a 

website or online service by overwhelming it with traffic from multiple sources. In a DDoS 

attack, a large number of devices or computers are controlled by the attacker to send traffic 

to the target website, making it unavailable to legitimate users. The traffic sent can be in the 

form of data packets, requests for information, or even malicious payloads. DDoS attacks are 

often used by cybercriminals to disrupt or disable online services, extort money, or damage 
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the reputation of a business or organization. These attacks can cause significant financial 

losses, downtime, and reputational damage for the victim.  

 

One of the largest DDoS attacks happened in the last decade affected GitHub in 2015 [41]. 

The largest DDoS attack ever at the time, this one also happened to target GitHub. This 

politically motivated attack lasted several days and adapted itself around implemented DDoS 

mitigation strategies. The DDoS traffic originated in China and specifically targeted the URLs 

of two GitHub projects aimed at circumventing Chinese state censorship. It is guessed the 

attack's intent was to pressure GitHub into eliminating those projects. The attack traffic was 

created by injecting JavaScript code into the browsers of everyone who visited Baidu, China’s 

most popular search engine. Other sites who were using Baidu’s analytics services were also 

injecting the malicious code. This code was causing the infected browsers to send HTTP 

requests to the targeted GitHub pages. In the attack's aftermath, it was determined that the 

malicious code was not originating from Baidu but was added by an intermediary service.  

 

DDoS Variants 

 

There are several variants of DDoS attacks, each with its own method of execution. The two 

main variants are reflective and exploitation DDoS attacks that abuse several services. 

Reflective DDoS attacks [3] involve the attacker sending a request to a server with a spoofed 

IP address of the target network. The server responds to the spoofed IP address, flooding the 

target network with an overwhelming amount of traffic. 

On the other hand, Exploitation DDoS attacks [3] exploit vulnerabilities in software or 

hardware to overload the target network. In this type of attack, the attacker sends a malicious 

packet to the target network, causing it to crash or become unavailable. Additionally, there 

are IoT-based DDoS attacks, where IoT devices such as cameras or routers are compromised 

and used to launch DDoS attacks. All these variants pose a significant threat to organizations 

and can cause significant damage if not properly mitigated. 

There are several other variants, but for the purposes of this research the focus is more on 

the exploitation and reflection variants which are shown in figure 2.1 and explained in more 

detail in the following subsections. 

Figure 2.1: DDoS Attack Taxonomy [3]  
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Reflective DDoS 

 

Reflection DDoS attacks [3] are a type of DDoS attack that takes advantage of open servers or 

devices that respond to certain types of requests with large amounts of data. In a reflection 

attack, the attacker sends a request to an open server or device, spoofing the source IP 

address of the request to make it appear as if it is coming from the target. The server or device 

responds with a large amount of data, which is then directed at the target, overwhelming it 

with traffic. Some common types of services abused by reflection attacks and analyzed in this 

research include the following: 

 

DNS DDoS: Exploits vulnerabilities in the Domain Name System (DNS) by sending requests to 

DNS servers with spoofed source IP addresses of the target network. The DNS server responds 

to the spoofed IP addresses, flooding the target network with traffic and overwhelming its 

resources. 

 

• LDAP DDoS: Exploits vulnerabilities in the Lightweight Directory Access Protocol (LDAP) 

by sending requests to LDAP servers with spoofed source IP addresses of the target 

network. The LDAP server responds to the spoofed IP addresses, flooding the target 

network with traffic. 

 

• MSSQL DDoS: Exploits vulnerabilities in the Microsoft SQL Server by sending requests to 

MSSQL servers with spoofed source IP addresses of the target network. The MSSQL server 
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responds to the spoofed IP addresses, flooding the target network with traffic and causing 

it to become unavailable. 

 

• NTP DDoS: Exploits vulnerabilities in the Network Time Protocol (NTP) by sending 

requests to NTP servers with spoofed source IP addresses of the target network. The NTP 

server responds to the spoofed IP addresses, flooding the target network with traffic and 

overwhelming its resources. 

 

• NetBIOS DDoS: Exploits vulnerabilities in the Network Basic Input/Output System by 

sending requests to NETBIOS servers with spoofed source IP addresses of the target 

network. The NetBIOS server responds to the spoofed IP addresses, flooding the target 

network with traffic and causing it to become unavailable. 

 

• SNMP DDoS: Exploits vulnerabilities in the Simple Network Management Protocol (SNMP) 

by sending requests to SNMP servers with spoofed source IP addresses of the target 

network. The SNMP server responds to the spoofed IP addresses, flooding the target 

network with traffic and overwhelming its resources. 

 

• SSDP DDoS: Exploits vulnerabilities in the Simple Service Discovery Protocol (SSDP) by 

sending requests to SSDP servers with spoofed source IP addresses of the target network. 

The SSDP server responds to the spoofed IP addresses, flooding the target network with 

traffic and causing it to become unavailable. 

 

Exploitation DDoS 

 

Exploitation DDoS attacks [3] are a type of cyber-attack that exploits vulnerabilities in 

software or hardware to overload the target network. There are several methods of executing 

an exploitation DDoS attack, including TCP SYN flood, UDP flood, and UDP lag which are 

explained below and later analyzed in this research. 

 

• TCP SYN flood attacks exploit the three-way handshake process that occurs when two 

devices establish a connection over the internet. The attacker sends a large number of 

SYN packets with spoofed source IP addresses to the target network. The target network 

responds with SYN-ACK packets to the spoofed IP addresses, but since the source IP 

addresses are fake, the target network is left waiting for a response that never comes, 

tying up resources and making the network unavailable. 
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• UDP flood attacks involve sending a large number of UDP packets to the target network. 

Since UDP does not require a handshake or verification of receipt, the target network 

simply responds to each packet, regardless of its validity. This flood of incoming packets 

can overwhelm the network and cause it to become unavailable. 

 

• UDP lag attacks exploit the fact that UDP packets do not require a handshake, allowing 

the attacker to send a large number of packets to the target network with spoofed source 

IP addresses. The target network responds to each packet with an ICMP Destination 

Unreachable message, which can cause the network to become unavailable due to the 

high volume of incoming traffic. 

 

DDoS Generation Tools 

 

DDoS generation tools include a variety of specialized software tools that allow attackers to 

launch large-scale attacks. These tools are designed to exploit vulnerabilities in web servers 

and web applications and can be used to launch a variety of DDoS attacks such as HTTP floods, 

SYN floods, and UDP floods. Attackers can use these tools to generate a massive amount of 

traffic, overloading the target server and causing it to become unresponsive. In some cases, 

attackers may use these tools to launch multiple simultaneous attacks, targeting distinct parts 

of the network infrastructure. GoldenEye, Hulk, and SlowHTTPTest are all types of Denial-of-

Service attack tools used to target web servers and later analyzed thoroughly in this research 

and are going to be described in the sections below. 

 

GoldenEye 

 

GoldenEye [6] is a Denial-of-Service (DoS) tool that is used to launch attacks against web 

servers. Additionally, it can perform a Distributed Denial-of-Service (DDoS) attack by 

leveraging a network of compromised machines, known as a botnet. It generates a large 

amount of HTTP traffic by sending multiple requests to the target server, exploiting 

vulnerabilities in web servers that cannot handle large numbers of requests. 

 

GoldenEye can perform several types of attacks, including HTTP GET and POST floods, 

slowloris attacks, and TCP connection attacks. HTTP GET and POST floods overwhelm the 

target server with a large number of requests, while slowloris attacks send a limited number 
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of requests but keep them open for as long as possible, taking up server resources and 

preventing legitimate requests from being processed. TCP connection attacks flood the server 

with TCP connection requests, creating a backlog that eventually crashes the server. 

 

It additionally includes advanced features such as IP spoofing, user agent and referrer 

spoofing, and the ability to rotate attack vectors. These features make it harder for security 

tools to detect and mitigate the attack and can cause additional damage to the target server. 

 

Hulk 

 

Hulk [7] is another DDoS tool that is used to launch attacks against web servers. It is designed 

to generate a large amount of traffic by repeatedly sending GET and POST requests to the 

target server, exploiting weaknesses in the HTTP protocol and poorly written web 

applications. 

Hulk can perform different types of attacks, including HTTP GET and POST floods, slowloris 

attacks, and TCP connection attacks. 

Hulk also includes advanced features such as the ability to randomize the User-Agent and 

Referrer headers in order to evade detection, and the ability to use multiple concurrent 

connections to the target server. These features make it harder for security tools to detect 

and mitigate the attack and can cause additional damage to the target server. 

 

SlowHTTPTest 

 

Like the previously mentioned tools, SlowHTTPTest [8] can be used to launch distinct types of 

attacks, including Slow Read, Slow Loris, and Slow Post attacks against web servers. Slow Read 

attacks exploit the HTTP protocol by sending incomplete requests, causing the server to wait 

for more data that never arrives. Slow Post attacks send HTTP POST requests to the  

server but do not complete them, again taking up server resources and preventing legitimate 

requests from being processed. 

Furthermore, SlowHTTPTest includes features that can be used to evade detection and 

mitigation, such as the ability to randomize the User-Agent and Referrer headers and to use 

multiple concurrent connections to the target server. 

 

DDoS Traffic Experimental Analysis 
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DDoS attacks have certain characteristics that allow data analytics and machine learning to 

distinguish them from normal traffic. In the paper “Developing Realistic Distributed Denial of 

Service (DDoS) Attack Dataset and Taxonomy” [3], it was studied how several machine 

learning algorithms like Random Forest and Naïve Bayes perform on a DDoS classification 

dataset with 11 different DDoS attack types: UDP-lag, DNS, MSSQL, LDAP, NetBIOS, NTP, 

SSDP, SNMP, Syn and UDP. The data was gathered by the authors by simulating the attacks 

using an attack and victim network and monitored the traffic. They later used the 

CICFlowMeter [9] Tool to convert the captured traffic in a processable format. 

 

DDoS Traffic Characteristics 

 

According to aforementioned research analysis, the best features for each DDoS kind were 

extracted using RandomForestRegressor [10] class of scikit-learn and are shown in figure 2.2 

 

 

 

The authors concluded that ‘packet Length Std’ is one of the most influential features for 

benign traffic. One of the reasons is that there is more variation in the size of packets in benign 

traffic in comparison to different DDoS attacks, because DDoS attacks are conducted by 

automated tools and botnets and usually, they produce fixed-size or similar packets. 

Therefore, it’s an important feature to consider when training a machine learning model.  

Table 2.1: Best Features per attack type [3] 
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For the SYN DDoS, the analysts concluded that the two most influential features are ‘ACK Flag 

Count’ and ‘Flow Duration’, because this attack works by not responding to the server with 

the expected ACK code (it exploits a TCP protocol weakness). 

 

Moreover, for the MSSQL DDoS, according to the analysis, two main influential features are 

the ‘Protocol’ and ‘Fwd Packets/s’ which makes sense, because the attacker abuses the 

Microsoft SQL Server Resolution Protocol (MC-SQLR) and sends millions of packets to the 

victim.  

 

Furthermore, the authors have discovered that IAT (time interval between 2 packets) related 

features are considered as influential features in many attacks such as TFTP, UDP-lag and NTP. 

According to them, one of the reasons is that many DDoS attacks show bursty 

behavior(unstable) in sending packets to the victims, unlike benign traffic that usually does 

not show any bursty behavior. The bursty behavior affects the arrival rate, and so it affects 

IAT related features, and this can be a reason they are influential features for detecting DDoS 

attacks. 

 

To make a successful DDoS attack the authors argue that an attacker needs to send more 

packet than the victim can handle. Also, attackers use diverse types of packets, such as SYN 

or ICMP packets to send many malicious packets all of which are similar in size and small 

because of the low cost of computing resources but are not like the packets in a benign flow. 

So, the minimum segment size of the packets in a malicious flow would be less than the 

packets in a benign flow. 

 

DDoS Detection with Machine Learning 

 

For training a machine learning model, the authors tested ID3, Random Forest, Naïve Bayes, 

and Multinomial Logistic Regression, algorithms that I will describe briefly in the following 

paragraphs. 

 

[3] Random Forest is a machine learning algorithm that combines two ideas of decision tree 

and ensemble learning. The forest contains many decision trees that use randomly picked 

data attributes as their input. The forest has a collection of trees with controlled variance. 
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Finally, the result of a classification can be decided by majority voting or weighted voting. One 

of the advantages of random forest is that the variance of the model decreases as the number 

of trees in the forest increases, while the bias remains the same. Furthermore, random forest 

has many other advantages such as sparse number of parameters and resistance to over-

fitting.  

 

Naïve Bayes is a probabilistic classifier based on Bayes Theorem with strong independence 

assumptions between features. Assuming that features are not correlated with each other is 

not a true assumption in many problems and it can conversely affect the accuracy of the 

classifier. The main advantage of Naïve Bayes is that it is an online algorithm (can update its 

model in real time) and its training can be completed in linear time. 

 

Multinomial Logistic Regression is a classification method that uses the main idea of logistic 

regression to classify multiclass problems. Logistic regression is a predictive analysis like other 

regression analyses. Logistic regression can describe data and explain the relationship 

between features and classes. 

 

The performance examination results are shown in Table 2.2. The authors used five-fold cross 

validation for their experiments. Based on their experiments ID3 took few minutes to be 

trained and classify the testing set. Random forest with 100 trees took more than 15 hours 

for the same process. In addition, multinomial logistic regression took more than 2 days to be 

trained and classify the testing test. In addition, according to the weighted average of the 

three-evaluation metrics (Pr, Rc, F1), the highest accuracy belongs to random forest and ID3 

algorithms. Also, in terms of recall ID3 won first place by far. Logistic regression achieves the 

worst result overall. Considering the execution time and the evaluation metrics ID3 is the best 

algorithm with the shortest execution time and highest accuracy. 

 

 

 

 

 

Brute Force attacks are another type of cyber-attack included in my research and is described 

below. 

 

Table 2.2: Performance examination results 
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2.1.2 Brute Force Attacks 

 

Brute force attacks [5] are a type of cyber-attack that involves trying every possible password 

or combination of characters until the correct one is found. The goal of a brute force attack is 

to gain unauthorized access to a system or account by bypassing its authentication 

mechanisms. Brute force attacks can be carried out manually, but they are more commonly 

automated using specialized software or tools. 

FTP Patator and SSH Patator are two types of brute-force attacks later examined in this 

research that aim to gain unauthorized access to FTP and SSH servers, respectively. The 

attacks involve using a program or tool, such as Patator [11], to automate the login attempts 

with a list of username and password combinations until a valid one is found. The goal is to 

exploit weak or commonly used credentials that may have been set by the server 

administrator or the users themselves. 

 

Brute Force Variants 

 

In the case of FTP Patator, the attack generates a high volume of traffic to the FTP server, as 

the tool sends multiple login requests per second. The traffic generated by FTP Patator can 

be characterized by a high number of TCP connections and a significant increase in the 

number of successful and failed login attempts compared to normal FTP traffic.  

Similarly, in SSH Patator, the attacker uses a program or tool to try multiple username and 

password combinations to gain unauthorized access to SSH servers. SSH Patator generates a 

high volume of traffic that can be characterized by a high number of TCP connections and a 

significant increase in the number of failed login attempts compared to normal SSH traffic.  

 

Brute Force Traffic Characteristics 

 

One of the most obvious traffic characteristics of brute force attacks is the high volume of 

traffic generated by the attack. This is because the attacker tries multiple login combinations 

in a brief period of time, resulting in a significant increase in traffic. 

Another traffic characteristic of brute force attacks is the repeated attempts to login using 

different usernames and passwords. This generates traffic that is highly correlated with the 

login attempts. This traffic can be analyzed to identify patterns in the login attempts, such as 

the specific usernames and passwords that the attacker is trying to use. 
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In addition to these traffic characteristics, brute force attacks often have a distinct traffic 

pattern when compared to normal traffic. This pattern is often characterized by a higher 

number of login attempts from a single IP address. This is because attackers often use a single 

IP address to carry out the attack, resulting in a high number of login attempts from that IP 

address. 

 

2.2 Existing Mitigation Approaches  

 

Detecting and preventing cyber-attacks is a critical aspect of maintaining the security of 

computer systems and networks. One way to identify and prevent these attacks is through 

the detection of malicious traffic. There are several approaches to detecting malicious traffic, 

including signature-based detection, anomaly-based detection, and behavior-based 

detection. 

 

Signature-based detection [12] involves the use of predefined patterns, or signatures, to 

identify known malicious traffic. These signatures are created based on the characteristics of 

known attacks, such as specific network protocols, packet contents, or IP addresses. 

Signature-based detection is effective for identifying known threats, but it is less useful for 

detecting new or unknown attacks. 

 

Anomaly-based detection [12] on the other hand, focuses on identifying traffic that deviates 

from normal patterns. This approach involves the use of statistical models to identify unusual 

patterns in network traffic, such as a sudden increase in data transfer or unusual patterns of 

data flow. Anomaly-based detection is effective in detecting unknown attacks, but it can also 

generate false positives, as normal network activity may appear anomalous. 

 

Behavior-based detection [13] is a newer approach that uses machine learning techniques to 

identify suspicious behavior on a network. This approach involves the use of algorithms that 

learn from network behavior over time and can identify patterns that may indicate an attack. 

Behavior-based detection is particularly effective in detecting advanced persistent threats 

(APTs) that can go undetected by other methods. 

 

This research focuses on Behavior-based detection where a data analyst has to go through 

the process of analyzing traffic datasets and build machine learning models that can precisely 
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detect such attacks. This paper proposes automation on the tasks of the analyst to make the 

model creation easier and faster. 

  

2.3 Manual Data Analysis 

 

Manual data analysis [14] is a major step in identifying patterns and trends in cyber-attack 

traffic datasets. To build effective models, analysts must go through several phases, including 

data cleaning, data exploration, feature engineering, and model training and evaluation. 

 

The first phase, data cleaning, involves removing any incomplete or irrelevant data from the 

dataset. This step is important to ensure that the data is accurate and unbiased. Once the 

data is cleaned, the analyst moves on to data exploration, where they analyze the dataset to 

identify patterns, correlations, and outliers. This phase helps the analyst gain a better 

understanding of the data and identify potential variables that may be important for 

modeling. 

 

After data exploration, the analyst moves on to feature engineering, which involves selecting 

and transforming variables to improve the model's accuracy. This phase may include creating 

new variables, transforming variables, or selecting variables that are most relevant to the 

model. 

 

Once the data has been pre-processed and the variables selected, the analyst can move on to 

model training and evaluation. In this phase, the analyst selects an appropriate machine 

learning algorithm and trains it on the dataset. The model is then evaluated using a validation 

dataset to determine its accuracy, precision, recall, and F1 score. 

 

Throughout these phases, manual data analysis requires the analyst to have a deep 

understanding of the dataset, the variables, and the machine learning algorithms used. This 

process is iterative and may require several rounds of testing and refinement before a final 

model is selected. 

 

2.3.1 Python  
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Python is one of the most popular programming languages for data analysis due to its 

versatility and user-friendly libraries. With the help of libraries like NumPy, Pandas, Sklearn 

etc., Python provides powerful tools for data manipulation, exploration, and visualization. 

These libraries allow for easy loading of various data formats such as CSV, Excel, SQL 

databases, etc. Python also enables users to perform complex calculations and statistical 

analyses.  

 

Libraries  

 

For the implementation of the system, I used several Python libraries mainly for data analysis 

and interaction with the database. 

 

Scikit-learn 

 

Scikit-learn [26], known as sklearn, is a popular open-source Python library that provides 

efficient tools for data mining, machine learning, and data analysis. It is built on top of NumPy, 

SciPy, and Matplotlib, and it integrates well with other libraries such as Pandas. Scikit-learn 

offers a wide range of machine learning algorithms, including classification, regression, 

clustering, and dimensionality reduction that were used in this project. It also provides various 

data preprocessing techniques, model selection and evaluation, and model optimization 

methods.  

 

I used several methods for preprocessing, feature selection, model training and tuning.  

 

Pandas 

 

Pandas [27] is a popular open-source Python library that provides efficient tools for data 

manipulation, analysis, and cleaning. It offers powerful data structures, such as Data Frames 

and Series, that allow users to work with data in a flexible and intuitive manner. With Pandas, 

users can easily load and store data from various file formats such as CSV, Excel, SQL 

databases, and more. Additionally Pandas enables users to perform various data operations, 

including merging, filtering, aggregating, and pivoting. It provides easy-to-use functions for 

handling missing data and dealing with time-series data.  
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I used Pandas mainly for the Data Frame structure, preprocessing and feature selection. 

 

NumPy 

 

NumPy [28] is an open-source Python library for scientific computing that provides efficient 

tools for numerical operations and array processing. It provides a high-performance array 

object, which enables users to perform fast and efficient computations on copious amounts 

of data. Furthermore, NumPy offers a wide range of mathematical functions for numerical 

operations, such as linear algebra, Fourier transform, and random number generation. The 

library is highly optimized for performance, making it an essential tool for scientific 

computing, data analysis, and machine learning.  

 

I used it mainly for dataset operations and preprocessing. 

 

Vaex 

 

Vaex [29] is a Python library that provides a fast and memory-efficient way to work with large 

datasets. It is designed to handle billions of rows of data with ease, making it an ideal tool for 

big data processing and analysis. Vaex provides a high-performance DataFrame API that 

allows users to perform data manipulations and calculations on their data, similar to Pandas. 

However, unlike Pandas, Vaex operates on disk-based or memory-mapped files, which means 

that it can handle large datasets without consuming enormous amounts of RAM.  

 

I used Vaex to perform the dataset initialization on the user’s uploaded dataset to gain basic 

information about the dataset. Unfortunately, I couldn’t find a wrapper method for the 

cross_validation [30] method that I used for the model training, and it would be too much 

work to remake the system to use a vaex compatible method for the training. 

 

XGBoost 

 

XGBoost [31] is a popular open-source software library that provides a fast and efficient 

implementation of gradient boosting algorithms. XGBoost uses a combination of gradient 

boosting and regularized learning to improve accuracy and prevent overfitting, making it a 
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powerful tool for predictive modeling. Additionally, it supports parallel processing and can be 

easily integrated with other machine learning frameworks like scikit-learn. 

 

Since Scikit-learn doesn’t have support for the XGBC algorithm I used this library to be able to 

use it. 

 

PyMongo 

 

PyMongo [32] is a library that provides a Python interface for working with MongoDB, a 

popular NoSQL document-oriented database. PyMongo allows users to easily interact with 

MongoDB databases from within their Python applications, providing a high level of flexibility 

and ease-of-use. With PyMongo, users can perform a wide range of database operations, 

including inserting, updating, and deleting data, as well as querying the database for specific 

documents or collections.  

 

I used PyMongo to interact with the database retrieve the requested experiments save the 

results, etc. 

 

Others 

 

I used several other libraries to regulate and monitor the created experiments as well as 

provide feedback information about the running processes. These libraries include sys, psutil, 

os, subprocess, atexit, json and time. 

 

2.3.2 Feature Selection 

 

Feature selection is a crucial aspect of data analysis that involves identifying the most relevant 

and useful variables in a dataset. The goal of feature selection is to reduce the dimensionality 

of the data, making it easier to interpret and analyze. In other words, it helps to identify which 

features have the most significant impact on the outcome variable of interest. 

 

Constant Features 
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Constant features are the features in a dataset that have a constant value for all observations. 

Such features are also referred to as zero-variance or quasi-constant features. Constant 

features provide no useful information for the analysis, as they do not vary across the dataset 

and thus do not contribute to the prediction of the outcome variable. Moreover, including 

constant features in the analysis can lead to problems such as overfitting and bias. Therefore, 

it is essential to identify and remove constant features from the dataset before applying any 

analysis. There are various methods for detecting constant features, such as calculating the 

variance or coefficient of variation for each feature. Such method is available in scikit-learn 

library [26] in python and is used in this study to calculate the constant features of the dataset. 

Once the constant features are identified, they can be removed from the dataset, reducing 

the dimensionality of the data and improving the accuracy and efficiency of the analysis. 

 

Highly Correlated Features 

 

Highly correlated feature selection is another important technique in data analysis, which 

involves identifying and selecting a subset of features that have a strong linear relationship 

with other features. Highly correlated features can lead to multicollinearity, which can cause 

instability in the model and affect the accuracy of the results. Therefore, it is essential to 

identify and remove highly correlated features before applying any analysis. Several 

techniques are available to detect highly correlated features, such as correlation coefficient, 

scatter plot, and heatmaps. 

 

For the purposes of this research, correlation coefficient was measured to identify highly 

correlated features. Pandas’ library offers the corr method [22] that calculates the correlation 

coefficient for each feature of the given dataset. There are several algorithms that can be 

used for this purpose, but for the purposes of this research I use Pearson and Spearman. Once 

the highly correlated features are identified, they can be either removed from the dataset or 

combined into a single feature to reduce dimensionality and improve the accuracy of the 

analysis. By selecting only the most relevant and non-redundant features, highly correlated 

feature selection can help improve the interpretability and generalizability of the analysis 

results. 

 

Pearson 
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Pearson correlation [23] measures the linear relationship between two continuous variables. 

It computes the correlation coefficient, which ranges from -1 to 1, where -1 indicates a perfect 

negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation. 

Pearson correlation assumes that the variables are normally distributed and have a linear 

relationship. 

 

Spearman 

 

Spearman correlation [24] measures the monotonic relationship between two variables, 

which means it can capture non-linear relationships as well. It computes the Spearman rank 

correlation coefficient, which ranges from -1 to 1, where -1 indicates a perfect negative 

monotonic relationship, 0 indicates no monotonic relationship, and 1 indicates a perfect 

positive monotonic relationship. Spearman correlation does not assume any specific 

distribution of the variables and is more robust to outliers than Pearson correlation. 

 

In simple words, Pearson can only detect linear correlations between variables and spearman 

can also detect variables relationships in a more general sense. 

 

Best Features 

 

K-Best feature selection is a technique used in data analysis to select the best features in a 

dataset based on a statistical test. The approach involves selecting the top k features with the 

highest scores based on a statistical test, such as chi-square, ANOVA, or mutual information. 

The technique is particularly useful in high-dimensional datasets where there are many 

features, and selecting the most relevant ones can improve model accuracy and reduce 

overfitting. 

 

K-Best feature selection can be implemented in Python using the scikit-learn library, which 

provides a feature selection method named SelectKBest [25] with various functions to 

perform univariate statistical tests for feature selection. 

 

The 3 most common algorithms used are described below: 

 

Chi-2 
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Chi-2 [34] is a statistical test used to determine whether there is a significant association 

between two categorical variables. The test calculates the difference between the observed 

and expected frequencies of the variables and measures the significance of this difference 

using a p-value. While Chi-square is a useful technique for feature selection in datasets with 

categorical variables, it may not be effective for DDoS detection datasets that typically contain 

continuous variables, such as network traffic data. 

 

In DDoS detection, the variables of interest are usually the traffic characteristics, such as 

packet size, packet rate, and connection rate. These variables are typically continuous and do 

not fit the assumptions of the Chi-2 test, which assumes that the variables are categorical and 

have discrete values. Therefore, using it for feature selection in DDoS datasets may not yield 

accurate results and could lead to the selection of irrelevant features or the exclusion of 

important ones. 

 

ANOVA 

 

ANOVA (Analysis of Variance) [35] is a statistical test used to determine whether there are 

significant differences between the means of two or more groups in a dataset. ANOVA is a 

useful technique for feature selection in DDoS detection datasets that typically contain 

continuous variables, such as network traffic data. ANOVA can be used to test whether there 

are significant differences in the means of a particular traffic characteristic, such as packet 

size or packet rate, between the normal and DDoS traffic groups. 

 

ANOVA works by calculating the sum of squares between and within the groups and 

comparing them using an F-test to determine whether there is significant variation in the 

means. The technique assumes that the variables are normally distributed, and the groups 

are independent and have equal variances. 

 

Mutual Information 

 

Mutual information [36] measures the mutual dependence between two variables by 

calculating the reduction in uncertainty of one variable given the knowledge of the other. 

Mutual information is a powerful technique for feature selection in DDoS detection datasets 
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because it can capture both linear and nonlinear relationships between the traffic 

characteristics, which are often critical indicators of DDoS attacks.  

 

ANOVA and Mutual Information tests are used and compared extensively in the experimental 

analysis of DDoS datasets that contain network traffic features. 

 

2.3.3 Machine Learning 

 

Machine learning algorithms are becoming increasingly popular for detecting cyber-attacks 

such as DDoS attacks. These algorithms are effective at identifying patterns and anomalies in 

network traffic that may indicate a cyber-attack, which can help organizations respond quickly 

and mitigate potential damage. Various machine learning algorithms, such as random forest, 

decision trees, XGB classifier, KNN, and LDA, can be utilized to detect cyber-attacks. These 

algorithms work by analyzing features of network traffic, building models based on training 

data, and making predictions based on new data. In practice, the effectiveness of a machine 

learning algorithm for detecting cyber-attacks will depend on factors such as the quality of 

training data, the algorithm's hyperparameters, and the nature of the attack being detected. 

 

Decision Trees 

 

Decision trees [16] are a machine learning algorithm that can be used for both classification 

and regression tasks. Decision trees work by recursively partitioning the data into subsets 

based on the values of the features, with the goal of minimizing impurity in each subset. In 

the context of cyber-attacks, decision trees can be used to identify features in network traffic 

that are indicative of a DDoS attack. Decision trees have been shown to be effective at 

detecting DDoS attacks, as reported by Chen, Y., Pei, J., and Li, D. [16] in their paper where 

they proposed an efficient and low-latency system on DDoS detection based on Decision 

Trees. 

 

Random Forest  

 

Random forest [17] is a machine learning algorithm that uses a collection of decision trees to 

make predictions. Random forest works by constructing many decision trees, each using a 

randomly selected subset of the features and samples from the dataset. The final prediction 
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is made by taking the majority vote of all the decision trees. In the context of cyber-attacks, 

random forest can be used to identify patterns in network traffic that are indicative of a DDoS 

attack. Random forest has been shown by Chen, Y., Hou, J., Li, Q., and Long, H. [17] to be 

effective at detecting several types of DDoS attacks such as UDP, TCP and ICMP floods.  

 

Extreme Gradient Boost  

 

XGB classifier, also known as extreme gradient boosting, is a machine learning algorithm that 

similarly with random forest uses an ensemble of decision trees to make predictions. XGB 

classifier [18] works by constructing a series of decision trees, each building on the mistakes 

of the previous trees, with the goal of minimizing the loss function. In the context of cyber-

attacks, XGB classifier can be used to identify patterns in network traffic that are indicative of 

a DDoS attack. XGB classifier has been shown to be effective at detecting DDoS attacks with 

high accuracy, as reported in the paper: "XGBoost Classifier for DDoS Attack Detection and 

Analysis in SDN-Based Cloud" by Chen, Z., Jiang, F., Cheng, Y., Gu, X., Liu, W., and Peng, J [18] 

 

K-Nearest Neighbors 

 

K-nearest neighbors [19] is a machine learning algorithm that can be used for both 

classification and regression tasks. KNN works by finding the k closest training examples to a 

given test example and using their labels to make a prediction. In the context of cyber-attacks, 

KNN can be used to identify patterns in network traffic that are indicative of a DDoS attack. 

KNN has been shown by Vu, N. H., Choi, Y., & Choi, M. [19] to be effective at detecting DDoS 

attacks with high accuracy. 

 

Linear Discriminant Analysis 

 

LDA, or linear discriminant analysis [20], is a machine learning algorithm that can be used for 

classification tasks. LDA works by projecting the data onto a lower-dimensional space that 

maximizes the separation between the classes. LDA can be used to identify features in 

network traffic that are indicative of a DDoS attack and has been shown to be effective at 

detecting DDoS attacks with high accuracy, as reported by Thapngam, T., Yu, S., & Zhou, W.  

in their paper: "DDoS discrimination by Linear Discriminant Analysis (LDA)" [20]. 
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2.4 Benefits of Automation 

 

Automating the process of data analysis [15] can bring several benefits to the analysts. One 

of the primary benefits of automation is the speed and efficiency with which it can process 

large volumes of data. By automating data analysis, organizations can process massive 

amounts of data much faster than manual methods, which can be time-consuming and error 

prone. 

 

In addition to speed and efficiency, automation can improve the accuracy and consistency of 

data analysis. Automated systems can be programmed to apply the same criteria and 

methodology consistently to all data, eliminating potential human error and bias. This 

consistency can improve the quality of data analysis and the reliability of the resulting 

insights. 

 

Another benefit of automation is its ability to identify and respond to potential threats in real-

time. Automated systems can monitor network traffic and identify potential threats as they 

occur, enabling organizations to respond quickly and proactively to prevent damage or 

mitigate the impact of an attack. 

 

Automated systems can also improve scalability and cost-effectiveness. As the volume of data 

increases, organizations can easily scale up their automated systems to process and analyze 

the data efficiently. This can reduce the need for additional personnel and resources, which 

can be costly. 

 

Finally, automation can free up human analysts to focus on higher-level tasks that require 

human intuition and problem-solving skills. Automated systems can handle routine tasks, 

such as data processing and cleaning, allowing analysts to focus on more complex tasks, such 

as developing and refining machine learning models. 
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3.1 Similar Platforms 

 

Several online platforms and tools are available for running data analysis experiments and 

machine learning tasks. 

 

3.1.1 DataRobot 

 

DataRobot [38] is an enterprise-grade automated machine learning platform that enables 

organizations to build, deploy, and manage machine learning models at scale.  

 

It automates the entire machine learning workflow, from data preparation to model 

deployment, which reduces the time and resources required for developing machine learning 

models. Additionally, it offers a wide range of machine learning algorithms, including deep 

learning, gradient boosting, and random forests, which enables users to build complex models 

with ease. 

 

DataRobot is a cloud-based platform that can scale to handle large datasets and complex 

models. It also supports parallel processing and distributed computing. It provides 

transparency into the machine learning models it creates, allowing users to understand how 

the models work and how they make predictions. In addition, it allows users to customize the 

machine learning models by tuning the hyperparameters and selecting specific features for 

the model. 
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Even though DataRobot is a great tool for automating data analysis and machine learning, it 

has a few drawbacks. First of all, it can be expensive for small organizations and individual 

users. It requires some technical expertise to use, especially for configuring the platform and 

interpreting the results. Furthermore, it may require additional software or systems to 

integrate with existing workflows and data sources. The tool automates many aspects of the 

machine learning workflow, which may limit the control users have over the process. Lastly,  

 

 

it provides a structured environment for machine learning, which may not be suitable for 

users who require more flexibility in their approach. 

 

Figure 3.1 shows a screenshot from the DataRobot’s interface that allows data transformation 

operations specified by the user. There are many other enterprise tools providing similar 

functionality with DataRobot, but in my opinion they lack simplicity which can make 

deployment and use of these tools difficult and expensive.  

 

3.1.2 RapidMiner 

 

RapidMiner [42] is a powerful and comprehensive data science platform that empowers 

organizations to extract valuable insights and make data-driven decisions. It provides a range 

of tools and functionalities for data preparation, machine learning, predictive analytics, and 

deployment. With its intuitive visual interface and extensive library of algorithms, RapidMiner 

Figure 3.1: DataRobot’s Interface 
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offers both beginner-friendly features and advanced capabilities for data scientists and 

analysts. 

 

One of the key strengths of RapidMiner is its data preparation capabilities. It allows users to 

import, transform, and cleanse data from various sources, ensuring data quality and 

consistency. The platform provides a wide range of operators for data manipulation, feature 

engineering, and data integration, enabling users to effectively prepare their data for analysis 

and modeling. It also offers a variety of machine learning algorithms and techniques, including 

classification, regression, clustering, association rules, and text mining. These algorithms are 

easily accessible through a drag-and-drop interface, allowing users to build complex 

predictive models without requiring extensive coding knowledge. Additionally, RapidMiner 

supports the integration of external libraries and custom code, providing flexibility for 

advanced users who want to extend the platform's capabilities. 

 

Another notable feature of RapidMiner is its Auto Model functionality. With Auto Model, 

users can automate the process of model selection and hyperparameter optimization. This 

feature saves time and effort by automatically exploring different algorithms and 

configurations to find the best-performing models for a given task. It allows users to quickly 

experiment with diverse options and identify the most effective approaches without the need 

for manual trial and error. 

 

 

Figure 3.2: RapidMiner’s Interface 
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RapidMiner supports seamless integration with popular data storage systems, databases, and 

other data science tools, enabling users to leverage their existing infrastructure and 

workflows. Furthermore, it provides options for deploying models into production 

environments, making it easier to operationalize and scale data-driven solutions. 

 

Figure 3.2 shows how RapidMiner’s compares the performance of several machine learning 

algorithms. 

 

Both DataRobot and RapidMiner automate the process of machine learning in much better 

ways since they are enterprise tools meant to provide value to their customers. Even though 

they are reliable they have the following limitations: 

1. They are priced tools and their usability depends on the clients’ budget.  

2. Their main objective is to build and deploy machine learning models(industrial), rather 

than analyzing the datasets to better understand the data being processed(research). 

 

I believe my platform is more research oriented and is supposed to allow the user to learn as 

many things as possible about the data themselves rather than deploying an accurate model. 

It gives the analyst insights about variable relationships, algorithms performances under 

certain configurations. Other than that, it is supposed to provide a service to the users rather 

than requiring the user provide the resources for the experiments. For example, RapidMiner 

is an executable running on the user’s computer, which might be a limitation factor. 

 

My platform is a much more simplified version of these enterprise tools and is mainly meant 

for research purposes and it offers slightly different functionalities (feature selection) 

therefore it is difficult to be directly compared to them. For this reason, I am keeping this 

chapter short, and I am not going into further comparison between these tools and my 

platform. 
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4.1 System Requirements 

 

The system has several requirements in order to be deployed and function properly. The 

hardware components required include a computer or server with a sufficient processor, 

RAM, and storage capacity to handle large datasets and process the requested experiments. 

As far as the software requirements are concerned, an operating system, a web server, and a 

database management system are needed. That’s on hardware and software requirements. 

For the required technologies I have used I am explaining further below. 

 

Back-End 

 

As far as the backend is concerned, the system can be deployed in any operating system and 

any web server supported by that operating system. I used Windows 10 Pro with the Apache 
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web server that came together with the XAMP installation. For the DBMS, MongoDB (v 

1.35.0) is required to be installed in the system as well as the necessary databases and 

collections must be created (I discuss in detail in the deployment section). 

 

PHP (v 8.0) is the backend programming language I used for client-server communication, 

therefore it needs to be present on the system as well as its mongodb module that will 

support connectivity with the database. Additionally, PHP needs to be configured, so it can 

receive a large amount of data from the clients otherwise the dataset upload might fail. 

 

Python 3 is the second backend programming language I used for the data analysis tasks, so 

it also needs to be installed and its installation path should be added (if not added 

automatically) in the PATH environment variable, so python programs can be started only 

with the ‘python’ keyword. 

 

There are several python libraries I used that don’t come together with the python installation 

and are listed below:  

• Scikit-learn 

• Pandas 

• NumPy 

• XGBoost 

• PyMongo 

• Vaex 

• Psutil 

These libraries need to be exclusively installed, but more specific installation and deployment 

steps are listed in the Deployment section. 

 

Front-End  

 

The Front-End of the system is structured with HTML, styled with CSS and the interactivity is 

added with JavaScript. Some styling components are taken from the Bootstrap [33] 

framework that is loaded from a CDN on the client’s browser. Messages are exchanged 

between the client and the server using the JSON format. The requirements for the front-end 

are handled by the web server, therefore only the website’s files need to be present in the 

directory used by the webserver to serve the files to the clients. 
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The user can interact with the system using any device with any browser with JavaScript 

enabled. Those are all the required technologies to allow the platform to function. Specific 

installation details are provided in the deployment section. 

 

4.2 System Design 

 

The high-level idea of the system is to provide an interface for the user to upload their dataset 

on the server and then be able to request experiments on the datasets and get back the 

results. 

 

4.2.1 Architecture 

 

 

Figure 4.1 displays the high-level idea of the system with the different components it 

supports.  

The client side has several components that are responsible for uploading and removing 

datasets on the server as well as retrieving information about them. In addition, it allows 

creating experiments with different options/parameters, terminate a running experiment, 

remove an experiment entirely from the server as well as retrieve all the experiments from 

the server. Also, it can retrieve all the available machine learning algorithms with their relative 

information supported by the system. 

Figure 4.1 System Architecture 
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The requested operation, once selected by the user with its corresponding parameters, is 

encoded and sent to the server via an AJAX request. The requested server-side resource (PHP 

file) is executed and handles each request. Each server-side resource creates a connection to 

the database to either retrieve or save information. 

 

Each one of the system’s components are broken down and analyzed in the 4.2.3 subchapter. 

 

4.2.2 Data Storage 

 

The database I decided to use is a mongo database, which is a NoSQL database. The reason I 

made this choice is because I have a large amount of data to save for each experiment and 

there are many nested fields, which would make the implementation of a traditional SQL 

database more complex. In addition, each experiment has the form of a JSON object in the 

front-end side, therefore it makes more sense to save it in the same form in a database, which 

is what I did. 

 

Experiments  

 

The first collection I have is the Experiments collection. As the name implies, each experiment 

is saved in this collection.  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.2: Experiment Sample in the Database 
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Figure 4.2 Shows how an experiment is saved in the database. _id is the unique id that is 

automatically assigned to the experiment by the Mongo DBMS. Id is the id I assign to the 

experiment to be able to distinguish it from the rest. Name is the name of the experiment 

assigned by the user. Type is the type of the experiment and the dataset_Obj entry holds 

information of the dataset of the experiment such as the target classes and the features of 

the dataset.  

 

Moving on, configuration_list holds the information about how many samples to be loaded 

for each target class e.g. 100000 normal traffic samples. subsets_list holds the different 

features subsets specified by the user for the current experiment. preprocessing_list holds 

the information about the different preprocessing options selected by the user. models list 

holds the training models specified for a model training experiment. Such information 

includes the algorithm, k for cross validation and the chosen hyperparameters for the 

algorithm.  

 

Regarding the list holding that will hold experiment related paramters, 

hyperparam_models_list holds the ranges to test for each parameter specified for a 

hyperparameter tuning experiment. corr_models_list holds the algorithms and correlation 

thresholds specified for a correlated feature selection experiment. kbest_models_list holds 

the algorithms and number of best features to calculate for a best features selection 

experiment. Date is the date of the experiment creation.  

 

Furthermore, memUsage is the current RAM usage(percentage) of the experiment. This field 

is updated on runtime by the monitor process of each running experiment. Similarly, with 

cpuUsage which is about the current CPU usage of the running experiment. Status is the status 

of the experiment which can be ‘Draft’ for saved but not started experiments, ‘Running’, for 

currently running experiments, ‘Terminated’, for experiments that terminated either 

normally or unexpectedly. ‘Completed’ for completed experiments and ‘Queued’ for 

submitted experiments but not started yet by the operating system. An experiment might be 

delayed from starting because of lack of resources. Such experiments remain in the ‘Queued’.  

 

Duration is the duration the entire experiment took to complete or terminate and is updated 

at the end of the experiment. The pid is the pid of the process running the experiment. This 

information is used to terminate the experiment if requested by the user, but also for 
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debugging purposes. dataset_info holds information about the portion of the dataset 

selected, as it is possible to select a portion of the dataset and not all of it. This information is 

the result of the ‘describe’ method of the panda’s library when executed on the dataset which 

is basically statistical information about each feature. Lastly, the constant_features_results 

hold the results of the constant feature selection experiment. 

 

Figure 4.3 shows an example of what information the ‘describe’ method obtains and how it 

is displayed on the platform. 

 

 

Datasets 

The Datasets collection holds information about the uploaded datasets. 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.3: ‘Describe’ method output 

Figure 4.4: Dataset Sample in the Database 
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Figure 4.4 shows an entry of a dataset in the database. ‘name’ is the dataset’s name specified 

by the user. ‘target_index’ is the column’s index that represents the variable to be predicted.  

Since the platform only supports classification datasets, the target index must correspond to 

a column that has no more than 50 different values. Otherwise, the target is deemed to be 

non-categorical and the dataset initialization fails. Since python supports negative indexing, -

1 corresponds to the last column, -2 to the column before the last one etc. 

 

Additionally, ‘date’ is the upload data of the dataset. status is the status of the dataset’s 

initialization. ‘memUsage’ and ‘cpuUsage’ fields hold the RAM and CPU usage information of 

the dataset initializer process. ‘features’ is a list holding the string name of each feature. That 

list is generated by the initializer process and appended to the database. ‘target’ is the name 

of the target column as specified by the user with the target_index. ‘targets’ is a list of the 

different classes discovered in the target column and ‘duration’ is the duration of the 

dataset’s initialization.  

 

Algorithms  

 

The last collection I used is the Algorithms collection that holds the information for each 

supported classification algorithm. This collection is fixed and cannot be changed by the user 

in any way through the interface. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 shows a sample of the XGBC’s algorithm entry. ‘name’ is the full name of the 

algorithm and ‘name_abr’ the abbreviation of the algorithm. The ‘hyper_parameters’ array 

holds the information for each of the hyperparameters. The ‘name’ of the hyperparameter, 

Figure 4.5: Algorithms Sample in the Database 
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the ‘type’ the hyperparameter. It can be ‘num_range’, that indicates a range of integers or 

floats. ‘class_range’ indicates an array of the classes(strings) the hyperparameter can take. 

‘boolean’ indicates the hyperparameter can be either true or false. 

 

Moving on, the ‘start’ and ‘stop’ fields are the boundaries of the range the user can select for 

a tuning experiment. They are used to give an approximate idea of what values the 

hyperparameter can take. ‘incr’ is the default increment. For example, if the increment is 10, 

the attempted values for that hyperparamter would be 10, 20, 30, 40 … The ‘description’ 

provides a brief description of the hyperparameter.  

Next, we have the ‘slider_incr’ is used by the slider component for that hyerparameter to 

increase/decrease by that value when the user uses the slider. The ‘default_value’ is the 

default value of the hyperparameter. The ‘selected_value’, ‘selected_start’, ‘selected_stop’, 

‘selected_incr’ fields correspond to the user’s selection about the hyperparameter and can 

be used for a model training or tuning experiment. 

 

4.2.3 Components 

 

The system consists of several different components that handle the supported operation the 

user can request.  

 

Upload Dataset 

 

This component handles the upload and initialization of the dataset provided by the user. 

Through the interface the user is prompted to enter the name of the dataset, its type and the 

target index. For now, only classification datasets are supported but room for upgrade is left 

for other kinds, like regression. The user can then either drag and drop the files of the dataset 

or select and upload them through the file selector. For simplicity, only .xslx and .csv files are 

supported.  

 

When the user submits the dataset files, he can see the upload progress of each file and can 

decide to revert the operation at any time.  

 

The server receives the files and saves them in a specific directory on the server before passing 

control to the Dataset Initializer. 
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Dataset Initializer 

 

This component is responsible for parsing the recently uploaded files and obtaining basic 

information about them. Firstly, it assigns a unique id to the dataset and then generates a 

process to parse the files. 

 

To be able to handle abnormal exits and keep track of the memory and CPU usage, for every 

experiment including dataset initialization, there is always a monitor process that keeps an 

eye on the experiment process and updates the database with the current state of the 

process. The monitor makes use of the psutil library in python to extract information about 

the experiment process and periodically update the database so the user can have feedback 

on the progress of the experiment. 

 

The initializer will first load the dataset with vaex [29] which makes the operation much faster 

than the traditional file loading with pandas. Then it will detect the target column with the 

column index specified by the user and check if it represents a categorical variable. If not, it 

will terminate indicating the problem. It will also calculate and store in the database the 

feature names and the several classes of the target column. 

 

When the initialization process of a dataset is started, the user is redirected to ‘My resources’ 

page where he can see the status of the initialization as well as terminate and remove any 

dataset. 

 

Remove Dataset 

 

This component handles the deletion of a dataset when requested by the user. When such an 

operation is requested the database entry corresponding to the dataset to be removed is 

deleted and the files are removed from the disk. 

 

Retrieve Datasets 

 

This component is responsible for retrieving the datasets’ information that are stored in the 

database and serving them to the client’s browser. Since the datasets are treated as JSON 
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objects both on the client’s browser and the database, the extraction from the database and 

transmission is quite simple.  

 

Create Experiment  

 

This component allows the user to create an experiment. The experiment’s type as well as 

the parameters of the experiment which include the dataset, the number of samples for each 

target class, the subsets of features to be used, the processing options as well as the 

algorithms and their parameters. 

 

Experiment Initializer 

 

Similarly with the dataset initializer, the experiment initializer will act as a monitor for the 

experiment’s process. More specifically, when an experiment is submitted the monitor 

process will fork and create the corresponding process based on the requested experiment 

type. For example, if the user submits a constant feature selection experiment the monitor 

process forks into the process that can process this type of experiment and starts monitoring 

it. 

 

The monitor will update the database periodically about the RAM and CPU usage of the 

experiment. Furthermore, it will check if the user requested the experiment's termination 

where it terminates the experiment process. 

 

Terminate Experiment 

 

This component is responsible for terminating an ongoing experiment. When the user 

requests to terminate an experiment, the server will update the status of the experiment in 

the database as terminated, so the monitor of the experiment can see that and proceed to 

terminate the experiment process. 

 

Remove Experiment 

 

This component is responsible for removing the requested experiment. When such an 

operation is requested, the server will remove the entry that corresponds to the experiment 
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to be removed. There is not any reverting mechanism for recovering deleted experiments, so 

this component should be used carefully. 

 

Retrieve Experiments 

 

This component retrieves all the experiments from the database in a sorted manner. Through 

the website the client can request to view the experiments in a sorted manner based on any 

of the characteristics of the experiment. 

 

 

Figure 4.6 shows the header of the experiments’ table as well as one entry. By default, when 

the page is loaded, the experiments are retrieved based on the id column which is directly 

correlated with the Date of submission as the unique id corresponds to the data of submission 

in milliseconds. That means, by default the experiments are listed from the most recent to 

the oldest one. 

When a user clicks on the header of any column the experiments are retrieved based on that 

column. The order of the sorting alternates between ascending and descending where the 

down triangle indicates descending order and the upward triangle ascending order. 

 

Retrieve Algorithms 

 

This component is responsible for retrieving the information for each supported algorithm 

from the database and serving it on the client’s browser. The component is used on page load, 

but the user cannot directly request it. 

 

Constant Features Selection 

 

This component is responsible for handling constant feature selection experiments. Firstly, it 

loads the dataset from the file system by reading chunks of 1 GB to avoid memory errors and 

Figure 4.6: Experiments Table Header 
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based on the user’s specified configurations (number of samples per target class) it creates a 

pandas Dataframe. 

 

Firstly, it applies the preprocessing options on the dataframe. Then it calculates the dataset’s 

basic information (‘describe’ method) and appends it on the database along with the number 

of samples for each target class. Then, for each features subsets specified, it encodes all the 

string variables to avoid any problems with the processing. 

 

Finally, using the VarianceThreshold [21] class from the sklearn library, it calculates the 

constant features of the dataset, appends them to the database entry for the experiment and 

repeats the process with the next subset.  

 

 Correlated Features Selection 

 

This component is responsible for handling correlated feature selection experiments. Firstly, 

it loads the dataset from the file system by reading chunks of 1 GB to avoid memory errors 

and based on the user’s specified configurations (number of samples per target class) it 

creates a panda Dataframe. 

 

Firstly, it applies the preprocessing options on the dataframe. Then it calculates the dataset’s 

basic information (‘describe’ method) and appends it on the database along with the number 

of samples for each target class. 

 

Then, for each subset and algorithm combination specified, it encodes all the string variables 

to avoid any problems with the processing. Then, it runs the corr method [22] from the Pandas 

library [27] with the specified algorithm and gets the correlation matrix as a result. It 

processes the matrix and stores for each feature, all the other features that their correlation 

threshold is greater than the specified one, in a list. Finally, it appends the resulting list to the 

database and repeats the process with the next algorithm or subset specified. 

 

K-Best Features Selection 

 

This component is responsible for handling k-best feature selection experiments. Firstly, just 

like the previous components, it loads the dataset from the file system by reading chunks of 
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1 GB to avoid memory errors and based on the user’s specified configurations (number of 

samples per target class) it creates a pandas Dataframe. 

 

Firstly, it applies the preprocessing options on the dataframe. Then it calculates the dataset’s 

basic information (‘describe’ method) and appends it on the database along with the number 

of samples for each target class. 

 

Then, for each subset and algorithm combination specified, it encodes all the string variables 

to avoid any problems with the processing. Then, it runs the SelectKBest method [25] from 

the Pandas library with the specified algorithm and gets a list with the best features’ indices 

as the result. Then it processes the resulting list and converts the indices to the corresponding 

features names. Finally, it appends the final list to the database and repeats the process with 

the next algorithm or subset specified.  

 

Model Training 

 

This component is responsible for handling model training experiments. Firstly, just like the 

previous components, it loads the dataset from the file system by reading chunks of 1 GB to 

avoid memory errors and based on the user’s specified configurations (number of samples 

per target class) it creates a pandas Dataframe. 

 

Firstly, it applies the preprocessing options on the dataframe. Then it calculates the dataset’s 

basic information (‘describe’ method) and appends it on the database along with the number 

of samples for each target class. 

 

Then, for each subset and algorithm combination specified, it encodes all the string variables 

to avoid any problems with the processing. Then it runs the algorithm (if it is supported) with 

the specified hyperparameters using the cross_validation [30] method of the sklearn library 

[26] and appends the results on the database. 

 

To avoid data leakage and for simplicity, if specified in the preprocessing options, the standard 

scaler ([0,1] scale) is pipelined into the model and the scaling will be handled by the 

cross_validation method before training. 
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The supported algorithms of the platform are Random Forest, Decision Trees, Extreme 

Gradient Boost, Linear Discriminant Analysis and K-Nearest Neighbors.  

 

Model Tuning 

 

This component is responsible for handling model tuning experiments. Firstly, just like the 

previous components, it loads the dataset from the file system by reading chunks of 1 GB to 

avoid memory errors and based on the user’s specified configurations (number of samples 

per target class) it creates a panda Dataframe. 

 

Firstly, it applies the preprocessing options on the dataframe. Then it calculates the dataset’s 

basic information (‘describe’ method) and appends it on the database along with the number 

of samples for each target class. 

 

 

Then, for each subset and algorithm combination specified, it encodes all the string variables 

to avoid any problems with the processing. Then, it uses the GridSearchCV [37] method of the 

sklearn library with the hyperparameter ranges specified by the user to tune the model. 

Finally, it appends the tuning results to the database. 

 

The user can see the results (training and validation accuracy) for each hyperparameter 

combination in a sorted manner with the most accurate set to be first and highlighted. 

 

4.3 Deployment 

  

In this section I provide a detailed guide on how this system can be deployed on a server. The 

guide will be based on the operating system I used which is windows 10. 

 

4.3.1 Web Server 

 

I used XAMP 8.0(https://www.apachefriends.org/download.html) which comes with PHP 8 

and Apache web server pre-installed. The public directory for the website’s files is located at 

the root directory of the xamp installation in the htdocs folder. So, after placing the website’s 

files in this directory they should be accessible through the webserver.  
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4.3.2 Database 

 

The DBMS I used, is MongoDB (v 1.13.0) ( https://www.mongodb.com/docs/manual/ ) as well 

as the MongoDB Compass( https://www.mongodb.com/try/download/compass ) which is a 

GUI that allows easier interaction with the database. MongoDB Compass is the equivalent of 

phpMyAdmin for an SQL DB.  

 

After installation, the database should be running on localhost, on port 27017. There should 

be a database named MLWebsite with 3 collections named Experiments, Datasets and 

Algorithms. Experiments and Datasets can be left empty as they will be filled on user’s 

request, but the Algorithms collection should be imported from MongoDB compass using the 

Algorithms.json file contained in the system’s root folder. This collection contains information 

on the 5 algorithms used for the experimental analysis. 

 

4.3.3 PHP 

 

PHP 8 comes pre-installed with XAMP and the external dependencies needed for the 

interaction with the mongo database are included in the system’s files, but a mongo db 

extension( https://pecl.php.net/package/mongodb/1.13.0/windows )needs to be added in 

the php configuration. I download the PHP 8.0, thread safe x64 configuration zip file and I 

copy the php_mongodb.dll file in the xamp/php/ext directory which contains the extension 

files for php. Then for the extension to activate the line extension=php_mongodb.dll needs 

to be added in the php.ini file in the xamp/php directory.  

 

Also, the php should be configured to allow the reception of large and many files from the 

network. The following lines should be added (modified if already existing): 

• upload_max_filesize=50000M 

• max_file_uploads=30 

• post_max_size=50000M 

 

These lines will allow uploading up to 50000Mbytes and up to 30 files per session. 

 

4.3.4 Python  

https://www.mongodb.com/docs/manual/
https://www.mongodb.com/try/download/compass
https://pecl.php.net/package/mongodb/1.13.0/windows
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Python 3 ( https://www.python.org/downloads/ ) needs to be installed and its installation 

path should be added (if not added automatically) in the PATH environment variable, so 

python programs can be started only with the ‘python’ keyword.  

 

The python libraries used are the following and can be install with the pip tool: 

• pip install scikit-learn 

• pip install xgboost 

• pip install numpy 

• pip install pandas 

• pip install vaex 

• pip install psutil 

• pip install pymongo 

 

After all these steps, when the Apache server is started from the XAMP control panel, the 

platform should be accessible through http://localhost/ML-Website/ 

 

4.4 System Workflow 

 

In this section, I provide a workflow of the system and demonstrate how a data analyst can 

use it to perform several operations and benefit from it.  

 

Figure 4.7: Main Experiments Page 

 

https://www.python.org/downloads/
http://localhost/ML-Website/
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Figure 4.7 shows the main page that retrieves the experiments from the database and displays 

their characteristics on a table. On top, there are the main functionalities supported which 

include viewing and managing the experiments, creating a new experiment, uploading a 

dataset and viewing/managing the uploaded datasets.  

 

Below the main buttons, are displayed the number of terminated, drafted, queued, running 

and completed experiments. 

 

For each experiment, there are certain operations supported as shown by the open popup 

including, removing, editing and viewing the results of an experiment. For running 

experiments there is the additional option to terminate it which sends a signal to the server 

to terminate the experiment’s process. 

 

4.4.1 Dataset Upload 

 

In this section, I demonstrate a sample workflow for uploading a dataset on the server. 

 
Figure 4.8: Upload Dataset Page 
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Figure 4.8 shows how the upload dataset page looks after filling the required input fields and 

setting 6 files to be uploaded for the dataset. The input files will be merged upon processing 

and the target column set to -1 indicates the target column will be the last column of each 

file. For each selected file, the name, type and size are shown and can be removed by using 

the trashcan button. 

 

Figure 4.9 displays the page after the uploading has been started by the user. It shows the 

upload progress for each file. The operation can be reverted any time using the cancel button. 

 

After the files are successfully uploaded on the server, the dataset initialization starts and the 

user is redirected to ‘My Resources’ page where he can manage the datasets uploaded on the 

server as well as view the progress of the initialization. 

Figure 4.9: Upload Dataset Progress Page 

 

Figure 4.10: Initializing Dataset Page 
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When the status of the dataset is set to Initialized, it can be used for processing. The creation 

of experiments will be demonstrated with examples in the next subchapters. 

 

4.4.2 Feature Selection 

 

In this section I will demonstrate how the platform can be used for the creation of 

experiments involving feature selection. Such operations include constant feature, correlated 

feature and k-best feature selection. 

 

Constant Features 

 

This section demonstrates how a constant feature selection experiment can be created. 

 

 

Figure 4.11 shows the initial tab of the experiment creation page. The user can fill in the name 

of the experiment, select the dataset and the kind of experiment which in this case is a 

constant feature selection. 

 

Figure 4.12 displays the next tab that allows the user to enter the number of samples per 

target class. For this example, all samples are selected from the BENIGN traffic, 50,000 

random samples from the NetBios DDoS and 50,000 from the MSSQL DDoS.  

 

 

 

 

Figure 4.11: Experiment Details Tab 
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Figure 4.13 displays the features tab which allows the user to enter select the subsets of 

features to be used. For each subset selected the experiment will be repeated. 

 

 

 

Figure 4.12: Dataset Details Tab 

 

Figure 4.13: Features Tab 
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Figure 4.14 displays the preprocessing options available which include converting the 

negative values to 0, not using samples with at least 1 null feature and scaling numerical data 

to the standard [0,1] scale. 

 

 

 

Figure 4.15 shows the newly created experiment when the user submits it. In case he saves it 

as draft the experiment will still be saved in the database as draft but won’t execute.  

 

Figure 4.14: Preprocessing options tab 

 

Figure 4.15: Experiments Tab 

 



51 

 

 

 

Figure 4.16 displays the results page loaded when the view details button is clicked for the 

constant features selection experiment. There are some basic information about the 

experiment shown and then information about the dataset discussed previously.  

 

Figure 4.17 shows a table also included in the results page that 

displays the number of samples used per target class. In this case 

even though the specified sample size for BENIGN traffic was 

100,000 there was a maximum of 31,330 BENIGN samples. 

 

 

 

Figure 4.18 shows the results obtained from the experiment. Out of the 86 features subset 

chosen for the experiment, 12 features remained constant.  

Figure 4.16: Results Page 

Figure 4.17: Class distribution 

Figure 4.18: Results table 
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The constant features were extracted with variance threshold and they can be copied with 

the copy button on the far right. When copied, they can then be unselected to not be used in 

a correlated features selection experiment.  

 

Finally, the results table, class distribution table and dataset information tables can be 

downloaded as an excel document using the ‘Export to Excel’ button. 

 

Correlated Features 

 

This section demonstrates how a correlated features experiment can be submitted.  

 

Figure 4.19 shows the initial tab for a correlated features experiment. Notice that for this 

experiment there is another tab, not included in the previous type of experiment. Dataset, 

Features and Preprocessing tabs are the same as previously demonstrated, so I will not go 

over them again. 

 

Figure 4.20 displays the model tab. Here the user can specify which algorithms to test (for 

each features subset specified) to find correlations between features. Features that are highly 

correlated do not provide any value to the model and therefore, it is better to exclude them. 

In the figure, Pearson [23] and Spearman [24] algorithms are used to find features that are at 

least 95% correlated.  

 

Figure 4.19: Correlated Features Experiment 
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Figure 4.21 displays the results of the correlated feature selection experiment. Pearson 

algorithm detected 26 features with at least 95% correlation with at least one other feature 

of the dataset and Spearman detected 39 features with at least 95% correlation with at least 

one other feature of the dataset.  

 

Also, for each one of the features with at least one correlation, it is possible to see which 

features are the ones that are correlated with. As shown in figure 4.22, Fwd IAT Mean is 95% 

correlated with Flow IAT Mean and Flow IAT Std, so it might not be useful keeping all 3 of 

them in the model.  

Figure 4.20: Correlated Model Tab 

Figure 4.21: Correlated Features Results 

Figure 4.22: Correlated Features’ Correlations 
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This is an example test case and further details about the features as well as conclusions about 

the features correlations of cyber-attacks are analyzed in the experimental analysis in the 

next chapter. 

 

Best Features 

 

This section demonstrates how a best features experiment can be submitted.  

 

 

Figure 4.23 shows the initial tab for a best features experiment. Similarly, to a correlated 

features experiment dataset configuration, features subsets, preprocessing options and 

algorithms can be specified. Dataset, Features and Preprocessing tabs are the same as 

previously demonstrated, so I will not go over them again. 

 

Figure 4.24 displays the model tab. Here the user can specify which algorithms to test (for 

each features subset specified) to find the best features for each features’ subset specified. 

The most influential features to the target variable are the most important ones and should 

increase the accuracy and efficiency of the model. In the figure, ANOVA(F-Test) [35] is used 

to find the 5-best, 10-best, …, 50-best features. As mentioned before, chi-2 [34] and mutual 

information tests [36] are supported and can be used for best features extraction. 

 

Figure 4.23: Best Features Experiment 
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Figure 4.25 displays the results of the best feature selection experiment. There were 2 

features subsets (with 60 and 47 features) specified and for each of the 2 subsets, the 5-best, 

…, 50-best features were calculated. The best features can be copied using the right-most 

button and be pasted in a model-training or tuning experiment very easily. 

 

4.4.3 Model Training and Tuning  

 

This section demonstrates how a correlated features experiment can be submitted.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Best Features Algorithms Selection 

Figure 4.25: Best Features Results 

Figure 4.26: Model Training Experiment 
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Figure 4.26 shows the initial tab for a model training experiment. The user can select that he 

wants a model training or tuning experiment and just like the previously described 

experiments, continue with the rest parameters. Dataset, Features and Preprocessing tabs 

are the same as previously demonstrated, so I will not go over them again. 

 

Figure 4.27 displays the model tab. Here the user can specify which training algorithms to test 

(for each features subset specified) to compare accuracies. In the figure, Random Forest and 

Extreme Gradient Boost Classifiers are used with 10-kfold cross validation for more accurate 

results. The user can remove an algorithm using the trash can icon and select the 

hyperparameters to be used for each algorithm. By default, the default hyperparameters for 

each algorithm are preselected. 

 

Figure 4.28 shows the popped-up area the user can use to specify the hyperparameters to be 

used for an algorithm. The information for each algorithm is retrieved from the database to 

be used for this popup. The user can type in the value of each hyperparameter or use the 

increase and decrease buttons to do the same thing. The info icon shows information about 

each hyperparameter hinting to the user on how to use it. The user can then save the 

hyperparameters and submit the experiment. 

 

Figure 4.29 Shows how the results of the model training look like for each of the 2 subsets 

specified and the 2 algorithms. 

 

Figure 4.27: Model Training Algorithms 
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The experiment, that its results is shown in the last figure, is still in progress and the last 

training with XGBC and 10 feature subset is not shown as it is still running. As shown from the 

figure the training duration, accuracy, precision, recall and F1 average scores for both training 

and validation splits from the 10 repetitions(10-fold). 

 

Hyperparameter Tuning is the last operation supported by the platform. The experiment 

creation is almost identical to the model training, but instead of setting the hyperparameters 

for each algorithm, the user will set the range of values for each hyperparameters to try, as 

well as the increment. As shown in figure 4.30, for a Random Forest Classifier a range of 100 

to 200 with an increment of 10 will be used for n_estimators ([100, 110, …,200]) and both 

‘gini’ and ‘entropy’ values for the criterion hyperparameter.  

Figure 4.28: Algorithm Hyperparameters Selection 

Figure 4.29: Model Training Results 
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Note that the tuning will include every possible combination of the specified ranges and will 

be repeated 10 times (10-fold) to increase the accuracy of the results. 

 

 

Figure 4.31 shows how the results of a tuning experiment look like. For each Algorithm-Subset 

combination there is a table with all hyperparameter combinations tried, the mean duration 

of the 10 iterations the mean training accuracy, mean validation accuracy and the ranking of 

Figure 4.30: Hyperparameter Tuning Experiment 

Figure 4.31: Hyperparameter Tuning Results  
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the combination according to the validation accuracy. The results are sorted with the most 

accurate combination coming first.  

 

 

The tuning in the example only included ‘n_estimators’ and criterion ranges and as indicated 

by figure 4.32, when ‘entropy’ is used instead of ‘gini’, it leads to higher accuracy. 

 

This is the last operation I implemented for the platform. The next chapter includes an 

experimental analysis of cyber-attack traffic mainly DDoS, using the platform to automate the 

process. 

 

 

 

 

 

 

 

 

Figure 4.32: Hyperparameter Tuning Results Hyperparameters 
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Chapter 5 

System Evaluation 
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5.1.1 Datasets  

 

I used 2 cyber-attack related datasets to analyze and use to evaluate my system. Both datasets 

contain network related features and were generated with CICFlowMeter [9], a particularly 

useful dataset generation tool that takes the .pcap files, containing the captured network 

traffic of a system and generates excel files that can be further analyzed by data analysts. 

 

5.1.1.1 CIC-DDoS2019 

 

The CIC-DDoS2019 [3] is a publicly available dataset of network traffic captures generated by 

the Canadian Institute for Cybersecurity, designed for evaluating and analyzing the 

effectiveness of DDoS attack detection and mitigation methods. 

 

The dataset contains both benign and malicious traffic captures. The benign traffic is from a 

variety of sources, such as web browsing, email, and file transfers. The malicious traffic 

consists of various DDoS attacks, such as UDP flood, TCP flood, and HTTP flood attacks. The 

dataset was collected in a controlled environment using a custom-built network emulator 

that simulates a real-world network environment. 

The dataset contains over 80 million records of network traffic with over 20 GB of generated 

traffic in .csv format. It includes features extracted from the captured traffic, such as flow 

duration, packet length, and protocol type, which can be used to train machine learning 

models for DDoS detection and mitigation. 
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The DDoS traffic types analyzed that are included in the dataset besides normal(benign) traffic 

and are mentioned in the background section are the following: 

• NetBIOS DDoS 

• UDP-Lag DDoS 

• Syn DDoS 

• NTP DDoS 

• SNMP DDoS 

• SSDP DDoS 

• LDAP DDoS 

• MSSQL DDoS 

• UDP DDoS 

• DNS DDoS 

 

The dataset contains a total of 86 network related features and a target column, specifying 

the DDoS kind (or benign for normal traffic) that are briefly described in Appendix A 

 

5.1.1.2 CIC-IDS2017 

 

CIC-IDS2017 [4] is similar in terms of structure to CIC-DDoS2019. It is a publicly available 

dataset created by the Canadian Institute for Cybersecurity containing a set of network traffic 

captures designed for evaluating and analyzing the effectiveness of intrusion detection 

systems (IDSs). 

 

The dataset contains both benign and malicious traffic captures. The benign traffic is from a 

variety of sources, such as web browsing, email, and file transfers. Malicious traffic consists 

of several types of attacks, such as DDoS and brute forcing.  

The dataset was collected in a controlled environment using a custom-built network emulator 

that simulates a real-world network environment and it contains more than 1 GB of generated 

traffic in .csv format.  

The dataset was generated with the same tool (CICFlowMeter) as the first dataset and it 

initially has the same kinds of network features briefly explained in Appendix A. 

 

The traffic types analyzed that are included in the dataset besides normal(benign) are the 

following: 

• DDoS 
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• DoS GoldenEye 

• DoS Hulk 

• DoS SlowHttpTest 

• Dos Slowloris 

• FTP-Patator (brute force attack) 

• SSH-Patator (brute force attack) 

• Port Scan 

 

5.1.2 Methodology 

 

The methodology I have followed for the most part, to analyze each dataset, is demonstrated 

in figure 5.1. 

 

Firstly, I am identifying the constant features of the datasets and removing them since they 

don’t provide any value to the analysis. Then I remove features that act as identifiers and 

therefore they can either leak information about the target or be unable to generalize and 

make predictions in another dataset. Such features are Source/Destination IPs, and 

timestamps of the attack that cannot be used to make generic conclusions about DDoS traffic. 

Then I am using Pearson [23] and Spearman [24] algorithms to detect and remove highly 

correlated features. Such features don’t provide any value to the model and removing them 

can make the training more efficient. Then I am using ANOVA and Mutual Information tests 

to detect the best of the remaining features of the dataset and for each classification 

algorithm (XGBC, Random Forest, Decision Trees, LDA, KNN) I am training (with default 

hyperparameters) to find the most accurate subset. Then I am taking the most accurate (as 

small as possible) subset of best features and tune each algorithm with a reduced version of 

the dataset (to finish tuning faster) to find the best hyperparameters. Finally, I use the best 

hyperparameters to train the model with different dataset sizes and examine the accuracy.  

 

 

Figure 5.1: Methodology Diagram 
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As an initial approach in understanding the first dataset I followed a slightly different 

approach than the one shown in figure 5.1. First, I removed the constant and identification 

features as well as the union of the features selected as highly correlated with Pearson and 

Spearman. Then I used chi-2, f-tests and mutual information tests to extract the best 5 to 25 

features. Then I tried several machine learning algorithms to get an idea of the ones that 

perform better with different dataset sizes.  

 

After having a deeper look at my initial approach, I realized that I made some mistakes. The 

first mistake is that I didn’t use cross-validation to ensure the dataset is thoroughly trained, 

so my result might have been off. Moreover, I realized that chi-2 is not the best algorithm to 

use for my dataset as it contained mostly continuous variables (numerical) instead of 

categorical ones that chi-2 is made for. Even though my initial approach was not fully 
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accurate, it gave me an idea on which algorithms can perform relatively well to use in my next 

approach. In Appendix B, in the ‘Initial Approach’ section I have put the graphs and results 

extracted from that approach, but I will not go into much detail on these results as I will do 

so in my updated and better approach. 

 

The following figures display the system I performed all my experiments. Apparently, it is not 

very efficient, but due to technical difficulties it was my last resort. 

 

 

The next subchapter includes a detailed description of all my experiments as well as the 

results I obtained using the proposed system.  

 

5.1.3 Experiments & Results 

 

In this section, I will describe every experiment/operation I conducted to analyze the 

aforementioned datasets and present my results. For simplicity I will refer to CIC-DDoS2019 

dataset as the 1st dataset and the CIC-IDS2017 as the 2nd dataset.  

 

To identify the constant features, I submitted constant feature selection experiments for the 

2 datasets. For each attack kind of the 1st dataset, I used 100,000 random samples and about 

30,000 samples for the normal traffic, as that was the maximum number of samples in the 

dataset. For each attack kind of the 2nd dataset, I used 5,000 - 10,000 random samples and 

10,000 samples for normal traffic. The yellow highlighted features are features that remained 
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constant in both datasets, the green ones remained constant only in the 1st one and the blue 

one only in the second one.  

1. Bwd PSH Flags(*) 
2. Fwd URG Flags(*) 
3. Bwd URG Flags 
4. FIN Flag Count 
5. PSH Flag Count 
6. ECE Flag Count 
7. Fwd Avg Bytes/Bulk(*) 
8. Fwd Avg Packets/Bulk(*) 
9. Fwd Avg Bulk Rate(*) 
10. Bwd Avg Bytes/Bulk(*) 
11. Bwd Avg Packets/Bulk(*) 
12. Bwd Avg Bulk Rate(*) 
13. CWE Flag Count 

 

(*) Constant features detected by another research. 

 

According to research conducted related to the 2nd dataset by Arnaud R., Eloïse C., Florent C. 

and Pascal L. [39], due to miscalculation of features by the CIC-Flowmeter tool, some features 

are always null. These features are marked with a * in the aforementioned list. I decided to 

exclude certain attacks included in the 2nd dataset, with small number of samples (<1000) 

compared to other attacks and their nature couldn’t be compared to DDoS attacks. I kept the 

attacks that essentially overwhelm the server with useless requests. Other than DDoS, there 

are brute force attacks, port scans as well as DoS attacks generated by certain tools. So, in my 

case I got 2 extra constant features (CWE Flag Count, Bwd URG Flags) to remove.  

 

In general, I think features remaining constant under specific scenarios and datasets can give 

insights on how attacks work, but features (PSH, ECE flags etc.) unused in some attacks and 

setups can be used in others. 

 

So, after removing the constant features of each dataset I decided to remove features that 

serve identification purposes. Such features include the FlowID which is a string 

concatenation of other features (flowId = sourceIP + "-" + destinationIP + "-" + srcPort + "-" + 

dstPort + "-" + protocol), the source and destination IP’s as well as the source and destination 

ports. These features can be unique in any attack scenario/setup and training a model based 

on them will not be able to generalize and will be biased on IP’s and ports that can take any 

value. Also, the timestamp feature that identifies the time of the flow doesn’t provide any 
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value and can leak information about the target. To sum up, the removed features are the 

following: 

• FlowID 

• Source IP 

• Destination IP 

• Source Port 

• Destination Port 

• Timestamp 
 
To make my model lighter I ran correlated features experiments to detect features that are 

highly correlated with other features, therefore keeping all of them is unnecessary for the 

model. To verify this theory, I later checked the accuracy with all the features compared to 

the dataset after removing constant and correlated ones. 

 
For each attack kind of the 1st dataset, I used 100,000 random samples and about 30,000 

samples for the normal traffic, as that was the maximum number of samples in the dataset. 

For each attack kind of the 2nd dataset, I used 5,000 - 10,000 random samples and 10,000 

samples for normal traffic. To better understand cyber-attacks and detect any correlations 

with the identification features (source/destination IP’s etc.) I included them in the correlated 

features experiments. 

 
According to the results of the 1st dataset and Pearson algorithm, out of 74 features, 26 

features are 95% correlated with at least another feature in the dataset. The following list 

shows only a few correlations, but you can find the complete one in the ‘Highly Correlated 

Features Lists’ section in Appendix B. 

 
1. Fwd Packet Length Min: Fwd Packet Length Max 
2. Fwd Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min 
3. Flow IAT Std: Flow IAT Mean 
4. Fwd IAT Total: Flow Duration 
5. Fwd IAT Mean: Flow IAT Mean, Flow IAT Std 
6. Fwd IAT Std: Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd IAT Mean 
7. Fwd IAT Max: Flow IAT Max, Fwd IAT Std 
8. Fwd IAT Min: Flow IAT Min 
9. Bwd IAT Std: Bwd IAT Mean 
10. Bwd Header Length: Total Backward Packets 
 

According to the results of the 1st dataset and Spearman algorithm, out of 74 features, 39 

features are 95% correlated with at least another feature in the dataset. The following list 

shows only a few correlations, but you can find the complete one in the ‘Highly Correlated 

Features Lists’ section in Appendix B. 
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1. Fwd Packet Length Min: Fwd Packet Length Max 
2. Fwd Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min 
3. Bwd Packet Length Max: Total Length of Bwd Packets 
4. Bwd Packet Length Mean: Total Length of Bwd Packets, Bwd Packet Length Max 
5. Flow Packets/s: Flow Duration 
6. Flow IAT Mean: Flow Duration, Flow Packets/s 
7. Flow IAT Max: Flow Duration, Flow Packets/s, Flow IAT Mean 
8. Fwd IAT Mean: Fwd IAT Total 
9. Fwd IAT Std: Total Fwd Packets 
10. Fwd IAT Max: Fwd IAT Total, Fwd IAT Mean 
 

 
According to the results of the 2nd dataset and Pearson algorithm, out of 73 features, 22 

features are 95% correlated with at least another feature in the dataset. The following list 

shows only a few correlations, but you can find the complete one in the ‘Highly Correlated 

Features Lists’ section in Appendix B. 

 
1. Fwd Packet Length Std: Fwd Packet Length Max 
2. Bwd Packet Length Mean: Bwd Packet Length Max 
3. Bwd Packet Length Std: Bwd Packet Length Max, Bwd Packet Length Mean 
4. Fwd IAT Total: Flow Duration 
5. Fwd IAT Max: Flow IAT Max 
6. Bwd IAT Max: Bwd IAT Total 
7. Fwd Header Length: Total Fwd Packets 
8. Bwd Header Length: Total Backward Packets 
9. Fwd Packets/s: Flow Packets/s 
10. Packet Length Std: Max Packet Length, Packet Length Mean 
 
According to the results of the 2nd dataset and Spearman algorithm, out of 73 features, 30 

features are 95% correlated with at least another feature in the dataset. The following list 

shows only a few correlations, but you can find the complete one in the ‘Highly Correlated 

Features Lists’ section in Appendix B. 

 
1. Fwd Packet Length Max: Total Length of Fwd Packets 
2. Fwd Packet Length Mean: Total Length of Fwd Packets, Fwd Packet Length Max 
3. Bwd Packet Length Max: Total Length of Bwd Packets 
4. Bwd Packet Length Mean: Total Length of Bwd Packets, Bwd Packet Length Max 
5. Flow Packets/s: Flow Duration 
6. Flow IAT Mean: Flow Packets/s 
7. Flow IAT Max: Flow Duration, Flow Packets/s, Flow IAT Mean 
8. Fwd IAT Mean: Fwd IAT Total 
9. Fwd IAT Max: Fwd IAT Total, Fwd IAT Mean 
10. Bwd IAT Mean: Bwd IAT Total 
 



68 

 

Since Spearman can detect more general relationships between variables, the correlated 

features are typically more than those identified by Pearson. Moreover, the lists mentioned 

above can create graphs that can better visualize the relationships of the features since 

correlation has both directions. The double direction is not visible in the lists as I won’t to 

keep at least one instance of the 2 correlated variables. For example, if A: B meaning A is 

correlated with B, there will not be B: A even if it is valid, as I don’t want to exclude both A 

and B from the following experiments. 

 

For the purposes of this research, I won’t go into further research on why these correlations 

exist in these datasets, but I will analyze the effect of eliminating these features in the creation 

of a more efficient machine learning model that can detect these attacks.  

 

Moving on, I am left with 2 subsets for each dataset: 

Subset 1 =features – constantFeatures - identificationFeatures - pearsonCorrelatedFeatures 

Subset 2 =features – constantFeatures - identificationFeatures - spearmanCorrelatedFeatures 

 

For each subset I want to identify those features that are the most important ones. Ideally, I 

am looking for the least number of features that can train the most accurate model. So in the 

next step I will use ANOVA and Mutual Information Tests to identify the 5 best up to 50 best 

features of the subsets. 

 

As mentioned in the background, network related features are 

typically continuous and do not fit the assumptions of the Chi-2 test, 

which assumes that the variables are categorical and have discrete 

values. Therefore, using it for feature selection in these datasets 

may not yield accurate results and could lead to the selection of 

irrelevant features or the exclusion of important ones. Figure 5.2 

displays the class distribution for each DDoS class. There was far 

more DDoS traffic than normal one so I tried keeping it balanced. 

 

The complete lists of the results of the K-Best feature selection on 

the 1st dataset can be found in the ‘Best Features Lists’ section in 

Appendix B since they were large and not individually analyzed.  Figure 5.2: Methodology 

Diagram 



69 

 

 

 

In order to rank the features of the 1st dataset, for every occurrence of each feature in a k-

best feature subset calculated by either ANOVA or Mutual information I was giving 1 point to 

the feature. The final rank is shown in figure 5.3. 

 

The maximum packet length of the incoming(fwd) traffic was ranked as the most important 

feature. This is because DDoS attacks typically keep the same small packet length to send as 

many requests as possible. Also, it could be that each attack type might have used a unique 

upper bound for its packets, therefore this feature can be a good predictor. At the same 

ranking is the speed of the flow (Bytes/s). DDoS attacks usually have higher and constant flow 

rates in order to be more effective, so as expected this feature is on the top of the list. 

 

The "act_data_pkt_fwd" feature is a metric that measures the number of actual data packets 

forwarded by the network in a flow. In other words, it counts the number of incoming packets 

that contain actual data, rather than control or management information. Several types of 

DDoS attack traffic will contain a fixed number of data packets or no data packets at all to be 

lightweight and allow higher transmission rates. In contrast, normal traffic has a higher and 

more unpredictable number of data packets.  

 

Protocol as expected is another feature that plays significant role, since many DDoS types, 

abuse services that operate under specific protocols therefore it can be a good predictor on 
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the DDoS target. If we are talking about DDoS detection instead of DDoS classification though, 

it could be a misleading feature.  

 

The Total Length of Fwd packets is another important feature as it represents the total 

number of bytes sent by the source. DDoS attacks normally have a large number of bytes sent, 

compared to normal traffic. Inbound comes after and is very similar as it represents the 

number of bytes received by the destination. It looks like those 2 features should have been 

detected as highly correlated since the number of bytes sent should be the same as the 

number of bytes received. It is quite common for packet losses to occur, especially when the 

network gets congested by DDoS traffic or unreliable protocols are used (UDP).  

 

Flow duration is generally higher in DDoS attacks as threat actors want to keep the network 

as busy as possible and the standard deviation of the number of sent bytes is usually lower in 

DDoS attacks as this number is closer to the average. That is because DDoS attacks typically 

generate many small requests with fixed length. In contrast, normal traffic’s size patterns are 

unpredictable and the standard deviation is normally higher. 

 

To better understand each DDoS traffic individually and also be able to compare them with 

existing research, I additionally extracted the most influential features for each DDoS class 

mixed with normal traffic.  

 

In their research, Iman S., Arash H. L., Saqib H., and Ali A. G. [3] on the same dataset, have 

listed the most influential features for each DDoS class. Their results cannot be directly 

compared to mine since, my results include the most influential feature extracted from the 

entire dataset, but to be able to rank the features as a total, for every appearance of each 

feature in the top 5 list of a DDoS class of the research I added a point to that feature. 
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Figure 5.4 displays the results of my ranking of the best features of the research. The features 

appeared mostly is packet length std which represents the standard deviation of the packets 

size sent/received in the flow. Such a feature as explained previously can be a good indicator 

of the traffic sent by threat actors since their packets typically have fixed length. According to 

my analysis on highly correlated features, this feature is at least 95% linearly correlated with 

the standard deviation of the packets’ size forwarded (Fwd Packet Length Std), therefore I 

decided to exclude the first one. 

 

“Min_seg_size_fwd” refers to the minimum TCP segment’s (not the entire packet) size. As 

shown by the histogram it was an important feature according to the researchers. That’s 

because some types of DDoS attacks use small TCP segment sizes to consume network 

resources and disrupt legitimate traffic. Since it is ranked with a value of 8, that means there 

are 8 out of the 12 DDoS attacks that use most probably small TCP segment sizes.  

 

Protocol and ACK Flag count were also prominent features where in my analysis they were 

deemed highly correlated, so I only kept protocol. I noticed that the maximum value of any 

flag counter in the dataset was 1. So, it could be either 0 or 1, which I am not sure exactly why 

as a flow can be described as a sequence of packets with similar characteristics that serve the 

same purpose. So, I would expect to see a small but not always 1 or 0 count for the network 
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flags. It could be a miscalculation of CICFlowMeter just like other constant features 

mentioned previously.  

 

Just for the record, I performed another experiment to identify the best features using 

ANOVA, but this time including the identification features, that were excluded for the model 

creation. These features include the FlowID, Source IP, Destination IP, Source port, 

Destination port and the timestamp.  

 

According to ANOVA, Source IP and Timestamp were in the top 5 features, Source port and 

FlowID in the top 10 features, Destination IP in the top 15 features and surprisingly 

destination port was in the top 35 features.  

 

Regarding the 2nd dataset, I repeated similar process to identify and 

rank the best features.  

The CIC-IDS2017 dataset contains traffic related to DDoS, DoS 

generated by certain tools, Brute force against SSH and FTP 

authentication as well as Port scans. The attacks analyzed are not all 

identical to DDoS attacks analyzed at the previous dataset, but they 

share the same nature of overwhelming the server with useless 

traffic. Figure 5.5 displays the number of samples/flows used per 

attack type. There was more traffic for DDoS and Benign(normal) 

traffic, but I tried to keep it balanced. 

 

 

 

The results include the calculated best features with ANOVA(f-tests) and mutual information 

tests for up to the 30-best features and can be found in the ‘Best Features Lists’ section in 

Appendix B since they were large and not individually analyzed. 

 

Figure 5.5: Class 

Distribution 
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Similarly with the 1st dataset I made a ranking for each feature following the same method. 

Figure 5.6 shows the histogram of the best features of the 2nd dataset. This dataset was similar 

in nature to the 1st one from the point of view of having enormous amounts of traffic 

transmitted.  

 

Flow duration sits at the top with similar reasons as with the previous dataset. Threat actors 

typically keep the channel busy either because they are performing a DDoS attack, a port scan 

or a Brute force attack. 

 

Max packet length was an equally important feature according to my ranking. This feature 

refers to the maximum packet size in bytes observed in the flow and was at the top of my 

ranking of the 1st dataset. This feature as shown by the correlation analysis, is highly 

correlated with Packet length std, the standard deviation of the packet size. Both Packet 

length std and Max packet length can tell us information about the traffic transmitted and as 

we know the traffic of the attacks being analyzed tends to have a more consistent structure, 

therefore the max packet length tends to remain fixed at lower values for each attack and the 

standard deviation lower. Compared to normal traffic the maximum packet length tends to 

be higher and unpredictable. 

 

Figure 5.6: Histogram of the best features of CIC-IDS2017 Dataset 

0

5

10

15

20

25
Fl

o
w

 D
u

ra
ti

o
n

M
ax

 P
ac

ke
t 

Le
n

gt
h

Fl
o

w
 IA

T 
St

d

To
ta

l F
w

d
 P

ac
ke

ts

m
in

_s
e

g_
si

ze
_f

o
rw

ar
d

In
it

_W
in

_
b

yt
e

s_
fo

rw
ar

d

To
ta

l L
en

gt
h

 o
f 

B
w

d
 P

ac
ke

ts

To
ta

l L
en

gt
h

 o
f 

Fw
d

 P
ac

ke
ts

Fl
o

w
 B

yt
es

/s

To
ta

l B
ac

kw
ar

d
 P

ac
ke

ts

A
ct

iv
e

 M
ea

n

Fw
d

 IA
T 

St
d

B
w

d
 P

ac
ke

t 
Le

n
gt

h
 S

td

Fw
d

 IA
T 

To
ta

l

B
w

d
 P

ac
ke

ts
/s

P
ac

ke
t 

Le
n

gt
h

 V
ar

ia
n

ce

P
ro

to
co

l

B
w

d
 P

ac
ke

t 
Le

n
gt

h
 M

ax

U
R

G
 F

la
g 

C
o

u
n

t

Fl
o

w
 IA

T 
M

ea
n

B
w

d
 IA

T 
M

in

B
w

d
 IA

T 
To

ta
l

Fw
d

 IA
T 

M
in

Id
le

 M
ea

n

In
it

_W
in

_
b

yt
e

s_
b

ac
kw

ar
d

Fl
o

w
 IA

T 
M

ax

Fw
d

 P
ac

ke
t 

Le
n

gt
h

 M
ax

Fw
d

 P
ac

ke
t 

Le
n

gt
h

 S
td

B
w

d
 P

ac
ke

t 
Le

n
gt

h
 M

in

Fl
o

w
 P

ac
ke

ts
/s

Fl
o

w
 IA

T 
M

in

A
ct

iv
e

 S
td

ac
t_

d
at

a_
p

kt
_

fw
d

Fw
d

 P
SH

 F
la

gs

D
o

w
n

/U
p

 R
at

io

Id
le

 S
td

Best features CIC-IDS2017



74 

 

Flow IAT std is another important feature that represents the time standard deviation of the 

time between 2 packets sent in the flow. When its value is lower, it means there is traffic sent 

at constant pace (time between 2 packets closer to the average) which can be a characteristic 

of some attacks. Sometime threat actors try to make their traffic seem as normal as possible, 

therefore constant pace doesn’t necessarily mean suspicious traffic. 

 

Total Fwd Packets and min_seg_size_fwd are some other key features seen in the previous 

analysis. since they indicate the amount of traffic sent. It is worth noting that in this dataset 

protocol is not considered as important as the 1st dataset. That is probably because the traffic 

classes in this case are not so protocol related, therefore it might not be as useful. Also, 

‘act_data_pkt_fwd’ which indicates the number of actual data packets sent, is not as 

important as the DDoS specialized dataset. That could be as in this case there are other types 

of attacks like brute forcing or port scanning that need to use data packets to carry out the 

attack. Therefor this feature might not be a good predictor. 

 

This concludes my analysis of the best features for cyber-attack datasets. Now it’s time to test 

them and see how they perform on detecting these attacks after being trained with several 

machine learning algorithms. The classification algorithms I used, are Decision trees, Random 

Forest, Extreme Gradient Boost, Linear Discriminant Analysis and K-Nearest Neighbors. For 

each algorithm, I trained a model with several feature’s subsets selected with Mutual 

Information Tests and F-tests (ANOVA) and subsets that have been formed after the removal 

of highly correlated features selected by Pearson and Spearman algorithms (before k-best 

selection with Mut. Info and ANOVA).  

 

To reduce the computational costs, just like the previous experiments I used a subset of the 

1st dataset shown in figure 5.2 and the 2nd dataset in figure 5.5. Since the 2 datasets describe 

slightly different attacks, the targets number and total datasets are different, they are not 

directly comparable. So, each algorithm was trained (with its default hyperparameters) with 

several features subset of several lengths (5 up to 50) that were obtained using Mutual Info., 

ANOVA, Spearman and Pearson. The resulted accuracies are then obtained to compare the 

performance of the algorithms. 

  

To sum up, this evaluation compares 5 different machine learning algorithms, 2 K-Best feature 

selection algorithms and 2 Highly correlated Features selection algorithms based on the 
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validation accuracy metric obtained after the training. This process is repeated for the 2nd 

dataset to verify the results. 

 

Appendix B contains a large number of line graphs that show the Training, Validation 

accuracies and Training duration for each comparable set of algorithms (Mutual Info vs 

ANOVA, Pearson vs Spearman, KNN vs LDA vs RFC …) in relation to the feature subset’s length. 

I decided to keep the main text lighter and exclude these graphs but rather use bar charts 

that demonstrate the aggregated comparison between each set of algorithms without 

considering subsets’ length. 

 

Figure 5.7 shows a bar chart that summarizes the performance of each algorithm on the 1st 

dataset (CIC-DDoS2019). The blue bar represents the average of the validation accuracies 

obtained by subsets selected by Mutual Information tests and the orange bar subsets selected 

by ANOVA. Therefore, we have a comparison of these 2 algorithms.  

 

 

As the chart on figure 5.7 indicates, mutual information was able to select features that 

produced slightly more accurate results for almost every algorithm in the first dataset. I 

believe this is the case since Mutual Info tests as previously mentioned, can capture both 

linear and nonlinear relationships between the traffic characteristics compared to ANOVA 

which can only capture linear relationships between variables. This observation can be seen 

in the more detailed graphs provided in appendix B where it is shown that for lower subset 

lengths, ANOVA selected subsets are significantly less accurate than Mutual Info. Selected 
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subsets, but the difference decreases as the subset length increases and after certain lengths 

the difference disappears. An example of this observation can be seen in figure 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

This observation cannot be seen in LDA where, accuracy is about the same for both algorithms 

(slightly higher for ANOVA selected subsets). 

 

Figure 5.8 displays the average training duration (in minutes) taken for each algorithm to 

complete the training. Surprisingly, training occurred by subsets selected by mutual 

information tests completed much faster or equal compared to ANOVA in every algorithm.  
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Figure 5.9: Line graph showing the validation 

accuracy in relation to the subset length on XGBC. 
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Figure 5.10 shows a bar chart that summarizes the performance of each algorithm on the 1st 

dataset (CIC-DDoS2019). The blue bar represents the average of the validation accuracies 

obtained by subsets that occurred after the exclusion of highly correlated features selected 

by Pearson and the orange one by Spearman. I want to compare the accuracies obtained after 

using these 2 feature correlation algorithms to evaluate them.  

 

As shown in figure 5.10 DTC, RFC, XGBC are slightly more accurate when used with Spearman 

where LDA is almost 2 times more accurate. I am assuming this is the case since Spearman 

measures the monotonic relationship between two variables, which means it can capture 

both linear and non-linear relationships as well. This concept is like the previous comparison 

with Mutual Info. vs ANOVA. That can justify why Spearman produced almost 2 times more 

correlations in both dataset than Pearson. So, I believe it is safe to conclude that algorithms 

that can capture several kinds of relationships between variables produce more accurate 

results and it can be a better option to choose. 

 

Figure 5.11 shows the training duration when Spearman selected features are excluded vs 

Pearson’s. As shown with Pearson the training of RFC was slightly faster, but the opposite 

occurred with XGBC and KNN, so I can’t really make a generic conclusion about the speed. 
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By creating the same graphs for the second dataset, it is verified that mutual information is 

slightly more accurate than ANOVA. I had to abandon LDA since the training would take an 

infinite amount of time. I believe some features’ distributions on this dataset could be the 

reason LDA was taking so long but I couldn’t figure it out so I didn’t use it on the second 

dataset.  

 

Figure 5.13 can’t verify the results of the 1st dataset where Mutual Info. was significantly 

faster, but I believe this is because the size of the dataset is smaller and therefore the training 

duration much shorter to see significant differences.  

 

Finally, to complete this set of comparisons, figure 5.13 shows that Pearson was slightly more 

accurate which is the opposite of my observation in the first dataset. Therefore I cant say 

confidently which of these 2 algorithms can more precisely identify variable correlations. 

Unfortunately, I didn’t have LDA in the comparison, that made the most difference in the 

previous graph (figure 5.10). 

 

 

 

 

As shown by the previous bar charts some algorithms are more accurate than others. I n order 

to measure each algorithms performance I made the following box plots: 
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Figure 5.15 Box plot comparing algorithm’s 

accuracies (validation & training) on 2nd dataset 

Figure 5.16 Box plot comparing algorithm’s 

training durations on 2nd dataset 

Figure 5.17 Box plot comparing algorithm’s 

accuracies (validation & training) on 1st dataset 
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Figure 5.15 shows how each algorithm (DTC, RFC, XGBC, KNN) performed on the 2nd dataset. 

This dataset was significantly smaller than the 1st one with fewer target classes so the 

accuracy was higher. As shown by the figure the validation accuracy was close to 100% and 

as expected the training accuracy is always higher than the validation accuracy. XGBC was the 

most accurate algorithm with the least overfitting compared to the rest.  

 

Figure 5.16 shows the training duration summary for each algorithm for the 2nd dataset. XGBC 

on average took about 7 minutes to train the dataset and the rest algorithms about 1-2 

minutes. 

 

Figure 5.17 shows how each algorithm (DTC, RFC, XGBC, LDA, KNN) performed on the 1st 

dataset. As shown, tree-based algorithms (RFC, DTC, XGBC) were the most accurate with 

around 70% accuracy. LDA with about 50-55% accuracy and KNN with 55-60% accuracy. It is 

worth noting that DTC and RFC were significantly overfitted compared to XGBC which makes 

sense as XGBC is an updated, better version of the other 2 tree-based algorithms, that is 

specifically designed to avoid overfitting. Also, LDA seems to have 0 overfitting and KNN being 

slightly overfitted.  

 

Finally, figure 5.18 shows the training duration summary for each algorithm for the 1st  

dataset, where KNN was the slowest with an average of 110 minutes (about 2 hours) followed 

by XGBC, RFC, DTC and LDA. It seems KNN didn’t perform that well, considering its training 

Figure 5.18 Box plot comparing algorithm’s 

accuracies (validation & training) on 1st dataset 
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duration. Overall, Tree-based algorithms seem to have a superior performance on detecting 

these cyber-attacks. 

 

Now that I have an idea of how each algorithm performs and what the 

most accurate features’ subsets are for each algorithm, I will perform 

hyperparameter tuning to identify whether different combinations of 

hyperparameters can improve each algorithm’s performance. For each 

algorithm I have selected the subset with the highest validation accuracy 

produced with as small length as possible. I decided to perform the 

tuning only for the 1st dataset (CIC-DDoS2019), as the second one’s 

accuracy was almost perfect. In order to test a larger number of 

different combinations within a reasonable amount of time, I used a 

reduced version of the 1st dataset. The number of samples for each 

DDoS class is shown in figure 5.19. 

 

 

Algorithm Combinations K-Fold Feature's Subset 

DTC 2160 5 10 features = { Protocol, FlowDuration, TotalFwdPackets, 

TotalLengthofFwdPackets, FwdPacketLengthMax, FlowBytes/s, FlowIATStd, 

FwdIATTotal, FwdHeaderLength, act_data_pkt_fwd } 

RFC 2880 5 15 features = { Protocol, FlowDuration, TotalFwdPackets, 

TotalBackwardPackets, TotalLengthofFwdPackets, FwdPacketLengthMax, 

FwdPacketLengthStd, FlowBytes/s, FlowIATStd, FlowIATMin, FwdIATTotal, 

FwdHeaderLength, act_data_pkt_fwd, min_seg_size_forward, Inbound } 

XGBC 864 5 20 features = { Protocol, FlowDuration, TotalLengthofFwdPackets, 

FwdPacketLengthMax, FwdPacketLengthStd, BwdPacketLengthMin, 

BwdPacketLengthStd, FlowBytes/s, FlowIATStd, FwdIATTotal, FwdPSHFlags, 

FwdHeaderLength, URGFlagCount, CWEFlagCount, Down/UpRatio, 

Init_Win_bytes_backward, act_data_pkt_fwd, min_seg_size_forward, 

IdleStd, Inbound } 

LDA 1650 5 15 features = { Protocol, FlowDuration, TotalLengthofFwdPackets, 

FwdPacketLengthMax, FwdPacketLengthStd, BwdPacketLengthMin, 

FlowBytes/s, FlowIATStd, FwdIATTotal, FwdPSHFlags, URGFlagCount, 

CWEFlagCount, Down/UpRatio, act_data_pkt_fwd, Inbound } 

KNN 960 5 15 features = { Protocol, FlowDuration, TotalLengthofFwdPackets, 

FwdPacketLengthMax, FwdPacketLengthStd, BwdPacketLengthMin, 

FlowBytes/s, FlowIATStd, FwdIATTotal, FwdPSHFlags, URGFlagCount, 

CWEFlagCount, Down/UpRatio, act_data_pkt_fwd, Inbound } 

Figure 5.19 Target class 

distribution for tuning 

experiment. 

Table 5.3: Table showing tuning subset & other characteristics per algorithm 
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Table 5.3 shows the features subsets with higher validation accuracies and as small length as 

possible selected based on the previous training experiments. I used k = 5 for cross validation 

to complete the tuning faster and be able to test a larger range of hyperparameters.  

 

Table 5.4 on the next page shows the ranges used for each hyperparameter of each algorithm 

as well as their values extracted from the most accurate combination. For every algorithm, all 

possible combinations that can be formed from all the ranges are tested. The total amount of 

combinations per algorithm are shown on Table 5.3. I tried using larger ranges for the most 

influential parameters per algorithm while keeping the ones unrelated to accuracy within a 

small range or fixed at the default value. 

 

 

Algorithm Hyperparameter Range Best Value 
DTC ccp_alpha 0 0 
DTC criterion [gini, entropy] entropy 

DTC max_depth [5, 10, 15] 10 
DTC max_features [0.1, 0.2, 0.3, 0.4] 0.4 
DTC max_leaf_nodes [23, 24, 25, 26, 27] 27 
DTC min_impurity_decrease [0, 0.1, 0.2] 0 
DTC min_samples_leaf [1, 2, 3] 1 
DTC min_samples_split [2, 7] 2 
DTC random_state 74 74 
DTC splitter best best 
RFC bootstrap TRUE TRUE 
RFC criterion [gini, entropy] entropy 
RFC max_depth [10, 12, 14, 16] 14 
RFC max_features [0.1, 0.2, 0.3, 0.4] 0.4 
RFC min_samples_leaf [1, 2, 3] 2 
RFC min_samples_split [2, 3, 4] 3 
RFC n_estimators [90, 100, 110, … , 180] 90 
RFC oob_score FALSE FALSE 

XGBC n_estimators [80, 100, 120] gbtree 

XGBC learning_rate [0.05, 0.06, 0.07, 0.08, 0.09, 0.10] 0.9 

XGBC max_depth [3, 6] 0 

XGBC subsample [0.7, 0.8, 0.9, 1.0] 0.1 

XGBC colsample_bytree [0.8, 0.9] 6 

XGBC booster gbtree 2 

XGBC gamma 0 120 

XGBC min_child_weight [1, 2, 3] 0 

XGBC reg_alpha 0 1 

XGBC reg_lambda 1 0.8 

LDA n_components [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 1 
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My hyperparameter tuning was performed in a reduced subset of the dataset (~100000 

samples) to try as many combinations as possible in a reasonable time. In order to evaluate 

the extracted hyperparameters I trained each model with the default parameters and the 

optimal ones with several dataset sizes and took the average validation accuracy. Figure 5.20 

is a bar chart showing the average accuracy of every algorithm with the tuned and default 

hyperparameters. KNN observed the most increase (+3%) in accuracy and LDA, RFC and XGBC 

a smaller one (+1%). Surprisingly, DTC performed significantly worse ( -5%) on average with 

the tuned parameters. It seems that the extracted parameters were only optimal in the size 

used for the tuning, but with different sample sizes the accuracy dropped drastically. I believe 

this is an interesting finding that analysts should be aware of with their analysis. 

LDA shrinkage [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] 0.1 
LDA solver [svd, lsqr, eigen] lsqr 

LDA tol 
[0.000001, 0.010001, 0.020001, 0.030001, 
0.040001] 0.000001 

KNN algorithm [auto, ball_tree, kd_tree, brute] auto 

KNN leaf_size [20, 30, 40, 50, 60] 30 

KNN metric [euclidean, manhattan, minkowski, chebyshev] manhattan 

KNN n_jobs -1 -1 

KNN n_neighbors [5, 10, 15, 20, 25, 30] 30 

KNN p 2 2 

KNN weights [uniform, distance] distance 
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Figure 5.20: Bar chart comparing default and tuned 

models for each algorithm. 

Table 5.4: Table showing tuning ranges per algorithm per parameter 
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As I have previously mentioned, in my first approach I have examined how different dataset 

sizes affect each algorithm’s performance, but since that approach was deemed inaccurate, I 

will attempt to retry it. In my first approach I observed a decrease in accuracy as the dataset 

size increases. To examine the performance of each algorithm in relation to the size of the 

dataset I used the tuned models with several sample sizes to re-examine this theory. 

 

 

 

 

Figure 5.21 is a scatter plot showing how the validation accuracy of the tuned algorithms is 

affected by the dataset’s size. For the tree-based algorithms as the graph shows there is a 

slight increase and then a decrease that slowly stabilizes, but not completely. This is because 

the smallest dataset size is not enough to train a model therefore the accuracy increases. 

Then, there is a noticeable decrease, that is very noticeable on KNN that is probably due to 

overfitting. This means that the algorithms are becoming too specialized for the training data 

and are not generalizing well to new, unseen data. Furthermore, since KNN is a more complex 

algorithm and takes a large amount of time to train, it is most likely that it struggles learning 

with a large dataset. It is also worth noting that RFC and XGBC performed almost identically, 

which makes sense as they are similar. 

Figure 5.21: Scatter plot showing the 

validation accuracy in relation to the 

dataset size. 
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Figure 5.22 shows how the training duration is affected by the dataset’s size. As expected, a 

linear increase can be observed except from LDA and DTC that they were very fast and the 

increase is not really noticeable on the plot. 

 

 

 

Overall KNN was by far the slowest algorithm and DTC with LDA the fastest. RFC and XGBC 

seemed to have a much higher accuracy and even though KNN took so long to train, it was 

not very successful.  

 

This concludes my experimental evaluation of cyber-attacks, mainly DDoS attacks using my 

platform and in the next section I will summarize the most important conclusions and insights 

I extracted from my analysis. 

 

 

 

 

Figure 5.22: Scatter plot showing the 

training duration in relation to the 

dataset size. 
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Chapter 6 

Conclusion and Future work 

 

6.1 Insights & Conclusions……………………………………………………………………………………………..…86 

6.2 Future work………………………………………………………………………………………………………………..88 

 

 

 

6.1 Insights & Conclusions 

 

Throughout this research I managed to draw several conclusions. Before summarizing them, 

I want to mention that this work has been about 70% system development and 30% 

experimenting and analyzing the datasets. Therefore, my analysis has not been the most 

perfect and thorough as it could be.  

 

Firstly, the most important conclusion is that automating the process of data analysis can be 

very extremely for the analyst. The platform allowed me to perform a lot of experiments to 

analyze the datasets very easily and quickly. Other than that, I could have all my results 

organized on the website and saved in the database ready to be extracted and further 

processed in excel.  

 

Regarding my results on cyber-attacks, as I have analyzed in the previous section, some 

features can be very influential in detecting the attacks. Such features include the protocol 

being used, the standard deviation of the payload, the transmission rate and the total 

duration of the flow.  

 

Another important insight I extracted is that all algorithms performed the best when the 

number of features used was about 10 to 20. When larger subsets were used the accuracy 

wouldn’t improve, which makes sense since many features are useless for the model. When 

the subset’s length was below 10 the accuracy was significantly worse for each model. 

 

In my research I compared a set of correlation algorithms (Pearson, Spearman) and best 

feature selection algorithms (Mutual info, ANOVA). Regarding the latter I can confidently say 
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that mutual information tests are able to select the best features more accurately in cyber-

attack datasets since in most cases the selected features produced higher accuracies. My 

comparison of Pearson and Spearman could not reach a confident conclusion regarding the 

accuracy of the produced models since my results between the 2 datasets had conflicts. Since 

these algorithms were used to detect highly correlated features, their accuracy would most 

probably not have a direct impact on the resulting models’ accuracies. This is because even if 

I keep 2 highly correlated features in my dataset, the accuracy will not necessarily drop. 

 

Later in my analysis I compared the ability of 5 machine learning algorithms (DTC, RFC, XGBC, 

LDA and KNN) to make accurate predictions on the datasets’ targets. I concluded that Tree 

based algorithms (DTC, RFC and XGBC) were the most effective with XGBC being the most 

accurate and with the least overfitting compared to DTC and XGBC. To my surprise, the 

average accuracy (~70%) of these algorithms was much higher than I would expect. To be able 

to distinguish 11 different DDoS attacks and normal traffic with 70% accuracy seems a bit too 

high and I suspect that certain features could be leaking information about it. For example, 

what if the simulated attacker transmitted each request at the same constant rate. The 

machine learning model can learn to identify an attack based on an almost constant (as I 

eliminated 100% constant features) data rate or an almost constant payload size. I believe, in 

order to build realistic models that can generalize well in completely unknown traffic several 

datasets should be combined generated on completely different network setups. 

 

After training, I tuned each algorithm to find the best hyperparameters and see how they 

perform on average with the default ones. I concluded that every tuned algorithm showed a 

slight increase in accuracy except DTC. DTC dropped about 5% with the tuned parameters as 

with different sample sizes than the one used for tuning the algorithm couldn’t perform that 

well with the chosen hyperparameters. 

 

I then proceeded to examine how accuracy changes with the dataset’s size. I concluded that 

as the amount of training data increases the accuracy drops. I believe, this is due to overfitting 

since when an algorithm sees a large number of samples, it ‘memorizes’ certain patterns and 

then is not able to see other ones and generalize. 

 

Finally, the CICFlowMeter tool that is converting raw traffic files to excel datasets might not 

be accurate and some features might be miscalculated leading to unrealistic models.  
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6.1 Future work 

 

Through this project I have created a good basis for maybe a much more powerful automation 

tool. My platform can be extended to support regression datasets, a larger number of 

algorithms and be more customizable. There are certain API’s that allow the creation of charts 

and plots that can be automatically displayed for each experiment comparing it to others etc. 

Also, another interesting feature would be the capability to perform predictions on pretrained 

models saved on the server. The user can select an already trained model and insert new data 

to predict. Therefore, I believe my work can be used for the future development of even more 

useful features.  

 

Regarding the analysis of cyberattacks I believe there are several experiments that can be 

performed to further understand how such datasets can or cannot be used for actual attack 

prevention. I believe it should be examined whether certain features of the dataset other 

than the identification features that are obvious (IPs, ports etc.) can leak information about 

the target and therefore be unable to generalize in unknown data. As I have mentioned before 

some features might remain in a specific range within an attack, that is not necessarily a 

characteristic of the attack in general. In addition, other data analysis techniques for feature 

engineering such as PCA can be evaluated against these types of attacks compared to the 

methodology of custom feature selection that I used. Finally, I think it is important to consider 

a greater number of datasets to cross validate the insights of my current work. 
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Appendix A 

 

Each sample represents the features of a flow between 2 nodes. CICFlowMeter will group 

packets (out of .pcap or other network log file) that have similar characteristics (rate, payload 

size, source/dest IP’s and Ports, protocol) into one flow and calculate the features of that 

flow(dataset row). 

*Forward direction: source to destination 

*Backward direction: destination to source 

*Bulk rate: rate of packets/bytes transferred as a single unit/group  

*Flow rate: rate of packets/bytes transferred in a flow 

 

Feature Name Description 

FlowID String concatenation of other features (flowId = sourceIP + "-

" + destinationIP + "-" + srcPort + "-" + dstPort + "-" + 

protocol) 

Source IP IP address of the sender 

Destination IP IP address of the receiver 

Source Port Port number used by the sender 

Destination Port Port number used by the receiver 

Protocol Number identifying the protocol of the connection 

Flow duration Duration of the flow in Microseconds 

act_data_pkt_fwd Number of actual data packets forwarded from the source to 

destination. Management/Control packets are not included. 

Inbound Total number of bytes received by the destination. It’s not 

always the same as total length of Fwd Packet feature since 

packet losses might occur during transmission. 

total Fwd Packet Total packets in the forward direction 

total Bwd packets Total packets in the backward direction 

total Length of Fwd Packet Total size of packets in forward direction 

total Length of Bwd Packet Total size of packets in backward direction 

Fwd Packet Length Min  Minimum size of packets in forward direction 

Fwd Packet Length Max  Maximum size of packets in forward direction 

Fwd Packet Length Mean Mean size of packets in forward direction 
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Fwd Packet Length Std Standard deviation size of packets in forward direction 

Bwd Packet Length Min Minimum size of packets in backward direction 

Bwd Packet Length Max Maximum size of packets in backward direction 

Bwd Packet Length Mean Mean size of packets in backward direction 

Bwd Packet Length Std Standard deviation size of packets in backward direction 

Flow Bytes/s Number of flow bytes per second 

Flow Packets/s Number of flow packets per second  

Flow IAT Mean Mean time between two packets sent in the flow 

Flow IAT Std Standard deviation time between two packets sent in the flow 

Flow IAT Max Maximum time between two packets sent in the flow 

Flow IAT Min Minimum time between two packets sent in the flow 

Fwd IAT Min Minimum time between two packets sent in the forward 

direction 

Fwd IAT Max Maximum time between two packets sent in the forward 

direction 

Fwd IAT Mean Mean time between two packets sent in the forward direction 

Fwd IAT Std Standard deviation time between two packets sent in the 

forward direction 

Fwd IAT Total    Total time between two packets sent in the forward direction 

Bwd IAT Min Minimum time between two packets sent in the backward 

direction 

Bwd IAT Max Maximum time between two packets sent in the backward 

direction 

Bwd IAT Mean Mean time between two packets sent in the backward 

direction 

Bwd IAT Std Standard deviation time between two packets sent in the 

backward direction 

Bwd IAT Total Total time between two packets sent in the backward direction 

Fwd PSH flags Number of times the PSH flag was set in packets travelling in 

the forward direction (0 for UDP) 

Bwd PSH Flags Number of times the PSH flag was set in packets travelling in 

the backward direction (0 for UDP) 

Fwd URG Flags Number of times the URG flag was set in packets travelling 

in the forward direction (0 for UDP) 
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Bwd URG Flags Number of times the URG flag was set in packets travelling 

in the backward direction (0 for UDP) 

Fwd Header Length Total bytes used for headers in the forward direction 

Bwd Header Length Total bytes used for headers in the backward direction 

FWD Packets/s Number of forward packets per second 

Bwd Packets/s Number of backward packets per second 

Packet Length Min  Minimum length of a packet 

Packet Length Max Maximum length of a packet 

Packet Length Mean  Mean length of a packet 

Packet Length Std Standard deviation length of a packet 

Packet Length Variance   Variance length of a packet 

FIN Flag Count  Number of packets with FIN 

SYN Flag Count  Number of packets with SYN 

RST Flag Count  Number of packets with RST 

PSH Flag Count  Number of packets with PUSH 

ACK Flag Count  Number of packets with ACK 

URG Flag Count  Number of packets with URG 

CWR Flag Count  Number of packets with CWR 

ECE Flag Count  Number of packets with ECE 

down/Up Ratio Download and upload ratio 

Average Packet Size  Average size of packets 

Fwd Segment Size Avg  Average size observed in the forward direction 

Bwd Segment Size Avg  Average size observed in the backward direction 

Fwd Bytes/Bulk Avg Average number of bytes bulk rate in the forward direction 

Fwd Packet/Bulk Avg Average number of packets bulk rate in the forward direction 

Fwd Bulk Rate Avg  Average rate at which bulk transfers are occurring in the 

forward direction. 

Bwd Bytes/Bulk Avg Average rate at which bulk transfers are occurring in the 

backward direction. 

Bwd Packet/Bulk Avg  Average number of packets bulk rate in the backward 

direction 

Bwd Bulk Rate Avg Average number of bulk rate in the backward direction 



95 

 

Subflow Fwd Packets The average number of packets in a sub flow in the forward 

direction 

Subflow Fwd Bytes The average number of bytes in a sub flow in the forward 

direction 

Subflow Bwd Packets The average number of packets in a sub flow in the backward 

direction 

Subflow Bwd Bytes The average number of bytes in a sub flow in the backward 

direction 

Fwd Init Win bytes The total number of bytes sent in initial window in the 

forward direction 

Bwd Init Win bytes The total number of bytes sent in initial window in the 

backward direction 

Fwd Act Data Pkts Count of packets with at least 1 byte of TCP data payload in 

the forward direction 

Fwd Seg Size Min Minimum segment size observed in the forward direction 

Active Min Minimum time a flow was active before becoming idle 

Active Mean Mean time a flow was active before becoming idle 

Active Max Maximum time a flow was active before becoming idle 

Active Std Standard deviation time a flow was active before becoming 

idle 

Idle Min Minimum time a flow was idle before becoming active 

Idle Mean Mean time a flow was idle before becoming active 

Idle Max Maximum time a flow was idle before becoming active 

Idle Std Standard deviation time a flow was idle before becoming 

active 

min_seg_size_fwd Minimum segment size observed in the forward direction of 

the flow 

Label Target variable identifying the kind of network traffic(attack, 

normal) 

 

 

 

 

 

  



96 

 

 

Appendix B 

 

This section contains all the graphs I created with my results from the training experiments. 

They were a lot, so I decided to exclude them from the main text, but rather refer them to 

support my conclusions. The graphs mainly highlight differences between accuracies obtained 

by several machine learning algorithms (DTC, RFC, XGBC, LDA, KNN), comparing features 

obtained with ANOVA and Mutual Information as well as features obtained after the exclusion 

of highly correlated (useless) features obtained by Spearman and Pearson algorithms.  

1. CIC-DDoS2019 Dataset: 
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 2. CIC-IDS2017 Dataset: 
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Initial Approach 

 

 

 

 

 

 

 

 

1) N = 5,000 -> 79,520 samples

 

Algorithm name: Decision Tree Random Forest KNN XGBC Naive Bayes MLP LR LDA SVC

Mean training duration(S): 0.232 1.943 5.27 9.791 0.168 47.665 27.047 0.15 227.34

Mean Training accuracy: 0.853 0.848 0.804 0.832 0.471 0.784 0.696 0.663 0.753

Best Training Accuracy: 0.871 0.87 0.821 0.849 0.62 0.807 0.74 0.702 0.783

Best Training Subset: ( S = 16, k = 22 ) ( S = 16, k = 22 ) ( S = 8, k = 15 ) ( S = 16, k = 22 ) ( S = 12, k = 20 ) ( S = 16, k = 22 ) ( S = 13, k = 25 ) ( S = 12, k = 20 ) ( S = 16, k = 22 )

Mean Validation Accuracy: 0.799 0.803 0.782 0.807 0.471 0.783 0.698 0.667 0.753

Best Validation Accuracy: 0.811 0.815 0.794 0.818 0.621 0.805 0.742 0.708 0.783

Best Validation Subset: ( S = 16, k = 22 ) ( S = 16, k = 22 ) ( S = 8, k = 15 ) ( S = 13, k = 25 ) ( S = 12, k = 20 ) ( S = 16, k = 22 ) ( S = 13, k = 25 ) ( S = 12, k = 20 ) ( S = 16, k = 22 )

2) N = 10,000 -> 127,642 samples

Algorithm name: Decision Tree Random Forest KNN XGBC Naive Bayes MLP LR LDA SVC

Mean training duration(S): 0.346 3.213 13.992 14.937 0.291 90.261 61.724 0.252 685.637

Mean Training accuracy: 0.817 0.809 0.763 0.787 0.46 0.744 0.642 0.601 0.705

Best Training Accuracy: 0.836 0.835 0.781 0.803 0.63 0.76 0.683 0.638 0.738

Best Training Subset: ( S = 16, k = 22 ) ( S = 16, k = 22 ) ( S = 9, k = 15 ) ( S = 16, k = 22 ) ( S = 5, k = 10 ) ( S = 11, k = 20 ) ( S = 11, k = 20 ) ( S = 12, k = 20 ) ( S = 16, k = 22 )

Mean Validation Accuracy: 0.762 0.766 0.741 0.769 0.461 0.743 0.642 0.601 0.704

Best Validation Accuracy: 0.772 0.776 0.756 0.781 0.63 0.761 0.683 0.639 0.739

Best Validation Subset: ( S = 14, k = 25 ) ( S = 14, k = 25 ) ( S = 9, k = 15 ) ( S = 13, k = 25 ) ( S = 5, k = 10 ) ( S = 12, k = 20 ) ( S = 11, k = 20 ) ( S = 12, k = 20 ) ( S = 16, k = 22 )

3) N = 50,000 -> 512,527 samples

Algorithm name: Decision Tree Random Forest KNN XGBC Naive Bayes MLP LR LDA SVC

Mean training duration(S): 2.021 17.88 356.408 65.0485 1.6045 316.4855 339.058 1.422

Mean Training accuracy: 0.778 0.766 0.719 0.736 0.436 0.699 0.5995 0.522

Best Training Accuracy: 0.786 0.784 0.72 0.739 0.531 0.705 0.615 0.532

Best Training Subset: ( S = 16, k = 22 ) ( S = 16, k = 22 ) ( S = 16, k = 22 ) ( S = 16, k = 22 ) ( S = 10, k = 15 ) ( S = 14, k = 25 ) ( S = 8, k = 15 ) ( S = 8, k = 15 )

Mean Validation Accuracy: 0.719 0.723 0.695 0.727 0.435 0.698 0.5995 0.522

Best Validation Accuracy: 0.722 0.725 0.698 0.729 0.531 0.704 0.615 0.532

Best Validation Subset: ( S = 16, k = 22 ) ( S = 12, k = 20 ) ( S = 8, k = 15 ) ( S = 12, k = 20 ) ( S = 10, k = 15 ) ( S = 12, k = 20 ) ( S = 8, k = 15 ) ( S = 8, k = 15 )

4) N = 100,000 -> 993,731 samples

Algorithm name: Decision Tree Random Forest KNN XGBC Naive Bayes MLP LR LDA SVC

Mean training duration(S): 3.513 36.237 789.689 120.68 2.463 579.727 591.638 2.186

Mean Training accuracy: 0.752 0.741 0.701 0.718 0.422 0.681 0.559 0.49

Best Training Accuracy: 0.777 0.774 0.714 0.728 0.552 0.7 0.597 0.532

Best Training Subset: ( S = 16, k = 22 ) ( S = 16, k = 22 ) ( S = 16, k = 22 ) ( S = 16, k = 22 ) ( S = 2, k = 5 ) ( S = 13, k = 25 ) ( S = 11, k = 20 ) ( S = 12, k = 20 )

Mean Validation Accuracy: 0.71 0.711 0.68 0.713 0.421 0.681 0.559 0.491

Best Validation Accuracy: 0.718 0.721 0.691 0.723 0.552 0.699 0.598 0.533

Best Validation Subset: ( S = 16, k = 22 ) ( S = 13, k = 25 ) ( S = 8, k = 15 ) ( S = 16, k = 22 ) ( S = 2, k = 5 ) ( S = 13, k = 25 ) ( S = 11, k = 20 ) ( S = 12, k = 20 )
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Highly Correlated Features Lists 

 

According to the results of the 1st dataset and Pearson algorithm, out of 74 features, the 

following 26 features are 95% correlated with at least another feature in the dataset: 

 
1. Fwd Packet Length Min: Fwd Packet Length Max 
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2. Fwd Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min 
3. Flow IAT Std: Flow IAT Mean 
4. Fwd IAT Total: Flow Duration 
5. Fwd IAT Mean: Flow IAT Mean, Flow IAT Std 
6. Fwd IAT Std: Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd IAT Mean 
7. Fwd IAT Max: Flow IAT Max, Fwd IAT Std 
8. Fwd IAT Min: Flow IAT Min 
9. Bwd IAT Std: Bwd IAT Mean 
10. Bwd Header Length: Total Backward Packets 
11. Fwd Packets/s: Flow Packets/s 
12. Min Packet Length: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean 
13. Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean, 
Min Packet Length 
14. RST Flag Count: Fwd PSH Flags 
15. ACK Flag Count: Protocol 
16. Average Packet Size: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean, 
Min Packet Length, Packet Length Mean 
17. Avg Fwd Segment Size: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length 
Mean, Min Packet Length, Packet Length Mean, Average Packet Size 
18. Avg Bwd Segment Size: Bwd Packet Length Mean 
19. Fwd Header Length.1: Fwd Header Length 
20. Subflow Fwd Packets: Total Fwd Packets 
21. Subflow Fwd Bytes: Total Length of Fwd Packets 
22. Subflow Bwd Packets: Total Backward Packets, Bwd Header Length 
23. Subflow Bwd Bytes: Total Length of Bwd Packets 
24. Idle Mean: Flow IAT Max, Fwd IAT Std, Fwd IAT Max 
25. Idle Max: Flow IAT Max, Fwd IAT Std, Fwd IAT Max, Idle Mean 
26. Idle Min: Idle Mean 
 

According to the results of the 1st dataset and Spearman algorithm, out of 74 features the 

following 39 features are 95% correlated with at least another feature in the dataset: 

 
1. Fwd Packet Length Min: Fwd Packet Length Max 
2. Fwd Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min 
3. Bwd Packet Length Max: Total Length of Bwd Packets 
4. Bwd Packet Length Mean: Total Length of Bwd Packets, Bwd Packet Length Max 
5. Flow Packets/s: Flow Duration 
6. Flow IAT Mean: Flow Duration, Flow Packets/s 
7. Flow IAT Max: Flow Duration, Flow Packets/s, Flow IAT Mean 
8. Fwd IAT Mean: Fwd IAT Total 
9. Fwd IAT Std: Total Fwd Packets 
10. Fwd IAT Max: Fwd IAT Total, Fwd IAT Mean 
11. Fwd IAT Min: Flow IAT Min 
12. Bwd IAT Total: Total Backward Packets 
13. Bwd IAT Mean: Total Backward Packets, Bwd IAT Total 
14. Bwd IAT Max: Total Backward Packets, Bwd IAT Total, Bwd IAT Mean 
15. Bwd IAT Min: Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max 
16. Bwd Header Length: Total Backward Packets 
17. Fwd Packets/s: Flow Duration, Flow Packets/s, Flow IAT Mean, Flow IAT Max 
18. Bwd Packets/s: Total Backward Packets, Bwd Header Length 
19. Min Packet Length: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean 
20. Max Packet Length: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean, 
Min Packet Length 
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21. Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean, 
Min Packet Length, Max Packet Length 
22. Packet Length Std: Fwd Packet Length Std 
23. Packet Length Variance: Fwd Packet Length Std, Packet Length Std 
24. RST Flag Count: Fwd PSH Flags 
25. ACK Flag Count: Protocol 
26. Average Packet Size: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean, 
Min Packet Length, Max Packet Length, Packet Length Mean 
27. Avg Fwd Segment Size: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length 
Mean, Min Packet Length, Max Packet Length, Packet Length Mean, Average Packet Size 
28. Avg Bwd Segment Size: Total Length of Bwd Packets, Bwd Packet Length Max, Bwd Packet Length 
Mean 
29. Fwd Header Length.1: Fwd Header Length 
30. Subflow Fwd Packets: Total Fwd Packets, Fwd IAT Std 
31. Subflow Fwd Bytes: Total Length of Fwd Packets 
32. Subflow Bwd Packets: Total Backward Packets, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, Bwd 
Header Length, Bwd Packets/s 
33. Subflow Bwd Bytes: Total Length of Bwd Packets, Bwd Packet Length Max, Bwd Packet Length 
Mean, Avg Bwd Segment Size 
34. Init_Win_bytes_forward: Protocol, ACK Flag Count 
35. Active Max: Active Mean 
36. Active Min: Active Mean, Active Max 
37. Idle Mean: Active Mean, Active Max, Active Min 
38. Idle Max: Active Mean, Active Max, Active Min, Idle Mean 
39. Idle Min: Active Mean, Active Max, Active Min, Idle Mean, Idle Max 
 

 
According to the results of the 2nd dataset and Pearson algorithm, out of 73 features the 

following 22 features are 95% correlated with at least another feature in the dataset: 

 
1. Fwd Packet Length Std: Fwd Packet Length Max 
2. Bwd Packet Length Mean: Bwd Packet Length Max 
3. Bwd Packet Length Std: Bwd Packet Length Max, Bwd Packet Length Mean 
4. Fwd IAT Total: Flow Duration 
5. Fwd IAT Max: Flow IAT Max 
6. Bwd IAT Max: Bwd IAT Total 
7. Fwd Header Length: Total Fwd Packets 
8. Bwd Header Length: Total Backward Packets 
9. Fwd Packets/s: Flow Packets/s 
10. Packet Length Std: Max Packet Length, Packet Length Mean 
11. SYN Flag Count: Fwd PSH Flags 
12. ECE Flag Count: RST Flag Count 
13. Average Packet Size: Packet Length Mean 
14. Avg Fwd Segment Size: Fwd Packet Length Mean 
15. Avg Bwd Segment Size: Bwd Packet Length Max, Bwd Packet Length Mean, Bwd Packet Length 
Std 
16. Subflow Fwd Packets: Total Fwd Packets, Fwd Header Length 
17. Subflow Fwd Bytes: Total Length of Fwd Packets 
18. Subflow Bwd Packets: Total Backward Packets, Bwd Header Length 
19. Subflow Bwd Bytes: Total Length of Bwd Packets 
20. Idle Mean: Flow IAT Max, Fwd IAT Max 
21. Idle Max: Flow IAT Max, Fwd IAT Max, Idle Mean 
22. Idle Min: Idle Mean 
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According to the results of the 2nd dataset and Spearman algorithm, out of 73 features the 

following 30 features are 95% correlated with at least another feature in the dataset: 

 
1. Fwd Packet Length Max: Total Length of Fwd Packets 
2. Fwd Packet Length Mean: Total Length of Fwd Packets, Fwd Packet Length Max 
3. Bwd Packet Length Max: Total Length of Bwd Packets 
4. Bwd Packet Length Mean: Total Length of Bwd Packets, Bwd Packet Length Max 
5. Flow Packets/s: Flow Duration 
6. Flow IAT Mean: Flow Packets/s 
7. Flow IAT Max: Flow Duration, Flow Packets/s, Flow IAT Mean 
8. Fwd IAT Mean: Fwd IAT Total 
9. Fwd IAT Max: Fwd IAT Total, Fwd IAT Mean 
10. Bwd IAT Mean: Bwd IAT Total 
11. Bwd IAT Max: Bwd IAT Total, Bwd IAT Mean 
12. Fwd Header Length: Total Fwd Packets 
13. Bwd Header Length: Total Backward Packets 
14. Fwd Packets/s: Flow Duration, Flow Packets/s, Flow IAT Mean, Flow IAT Max 
15. Packet Length Mean: Max Packet Length 
16. Packet Length Std: Max Packet Length 
17. Packet Length Variance: Max Packet Length, Packet Length Std 
18. SYN Flag Count: Fwd PSH Flags 
19. ECE Flag Count: RST Flag Count 
20. Average Packet Size: Max Packet Length, Packet Length Mean 
21. Avg Fwd Segment Size: Total Length of Fwd Packets, Fwd Packet Length Max, Fwd Packet Length 
Mean 
22. Avg Bwd Segment Size: Total Length of Bwd Packets, Bwd Packet Length Max, Bwd Packet Length 
Mean 
23. Subflow Fwd Packets: Total Fwd Packets, Fwd Header Length 
24. Subflow Fwd Bytes: Total Length of Fwd Packets, Fwd Packet Length Max, Fwd Packet Length 
Mean, Avg Fwd Segment Size 
25. Subflow Bwd Packets: Total Backward Packets, Bwd Header Length 
26. Subflow Bwd Bytes: Total Length of Bwd Packets, Bwd Packet Length Max, Bwd Packet Length 
Mean, Avg Bwd Segment Size 
27. Active Max: Active Mean 
28. Active Min: Active Mean, Active Max 
29. Idle Max: Idle Mean 
30. Idle Min: Idle Mean, Idle Max 

 

Best Features Lists 

 

Best features of the 1st dataset (CIC-DDoS2019): 

 

*Subset 1(53 features) is the subset originating from the removal of the correlated features 

identified by the Pearson algorithm, whereas subset 2(40 features) from the removal of the 

correlated features identified by Spearman. The features are not sorted from the best to 

worst in each subset and their descriptions can be found in Appendix A 
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# Algorithm K Subset Best Features 

0 F-Test 5 2 { Protocol, Fwd Packet Length Max, Flow Bytes/s, act_data_pkt_fwd, 

Inbound } 

1 F-Test 5 1 { Protocol, Fwd Packet Length Max, Flow Bytes/s, Max Packet 

Length, Inbound } 

2 F-Test 10 2 { Protocol, Fwd Packet Length Max, Fwd Packet Length Std, Bwd 

Packet Length Min, Flow Bytes/s, URG Flag Count, CWE Flag Count, 

Down/Up Ratio, act_data_pkt_fwd, Inbound } 

3 F-Test 10 1 { Protocol, Fwd Packet Length Max, Flow Bytes/s, Flow Packets/s, 

Max Packet Length, URG Flag Count, Down/Up Ratio, 

Init_Win_bytes_forward, act_data_pkt_fwd, Inbound } 

4 F-Test 15 2 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet 

Length Max, Fwd Packet Length Std, Bwd Packet Length Min, Flow 

Bytes/s, Flow IAT Std, Fwd IAT Total, Fwd PSH Flags, URG Flag Count, 

CWE Flag Count, Down/Up Ratio, act_data_pkt_fwd, Inbound } 

5 F-Test 15 1 { Protocol, Total Length of Fwd Packets, Fwd Packet Length Max, 

Fwd Packet Length Std, Bwd Packet Length Min, Bwd Packet Length 

Mean, Flow Bytes/s, Flow Packets/s, Max Packet Length, URG Flag 

Count, CWE Flag Count, Down/Up Ratio, Init_Win_bytes_forward, 

act_data_pkt_fwd, Inbound } 

6 F-Test 20 2 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet 

Length Max, Fwd Packet Length Std, Bwd Packet Length Min, Bwd 

Packet Length Std, Flow Bytes/s, Flow IAT Std, Fwd IAT Total, Fwd 

PSH Flags, Fwd Header Length, URG Flag Count, CWE Flag Count, 

Down/Up Ratio, Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Idle Std, Inbound } 

7 F-Test 20 1 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet 

Length Max, Fwd Packet Length Std, Bwd Packet Length Min, Bwd 

Packet Length Mean, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, 

Flow IAT Max, Fwd PSH Flags, Max Packet Length, Packet Length Std, 

URG Flag Count, CWE Flag Count, Down/Up Ratio, 

Init_Win_bytes_forward, act_data_pkt_fwd, Inbound } 

8 F-Test 25 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Fwd Packet Length Max, Fwd 

Packet Length Std, Bwd Packet Length Min, Bwd Packet Length Std, 

Flow Bytes/s, Flow IAT Std, Fwd IAT Total, Bwd IAT Std, Fwd PSH 

Flags, Fwd Header Length, URG Flag Count, CWE Flag Count, 

Down/Up Ratio, Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Std, Idle Std, Inbound } 

9 F-Test 25 1 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet 

Length Max, Fwd Packet Length Std, Bwd Packet Length Max, Bwd 

Packet Length Min, Bwd Packet Length Mean, Bwd Packet Length 

Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Max, 
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Fwd PSH Flags, Max Packet Length, Packet Length Std, URG Flag 

Count, CWE Flag Count, Down/Up Ratio, Init_Win_bytes_forward, 

Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Idle Std, Inbound } 

10 F-Test 30 2 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet 

Length Max, Fwd Packet Length Std, Bwd Packet Length Max, Bwd 

Packet Length Min, Bwd Packet Length Mean, Bwd Packet Length 

Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Max, 

Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, Bwd IAT Min, Fwd PSH 

Flags, Fwd Header Length, Max Packet Length, Packet Length Std, 

URG Flag Count, CWE Flag Count, Down/Up Ratio, 

Init_Win_bytes_forward, Init_Win_bytes_backward, 

act_data_pkt_fwd, min_seg_size_forward, Idle Std, Inbound } 

11 F-Test 30 1 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet 

Length Max, Fwd Packet Length Std, Bwd Packet Length Max, Bwd 

Packet Length Min, Bwd Packet Length Mean, Bwd Packet Length 

Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Max, 

Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, Bwd IAT Min, Fwd PSH 

Flags, Fwd Header Length, Max Packet Length, Packet Length Std, 

URG Flag Count, CWE Flag Count, Down/Up Ratio, 

Init_Win_bytes_forward, Init_Win_bytes_backward, 

act_data_pkt_fwd, min_seg_size_forward, Idle Std, Inbound } 

12 F-Test 35 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT 

Min, Fwd IAT Total, Bwd IAT Std, Fwd PSH Flags, Fwd Header Length, 

SYN Flag Count, URG Flag Count, CWE Flag Count, ECE Flag Count, 

Down/Up Ratio, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd 

Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg 

Bulk Rate, Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Std, Idle Std, Inbound } 

13 F-Test 35 1 { Protocol, Flow Duration, Total Backward Packets, Total Length of 

Fwd Packets, Fwd Packet Length Max, Fwd Packet Length Std, Bwd 

Packet Length Max, Bwd Packet Length Min, Bwd Packet Length 

Mean, Bwd Packet Length Std, Flow Bytes/s, Flow Packets/s, Flow 

IAT Mean, Flow IAT Max, Bwd IAT Total, Bwd IAT Mean, Bwd IAT 

Max, Bwd IAT Min, Fwd PSH Flags, Fwd Header Length, Bwd 

Packets/s, Max Packet Length, Packet Length Std, URG Flag Count, 

CWE Flag Count, Down/Up Ratio, Init_Win_bytes_forward, 

Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Max, Active Min, Idle 

Std, Inbound } 
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14 F-Test 40 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT 

Min, Fwd IAT Total, Bwd IAT Std, Fwd PSH Flags, Bwd PSH Flags, Fwd 

URG Flags, Bwd URG Flags, Fwd Header Length, FIN Flag Count, SYN 

Flag Count, PSH Flag Count, URG Flag Count, CWE Flag Count, ECE 

Flag Count, Down/Up Ratio, Fwd Avg Bytes/Bulk, Fwd Avg 

Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg 

Packets/Bulk, Bwd Avg Bulk Rate, Init_Win_bytes_backward, 

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Std, 

Idle Std, Inbound } 

15 F-Test 40 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Fwd Packet Length Max, Fwd 

Packet Length Std, Bwd Packet Length Max, Bwd Packet Length Min, 

Bwd Packet Length Mean, Bwd Packet Length Std, Flow Bytes/s, 

Flow Packets/s, Flow IAT Mean, Flow IAT Max, Flow IAT Min, Bwd 

IAT Total, Bwd IAT Mean, Bwd IAT Max, Bwd IAT Min, Fwd PSH Flags, 

Fwd Header Length, Bwd Packets/s, Max Packet Length, Packet 

Length Std, Packet Length Variance, SYN Flag Count, URG Flag 

Count, CWE Flag Count, Down/Up Ratio, Init_Win_bytes_forward, 

Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Std, Active Max, Active 

Min, Idle Std, Inbound } 

16 F-Test 45 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet 

Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT 

Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, 

Bwd IAT Min, Fwd PSH Flags, Fwd Header Length, Bwd Packets/s, 

Max Packet Length, Packet Length Std, Packet Length Variance, SYN 

Flag Count, URG Flag Count, CWE Flag Count, Down/Up Ratio, Fwd 

Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg 

Bulk Rate, Init_Win_bytes_forward, Init_Win_bytes_backward, 

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Std, 

Active Max, Active Min, Idle Std, Inbound } 

17 F-Test 50 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet 

Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT 

Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, 

Bwd IAT Min, Fwd PSH Flags, Fwd Header Length, Bwd Packets/s, 
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Max Packet Length, Packet Length Std, Packet Length Variance, FIN 

Flag Count, SYN Flag Count, PSH Flag Count, URG Flag Count, CWE 

Flag Count, ECE Flag Count, Down/Up Ratio, Fwd Avg Bytes/Bulk, 

Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd 

Avg Packets/Bulk, Bwd Avg Bulk Rate, Init_Win_bytes_forward, 

Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Std, Active Max, Active 

Min, Idle Std, Inbound } 

18 Mutual 

Information Test 

5 2 { Flow Duration, Total Length of Fwd Packets, Fwd Packet Length 

Max, Flow Bytes/s, act_data_pkt_fwd } 

19 Mutual 

Information Test 

5 1 { Total Length of Fwd Packets, Fwd Packet Length Max, Flow Bytes/s, 

Max Packet Length, act_data_pkt_fwd } 

20 Mutual 

Information Test 

10 2 { Protocol, Flow Duration, Total Fwd Packets, Total Length of Fwd 

Packets, Fwd Packet Length Max, Flow Bytes/s, Flow IAT Std, Fwd 

IAT Total, Fwd Header Length, act_data_pkt_fwd } 

21 Mutual 

Information Test 

10 1 { Flow Duration, Total Length of Fwd Packets, Fwd Packet Length 

Max, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Max, 

Fwd Header Length, Max Packet Length, act_data_pkt_fwd } 

22 Mutual 

Information Test 

15 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Fwd Packet Length Max, Fwd 

Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT Min, Fwd IAT 

Total, Fwd Header Length, act_data_pkt_fwd, 

min_seg_size_forward, Inbound } 

23 Mutual 

Information Test 

15 1 { Protocol, Flow Duration, Total Fwd Packets, Total Length of Fwd 

Packets, Fwd Packet Length Max, Flow Bytes/s, Flow Packets/s, Flow 

IAT Mean, Flow IAT Max, Fwd Header Length, Max Packet Length, 

Packet Length Std, Packet Length Variance, Init_Win_bytes_forward, 

act_data_pkt_fwd } 

24 Mutual 

Information Test 

20 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Flow Bytes/s, Flow 

IAT Std, Flow IAT Min, Fwd IAT Total, Fwd Header Length, Down/Up 

Ratio, Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Idle Std, Inbound } 

25 Mutual 

Information Test 

20 1 { Protocol, Flow Duration, Total Fwd Packets, Total Length of Fwd 

Packets, Fwd Packet Length Max, Fwd Packet Length Std, Flow 

Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Max, Flow IAT 

Min, Fwd Header Length, Bwd Packets/s, Max Packet Length, Packet 

Length Std, Packet Length Variance, Init_Win_bytes_forward, 

act_data_pkt_fwd, min_seg_size_forward, Inbound } 

26 Mutual 

Information Test 

25 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Min, Flow Bytes/s, Flow IAT Std, Flow IAT Min, Fwd IAT Total, Bwd 
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IAT Std, Fwd Header Length, URG Flag Count, CWE Flag Count, 

Down/Up Ratio, Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Std, Idle Std, Inbound } 

27 Mutual 

Information Test 

25 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Fwd Packet Length Max, Fwd 

Packet Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, 

Flow IAT Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT 

Max, Bwd IAT Min, Fwd Header Length, Bwd Packets/s, Max Packet 

Length, Packet Length Std, Packet Length Variance, 

Init_Win_bytes_forward, act_data_pkt_fwd, min_seg_size_forward, 

Inbound } 

28 Mutual 

Information Test 

30 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT 

Min, Fwd IAT Total, Bwd IAT Std, Fwd PSH Flags, Bwd URG Flags, 

Fwd Header Length, SYN Flag Count, URG Flag Count, CWE Flag 

Count, Down/Up Ratio, Bwd Avg Bytes/Bulk, 

Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Std, Idle Std, Inbound } 

29 Mutual 

Information Test 

30 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Flow Bytes/s, Flow 

Packets/s, Flow IAT Mean, Flow IAT Max, Flow IAT Min, Bwd IAT 

Total, Bwd IAT Mean, Bwd IAT Max, Bwd IAT Min, Fwd Header 

Length, Bwd Packets/s, Max Packet Length, Packet Length Std, 

Packet Length Variance, Down/Up Ratio, Init_Win_bytes_forward, 

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Max, 

Active Min, Inbound } 

30 Mutual 

Information Test 

35 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT 

Min, Fwd IAT Total, Bwd IAT Std, Fwd PSH Flags, Bwd PSH Flags, Fwd 

URG Flags, Fwd Header Length, SYN Flag Count, URG Flag Count, 

CWE Flag Count, ECE Flag Count, Down/Up Ratio, Fwd Avg 

Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Packets/Bulk, Bwd Avg 

Bulk Rate, Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Std, Idle Std, Inbound } 

31 Mutual 

Information Test 

35 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Max, Bwd Packet Length Mean, Flow Bytes/s, Flow Packets/s, Flow 

IAT Mean, Flow IAT Max, Flow IAT Min, Bwd IAT Total, Bwd IAT 
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Mean, Bwd IAT Max, Bwd IAT Min, Fwd Header Length, Bwd 

Packets/s, Max Packet Length, Packet Length Std, Packet Length 

Variance, URG Flag Count, Down/Up Ratio, Init_Win_bytes_forward, 

Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Max, Active Min, Idle 

Std, Inbound } 

32 Mutual 

Information Test 

40 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT 

Min, Fwd IAT Total, Bwd IAT Std, Fwd PSH Flags, Bwd PSH Flags, Fwd 

URG Flags, Bwd URG Flags, Fwd Header Length, FIN Flag Count, SYN 

Flag Count, PSH Flag Count, URG Flag Count, CWE Flag Count, ECE 

Flag Count, Down/Up Ratio, Fwd Avg Bytes/Bulk, Fwd Avg 

Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg 

Packets/Bulk, Bwd Avg Bulk Rate, Init_Win_bytes_backward, 

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Std, 

Idle Std, Inbound } 

33 Mutual 

Information Test 

40 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet 

Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT 

Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, 

Bwd IAT Min, Fwd PSH Flags, Fwd Header Length, Bwd Packets/s, 

Max Packet Length, Packet Length Std, Packet Length Variance, URG 

Flag Count, CWE Flag Count, Down/Up Ratio, 

Init_Win_bytes_forward, Init_Win_bytes_backward, 

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Std, 

Active Max, Active Min, Idle Std, Inbound } 

34 Mutual 

Information Test 

45 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet 

Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT 

Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, 

Bwd IAT Min, Fwd PSH Flags, Bwd PSH Flags, Fwd URG Flags, Fwd 

Header Length, Bwd Packets/s, Max Packet Length, Packet Length 

Std, Packet Length Variance, URG Flag Count, CWE Flag Count, 

Down/Up Ratio, Fwd Avg Bulk Rate, Bwd Avg Packets/Bulk, Bwd Avg 

Bulk Rate, Init_Win_bytes_forward, Init_Win_bytes_backward, 

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Std, 

Active Max, Active Min, Idle Std, Inbound } 
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Best features of the 2nd dataset (CIC-IDS2017): 

 

*Subset 1(38 features) is the subset originating from the removal of the correlated features 

identified by the Spearman algorithm, whereas subset 2(43 features) from the removal of the 

correlated features identified by Pearson. The features are not sorted from the best to worst 

in each subset and their descriptions can be found in Appendix A. 

 

35 Mutual 

Information Test 

50 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward 

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets, 

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length 

Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet 

Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT 

Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, 

Bwd IAT Min, Fwd PSH Flags, Bwd PSH Flags, Bwd URG Flags, Fwd 

Header Length, Bwd Packets/s, Max Packet Length, Packet Length 

Std, Packet Length Variance, SYN Flag Count, URG Flag Count, CWE 

Flag Count, ECE Flag Count, Down/Up Ratio, Fwd Avg Bytes/Bulk, 

Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd 

Avg Packets/Bulk, Bwd Avg Bulk Rate, Init_Win_bytes_forward, 

Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Std, Active Max, Active 

Min, Idle Std, Inbound } 

# Algorithm K Subset Best Features 

0 F-Test 5 1 { Total Fwd Packets, Total Length of Bwd Packets, Bwd Packet Length Std, PSH Flag Count, 

min_seg_size_forward } 

1 F-Test 5 2 { Total Fwd Packets, Bwd Packet Length Max, Packet Length Mean, PSH Flag Count, 

min_seg_size_forward } 

2 F-Test 10 1 { Total Fwd Packets, Total Length of Bwd Packets, Bwd Packet Length Std, Flow IAT Std, Fwd 

IAT Std, Max Packet Length, Packet Length Mean, PSH Flag Count, min_seg_size_forward, 

Idle Mean } 

3 F-Test 10 2 { Protocol, Flow Duration, Total Fwd Packets, Bwd Packet Length Max, Flow IAT Std, Max 

Packet Length, Packet Length Mean, PSH Flag Count, min_seg_size_forward, Active Mean } 

4 F-Test 15 1 { Protocol, Flow Duration, Total Fwd Packets, Total Length of Bwd Packets, Bwd Packet 

Length Std, Flow IAT Std, Fwd IAT Total, Fwd IAT Std, Max Packet Length, Packet Length 

Mean, PSH Flag Count, URG Flag Count, min_seg_size_forward, Active Mean, Idle Mean } 

5 F-Test 15 2 { Protocol, Flow Duration, Total Fwd Packets, Bwd Packet Length Max, Flow IAT Std, Bwd IAT 

Mean, Max Packet Length, Packet Length Mean, Packet Length Variance, PSH Flag Count, 

URG Flag Count, min_seg_size_forward, Active Mean, Active Max, Active Min} 
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6 F-Test 20 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Bwd 

Packets, Bwd Packet Length Std, Flow IAT Std, Fwd IAT Total, Fwd IAT Std, Bwd IAT Min, Max 

Packet Length, Packet Length Mean, PSH Flag Count, ACK Flag Count, URG Flag Count, 

Init_Win_bytes_forward, min_seg_size_forward, Active Mean, Active Std, Idle Mean } 

7 F-Test 20 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Bwd Packet Length 

Max, Flow IAT Mean, Flow IAT Std, Bwd IAT Mean, Bwd IAT Min, Max Packet Length, Packet 

Length Mean, Packet Length Variance, PSH Flag Count, ACK Flag Count, URG Flag Count, 

Init_Win_bytes_forward, min_seg_size_forward, Active Mean, Active Max, Active Min } 

8 F-Test 25 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Bwd 

Packets, Bwd Packet Length Min, Bwd Packet Length Std, Flow IAT Std, Fwd IAT Total, Fwd 

IAT Std, Fwd IAT Min, Bwd IAT Min, Fwd PSH Flags, Min Packet Length, Max Packet Length, 

Packet Length Mean, FIN Flag Count, PSH Flag Count, ACK Flag Count, URG Flag Count, 

Init_Win_bytes_forward, min_seg_size_forward, Active Mean, Active Std, Idle Mean } 

9 F-Test 25 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Bwd Packet Length 

Max, Flow IAT Mean, Flow IAT Std, Fwd IAT Mean, Bwd IAT Mean, Bwd IAT Min, Fwd PSH 

Flags, Min Packet Length, Max Packet Length, Packet Length Mean, Packet Length Variance, 

FIN Flag Count, PSH Flag Count, ACK Flag Count, URG Flag Count, Init_Win_bytes_forward, 

min_seg_size_forward, Active Mean, Active Std, Active Max, Active Min } 

10 F-Test 30 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Bwd 

Packets, Bwd Packet Length Min, Bwd Packet Length Std, Flow IAT Std, Flow IAT Min, Fwd 

IAT Total, Fwd IAT Std, Fwd IAT Min, Bwd IAT Total, Bwd IAT Std, Bwd IAT Min, Fwd PSH 

Flags, Bwd Packets/s, Min Packet Length, Max Packet Length, Packet Length Mean, FIN Flag 

Count, PSH Flag Count, ACK Flag Count, URG Flag Count, Down/Up Ratio, 

Init_Win_bytes_forward, min_seg_size_forward, Active Mean, Active Std, Idle Mean } 

11 F-Test 30 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Fwd Packet Length 

Mean, Bwd Packet Length Max, Bwd Packet Length Min, Flow IAT Mean, Flow IAT Std, Flow 

IAT Min, Fwd IAT Mean, Fwd IAT Min, Bwd IAT Mean, Bwd IAT Min, Fwd PSH Flags, Min 

Packet Length, Max Packet Length, Packet Length Mean, Packet Length Variance, FIN Flag 

Count, PSH Flag Count, ACK Flag Count, URG Flag Count, Down/Up Ratio, 

Init_Win_bytes_forward, min_seg_size_forward, Active Mean, Active Std, Active Max, 

Active Min } 

12 Mutual 

Information Test 

5 1 { Flow Duration, Total Length of Fwd Packets, Flow IAT Max, Packet Length Mean, Packet 

Length Variance } 

13 Mutual 

Information Test 

5 2 { Flow Duration, Total Length of Fwd Packets, Flow Bytes/s, Fwd IAT Total, Max Packet 

Length } 

14 Mutual 

Information Test 

10 1 { Flow Duration, Total Length of Fwd Packets, Fwd Packet Length Max, Flow Bytes/s, Flow 

Packets/s, Flow IAT Mean, Flow IAT Max, Max Packet Length, Packet Length Mean, Packet 

Length Variance } 

15 Mutual 

Information Test 

10 2 { Flow Duration, Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd Packet 

Length Std, Flow Bytes/s, Flow IAT Std, Fwd IAT Total, Bwd Packets/s, Max Packet Length, 

Init_Win_bytes_forward } 

16 Mutual 

Information Test 

15 1 { Flow Duration, Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd Packet 

Length Max, Fwd Packet Length Mean, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow 



121 

 

 

IAT Std, Flow IAT Max, Fwd IAT Mean, Bwd Packets/s, Max Packet Length, Packet Length 

Mean, Packet Length Variance } 

17 Mutual 

Information Test 

15 2 { Flow Duration, Total Fwd Packets, Total Length of Fwd Packets, Total Length of Bwd 

Packets, Fwd Packet Length Std, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Fwd IAT 

Total, Fwd IAT Std, Bwd IAT Total, Bwd Packets/s, Max Packet Length, 

Init_Win_bytes_forward, Init_Win_bytes_backward } 

18 Mutual 

Information Test 

20 1 { Flow Duration, Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd Packet 

Length Max, Fwd Packet Length Mean, Bwd Packet Length Max, Flow Bytes/s, Flow 

Packets/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd IAT Mean, Fwd IAT Std, Bwd IAT 

Total, Bwd IAT Mean, Bwd Packets/s, Max Packet Length, Packet Length Mean, Packet 

Length Variance, Init_Win_bytes_forward } 

19 Mutual 

Information Test 

20 2 { Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets, 

Total Length of Bwd Packets, Fwd Packet Length Std, Bwd Packet Length Std, Flow Bytes/s, 

Flow IAT Std, Fwd IAT Total, Fwd IAT Std, Fwd IAT Min, Bwd IAT Total, Bwd IAT Std, Bwd 

Packets/s, Max Packet Length, Init_Win_bytes_forward, Init_Win_bytes_backward, 

act_data_pkt_fwd, min_seg_size_forward } 

20 Mutual 

Information Test 

25 1 { Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets, 

Total Length of Bwd Packets, Fwd Packet Length Max, Fwd Packet Length Mean, Bwd Packet 

Length Max, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd 

IAT Mean, Fwd IAT Std, Fwd IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Std, Bwd 

Packets/s, Max Packet Length, Packet Length Mean, Packet Length Variance, 

Init_Win_bytes_forward, Init_Win_bytes_backward } 

21 Mutual 

Information Test 

25 2 { Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets, 

Total Length of Bwd Packets, Fwd Packet Length Std, Bwd Packet Length Min, Bwd Packet 

Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT Min, Fwd IAT Total, Fwd IAT Std, Fwd IAT 

Min, Bwd IAT Total, Bwd IAT Std, Bwd IAT Min, Bwd Packets/s, Max Packet Length, 

Init_Win_bytes_forward, Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Idle Mean } 

22 Mutual 

Information Test 

30 1 { Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets, 

Total Length of Bwd Packets, Fwd Packet Length Max, Fwd Packet Length Mean, Bwd Packet 

Length Max, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, Flow 

IAT Min, Fwd IAT Mean, Fwd IAT Std, Fwd IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT 

Std, Bwd Packets/s, Max Packet Length, Packet Length Mean, Packet Length Variance, 

Init_Win_bytes_forward, Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Active Max } 

23 Mutual 

Information Test 

30 2 { Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets, 

Total Length of Bwd Packets, Fwd Packet Length Min, Fwd Packet Length Std, Bwd Packet 

Length Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT Min, Fwd IAT Total, 

Fwd IAT Std, Fwd IAT Min, Bwd IAT Total, Bwd IAT Std, Bwd IAT Min, Bwd Packets/s, Min 

Packet Length, Max Packet Length, PSH Flag Count, Down/Up Ratio, 

Init_Win_bytes_forward, Init_Win_bytes_backward, act_data_pkt_fwd, 

min_seg_size_forward, Active Mean, Idle Mean, Idle Std } 


