

Bachelor’s Thesis

ML-Modeler: A Web Application for Automated

 Analysis on Cyber Attacks

Andreas Demosthenous

University of Cyprus

Department of Computer Science

 May 2023

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

ML-Modeler: A Web Application for Automated

 Analysis on Cyber Attacks

Andreas Demosthenous

Supervisor

George Pallis

The Diploma Thesis was submitted for partial fulfilment of the requirements for

obtaining the degree of Computer Science of the Department of Computer Science of

the University of Cyprus

May 2023

ACKNOWLEDGMENTS

I would like to thank and express my appreciation to my supervisor, Professor George Pallis,

who gave me the opportunity to work on a topic that is very important and falls within my

career goals. He supported me in everything I needed, and he was always available for

questions.

My special thanks also go to Ms. Ioanna Georgiou, who is part of LINC in the department of

computer science at University of Cyprus. She supported and helped me with a lot of

problems I encountered. Her instructions and suggestions were important in the completion

of this research. Finally, I would like to thank my family and friends for being supportive during

my studies.

Abstract

The increasing frequency and complexity of cyber-attacks have made it challenging for

organizations to analyze large volumes of data to identify threats and respond to them

quickly. This thesis proposes the implementation of a platform for automating the data

analysis of cyber-attacks. The platform allows the data analyst perform several operations on

their datasets including feature selection as well as model training and tuning. The proposed

platform is designed to be scalable, flexible, and easy to use, providing a comprehensive

solution for organizations of all sizes. During this research, the platform was an effective tool

in reducing the time and resources required for data analysis, while aiding in keeping the

results in an organized fashion.

Additionally, this research includes an analysis of several cyber-attack datasets to identify the

most important network related features and correlations between them as well as the most

efficient machine learning algorithms to detect such attacks. The results of this analysis

demonstrate that certain features, such as the protocol, payload size, flow duration are

critical in identifying and classifying attacks. Furthermore, tree-based machine learning

algorithms such as Random Forest and Extreme Gradient Boost are effective in accurately

detecting and classifying various types of cyber-attacks.

The proposed platform, combined with the results of the analysis, represents a significant

contribution to the field of cyber security and data science, and it has the potential to

revolutionize the way organizations approach data analysis and threat detection.

Table of Context

Chapter 1 Introduction ………………………………………………..……………………………..1

1.1 Motivation ………..…………………………………………………………………………………….……..…1

 1.2 System Description …………………………………………………………………………….……………..2

 1.3 Contribution ……………………………….……………………………………………….……….…………..2

1.4 Chapter Outline ………………………………………………………………………………………..……….3

Chapter 2 Background ………………………………………………..……………………………... 4

2.1 Cyber Attacks Landscape…..………………………………………………………………………..………4

 2.1.1 DDoS Attacks………………………………………………………………………………………..4

 2.1.2 Brute Force Attacks…………………………………………………………………………….13

 2.2 Existing Mitigation Approaches….……………………………………………………………………. 14

 2.3 Manual Data Analysis………………………………………………………..………………………………15

 2.3.1 Python………………………………………………………………………………………………..16

 2.3.2 Feature Selection………………………………………………………………………………..19

 2.3.3 Machine Learning……………………………………………………………………………….22

2.4 Benefits of Automation……………………………………………………………………………………..24

Chapter 3 Related Work …………………………………………….………………….…………..26

3.1 Similar Platforms.……………………………………………………………………………….……………..26

 3.1.1 DataRobot…………………………………………………………………………………….…….26

 3.1.2 RapidMiner………………………………………………………………………………….……..27

Chapter 4 System Architecture …………………………………...…………………………..…30

4.1 System Requirements……………………………………………………………………………..………..30

 4.2 System Design……………………………………………………………………………………………..…………31

 4.2.1 Architecture………………………………………………………………………………..……………32

 4.2.2 Data Storage…………………………………………………………………………..………………..33

 4.2.3 Components……………………………………………………………………………..……………..37

 4.3 Deployment………………………………………………………………………………………..…………….42

 4.3.1 Web Server…………………………………………………………………………..…………….42

 4.3.2 Database……………………………………………………………………………..……………..43

 4.3.3 PHP……………………………………………………………………………………..……………..43

 4.3.4 Python…………………………………………………………………………………………..……44

 4.4 System Workflow……………………………………………………………………………………..…….44

 4.4.1 Dataset Upload…………………………………………………………………………………45

 4.4.2 Feature Selection………………………………………………………………………………48

 4.4.3 Model Training and Tuning……………………………………………………………….55

Chapter 5 System Evaluation ………………………………………………..………………..….60

5.1.1 Datasets………………………………………………………………………………………………………...60

 5.1.1.1 CIC-DDoS2019…………………………………………………..…………………..…..……60

 5.1.1.2 CIC-IDS2017…………………………………………………………..………….…………….61

5.1.2 Methodology……………………………………………………………………………………….…………62

5.1.3 Experiments & Results……………………………………………………………………………….…..65

Chapter 6 Conclusion & Future work ………………………….……………………………...86

6.1 Insights & Conclusions……………………………………………..…………………………………..……86

6.2 Future work……………………………………………………………………………………………..………..88

Bibliography…………………………………………..…………………………………………………………..………….89

Appendix A …………………………………………..…………………………………………………………..…………..92

Appendix B …………………………………………..…………………………………………………..………..…………96

1

Chapter 1

Introduction

1.1 Motivation …….1

1.2 System Description………………………………………………………………………………………………………..2

1.3 Contribution……….2

1.4 Chapter Outline…………………………..…………………………………………………………………………………3

1.1 Motivation

In recent years, the frequency and severity of cyber-attacks have increased dramatically [40],

leading to significant financial and reputational damage for affected organizations. These

attacks pose a substantial risk to organizations, resulting in considerable financial losses and

reputational damage. Among the most prevalent types of attacks, Distributed Denial of

Service (DDoS) attacks have gained prominence. These attacks involve overwhelming a target

system with an enormous volume of traffic from multiple sources. Detecting and analyzing

such attacks present substantial challenges that demand advanced analytics tools and

techniques.

To address these challenges, I developed a comprehensive platform that automates critical

tasks involved in the analysis of cyber-attack datasets. By doing so, the platform aims to

empower data analysts, enhancing their efficiency and accuracy in identifying these attacks

and their distinctive characteristics. Moreover, the platform provides capabilities for training

and fine-tuning models, enabling data analysts to effectively respond and mitigate the impact

of these attacks. By automating various aspects of the analysis process, the platform will

significantly streamline the work of data analysts, allowing them to save time and resources.

It will facilitate the swift and accurate identification of DDoS attacks, enabling timely

countermeasures and reducing the potential damage inflicted on targeted systems.

2

The main problem my work addresses is the lack of tools available, that allow an easy and fast

analysis of cyber-attack datasets. Most enterprise tools with similar functionality focus on

deploying accurate machine learning models without providing much insight and information

about the data processing. My platform is more research oriented, since it gives the analyst

an insight into the datasets by allowing them to identify feature relationships, test several

algorithms against several dataset configurations and experiment with different algorithms

hyperparameters to better understand how they work.

1.2 System Description

The platform allows analysts to upload their network traffic datasets and perform several

tasks to identify the characteristics of the attack. It includes a user-friendly interface that

enables interaction with the system and access to the results of the analysis in real-time.

The core of the platform is a machine learning engine that includes a variety of algorithms for

cyber-attack classification. With the platform, data analysts can perform several tasks,

including data preprocessing, feature analysis, feature selection, model training, model

evaluation and model tuning. Furthermore, the platform allows analysts to download the

results of the analysis, such as the identified attack characteristics, the performance and

efficiency of the trained models as well as the values for the best hyper-parameter sets of

their models, to further process them.

1.3 Contribution

The main contribution of this work is the development of a platform that automates the

process of analyzing cyber-attack datasets. It provides a comprehensive solution for data

analysts to identify attack characteristics quickly and accurately, enabling them to take

effective action to mitigate the attacks.

In my chosen use case on cyber-attacks which mainly include DDoS attacks but also brute

force and port scans, I have demonstrated the effectiveness of the platform in analyzing real-

world datasets efficiently and quickly reporting the findings of the analysis as well as being

able to organize and visualize them in an easy to interpret way on the platform.

3

In addition, I have conducted a series of experiments on 2 publicly available datasets (CIC-

DDoS2019 [3], CIC-IDS2017 [4]) using the platform to evaluate it and enrich the research

community with my conclusions. Specifically, I compared the performance of 2 feature

correlation algorithms (Spearman vs Pearson), 2 best-feature selection algorithms (Mutual

Info. vs ANOVA) and 5 machine learning algorithms (DTC vs RFC vs XGBC vs KNN vs LDA) on

the aforementioned datasets. My experiments and conclusions form an important

contribution to the research community.

1.4 Chapter Outline

Firstly, Chapter 2 is focused on explaining several types of cyber-attacks analyzed in this use

case, their characteristics from the network traffic perspective and the existing approaches

used for distinguishing malicious traffic from the normal. In addition, it discusses the different

approaches used by data analysts to process and analyze traffic and the potential benefits of

automation.

Chapter 3 includes some other systems with similar functionality and their contribution in

automation and discusses how my platform compares to their functionality.

Chapter 4 includes the complete architecture of the system, including the platform design,

backend processing as well as the connectivity with the database. It will describe the overall

structure, components, and functionalities of the platform.

In chapter 5, I am discussing the datasets used to evaluate the platform, as well as the

experiments performed and my results. I provide an analysis of the performance and

effectiveness of the platform in analyzing cyber-attacks while making the job of the data

analyst easier and more efficient.

Closing, in chapter 6 I summarize the key findings and conclusions from my study. I supply an

overall assessment of the platform, its strengths and limitations, and its potential

applications. Additionally, I discuss future work that can be done to further improve and

develop the platform as well as further analysis that can be performed on the analyzed data.

4

Chapter 2

Background

2.1 Cyber Attacks Landscape…..………………………………………………………………………..………4

 2.1.1 DDoS Attacks………………………………………………………………………………………..4

 2.1.2 Brute Force Attacks…………………………………………………………………………….13

 2.2 Existing Mitigation Approaches….……………………………………………………………………. 14

 2.3 Manual Data Analysis………………………………………………………..………………………………15

 2.3.1 Python………………………………………………………………………………………………..16

 2.3.2 Feature Selection………………………………………………………………………………..19

 2.3.3 Machine Learning……………………………………………………………………………….22

2.4 Benefits of Automation……………………………………………………………………………………..24

2.1 Cyber Attacks Landscape

[2] Cyber-attacks are malicious activities carried out by individuals or groups with the

intention of stealing or damaging data, disrupting services, or causing other types of harm.

The landscape of cyber-attacks is constantly evolving, with new threats and vulnerabilities

appearing all the time. To better understand the types of attacks that can occur, it is

important to examine some of the most common ones. The following section supplies a

thorough explanation of DDoS attacks to better understand their inner workings.

2.1.2 DDoS Attacks

[1] A DDoS (Distributed Denial of Service) attack is a type of cyber-attack that targets a

website or online service by overwhelming it with traffic from multiple sources. In a DDoS

attack, a large number of devices or computers are controlled by the attacker to send traffic

to the target website, making it unavailable to legitimate users. The traffic sent can be in the

form of data packets, requests for information, or even malicious payloads. DDoS attacks are

often used by cybercriminals to disrupt or disable online services, extort money, or damage

5

the reputation of a business or organization. These attacks can cause significant financial

losses, downtime, and reputational damage for the victim.

One of the largest DDoS attacks happened in the last decade affected GitHub in 2015 [41].

The largest DDoS attack ever at the time, this one also happened to target GitHub. This

politically motivated attack lasted several days and adapted itself around implemented DDoS

mitigation strategies. The DDoS traffic originated in China and specifically targeted the URLs

of two GitHub projects aimed at circumventing Chinese state censorship. It is guessed the

attack's intent was to pressure GitHub into eliminating those projects. The attack traffic was

created by injecting JavaScript code into the browsers of everyone who visited Baidu, China’s

most popular search engine. Other sites who were using Baidu’s analytics services were also

injecting the malicious code. This code was causing the infected browsers to send HTTP

requests to the targeted GitHub pages. In the attack's aftermath, it was determined that the

malicious code was not originating from Baidu but was added by an intermediary service.

DDoS Variants

There are several variants of DDoS attacks, each with its own method of execution. The two

main variants are reflective and exploitation DDoS attacks that abuse several services.

Reflective DDoS attacks [3] involve the attacker sending a request to a server with a spoofed

IP address of the target network. The server responds to the spoofed IP address, flooding the

target network with an overwhelming amount of traffic.

On the other hand, Exploitation DDoS attacks [3] exploit vulnerabilities in software or

hardware to overload the target network. In this type of attack, the attacker sends a malicious

packet to the target network, causing it to crash or become unavailable. Additionally, there

are IoT-based DDoS attacks, where IoT devices such as cameras or routers are compromised

and used to launch DDoS attacks. All these variants pose a significant threat to organizations

and can cause significant damage if not properly mitigated.

There are several other variants, but for the purposes of this research the focus is more on

the exploitation and reflection variants which are shown in figure 2.1 and explained in more

detail in the following subsections.

Figure 2.1: DDoS Attack Taxonomy [3]

6

Reflective DDoS

Reflection DDoS attacks [3] are a type of DDoS attack that takes advantage of open servers or

devices that respond to certain types of requests with large amounts of data. In a reflection

attack, the attacker sends a request to an open server or device, spoofing the source IP

address of the request to make it appear as if it is coming from the target. The server or device

responds with a large amount of data, which is then directed at the target, overwhelming it

with traffic. Some common types of services abused by reflection attacks and analyzed in this

research include the following:

DNS DDoS: Exploits vulnerabilities in the Domain Name System (DNS) by sending requests to

DNS servers with spoofed source IP addresses of the target network. The DNS server responds

to the spoofed IP addresses, flooding the target network with traffic and overwhelming its

resources.

• LDAP DDoS: Exploits vulnerabilities in the Lightweight Directory Access Protocol (LDAP)

by sending requests to LDAP servers with spoofed source IP addresses of the target

network. The LDAP server responds to the spoofed IP addresses, flooding the target

network with traffic.

• MSSQL DDoS: Exploits vulnerabilities in the Microsoft SQL Server by sending requests to

MSSQL servers with spoofed source IP addresses of the target network. The MSSQL server

7

responds to the spoofed IP addresses, flooding the target network with traffic and causing

it to become unavailable.

• NTP DDoS: Exploits vulnerabilities in the Network Time Protocol (NTP) by sending

requests to NTP servers with spoofed source IP addresses of the target network. The NTP

server responds to the spoofed IP addresses, flooding the target network with traffic and

overwhelming its resources.

• NetBIOS DDoS: Exploits vulnerabilities in the Network Basic Input/Output System by

sending requests to NETBIOS servers with spoofed source IP addresses of the target

network. The NetBIOS server responds to the spoofed IP addresses, flooding the target

network with traffic and causing it to become unavailable.

• SNMP DDoS: Exploits vulnerabilities in the Simple Network Management Protocol (SNMP)

by sending requests to SNMP servers with spoofed source IP addresses of the target

network. The SNMP server responds to the spoofed IP addresses, flooding the target

network with traffic and overwhelming its resources.

• SSDP DDoS: Exploits vulnerabilities in the Simple Service Discovery Protocol (SSDP) by

sending requests to SSDP servers with spoofed source IP addresses of the target network.

The SSDP server responds to the spoofed IP addresses, flooding the target network with

traffic and causing it to become unavailable.

Exploitation DDoS

Exploitation DDoS attacks [3] are a type of cyber-attack that exploits vulnerabilities in

software or hardware to overload the target network. There are several methods of executing

an exploitation DDoS attack, including TCP SYN flood, UDP flood, and UDP lag which are

explained below and later analyzed in this research.

• TCP SYN flood attacks exploit the three-way handshake process that occurs when two

devices establish a connection over the internet. The attacker sends a large number of

SYN packets with spoofed source IP addresses to the target network. The target network

responds with SYN-ACK packets to the spoofed IP addresses, but since the source IP

addresses are fake, the target network is left waiting for a response that never comes,

tying up resources and making the network unavailable.

8

• UDP flood attacks involve sending a large number of UDP packets to the target network.

Since UDP does not require a handshake or verification of receipt, the target network

simply responds to each packet, regardless of its validity. This flood of incoming packets

can overwhelm the network and cause it to become unavailable.

• UDP lag attacks exploit the fact that UDP packets do not require a handshake, allowing

the attacker to send a large number of packets to the target network with spoofed source

IP addresses. The target network responds to each packet with an ICMP Destination

Unreachable message, which can cause the network to become unavailable due to the

high volume of incoming traffic.

DDoS Generation Tools

DDoS generation tools include a variety of specialized software tools that allow attackers to

launch large-scale attacks. These tools are designed to exploit vulnerabilities in web servers

and web applications and can be used to launch a variety of DDoS attacks such as HTTP floods,

SYN floods, and UDP floods. Attackers can use these tools to generate a massive amount of

traffic, overloading the target server and causing it to become unresponsive. In some cases,

attackers may use these tools to launch multiple simultaneous attacks, targeting distinct parts

of the network infrastructure. GoldenEye, Hulk, and SlowHTTPTest are all types of Denial-of-

Service attack tools used to target web servers and later analyzed thoroughly in this research

and are going to be described in the sections below.

GoldenEye

GoldenEye [6] is a Denial-of-Service (DoS) tool that is used to launch attacks against web

servers. Additionally, it can perform a Distributed Denial-of-Service (DDoS) attack by

leveraging a network of compromised machines, known as a botnet. It generates a large

amount of HTTP traffic by sending multiple requests to the target server, exploiting

vulnerabilities in web servers that cannot handle large numbers of requests.

GoldenEye can perform several types of attacks, including HTTP GET and POST floods,

slowloris attacks, and TCP connection attacks. HTTP GET and POST floods overwhelm the

target server with a large number of requests, while slowloris attacks send a limited number

9

of requests but keep them open for as long as possible, taking up server resources and

preventing legitimate requests from being processed. TCP connection attacks flood the server

with TCP connection requests, creating a backlog that eventually crashes the server.

It additionally includes advanced features such as IP spoofing, user agent and referrer

spoofing, and the ability to rotate attack vectors. These features make it harder for security

tools to detect and mitigate the attack and can cause additional damage to the target server.

Hulk

Hulk [7] is another DDoS tool that is used to launch attacks against web servers. It is designed

to generate a large amount of traffic by repeatedly sending GET and POST requests to the

target server, exploiting weaknesses in the HTTP protocol and poorly written web

applications.

Hulk can perform different types of attacks, including HTTP GET and POST floods, slowloris

attacks, and TCP connection attacks.

Hulk also includes advanced features such as the ability to randomize the User-Agent and

Referrer headers in order to evade detection, and the ability to use multiple concurrent

connections to the target server. These features make it harder for security tools to detect

and mitigate the attack and can cause additional damage to the target server.

SlowHTTPTest

Like the previously mentioned tools, SlowHTTPTest [8] can be used to launch distinct types of

attacks, including Slow Read, Slow Loris, and Slow Post attacks against web servers. Slow Read

attacks exploit the HTTP protocol by sending incomplete requests, causing the server to wait

for more data that never arrives. Slow Post attacks send HTTP POST requests to the

server but do not complete them, again taking up server resources and preventing legitimate

requests from being processed.

Furthermore, SlowHTTPTest includes features that can be used to evade detection and

mitigation, such as the ability to randomize the User-Agent and Referrer headers and to use

multiple concurrent connections to the target server.

DDoS Traffic Experimental Analysis

10

DDoS attacks have certain characteristics that allow data analytics and machine learning to

distinguish them from normal traffic. In the paper “Developing Realistic Distributed Denial of

Service (DDoS) Attack Dataset and Taxonomy” [3], it was studied how several machine

learning algorithms like Random Forest and Naïve Bayes perform on a DDoS classification

dataset with 11 different DDoS attack types: UDP-lag, DNS, MSSQL, LDAP, NetBIOS, NTP,

SSDP, SNMP, Syn and UDP. The data was gathered by the authors by simulating the attacks

using an attack and victim network and monitored the traffic. They later used the

CICFlowMeter [9] Tool to convert the captured traffic in a processable format.

DDoS Traffic Characteristics

According to aforementioned research analysis, the best features for each DDoS kind were

extracted using RandomForestRegressor [10] class of scikit-learn and are shown in figure 2.2

The authors concluded that ‘packet Length Std’ is one of the most influential features for

benign traffic. One of the reasons is that there is more variation in the size of packets in benign

traffic in comparison to different DDoS attacks, because DDoS attacks are conducted by

automated tools and botnets and usually, they produce fixed-size or similar packets.

Therefore, it’s an important feature to consider when training a machine learning model.

Table 2.1: Best Features per attack type [3]

11

For the SYN DDoS, the analysts concluded that the two most influential features are ‘ACK Flag

Count’ and ‘Flow Duration’, because this attack works by not responding to the server with

the expected ACK code (it exploits a TCP protocol weakness).

Moreover, for the MSSQL DDoS, according to the analysis, two main influential features are

the ‘Protocol’ and ‘Fwd Packets/s’ which makes sense, because the attacker abuses the

Microsoft SQL Server Resolution Protocol (MC-SQLR) and sends millions of packets to the

victim.

Furthermore, the authors have discovered that IAT (time interval between 2 packets) related

features are considered as influential features in many attacks such as TFTP, UDP-lag and NTP.

According to them, one of the reasons is that many DDoS attacks show bursty

behavior(unstable) in sending packets to the victims, unlike benign traffic that usually does

not show any bursty behavior. The bursty behavior affects the arrival rate, and so it affects

IAT related features, and this can be a reason they are influential features for detecting DDoS

attacks.

To make a successful DDoS attack the authors argue that an attacker needs to send more

packet than the victim can handle. Also, attackers use diverse types of packets, such as SYN

or ICMP packets to send many malicious packets all of which are similar in size and small

because of the low cost of computing resources but are not like the packets in a benign flow.

So, the minimum segment size of the packets in a malicious flow would be less than the

packets in a benign flow.

DDoS Detection with Machine Learning

For training a machine learning model, the authors tested ID3, Random Forest, Naïve Bayes,

and Multinomial Logistic Regression, algorithms that I will describe briefly in the following

paragraphs.

[3] Random Forest is a machine learning algorithm that combines two ideas of decision tree

and ensemble learning. The forest contains many decision trees that use randomly picked

data attributes as their input. The forest has a collection of trees with controlled variance.

12

Finally, the result of a classification can be decided by majority voting or weighted voting. One

of the advantages of random forest is that the variance of the model decreases as the number

of trees in the forest increases, while the bias remains the same. Furthermore, random forest

has many other advantages such as sparse number of parameters and resistance to over-

fitting.

Naïve Bayes is a probabilistic classifier based on Bayes Theorem with strong independence

assumptions between features. Assuming that features are not correlated with each other is

not a true assumption in many problems and it can conversely affect the accuracy of the

classifier. The main advantage of Naïve Bayes is that it is an online algorithm (can update its

model in real time) and its training can be completed in linear time.

Multinomial Logistic Regression is a classification method that uses the main idea of logistic

regression to classify multiclass problems. Logistic regression is a predictive analysis like other

regression analyses. Logistic regression can describe data and explain the relationship

between features and classes.

The performance examination results are shown in Table 2.2. The authors used five-fold cross

validation for their experiments. Based on their experiments ID3 took few minutes to be

trained and classify the testing set. Random forest with 100 trees took more than 15 hours

for the same process. In addition, multinomial logistic regression took more than 2 days to be

trained and classify the testing test. In addition, according to the weighted average of the

three-evaluation metrics (Pr, Rc, F1), the highest accuracy belongs to random forest and ID3

algorithms. Also, in terms of recall ID3 won first place by far. Logistic regression achieves the

worst result overall. Considering the execution time and the evaluation metrics ID3 is the best

algorithm with the shortest execution time and highest accuracy.

Brute Force attacks are another type of cyber-attack included in my research and is described

below.

Table 2.2: Performance examination results

13

2.1.2 Brute Force Attacks

Brute force attacks [5] are a type of cyber-attack that involves trying every possible password

or combination of characters until the correct one is found. The goal of a brute force attack is

to gain unauthorized access to a system or account by bypassing its authentication

mechanisms. Brute force attacks can be carried out manually, but they are more commonly

automated using specialized software or tools.

FTP Patator and SSH Patator are two types of brute-force attacks later examined in this

research that aim to gain unauthorized access to FTP and SSH servers, respectively. The

attacks involve using a program or tool, such as Patator [11], to automate the login attempts

with a list of username and password combinations until a valid one is found. The goal is to

exploit weak or commonly used credentials that may have been set by the server

administrator or the users themselves.

Brute Force Variants

In the case of FTP Patator, the attack generates a high volume of traffic to the FTP server, as

the tool sends multiple login requests per second. The traffic generated by FTP Patator can

be characterized by a high number of TCP connections and a significant increase in the

number of successful and failed login attempts compared to normal FTP traffic.

Similarly, in SSH Patator, the attacker uses a program or tool to try multiple username and

password combinations to gain unauthorized access to SSH servers. SSH Patator generates a

high volume of traffic that can be characterized by a high number of TCP connections and a

significant increase in the number of failed login attempts compared to normal SSH traffic.

Brute Force Traffic Characteristics

One of the most obvious traffic characteristics of brute force attacks is the high volume of

traffic generated by the attack. This is because the attacker tries multiple login combinations

in a brief period of time, resulting in a significant increase in traffic.

Another traffic characteristic of brute force attacks is the repeated attempts to login using

different usernames and passwords. This generates traffic that is highly correlated with the

login attempts. This traffic can be analyzed to identify patterns in the login attempts, such as

the specific usernames and passwords that the attacker is trying to use.

14

In addition to these traffic characteristics, brute force attacks often have a distinct traffic

pattern when compared to normal traffic. This pattern is often characterized by a higher

number of login attempts from a single IP address. This is because attackers often use a single

IP address to carry out the attack, resulting in a high number of login attempts from that IP

address.

2.2 Existing Mitigation Approaches

Detecting and preventing cyber-attacks is a critical aspect of maintaining the security of

computer systems and networks. One way to identify and prevent these attacks is through

the detection of malicious traffic. There are several approaches to detecting malicious traffic,

including signature-based detection, anomaly-based detection, and behavior-based

detection.

Signature-based detection [12] involves the use of predefined patterns, or signatures, to

identify known malicious traffic. These signatures are created based on the characteristics of

known attacks, such as specific network protocols, packet contents, or IP addresses.

Signature-based detection is effective for identifying known threats, but it is less useful for

detecting new or unknown attacks.

Anomaly-based detection [12] on the other hand, focuses on identifying traffic that deviates

from normal patterns. This approach involves the use of statistical models to identify unusual

patterns in network traffic, such as a sudden increase in data transfer or unusual patterns of

data flow. Anomaly-based detection is effective in detecting unknown attacks, but it can also

generate false positives, as normal network activity may appear anomalous.

Behavior-based detection [13] is a newer approach that uses machine learning techniques to

identify suspicious behavior on a network. This approach involves the use of algorithms that

learn from network behavior over time and can identify patterns that may indicate an attack.

Behavior-based detection is particularly effective in detecting advanced persistent threats

(APTs) that can go undetected by other methods.

This research focuses on Behavior-based detection where a data analyst has to go through

the process of analyzing traffic datasets and build machine learning models that can precisely

15

detect such attacks. This paper proposes automation on the tasks of the analyst to make the

model creation easier and faster.

2.3 Manual Data Analysis

Manual data analysis [14] is a major step in identifying patterns and trends in cyber-attack

traffic datasets. To build effective models, analysts must go through several phases, including

data cleaning, data exploration, feature engineering, and model training and evaluation.

The first phase, data cleaning, involves removing any incomplete or irrelevant data from the

dataset. This step is important to ensure that the data is accurate and unbiased. Once the

data is cleaned, the analyst moves on to data exploration, where they analyze the dataset to

identify patterns, correlations, and outliers. This phase helps the analyst gain a better

understanding of the data and identify potential variables that may be important for

modeling.

After data exploration, the analyst moves on to feature engineering, which involves selecting

and transforming variables to improve the model's accuracy. This phase may include creating

new variables, transforming variables, or selecting variables that are most relevant to the

model.

Once the data has been pre-processed and the variables selected, the analyst can move on to

model training and evaluation. In this phase, the analyst selects an appropriate machine

learning algorithm and trains it on the dataset. The model is then evaluated using a validation

dataset to determine its accuracy, precision, recall, and F1 score.

Throughout these phases, manual data analysis requires the analyst to have a deep

understanding of the dataset, the variables, and the machine learning algorithms used. This

process is iterative and may require several rounds of testing and refinement before a final

model is selected.

2.3.1 Python

16

Python is one of the most popular programming languages for data analysis due to its

versatility and user-friendly libraries. With the help of libraries like NumPy, Pandas, Sklearn

etc., Python provides powerful tools for data manipulation, exploration, and visualization.

These libraries allow for easy loading of various data formats such as CSV, Excel, SQL

databases, etc. Python also enables users to perform complex calculations and statistical

analyses.

Libraries

For the implementation of the system, I used several Python libraries mainly for data analysis

and interaction with the database.

Scikit-learn

Scikit-learn [26], known as sklearn, is a popular open-source Python library that provides

efficient tools for data mining, machine learning, and data analysis. It is built on top of NumPy,

SciPy, and Matplotlib, and it integrates well with other libraries such as Pandas. Scikit-learn

offers a wide range of machine learning algorithms, including classification, regression,

clustering, and dimensionality reduction that were used in this project. It also provides various

data preprocessing techniques, model selection and evaluation, and model optimization

methods.

I used several methods for preprocessing, feature selection, model training and tuning.

Pandas

Pandas [27] is a popular open-source Python library that provides efficient tools for data

manipulation, analysis, and cleaning. It offers powerful data structures, such as Data Frames

and Series, that allow users to work with data in a flexible and intuitive manner. With Pandas,

users can easily load and store data from various file formats such as CSV, Excel, SQL

databases, and more. Additionally Pandas enables users to perform various data operations,

including merging, filtering, aggregating, and pivoting. It provides easy-to-use functions for

handling missing data and dealing with time-series data.

17

I used Pandas mainly for the Data Frame structure, preprocessing and feature selection.

NumPy

NumPy [28] is an open-source Python library for scientific computing that provides efficient

tools for numerical operations and array processing. It provides a high-performance array

object, which enables users to perform fast and efficient computations on copious amounts

of data. Furthermore, NumPy offers a wide range of mathematical functions for numerical

operations, such as linear algebra, Fourier transform, and random number generation. The

library is highly optimized for performance, making it an essential tool for scientific

computing, data analysis, and machine learning.

I used it mainly for dataset operations and preprocessing.

Vaex

Vaex [29] is a Python library that provides a fast and memory-efficient way to work with large

datasets. It is designed to handle billions of rows of data with ease, making it an ideal tool for

big data processing and analysis. Vaex provides a high-performance DataFrame API that

allows users to perform data manipulations and calculations on their data, similar to Pandas.

However, unlike Pandas, Vaex operates on disk-based or memory-mapped files, which means

that it can handle large datasets without consuming enormous amounts of RAM.

I used Vaex to perform the dataset initialization on the user’s uploaded dataset to gain basic

information about the dataset. Unfortunately, I couldn’t find a wrapper method for the

cross_validation [30] method that I used for the model training, and it would be too much

work to remake the system to use a vaex compatible method for the training.

XGBoost

XGBoost [31] is a popular open-source software library that provides a fast and efficient

implementation of gradient boosting algorithms. XGBoost uses a combination of gradient

boosting and regularized learning to improve accuracy and prevent overfitting, making it a

18

powerful tool for predictive modeling. Additionally, it supports parallel processing and can be

easily integrated with other machine learning frameworks like scikit-learn.

Since Scikit-learn doesn’t have support for the XGBC algorithm I used this library to be able to

use it.

PyMongo

PyMongo [32] is a library that provides a Python interface for working with MongoDB, a

popular NoSQL document-oriented database. PyMongo allows users to easily interact with

MongoDB databases from within their Python applications, providing a high level of flexibility

and ease-of-use. With PyMongo, users can perform a wide range of database operations,

including inserting, updating, and deleting data, as well as querying the database for specific

documents or collections.

I used PyMongo to interact with the database retrieve the requested experiments save the

results, etc.

Others

I used several other libraries to regulate and monitor the created experiments as well as

provide feedback information about the running processes. These libraries include sys, psutil,

os, subprocess, atexit, json and time.

2.3.2 Feature Selection

Feature selection is a crucial aspect of data analysis that involves identifying the most relevant

and useful variables in a dataset. The goal of feature selection is to reduce the dimensionality

of the data, making it easier to interpret and analyze. In other words, it helps to identify which

features have the most significant impact on the outcome variable of interest.

Constant Features

19

Constant features are the features in a dataset that have a constant value for all observations.

Such features are also referred to as zero-variance or quasi-constant features. Constant

features provide no useful information for the analysis, as they do not vary across the dataset

and thus do not contribute to the prediction of the outcome variable. Moreover, including

constant features in the analysis can lead to problems such as overfitting and bias. Therefore,

it is essential to identify and remove constant features from the dataset before applying any

analysis. There are various methods for detecting constant features, such as calculating the

variance or coefficient of variation for each feature. Such method is available in scikit-learn

library [26] in python and is used in this study to calculate the constant features of the dataset.

Once the constant features are identified, they can be removed from the dataset, reducing

the dimensionality of the data and improving the accuracy and efficiency of the analysis.

Highly Correlated Features

Highly correlated feature selection is another important technique in data analysis, which

involves identifying and selecting a subset of features that have a strong linear relationship

with other features. Highly correlated features can lead to multicollinearity, which can cause

instability in the model and affect the accuracy of the results. Therefore, it is essential to

identify and remove highly correlated features before applying any analysis. Several

techniques are available to detect highly correlated features, such as correlation coefficient,

scatter plot, and heatmaps.

For the purposes of this research, correlation coefficient was measured to identify highly

correlated features. Pandas’ library offers the corr method [22] that calculates the correlation

coefficient for each feature of the given dataset. There are several algorithms that can be

used for this purpose, but for the purposes of this research I use Pearson and Spearman. Once

the highly correlated features are identified, they can be either removed from the dataset or

combined into a single feature to reduce dimensionality and improve the accuracy of the

analysis. By selecting only the most relevant and non-redundant features, highly correlated

feature selection can help improve the interpretability and generalizability of the analysis

results.

Pearson

20

Pearson correlation [23] measures the linear relationship between two continuous variables.

It computes the correlation coefficient, which ranges from -1 to 1, where -1 indicates a perfect

negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation.

Pearson correlation assumes that the variables are normally distributed and have a linear

relationship.

Spearman

Spearman correlation [24] measures the monotonic relationship between two variables,

which means it can capture non-linear relationships as well. It computes the Spearman rank

correlation coefficient, which ranges from -1 to 1, where -1 indicates a perfect negative

monotonic relationship, 0 indicates no monotonic relationship, and 1 indicates a perfect

positive monotonic relationship. Spearman correlation does not assume any specific

distribution of the variables and is more robust to outliers than Pearson correlation.

In simple words, Pearson can only detect linear correlations between variables and spearman

can also detect variables relationships in a more general sense.

Best Features

K-Best feature selection is a technique used in data analysis to select the best features in a

dataset based on a statistical test. The approach involves selecting the top k features with the

highest scores based on a statistical test, such as chi-square, ANOVA, or mutual information.

The technique is particularly useful in high-dimensional datasets where there are many

features, and selecting the most relevant ones can improve model accuracy and reduce

overfitting.

K-Best feature selection can be implemented in Python using the scikit-learn library, which

provides a feature selection method named SelectKBest [25] with various functions to

perform univariate statistical tests for feature selection.

The 3 most common algorithms used are described below:

Chi-2

21

Chi-2 [34] is a statistical test used to determine whether there is a significant association

between two categorical variables. The test calculates the difference between the observed

and expected frequencies of the variables and measures the significance of this difference

using a p-value. While Chi-square is a useful technique for feature selection in datasets with

categorical variables, it may not be effective for DDoS detection datasets that typically contain

continuous variables, such as network traffic data.

In DDoS detection, the variables of interest are usually the traffic characteristics, such as

packet size, packet rate, and connection rate. These variables are typically continuous and do

not fit the assumptions of the Chi-2 test, which assumes that the variables are categorical and

have discrete values. Therefore, using it for feature selection in DDoS datasets may not yield

accurate results and could lead to the selection of irrelevant features or the exclusion of

important ones.

ANOVA

ANOVA (Analysis of Variance) [35] is a statistical test used to determine whether there are

significant differences between the means of two or more groups in a dataset. ANOVA is a

useful technique for feature selection in DDoS detection datasets that typically contain

continuous variables, such as network traffic data. ANOVA can be used to test whether there

are significant differences in the means of a particular traffic characteristic, such as packet

size or packet rate, between the normal and DDoS traffic groups.

ANOVA works by calculating the sum of squares between and within the groups and

comparing them using an F-test to determine whether there is significant variation in the

means. The technique assumes that the variables are normally distributed, and the groups

are independent and have equal variances.

Mutual Information

Mutual information [36] measures the mutual dependence between two variables by

calculating the reduction in uncertainty of one variable given the knowledge of the other.

Mutual information is a powerful technique for feature selection in DDoS detection datasets

22

because it can capture both linear and nonlinear relationships between the traffic

characteristics, which are often critical indicators of DDoS attacks.

ANOVA and Mutual Information tests are used and compared extensively in the experimental

analysis of DDoS datasets that contain network traffic features.

2.3.3 Machine Learning

Machine learning algorithms are becoming increasingly popular for detecting cyber-attacks

such as DDoS attacks. These algorithms are effective at identifying patterns and anomalies in

network traffic that may indicate a cyber-attack, which can help organizations respond quickly

and mitigate potential damage. Various machine learning algorithms, such as random forest,

decision trees, XGB classifier, KNN, and LDA, can be utilized to detect cyber-attacks. These

algorithms work by analyzing features of network traffic, building models based on training

data, and making predictions based on new data. In practice, the effectiveness of a machine

learning algorithm for detecting cyber-attacks will depend on factors such as the quality of

training data, the algorithm's hyperparameters, and the nature of the attack being detected.

Decision Trees

Decision trees [16] are a machine learning algorithm that can be used for both classification

and regression tasks. Decision trees work by recursively partitioning the data into subsets

based on the values of the features, with the goal of minimizing impurity in each subset. In

the context of cyber-attacks, decision trees can be used to identify features in network traffic

that are indicative of a DDoS attack. Decision trees have been shown to be effective at

detecting DDoS attacks, as reported by Chen, Y., Pei, J., and Li, D. [16] in their paper where

they proposed an efficient and low-latency system on DDoS detection based on Decision

Trees.

Random Forest

Random forest [17] is a machine learning algorithm that uses a collection of decision trees to

make predictions. Random forest works by constructing many decision trees, each using a

randomly selected subset of the features and samples from the dataset. The final prediction

23

is made by taking the majority vote of all the decision trees. In the context of cyber-attacks,

random forest can be used to identify patterns in network traffic that are indicative of a DDoS

attack. Random forest has been shown by Chen, Y., Hou, J., Li, Q., and Long, H. [17] to be

effective at detecting several types of DDoS attacks such as UDP, TCP and ICMP floods.

Extreme Gradient Boost

XGB classifier, also known as extreme gradient boosting, is a machine learning algorithm that

similarly with random forest uses an ensemble of decision trees to make predictions. XGB

classifier [18] works by constructing a series of decision trees, each building on the mistakes

of the previous trees, with the goal of minimizing the loss function. In the context of cyber-

attacks, XGB classifier can be used to identify patterns in network traffic that are indicative of

a DDoS attack. XGB classifier has been shown to be effective at detecting DDoS attacks with

high accuracy, as reported in the paper: "XGBoost Classifier for DDoS Attack Detection and

Analysis in SDN-Based Cloud" by Chen, Z., Jiang, F., Cheng, Y., Gu, X., Liu, W., and Peng, J [18]

K-Nearest Neighbors

K-nearest neighbors [19] is a machine learning algorithm that can be used for both

classification and regression tasks. KNN works by finding the k closest training examples to a

given test example and using their labels to make a prediction. In the context of cyber-attacks,

KNN can be used to identify patterns in network traffic that are indicative of a DDoS attack.

KNN has been shown by Vu, N. H., Choi, Y., & Choi, M. [19] to be effective at detecting DDoS

attacks with high accuracy.

Linear Discriminant Analysis

LDA, or linear discriminant analysis [20], is a machine learning algorithm that can be used for

classification tasks. LDA works by projecting the data onto a lower-dimensional space that

maximizes the separation between the classes. LDA can be used to identify features in

network traffic that are indicative of a DDoS attack and has been shown to be effective at

detecting DDoS attacks with high accuracy, as reported by Thapngam, T., Yu, S., & Zhou, W.

in their paper: "DDoS discrimination by Linear Discriminant Analysis (LDA)" [20].

24

2.4 Benefits of Automation

Automating the process of data analysis [15] can bring several benefits to the analysts. One

of the primary benefits of automation is the speed and efficiency with which it can process

large volumes of data. By automating data analysis, organizations can process massive

amounts of data much faster than manual methods, which can be time-consuming and error

prone.

In addition to speed and efficiency, automation can improve the accuracy and consistency of

data analysis. Automated systems can be programmed to apply the same criteria and

methodology consistently to all data, eliminating potential human error and bias. This

consistency can improve the quality of data analysis and the reliability of the resulting

insights.

Another benefit of automation is its ability to identify and respond to potential threats in real-

time. Automated systems can monitor network traffic and identify potential threats as they

occur, enabling organizations to respond quickly and proactively to prevent damage or

mitigate the impact of an attack.

Automated systems can also improve scalability and cost-effectiveness. As the volume of data

increases, organizations can easily scale up their automated systems to process and analyze

the data efficiently. This can reduce the need for additional personnel and resources, which

can be costly.

Finally, automation can free up human analysts to focus on higher-level tasks that require

human intuition and problem-solving skills. Automated systems can handle routine tasks,

such as data processing and cleaning, allowing analysts to focus on more complex tasks, such

as developing and refining machine learning models.

25

26

Chapter 3

Related Work

3.1 Similar Platforms.……………………………………………………………………………….………….…26

 3.1.1 DataRobot………………………………………………………………………………………….26

 3.1.2 RapidMiner………………………………………………………………………………………..27

3.1 Similar Platforms

Several online platforms and tools are available for running data analysis experiments and

machine learning tasks.

3.1.1 DataRobot

DataRobot [38] is an enterprise-grade automated machine learning platform that enables

organizations to build, deploy, and manage machine learning models at scale.

It automates the entire machine learning workflow, from data preparation to model

deployment, which reduces the time and resources required for developing machine learning

models. Additionally, it offers a wide range of machine learning algorithms, including deep

learning, gradient boosting, and random forests, which enables users to build complex models

with ease.

DataRobot is a cloud-based platform that can scale to handle large datasets and complex

models. It also supports parallel processing and distributed computing. It provides

transparency into the machine learning models it creates, allowing users to understand how

the models work and how they make predictions. In addition, it allows users to customize the

machine learning models by tuning the hyperparameters and selecting specific features for

the model.

27

Even though DataRobot is a great tool for automating data analysis and machine learning, it

has a few drawbacks. First of all, it can be expensive for small organizations and individual

users. It requires some technical expertise to use, especially for configuring the platform and

interpreting the results. Furthermore, it may require additional software or systems to

integrate with existing workflows and data sources. The tool automates many aspects of the

machine learning workflow, which may limit the control users have over the process. Lastly,

it provides a structured environment for machine learning, which may not be suitable for

users who require more flexibility in their approach.

Figure 3.1 shows a screenshot from the DataRobot’s interface that allows data transformation

operations specified by the user. There are many other enterprise tools providing similar

functionality with DataRobot, but in my opinion they lack simplicity which can make

deployment and use of these tools difficult and expensive.

3.1.2 RapidMiner

RapidMiner [42] is a powerful and comprehensive data science platform that empowers

organizations to extract valuable insights and make data-driven decisions. It provides a range

of tools and functionalities for data preparation, machine learning, predictive analytics, and

deployment. With its intuitive visual interface and extensive library of algorithms, RapidMiner

Figure 3.1: DataRobot’s Interface

28

offers both beginner-friendly features and advanced capabilities for data scientists and

analysts.

One of the key strengths of RapidMiner is its data preparation capabilities. It allows users to

import, transform, and cleanse data from various sources, ensuring data quality and

consistency. The platform provides a wide range of operators for data manipulation, feature

engineering, and data integration, enabling users to effectively prepare their data for analysis

and modeling. It also offers a variety of machine learning algorithms and techniques, including

classification, regression, clustering, association rules, and text mining. These algorithms are

easily accessible through a drag-and-drop interface, allowing users to build complex

predictive models without requiring extensive coding knowledge. Additionally, RapidMiner

supports the integration of external libraries and custom code, providing flexibility for

advanced users who want to extend the platform's capabilities.

Another notable feature of RapidMiner is its Auto Model functionality. With Auto Model,

users can automate the process of model selection and hyperparameter optimization. This

feature saves time and effort by automatically exploring different algorithms and

configurations to find the best-performing models for a given task. It allows users to quickly

experiment with diverse options and identify the most effective approaches without the need

for manual trial and error.

Figure 3.2: RapidMiner’s Interface

29

RapidMiner supports seamless integration with popular data storage systems, databases, and

other data science tools, enabling users to leverage their existing infrastructure and

workflows. Furthermore, it provides options for deploying models into production

environments, making it easier to operationalize and scale data-driven solutions.

Figure 3.2 shows how RapidMiner’s compares the performance of several machine learning

algorithms.

Both DataRobot and RapidMiner automate the process of machine learning in much better

ways since they are enterprise tools meant to provide value to their customers. Even though

they are reliable they have the following limitations:

1. They are priced tools and their usability depends on the clients’ budget.

2. Their main objective is to build and deploy machine learning models(industrial), rather

than analyzing the datasets to better understand the data being processed(research).

I believe my platform is more research oriented and is supposed to allow the user to learn as

many things as possible about the data themselves rather than deploying an accurate model.

It gives the analyst insights about variable relationships, algorithms performances under

certain configurations. Other than that, it is supposed to provide a service to the users rather

than requiring the user provide the resources for the experiments. For example, RapidMiner

is an executable running on the user’s computer, which might be a limitation factor.

My platform is a much more simplified version of these enterprise tools and is mainly meant

for research purposes and it offers slightly different functionalities (feature selection)

therefore it is difficult to be directly compared to them. For this reason, I am keeping this

chapter short, and I am not going into further comparison between these tools and my

platform.

30

Chapter 4

System Architecture

4.1 System Requirements……………………………………………………………………………………..30

 4.2 System Design………………………………………………………………………………………………………31

 4.2.1 Architecture……………………………………………………………………………………………32

 4.2.2 Data Storage…………………………………………………………………………………………..33

 4.2.3 Components…………………………………………………………………………………………..38

 4.3 Deployment…………………………………………………………………………………………………….42

 4.3.1 Web Server……………………………………………………………………………………….42

 4.3.2 Database…………………………………………………………………………………………..43

 4.3.3 PHP…………………………………………………………………………………………………..43

 4.3.4 Python………………………………………………………………………………………………44

 4.4 System Workflow…………………………………………………………………………………………….44

 4.4.1 Dataset Upload…………………………………………………………………………………47

 4.4.2 Feature Selection………………………………………………………………………………48

 4.4.3 Model Training and Tuning……………………………………………………………….55

4.1 System Requirements

The system has several requirements in order to be deployed and function properly. The

hardware components required include a computer or server with a sufficient processor,

RAM, and storage capacity to handle large datasets and process the requested experiments.

As far as the software requirements are concerned, an operating system, a web server, and a

database management system are needed. That’s on hardware and software requirements.

For the required technologies I have used I am explaining further below.

Back-End

As far as the backend is concerned, the system can be deployed in any operating system and

any web server supported by that operating system. I used Windows 10 Pro with the Apache

31

web server that came together with the XAMP installation. For the DBMS, MongoDB (v

1.35.0) is required to be installed in the system as well as the necessary databases and

collections must be created (I discuss in detail in the deployment section).

PHP (v 8.0) is the backend programming language I used for client-server communication,

therefore it needs to be present on the system as well as its mongodb module that will

support connectivity with the database. Additionally, PHP needs to be configured, so it can

receive a large amount of data from the clients otherwise the dataset upload might fail.

Python 3 is the second backend programming language I used for the data analysis tasks, so

it also needs to be installed and its installation path should be added (if not added

automatically) in the PATH environment variable, so python programs can be started only

with the ‘python’ keyword.

There are several python libraries I used that don’t come together with the python installation

and are listed below:

• Scikit-learn

• Pandas

• NumPy

• XGBoost

• PyMongo

• Vaex

• Psutil

These libraries need to be exclusively installed, but more specific installation and deployment

steps are listed in the Deployment section.

Front-End

The Front-End of the system is structured with HTML, styled with CSS and the interactivity is

added with JavaScript. Some styling components are taken from the Bootstrap [33]

framework that is loaded from a CDN on the client’s browser. Messages are exchanged

between the client and the server using the JSON format. The requirements for the front-end

are handled by the web server, therefore only the website’s files need to be present in the

directory used by the webserver to serve the files to the clients.

32

The user can interact with the system using any device with any browser with JavaScript

enabled. Those are all the required technologies to allow the platform to function. Specific

installation details are provided in the deployment section.

4.2 System Design

The high-level idea of the system is to provide an interface for the user to upload their dataset

on the server and then be able to request experiments on the datasets and get back the

results.

4.2.1 Architecture

Figure 4.1 displays the high-level idea of the system with the different components it

supports.

The client side has several components that are responsible for uploading and removing

datasets on the server as well as retrieving information about them. In addition, it allows

creating experiments with different options/parameters, terminate a running experiment,

remove an experiment entirely from the server as well as retrieve all the experiments from

the server. Also, it can retrieve all the available machine learning algorithms with their relative

information supported by the system.

Figure 4.1 System Architecture

33

The requested operation, once selected by the user with its corresponding parameters, is

encoded and sent to the server via an AJAX request. The requested server-side resource (PHP

file) is executed and handles each request. Each server-side resource creates a connection to

the database to either retrieve or save information.

Each one of the system’s components are broken down and analyzed in the 4.2.3 subchapter.

4.2.2 Data Storage

The database I decided to use is a mongo database, which is a NoSQL database. The reason I

made this choice is because I have a large amount of data to save for each experiment and

there are many nested fields, which would make the implementation of a traditional SQL

database more complex. In addition, each experiment has the form of a JSON object in the

front-end side, therefore it makes more sense to save it in the same form in a database, which

is what I did.

Experiments

The first collection I have is the Experiments collection. As the name implies, each experiment

is saved in this collection.

Figure 4.2: Experiment Sample in the Database

34

Figure 4.2 Shows how an experiment is saved in the database. _id is the unique id that is

automatically assigned to the experiment by the Mongo DBMS. Id is the id I assign to the

experiment to be able to distinguish it from the rest. Name is the name of the experiment

assigned by the user. Type is the type of the experiment and the dataset_Obj entry holds

information of the dataset of the experiment such as the target classes and the features of

the dataset.

Moving on, configuration_list holds the information about how many samples to be loaded

for each target class e.g. 100000 normal traffic samples. subsets_list holds the different

features subsets specified by the user for the current experiment. preprocessing_list holds

the information about the different preprocessing options selected by the user. models list

holds the training models specified for a model training experiment. Such information

includes the algorithm, k for cross validation and the chosen hyperparameters for the

algorithm.

Regarding the list holding that will hold experiment related paramters,

hyperparam_models_list holds the ranges to test for each parameter specified for a

hyperparameter tuning experiment. corr_models_list holds the algorithms and correlation

thresholds specified for a correlated feature selection experiment. kbest_models_list holds

the algorithms and number of best features to calculate for a best features selection

experiment. Date is the date of the experiment creation.

Furthermore, memUsage is the current RAM usage(percentage) of the experiment. This field

is updated on runtime by the monitor process of each running experiment. Similarly, with

cpuUsage which is about the current CPU usage of the running experiment. Status is the status

of the experiment which can be ‘Draft’ for saved but not started experiments, ‘Running’, for

currently running experiments, ‘Terminated’, for experiments that terminated either

normally or unexpectedly. ‘Completed’ for completed experiments and ‘Queued’ for

submitted experiments but not started yet by the operating system. An experiment might be

delayed from starting because of lack of resources. Such experiments remain in the ‘Queued’.

Duration is the duration the entire experiment took to complete or terminate and is updated

at the end of the experiment. The pid is the pid of the process running the experiment. This

information is used to terminate the experiment if requested by the user, but also for

35

debugging purposes. dataset_info holds information about the portion of the dataset

selected, as it is possible to select a portion of the dataset and not all of it. This information is

the result of the ‘describe’ method of the panda’s library when executed on the dataset which

is basically statistical information about each feature. Lastly, the constant_features_results

hold the results of the constant feature selection experiment.

Figure 4.3 shows an example of what information the ‘describe’ method obtains and how it

is displayed on the platform.

Datasets

The Datasets collection holds information about the uploaded datasets.

Figure 4.3: ‘Describe’ method output

Figure 4.4: Dataset Sample in the Database

36

Figure 4.4 shows an entry of a dataset in the database. ‘name’ is the dataset’s name specified

by the user. ‘target_index’ is the column’s index that represents the variable to be predicted.

Since the platform only supports classification datasets, the target index must correspond to

a column that has no more than 50 different values. Otherwise, the target is deemed to be

non-categorical and the dataset initialization fails. Since python supports negative indexing, -

1 corresponds to the last column, -2 to the column before the last one etc.

Additionally, ‘date’ is the upload data of the dataset. status is the status of the dataset’s

initialization. ‘memUsage’ and ‘cpuUsage’ fields hold the RAM and CPU usage information of

the dataset initializer process. ‘features’ is a list holding the string name of each feature. That

list is generated by the initializer process and appended to the database. ‘target’ is the name

of the target column as specified by the user with the target_index. ‘targets’ is a list of the

different classes discovered in the target column and ‘duration’ is the duration of the

dataset’s initialization.

Algorithms

The last collection I used is the Algorithms collection that holds the information for each

supported classification algorithm. This collection is fixed and cannot be changed by the user

in any way through the interface.

Figure 4.5 shows a sample of the XGBC’s algorithm entry. ‘name’ is the full name of the

algorithm and ‘name_abr’ the abbreviation of the algorithm. The ‘hyper_parameters’ array

holds the information for each of the hyperparameters. The ‘name’ of the hyperparameter,

Figure 4.5: Algorithms Sample in the Database

37

the ‘type’ the hyperparameter. It can be ‘num_range’, that indicates a range of integers or

floats. ‘class_range’ indicates an array of the classes(strings) the hyperparameter can take.

‘boolean’ indicates the hyperparameter can be either true or false.

Moving on, the ‘start’ and ‘stop’ fields are the boundaries of the range the user can select for

a tuning experiment. They are used to give an approximate idea of what values the

hyperparameter can take. ‘incr’ is the default increment. For example, if the increment is 10,

the attempted values for that hyperparamter would be 10, 20, 30, 40 … The ‘description’

provides a brief description of the hyperparameter.

Next, we have the ‘slider_incr’ is used by the slider component for that hyerparameter to

increase/decrease by that value when the user uses the slider. The ‘default_value’ is the

default value of the hyperparameter. The ‘selected_value’, ‘selected_start’, ‘selected_stop’,

‘selected_incr’ fields correspond to the user’s selection about the hyperparameter and can

be used for a model training or tuning experiment.

4.2.3 Components

The system consists of several different components that handle the supported operation the

user can request.

Upload Dataset

This component handles the upload and initialization of the dataset provided by the user.

Through the interface the user is prompted to enter the name of the dataset, its type and the

target index. For now, only classification datasets are supported but room for upgrade is left

for other kinds, like regression. The user can then either drag and drop the files of the dataset

or select and upload them through the file selector. For simplicity, only .xslx and .csv files are

supported.

When the user submits the dataset files, he can see the upload progress of each file and can

decide to revert the operation at any time.

The server receives the files and saves them in a specific directory on the server before passing

control to the Dataset Initializer.

38

Dataset Initializer

This component is responsible for parsing the recently uploaded files and obtaining basic

information about them. Firstly, it assigns a unique id to the dataset and then generates a

process to parse the files.

To be able to handle abnormal exits and keep track of the memory and CPU usage, for every

experiment including dataset initialization, there is always a monitor process that keeps an

eye on the experiment process and updates the database with the current state of the

process. The monitor makes use of the psutil library in python to extract information about

the experiment process and periodically update the database so the user can have feedback

on the progress of the experiment.

The initializer will first load the dataset with vaex [29] which makes the operation much faster

than the traditional file loading with pandas. Then it will detect the target column with the

column index specified by the user and check if it represents a categorical variable. If not, it

will terminate indicating the problem. It will also calculate and store in the database the

feature names and the several classes of the target column.

When the initialization process of a dataset is started, the user is redirected to ‘My resources’

page where he can see the status of the initialization as well as terminate and remove any

dataset.

Remove Dataset

This component handles the deletion of a dataset when requested by the user. When such an

operation is requested the database entry corresponding to the dataset to be removed is

deleted and the files are removed from the disk.

Retrieve Datasets

This component is responsible for retrieving the datasets’ information that are stored in the

database and serving them to the client’s browser. Since the datasets are treated as JSON

39

objects both on the client’s browser and the database, the extraction from the database and

transmission is quite simple.

Create Experiment

This component allows the user to create an experiment. The experiment’s type as well as

the parameters of the experiment which include the dataset, the number of samples for each

target class, the subsets of features to be used, the processing options as well as the

algorithms and their parameters.

Experiment Initializer

Similarly with the dataset initializer, the experiment initializer will act as a monitor for the

experiment’s process. More specifically, when an experiment is submitted the monitor

process will fork and create the corresponding process based on the requested experiment

type. For example, if the user submits a constant feature selection experiment the monitor

process forks into the process that can process this type of experiment and starts monitoring

it.

The monitor will update the database periodically about the RAM and CPU usage of the

experiment. Furthermore, it will check if the user requested the experiment's termination

where it terminates the experiment process.

Terminate Experiment

This component is responsible for terminating an ongoing experiment. When the user

requests to terminate an experiment, the server will update the status of the experiment in

the database as terminated, so the monitor of the experiment can see that and proceed to

terminate the experiment process.

Remove Experiment

This component is responsible for removing the requested experiment. When such an

operation is requested, the server will remove the entry that corresponds to the experiment

40

to be removed. There is not any reverting mechanism for recovering deleted experiments, so

this component should be used carefully.

Retrieve Experiments

This component retrieves all the experiments from the database in a sorted manner. Through

the website the client can request to view the experiments in a sorted manner based on any

of the characteristics of the experiment.

Figure 4.6 shows the header of the experiments’ table as well as one entry. By default, when

the page is loaded, the experiments are retrieved based on the id column which is directly

correlated with the Date of submission as the unique id corresponds to the data of submission

in milliseconds. That means, by default the experiments are listed from the most recent to

the oldest one.

When a user clicks on the header of any column the experiments are retrieved based on that

column. The order of the sorting alternates between ascending and descending where the

down triangle indicates descending order and the upward triangle ascending order.

Retrieve Algorithms

This component is responsible for retrieving the information for each supported algorithm

from the database and serving it on the client’s browser. The component is used on page load,

but the user cannot directly request it.

Constant Features Selection

This component is responsible for handling constant feature selection experiments. Firstly, it

loads the dataset from the file system by reading chunks of 1 GB to avoid memory errors and

Figure 4.6: Experiments Table Header

41

based on the user’s specified configurations (number of samples per target class) it creates a

pandas Dataframe.

Firstly, it applies the preprocessing options on the dataframe. Then it calculates the dataset’s

basic information (‘describe’ method) and appends it on the database along with the number

of samples for each target class. Then, for each features subsets specified, it encodes all the

string variables to avoid any problems with the processing.

Finally, using the VarianceThreshold [21] class from the sklearn library, it calculates the

constant features of the dataset, appends them to the database entry for the experiment and

repeats the process with the next subset.

 Correlated Features Selection

This component is responsible for handling correlated feature selection experiments. Firstly,

it loads the dataset from the file system by reading chunks of 1 GB to avoid memory errors

and based on the user’s specified configurations (number of samples per target class) it

creates a panda Dataframe.

Firstly, it applies the preprocessing options on the dataframe. Then it calculates the dataset’s

basic information (‘describe’ method) and appends it on the database along with the number

of samples for each target class.

Then, for each subset and algorithm combination specified, it encodes all the string variables

to avoid any problems with the processing. Then, it runs the corr method [22] from the Pandas

library [27] with the specified algorithm and gets the correlation matrix as a result. It

processes the matrix and stores for each feature, all the other features that their correlation

threshold is greater than the specified one, in a list. Finally, it appends the resulting list to the

database and repeats the process with the next algorithm or subset specified.

K-Best Features Selection

This component is responsible for handling k-best feature selection experiments. Firstly, just

like the previous components, it loads the dataset from the file system by reading chunks of

42

1 GB to avoid memory errors and based on the user’s specified configurations (number of

samples per target class) it creates a pandas Dataframe.

Firstly, it applies the preprocessing options on the dataframe. Then it calculates the dataset’s

basic information (‘describe’ method) and appends it on the database along with the number

of samples for each target class.

Then, for each subset and algorithm combination specified, it encodes all the string variables

to avoid any problems with the processing. Then, it runs the SelectKBest method [25] from

the Pandas library with the specified algorithm and gets a list with the best features’ indices

as the result. Then it processes the resulting list and converts the indices to the corresponding

features names. Finally, it appends the final list to the database and repeats the process with

the next algorithm or subset specified.

Model Training

This component is responsible for handling model training experiments. Firstly, just like the

previous components, it loads the dataset from the file system by reading chunks of 1 GB to

avoid memory errors and based on the user’s specified configurations (number of samples

per target class) it creates a pandas Dataframe.

Firstly, it applies the preprocessing options on the dataframe. Then it calculates the dataset’s

basic information (‘describe’ method) and appends it on the database along with the number

of samples for each target class.

Then, for each subset and algorithm combination specified, it encodes all the string variables

to avoid any problems with the processing. Then it runs the algorithm (if it is supported) with

the specified hyperparameters using the cross_validation [30] method of the sklearn library

[26] and appends the results on the database.

To avoid data leakage and for simplicity, if specified in the preprocessing options, the standard

scaler ([0,1] scale) is pipelined into the model and the scaling will be handled by the

cross_validation method before training.

43

The supported algorithms of the platform are Random Forest, Decision Trees, Extreme

Gradient Boost, Linear Discriminant Analysis and K-Nearest Neighbors.

Model Tuning

This component is responsible for handling model tuning experiments. Firstly, just like the

previous components, it loads the dataset from the file system by reading chunks of 1 GB to

avoid memory errors and based on the user’s specified configurations (number of samples

per target class) it creates a panda Dataframe.

Firstly, it applies the preprocessing options on the dataframe. Then it calculates the dataset’s

basic information (‘describe’ method) and appends it on the database along with the number

of samples for each target class.

Then, for each subset and algorithm combination specified, it encodes all the string variables

to avoid any problems with the processing. Then, it uses the GridSearchCV [37] method of the

sklearn library with the hyperparameter ranges specified by the user to tune the model.

Finally, it appends the tuning results to the database.

The user can see the results (training and validation accuracy) for each hyperparameter

combination in a sorted manner with the most accurate set to be first and highlighted.

4.3 Deployment

In this section I provide a detailed guide on how this system can be deployed on a server. The

guide will be based on the operating system I used which is windows 10.

4.3.1 Web Server

I used XAMP 8.0(https://www.apachefriends.org/download.html) which comes with PHP 8

and Apache web server pre-installed. The public directory for the website’s files is located at

the root directory of the xamp installation in the htdocs folder. So, after placing the website’s

files in this directory they should be accessible through the webserver.

44

4.3.2 Database

The DBMS I used, is MongoDB (v 1.13.0) (https://www.mongodb.com/docs/manual/) as well

as the MongoDB Compass(https://www.mongodb.com/try/download/compass) which is a

GUI that allows easier interaction with the database. MongoDB Compass is the equivalent of

phpMyAdmin for an SQL DB.

After installation, the database should be running on localhost, on port 27017. There should

be a database named MLWebsite with 3 collections named Experiments, Datasets and

Algorithms. Experiments and Datasets can be left empty as they will be filled on user’s

request, but the Algorithms collection should be imported from MongoDB compass using the

Algorithms.json file contained in the system’s root folder. This collection contains information

on the 5 algorithms used for the experimental analysis.

4.3.3 PHP

PHP 8 comes pre-installed with XAMP and the external dependencies needed for the

interaction with the mongo database are included in the system’s files, but a mongo db

extension(https://pecl.php.net/package/mongodb/1.13.0/windows)needs to be added in

the php configuration. I download the PHP 8.0, thread safe x64 configuration zip file and I

copy the php_mongodb.dll file in the xamp/php/ext directory which contains the extension

files for php. Then for the extension to activate the line extension=php_mongodb.dll needs

to be added in the php.ini file in the xamp/php directory.

Also, the php should be configured to allow the reception of large and many files from the

network. The following lines should be added (modified if already existing):

• upload_max_filesize=50000M

• max_file_uploads=30

• post_max_size=50000M

These lines will allow uploading up to 50000Mbytes and up to 30 files per session.

4.3.4 Python

https://www.mongodb.com/docs/manual/
https://www.mongodb.com/try/download/compass
https://pecl.php.net/package/mongodb/1.13.0/windows

45

Python 3 (https://www.python.org/downloads/) needs to be installed and its installation

path should be added (if not added automatically) in the PATH environment variable, so

python programs can be started only with the ‘python’ keyword.

The python libraries used are the following and can be install with the pip tool:

• pip install scikit-learn

• pip install xgboost

• pip install numpy

• pip install pandas

• pip install vaex

• pip install psutil

• pip install pymongo

After all these steps, when the Apache server is started from the XAMP control panel, the

platform should be accessible through http://localhost/ML-Website/

4.4 System Workflow

In this section, I provide a workflow of the system and demonstrate how a data analyst can

use it to perform several operations and benefit from it.

Figure 4.7: Main Experiments Page

https://www.python.org/downloads/
http://localhost/ML-Website/

46

Figure 4.7 shows the main page that retrieves the experiments from the database and displays

their characteristics on a table. On top, there are the main functionalities supported which

include viewing and managing the experiments, creating a new experiment, uploading a

dataset and viewing/managing the uploaded datasets.

Below the main buttons, are displayed the number of terminated, drafted, queued, running

and completed experiments.

For each experiment, there are certain operations supported as shown by the open popup

including, removing, editing and viewing the results of an experiment. For running

experiments there is the additional option to terminate it which sends a signal to the server

to terminate the experiment’s process.

4.4.1 Dataset Upload

In this section, I demonstrate a sample workflow for uploading a dataset on the server.

Figure 4.8: Upload Dataset Page

47

Figure 4.8 shows how the upload dataset page looks after filling the required input fields and

setting 6 files to be uploaded for the dataset. The input files will be merged upon processing

and the target column set to -1 indicates the target column will be the last column of each

file. For each selected file, the name, type and size are shown and can be removed by using

the trashcan button.

Figure 4.9 displays the page after the uploading has been started by the user. It shows the

upload progress for each file. The operation can be reverted any time using the cancel button.

After the files are successfully uploaded on the server, the dataset initialization starts and the

user is redirected to ‘My Resources’ page where he can manage the datasets uploaded on the

server as well as view the progress of the initialization.

Figure 4.9: Upload Dataset Progress Page

Figure 4.10: Initializing Dataset Page

48

When the status of the dataset is set to Initialized, it can be used for processing. The creation

of experiments will be demonstrated with examples in the next subchapters.

4.4.2 Feature Selection

In this section I will demonstrate how the platform can be used for the creation of

experiments involving feature selection. Such operations include constant feature, correlated

feature and k-best feature selection.

Constant Features

This section demonstrates how a constant feature selection experiment can be created.

Figure 4.11 shows the initial tab of the experiment creation page. The user can fill in the name

of the experiment, select the dataset and the kind of experiment which in this case is a

constant feature selection.

Figure 4.12 displays the next tab that allows the user to enter the number of samples per

target class. For this example, all samples are selected from the BENIGN traffic, 50,000

random samples from the NetBios DDoS and 50,000 from the MSSQL DDoS.

Figure 4.11: Experiment Details Tab

49

Figure 4.13 displays the features tab which allows the user to enter select the subsets of

features to be used. For each subset selected the experiment will be repeated.

Figure 4.12: Dataset Details Tab

Figure 4.13: Features Tab

50

Figure 4.14 displays the preprocessing options available which include converting the

negative values to 0, not using samples with at least 1 null feature and scaling numerical data

to the standard [0,1] scale.

Figure 4.15 shows the newly created experiment when the user submits it. In case he saves it

as draft the experiment will still be saved in the database as draft but won’t execute.

Figure 4.14: Preprocessing options tab

Figure 4.15: Experiments Tab

51

Figure 4.16 displays the results page loaded when the view details button is clicked for the

constant features selection experiment. There are some basic information about the

experiment shown and then information about the dataset discussed previously.

Figure 4.17 shows a table also included in the results page that

displays the number of samples used per target class. In this case

even though the specified sample size for BENIGN traffic was

100,000 there was a maximum of 31,330 BENIGN samples.

Figure 4.18 shows the results obtained from the experiment. Out of the 86 features subset

chosen for the experiment, 12 features remained constant.

Figure 4.16: Results Page

Figure 4.17: Class distribution

Figure 4.18: Results table

52

The constant features were extracted with variance threshold and they can be copied with

the copy button on the far right. When copied, they can then be unselected to not be used in

a correlated features selection experiment.

Finally, the results table, class distribution table and dataset information tables can be

downloaded as an excel document using the ‘Export to Excel’ button.

Correlated Features

This section demonstrates how a correlated features experiment can be submitted.

Figure 4.19 shows the initial tab for a correlated features experiment. Notice that for this

experiment there is another tab, not included in the previous type of experiment. Dataset,

Features and Preprocessing tabs are the same as previously demonstrated, so I will not go

over them again.

Figure 4.20 displays the model tab. Here the user can specify which algorithms to test (for

each features subset specified) to find correlations between features. Features that are highly

correlated do not provide any value to the model and therefore, it is better to exclude them.

In the figure, Pearson [23] and Spearman [24] algorithms are used to find features that are at

least 95% correlated.

Figure 4.19: Correlated Features Experiment

53

Figure 4.21 displays the results of the correlated feature selection experiment. Pearson

algorithm detected 26 features with at least 95% correlation with at least one other feature

of the dataset and Spearman detected 39 features with at least 95% correlation with at least

one other feature of the dataset.

Also, for each one of the features with at least one correlation, it is possible to see which

features are the ones that are correlated with. As shown in figure 4.22, Fwd IAT Mean is 95%

correlated with Flow IAT Mean and Flow IAT Std, so it might not be useful keeping all 3 of

them in the model.

Figure 4.20: Correlated Model Tab

Figure 4.21: Correlated Features Results

Figure 4.22: Correlated Features’ Correlations

54

This is an example test case and further details about the features as well as conclusions about

the features correlations of cyber-attacks are analyzed in the experimental analysis in the

next chapter.

Best Features

This section demonstrates how a best features experiment can be submitted.

Figure 4.23 shows the initial tab for a best features experiment. Similarly, to a correlated

features experiment dataset configuration, features subsets, preprocessing options and

algorithms can be specified. Dataset, Features and Preprocessing tabs are the same as

previously demonstrated, so I will not go over them again.

Figure 4.24 displays the model tab. Here the user can specify which algorithms to test (for

each features subset specified) to find the best features for each features’ subset specified.

The most influential features to the target variable are the most important ones and should

increase the accuracy and efficiency of the model. In the figure, ANOVA(F-Test) [35] is used

to find the 5-best, 10-best, …, 50-best features. As mentioned before, chi-2 [34] and mutual

information tests [36] are supported and can be used for best features extraction.

Figure 4.23: Best Features Experiment

55

Figure 4.25 displays the results of the best feature selection experiment. There were 2

features subsets (with 60 and 47 features) specified and for each of the 2 subsets, the 5-best,

…, 50-best features were calculated. The best features can be copied using the right-most

button and be pasted in a model-training or tuning experiment very easily.

4.4.3 Model Training and Tuning

This section demonstrates how a correlated features experiment can be submitted.

Figure 4.24: Best Features Algorithms Selection

Figure 4.25: Best Features Results

Figure 4.26: Model Training Experiment

56

Figure 4.26 shows the initial tab for a model training experiment. The user can select that he

wants a model training or tuning experiment and just like the previously described

experiments, continue with the rest parameters. Dataset, Features and Preprocessing tabs

are the same as previously demonstrated, so I will not go over them again.

Figure 4.27 displays the model tab. Here the user can specify which training algorithms to test

(for each features subset specified) to compare accuracies. In the figure, Random Forest and

Extreme Gradient Boost Classifiers are used with 10-kfold cross validation for more accurate

results. The user can remove an algorithm using the trash can icon and select the

hyperparameters to be used for each algorithm. By default, the default hyperparameters for

each algorithm are preselected.

Figure 4.28 shows the popped-up area the user can use to specify the hyperparameters to be

used for an algorithm. The information for each algorithm is retrieved from the database to

be used for this popup. The user can type in the value of each hyperparameter or use the

increase and decrease buttons to do the same thing. The info icon shows information about

each hyperparameter hinting to the user on how to use it. The user can then save the

hyperparameters and submit the experiment.

Figure 4.29 Shows how the results of the model training look like for each of the 2 subsets

specified and the 2 algorithms.

Figure 4.27: Model Training Algorithms

57

The experiment, that its results is shown in the last figure, is still in progress and the last

training with XGBC and 10 feature subset is not shown as it is still running. As shown from the

figure the training duration, accuracy, precision, recall and F1 average scores for both training

and validation splits from the 10 repetitions(10-fold).

Hyperparameter Tuning is the last operation supported by the platform. The experiment

creation is almost identical to the model training, but instead of setting the hyperparameters

for each algorithm, the user will set the range of values for each hyperparameters to try, as

well as the increment. As shown in figure 4.30, for a Random Forest Classifier a range of 100

to 200 with an increment of 10 will be used for n_estimators ([100, 110, …,200]) and both

‘gini’ and ‘entropy’ values for the criterion hyperparameter.

Figure 4.28: Algorithm Hyperparameters Selection

Figure 4.29: Model Training Results

58

Note that the tuning will include every possible combination of the specified ranges and will

be repeated 10 times (10-fold) to increase the accuracy of the results.

Figure 4.31 shows how the results of a tuning experiment look like. For each Algorithm-Subset

combination there is a table with all hyperparameter combinations tried, the mean duration

of the 10 iterations the mean training accuracy, mean validation accuracy and the ranking of

Figure 4.30: Hyperparameter Tuning Experiment

Figure 4.31: Hyperparameter Tuning Results

59

the combination according to the validation accuracy. The results are sorted with the most

accurate combination coming first.

The tuning in the example only included ‘n_estimators’ and criterion ranges and as indicated

by figure 4.32, when ‘entropy’ is used instead of ‘gini’, it leads to higher accuracy.

This is the last operation I implemented for the platform. The next chapter includes an

experimental analysis of cyber-attack traffic mainly DDoS, using the platform to automate the

process.

Figure 4.32: Hyperparameter Tuning Results Hyperparameters

60

Chapter 5

System Evaluation

5.1.1 Datasets………..60

 5.1.1.1 CIC-DDoS2019……………………………………………………………………………………………60

 5.1.1.2 CIC-IDS2017……………………………………………………………………………………………….61

5.1.2 Methodology………62

5.1.3 Experiments & Results……………………………………………………………………………………………..64

5.1.1 Datasets

I used 2 cyber-attack related datasets to analyze and use to evaluate my system. Both datasets

contain network related features and were generated with CICFlowMeter [9], a particularly

useful dataset generation tool that takes the .pcap files, containing the captured network

traffic of a system and generates excel files that can be further analyzed by data analysts.

5.1.1.1 CIC-DDoS2019

The CIC-DDoS2019 [3] is a publicly available dataset of network traffic captures generated by

the Canadian Institute for Cybersecurity, designed for evaluating and analyzing the

effectiveness of DDoS attack detection and mitigation methods.

The dataset contains both benign and malicious traffic captures. The benign traffic is from a

variety of sources, such as web browsing, email, and file transfers. The malicious traffic

consists of various DDoS attacks, such as UDP flood, TCP flood, and HTTP flood attacks. The

dataset was collected in a controlled environment using a custom-built network emulator

that simulates a real-world network environment.

The dataset contains over 80 million records of network traffic with over 20 GB of generated

traffic in .csv format. It includes features extracted from the captured traffic, such as flow

duration, packet length, and protocol type, which can be used to train machine learning

models for DDoS detection and mitigation.

61

The DDoS traffic types analyzed that are included in the dataset besides normal(benign) traffic

and are mentioned in the background section are the following:

• NetBIOS DDoS

• UDP-Lag DDoS

• Syn DDoS

• NTP DDoS

• SNMP DDoS

• SSDP DDoS

• LDAP DDoS

• MSSQL DDoS

• UDP DDoS

• DNS DDoS

The dataset contains a total of 86 network related features and a target column, specifying

the DDoS kind (or benign for normal traffic) that are briefly described in Appendix A

5.1.1.2 CIC-IDS2017

CIC-IDS2017 [4] is similar in terms of structure to CIC-DDoS2019. It is a publicly available

dataset created by the Canadian Institute for Cybersecurity containing a set of network traffic

captures designed for evaluating and analyzing the effectiveness of intrusion detection

systems (IDSs).

The dataset contains both benign and malicious traffic captures. The benign traffic is from a

variety of sources, such as web browsing, email, and file transfers. Malicious traffic consists

of several types of attacks, such as DDoS and brute forcing.

The dataset was collected in a controlled environment using a custom-built network emulator

that simulates a real-world network environment and it contains more than 1 GB of generated

traffic in .csv format.

The dataset was generated with the same tool (CICFlowMeter) as the first dataset and it

initially has the same kinds of network features briefly explained in Appendix A.

The traffic types analyzed that are included in the dataset besides normal(benign) are the

following:

• DDoS

62

• DoS GoldenEye

• DoS Hulk

• DoS SlowHttpTest

• Dos Slowloris

• FTP-Patator (brute force attack)

• SSH-Patator (brute force attack)

• Port Scan

5.1.2 Methodology

The methodology I have followed for the most part, to analyze each dataset, is demonstrated

in figure 5.1.

Firstly, I am identifying the constant features of the datasets and removing them since they

don’t provide any value to the analysis. Then I remove features that act as identifiers and

therefore they can either leak information about the target or be unable to generalize and

make predictions in another dataset. Such features are Source/Destination IPs, and

timestamps of the attack that cannot be used to make generic conclusions about DDoS traffic.

Then I am using Pearson [23] and Spearman [24] algorithms to detect and remove highly

correlated features. Such features don’t provide any value to the model and removing them

can make the training more efficient. Then I am using ANOVA and Mutual Information tests

to detect the best of the remaining features of the dataset and for each classification

algorithm (XGBC, Random Forest, Decision Trees, LDA, KNN) I am training (with default

hyperparameters) to find the most accurate subset. Then I am taking the most accurate (as

small as possible) subset of best features and tune each algorithm with a reduced version of

the dataset (to finish tuning faster) to find the best hyperparameters. Finally, I use the best

hyperparameters to train the model with different dataset sizes and examine the accuracy.

Figure 5.1: Methodology Diagram

63

As an initial approach in understanding the first dataset I followed a slightly different

approach than the one shown in figure 5.1. First, I removed the constant and identification

features as well as the union of the features selected as highly correlated with Pearson and

Spearman. Then I used chi-2, f-tests and mutual information tests to extract the best 5 to 25

features. Then I tried several machine learning algorithms to get an idea of the ones that

perform better with different dataset sizes.

After having a deeper look at my initial approach, I realized that I made some mistakes. The

first mistake is that I didn’t use cross-validation to ensure the dataset is thoroughly trained,

so my result might have been off. Moreover, I realized that chi-2 is not the best algorithm to

use for my dataset as it contained mostly continuous variables (numerical) instead of

categorical ones that chi-2 is made for. Even though my initial approach was not fully

64

accurate, it gave me an idea on which algorithms can perform relatively well to use in my next

approach. In Appendix B, in the ‘Initial Approach’ section I have put the graphs and results

extracted from that approach, but I will not go into much detail on these results as I will do

so in my updated and better approach.

The following figures display the system I performed all my experiments. Apparently, it is not

very efficient, but due to technical difficulties it was my last resort.

The next subchapter includes a detailed description of all my experiments as well as the

results I obtained using the proposed system.

5.1.3 Experiments & Results

In this section, I will describe every experiment/operation I conducted to analyze the

aforementioned datasets and present my results. For simplicity I will refer to CIC-DDoS2019

dataset as the 1st dataset and the CIC-IDS2017 as the 2nd dataset.

To identify the constant features, I submitted constant feature selection experiments for the

2 datasets. For each attack kind of the 1st dataset, I used 100,000 random samples and about

30,000 samples for the normal traffic, as that was the maximum number of samples in the

dataset. For each attack kind of the 2nd dataset, I used 5,000 - 10,000 random samples and

10,000 samples for normal traffic. The yellow highlighted features are features that remained

65

constant in both datasets, the green ones remained constant only in the 1st one and the blue

one only in the second one.

1. Bwd PSH Flags(*)
2. Fwd URG Flags(*)
3. Bwd URG Flags
4. FIN Flag Count
5. PSH Flag Count
6. ECE Flag Count
7. Fwd Avg Bytes/Bulk(*)
8. Fwd Avg Packets/Bulk(*)
9. Fwd Avg Bulk Rate(*)
10. Bwd Avg Bytes/Bulk(*)
11. Bwd Avg Packets/Bulk(*)
12. Bwd Avg Bulk Rate(*)
13. CWE Flag Count

(*) Constant features detected by another research.

According to research conducted related to the 2nd dataset by Arnaud R., Eloïse C., Florent C.

and Pascal L. [39], due to miscalculation of features by the CIC-Flowmeter tool, some features

are always null. These features are marked with a * in the aforementioned list. I decided to

exclude certain attacks included in the 2nd dataset, with small number of samples (<1000)

compared to other attacks and their nature couldn’t be compared to DDoS attacks. I kept the

attacks that essentially overwhelm the server with useless requests. Other than DDoS, there

are brute force attacks, port scans as well as DoS attacks generated by certain tools. So, in my

case I got 2 extra constant features (CWE Flag Count, Bwd URG Flags) to remove.

In general, I think features remaining constant under specific scenarios and datasets can give

insights on how attacks work, but features (PSH, ECE flags etc.) unused in some attacks and

setups can be used in others.

So, after removing the constant features of each dataset I decided to remove features that

serve identification purposes. Such features include the FlowID which is a string

concatenation of other features (flowId = sourceIP + "-" + destinationIP + "-" + srcPort + "-" +

dstPort + "-" + protocol), the source and destination IP’s as well as the source and destination

ports. These features can be unique in any attack scenario/setup and training a model based

on them will not be able to generalize and will be biased on IP’s and ports that can take any

value. Also, the timestamp feature that identifies the time of the flow doesn’t provide any

66

value and can leak information about the target. To sum up, the removed features are the

following:

• FlowID

• Source IP

• Destination IP

• Source Port

• Destination Port

• Timestamp

To make my model lighter I ran correlated features experiments to detect features that are

highly correlated with other features, therefore keeping all of them is unnecessary for the

model. To verify this theory, I later checked the accuracy with all the features compared to

the dataset after removing constant and correlated ones.

For each attack kind of the 1st dataset, I used 100,000 random samples and about 30,000

samples for the normal traffic, as that was the maximum number of samples in the dataset.

For each attack kind of the 2nd dataset, I used 5,000 - 10,000 random samples and 10,000

samples for normal traffic. To better understand cyber-attacks and detect any correlations

with the identification features (source/destination IP’s etc.) I included them in the correlated

features experiments.

According to the results of the 1st dataset and Pearson algorithm, out of 74 features, 26

features are 95% correlated with at least another feature in the dataset. The following list

shows only a few correlations, but you can find the complete one in the ‘Highly Correlated

Features Lists’ section in Appendix B.

1. Fwd Packet Length Min: Fwd Packet Length Max
2. Fwd Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min
3. Flow IAT Std: Flow IAT Mean
4. Fwd IAT Total: Flow Duration
5. Fwd IAT Mean: Flow IAT Mean, Flow IAT Std
6. Fwd IAT Std: Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd IAT Mean
7. Fwd IAT Max: Flow IAT Max, Fwd IAT Std
8. Fwd IAT Min: Flow IAT Min
9. Bwd IAT Std: Bwd IAT Mean
10. Bwd Header Length: Total Backward Packets

According to the results of the 1st dataset and Spearman algorithm, out of 74 features, 39

features are 95% correlated with at least another feature in the dataset. The following list

shows only a few correlations, but you can find the complete one in the ‘Highly Correlated

Features Lists’ section in Appendix B.

67

1. Fwd Packet Length Min: Fwd Packet Length Max
2. Fwd Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min
3. Bwd Packet Length Max: Total Length of Bwd Packets
4. Bwd Packet Length Mean: Total Length of Bwd Packets, Bwd Packet Length Max
5. Flow Packets/s: Flow Duration
6. Flow IAT Mean: Flow Duration, Flow Packets/s
7. Flow IAT Max: Flow Duration, Flow Packets/s, Flow IAT Mean
8. Fwd IAT Mean: Fwd IAT Total
9. Fwd IAT Std: Total Fwd Packets
10. Fwd IAT Max: Fwd IAT Total, Fwd IAT Mean

According to the results of the 2nd dataset and Pearson algorithm, out of 73 features, 22

features are 95% correlated with at least another feature in the dataset. The following list

shows only a few correlations, but you can find the complete one in the ‘Highly Correlated

Features Lists’ section in Appendix B.

1. Fwd Packet Length Std: Fwd Packet Length Max
2. Bwd Packet Length Mean: Bwd Packet Length Max
3. Bwd Packet Length Std: Bwd Packet Length Max, Bwd Packet Length Mean
4. Fwd IAT Total: Flow Duration
5. Fwd IAT Max: Flow IAT Max
6. Bwd IAT Max: Bwd IAT Total
7. Fwd Header Length: Total Fwd Packets
8. Bwd Header Length: Total Backward Packets
9. Fwd Packets/s: Flow Packets/s
10. Packet Length Std: Max Packet Length, Packet Length Mean

According to the results of the 2nd dataset and Spearman algorithm, out of 73 features, 30

features are 95% correlated with at least another feature in the dataset. The following list

shows only a few correlations, but you can find the complete one in the ‘Highly Correlated

Features Lists’ section in Appendix B.

1. Fwd Packet Length Max: Total Length of Fwd Packets
2. Fwd Packet Length Mean: Total Length of Fwd Packets, Fwd Packet Length Max
3. Bwd Packet Length Max: Total Length of Bwd Packets
4. Bwd Packet Length Mean: Total Length of Bwd Packets, Bwd Packet Length Max
5. Flow Packets/s: Flow Duration
6. Flow IAT Mean: Flow Packets/s
7. Flow IAT Max: Flow Duration, Flow Packets/s, Flow IAT Mean
8. Fwd IAT Mean: Fwd IAT Total
9. Fwd IAT Max: Fwd IAT Total, Fwd IAT Mean
10. Bwd IAT Mean: Bwd IAT Total

68

Since Spearman can detect more general relationships between variables, the correlated

features are typically more than those identified by Pearson. Moreover, the lists mentioned

above can create graphs that can better visualize the relationships of the features since

correlation has both directions. The double direction is not visible in the lists as I won’t to

keep at least one instance of the 2 correlated variables. For example, if A: B meaning A is

correlated with B, there will not be B: A even if it is valid, as I don’t want to exclude both A

and B from the following experiments.

For the purposes of this research, I won’t go into further research on why these correlations

exist in these datasets, but I will analyze the effect of eliminating these features in the creation

of a more efficient machine learning model that can detect these attacks.

Moving on, I am left with 2 subsets for each dataset:

Subset 1 =features – constantFeatures - identificationFeatures - pearsonCorrelatedFeatures

Subset 2 =features – constantFeatures - identificationFeatures - spearmanCorrelatedFeatures

For each subset I want to identify those features that are the most important ones. Ideally, I

am looking for the least number of features that can train the most accurate model. So in the

next step I will use ANOVA and Mutual Information Tests to identify the 5 best up to 50 best

features of the subsets.

As mentioned in the background, network related features are

typically continuous and do not fit the assumptions of the Chi-2 test,

which assumes that the variables are categorical and have discrete

values. Therefore, using it for feature selection in these datasets

may not yield accurate results and could lead to the selection of

irrelevant features or the exclusion of important ones. Figure 5.2

displays the class distribution for each DDoS class. There was far

more DDoS traffic than normal one so I tried keeping it balanced.

The complete lists of the results of the K-Best feature selection on

the 1st dataset can be found in the ‘Best Features Lists’ section in

Appendix B since they were large and not individually analyzed. Figure 5.2: Methodology

Diagram

69

In order to rank the features of the 1st dataset, for every occurrence of each feature in a k-

best feature subset calculated by either ANOVA or Mutual information I was giving 1 point to

the feature. The final rank is shown in figure 5.3.

The maximum packet length of the incoming(fwd) traffic was ranked as the most important

feature. This is because DDoS attacks typically keep the same small packet length to send as

many requests as possible. Also, it could be that each attack type might have used a unique

upper bound for its packets, therefore this feature can be a good predictor. At the same

ranking is the speed of the flow (Bytes/s). DDoS attacks usually have higher and constant flow

rates in order to be more effective, so as expected this feature is on the top of the list.

The "act_data_pkt_fwd" feature is a metric that measures the number of actual data packets

forwarded by the network in a flow. In other words, it counts the number of incoming packets

that contain actual data, rather than control or management information. Several types of

DDoS attack traffic will contain a fixed number of data packets or no data packets at all to be

lightweight and allow higher transmission rates. In contrast, normal traffic has a higher and

more unpredictable number of data packets.

Protocol as expected is another feature that plays significant role, since many DDoS types,

abuse services that operate under specific protocols therefore it can be a good predictor on

0

5

10

15

20

25

30

35

40

Fw
d

 P
ac

ke
t

Le
n

gt
h

 M
ax

Fl
o

w
 B

yt
es

/s

ac
t_

d
at

a_
p

kt
_

fw
d

P
ro

to
co

l

To
ta

l L
en

gt
h

 o
f

Fw
d

…

In
b

o
u

n
d

Fl
o

w
 D

u
ra

ti
o

n

Fw
d

 P
ac

ke
t

Le
n

gt
h

 S
td

Fw
d

 H
e

ad
er

 L
en

gt
h

D
o

w
n

/U
p

 R
at

io

m
in

_s
e

g_
si

ze
_f

o
rw

ar
d

U
R

G
 F

la
g

C
o

u
n

t

B
w

d
 P

ac
ke

t
Le

n
gt

h
 M

in

C
W

E
Fl

ag
 C

o
u

n
t

M
ax

 P
ac

ke
t

Le
n

gt
h

To
ta

l F
w

d
 P

ac
ke

ts

In
it

_W
in

_
b

yt
e

s_
b

ac
kw

…

Id
le

 S
td

Fl
o

w
 P

ac
ke

ts
/s

Fw
d

 P
SH

 F
la

gs

To
ta

l B
ac

kw
ar

d
 P

ac
ke

ts

In
it

_W
in

_
b

yt
e

s_
fo

rw
ar

d

Fl
o

w
 IA

T
M

in

B
w

d
 P

ac
ke

t
Le

n
gt

h
 S

td

Fl
o

w
 IA

T
M

ea
n

Fl
o

w
 IA

T
M

ax

A
ct

iv
e

 S
td

B
w

d
 P

ac
ke

t
Le

n
gt

h
 M

ea
n

Fl
o

w
 IA

T
St

d

Fw
d

 IA
T

To
ta

l

B
w

d
 IA

T
M

in

B
w

d
 P

ac
ke

t
Le

n
gt

h
 M

ax

B
w

d
 P

ac
ke

ts
/s

P
ac

ke
t

Le
n

gt
h

 V
ar

ia
n

ce

Best Features CIC-DDoS2019

Figure 5.3: Best features histogram

70

the DDoS target. If we are talking about DDoS detection instead of DDoS classification though,

it could be a misleading feature.

The Total Length of Fwd packets is another important feature as it represents the total

number of bytes sent by the source. DDoS attacks normally have a large number of bytes sent,

compared to normal traffic. Inbound comes after and is very similar as it represents the

number of bytes received by the destination. It looks like those 2 features should have been

detected as highly correlated since the number of bytes sent should be the same as the

number of bytes received. It is quite common for packet losses to occur, especially when the

network gets congested by DDoS traffic or unreliable protocols are used (UDP).

Flow duration is generally higher in DDoS attacks as threat actors want to keep the network

as busy as possible and the standard deviation of the number of sent bytes is usually lower in

DDoS attacks as this number is closer to the average. That is because DDoS attacks typically

generate many small requests with fixed length. In contrast, normal traffic’s size patterns are

unpredictable and the standard deviation is normally higher.

To better understand each DDoS traffic individually and also be able to compare them with

existing research, I additionally extracted the most influential features for each DDoS class

mixed with normal traffic.

In their research, Iman S., Arash H. L., Saqib H., and Ali A. G. [3] on the same dataset, have

listed the most influential features for each DDoS class. Their results cannot be directly

compared to mine since, my results include the most influential feature extracted from the

entire dataset, but to be able to rank the features as a total, for every appearance of each

feature in the top 5 list of a DDoS class of the research I added a point to that feature.

71

Figure 5.4 displays the results of my ranking of the best features of the research. The features

appeared mostly is packet length std which represents the standard deviation of the packets

size sent/received in the flow. Such a feature as explained previously can be a good indicator

of the traffic sent by threat actors since their packets typically have fixed length. According to

my analysis on highly correlated features, this feature is at least 95% linearly correlated with

the standard deviation of the packets’ size forwarded (Fwd Packet Length Std), therefore I

decided to exclude the first one.

“Min_seg_size_fwd” refers to the minimum TCP segment’s (not the entire packet) size. As

shown by the histogram it was an important feature according to the researchers. That’s

because some types of DDoS attacks use small TCP segment sizes to consume network

resources and disrupt legitimate traffic. Since it is ranked with a value of 8, that means there

are 8 out of the 12 DDoS attacks that use most probably small TCP segment sizes.

Protocol and ACK Flag count were also prominent features where in my analysis they were

deemed highly correlated, so I only kept protocol. I noticed that the maximum value of any

flag counter in the dataset was 1. So, it could be either 0 or 1, which I am not sure exactly why

as a flow can be described as a sequence of packets with similar characteristics that serve the

same purpose. So, I would expect to see a small but not always 1 or 0 count for the network

0

1

2

3

4

5

6

7

8

9

10

Best features CIC-DDoS2019

Figure 5.4: Histogram of the best features

from another research

72

flags. It could be a miscalculation of CICFlowMeter just like other constant features

mentioned previously.

Just for the record, I performed another experiment to identify the best features using

ANOVA, but this time including the identification features, that were excluded for the model

creation. These features include the FlowID, Source IP, Destination IP, Source port,

Destination port and the timestamp.

According to ANOVA, Source IP and Timestamp were in the top 5 features, Source port and

FlowID in the top 10 features, Destination IP in the top 15 features and surprisingly

destination port was in the top 35 features.

Regarding the 2nd dataset, I repeated similar process to identify and

rank the best features.

The CIC-IDS2017 dataset contains traffic related to DDoS, DoS

generated by certain tools, Brute force against SSH and FTP

authentication as well as Port scans. The attacks analyzed are not all

identical to DDoS attacks analyzed at the previous dataset, but they

share the same nature of overwhelming the server with useless

traffic. Figure 5.5 displays the number of samples/flows used per

attack type. There was more traffic for DDoS and Benign(normal)

traffic, but I tried to keep it balanced.

The results include the calculated best features with ANOVA(f-tests) and mutual information

tests for up to the 30-best features and can be found in the ‘Best Features Lists’ section in

Appendix B since they were large and not individually analyzed.

Figure 5.5: Class

Distribution

73

Similarly with the 1st dataset I made a ranking for each feature following the same method.

Figure 5.6 shows the histogram of the best features of the 2nd dataset. This dataset was similar

in nature to the 1st one from the point of view of having enormous amounts of traffic

transmitted.

Flow duration sits at the top with similar reasons as with the previous dataset. Threat actors

typically keep the channel busy either because they are performing a DDoS attack, a port scan

or a Brute force attack.

Max packet length was an equally important feature according to my ranking. This feature

refers to the maximum packet size in bytes observed in the flow and was at the top of my

ranking of the 1st dataset. This feature as shown by the correlation analysis, is highly

correlated with Packet length std, the standard deviation of the packet size. Both Packet

length std and Max packet length can tell us information about the traffic transmitted and as

we know the traffic of the attacks being analyzed tends to have a more consistent structure,

therefore the max packet length tends to remain fixed at lower values for each attack and the

standard deviation lower. Compared to normal traffic the maximum packet length tends to

be higher and unpredictable.

Figure 5.6: Histogram of the best features of CIC-IDS2017 Dataset

0

5

10

15

20

25
Fl

o
w

 D
u

ra
ti

o
n

M
ax

 P
ac

ke
t

Le
n

gt
h

Fl
o

w
 IA

T
St

d

To
ta

l F
w

d
 P

ac
ke

ts

m
in

_s
e

g_
si

ze
_f

o
rw

ar
d

In
it

_W
in

_
b

yt
e

s_
fo

rw
ar

d

To
ta

l L
en

gt
h

 o
f

B
w

d
 P

ac
ke

ts

To
ta

l L
en

gt
h

 o
f

Fw
d

 P
ac

ke
ts

Fl
o

w
 B

yt
es

/s

To
ta

l B
ac

kw
ar

d
 P

ac
ke

ts

A
ct

iv
e

 M
ea

n

Fw
d

 IA
T

St
d

B
w

d
 P

ac
ke

t
Le

n
gt

h
 S

td

Fw
d

 IA
T

To
ta

l

B
w

d
 P

ac
ke

ts
/s

P
ac

ke
t

Le
n

gt
h

 V
ar

ia
n

ce

P
ro

to
co

l

B
w

d
 P

ac
ke

t
Le

n
gt

h
 M

ax

U
R

G
 F

la
g

C
o

u
n

t

Fl
o

w
 IA

T
M

ea
n

B
w

d
 IA

T
M

in

B
w

d
 IA

T
To

ta
l

Fw
d

 IA
T

M
in

Id
le

 M
ea

n

In
it

_W
in

_
b

yt
e

s_
b

ac
kw

ar
d

Fl
o

w
 IA

T
M

ax

Fw
d

 P
ac

ke
t

Le
n

gt
h

 M
ax

Fw
d

 P
ac

ke
t

Le
n

gt
h

 S
td

B
w

d
 P

ac
ke

t
Le

n
gt

h
 M

in

Fl
o

w
 P

ac
ke

ts
/s

Fl
o

w
 IA

T
M

in

A
ct

iv
e

 S
td

ac
t_

d
at

a_
p

kt
_

fw
d

Fw
d

 P
SH

 F
la

gs

D
o

w
n

/U
p

 R
at

io

Id
le

 S
td

Best features CIC-IDS2017

74

Flow IAT std is another important feature that represents the time standard deviation of the

time between 2 packets sent in the flow. When its value is lower, it means there is traffic sent

at constant pace (time between 2 packets closer to the average) which can be a characteristic

of some attacks. Sometime threat actors try to make their traffic seem as normal as possible,

therefore constant pace doesn’t necessarily mean suspicious traffic.

Total Fwd Packets and min_seg_size_fwd are some other key features seen in the previous

analysis. since they indicate the amount of traffic sent. It is worth noting that in this dataset

protocol is not considered as important as the 1st dataset. That is probably because the traffic

classes in this case are not so protocol related, therefore it might not be as useful. Also,

‘act_data_pkt_fwd’ which indicates the number of actual data packets sent, is not as

important as the DDoS specialized dataset. That could be as in this case there are other types

of attacks like brute forcing or port scanning that need to use data packets to carry out the

attack. Therefor this feature might not be a good predictor.

This concludes my analysis of the best features for cyber-attack datasets. Now it’s time to test

them and see how they perform on detecting these attacks after being trained with several

machine learning algorithms. The classification algorithms I used, are Decision trees, Random

Forest, Extreme Gradient Boost, Linear Discriminant Analysis and K-Nearest Neighbors. For

each algorithm, I trained a model with several feature’s subsets selected with Mutual

Information Tests and F-tests (ANOVA) and subsets that have been formed after the removal

of highly correlated features selected by Pearson and Spearman algorithms (before k-best

selection with Mut. Info and ANOVA).

To reduce the computational costs, just like the previous experiments I used a subset of the

1st dataset shown in figure 5.2 and the 2nd dataset in figure 5.5. Since the 2 datasets describe

slightly different attacks, the targets number and total datasets are different, they are not

directly comparable. So, each algorithm was trained (with its default hyperparameters) with

several features subset of several lengths (5 up to 50) that were obtained using Mutual Info.,

ANOVA, Spearman and Pearson. The resulted accuracies are then obtained to compare the

performance of the algorithms.

To sum up, this evaluation compares 5 different machine learning algorithms, 2 K-Best feature

selection algorithms and 2 Highly correlated Features selection algorithms based on the

75

validation accuracy metric obtained after the training. This process is repeated for the 2nd

dataset to verify the results.

Appendix B contains a large number of line graphs that show the Training, Validation

accuracies and Training duration for each comparable set of algorithms (Mutual Info vs

ANOVA, Pearson vs Spearman, KNN vs LDA vs RFC …) in relation to the feature subset’s length.

I decided to keep the main text lighter and exclude these graphs but rather use bar charts

that demonstrate the aggregated comparison between each set of algorithms without

considering subsets’ length.

Figure 5.7 shows a bar chart that summarizes the performance of each algorithm on the 1st

dataset (CIC-DDoS2019). The blue bar represents the average of the validation accuracies

obtained by subsets selected by Mutual Information tests and the orange bar subsets selected

by ANOVA. Therefore, we have a comparison of these 2 algorithms.

As the chart on figure 5.7 indicates, mutual information was able to select features that

produced slightly more accurate results for almost every algorithm in the first dataset. I

believe this is the case since Mutual Info tests as previously mentioned, can capture both

linear and nonlinear relationships between the traffic characteristics compared to ANOVA

which can only capture linear relationships between variables. This observation can be seen

in the more detailed graphs provided in appendix B where it is shown that for lower subset

lengths, ANOVA selected subsets are significantly less accurate than Mutual Info. Selected

40

45

50

55

60

65

70

75

DTC RFC XGBC LDA KNN

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Algorithm

CIC-DDoS2019, Mutual Info. vs
ANOVA, DTC, RFC, XGBC, LDA,

KNN

Mutual Information ANOVA

0

20

40

60

80

100

120

140

DTC RFC XGBC LDA KNN

Tr
ai

n
in

g
D

u
ra

ti
o

n
(m

in
s)

Algorithm

CIC-DDoS2019, Mutual Info. vs
ANOVA, DTC, RFC, XGBC, LDA,

KNN

Mutual Information ANOVA

Figure 5.7: Bar chart of the average validation

accuracy per algorithm

Figure 5.8: Bar chart of the average training

duration per algorithm

76

subsets, but the difference decreases as the subset length increases and after certain lengths

the difference disappears. An example of this observation can be seen in figure 5.9.

This observation cannot be seen in LDA where, accuracy is about the same for both algorithms

(slightly higher for ANOVA selected subsets).

Figure 5.8 displays the average training duration (in minutes) taken for each algorithm to

complete the training. Surprisingly, training occurred by subsets selected by mutual

information tests completed much faster or equal compared to ANOVA in every algorithm.

63

64

65

66

67

68

69

70

71

5 5 10 10 15 15 20 20 25 25 30 35

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, XGBC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

Figure 5.9: Line graph showing the validation

accuracy in relation to the subset length on XGBC.

40

45

50

55

60

65

70

75

DTC RFC XGBC LDA KNN

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Algorithm

CIC-DDoS2019, Spearman. vs
Pearson, DTC, RFC, XGBC, LDA,

KNN

Pearson Spearman

0

20

40

60

80

100

120

DTC RFC XGBC LDA KNN

Tr
ai

n
in

g
D

u
ra

ti
o

n
(m

in
s)

Algorithm

CIC-DDoS2019, Spearman. vs
Pearson, DTC, RFC, XGBC, LDA,

KNN

Pearson Spearman

Figure 5.10: Bar chart of the average

validation accuracy per algorithm

Figure 5.11: Bar chart of the average training

duration per algorithm

77

Figure 5.10 shows a bar chart that summarizes the performance of each algorithm on the 1st

dataset (CIC-DDoS2019). The blue bar represents the average of the validation accuracies

obtained by subsets that occurred after the exclusion of highly correlated features selected

by Pearson and the orange one by Spearman. I want to compare the accuracies obtained after

using these 2 feature correlation algorithms to evaluate them.

As shown in figure 5.10 DTC, RFC, XGBC are slightly more accurate when used with Spearman

where LDA is almost 2 times more accurate. I am assuming this is the case since Spearman

measures the monotonic relationship between two variables, which means it can capture

both linear and non-linear relationships as well. This concept is like the previous comparison

with Mutual Info. vs ANOVA. That can justify why Spearman produced almost 2 times more

correlations in both dataset than Pearson. So, I believe it is safe to conclude that algorithms

that can capture several kinds of relationships between variables produce more accurate

results and it can be a better option to choose.

Figure 5.11 shows the training duration when Spearman selected features are excluded vs

Pearson’s. As shown with Pearson the training of RFC was slightly faster, but the opposite

occurred with XGBC and KNN, so I can’t really make a generic conclusion about the speed.

90

92

94

96

98

100

DTC RFC XGBC KNN

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Algorithm

CIC-IDS2017, Mutual Info. vs
ANOVA, DTC, RFC, XGBC, KNN

Mutual Information ANOVA

0

1

2

3

4

5

6

7

8

DTC RFC XGBC KNN

Tr
ai

n
in

g
D

u
ra

ti
o

n
(m

in
s)

Algorithm

CIC-IDS2017, Mutual Info. vs
ANOVA, DTC, RFC, XGBC, KNN

Mutual Information ANOVA

Figure 5.12: Bar chart of the average

validation accuracy per algorithm (2nd dataset)

Figure 5.13: Bar chart of the average training

duration per algorithm (2nd dataset)

78

By creating the same graphs for the second dataset, it is verified that mutual information is

slightly more accurate than ANOVA. I had to abandon LDA since the training would take an

infinite amount of time. I believe some features’ distributions on this dataset could be the

reason LDA was taking so long but I couldn’t figure it out so I didn’t use it on the second

dataset.

Figure 5.13 can’t verify the results of the 1st dataset where Mutual Info. was significantly

faster, but I believe this is because the size of the dataset is smaller and therefore the training

duration much shorter to see significant differences.

Finally, to complete this set of comparisons, figure 5.13 shows that Pearson was slightly more

accurate which is the opposite of my observation in the first dataset. Therefore I cant say

confidently which of these 2 algorithms can more precisely identify variable correlations.

Unfortunately, I didn’t have LDA in the comparison, that made the most difference in the

previous graph (figure 5.10).

As shown by the previous bar charts some algorithms are more accurate than others. I n order

to measure each algorithms performance I made the following box plots:

91

92

93

94

95

96

97

98

99

DTC RFC XGBC KNN

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Algorithm

CIC-IDS2017, Spearman. vs
Pearson, DTC, RFC, XGBC, KNN

Pearson Spearman

0

1

2

3

4

5

6

7

8

DTC RFC XGBC KNN

Tr
ai

n
in

g
D

u
ra

ti
o

n
(m

in
s)

Algorithm

CIC-IDS2017, Spearman. vs
Pearson, DTC, RFC, XGBC, KNN

Pearson Spearman

Figure 5.13: Bar chart of the average

validation accuracy per algorithm (2nd dataset)

Figure 5.14 Bar chart of the average training

duration per algorithm (2nd dataset)

79

Figure 5.15 Box plot comparing algorithm’s

accuracies (validation & training) on 2nd dataset

Figure 5.16 Box plot comparing algorithm’s

training durations on 2nd dataset

Figure 5.17 Box plot comparing algorithm’s

accuracies (validation & training) on 1st dataset

80

Figure 5.15 shows how each algorithm (DTC, RFC, XGBC, KNN) performed on the 2nd dataset.

This dataset was significantly smaller than the 1st one with fewer target classes so the

accuracy was higher. As shown by the figure the validation accuracy was close to 100% and

as expected the training accuracy is always higher than the validation accuracy. XGBC was the

most accurate algorithm with the least overfitting compared to the rest.

Figure 5.16 shows the training duration summary for each algorithm for the 2nd dataset. XGBC

on average took about 7 minutes to train the dataset and the rest algorithms about 1-2

minutes.

Figure 5.17 shows how each algorithm (DTC, RFC, XGBC, LDA, KNN) performed on the 1st

dataset. As shown, tree-based algorithms (RFC, DTC, XGBC) were the most accurate with

around 70% accuracy. LDA with about 50-55% accuracy and KNN with 55-60% accuracy. It is

worth noting that DTC and RFC were significantly overfitted compared to XGBC which makes

sense as XGBC is an updated, better version of the other 2 tree-based algorithms, that is

specifically designed to avoid overfitting. Also, LDA seems to have 0 overfitting and KNN being

slightly overfitted.

Finally, figure 5.18 shows the training duration summary for each algorithm for the 1st

dataset, where KNN was the slowest with an average of 110 minutes (about 2 hours) followed

by XGBC, RFC, DTC and LDA. It seems KNN didn’t perform that well, considering its training

Figure 5.18 Box plot comparing algorithm’s

accuracies (validation & training) on 1st dataset

81

duration. Overall, Tree-based algorithms seem to have a superior performance on detecting

these cyber-attacks.

Now that I have an idea of how each algorithm performs and what the

most accurate features’ subsets are for each algorithm, I will perform

hyperparameter tuning to identify whether different combinations of

hyperparameters can improve each algorithm’s performance. For each

algorithm I have selected the subset with the highest validation accuracy

produced with as small length as possible. I decided to perform the

tuning only for the 1st dataset (CIC-DDoS2019), as the second one’s

accuracy was almost perfect. In order to test a larger number of

different combinations within a reasonable amount of time, I used a

reduced version of the 1st dataset. The number of samples for each

DDoS class is shown in figure 5.19.

Algorithm Combinations K-Fold Feature's Subset

DTC 2160 5 10 features = { Protocol, FlowDuration, TotalFwdPackets,

TotalLengthofFwdPackets, FwdPacketLengthMax, FlowBytes/s, FlowIATStd,

FwdIATTotal, FwdHeaderLength, act_data_pkt_fwd }

RFC 2880 5 15 features = { Protocol, FlowDuration, TotalFwdPackets,

TotalBackwardPackets, TotalLengthofFwdPackets, FwdPacketLengthMax,

FwdPacketLengthStd, FlowBytes/s, FlowIATStd, FlowIATMin, FwdIATTotal,

FwdHeaderLength, act_data_pkt_fwd, min_seg_size_forward, Inbound }

XGBC 864 5 20 features = { Protocol, FlowDuration, TotalLengthofFwdPackets,

FwdPacketLengthMax, FwdPacketLengthStd, BwdPacketLengthMin,

BwdPacketLengthStd, FlowBytes/s, FlowIATStd, FwdIATTotal, FwdPSHFlags,

FwdHeaderLength, URGFlagCount, CWEFlagCount, Down/UpRatio,

Init_Win_bytes_backward, act_data_pkt_fwd, min_seg_size_forward,

IdleStd, Inbound }

LDA 1650 5 15 features = { Protocol, FlowDuration, TotalLengthofFwdPackets,

FwdPacketLengthMax, FwdPacketLengthStd, BwdPacketLengthMin,

FlowBytes/s, FlowIATStd, FwdIATTotal, FwdPSHFlags, URGFlagCount,

CWEFlagCount, Down/UpRatio, act_data_pkt_fwd, Inbound }

KNN 960 5 15 features = { Protocol, FlowDuration, TotalLengthofFwdPackets,

FwdPacketLengthMax, FwdPacketLengthStd, BwdPacketLengthMin,

FlowBytes/s, FlowIATStd, FwdIATTotal, FwdPSHFlags, URGFlagCount,

CWEFlagCount, Down/UpRatio, act_data_pkt_fwd, Inbound }

Figure 5.19 Target class

distribution for tuning

experiment.

Table 5.3: Table showing tuning subset & other characteristics per algorithm

82

Table 5.3 shows the features subsets with higher validation accuracies and as small length as

possible selected based on the previous training experiments. I used k = 5 for cross validation

to complete the tuning faster and be able to test a larger range of hyperparameters.

Table 5.4 on the next page shows the ranges used for each hyperparameter of each algorithm

as well as their values extracted from the most accurate combination. For every algorithm, all

possible combinations that can be formed from all the ranges are tested. The total amount of

combinations per algorithm are shown on Table 5.3. I tried using larger ranges for the most

influential parameters per algorithm while keeping the ones unrelated to accuracy within a

small range or fixed at the default value.

Algorithm Hyperparameter Range Best Value
DTC ccp_alpha 0 0
DTC criterion [gini, entropy] entropy

DTC max_depth [5, 10, 15] 10
DTC max_features [0.1, 0.2, 0.3, 0.4] 0.4
DTC max_leaf_nodes [23, 24, 25, 26, 27] 27
DTC min_impurity_decrease [0, 0.1, 0.2] 0
DTC min_samples_leaf [1, 2, 3] 1
DTC min_samples_split [2, 7] 2
DTC random_state 74 74
DTC splitter best best
RFC bootstrap TRUE TRUE
RFC criterion [gini, entropy] entropy
RFC max_depth [10, 12, 14, 16] 14
RFC max_features [0.1, 0.2, 0.3, 0.4] 0.4
RFC min_samples_leaf [1, 2, 3] 2
RFC min_samples_split [2, 3, 4] 3
RFC n_estimators [90, 100, 110, … , 180] 90
RFC oob_score FALSE FALSE

XGBC n_estimators [80, 100, 120] gbtree

XGBC learning_rate [0.05, 0.06, 0.07, 0.08, 0.09, 0.10] 0.9

XGBC max_depth [3, 6] 0

XGBC subsample [0.7, 0.8, 0.9, 1.0] 0.1

XGBC colsample_bytree [0.8, 0.9] 6

XGBC booster gbtree 2

XGBC gamma 0 120

XGBC min_child_weight [1, 2, 3] 0

XGBC reg_alpha 0 1

XGBC reg_lambda 1 0.8

LDA n_components [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 1

83

My hyperparameter tuning was performed in a reduced subset of the dataset (~100000

samples) to try as many combinations as possible in a reasonable time. In order to evaluate

the extracted hyperparameters I trained each model with the default parameters and the

optimal ones with several dataset sizes and took the average validation accuracy. Figure 5.20

is a bar chart showing the average accuracy of every algorithm with the tuned and default

hyperparameters. KNN observed the most increase (+3%) in accuracy and LDA, RFC and XGBC

a smaller one (+1%). Surprisingly, DTC performed significantly worse (-5%) on average with

the tuned parameters. It seems that the extracted parameters were only optimal in the size

used for the tuning, but with different sample sizes the accuracy dropped drastically. I believe

this is an interesting finding that analysts should be aware of with their analysis.

LDA shrinkage [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] 0.1
LDA solver [svd, lsqr, eigen] lsqr

LDA tol
[0.000001, 0.010001, 0.020001, 0.030001,
0.040001] 0.000001

KNN algorithm [auto, ball_tree, kd_tree, brute] auto

KNN leaf_size [20, 30, 40, 50, 60] 30

KNN metric [euclidean, manhattan, minkowski, chebyshev] manhattan

KNN n_jobs -1 -1

KNN n_neighbors [5, 10, 15, 20, 25, 30] 30

KNN p 2 2

KNN weights [uniform, distance] distance

40 45 50 55 60 65 70 75

KNN

RFC

DTC

XGBC

LDA

Validation Accuracy (%)

A
lg

o
ri

th
m

Tuned vs Default models, KNN, DTC, RFC, XGBC, LDA

Default Tuned

Figure 5.20: Bar chart comparing default and tuned

models for each algorithm.

Table 5.4: Table showing tuning ranges per algorithm per parameter

84

As I have previously mentioned, in my first approach I have examined how different dataset

sizes affect each algorithm’s performance, but since that approach was deemed inaccurate, I

will attempt to retry it. In my first approach I observed a decrease in accuracy as the dataset

size increases. To examine the performance of each algorithm in relation to the size of the

dataset I used the tuned models with several sample sizes to re-examine this theory.

Figure 5.21 is a scatter plot showing how the validation accuracy of the tuned algorithms is

affected by the dataset’s size. For the tree-based algorithms as the graph shows there is a

slight increase and then a decrease that slowly stabilizes, but not completely. This is because

the smallest dataset size is not enough to train a model therefore the accuracy increases.

Then, there is a noticeable decrease, that is very noticeable on KNN that is probably due to

overfitting. This means that the algorithms are becoming too specialized for the training data

and are not generalizing well to new, unseen data. Furthermore, since KNN is a more complex

algorithm and takes a large amount of time to train, it is most likely that it struggles learning

with a large dataset. It is also worth noting that RFC and XGBC performed almost identically,

which makes sense as they are similar.

Figure 5.21: Scatter plot showing the

validation accuracy in relation to the

dataset size.

50

55

60

65

70

75

0 1000000 2000000 3000000 4000000 5000000 6000000

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Dataset samples

Accuracy correlation with Sample size, DTC vs RFC vs XGBC vs
LDA vs KNN

KNN RFC DTC XGBC LDA

85

Figure 5.22 shows how the training duration is affected by the dataset’s size. As expected, a

linear increase can be observed except from LDA and DTC that they were very fast and the

increase is not really noticeable on the plot.

Overall KNN was by far the slowest algorithm and DTC with LDA the fastest. RFC and XGBC

seemed to have a much higher accuracy and even though KNN took so long to train, it was

not very successful.

This concludes my experimental evaluation of cyber-attacks, mainly DDoS attacks using my

platform and in the next section I will summarize the most important conclusions and insights

I extracted from my analysis.

Figure 5.22: Scatter plot showing the

training duration in relation to the

dataset size.

0

200

400

600

800

1000

1200

1400

0 1000000 2000000 3000000 4000000 5000000 6000000

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Dataset samples

Duration correlation with Sample size, DTC vs RFC vs XGBC vs
LDA vs KNN

KNN RFC DTC XGBC LDA

86

Chapter 6

Conclusion and Future work

6.1 Insights & Conclusions……………………………………………………………………………………………..…86

6.2 Future work……..88

6.1 Insights & Conclusions

Throughout this research I managed to draw several conclusions. Before summarizing them,

I want to mention that this work has been about 70% system development and 30%

experimenting and analyzing the datasets. Therefore, my analysis has not been the most

perfect and thorough as it could be.

Firstly, the most important conclusion is that automating the process of data analysis can be

very extremely for the analyst. The platform allowed me to perform a lot of experiments to

analyze the datasets very easily and quickly. Other than that, I could have all my results

organized on the website and saved in the database ready to be extracted and further

processed in excel.

Regarding my results on cyber-attacks, as I have analyzed in the previous section, some

features can be very influential in detecting the attacks. Such features include the protocol

being used, the standard deviation of the payload, the transmission rate and the total

duration of the flow.

Another important insight I extracted is that all algorithms performed the best when the

number of features used was about 10 to 20. When larger subsets were used the accuracy

wouldn’t improve, which makes sense since many features are useless for the model. When

the subset’s length was below 10 the accuracy was significantly worse for each model.

In my research I compared a set of correlation algorithms (Pearson, Spearman) and best

feature selection algorithms (Mutual info, ANOVA). Regarding the latter I can confidently say

87

that mutual information tests are able to select the best features more accurately in cyber-

attack datasets since in most cases the selected features produced higher accuracies. My

comparison of Pearson and Spearman could not reach a confident conclusion regarding the

accuracy of the produced models since my results between the 2 datasets had conflicts. Since

these algorithms were used to detect highly correlated features, their accuracy would most

probably not have a direct impact on the resulting models’ accuracies. This is because even if

I keep 2 highly correlated features in my dataset, the accuracy will not necessarily drop.

Later in my analysis I compared the ability of 5 machine learning algorithms (DTC, RFC, XGBC,

LDA and KNN) to make accurate predictions on the datasets’ targets. I concluded that Tree

based algorithms (DTC, RFC and XGBC) were the most effective with XGBC being the most

accurate and with the least overfitting compared to DTC and XGBC. To my surprise, the

average accuracy (~70%) of these algorithms was much higher than I would expect. To be able

to distinguish 11 different DDoS attacks and normal traffic with 70% accuracy seems a bit too

high and I suspect that certain features could be leaking information about it. For example,

what if the simulated attacker transmitted each request at the same constant rate. The

machine learning model can learn to identify an attack based on an almost constant (as I

eliminated 100% constant features) data rate or an almost constant payload size. I believe, in

order to build realistic models that can generalize well in completely unknown traffic several

datasets should be combined generated on completely different network setups.

After training, I tuned each algorithm to find the best hyperparameters and see how they

perform on average with the default ones. I concluded that every tuned algorithm showed a

slight increase in accuracy except DTC. DTC dropped about 5% with the tuned parameters as

with different sample sizes than the one used for tuning the algorithm couldn’t perform that

well with the chosen hyperparameters.

I then proceeded to examine how accuracy changes with the dataset’s size. I concluded that

as the amount of training data increases the accuracy drops. I believe, this is due to overfitting

since when an algorithm sees a large number of samples, it ‘memorizes’ certain patterns and

then is not able to see other ones and generalize.

Finally, the CICFlowMeter tool that is converting raw traffic files to excel datasets might not

be accurate and some features might be miscalculated leading to unrealistic models.

88

6.1 Future work

Through this project I have created a good basis for maybe a much more powerful automation

tool. My platform can be extended to support regression datasets, a larger number of

algorithms and be more customizable. There are certain API’s that allow the creation of charts

and plots that can be automatically displayed for each experiment comparing it to others etc.

Also, another interesting feature would be the capability to perform predictions on pretrained

models saved on the server. The user can select an already trained model and insert new data

to predict. Therefore, I believe my work can be used for the future development of even more

useful features.

Regarding the analysis of cyberattacks I believe there are several experiments that can be

performed to further understand how such datasets can or cannot be used for actual attack

prevention. I believe it should be examined whether certain features of the dataset other

than the identification features that are obvious (IPs, ports etc.) can leak information about

the target and therefore be unable to generalize in unknown data. As I have mentioned before

some features might remain in a specific range within an attack, that is not necessarily a

characteristic of the attack in general. In addition, other data analysis techniques for feature

engineering such as PCA can be evaluated against these types of attacks compared to the

methodology of custom feature selection that I used. Finally, I think it is important to consider

a greater number of datasets to cross validate the insights of my current work.

89

Bibliography

1. Nazario, J. (2008). DDoS attack evolution. Network Security, 2008(7), 7-10.

2. Li, Y., & Liu, Q. (2021). A comprehensive review study of cyber-attacks and cyber
security; Emerging trends and recent developments. Energy Reports, 7, 8176-8186.

3. Sharafaldin, I., Lashkari, A. H., Hakak, S., & Ghorbani, A. A. (2019, October).
Developing realistic distributed denial of service (DDoS) attack dataset and
taxonomy. In 2019 International Carnahan Conference on Security Technology
(ICCST) (pp. 1-8). IEEE.

4. Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “Toward Generating a
New Intrusion Detection Dataset and Intrusion Traffic Characterization”, 4th
International Conference on Information Systems Security and Privacy (ICISSP),
Portugal, January 2018.

5. Dave, K. T. (2013). Brute-force attack ‘seeking but distressing’. Int. J. Innov. Eng.
Technol. Brute-force, 2(3), 75-78.

6. Shorey, T., Subbaiah, D., Goyal, A., Sakxena, A., & Mishra, A. K. (2018, September).
Performance comparison and analysis of slowloris, goldeneye and xerxes ddos attack
tools. In 2018 International Conference on Advances in Computing, Communications
and Informatics (ICACCI) (pp. 318-322). IEEE.

7. Sharma, A. DDOS AND HULK ATTACKS IN WEB APPLICATIONS WITH DETECTION
MECHANISM

8. Khomutovskyy, S. (2021). Detection and mitigation of slow HTTP POST
attack (Doctoral dissertation, Instytut Informatyki).

9. Lashkari, A. H., Zang, Y., Owhuo, G., Mamun, M. S. I., & Gil, G. D. (2017).
CICFlowMeter. GitHub.[vid. 2021-08-10]. Dostupné z: https://github.
com/ahlashkari/CICFlowMeter/blob/master/ReadMe. txt.

10. Segal, M. R. (2004). Machine learning benchmarks and random forest regression.

11. Chalyi, O., & Kolomytsev, M. (2022). Comparison of Tools for Web-Application Brute
Forcing. Theoretical and Applied Cybersecurity, 4(1).

12. Otoum, Y., & Nayak, A. (2021). As-ids: Anomaly and signature based ids for the
internet of things. Journal of Network and Systems Management, 29, 1-26.

13. Visoottiviseth, V., Sakarin, P., Thongwilai, J., & Choobanjong, T. (2020, November).
Signature-based and behavior-based attack detection with machine learning for
home IoT devices. In 2020 IEEE REGION 10 CONFERENCE (TENCON) (pp. 829-834).
IEEE.

14. Ott, R. L., & Longnecker, M. T. (2015). An introduction to statistical methods and data
analysis. Cengage Learning.

15. Shyr, J., & Spisic, D. (2014). Automated data analysis. Wiley Interdisciplinary Reviews:
Computational Statistics, 6(5), 359-366.

16. Chen, Y., Pei, J., & Li, D. (2019, May). DETPro: a high-efficiency and low-latency
system against DDoS attacks in SDN based on decision tree. In ICC 2019-2019 IEEE
International Conference on Communications (ICC) (pp. 1-6). IEEE.

17. Chen, Y., Hou, J., Li, Q., & Long, H. (2020, December). DDoS attack detection based
on random forest. In 2020 IEEE International Conference on Progress in Informatics
and Computing (PIC) (pp. 328-334). IEEE.

18. Chen, Z., Jiang, F., Cheng, Y., Gu, X., Liu, W., & Peng, J. (2018, January). XGBoost
classifier for DDoS attack detection and analysis in SDN-based cloud. In 2018 IEEE

90

international conference on big data and smart computing (bigcomp) (pp. 251-256).
IEEE.

19. Vu, N. H., Choi, Y., & Choi, M. (2008, April). DDoS attack detection using K-Nearest
Neighbor classifier method. In Proceedings of the 4th IASTED International
Conference on Telehealth/Assistive Technologies. Baltimore, Maryland, USA (pp. 248-
253).

20. Thapngam, T., Yu, S., & Zhou, W. (2012, January). DDoS discrimination by linear
discriminant analysis (LDA). In 2012 International Conference on Computing,
Networking and Communications (ICNC) (pp. 532-536). IEEE.

21. Scikit-learn.org – Variance Threshold https://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.h
tml

22. Pandas – pandas.DataFrame.corr
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html

23. Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., ... & Cohen, I. (2009).
Pearson correlation coefficient. Noise reduction in speech processing, 1-4.

24. Myers, L., & Sirois, M. J. (2004). Spearman correlation coefficients, differences
between. Encyclopedia of statistical sciences, 12.

25. Scikit-learn.org – SelectKBest https://scikit-
learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html

26. Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830,
2011.

27. McKinney, W., & others. (2010). Data structures for statistical computing in python.
In Proceedings of the 9th Python in Science Conference (Vol. 445, pp. 51–56).

28. Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., ... & Oliphant, T. E. (2020). Array programming with
NumPy. Nature, 585(7825), 357-362.

29. Breddels, M. A., & Veljanoski, J. (2018). Vaex: big data exploration in the era of
gaia. Astronomy & Astrophysics, 618, A13.

30. Scikit-learn – cross_validation https://scikit-
learn.org/stable/modules/cross_validation.html

31. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM.
https://doi.org/10.1145/2939672.2939785

32. PyMongo - https://pymongo.readthedocs.io/en/stable/

33. Hesterberg, T. (2011). Bootstrap. Wiley Interdisciplinary Reviews: Computational
Statistics, 3(6), 497-526.

34. Lancaster, H. O., & Seneta, E. (2005). Chi‐square distribution. Encyclopedia of
biostatistics, 2.

35. St, L., & Wold, S. (1989). Analysis of variance (ANOVA). Chemometrics and intelligent
laboratory systems, 6(4), 259-272.

36. Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual
information. Physical review E, 69(6), 066138.

37. GridSearchCV - https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

38. DataRobot https://www.datarobot.com/platform/

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://doi.org/10.1145/2939672.2939785
https://pymongo.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://www.datarobot.com/platform/

91

39. Rosay, A., Cheval, E., Carlier, F., & Leroux, P. (2022, February). Network intrusion
detection: A comprehensive analysis of CIC-IDS2017. In 8th International Conference
on Information Systems Security and Privacy (pp. 25-36). SCITEPRESS-Science and
Technology Publications.

40. Chadd, A. (2018). DDoS attacks: past, present and future. Network Security, 2018(7),
13-15.

41. CloudFare - Famous DDoS attacks | The largest DDoS attacks of all time
https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/

42. RapidMiner - https://rapidminer.com/

https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/
https://rapidminer.com/

92

Appendix A

Each sample represents the features of a flow between 2 nodes. CICFlowMeter will group

packets (out of .pcap or other network log file) that have similar characteristics (rate, payload

size, source/dest IP’s and Ports, protocol) into one flow and calculate the features of that

flow(dataset row).

*Forward direction: source to destination

*Backward direction: destination to source

*Bulk rate: rate of packets/bytes transferred as a single unit/group

*Flow rate: rate of packets/bytes transferred in a flow

Feature Name Description

FlowID String concatenation of other features (flowId = sourceIP + "-

" + destinationIP + "-" + srcPort + "-" + dstPort + "-" +

protocol)

Source IP IP address of the sender

Destination IP IP address of the receiver

Source Port Port number used by the sender

Destination Port Port number used by the receiver

Protocol Number identifying the protocol of the connection

Flow duration Duration of the flow in Microseconds

act_data_pkt_fwd Number of actual data packets forwarded from the source to

destination. Management/Control packets are not included.

Inbound Total number of bytes received by the destination. It’s not

always the same as total length of Fwd Packet feature since

packet losses might occur during transmission.

total Fwd Packet Total packets in the forward direction

total Bwd packets Total packets in the backward direction

total Length of Fwd Packet Total size of packets in forward direction

total Length of Bwd Packet Total size of packets in backward direction

Fwd Packet Length Min Minimum size of packets in forward direction

Fwd Packet Length Max Maximum size of packets in forward direction

Fwd Packet Length Mean Mean size of packets in forward direction

93

Fwd Packet Length Std Standard deviation size of packets in forward direction

Bwd Packet Length Min Minimum size of packets in backward direction

Bwd Packet Length Max Maximum size of packets in backward direction

Bwd Packet Length Mean Mean size of packets in backward direction

Bwd Packet Length Std Standard deviation size of packets in backward direction

Flow Bytes/s Number of flow bytes per second

Flow Packets/s Number of flow packets per second

Flow IAT Mean Mean time between two packets sent in the flow

Flow IAT Std Standard deviation time between two packets sent in the flow

Flow IAT Max Maximum time between two packets sent in the flow

Flow IAT Min Minimum time between two packets sent in the flow

Fwd IAT Min Minimum time between two packets sent in the forward

direction

Fwd IAT Max Maximum time between two packets sent in the forward

direction

Fwd IAT Mean Mean time between two packets sent in the forward direction

Fwd IAT Std Standard deviation time between two packets sent in the

forward direction

Fwd IAT Total Total time between two packets sent in the forward direction

Bwd IAT Min Minimum time between two packets sent in the backward

direction

Bwd IAT Max Maximum time between two packets sent in the backward

direction

Bwd IAT Mean Mean time between two packets sent in the backward

direction

Bwd IAT Std Standard deviation time between two packets sent in the

backward direction

Bwd IAT Total Total time between two packets sent in the backward direction

Fwd PSH flags Number of times the PSH flag was set in packets travelling in

the forward direction (0 for UDP)

Bwd PSH Flags Number of times the PSH flag was set in packets travelling in

the backward direction (0 for UDP)

Fwd URG Flags Number of times the URG flag was set in packets travelling

in the forward direction (0 for UDP)

94

Bwd URG Flags Number of times the URG flag was set in packets travelling

in the backward direction (0 for UDP)

Fwd Header Length Total bytes used for headers in the forward direction

Bwd Header Length Total bytes used for headers in the backward direction

FWD Packets/s Number of forward packets per second

Bwd Packets/s Number of backward packets per second

Packet Length Min Minimum length of a packet

Packet Length Max Maximum length of a packet

Packet Length Mean Mean length of a packet

Packet Length Std Standard deviation length of a packet

Packet Length Variance Variance length of a packet

FIN Flag Count Number of packets with FIN

SYN Flag Count Number of packets with SYN

RST Flag Count Number of packets with RST

PSH Flag Count Number of packets with PUSH

ACK Flag Count Number of packets with ACK

URG Flag Count Number of packets with URG

CWR Flag Count Number of packets with CWR

ECE Flag Count Number of packets with ECE

down/Up Ratio Download and upload ratio

Average Packet Size Average size of packets

Fwd Segment Size Avg Average size observed in the forward direction

Bwd Segment Size Avg Average size observed in the backward direction

Fwd Bytes/Bulk Avg Average number of bytes bulk rate in the forward direction

Fwd Packet/Bulk Avg Average number of packets bulk rate in the forward direction

Fwd Bulk Rate Avg Average rate at which bulk transfers are occurring in the

forward direction.

Bwd Bytes/Bulk Avg Average rate at which bulk transfers are occurring in the

backward direction.

Bwd Packet/Bulk Avg Average number of packets bulk rate in the backward

direction

Bwd Bulk Rate Avg Average number of bulk rate in the backward direction

95

Subflow Fwd Packets The average number of packets in a sub flow in the forward

direction

Subflow Fwd Bytes The average number of bytes in a sub flow in the forward

direction

Subflow Bwd Packets The average number of packets in a sub flow in the backward

direction

Subflow Bwd Bytes The average number of bytes in a sub flow in the backward

direction

Fwd Init Win bytes The total number of bytes sent in initial window in the

forward direction

Bwd Init Win bytes The total number of bytes sent in initial window in the

backward direction

Fwd Act Data Pkts Count of packets with at least 1 byte of TCP data payload in

the forward direction

Fwd Seg Size Min Minimum segment size observed in the forward direction

Active Min Minimum time a flow was active before becoming idle

Active Mean Mean time a flow was active before becoming idle

Active Max Maximum time a flow was active before becoming idle

Active Std Standard deviation time a flow was active before becoming

idle

Idle Min Minimum time a flow was idle before becoming active

Idle Mean Mean time a flow was idle before becoming active

Idle Max Maximum time a flow was idle before becoming active

Idle Std Standard deviation time a flow was idle before becoming

active

min_seg_size_fwd Minimum segment size observed in the forward direction of

the flow

Label Target variable identifying the kind of network traffic(attack,

normal)

96

Appendix B

This section contains all the graphs I created with my results from the training experiments.

They were a lot, so I decided to exclude them from the main text, but rather refer them to

support my conclusions. The graphs mainly highlight differences between accuracies obtained

by several machine learning algorithms (DTC, RFC, XGBC, LDA, KNN), comparing features

obtained with ANOVA and Mutual Information as well as features obtained after the exclusion

of highly correlated (useless) features obtained by Spearman and Pearson algorithms.

1. CIC-DDoS2019 Dataset:

62

64

66

68

70

5 5 10 10 15 15 20 20 25 25 30 35 40 40 45 50

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, DTC, ANOVA
vs Mutual Info.

Mutual Information ANOVA

62

64

66

68

70

72

5 5 10 10 15 15 20 20 25 25 30 35 40 40 45 50

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, RFC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

62

64

66

68

70

72

5 5 10 10 15 15 20 20 25 25 30 35V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, XGBC, ANOVA
vs Mutual Info.

Mutual Information ANOVA

0

10

20

30

40

50

60

5 10 10 15 15 20 20 25 25 30 35 40 40 45 50V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, LDA, ANOVA vs
Mutual Info.

Mutual Information ANOVA

97

0

20

40

60

80

5 5 10 15 15 20 20 25 25 30 35 40 40 45 50

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, KNN, ANOVA vs
Mutual Info.

Mutual Information ANOVA

60

65

70

75

80

5 5 10 10 15 15 20 20 25 25 30 35 40 40 45 50

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, DTC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

60

65

70

75

80

5 5 10 10 15 15 20 20 25 25 30 35 40 40 45 50

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, RFC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

62

64

66

68

70

72

5 5 10 10 15 15 20 20 25 25 30 35

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, XGBC, ANOVA
vs Mutual Info.

Mutual Information ANOVA

0

10

20

30

40

50

60

5 10 10 15 15 20 20 25 25 30 35 40 40 45 50Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, LDA, ANOVA vs
Mutual Info.

Mutual Information ANOVA

0

20

40

60

80

5 5 10 15 15 20 20 25 25 30 35 40 40 45 50Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, KNN, ANOVA vs
Mutual Info.

Mutual Information ANOVA

98

0

1

2

3

4

5 5 10 10 15 15 20 20 25 25 30 35 40 40 45 50

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, DTC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

0

20

40

60

80

5 5 10 10 15 15 20 20 25 25 30 35 40 40 45 50

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, RFC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

0

50

100

150

5 5 10 10 15 15 20 20 25 25 30 35

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, XGBC, ANOVA
vs Mutual Info.

Mutual Information ANOVA

0

1

2

3

4

5

5 10 10 15 15 20 20 25 25 30 35 40 40 45 50

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, LDA, ANOVA vs
Mutual Info.

Mutual Information ANOVA

0

50

100

150

200

5 5 10 15 15 20 20 25 25 30 35 40 40 45 50

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, KNN, ANOVA vs
Mutual Info.

Mutual Information ANOVA

99

63

64

65

66

67

68

69

70

5 10 15 20 25 30 35 40 45 50V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, DTC, Pearson vs
Spearman

Pearson Spearman

62

64

66

68

70

72

5 10 15 20 25 30 35 40 45 50V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, RFC, Pearson vs
Spearman

Pearson Spearman

63

64

65

66

67

68

69

70

71

5 5 10 10 15 15 20 20 25 25 30 30 35 35 40

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, XGBC, Pearson
vs Spearman

Pearson Spearman

0

20

40

60

80

5 10 15 20 25 30 35 40 45 50

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, LDA, Pearson vs
Spearman

Pearson Spearman

0

20

40

60

80

5 10 15 20 25 30 35 40 45 50

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, KNN, Pearson
vs Spearman

Pearson Spearman

60

65

70

75

80

5 10 15 20 25 30 35 40 45 50Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, DTC, Pearson vs
Spearman

Pearson Spearman

100

60

65

70

75

80

5 10 15 20 25 30 35 40 45 50

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, RFC, Pearson vs
Spearman

Pearson Spearman

62

64

66

68

70

72

5 5 10 10 15 15 20 20 25 25 30 30 35 35 40

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, XGBC, Pearson
vs Spearman

Pearson Spearman

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, LDA, Pearson vs
Spearman

Pearson Spearman

0

10

20

30

40

50

60

70

5 10 15 20 25 30 35 40 45 50

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, KNN, Pearson
vs Spearman

Pearson Spearman

0

1

2

3

4

5 15 25 35 45 5 15 25 35 45

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, DTC, Pearson
vs Spearman

Pearson Spearman

0

20

40

60

80

5 5 1010151520202525303035354040454550

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, RFC, Pearson vs
Spearman

Pearson Spearman

101

0

50

100

150

5 5 10 10 15 15 20 20 25 25 30 30 35 35 40

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, XGBC, Pearson
vs Spearman

Pearson Spearman

0

1

2

3

4

5

5 10 15 20 25 30 35 40 45 50

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, LDA, Pearson
vs Spearman

Pearson Spearman

0

50

100

150

200

5 10 15 20 25 30 35 40 45 50

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, KNN, Pearson
vs Spearman

Pearson Spearman

102

 2. CIC-IDS2017 Dataset:

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-IDS2017, DTC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

85

90

95

100

5 5 10 10 15 15 20 20 25 25 30 30

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-IDS2017, RFC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

85

90

95

100

5 5 10 10 15 15 20 20 25 25 30 30

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-IDS2017, XGBC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

0

50

100

150

5 5 10 10 15 15 20 20 25 25 30 30

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-IDS2017, KNN, ANOVA vs
Mutual Info.

Mutual Information ANOVA

86
88
90
92
94
96
98

100
102

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-IDS2017, DTC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

86
88
90
92
94
96
98

100
102

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-IDS2017, RFC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

103

85

90

95

100

105

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-IDS2017, XGBC, ANOVA
vs Mutual Info.

Mutual Information ANOVA

0

50

100

150

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-IDS2017, KNN, ANOVA vs
Mutual Info.

Mutual Information ANOVA

0

0.2

0.4

0.6

0.8

1

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-IDS2017, DTC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

0

1

2

3

4

5

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-IDS2017, RFC, ANOVA vs
Mutual Info.

Mutual Information ANOVA

0

2

4

6

8

10

12

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-IDS2017, XGBC, ANOVA
vs Mutual Info.

Mutual Information ANOVA

0

5

10

15

20

25

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-IDS2017, KNN, ANOVA vs
Mutual Info.

Mutual Information ANOVA

104

86

88

90

92

94

96

98

100

5 5 10 10 15 15 20 20 25 25 30 30V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-IDS2017, DTC, Pearson vs
Spearman

Pearson Spearman

85

90

95

100

5 5 10 10 15 15 20 20 25 25 30 30V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-IDS2017, RFC, Pearson vs
Spearman

Pearson Spearman

85

90

95

100

5 5 10 10 15 15 20 20 25 25 30 30V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-IDS2017, XGBC, Pearson
vs Spearman

Pearson Spearman

0

20

40

60

80

100

120

5 5 10 10 15 15 20 20 25 25 30 30V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-IDS2017, KNN, Pearson vs
Spearman

Pearson Spearman

85

90

95

100

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-IDS2017, DTC, Pearson vs
Spearman

Pearson Spearman

85

90

95

100

105

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-IDS2017, RFC, Pearson vs
Spearman

Pearson Spearman

105

85

90

95

100

105

5 5 10 10 15 15 20 20 25 25 30 30Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-IDS2017, XGBC, Pearson
vs Spearman

Pearson Spearman

0

20

40

60

80

100

120

5 5 10 10 15 15 20 20 25 25 30 30Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-IDS2017, KNN, Pearson vs
Spearman

Pearson Spearman

0

0.2

0.4

0.6

0.8

1

5 5 10 10 15 15 20 20 25 25 30 30Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-IDS2017, DTC, Pearson vs
Spearman

Pearson Spearman

0

1

2

3

4

5

5 5 10 10 15 15 20 20 25 25 30 30Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-IDS2017, RFC, Pearson vs
Spearman

Pearson Spearman

0

5

10

15

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-IDS2017, XGBC, Pearson
vs Spearman

Pearson Spearman

0

10

20

30

5 5 10 10 15 15 20 20 25 25 30 30

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-IDS2017, KNN, Pearson vs
Spearman

Pearson Spearman

106

40

45

50

55

60

65

70

75

5 5 5 5 10 10 10 10 15 15 15 15 20 20 20 20 22 25 25 25 25 30 30 30 35 35 35 40 40 40 40 45 45 50 50

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-DDoS2019, DTC vs RFC vs XGBC vs LDA vs KNN

DTC RFC XGBC LDA KNN

40

45

50

55

60

65

70

75

80

5 5 5 5 10 10 10 10 15 15 15 15 20 20 20 20 22 25 25 25 25 30 30 30 35 35 35 40 40 40 40 45 45 50 50

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-DDoS2019, DTC vs RFC vs XGBC vs LDA vs KNN

DTC RFC XGBC LDA KNN

0

20

40

60

80

100

120

140

160

180

200

5 5 5 5 10 10 10 10 15 15 15 15 20 20 20 20 22 25 25 25 25 30 30 30 35 35 35 40 40 40 40 45 45 50 50

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-DDoS2019, DTC vs RFC vs XGBC vs LDA vs KNN

DTC RFC XGBC LDA KNN

107

70

75

80

85

90

95

100

105

5 5 5 5 10 10 10 10 15 15 15 15 20 20 20 20 25 25 25 25 30 30 30 30

V
al

id
at

io
n

 A
cc

u
ra

cy
 (

%
)

Features' Subset Length

CIC-IDS2017, DTC vs RFC vs XGBC vs KNN

DTC RFC XGBC KNN

70

75

80

85

90

95

100

105

5 5 5 5 10 10 10 10 15 15 15 15 20 20 20 20 25 25 25 25 30 30 30 30

Tr
ai

n
in

g
A

cc
u

ra
cy

 (
%

)

Features' Subset Length

CIC-IDS2017, DTC vs RFC vs XGBC vs KNN

DTC RFC XGBC KNN

Tr
ai

n
in

g
D

u
ra

ti
o

n
 (

m
in

s)

Features' Subset Length

CIC-IDS2017, DTC vs RFC vs XGBC vs KNN

DTC RFC XGBC KNN

108

Initial Approach

1) N = 5,000 -> 79,520 samples

Algorithm name: Decision Tree Random Forest KNN XGBC Naive Bayes MLP LR LDA SVC

Mean training duration(S): 0.232 1.943 5.27 9.791 0.168 47.665 27.047 0.15 227.34

Mean Training accuracy: 0.853 0.848 0.804 0.832 0.471 0.784 0.696 0.663 0.753

Best Training Accuracy: 0.871 0.87 0.821 0.849 0.62 0.807 0.74 0.702 0.783

Best Training Subset: (S = 16, k = 22) (S = 16, k = 22) (S = 8, k = 15) (S = 16, k = 22) (S = 12, k = 20) (S = 16, k = 22) (S = 13, k = 25) (S = 12, k = 20) (S = 16, k = 22)

Mean Validation Accuracy: 0.799 0.803 0.782 0.807 0.471 0.783 0.698 0.667 0.753

Best Validation Accuracy: 0.811 0.815 0.794 0.818 0.621 0.805 0.742 0.708 0.783

Best Validation Subset: (S = 16, k = 22) (S = 16, k = 22) (S = 8, k = 15) (S = 13, k = 25) (S = 12, k = 20) (S = 16, k = 22) (S = 13, k = 25) (S = 12, k = 20) (S = 16, k = 22)

2) N = 10,000 -> 127,642 samples

Algorithm name: Decision Tree Random Forest KNN XGBC Naive Bayes MLP LR LDA SVC

Mean training duration(S): 0.346 3.213 13.992 14.937 0.291 90.261 61.724 0.252 685.637

Mean Training accuracy: 0.817 0.809 0.763 0.787 0.46 0.744 0.642 0.601 0.705

Best Training Accuracy: 0.836 0.835 0.781 0.803 0.63 0.76 0.683 0.638 0.738

Best Training Subset: (S = 16, k = 22) (S = 16, k = 22) (S = 9, k = 15) (S = 16, k = 22) (S = 5, k = 10) (S = 11, k = 20) (S = 11, k = 20) (S = 12, k = 20) (S = 16, k = 22)

Mean Validation Accuracy: 0.762 0.766 0.741 0.769 0.461 0.743 0.642 0.601 0.704

Best Validation Accuracy: 0.772 0.776 0.756 0.781 0.63 0.761 0.683 0.639 0.739

Best Validation Subset: (S = 14, k = 25) (S = 14, k = 25) (S = 9, k = 15) (S = 13, k = 25) (S = 5, k = 10) (S = 12, k = 20) (S = 11, k = 20) (S = 12, k = 20) (S = 16, k = 22)

3) N = 50,000 -> 512,527 samples

Algorithm name: Decision Tree Random Forest KNN XGBC Naive Bayes MLP LR LDA SVC

Mean training duration(S): 2.021 17.88 356.408 65.0485 1.6045 316.4855 339.058 1.422

Mean Training accuracy: 0.778 0.766 0.719 0.736 0.436 0.699 0.5995 0.522

Best Training Accuracy: 0.786 0.784 0.72 0.739 0.531 0.705 0.615 0.532

Best Training Subset: (S = 16, k = 22) (S = 16, k = 22) (S = 16, k = 22) (S = 16, k = 22) (S = 10, k = 15) (S = 14, k = 25) (S = 8, k = 15) (S = 8, k = 15)

Mean Validation Accuracy: 0.719 0.723 0.695 0.727 0.435 0.698 0.5995 0.522

Best Validation Accuracy: 0.722 0.725 0.698 0.729 0.531 0.704 0.615 0.532

Best Validation Subset: (S = 16, k = 22) (S = 12, k = 20) (S = 8, k = 15) (S = 12, k = 20) (S = 10, k = 15) (S = 12, k = 20) (S = 8, k = 15) (S = 8, k = 15)

4) N = 100,000 -> 993,731 samples

Algorithm name: Decision Tree Random Forest KNN XGBC Naive Bayes MLP LR LDA SVC

Mean training duration(S): 3.513 36.237 789.689 120.68 2.463 579.727 591.638 2.186

Mean Training accuracy: 0.752 0.741 0.701 0.718 0.422 0.681 0.559 0.49

Best Training Accuracy: 0.777 0.774 0.714 0.728 0.552 0.7 0.597 0.532

Best Training Subset: (S = 16, k = 22) (S = 16, k = 22) (S = 16, k = 22) (S = 16, k = 22) (S = 2, k = 5) (S = 13, k = 25) (S = 11, k = 20) (S = 12, k = 20)

Mean Validation Accuracy: 0.71 0.711 0.68 0.713 0.421 0.681 0.559 0.491

Best Validation Accuracy: 0.718 0.721 0.691 0.723 0.552 0.699 0.598 0.533

Best Validation Subset: (S = 16, k = 22) (S = 13, k = 25) (S = 8, k = 15) (S = 16, k = 22) (S = 2, k = 5) (S = 13, k = 25) (S = 11, k = 20) (S = 12, k = 20)

109

Highly Correlated Features Lists

According to the results of the 1st dataset and Pearson algorithm, out of 74 features, the

following 26 features are 95% correlated with at least another feature in the dataset:

1. Fwd Packet Length Min: Fwd Packet Length Max

110

2. Fwd Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min
3. Flow IAT Std: Flow IAT Mean
4. Fwd IAT Total: Flow Duration
5. Fwd IAT Mean: Flow IAT Mean, Flow IAT Std
6. Fwd IAT Std: Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd IAT Mean
7. Fwd IAT Max: Flow IAT Max, Fwd IAT Std
8. Fwd IAT Min: Flow IAT Min
9. Bwd IAT Std: Bwd IAT Mean
10. Bwd Header Length: Total Backward Packets
11. Fwd Packets/s: Flow Packets/s
12. Min Packet Length: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean
13. Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean,
Min Packet Length
14. RST Flag Count: Fwd PSH Flags
15. ACK Flag Count: Protocol
16. Average Packet Size: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean,
Min Packet Length, Packet Length Mean
17. Avg Fwd Segment Size: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length
Mean, Min Packet Length, Packet Length Mean, Average Packet Size
18. Avg Bwd Segment Size: Bwd Packet Length Mean
19. Fwd Header Length.1: Fwd Header Length
20. Subflow Fwd Packets: Total Fwd Packets
21. Subflow Fwd Bytes: Total Length of Fwd Packets
22. Subflow Bwd Packets: Total Backward Packets, Bwd Header Length
23. Subflow Bwd Bytes: Total Length of Bwd Packets
24. Idle Mean: Flow IAT Max, Fwd IAT Std, Fwd IAT Max
25. Idle Max: Flow IAT Max, Fwd IAT Std, Fwd IAT Max, Idle Mean
26. Idle Min: Idle Mean

According to the results of the 1st dataset and Spearman algorithm, out of 74 features the

following 39 features are 95% correlated with at least another feature in the dataset:

1. Fwd Packet Length Min: Fwd Packet Length Max
2. Fwd Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min
3. Bwd Packet Length Max: Total Length of Bwd Packets
4. Bwd Packet Length Mean: Total Length of Bwd Packets, Bwd Packet Length Max
5. Flow Packets/s: Flow Duration
6. Flow IAT Mean: Flow Duration, Flow Packets/s
7. Flow IAT Max: Flow Duration, Flow Packets/s, Flow IAT Mean
8. Fwd IAT Mean: Fwd IAT Total
9. Fwd IAT Std: Total Fwd Packets
10. Fwd IAT Max: Fwd IAT Total, Fwd IAT Mean
11. Fwd IAT Min: Flow IAT Min
12. Bwd IAT Total: Total Backward Packets
13. Bwd IAT Mean: Total Backward Packets, Bwd IAT Total
14. Bwd IAT Max: Total Backward Packets, Bwd IAT Total, Bwd IAT Mean
15. Bwd IAT Min: Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max
16. Bwd Header Length: Total Backward Packets
17. Fwd Packets/s: Flow Duration, Flow Packets/s, Flow IAT Mean, Flow IAT Max
18. Bwd Packets/s: Total Backward Packets, Bwd Header Length
19. Min Packet Length: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean
20. Max Packet Length: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean,
Min Packet Length

111

21. Packet Length Mean: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean,
Min Packet Length, Max Packet Length
22. Packet Length Std: Fwd Packet Length Std
23. Packet Length Variance: Fwd Packet Length Std, Packet Length Std
24. RST Flag Count: Fwd PSH Flags
25. ACK Flag Count: Protocol
26. Average Packet Size: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean,
Min Packet Length, Max Packet Length, Packet Length Mean
27. Avg Fwd Segment Size: Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length
Mean, Min Packet Length, Max Packet Length, Packet Length Mean, Average Packet Size
28. Avg Bwd Segment Size: Total Length of Bwd Packets, Bwd Packet Length Max, Bwd Packet Length
Mean
29. Fwd Header Length.1: Fwd Header Length
30. Subflow Fwd Packets: Total Fwd Packets, Fwd IAT Std
31. Subflow Fwd Bytes: Total Length of Fwd Packets
32. Subflow Bwd Packets: Total Backward Packets, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, Bwd
Header Length, Bwd Packets/s
33. Subflow Bwd Bytes: Total Length of Bwd Packets, Bwd Packet Length Max, Bwd Packet Length
Mean, Avg Bwd Segment Size
34. Init_Win_bytes_forward: Protocol, ACK Flag Count
35. Active Max: Active Mean
36. Active Min: Active Mean, Active Max
37. Idle Mean: Active Mean, Active Max, Active Min
38. Idle Max: Active Mean, Active Max, Active Min, Idle Mean
39. Idle Min: Active Mean, Active Max, Active Min, Idle Mean, Idle Max

According to the results of the 2nd dataset and Pearson algorithm, out of 73 features the

following 22 features are 95% correlated with at least another feature in the dataset:

1. Fwd Packet Length Std: Fwd Packet Length Max
2. Bwd Packet Length Mean: Bwd Packet Length Max
3. Bwd Packet Length Std: Bwd Packet Length Max, Bwd Packet Length Mean
4. Fwd IAT Total: Flow Duration
5. Fwd IAT Max: Flow IAT Max
6. Bwd IAT Max: Bwd IAT Total
7. Fwd Header Length: Total Fwd Packets
8. Bwd Header Length: Total Backward Packets
9. Fwd Packets/s: Flow Packets/s
10. Packet Length Std: Max Packet Length, Packet Length Mean
11. SYN Flag Count: Fwd PSH Flags
12. ECE Flag Count: RST Flag Count
13. Average Packet Size: Packet Length Mean
14. Avg Fwd Segment Size: Fwd Packet Length Mean
15. Avg Bwd Segment Size: Bwd Packet Length Max, Bwd Packet Length Mean, Bwd Packet Length
Std
16. Subflow Fwd Packets: Total Fwd Packets, Fwd Header Length
17. Subflow Fwd Bytes: Total Length of Fwd Packets
18. Subflow Bwd Packets: Total Backward Packets, Bwd Header Length
19. Subflow Bwd Bytes: Total Length of Bwd Packets
20. Idle Mean: Flow IAT Max, Fwd IAT Max
21. Idle Max: Flow IAT Max, Fwd IAT Max, Idle Mean
22. Idle Min: Idle Mean

112

According to the results of the 2nd dataset and Spearman algorithm, out of 73 features the

following 30 features are 95% correlated with at least another feature in the dataset:

1. Fwd Packet Length Max: Total Length of Fwd Packets
2. Fwd Packet Length Mean: Total Length of Fwd Packets, Fwd Packet Length Max
3. Bwd Packet Length Max: Total Length of Bwd Packets
4. Bwd Packet Length Mean: Total Length of Bwd Packets, Bwd Packet Length Max
5. Flow Packets/s: Flow Duration
6. Flow IAT Mean: Flow Packets/s
7. Flow IAT Max: Flow Duration, Flow Packets/s, Flow IAT Mean
8. Fwd IAT Mean: Fwd IAT Total
9. Fwd IAT Max: Fwd IAT Total, Fwd IAT Mean
10. Bwd IAT Mean: Bwd IAT Total
11. Bwd IAT Max: Bwd IAT Total, Bwd IAT Mean
12. Fwd Header Length: Total Fwd Packets
13. Bwd Header Length: Total Backward Packets
14. Fwd Packets/s: Flow Duration, Flow Packets/s, Flow IAT Mean, Flow IAT Max
15. Packet Length Mean: Max Packet Length
16. Packet Length Std: Max Packet Length
17. Packet Length Variance: Max Packet Length, Packet Length Std
18. SYN Flag Count: Fwd PSH Flags
19. ECE Flag Count: RST Flag Count
20. Average Packet Size: Max Packet Length, Packet Length Mean
21. Avg Fwd Segment Size: Total Length of Fwd Packets, Fwd Packet Length Max, Fwd Packet Length
Mean
22. Avg Bwd Segment Size: Total Length of Bwd Packets, Bwd Packet Length Max, Bwd Packet Length
Mean
23. Subflow Fwd Packets: Total Fwd Packets, Fwd Header Length
24. Subflow Fwd Bytes: Total Length of Fwd Packets, Fwd Packet Length Max, Fwd Packet Length
Mean, Avg Fwd Segment Size
25. Subflow Bwd Packets: Total Backward Packets, Bwd Header Length
26. Subflow Bwd Bytes: Total Length of Bwd Packets, Bwd Packet Length Max, Bwd Packet Length
Mean, Avg Bwd Segment Size
27. Active Max: Active Mean
28. Active Min: Active Mean, Active Max
29. Idle Max: Idle Mean
30. Idle Min: Idle Mean, Idle Max

Best Features Lists

Best features of the 1st dataset (CIC-DDoS2019):

*Subset 1(53 features) is the subset originating from the removal of the correlated features

identified by the Pearson algorithm, whereas subset 2(40 features) from the removal of the

correlated features identified by Spearman. The features are not sorted from the best to

worst in each subset and their descriptions can be found in Appendix A

113

Algorithm K Subset Best Features

0 F-Test 5 2 { Protocol, Fwd Packet Length Max, Flow Bytes/s, act_data_pkt_fwd,

Inbound }

1 F-Test 5 1 { Protocol, Fwd Packet Length Max, Flow Bytes/s, Max Packet

Length, Inbound }

2 F-Test 10 2 { Protocol, Fwd Packet Length Max, Fwd Packet Length Std, Bwd

Packet Length Min, Flow Bytes/s, URG Flag Count, CWE Flag Count,

Down/Up Ratio, act_data_pkt_fwd, Inbound }

3 F-Test 10 1 { Protocol, Fwd Packet Length Max, Flow Bytes/s, Flow Packets/s,

Max Packet Length, URG Flag Count, Down/Up Ratio,

Init_Win_bytes_forward, act_data_pkt_fwd, Inbound }

4 F-Test 15 2 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet

Length Max, Fwd Packet Length Std, Bwd Packet Length Min, Flow

Bytes/s, Flow IAT Std, Fwd IAT Total, Fwd PSH Flags, URG Flag Count,

CWE Flag Count, Down/Up Ratio, act_data_pkt_fwd, Inbound }

5 F-Test 15 1 { Protocol, Total Length of Fwd Packets, Fwd Packet Length Max,

Fwd Packet Length Std, Bwd Packet Length Min, Bwd Packet Length

Mean, Flow Bytes/s, Flow Packets/s, Max Packet Length, URG Flag

Count, CWE Flag Count, Down/Up Ratio, Init_Win_bytes_forward,

act_data_pkt_fwd, Inbound }

6 F-Test 20 2 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet

Length Max, Fwd Packet Length Std, Bwd Packet Length Min, Bwd

Packet Length Std, Flow Bytes/s, Flow IAT Std, Fwd IAT Total, Fwd

PSH Flags, Fwd Header Length, URG Flag Count, CWE Flag Count,

Down/Up Ratio, Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Idle Std, Inbound }

7 F-Test 20 1 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet

Length Max, Fwd Packet Length Std, Bwd Packet Length Min, Bwd

Packet Length Mean, Flow Bytes/s, Flow Packets/s, Flow IAT Mean,

Flow IAT Max, Fwd PSH Flags, Max Packet Length, Packet Length Std,

URG Flag Count, CWE Flag Count, Down/Up Ratio,

Init_Win_bytes_forward, act_data_pkt_fwd, Inbound }

8 F-Test 25 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Fwd Packet Length Max, Fwd

Packet Length Std, Bwd Packet Length Min, Bwd Packet Length Std,

Flow Bytes/s, Flow IAT Std, Fwd IAT Total, Bwd IAT Std, Fwd PSH

Flags, Fwd Header Length, URG Flag Count, CWE Flag Count,

Down/Up Ratio, Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Std, Idle Std, Inbound }

9 F-Test 25 1 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet

Length Max, Fwd Packet Length Std, Bwd Packet Length Max, Bwd

Packet Length Min, Bwd Packet Length Mean, Bwd Packet Length

Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Max,

114

Fwd PSH Flags, Max Packet Length, Packet Length Std, URG Flag

Count, CWE Flag Count, Down/Up Ratio, Init_Win_bytes_forward,

Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Idle Std, Inbound }

10 F-Test 30 2 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet

Length Max, Fwd Packet Length Std, Bwd Packet Length Max, Bwd

Packet Length Min, Bwd Packet Length Mean, Bwd Packet Length

Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Max,

Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, Bwd IAT Min, Fwd PSH

Flags, Fwd Header Length, Max Packet Length, Packet Length Std,

URG Flag Count, CWE Flag Count, Down/Up Ratio,

Init_Win_bytes_forward, Init_Win_bytes_backward,

act_data_pkt_fwd, min_seg_size_forward, Idle Std, Inbound }

11 F-Test 30 1 { Protocol, Flow Duration, Total Length of Fwd Packets, Fwd Packet

Length Max, Fwd Packet Length Std, Bwd Packet Length Max, Bwd

Packet Length Min, Bwd Packet Length Mean, Bwd Packet Length

Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Max,

Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max, Bwd IAT Min, Fwd PSH

Flags, Fwd Header Length, Max Packet Length, Packet Length Std,

URG Flag Count, CWE Flag Count, Down/Up Ratio,

Init_Win_bytes_forward, Init_Win_bytes_backward,

act_data_pkt_fwd, min_seg_size_forward, Idle Std, Inbound }

12 F-Test 35 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT

Min, Fwd IAT Total, Bwd IAT Std, Fwd PSH Flags, Fwd Header Length,

SYN Flag Count, URG Flag Count, CWE Flag Count, ECE Flag Count,

Down/Up Ratio, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd

Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg

Bulk Rate, Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Std, Idle Std, Inbound }

13 F-Test 35 1 { Protocol, Flow Duration, Total Backward Packets, Total Length of

Fwd Packets, Fwd Packet Length Max, Fwd Packet Length Std, Bwd

Packet Length Max, Bwd Packet Length Min, Bwd Packet Length

Mean, Bwd Packet Length Std, Flow Bytes/s, Flow Packets/s, Flow

IAT Mean, Flow IAT Max, Bwd IAT Total, Bwd IAT Mean, Bwd IAT

Max, Bwd IAT Min, Fwd PSH Flags, Fwd Header Length, Bwd

Packets/s, Max Packet Length, Packet Length Std, URG Flag Count,

CWE Flag Count, Down/Up Ratio, Init_Win_bytes_forward,

Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Max, Active Min, Idle

Std, Inbound }

115

14 F-Test 40 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT

Min, Fwd IAT Total, Bwd IAT Std, Fwd PSH Flags, Bwd PSH Flags, Fwd

URG Flags, Bwd URG Flags, Fwd Header Length, FIN Flag Count, SYN

Flag Count, PSH Flag Count, URG Flag Count, CWE Flag Count, ECE

Flag Count, Down/Up Ratio, Fwd Avg Bytes/Bulk, Fwd Avg

Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg

Packets/Bulk, Bwd Avg Bulk Rate, Init_Win_bytes_backward,

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Std,

Idle Std, Inbound }

15 F-Test 40 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Fwd Packet Length Max, Fwd

Packet Length Std, Bwd Packet Length Max, Bwd Packet Length Min,

Bwd Packet Length Mean, Bwd Packet Length Std, Flow Bytes/s,

Flow Packets/s, Flow IAT Mean, Flow IAT Max, Flow IAT Min, Bwd

IAT Total, Bwd IAT Mean, Bwd IAT Max, Bwd IAT Min, Fwd PSH Flags,

Fwd Header Length, Bwd Packets/s, Max Packet Length, Packet

Length Std, Packet Length Variance, SYN Flag Count, URG Flag

Count, CWE Flag Count, Down/Up Ratio, Init_Win_bytes_forward,

Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Std, Active Max, Active

Min, Idle Std, Inbound }

16 F-Test 45 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet

Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT

Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max,

Bwd IAT Min, Fwd PSH Flags, Fwd Header Length, Bwd Packets/s,

Max Packet Length, Packet Length Std, Packet Length Variance, SYN

Flag Count, URG Flag Count, CWE Flag Count, Down/Up Ratio, Fwd

Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg

Bulk Rate, Init_Win_bytes_forward, Init_Win_bytes_backward,

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Std,

Active Max, Active Min, Idle Std, Inbound }

17 F-Test 50 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet

Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT

Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max,

Bwd IAT Min, Fwd PSH Flags, Fwd Header Length, Bwd Packets/s,

116

Max Packet Length, Packet Length Std, Packet Length Variance, FIN

Flag Count, SYN Flag Count, PSH Flag Count, URG Flag Count, CWE

Flag Count, ECE Flag Count, Down/Up Ratio, Fwd Avg Bytes/Bulk,

Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd

Avg Packets/Bulk, Bwd Avg Bulk Rate, Init_Win_bytes_forward,

Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Std, Active Max, Active

Min, Idle Std, Inbound }

18 Mutual

Information Test

5 2 { Flow Duration, Total Length of Fwd Packets, Fwd Packet Length

Max, Flow Bytes/s, act_data_pkt_fwd }

19 Mutual

Information Test

5 1 { Total Length of Fwd Packets, Fwd Packet Length Max, Flow Bytes/s,

Max Packet Length, act_data_pkt_fwd }

20 Mutual

Information Test

10 2 { Protocol, Flow Duration, Total Fwd Packets, Total Length of Fwd

Packets, Fwd Packet Length Max, Flow Bytes/s, Flow IAT Std, Fwd

IAT Total, Fwd Header Length, act_data_pkt_fwd }

21 Mutual

Information Test

10 1 { Flow Duration, Total Length of Fwd Packets, Fwd Packet Length

Max, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Max,

Fwd Header Length, Max Packet Length, act_data_pkt_fwd }

22 Mutual

Information Test

15 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Fwd Packet Length Max, Fwd

Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT Min, Fwd IAT

Total, Fwd Header Length, act_data_pkt_fwd,

min_seg_size_forward, Inbound }

23 Mutual

Information Test

15 1 { Protocol, Flow Duration, Total Fwd Packets, Total Length of Fwd

Packets, Fwd Packet Length Max, Flow Bytes/s, Flow Packets/s, Flow

IAT Mean, Flow IAT Max, Fwd Header Length, Max Packet Length,

Packet Length Std, Packet Length Variance, Init_Win_bytes_forward,

act_data_pkt_fwd }

24 Mutual

Information Test

20 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Flow Bytes/s, Flow

IAT Std, Flow IAT Min, Fwd IAT Total, Fwd Header Length, Down/Up

Ratio, Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Idle Std, Inbound }

25 Mutual

Information Test

20 1 { Protocol, Flow Duration, Total Fwd Packets, Total Length of Fwd

Packets, Fwd Packet Length Max, Fwd Packet Length Std, Flow

Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Max, Flow IAT

Min, Fwd Header Length, Bwd Packets/s, Max Packet Length, Packet

Length Std, Packet Length Variance, Init_Win_bytes_forward,

act_data_pkt_fwd, min_seg_size_forward, Inbound }

26 Mutual

Information Test

25 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Min, Flow Bytes/s, Flow IAT Std, Flow IAT Min, Fwd IAT Total, Bwd

117

IAT Std, Fwd Header Length, URG Flag Count, CWE Flag Count,

Down/Up Ratio, Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Std, Idle Std, Inbound }

27 Mutual

Information Test

25 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Fwd Packet Length Max, Fwd

Packet Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean,

Flow IAT Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT

Max, Bwd IAT Min, Fwd Header Length, Bwd Packets/s, Max Packet

Length, Packet Length Std, Packet Length Variance,

Init_Win_bytes_forward, act_data_pkt_fwd, min_seg_size_forward,

Inbound }

28 Mutual

Information Test

30 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT

Min, Fwd IAT Total, Bwd IAT Std, Fwd PSH Flags, Bwd URG Flags,

Fwd Header Length, SYN Flag Count, URG Flag Count, CWE Flag

Count, Down/Up Ratio, Bwd Avg Bytes/Bulk,

Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Std, Idle Std, Inbound }

29 Mutual

Information Test

30 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Flow Bytes/s, Flow

Packets/s, Flow IAT Mean, Flow IAT Max, Flow IAT Min, Bwd IAT

Total, Bwd IAT Mean, Bwd IAT Max, Bwd IAT Min, Fwd Header

Length, Bwd Packets/s, Max Packet Length, Packet Length Std,

Packet Length Variance, Down/Up Ratio, Init_Win_bytes_forward,

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Max,

Active Min, Inbound }

30 Mutual

Information Test

35 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT

Min, Fwd IAT Total, Bwd IAT Std, Fwd PSH Flags, Bwd PSH Flags, Fwd

URG Flags, Fwd Header Length, SYN Flag Count, URG Flag Count,

CWE Flag Count, ECE Flag Count, Down/Up Ratio, Fwd Avg

Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Packets/Bulk, Bwd Avg

Bulk Rate, Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Std, Idle Std, Inbound }

31 Mutual

Information Test

35 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Max, Bwd Packet Length Mean, Flow Bytes/s, Flow Packets/s, Flow

IAT Mean, Flow IAT Max, Flow IAT Min, Bwd IAT Total, Bwd IAT

118

Mean, Bwd IAT Max, Bwd IAT Min, Fwd Header Length, Bwd

Packets/s, Max Packet Length, Packet Length Std, Packet Length

Variance, URG Flag Count, Down/Up Ratio, Init_Win_bytes_forward,

Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Max, Active Min, Idle

Std, Inbound }

32 Mutual

Information Test

40 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT

Min, Fwd IAT Total, Bwd IAT Std, Fwd PSH Flags, Bwd PSH Flags, Fwd

URG Flags, Bwd URG Flags, Fwd Header Length, FIN Flag Count, SYN

Flag Count, PSH Flag Count, URG Flag Count, CWE Flag Count, ECE

Flag Count, Down/Up Ratio, Fwd Avg Bytes/Bulk, Fwd Avg

Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg

Packets/Bulk, Bwd Avg Bulk Rate, Init_Win_bytes_backward,

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Std,

Idle Std, Inbound }

33 Mutual

Information Test

40 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet

Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT

Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max,

Bwd IAT Min, Fwd PSH Flags, Fwd Header Length, Bwd Packets/s,

Max Packet Length, Packet Length Std, Packet Length Variance, URG

Flag Count, CWE Flag Count, Down/Up Ratio,

Init_Win_bytes_forward, Init_Win_bytes_backward,

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Std,

Active Max, Active Min, Idle Std, Inbound }

34 Mutual

Information Test

45 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet

Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT

Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max,

Bwd IAT Min, Fwd PSH Flags, Bwd PSH Flags, Fwd URG Flags, Fwd

Header Length, Bwd Packets/s, Max Packet Length, Packet Length

Std, Packet Length Variance, URG Flag Count, CWE Flag Count,

Down/Up Ratio, Fwd Avg Bulk Rate, Bwd Avg Packets/Bulk, Bwd Avg

Bulk Rate, Init_Win_bytes_forward, Init_Win_bytes_backward,

act_data_pkt_fwd, min_seg_size_forward, Active Mean, Active Std,

Active Max, Active Min, Idle Std, Inbound }

119

Best features of the 2nd dataset (CIC-IDS2017):

*Subset 1(38 features) is the subset originating from the removal of the correlated features

identified by the Spearman algorithm, whereas subset 2(43 features) from the removal of the

correlated features identified by Pearson. The features are not sorted from the best to worst

in each subset and their descriptions can be found in Appendix A.

35 Mutual

Information Test

50 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward

Packets, Total Length of Fwd Packets, Total Length of Bwd Packets,

Fwd Packet Length Max, Fwd Packet Length Std, Bwd Packet Length

Max, Bwd Packet Length Min, Bwd Packet Length Mean, Bwd Packet

Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT

Max, Flow IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Max,

Bwd IAT Min, Fwd PSH Flags, Bwd PSH Flags, Bwd URG Flags, Fwd

Header Length, Bwd Packets/s, Max Packet Length, Packet Length

Std, Packet Length Variance, SYN Flag Count, URG Flag Count, CWE

Flag Count, ECE Flag Count, Down/Up Ratio, Fwd Avg Bytes/Bulk,

Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd

Avg Packets/Bulk, Bwd Avg Bulk Rate, Init_Win_bytes_forward,

Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Std, Active Max, Active

Min, Idle Std, Inbound }

Algorithm K Subset Best Features

0 F-Test 5 1 { Total Fwd Packets, Total Length of Bwd Packets, Bwd Packet Length Std, PSH Flag Count,

min_seg_size_forward }

1 F-Test 5 2 { Total Fwd Packets, Bwd Packet Length Max, Packet Length Mean, PSH Flag Count,

min_seg_size_forward }

2 F-Test 10 1 { Total Fwd Packets, Total Length of Bwd Packets, Bwd Packet Length Std, Flow IAT Std, Fwd

IAT Std, Max Packet Length, Packet Length Mean, PSH Flag Count, min_seg_size_forward,

Idle Mean }

3 F-Test 10 2 { Protocol, Flow Duration, Total Fwd Packets, Bwd Packet Length Max, Flow IAT Std, Max

Packet Length, Packet Length Mean, PSH Flag Count, min_seg_size_forward, Active Mean }

4 F-Test 15 1 { Protocol, Flow Duration, Total Fwd Packets, Total Length of Bwd Packets, Bwd Packet

Length Std, Flow IAT Std, Fwd IAT Total, Fwd IAT Std, Max Packet Length, Packet Length

Mean, PSH Flag Count, URG Flag Count, min_seg_size_forward, Active Mean, Idle Mean }

5 F-Test 15 2 { Protocol, Flow Duration, Total Fwd Packets, Bwd Packet Length Max, Flow IAT Std, Bwd IAT

Mean, Max Packet Length, Packet Length Mean, Packet Length Variance, PSH Flag Count,

URG Flag Count, min_seg_size_forward, Active Mean, Active Max, Active Min}

120

6 F-Test 20 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Bwd

Packets, Bwd Packet Length Std, Flow IAT Std, Fwd IAT Total, Fwd IAT Std, Bwd IAT Min, Max

Packet Length, Packet Length Mean, PSH Flag Count, ACK Flag Count, URG Flag Count,

Init_Win_bytes_forward, min_seg_size_forward, Active Mean, Active Std, Idle Mean }

7 F-Test 20 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Bwd Packet Length

Max, Flow IAT Mean, Flow IAT Std, Bwd IAT Mean, Bwd IAT Min, Max Packet Length, Packet

Length Mean, Packet Length Variance, PSH Flag Count, ACK Flag Count, URG Flag Count,

Init_Win_bytes_forward, min_seg_size_forward, Active Mean, Active Max, Active Min }

8 F-Test 25 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Bwd

Packets, Bwd Packet Length Min, Bwd Packet Length Std, Flow IAT Std, Fwd IAT Total, Fwd

IAT Std, Fwd IAT Min, Bwd IAT Min, Fwd PSH Flags, Min Packet Length, Max Packet Length,

Packet Length Mean, FIN Flag Count, PSH Flag Count, ACK Flag Count, URG Flag Count,

Init_Win_bytes_forward, min_seg_size_forward, Active Mean, Active Std, Idle Mean }

9 F-Test 25 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Bwd Packet Length

Max, Flow IAT Mean, Flow IAT Std, Fwd IAT Mean, Bwd IAT Mean, Bwd IAT Min, Fwd PSH

Flags, Min Packet Length, Max Packet Length, Packet Length Mean, Packet Length Variance,

FIN Flag Count, PSH Flag Count, ACK Flag Count, URG Flag Count, Init_Win_bytes_forward,

min_seg_size_forward, Active Mean, Active Std, Active Max, Active Min }

10 F-Test 30 1 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Bwd

Packets, Bwd Packet Length Min, Bwd Packet Length Std, Flow IAT Std, Flow IAT Min, Fwd

IAT Total, Fwd IAT Std, Fwd IAT Min, Bwd IAT Total, Bwd IAT Std, Bwd IAT Min, Fwd PSH

Flags, Bwd Packets/s, Min Packet Length, Max Packet Length, Packet Length Mean, FIN Flag

Count, PSH Flag Count, ACK Flag Count, URG Flag Count, Down/Up Ratio,

Init_Win_bytes_forward, min_seg_size_forward, Active Mean, Active Std, Idle Mean }

11 F-Test 30 2 { Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Fwd Packet Length

Mean, Bwd Packet Length Max, Bwd Packet Length Min, Flow IAT Mean, Flow IAT Std, Flow

IAT Min, Fwd IAT Mean, Fwd IAT Min, Bwd IAT Mean, Bwd IAT Min, Fwd PSH Flags, Min

Packet Length, Max Packet Length, Packet Length Mean, Packet Length Variance, FIN Flag

Count, PSH Flag Count, ACK Flag Count, URG Flag Count, Down/Up Ratio,

Init_Win_bytes_forward, min_seg_size_forward, Active Mean, Active Std, Active Max,

Active Min }

12 Mutual

Information Test

5 1 { Flow Duration, Total Length of Fwd Packets, Flow IAT Max, Packet Length Mean, Packet

Length Variance }

13 Mutual

Information Test

5 2 { Flow Duration, Total Length of Fwd Packets, Flow Bytes/s, Fwd IAT Total, Max Packet

Length }

14 Mutual

Information Test

10 1 { Flow Duration, Total Length of Fwd Packets, Fwd Packet Length Max, Flow Bytes/s, Flow

Packets/s, Flow IAT Mean, Flow IAT Max, Max Packet Length, Packet Length Mean, Packet

Length Variance }

15 Mutual

Information Test

10 2 { Flow Duration, Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd Packet

Length Std, Flow Bytes/s, Flow IAT Std, Fwd IAT Total, Bwd Packets/s, Max Packet Length,

Init_Win_bytes_forward }

16 Mutual

Information Test

15 1 { Flow Duration, Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd Packet

Length Max, Fwd Packet Length Mean, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow

121

IAT Std, Flow IAT Max, Fwd IAT Mean, Bwd Packets/s, Max Packet Length, Packet Length

Mean, Packet Length Variance }

17 Mutual

Information Test

15 2 { Flow Duration, Total Fwd Packets, Total Length of Fwd Packets, Total Length of Bwd

Packets, Fwd Packet Length Std, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Fwd IAT

Total, Fwd IAT Std, Bwd IAT Total, Bwd Packets/s, Max Packet Length,

Init_Win_bytes_forward, Init_Win_bytes_backward }

18 Mutual

Information Test

20 1 { Flow Duration, Total Length of Fwd Packets, Total Length of Bwd Packets, Fwd Packet

Length Max, Fwd Packet Length Mean, Bwd Packet Length Max, Flow Bytes/s, Flow

Packets/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd IAT Mean, Fwd IAT Std, Bwd IAT

Total, Bwd IAT Mean, Bwd Packets/s, Max Packet Length, Packet Length Mean, Packet

Length Variance, Init_Win_bytes_forward }

19 Mutual

Information Test

20 2 { Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets,

Total Length of Bwd Packets, Fwd Packet Length Std, Bwd Packet Length Std, Flow Bytes/s,

Flow IAT Std, Fwd IAT Total, Fwd IAT Std, Fwd IAT Min, Bwd IAT Total, Bwd IAT Std, Bwd

Packets/s, Max Packet Length, Init_Win_bytes_forward, Init_Win_bytes_backward,

act_data_pkt_fwd, min_seg_size_forward }

20 Mutual

Information Test

25 1 { Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets,

Total Length of Bwd Packets, Fwd Packet Length Max, Fwd Packet Length Mean, Bwd Packet

Length Max, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd

IAT Mean, Fwd IAT Std, Fwd IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT Std, Bwd

Packets/s, Max Packet Length, Packet Length Mean, Packet Length Variance,

Init_Win_bytes_forward, Init_Win_bytes_backward }

21 Mutual

Information Test

25 2 { Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets,

Total Length of Bwd Packets, Fwd Packet Length Std, Bwd Packet Length Min, Bwd Packet

Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT Min, Fwd IAT Total, Fwd IAT Std, Fwd IAT

Min, Bwd IAT Total, Bwd IAT Std, Bwd IAT Min, Bwd Packets/s, Max Packet Length,

Init_Win_bytes_forward, Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Idle Mean }

22 Mutual

Information Test

30 1 { Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets,

Total Length of Bwd Packets, Fwd Packet Length Max, Fwd Packet Length Mean, Bwd Packet

Length Max, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, Flow

IAT Min, Fwd IAT Mean, Fwd IAT Std, Fwd IAT Min, Bwd IAT Total, Bwd IAT Mean, Bwd IAT

Std, Bwd Packets/s, Max Packet Length, Packet Length Mean, Packet Length Variance,

Init_Win_bytes_forward, Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Active Max }

23 Mutual

Information Test

30 2 { Flow Duration, Total Fwd Packets, Total Backward Packets, Total Length of Fwd Packets,

Total Length of Bwd Packets, Fwd Packet Length Min, Fwd Packet Length Std, Bwd Packet

Length Min, Bwd Packet Length Std, Flow Bytes/s, Flow IAT Std, Flow IAT Min, Fwd IAT Total,

Fwd IAT Std, Fwd IAT Min, Bwd IAT Total, Bwd IAT Std, Bwd IAT Min, Bwd Packets/s, Min

Packet Length, Max Packet Length, PSH Flag Count, Down/Up Ratio,

Init_Win_bytes_forward, Init_Win_bytes_backward, act_data_pkt_fwd,

min_seg_size_forward, Active Mean, Idle Mean, Idle Std }

