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Abstract 

 

During the last years, there has been a rapid development of both wearable technologies and 

Artificial Intelligence. This thesis aims to bring these two together to prevent dysfunctional pain-

coping attempts. More precisely, this thesis aims to examine whether wearable devices are able to 

correctly classify individuals into functional or dysfunctional regarding pain coping. 

 

In an experiment conducted by the Department of Psychology of the University of Cyprus, all 

participants were asked to immerse their hands into an ice water container. During the experiment, 

a variety of psychophysiological signals — electrocardiogram (ECG), electrodermal activity 

(EDA), and facial electromyography (fEMG) — were recorded from the participants, both from 

BIOPAC, which is a stationary device and from two wearable devices: Microsoft Band 2 and 

Moodmetric Smart Ring. Having the raw signals available, the Rectangular Window Methodology 

(RWM) was utilized in order to increase the size of the dataset. Thereafter, multiple 

psychophysiological features were extracted. Using three different feature selection methods 

(Exhaustive Feature Selection, Feature Importance and Correlation Coefficient), the most 

significant features were chosen. Using the selected features, a number of Machine Learning 

models (Adaptive Boosting, Gradient Boosting Decision Tree, Random Forest, and Extra Trees) 

were trained and compared in order to find the most effective one. 

 

The analysis shows that the most important features, in order to effectively classify people into the 

two categories, are average heart rate and peak amplitude of Skin Conductance Response (SCR). 

The Gradient Boosting Decision tree, when fine-tuned and combined with RWM and a window of 

10 seconds, can correctly classify people, with accuracy reaching 85%, making it a very powerful 

model.  

 

In a comparison regarding the monitoring devices, it was shown that the findings are different 

when using different methods to compare the data. Pearson correlation shows no correlation 

between most of the features, while Bland-Altman scatter plots show agreement in the 

measurements in most of the cases. Furthermore, by comparing the results of the current study 

with the previous studies it was observed that when using RWM the accuracy of the classifiers 
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increases. Moreover, data acquired by the band can give results with performance similar to those 

acquired by the stationary device. 
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Introduction 

 

 

 

1.1 Motivation 1 

1.2 Goals of the Study 2 

1.3 Methodology 2 

1.4 Document Organization 4 

 

 

1.1 Motivation 

 

The use of wearable devices, such as smartwatches and smart bands, has greatly increased, over 

the past decade. This kind of devices is able to record multiple measures, including heart and sweat 

gland activity. These measures are called psychophysiological signals and are proven to reflect an 

individual’s emotional arousal. Examples of such psychophysiological signals are 

Electrocardiogram (ECG), Electrodermal Activity (EDA), and facial electromyography (fEMG).  

 

A number of previous studies [1] [2] [3] analysed such data. Due to the fact that this topic is wide 

and multiple aspects need to be investigated, there are some areas that need further research. Firstly, 

previous work concentrated on signals recorded from stationary devices, while wearable devices’ 

data were not examined. Moreover, the only features that were examined and used to train the 

models, are HRV time-domain features that come from ECG. Last but not least, not enough focus 

was given in feature selection techniques, which is a really important process in order to obtain 

good results. This study aims to investigate further this topic, in order to assist health care. 
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1.2 Goals of the Study 

 

This study makes use of data collected from an experiment regarding pain management techniques 

that was conducted by the Department of Psychology of the University of Cyprus. The ultimate 

goal of the present thesis is to contribute to the integration of a form of psychotherapy, called 

Acceptance and Commitment Therapy, in the everyday life. Acceptance and Commitment Therapy 

(ACT) [4] involves encouraging people to try to deal with their thoughts and feelings instead of 

blaming themselves about them or trying to ignore them. ACT is a vital therapy as it can help 

people struggling with OCD, anxiety, depression, etc. It separates people into two groups, based 

on their reactions at a certain time. The first group is ‘acceptance’, also known as ‘functional’, and 

it contains people who accept their problems and try to cope with them head-on. Contrary, the 

‘avoidance’ group, which is also known as ‘dysfunctional’, is the exact opposite and includes 

people that deny to remain in contact with their thoughts and sensations and attempt to avoid them. 

An individual does not always fall into the same category; their classification changes depending 

on the environment and the circumstances. This thesis aims to effectively classify individuals into 

functional or dysfunctional regarding pain coping.  

 

More specifically, focus is given on discovering whether signals recorded from wearable devices 

are sufficient to effectively train Machine Learning algorithms and to examine whether features 

extracted from signals, like fEMG and EDA, can be more effective than ECG. Moreover, this work 

is intended to examine feature selection methods from three different categories, in order to 

compare the results and conclude to the best-performing subsample of features.  

 

1.3 Methodology 

 

The methodology of the current study can be seen in Figure 1.1. 
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Figure 1.1 Methodology of current work 

 

At first, the Department of Psychology of the University of Cyprus conducted an experiment in 

the lab, where psychophysiological signals were recorded both from stationary and wearable 

devices. These signals are electrocardiogram (ECG), Heart Rate Variability (HRV), facial 

electromyography (fEMG), and electrodermal activity (EDA).  

 

Prior to analysing the collected data, special emphasis was placed on understanding the work 

done during the previous years. Thus, all methodologies employed were considered and the most 

effective ones were applied in the present work. 

 

Due to the fact, that the data samples collected were insufficient, the Rectangular Window 

Methodology [5] was used, in order to produce more data samples. This was done in windows 

of four different sizes: 10, 20, 30, and 40 seconds.  

 

Thereafter, using Python, each signal was cleaned from noise and artefacts caused by device 

errors. The raw signals cannot be used directly. Thus, the next step was to extract features from 

each one of the psychophysiological signals. The focus was given to time-domain and statistical 

features.  

Signal Recording

Research into earlier 
work

Data Multiplication Noise reduction

Feature Extraction

Feature Selection Classifier fine-tuning

Classifier Selection

Devices comparison
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In order to train the algorithms in a reasonable amount of time, only the most important features 

needed to be selected. To do this, techniques from three different Feature Selection methods were 

applied and compared. The techniques examined are Exhaustive Feature Selection, Feature 

Importance and Correlation Coefficient. 

 

Five different supervised binary classification Machine Learning algorithms were examined. 

These are Adaptive Boosting, Gradient Boosting Decision Tree, Bagging Decision Tree, Random 

Forest, and Extra Trees. These algorithms have some parameters that need to be tuned, depending 

on the data, in order to perform well. Thus, classifier fine-tuning followed, where different values 

of the parameters of each algorithm were tested, and the best one was chosen. The next step was 

to train the five algorithms, using the parameters chosen in the previous step, and select the one 

with the best performance. 

 

Finally, some comparisons were performed. Firstly, the signals recorded from the three devices 

(stationary, band, ring) were compared in order to find out whether wearable devices are reliable 

to record psychophysiological signals. Then, the results of the current work were compared to the 

results of previous related works. 

 

1.4 Document Organization 

 

The rest of this thesis is split into five chapters. Table 1.1 reports the content of each chapter. 

 

Chapter Number Chapter Description 

2 Overviews the background knowledge on which the thesis was built 

on. At first, the psychophysiological signals that were recorded in 

the Psychology lab are explained. Thereafter, the Machine Learning 

algorithms used are analysed., as well as the methodology and 

metrics used for evaluating the models. Finally, the devices that 

were used throughout the experiments are briefly described.  

3 Explains in detail the three previous experiments. 

4 Main chapter. Explains all the work that was done to obtain the 

features used to train the algorithm from the raw signals. Firstly, it 
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Chapter Number Chapter Description 

explains the methodology used to increase the number of data 

samples. Afterwards, it clarifies the structure of each signal and the 

features that were extracted from them. At last, it analyses three 

important feature selection methods and concludes to the selected 

subset of features. 

5 Describes how the classifiers were tuned, meaning how the values 

of their parameters were picked, in order to perform best. Also, it 

presents the performance of each algorithm and concludes to the 

most effective one. 

6 Describes the comparisons that were performed. Compares the 

signals recorded from the three different devices, BIOPAC, 

Microsoft Band 2, and Moodmetric Smart Ring. Moreover, this 

chapter compares the results of the current work with the results of 

previous related works. 

7 Summarizes the work done and suggests future improvements. 

Table 1.1 Document Organization 
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Chapter 2  

 

Background Knowledge 

 

 

 

2.1 Psychophysiological Signals 6 

2.2 Machine Learning Algorithms 8 

2.3 Model Evaluation 11 

2.4 Monitoring Devices 14 

 

 

2.1 Psychophysiological Signals 

 

The Department of Psychology of the University of Cyprus conducted a series of four experiments, 

which are explained in Section 3. In these experiments, the psychophysiological signals that are 

explained in this section were collected. 

 

2.1.1 Electrocardiogram (ECG) 

 

When the heart beats, it produces electrical signals. These electrical signals can be recorded non-

invasively from the body surface using an electrocardiogram (ECG) [6]. The basic pattern of this 

electrical activity comprises three waves, which have been named P, QRS, and T [7]. A more 

detailed explanation of how the ECG signal is formed, and what features can be extracted from it, 

can be found in Section 4.2.1 
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2.1.2 Photoplethysmography (PPG) 

 

During a cardiac cycle, i.e., from the beginning of a heartbeat to the beginning of the next one, 

blood volume rises and falls throughout the body. The difference in blood volume can be observed 

in the skin’s outer layers and be measured using optical sensors [8]. More specifically, 

photoplethysmography (PPG) is a technology that uses an LED light source and a photodetector. 

LED emits light into the microvascular bed of tissue and the photodetector, which is a light-

sensitive sensor, records how much light is absorbed or reflected. The amount of light that is 

absorbed or reflected changes based on blood volume [8] [9]. From photoplethysmography signal 

Heart Rate Variability (HRV) can be estimated, which is equal to the distance between consecutive 

R-peaks of the ECG signal. Section 4.2.1 [10] explains in detail the features that can be extracted 

from HRV. 

 

2.1.3 Electrodermal Activity (EDA) 

 

Electrodermal activity (abbreviated as EDA), also known as Galvanic Skin Response (GSR) or 

Skin Conductance (SC), is the change of the electrical properties of the skin which follows 

sweating. It reflects the intensity of a person's emotional state or emotional arousal. The variation 

of skin conductance can be measured non-invasively by applying an electrical potential between 

two points on the skin and measuring the current flow between them. EDA is linked to emotional 

arousal and clinical applications cover a wide range of topics, including pain evaluation [11] [12]. 

A more detailed explanation of how the EDA signal is formed, and what features can be extracted 

from it, can be found in Section 4.2.2. 

 

2.1.4 Facial Electromyography (fEMG) 

 

Facial Electromyography (abbreviated as fEMG) is a technique that is used to detect emotional 

expressions by recording the movement of the muscles on the face. Each time a muscle contracts, 

a burst of electric activity is produced and propagated through adjacent tissue and bone, which can 

be recorded from neighbouring skin areas. The muscles whose activity is most commonly recorded 

are zygomaticus major (ZYG), corrugator supercilii (COR) and orbicularis oculi (ORB) [13]. 

https://imotions.com/blog/zygomaticus-major
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Zygomaticus major is placed on the region of the cheek, is responsible for smiling and is associated 

with positive emotional stimuli. Corrugator supercilii is placed above the brow, as it is involved in 

brow furrowing and is linked with negative reactions [13] [14]. The orbicularis oculi muscle is 

found on the eyelids and its primary purpose is to close the eyelids [15]. According to a study, 

even when participants are instructed to hide their facial expressions, fEMG is still able to detect 

muscle activation [16]. 

 

2.2 Machine Learning Algorithms  

 

There are three types of Machine Learning algorithms: supervised, unsupervised, and 

reinforcement [17]. In supervised algorithms, each sample in the dataset has a label, which 

corresponds to the target, and the algorithm attempts to find patterns with the ultimate goal of 

being able to generalize between cases that do not belong to the dataset. Such methods are usually 

called "learning with a teacher". In unsupervised techniques, the desired output for each input is 

not known, so such algorithms attempt to find common features between the input data. Finally, 

reinforcement learning is similar to “training with a judge”, since the algorithm gets a reward every 

time it returns a correct result, while in the opposite case it gets a penalty. 

 

The algorithms that will be examined in this thesis belong to the category of supervised learning, 

since for each sample of the dataset, the desired label was assigned by a human (in our case a 

psychologist). More specifically, algorithms based in decision trees will be used, as previous work 

has shown that they perform well in similar problems [18] [3]. A decision tree is an effective 

classification tool. Its structure is similar to a tree. Each internal node corresponds to a test (i.e., 

decision) on an input variable, while each edge that comes out of a certain node indicates an 

outcome of the test. Leaf nodes hold a class label [19]. 

 

This subsection explains the Machine Learning algorithms that will be trained for classification.  
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2.2.1 AdaBoost Algorithm 

 

AdaBoost Algorithm [20], which is also known as Adaptive Boosting, uses a sequence of weak 

learners. A weak learner is a model that performs at least slightly better than random guessing. By 

combining a set of weak learners, a strong learner can be achieved.  

 

This algorithm assigns a weight to each sample of the dataset. Initially, the weight of each sample 

is equal to 
1

𝑁
, where 𝑁 is the total number of samples. Therefore, all samples are considered equally 

important. In the next iteration, the weights of each sample change, depending on whether the 

sample was correctly classified or not. In case it was not correctly classified, then its weight 

increases, while in the opposite case it decreases. Thus, in each boosting iteration, the algorithm is 

forced to focus on data samples that were wrongly classified. This process is repeated until the 

desired accuracy is achieved or until a predefined number of learners are used. The learner 

commonly used is a Decision Tree with only one level, meaning that it only makes one decision. 

 

2.2.2 Gradient Boosting Decision Tree 

 

Gradient Boosting Decision Trees (GBDT) [21] has three basic components. These are a weak 

learner, a loss function and an additive model. In each iteration of the algorithm, a new weak 

learner (i.e., a decision tree) is added to the model. Afterwards, the loss function is computed, 

which makes an estimation of how efficient the model is based on the expected and the real output 

values of the classifier. In the next iteration, a new decision tree is added to the model in order to 

decrease the value of the loss function.  

 

2.2.3 Bagging Decision Tree 

 

Bagging Decision Tree is based on the Bagging Ensemble technique [22] (Figure 2.1), which 

combines a set of decision trees to come up with a result.  
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Figure 2.1 Bagging Ensemble Technique [22] 

 

At first, a collection of decision trees is created using all the features available in the dataset and 

is trained using a random subset of the training data. When a new sample arrives, each of the 

decision trees is used to classify it into a class. The class returned by the algorithm is the one that 

was voted by the majority of the classifiers.  

 

2.2.4 Random Forest 

 

Random Forest (RF) algorithm [23] belongs to the category of Bagging Ensemble algorithms. 

Each tree is created by selecting a number of random samples from the dataset with replacement 

and then selecting a set of attributes (without replacement). This procedure is repeated until a forest 

consisting of a predefined number of trees is created. The final class labels are based on majority 

voting of the decision trees in the forest. By increasing the number of trees in the forest, the 

performance of the algorithm improves, whereas more computational power is needed. An 

important property of Random Forest algorithm is that it does not overfit when more trees are 

added. 
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2.2.5 Extra Trees 

 

Extra Trees algorithm [24]  is very similar to Random Forest, with the difference that Extra Trees 

add randomization. While Random Forest chooses the optimum split in a node (i.e., the optimum 

range of the node’s feature value for each branch), this algorithm chooses it randomly. When the 

splits are performed for all candidate features, those that had the best performance are chosen. 

 

 

2.3 Model Evaluation 

 

To determine the most-effective classification algorithm in the topic of this thesis, it is important 

to select the most suitable evaluation methodology and performance metrics against which the 

candidate algorithms will be compared.  

 

2.3.1 Evaluation Methodology 

 

The evaluation methodology used to compare the performance of the Machine Learning 

algorithms is Stratified k-fold cross-validation [25], which was used in related works in the past 

[3] [1] [2]. This method has a single parameter that needs to be chosen, and that is k. The data are 

firstly split into k different class-balanced groups. By class balanced it is meant that the proportion 

of the samples from the two classes is the same. Following, there are k iterations. In each iteration, 

one of the groups is used as the test set and the rest k-1 groups are used as the training set to fit a 

model. The model is then evaluated using the test set and the model is discarded. At the end of the 

k iterations, the average evaluation score is returned. 

 

2.3.2 Performance Metrics 

 

Το compute the performance metrics [26], four important measures are needed. These are true 

positives, false positives, true negatives and false negatives, where: 

• True Positives (TP): The number of samples correctly classified as positive. 

• False Positives (FP): The number of samples incorrectly classified as positive. 

• True Negatives (TN): The number of samples correctly classified as negative. 
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• False Negatives (FN): The number of samples incorrectly classified as negative 

 

In the case of this thesis, by positive it is meant that the participant is in the category of 

dysfunctional, while negative means that the participant is considered as functional. Additionally, 

FN are more vital – in the context of this thesis – than FP. The data are related to health care and 

diagnosis. Thus, it is much more important to not classify an individual as functional when in 

reality they are dysfunctional, because this could result to delay in diagnosis and in receiving the 

necessary treatment. In the opposite case, if an individual is incorrectly classified as dysfunctional, 

they would undergo further examinations before starting the treatment and medication, where the 

would possibly be correctly diagnosed.  

 

Confusion Matrix 

The confusion matrix is a square matrix that includes the four measures explained above. The 

format of a confusion matrix is shown in Figure 2.2. 

 

Figure 2.2 Confusion matrix format 

 

Accuracy 

Correct predictions to total predictions ratio.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

 

PPV (Precision) 

True positives to total predicted positives ratio. 
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𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

NPV 

True negatives to total predicted negatives ratio. 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 

Specificity 

True negatives to total negatives in the data ratio. 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

 

Sensitivity (Recall) 

True positives to total positives in the data ratio. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F1-score 

The harmonic mean of precision and recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

 

AUC 

Area Under the Curve usually refers to the area under the precision-recall curve (Figure 2.3). A 

high AUC value implies a high-quality classification.  
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Figure 2.3 Precision-Recall Curve and AUC example 

 As explained above, the most important measure in our case is FN. Based on this, the order of 

priority of the metrics is decided to be accuracy, F1-score, sensitivity, and then the rest of them. 

2.4 Monitoring Devices 

 

In the series of experiments that are presented in Section 3, three monitoring devices were used in 

order to record the variance of the physiological data of the participants. These devices are 

BIOPAC MP150, Microsoft Band 2, and Moodmetric Smart Ring. BIOPAC was used in all four 

experiments, while the two other devices were used only in the fourth experiment. This section 

gives a brief explanation of each device and the signals they recorded. 

 

2.4.1 BIOPAC MP150 

 

BIOPAC MP150 [27] is a stationary device, which means it is installed in the Psychology lab and 

is primarily intended to operate there. It is a comprehensive tool that can record a wide range of 

signals, from 16 channels. It has a wide range of available sample rates, starting from 2 

samples/hour and reaching 200 kHz [28]. BIOPAC was employed in the context of the research to 

record ECG, GSR, and fEMG (COR, ORB, and ZYG muscles) at a sampling rate of 1000Hz. It 

was used in combination with AcqKnowledge 3.9.0 [29] data acquisition software, which provides 

functionalities for quicker signal analysis. 
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2.4.2 Microsoft Band 2 

 

Microsoft Band 2 [30] is a smart band that is worn on the wrist. It is a hands-free gadget that can 

be worn in everyday life. The sensors that were used in the fourth experiment are PPG and GSR. 

It can record PPG in 1Hz and GSR in 0.2/5Hz. As it can be observed, the available sampling rates 

are mush lower than the stationary unit, in order to save memory and power. 

 

2.4.3 Moodmetric Smart Ring 

 

Moodmetric Smart Ring [31] is a wearable device that can be worn on any finger of the hand. It a 

real-time device which can measure GSR in a sample rate of 3 Hz.  
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Chapter 3  

 

Data Collection and Previous Work 

 

 

 

3.1 Physiological Experiments 17 

3.2 Related Work 19 

 

 

 

The Department of Psychology of the University of Cyprus conducted a series of four experiments: 

Diagnosis of Experiential Avoidance in Smokers, Diagnosis of Eating Disorders, Diagnosis of 

Experimental Avoidance for Anxiety, and Functional versus Dysfunctional Coping with Acute 

Pain. The experiments took place in the psychology lab and the participants were volunteers. This 

section presents the procedure of each experiment, as well as the methodologies of works that are 

related to the topic of this thesis [1] [18] [32].  

 

All experiments are related to Acceptance and Commitment Therapy, where people are split into 

two groups (acceptance or avoidance) based on their reactions. As explained in Section 1.2, 

acceptance-based strategies include individuals accepting their thoughts and sensations 

(functional). On the contrary, avoidance-based strategies are related to avoiding uncomfortable 

thoughts and sensations or attempting to control, alter or avoid them (dysfunctional) [33].  Also, 

one does not always fall into the same category; their classification changes depending on the 

environment and the circumstances. During the data collection of the first three experiments, it 

was assumed that each participant belonged to a single group throughout the whole procedure. In 

the case of the fourth group, this hypothesis did not apply. 
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3.1 Physiological Experiments 

 

3.1.1 Diagnosis of Experiential Avoidance in Smokers 

 

The aim of this experiment was to compare the ability of emotional regulation between smokers 

that belong to the category of acceptance and smokers that belong to the category of avoidance. 

The experiment was composed of five consecutive timeframes and each one had a duration of 8 

minutes. The first timeframe was used as a baseline and to make sure that the participant was in a 

state of calm. In the two following timeframes, an emotionally neutral video was shown and during 

the two final timeframes the participant viewed a video that was supposed to evoke negative 

emotions. With the obtained data, an expert from the Department of Psychology classified the 

participant to one of the categories.  

 

The signals that were recorded from the participants during the whole procedure were ECG, COR 

(using fEMG), and GSR with a sampling rate of 1000Hz. Throughout the four latter timeframes 

the participants were asked to complete a series of cognitive tests, which are short assessments of 

how effectively the brain functions. 

 

3.1.2 Diagnosis of Eating Disorders 

 

The aim of this experiment was to compare the ability of emotional regulation between people 

with low risk and high risk of having an Eating Disorder. The experiment was composed of five 

consecutive timeframes and each one had a duration of 2.5 minutes. The first timeframe was used 

as a baseline and to make sure that the participant was in a state of calm. In the second and fourth 

timeframe, an emotionally neutral video was shown. In the third timeframe the participant viewed 

an unpleasant general-content video, while in the fifth timeframe the participant viewed an 

unpleasant video that was related to eating disorders. 

 

With the obtained data, an expert from the Department of Psychology classified the participants to 

one of the categories. The signals that were recorded from the participants during the whole 

procedure were ECG, COR (using fEMG), and GSR with a sampling rate of 1000Hz. The 

participants were also asked to complete the Body Image Acceptance and Action Questionnaire 
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(BI-AAQ), which measures body image flexibility. Participants responded on a seven-point scale 

from never true to always true, where higher summed scores indicate greater body image 

flexibility [34].  

 

3.1.3 Diagnosis of Experiential Avoidance for Anxiety 

 

The aim of this experiment was to compare the ability of emotional regulation between people that 

belong to the category of acceptance and people that belong to the category of avoidance regarding 

anxiety. The experiment was composed of 72 consecutive timeframes and each one had a duration 

of around 1.8 minutes. In each timeframe the participant was showed a single image, that was 

supposed to cause a different reaction based on if they show signs of anxiety or not. With the 

obtained data, an expert from the Department of Psychology classified the participant to one of the 

categories.  

 

The signals that were recorded from the participants during the whole procedure were ECG, GSR, 

and fEMG (COR, ORB, and ZYG muscles) with a sampling rate of 1000Hz.  

 

3.1.4 Functional Versus Dysfunctional Coping with Acute Pain  

 

In this study 80 people took part [35]. The aim was to compare acceptance and avoidance coping 

strategies in a pain-induction experiment. Participants were randomly split into 4 groups 

(conditions) and the participants of each group were given different instructions on how to deal 

with pain. The four conditions were: (a) Acceptance followed by avoidance; (b) Avoidance 

followed by acceptance; (c) No instructions given (control) followed by acceptance, and (d) No 

instructions given (control) followed by avoidance. 

 

The experiment was composed of three timeframes. The first timeframe lasted 5 minutes, and was 

used as a baseline to make sure that the participant was in a state of calm. Afterwards, participants 

were instructed on how to deal with pain, in the following time frame, based on their condition. 

The second timeframe followed, in which participants were subjected to the Cold Pressor Task 

(CPT), which consists of each individual being asked to immerse their hand in a container filled 

with cold water for as long as they could. Following, participants were instructed on how to deal 
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with pain, in the last time frame, based on their condition. The third timeframe followed, in which 

participants were subjected to a second CPT. The maximum duration of the second and third 

timeframe was 3 minutes.  

 

Multiple measures -- behavioural, psychophysiological and self-reported -- were recorded during 

the whole procedure.  Behavioural measures are pain threshold and pain tolerance, which are the 

number of seconds that passed from immersion until the participant reported pain verbally and 

until the participant removed their hand from the container respectively. The psychophysiological 

signals collected using the stationary device are ECG, part of the EDA signal (SCL; explained in 

Section 4.2.2), and fEMG (COR and ZYG muscles), with sampling frequencies of 1kHz, 250Hz 

and 1kHz respectively. The measures collected using the band are PPG and EDA with sampling 

frequencies of 1Hz and 0.2Hz respectively. The only measure collected from the ring is EDA with 

a sampling frequency of 3Hz. Regarding self-reported data, participants completed some 

questionnaires that examined various aspects, including their psychological condition and their use 

of pain-coping strategies. 

3.2 Previous Work 

 

Three prior researches examined the data of the experiments regarding smoking, eating disorders, 

and anxiety and attempted to classify the participants using Machine Learning. The methodologies 

of the researches are presented in the current section.  

 

This thesis focuses on the experiment that examines pain and emotions management and the work 

that has been done is presented in Chapters 4 to 6.   

 

3.2.1 Diploma Project of Ch. Galazis in 2017 

 

In the first analysis [1], in order to select the combination of features that yields the best results in 

the classification process for the experiments regarding smoking and eating disorders, knowledge 

from a previous research [2] was utilised. In regards to the experiment about anxiety additional 

work was done. All unique combinations of features were used to train and test the Random Forest 

classifier. The candidate features were the mean values of each recorded signal in each timeframe. 
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For each combination the accuracy of the resulted classifier was measured. The selected 

combination was the one with the highest accuracy and the smallest number of features. 

 

The Machine Learning algorithms that were studied are: Logistic Regression, Naive Bayes, K-

Nearest Neighbours, Classification Tree, Neural Network, SVM, Bagging (Decision Tree was used 

as the Base Learner), AdaBoosting (Decision Tree was used as the Base Learner), Gradient Tree 

Boosting, and Random Forest. The data were split into the training and test set, in ten different 

ways. Each algorithm was executed ten times, once for each split, and the results from the 

distribution that returned the best results were used in the comparison of the algorithms.  

 

3.2.2 Master Thesis of A. Trigeorgi in 2018 

 

In a more recent study [18], a different methodology was applied. In this study, more work was 

done in feature extraction, as time-domain features were extracted from ECG signal. Thus, the 

candidate features were not only the mean values of each signal, but also some time-domain 

features extracted from the ECG signal (explained in detail in Chapter 4.1.1). To select the best 

combination of features, Random Forest Classifier was used in conjunction with Stratified k-fold 

cross-validation. This means that the data were distributed in training and testing set in k different 

ways, for each combination of features Random Forest Classifier was executed k times and the 

average performance was measured.  

 

The algorithms studied were the same as in the previous study. What was different in this study is 

the algorithms execution method, as in this study Stratified 5-fold cross-validation was used. The 

data were split into training and test set, in five different ways. Each algorithm was executed five 

times, once for each split, and the average performance of the five executions was measured.  

 

3.2.3 Master Thesis of G. Demosthenous in 2019 

 

This is the latest study [32] of the three studies examined. In this study, even more features were 

extracted from the ECG signal. To select the most effective combination of features, the method 

introduced by Breiman and Friedman was utilized [36] to calculate feature importance using 
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Gradient Boosting Decision Tree. This method ranks all the candidate features based on node 

impurity.  

 

The algorithms studied were different from the two previous studies, as focus was given to 

algorithms that are based to trees. The five algorithms analysed were: Gradient Boosting Decision 

Tree (GBDT), Ada Boosting Decision Tree, Bagging Decision Tree (BDT), Random Forest (RF), 

and Extra Trees (ET). An extra step was done in this analysis, which was the training data 

multiplication, in order to increase the number of samples and negate the hypothesis that each 

participant belonged to the same group throughout the experiment. Two methodologies were used 

and their results were compared: Moving Window Methodology (MWM) and Rectangular 

Window Methodology (RWM). The algorithms execution method combined the methods used by 

the two previous studies. The data were split, to training and test set, in ten different ways using 

10-fold cross-validation and each algorithm was executed 10 times for each split, leading to 100 

executions per algorithm.  
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This chapter describes in detail the procedure used to handle the raw psychophysiological signals 

so that they can be used for algorithm training. As stated in Section 3.4.1, the signals recorded in 

the lab are ECG, part of EDA (SCL), and fEMG (from COR and ZYG muscles) using the 

stationary device. Regarding the wearable devices, using the band PPG and EDA were recorded, 

while using the ring only the EDA signal was recorded. 

4.1 Training Data Multiplication 

 

A major issue with the experiment that this thesis studies is the lack of training data. Data 

multiplication can be used to solve this problem. A related study [32] examined two data 

multiplication methodologies: Moving Window Methodology and Rectangular Window 

Methodology.  

 

Moving Window Methodology 

 

In Moving Window Methodology (MWM), a window is used which is moved along each signal 

recorded. As shown in Figure 4.1, starting from the beginning of each signal, the window moves 
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by 1 second and takes a chunk of data. Thus, a number of artificial samples are produced from 

each participant. These samples can then be handled as independent psychophysiological signals 

and labelled with the label of the signal from which they originate. As it can be observed, 

consecutive samples do not differ much, as they have a big part of data in common. As shown in 

previous research, this results in the overfitting of the model and the inability to generalise.

 

Figure 4.1 Moving Window Methodology [32] 

 

Rectangular Window Methodology 

 

Regarding Rectangular Window Methodology (RWM), the logic is very similar to the first with 

the difference that there is no overlapping between the windows (Figure 4.2Figure 4.2 Rectangular 

Window Methodology [13]). This is the methodology that has yielded the best results in previous 

research [32], and the one that will be used to multiply the data in the present work. 

 

 

Figure 4.2 Rectangular Window Methodology [13] 

 

Four different window sizes (10, 20, 30, and 40 seconds) were used to compare their efficiency in 

the classification phase. RWM was applied to all the recorded signals both from the wearables and 

the stationary devices. The total number of the generated samples is shown in Table 4.1. As it can 

be seen, in all window sizes the number of samples created is greater in the stationary devices than 

the wearables. A possible reason is the lack of synchronization of the moment when the two types 

of devices started recording. As mentioned in Section 3.4.1, 80 people took part in the experiment. 
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As it can be observed, the samples increased by 221-1413% in wearables devices and by 282-

1688% in stationary devices. 

 

 Total number of samples 

Window Size (sec) Stationary Devices Wearable Devices 

10 1430 1210 

20 693 590 

30 451 386 

40 306 257 

Table 4.1 Number of artificial samples produced 

 

4.2 Feature Extraction 

 

The raw psychophysiological signals cannot be used to effectively train the algorithms. Thus, it is 

needed to extract important features from them. This section explains in detail the features 

extracted from each signal.  

 

4.2.1 Features Extracted from ECG Signal 

 

The ECG signal can be represented graphically and a basic pattern can be observed (Figure 4.3). 

In the order listed, the pattern is made up of three waves: P, QRS, and T. In essence, QRS is a 

wave complex, meaning that it consists of three waves: Q, R and S [7].  
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Figure 4.3 Visual representation of ECG signal [37] 

 

There are three categories of features that can be extracted from the ECG signal: frequency-domain, 

spectral, and time-domain measures. Based on a previous study [18], the time-domain measures 

are the most sufficient in the topic of this thesis. Time-domain measures (also called HRV time-

domain measures) are based on Heart Rate Variability, which is known as RR intervals. An RR 

interval is the time elapsed between two consecutive R peaks. RR intervals are also referred to as 

NN intervals. In fact, NN intervals are the time elapsed between two consecutive normal R peaks, 

which are the R peaks that do not include artifacts [38]. In practice, the two terms (RR intervals 

and NN intervals) are used interchangeably [39]. 

 

To extract the RR complex from the raw ECG signal, the BioSPPy Python toolbox was utilized. 

More specifically, using the method biosppy.signals.ecg.ecg the noise was removed and the 

indices of the R peaks were found [18]. Thereafter, RR intervals were computed, as shown in Table 

4.2, as well as the differences (RRdiff) and squared differences (RRsqdiff) between consecutive 

RR intervals. 

 

Abbreviation Explanation Formula 

RR As explained above, it is the interval of 

consecutive R waves in milliseconds. 

𝑅𝑅 =
𝑑𝑖𝑓𝑓(𝑅 𝑝𝑒𝑎𝑘𝑠)

𝑠𝑓
∗ 1000 , where 

sf is the sampling frequency 

RRdiff The absolute value of the differences 

between consecutive RR intervals 

𝑅𝑅𝑑𝑖𝑓𝑓 = |𝑑𝑖𝑓𝑓(𝑅𝑅)| 
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Abbreviation Explanation Formula 

RRsqdiff The squared differences of consecutive 

RR intervals. 

𝑅𝑅𝑠𝑞𝑑𝑖𝑓𝑓 = 𝑅𝑅𝑑𝑖𝑓𝑓2 

Table 4.2 Measures used to express time-domain features 

 

Based on the above, the time-domain features of Table 4.3 can be derived [40] [41]. 

 

Feature 

Abbreviation 

Feature Description Formula Unit 

IBI Inter-Beat Intervals. 

The average of RR 

intervals 

𝐼𝐵𝐼 = 𝑅𝑅̅̅ ̅̅  ms 

BPM Beats Per Minute. 

The average number 

of heart beats per 

minute. 

𝐵𝑃𝑀 =
60000

𝑅𝑅̅̅ ̅̅
. As RR intervals are measured in 

milliseconds, to find bpm, it is needed to divide 

60 000 ms (1 minute) with the mean of RR 

intervals. 

bpm 

SDNN Standard Deviation 

of NN intervals 𝑆𝐷𝑁𝑁 = √
1

𝑁 − 1
∑(𝑅𝑅𝑖 − 𝑅𝑅̅̅ ̅̅ )2

𝑁

1=1

 

ms 

SDSD Standard Deviation 

of Successive 

Differences between 

consecutive RR 

intervals 

𝑆𝐷𝑆𝐷 = √
1

𝑁 − 1
∑(𝑅𝑅𝑑𝑖𝑓𝑓𝑖 − 𝑅𝑅𝑑𝑖𝑓𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2

𝑁

1=1

 

ms 

RMSSD Root Mean Square of 

Successive RR 

interval Differences 

𝑅𝑀𝑆𝑆𝐷 = √
1

𝑁 − 1
∑(𝑅𝑅𝑑𝑖𝑓𝑓𝑖)2

𝑁

1=1

 

ms 

pNN20 The ratio of 

differences of 

consecutive NN 

intervals that are 

greater than 20ms to 

𝑝𝑁𝑁20 =
𝑐𝑜𝑢𝑛𝑡(𝑑𝑖𝑓𝑓(𝑅𝑅)>20 𝑚𝑠)

𝑐𝑜𝑢𝑛𝑡(𝑑𝑖𝑓𝑓(𝑅𝑅))
, where count(X) 

gives the number of elements in X 

% 
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Feature 

Abbreviation 

Feature Description Formula Unit 

all consecutive NN 

intervals 

pNN50 The ratio of 

differences of 

consecutive NN 

intervals that are 

greater than 50ms to 

all consecutive NN 

intervals 

𝑝𝑁𝑁50 =
𝑐𝑜𝑢𝑛𝑡(𝑑𝑖𝑓𝑓(𝑅𝑅)>50 𝑚𝑠)

𝑐𝑜𝑢𝑛𝑡(𝑑𝑖𝑓𝑓(𝑅𝑅))
, where count(X) 

gives the number of elements in X 

% 

HRMAD The Median Absolute 

Deviation of the 

Heart Rate 

𝐻𝑅𝑚𝑎𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑅𝑅𝑖 − 𝑅�̃�|), where 

 𝑅�̃� = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑅𝑅) 

bpm 

Table 4.3 Time-domain features extracted from ECG 

 

4.2.2 Features Extracted from EDA Signal 

 

There are four types of features that can be extracted from EDA. These are time domain features, 

frequency domain features, time-frequency domain features, and Mel-frequency cepstrum features 

[42]. This thesis focuses on time domain features and more specifically in event-related features, 

because features of this type had efficient results in a previous study [42], and statistical features, 

as they are widely used in the literature. To extract the features explained below from the raw EDA 

signal, the NeuroKit2 Python toolbox [43] was used. More specifically, using the method 

neurokit2.eda_process the signal was cleaned from noise and the needed measurements for 

computing the features were found. 

 

Event-related Features 

 

The EDA complex comprises two components: Skin Conductance Level (SCL) and Skin 

Conductance Response (SCR). SCL refers to tonic changes, which are changes in the overall 

baseline of EDA activity, meaning that it fluctuates slightly on a time scale ranging from tens of 
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seconds to minutes. SCR, on the other hand, corresponds to phasic changes, which are rapid 

fluctuations over time that usually occur after the beginning of a stimulus [5] [6]. While the tonic 

level is insufficiently informative, SCR is riding on top of it (Figure 4.4) and has rapid changes 

and easy-to-spot peaks that can be helpful in recognising emotional stimulus events [44]. Thus, 

many SCR-related features, also called event-related features, can be extracted from the EDA 

complex. 

 

 

Figure 4.4 Visual representation of EDA signal and its components [45] 

 

Figure 4.5 illustrates some of the quantitative measurements that will be used to extract features 

from the SCR signal. When a person is exposed to a certain stimulus, their initial level of SCR 

signal rises rapidly, reaches a peak and then drops slowly. Latency corresponds to the time elapsed 

from stimulus exposure to the onset of the SCR burst, and ranges between 1-5 seconds. Peak 

amplitude is the difference in amplitude between the onset and the peak [44]. To reject minor 

changes in the signal that cannot be classified as SCR peaks, a threshold of 0.05 μS is usually used 

[46]. Rise time is the duration from the onset to the peak. [44].  

 

  

Figure 4.5 Graphical representation of the main SCR components [47] 
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The features of Table 4.4 were extracted from the SCR signal [42] within a window of 3 minutes, 

which corresponds to the maximum duration the participants were allowed to have their hand in 

the water. 

 

Feature Name Feature Description 

Peak Count The number of peaks in the window 

Mean Peak Amplitude The average value of amplitudes in the 

window 

Sum Peak Amplitude The summation of amplitudes in the 

window 

AUC Area under the curve of the phasic 

component 

Table 4.4 Event-related features extracted from EDA 

 

Statistical Features 

 

Statistical features include mean value, standard deviation, kurtosis and skewness of the signal 

[42]. The statistical features extracted can be seen in Table 4.5. 

 

Feature Name Feature Description 

Mean EDA Average value of EDA 

Standard Deviation EDA Standard Deviation of EDA 

Kurtosis EDA Kurtosis of EDA 

Skewness EDA Skewness of EDA 

Mean SCL Average value of SCL 

Standard Deviation SCL Standard Deviation of SCL 

Mean SCR Average value of SCR 

Standard Deviation SCR Standard Deviation of SCR 

Table 4.5 Statistical features extracted from EDA 
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It is worth mentioning that in some cases, there were no healthy SCR peaks detected in the EDA 

signal that was recorded by the ring. Therefore, it was not possible to extract features from that 

signal. 

 

4.2.3 Features Extracted from fEMG Signal 

 

Firstly, both COR and ZYG signal, were processed to remove noise and artefacts. This was done 

using the Python toolbox NeuroKit2 [43]. Afterwards, mean value, root mean square value, median 

value and mean absolute value of each signal were extracted, as they brought good results in a 

related work [48]. 

4.3 Feature Selection 

 

If we use all the extracted features to train the classifiers, this will greatly increase the time 

complexity of the algorithms and require a lot of memory resources. Also, the performance of the 

algorithms may be reduced, due to overfitting or in case there are features that are not related to 

the target. For this reason, we perform feature selection so that we can select the features that 

appear to have better performance when used in the classification. 

 

When it comes to supervised data, there are numerous feature selection approaches to choose from. 

More specifically, there are three major categories: Wrapper, Filter, and Embedded Methods. 

Hybrid Methods, which are a mix of filter and wrapper methods are also used sometimes [49]. The 

three main categories of methods mentioned will be examined, in order to compare their results. 

Figure 4.6 shows the main concept behind the three main categories, which are explained in detail 

in this chapter. 
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Figure 4.6 Flowchart of the three main feature selection methods [50] 

In this subsection, the three main categories of feature selection methods are explained, and one 

technique from each category is used to perform feature selection on the available data.  

 

4.3.1 Wrapper Methods 

 

4.3.1.1 Technique 

 

In wrapper methods, a certain machine learning algorithm is used, which we attempt to fit on the 

data. By searching the whole space of possible features, these methods try to find the feature 

combination that yields the best performance. Several performance measures can be used. In the 

case of classification, metrics such as accuracy, precision, recall, and f1-score are the most 

common. Wrapper Methods have high computation time, especially when there are many possible 

features in the dataset [51]. 

 

The main feature selection techniques that are under wrapper methods, are Forward Selection, 

Backward Elimination and Exhaustive Feature Selection. In Forward Selection starting with the 

best performing feature, in each iteration another variable is chosen that gives the best performance 

when combined with the already selected features. This process continues until the predetermined 

performance requirement is met. Backward Elimination is the reverse of Forward Selection, as 

first we fit the model using all the possible features, and in each iteration a feature is removed, 
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based on p-value. A p-value is a statistical measure that is used to validate a null hypothesis against 

observed data. The null hypothesis is the hypothesis that the observed difference between specified 

populations is caused by to errors and it is not statistically significant. Exhaustive Feature Selection 

performs a brute-force search, meaning that every potential subset of features is examined and the 

one with the highest performance is selected [49]. This thesis examines the Exhaustive Feature 

Selection technique, in order to compare its results with a related work [2]. 

 

4.3.1.2 Results 

 

The Machine Learning algorithm used is the Random Forest Classifier with 1000 estimators, to be 

consistent with previous work. The evaluation criterion was the average accuracy of a feature 

combination between ten executions. In each execution the data were split into different class-

balanced training and test sets, meaning that 2/3 of the samples that belong to the acceptance 

category and 2/3 of the samples that belongs to the avoidance category were used for training and 

the rest samples were used for testing.   

 

Since there is a large number of possible features (18 in stationary devices, and 33 in wearable 

devices), it was decided to examine the performance of all the feature combinations of size smaller 

than four. Anyhow, a feature combination with more than three features would cause time, memory, 

and performance issues, as previously explained. The total number of feature combinations that 

were examined are 987 and 6017 for the stationary and wearable devices’ data respectively.  

The execution time of feature selection on stationary devices was three hours for all the four 

window sizes, whereas it took around four hours for each window size on wearable devices, which 

means about twelve hours in total. This demonstrates that the execution time of wrapper methods 

is notably long, especially when dealing with high dimensional data. 

 

Table 4.6 shows, in descending order, the three best-performing combinations of features for the 

three window sizes and the two types of devices. As we can see, relatively good accuracy has been 

achieved in all cases. Also, both in stationary and in wearable devices, the results are quite similar 

between the three different window sizes, although the accuracy drops as the window size 

increases. This was expected, because as the window size increases the number of generated 

samples decreases. Thus, the purview of the algorithm is limited and the accuracy drops. Moreover, 
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in most of the cases, the feature combinations that brought the best results were of size three, while 

in a few cases two-feature combinations also brought good results.  

 

With regard to stationary devices, the combinations that brought the best results include features 

mainly from the EDA signal (i.e., sweat) and the COR and ZYG signals (i.e., face muscles). 

Specifically, from the EDA signal, the average of the tonic level (SCL) brought the best results 

and from the other two signals the Mean Absolute Deviation and the Root Mean Square. 

Regarding wearable devices, there are various combinations of features that brought good results. 

Most of these include the average EDA signal recorded from the ring, the average amplitude of 

the SCR signal recorded from the band, and the average heart rate. 

 

It is noteworthy that in both types of devices, the best combinations include features extracted 

from the EDA signal. Nevertheless, on stationary devices this is the SCL while on wearables, 

which had a wider range of features extracted from EDA, other features seemed more popular in 

the combinations. 

 

Window 

Size 

Data from Stationary Device (three 

best feature combinations) 

Data from Wearables Devices (three best 

feature combinations) 

10 
 

Combination Accuracy 

EDA_meanSCL, 

COR_mad, ZYG_rms 

90.85% 

EDA_meanSCL, 

COR_rms, ZYG_rms 

90.42% 

EDA_meanSCL, 

COR_mad, ZYG_mad 

90.21% 

 

Combination Accuracy 

ECG_hrmean, 

EDAwatch_meanSCL, 

EDAring_mean 

89.77% 

ECG_hrmean, 

EDAwatch_mean, 

EDAring_mean 

88.52% 

ECG_ibi, EDAwatch_mean, 

EDAring_mean 

88.27% 

   

20 Combination Accuracy 

EDA_meanSCL, 

COR_mad, ZYG_mad 

90.74% 

Combination Accuracy 

ECG_hrmean, 

EDAwatch_meanPeakAmp, 

EDAwatch_std 

86.67% 
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Window 

Size 

Data from Stationary Device (three 

best feature combinations) 

Data from Wearables Devices (three best 

feature combinations) 

EDA_meanSCL, 

COR_mad, ZYG_rms 

89.42% 

EDA_meanSCL, 

COR_rms, ZYG_mad 

88.54% 

 

EDAwatch_meanPeakAmp, 

EDAwatch_stdSCR, 

EDAring_mean 

86.67% 

ECG_ibi, 

EDAwatch_meanPeakAmp, 

EDAring_mean 

86.15% 

 

   

30 Combination Accuracy 

EDA_meanSCL, 

COR_mad, ZYG_mad 

87.16% 

EDA_meanSCL, 

COR_rms 

86.48% 

COR_mad, ZYG_mad 86.48% 
 

Combination Accuracy 

ECG_hrmean, 

EDAwatch_meanSCL, 

EDAring_mean 

84.37% 

EDAwatch_meanPeakAmp, 

EDAwatch_meanSCL, 

EDAring_mean 

83.59% 

ECG_hrmean, 

EDAwatch_meanPeakAmp, 

EDAwatch_mean 

82.81% 

 

   

40 Combination Accuracy 

COR_mad, ZYG_rms 86.00% 

COR_mean, COR_mad, 

ZYG_rms 

86.00% 

COR_mad, ZYG_mean, 

ZYG_rms 

86.00% 

 

Combination Accuracy 

ECG_sdsd, ECG_hr_mean, 

EDAring_stdSCR 

75.29% 

ECG_bpm, ECG_hr_mad, 

EDAwatch_mean 

74.11% 

ECG_sdnn, ECG_hr_mean, 

EDAring_skew 

74.11% 

 

   

Table 4.6 Results of Feature Selection using Wrapper Method 
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4.3.2 Embedded Methods 

 

4.3.2.1 Technique 

 

Embedded methods use classification algorithms that have built-in feature selection functionality 

[50]. There are two types of embedded methods that are widely used. Techniques that belong to 

the first type utilize inherent characteristics of decision tree algorithms, such as Random Forest 

and Classification and Regression Tree (CART). The second type involves regression l1 

regularization using least absolute shrinkage and selection operator (LASSO) [50].  

 

This thesis makes use of the first type, to be consistent with previous work where the results were 

excellent. The methodology used is the one that was proposed by Breiman and Friedman [36]. 

Their methodology uses CART and computes feature importance based on Gini impurity [52]. 

Gini impurity, also known as Mean Decrease Impurity, is defined as the overall decrease in node 

impurity (a measure of the homogeneity of the labels at the node) weighted by the probability of 

reaching that node [53]. The more a feature reduces impurity, the more significant it is [54]. 

 

4.3.2.2 Results 

 

In each of the eight cases, the importance of each feature has been normalized so that the sum of 

all the weights sums up to one. Table 4.7 shows the importance of the features in all cases.  

As we can see, the average tonic level is the most important in stationary devices across the three 

smaller window sizes (SCL). The features that follow are the statistical properties of the COR and 

ZYG signals, and more specifically MAD. Moreover, in the 40-second window, inter-beat 

intervals (ECG_ibi) appear to be the most important feature.  

 

Regarding wearable devices, the five most important features in all three window sizes are 

statistical features from the EDA signal recorded by the band (namely the average of the entire 

signal and its tonic level), time domain features from the EDA signal recorded by the band (sum 

and average of the amplitude of the phasic signal) and the average of heart rate. Of these, the most 

important appear to be the average amplitude and the average tonic level. Finally, while the same 
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signal (EDA) was recorded on both the band and the ring, only the features extracted from the 

band had good results. More about the comparison of the devices can be found in Section 6. 

 

As we can observe, the average tonic level brought good results in both stationary and wearable 

devices. The other features that had good performance are not the same, and cannot be compared, 

as the signals they were extracted from were not recorded in both device types. 
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Table 4.7 Results of Feature Selection using Embedded Method 

 

4.3.3 Filter Methods 

 

4.3.3.1 Technique 

 

Unlike the previous two methods, filter methods are not related to any Machine Learning algorithm. 

On the contrary, they get as an input the candidate features, they filter them and return those that 

are more related to the target variable. I believe this is the first time this technique is used in this 

line of work. There are various techniques that belong to filter methods and the most popular ones 

are Pearson Correlation, Chi-square test, and Information Gain. The choice of method to be used 

depends on various factors such as whether the features and the target variable are numerical or 
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categorical values [55] [56]. The main advantages of filtering methods are that due to the fact that 

they do not rely on a specific algorithm, the selected features are "generic, having incorporated 

few assumptions" [57]. Additionally, they usually need less computational resources and have a 

fast execution time. 

 

The technique that this thesis utilizes is Pearson correlation coefficient, as it gives information 

about both the magnitude (i.e., strength) of the correlation and the direction of the relationship. 

Pearson correlation ranges between -1 and +1, with -1 indicating total negative linear correlation, 

0 indicating no connection, and +1 indicating total positive correlation. The correlation between 

two variables, x and y, is commonly represented as 𝒓𝒙𝒚 and is defined as [58]: 

  

where  

• 𝑛 is the sample size of the dataset 

• 𝑥𝑖, is the value of feature x in the i-th sample; and analogously for 𝑦𝑖 

• �̅� is the mean of the feature x in all data samples; and analogously for �̅� 

 

4.3.3.2 Results 

 

We can compute Pearson correlation between all features and the target variable, as well as 

between all possible pairs of features. These correlations can be represented in a matrix, known as 

correlation matrix. To do this, Seaborn Python library [59] was used. The results are shown in 

Table 4.8. Only the lower triangle of the matrix is shown as it is symmetrical. As shown in the 

legend, red color corresponds to positive correlation, blue color to negative correlation, while dark 

tones represent high correlations and lighter tones lower correlations. 
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Table 4.8 Results of Feature Selection using Filter Method 

 

It is clear that the correlations between the different window sizes in the two types of devices are 

nearly identical. The gaps shown in the three smaller window sizes in wearable devices were 

caused because there were no healthy SCR peaks detected in the EDA signal of the ring in the time 

period corresponding to the window size, because instead the instant EDA signal was recorded 

instead of the raw EDA (this was fixed in the next experimental phase). For this reason, the case 

of the 40-second window was also analyzed. What is important is that none of the features seems 

to be highly correlated with the target variable (‘label’ column), with the pulse value having the 

highest correlation with the target variable and reaching 0.3. We can also notice that in both devices’ 

types there is a negative correlation between the pulse value (ECG_bpm, ECG_hr_mean) and the 

other features derived from the ECG signal, while the other features that are extracted from the 

ECG signal appear to have a fairly high negative correlation. 

 

Regarding stationary devices, there appears to be a high negative correlation between RMS and 

MAD features in both muscles (COR and ZYG). In wearable devices we observe that the features 

derived from the band are positively correlated with each other, as well as the statistical 

characteristics of the SCR, SCL and EDA. There is also a high positive correlation between the 

static characteristics of STD, SCL, and EDA with the features that are related to peak amplitude. 

The other features have a very low correlation with each other. 
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4.3.4 Conclusion 

 

Comparison of the three feature selection methods 

 

Wrapper and embedded methods appear to have quite similar results in both types of devices. 

Based on the results of these two methods, the most effective features of the stationary devices are 

the average value of SCL and statistical properties of COR and ZYG signals. Regarding wearable 

devices, the average value of EDA signal, SCR amplitude, and heart rate have the best performance.  

By comparing the results of the wrapper methods’ technique and the filter methods’ technique, we 

can observe that features that belong in combinations that brought good results in the wrapper 

method have a very high correlation in the filter method. A possible reason is that all the features 

that belong in a certain combination have great results, and adding them all together makes the 

combination a little more efficient and therefore brings it higher in the ranking. However, if we 

use all those features, the training phase will take more time. Thus, the filter method is important 

to detect redundant features. 

 

Regarding the comparison of embedded and filter methods, among all the features that seemed to 

have high feature importance in the embedded method, only the average value of the heart rate is 

related to the target variable, based on the correlation matrix. 

 

Feature selection based on the results of the three methods 

 

As we want to investigate the classification accuracy of wearable devices, we will avoid using 

features extracted from stationary devices’ signals. One of the features that yielded good results in 

most of cases (both in stationary and wearable devices) is the average value of the tonic level of 

the EDA signal (SCL). However, based on the selection methods that were performed in data from 

the wearable devices, mean peak amplitude (which was not available in stationary devices) had a 

very similar performance to the average value of SCL. Also, mean peak amplitude is considered 

more reliable in the bibliography, because SCL varies at different levels depending on the person. 

Thus, the first feature we choose is mean peak amplitude. 

 

In addition, we could use the average value of the EDA signal as well as the average value of SCR 

amplitude. However, when looking at the correlation matrix, we can notice that the average value 
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of SCL has a strong correlation with these two features, so they would be redundant. The average 

value of heart rate had really good performance in both wrapper and embedded methods in 

stationary devices. Despite the fact it did not appear in any combination in the wrapper method in 

stationary devices analysis, in embedded methods it had a relatively high feature importance and 

it was not low in the ranking. Therefore, the average value of heart rate is the second feature we 

choose.  

From the correlation matrix, it can be observed that any other feature has a strong correlation either 

with mean peak amplitude or heart rate. Hence, we will keep only these two features, since as 

explained at the beginning of the current subsection, smaller feature sets are preferable. 

 

As an extra step, a representation of the data distribution can be performed. In Figure 4.7 a 2-D 

distribution of data with regard to mean peak amplitude and heart rate is shown. Each axis 

corresponds to a feature, and the colour of dots distinguishes the two groups. It is obvious that 

there is a big difference between the number of samples of the two groups, as most samples belong 

to the functional group. Also, the two groups are not separated in two distinct areas in space, as 

one would expect. Most of the data are between the values 0 – 2 μS of mean peak amplitude, and 

possibly the few that are left out correspond to noise that the tool did not manage to remove.  

 

 

Figure 4.7 Distribution of data based on the selected features 
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A closer view of the dense area is shown in Figure 4.8. Although both groups have most of their 

values in the range 0-0.75μS of mean amplitude, and 55-100 bpm of heart rate, there is a 

differentiation in the rest values. Most samples of the dysfunctional group have amplitude values 

between 0.75-1.25 μS, while only the functional group’s samples have amplitude higher than 1.45 

μS and heart rate higher than 95 bpm. 

 

Figure 4.8 Distribution of data based on the selected features (zoomed in the dense area) 

 

To confirm that more features would be redundant for the classification, a 3-D visualization of the 

data can be performed. The third feature used is the average value of EDA signal, as the 

combination of these three features has a good performance based on the wrapper method. Data 

distribution from two different viewpoints can be seen in  Figure 4.9 and Figure 4.10. From the 

first viewpoint, it is noticeable that samples are still concentrated in a specific area. The second 

viewpoint verifies the linear correlation between mean peak amplitude and mean of EDA signal, 

that was indicated in the correlation matrices. 
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Figure 4.9 3-D Distribution of data from viewpoint 1 

 

 

Figure 4.10 3-D Distribution of data from viewpoint 2 
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Chapter 5 

 

Classification  

 

 

 

5.1 Classifier Fine-Tuning 45 

5.2 Classifier Selection 47 

 

 

5.1 Classifier Fine-Tuning 

 

An important step before the training of the classifiers is to tune their parameters, in order to 

perform in the best way possible on the available data. The performance of the five classifiers upon 

several numbers of decision trees (known as estimators) will be examined. The three performance 

metrics are accuracy, F1- score and recall. The window size for all the experiments will remain 

constant at 20 seconds, and five numbers of estimators will be tested:  25, 50, 100, 200 and 300. 

The window size was chosen to be 20 seconds, to keep a balance between the number of data and 

the processing time. All classifiers will be trained using only the two features selected in the 

previous section (average value of SCR peak amplitude and average value of heart rate). Although 

more estimators usually result in better classification performance, they also need more processing 

time. Thus, this a serious trade-off that needs to be examined is the increase in performance and in 

processing time. The results are shown in Figure 5.1. 

 



46 

 

 
 

  

 

 

Classifier Number of estimators 

ABDT 100 

BDT 50 

RF 100 

GBDT 100 

ET 100 

Figure 5.1 Classifier fine-tuning results 

 

BDT, RF, and ET have an increase in their performance, as the number of estimators is rising, end 

after a certain value the performance changes negligibly. Hence, 50, 100, and 100 number of 

estimators were chosen, respectively. In ABDT and GBDT classifiers’ accuracy and F1-score rise, 

while recall drops. The number of estimators chosen for both of them is 100, in order to achieve a 

balance between the values of the three metrics. 
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5.2 Classifier Selection 

 

The next, and final, step is to compare the five classifiers. The performance metrics used are those 

explained in Section 2.3.2. Due to the fact that the experiment analysed is related to health, special 

importance was given, in order of priority, to accuracy, F1-score, and sensitivity. The evaluation 

methodology used is Stratified 10-fold cross-validation. This means that data were split in 10 

different ways in training and test sets and afterwards each algorithm was executed 10 times for 

each split and its average performance on the seven metrics was calculated. Thus, each classifier 

was executed 100 times. This was done in all four window sizes. The value for each metric along 

with the corresponding standard deviations are shown in Table 5.1. 

 

10 seconds window 

 GBDT ABDT BDT RF ET 

 Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.84 0.03 0.8 0.03 0.85 0.03 0.84 0.03 0.83 0.03 

F1-score 0.82 0.04 0.77 0.04 0.83 0.03 0.82 0.03 0.8 0.04 

Sensitivity 0.9 0.04 0.9 0.04 0.89 0.03 0.9 0.03 0.89 0.03 

Precision 

(PPV) 

0.86 0.03 0.82 0.03 0.88 0.03 0.86 0.03 0.85 0.03 

AUC 0.9 0.03 0.87 0.03 0.91 0.02 0.91 0.03 0.89 0.03 

Specificity 0.72 0.07 0.63 0.07 0.77 0.06 0.73 0.06 0.71 0.07 

NPV 0.8 0.07 0.77 0.07 0.8 0.05 0.79 0.05 0.78 0.06 

20 seconds window 

 GBDT ABDT BDT RF ET 

 Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.82 0.05 0.79 0.05 0.82 0.05 0.82 0.05 0.81 0.05 

F1-score 0.79 0.06 0.76 0.05 0.8 0.06 0.8 0.05 0.79 0.05 

Sensitivity 0.89 0.05 0.88 0.06 0.88 0.06 0.88 0.05 0.88 0.05 

Precision 

(PPV) 

0.84 0.04 0.82 0.04 0.86 0.04 0.85 0.04 0.84 0.04 

AUC 0.88 0.05 0.85 0.05 0.88 0.05 0.87 0.05 0.87 0.05 

Specificity 0.68 0.1 0.63 0.11 0.72 0.1 0.71 0.09 0.69 0.09 
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NPV 0.78 0.09 0.75 0.09 0.77 0.09 0.77 0.08 0.76 0.08 

30 seconds window 

 GBDT ABDT BDT RF ET 

 Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.79 0.05 0.79 0.06 0.81 0.05 0.81 0.06 0.78 0.03 

F1-score 0.76 0.07 0.76 0.07 0.79 0.06 0.78 0.06 0.75 0.04 

Sensitivity 0.87 0.06 0.86 0.07 0.85 0.07 0.86 0.07 0.86 0.04 

Precision 

(PPV) 

0.82 0.05 0.82 0.05 0.86 0.05 0.85 0.05 0.81 0.03 

AUC 0.85 0.06 0.83 0.07 0.87 0.06 0.88 0.06 0.83 0.03 

Specificity 0.63 0.14 0.65 0.12 0.73 0.12 0.71 0.12 0.62 0.06 

NPV 0.74 0.1 0.73 0.11 0.74 0.09 0.74 0.1 0.71 0.06 

40 seconds window 

 GBDT ABDT BDT RF ET 

 Value SD Value SD Value SD Value SD Value SD 

Accuracy 0.75 0.07 0.76 0.07 0.74 0.08 0.74 0.07 0.73 0.08 

F1-score 0.71 0.08 0.73 0.08 0.7 0.09 0.7 0.08 0.69 0.1 

Sensitivity 0.84 0.09 0.83 0.09 0.83 0.1 0.84 0.09 0.83 0.1 

Precision 

(PPV) 

0.79 0.06 0.81 0.06 0.79 0.06 0.78 0.06 0.78 0.07 

AUC 0.8 0.08 0.8 0.09 0.8 0.08 0.8 0.07 0.8 0.08 

Specificity 0.57 0.15 0.63 0.15 0.58 0.15 0.56 0.16 0.54 0.17 

NPV 0.68 0.14 0.68 0.13 0.67 0.15 0.67 0.13 0.66 0.15 

Table 5.1 Results of all classifiers in all window sizes 

 

The overall results are very good. The most effective algorithm in each window size is coloured 

differently. It can be observed that as the window size increases, the effective of all the algorithms 

drops. Hence, the best results are yielded in the data produced using the 10-second window. The 

performances of the five classifiers within a single window size are very close to each other. The 

best algorithm is Bagging Decision Tree, with an excellent average accuracy of 85%. It is ideal 

that accuracy is in the range 80-90%, as this suggests that the classification is of high quality and 

that the model's chances of overfitting are low. Moreover, the standard deviation of all metrics is 

low, indicating that there is low variance in the efficiency of the model. 
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6.1 Comparison of Psychophysiological Features Between Devices 

 

6.1.1 Comparison Set-up 

 

As mentioned in Section 3.1.4, the signals recorded from the stationary devices are ECG, part of 

EDA(SCL), and fEMG (from COR and ZYG muscles) in sampling frequencies of 1kHz, 250Hz 

and 1kHz respectively. Regarding the wearable devices, the signals recorded using the band are 

PPG (1 Hz) and EDA (0.2 Hz) and using the ring only EDA (3 Hz) was recorded. The signals that 

can be compared are ECG between the stationary device and the band, SCL between all devices, 

and EDA between the two wearable devices.  

 

In a previous study [60], the same data (but without data multiplication) were used and the 

correlation between the ECG and SCL signals of the stationary device and the band was analysed. 

The results shown strong correlation between the ECG features and weak correlation between SCL 

features. In this study the same signals are compared using the dataset generated by data 

multiplication in the 10-second window, in order to find out if the findings remain the same in the 

window-size with the best performance. 
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Moreover, the remaining signals are compared, which are EDA of the band and the ring and SCL 

of the stationary device and the ring. The data used to perform these comparisons, are the data 

generated by data multiplication in the 40-second window. For each signal, feature extraction was 

held as explained in Section 4. The reason why only the data from the 40-second window were 

used for these comparisons is because only in these data it was possible to extract all features from 

all devices. In other window sizes, no healthy SCR peaks were observed in ring’s EDA signal, 

hence SCR-related features could not be extracted from the ring, due to errors in signal recording 

(instant EDA was recorded instead of raw EDA). This comes in contrast to the previous analysis, 

which used 10-second intervals. 

 

6.1.2 Results 

 

Pearson’s correlation coefficient and two-tailed p-value were computed. Additionally, as 

Pearson’s correlation may be misleading (i.e., high correlation does not always imply high 

agreement), the Bland-Atman scatter plots [61] were created.  

 

Bland-Atman scatter plot is an effective representation of the relationship between two paired 

variables using the same scale. The horizontal axis represents the mean values of two 

measurements and the vertical axis the difference between the two measurements. The plot 

includes three reference lines. The first one is the upper limit of agreement, which is equal to  

𝐴𝑉 + 1.96 ×  𝑆𝐷, where 𝐴𝑉 is the average value of the measurements and 𝑆𝐷 is their Standard 

Deviation. The second one is the mean difference between the measurements and the last one is 

the lower limit of agreement, that is equal to 𝐴𝑉 − 1.96 ×  𝑆𝐷. The upper and lower limits of 

agreement are represented as dashed lines, while the mean difference is a solid line. If the mean 

difference is close to zero, then the two measurements agree perfectly. Also, if the values are 

between the dashed lines, then the measurements agree. 

 

A Bland-Atman scatter plot was constructed for each feature that was being compared. 
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6.1.2.1 Results Comparing ECG and SCL Signals of BIOPAC and Microsoft Band 2 

 

Correlations between devices were examined on the mean of each feature in the 10-second 

intervals. The findings of the comparison between ECG and SCL features of BIOPAC and 

Microsoft Band 2, are shown in Table 6.3 and Table 6.2. 

 

Feature Mean in 

BIOPAC 

Mean in Microsoft 

Band 2 

r-value 

(Correlation) 

p-value 

IBI 699.00 719.00 0.02 0.48 

BMP 87.60 85.30 0.04 0.15 

SDNN 48.00 39.50 0.09 0.00 

SDSD 29.50 28.70 0.07 0.02 

RMSSD 48.40 58.60 0.06 0.03 

pNN20 0.51 0.52 -0.01 0.71 

pNN50 0.19 0.26 0.01 0.60 

HRMAD 31.50 25.50 0.06 0.05 

Mean SCL 48.04 0.61 0.01 0.66 

Standard Deviation SCL 0.09 0.01 0.02 0.43 

Table 6.1 Results of comparison between ECG and SCL features of BIOPAC and Microsoft Band 2 
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Table 6.2 Scatter plots regarding comparison between ECG and SCL features of BIOPAC and Microsoft Band 2 

 

In some of the features (SDNN, SDSD, RMSSD, and HRMAD) the p-value is less than or equal 

to 0.05 (indicating that the correlation is statistically significant), and the correlation (r-value) 
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between the two devices is weak (r < 0.40). In the rest features the p-value is higher than the 

significance level (α = 0.05). Thus, we fail to reject the null hypothesis and we conclude that their 

correlation is not statically significant. 

 

Looking at the scatter plots, we can observe that features that come from the ECG signal agree, 

while the two features that are related to SCL (mean value and standard deviation) are not in 

agreement. Thus, the findings remain the same as in the previous study [35], when considering 

this method. 

6.1.2.2 Results Comparing EDA Signal of Microsoft Band 2 and Moodmetric Smart Ring 

 

The correlation between the devices was examined on the mean of each feature in the 40-second 

intervals. The findings are shown in Table 6.3Table 6.3 and Table 6.4. 

Feature Mean in 

Microsoft 

Band 2 

Mean in 

Moodmetric Smart 

Ring 

r-value (Correlation) p-value 

peak count 9.13 4.29𝐸 × 10−1 9.17 × 10−2 0.16 

mean peak amplitude 0.64 2.63 × 10−5 9.40 × 10−3 0.89 

sum peak amplitude 5.73 2.63 × 10−5 9.78 × 10−3 0.88 

AUC -0.15 9.17 × 10−1 −2.25 × 10−3 0.97 

mean EDA 0.64 6.12 × 10−5 6.59 × 10−2 0.31 

Standard Deviation 

EDA 

0.01 3.07 × 10−7 −8.73 × 10−2 0.18 

kurtosis EDA 0.11 −3.23 × 10−2 −1.35 × 10−2 0.84 

skew EDA 0.180 −1.32 × 10−1 8.33 × 10−2 0.2 

mean SCR 0.01 2.42 × 10−7 1.71 × 10−2 0.79 

Standard Deviation 

SCR 

0.01 1.15 × 10−7 −4.57 × 10−2 0.48 

Mean SCL 0.63 6.10 × 10−5 2.58 × 10−2 0.69 

Standard Deviation 

SCL 

0.01 1.75 × 10−7 −7.17 × 10−2 0.27 

Table 6.3 Results of comparison between EDA features of Microsoft Band 2 and Moodmetric Smart Ring 
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Table 6.4 Scatter plots regarding comparison between EDA features between Microsoft Band 2 and Moodmetric Smart Ring 

 

The p-value is higher than the significance level (α = 0.05) in all features. Hence, we fail to reject 

the null hypothesis and, based on Pearson’s correlation, we conclude that the correlation is not 

statically significant. Additionally, the mean values of each feature are not close to each other 

when measured with the two devices. However, in Bland-Altman scatter plots a large number of 

points are between the two dashed lines (limits of agreement), indicating that the measurements 

agree.  

 

6.1.2.3 Results Comparing SCL Signal of BIOPAC and Moodmetric Smart Ring 

 

The whole EDA signal of the stationary device was not recorded, thus only SCL could be 

compared between the stationary device and the ring. The results are shown in Table 6.5 and Table 

6.6.  

 

 

Feature Mean in 

BIOPAC 

Mean in Moodmetric 

Smart Ring 

r-value 

(Correlation) 

p-value 

Mean SCL 8.93 6.10 × 10−5 0.15 0.02 
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Feature Mean in 

BIOPAC 

Mean in Moodmetric 

Smart Ring 

r-value 

(Correlation) 

p-value 

Standard Deviation SCL 0.19 1.75 × 10−7 0.33 1.29 × 10−7 

Table 6.5 Results of comparison between SCL features of BIOPAC and Moodmetric Smart ring 

 

  

Table 6.6 Scatter plots regarding comparison between SCL features between BIOPAC and Moodmetric Smart Ring 

 

As shown in the table, the p-value is lower than 0.05. Thus, the result is statistically important. 

The correlation between the two devices is weak in both features (r <0.40). Looking at the scatter 

plots, it can be noticed that values remain between the two dashed lines, which implies that SCL 

measurements from the ring and the stationary device agree, despite the fact that their mean values 

are not close. 

 

6.2 Comparison of Results with Previous Work  

 

This section compares the results of the current work with the three previous related analyses that 

were described in Section 3.2. Table 6.7 shows the candidate features and the selected features in 

each analysis, as well as the selected classifier in each one.  
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 Selected Features 

Best 

Classifier 

Overall 

Average 

Accuracy of 

the Best 

Classifier 

(%) 

Galazis, 2017 

[1] 

Smoking: GSR RF 66 

Eating Disorder: ECG, BI-AAQ 

(questionnaire)  

Anxiety: COR 

Trigeorgi, 2018 

[18] 

Smoking: ECG_rmssd RF 73 

Eating Disorder: ECG_sdnn, COR_mean 

Anxiety: ECG_bpm, ECG_rmssd, 

ECG_pnn20, COR_mean 

Demosthenous, 

2019 [32] 

All: GSR_mean, COR_mean BDT (RWM) 90 

Current study 
Pain: SCRwatch_meanPeakAmp, 

ECG_heartrate 

BDT (RWM) 85 

Table 6.7 Results of previous analyses and current work 

 

As it can be observed, there is no certain family of features or combination that yielded the best 

performance in all cases. In the three previous studies, the most effective features appear to come 

from ECG and COR signals, while GSR is not that popular. In the current study, SCR peak 

amplitude, which was extracted from GSR, belongs to the combination that gave the best results. 

Thus, if more features were extracted from all the available signals in previous studies, maybe 

GSR would occur more often in the selected features.  

 

In terms of the most effective Machine Learning Algorithm, Random Forest performed best in the 

two earliest studies, while Bagging Decision Tree was the best in the last and current work. The 

accuracy of the most effective classifier is much lower in the two earliest works (66% and 77% 

respectively), whereas BDT had a very good performance in the last two works (90 and 85% 

respectively). This may not be due to the algorithm, but due to the fact that the first two works did 

not used Rectangular Window Methodology to multiply the data and relied on the hypothesis that 

the class of each individual remained the same throughout the experiment. Lastly, in the analysis 
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of 2019 a higher accuracy was succeeded. A possible reason is because in that study the data used 

for the classification were recorded using BIOPAC, which is more reliable and precise than 

Microsoft Band, which has limitations due to sensors, power and memory. Nevertheless, the 

accuracy achieved is very satisfactory.  
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7.1 Summary 59 

7.2 Future Work 57 

 

 

7.1 Summary 

 

This thesis is the continuation of a series of experiments and analyses of emotional coping using 

psychophysiological features. The data were acquired from an experiment conducted by the 

Department of Psychology of the University of Cyprus. The experiment is known as the Cold 

Pressor Task, and involves placing a hand in an ice-cold water and is used to examine pain 

threshold and tolerance. During the experiment, three monitoring devices were used; BIOPAC, 

Microsoft Band 2, and Moodmetric Smart Ring.  The signals recorded from the stationary devices 

are ECG, SCL, and fEMG (from COR and ZYG muscles) in sampling frequencies of 1kHz, 250Hz 

and 1kHz respectively. From the band the signals recorded are PPG and EDA in sampling 

frequencies of 1Hz and 0.2 Hz respectively. Using the ring only EDA (3 Hz) was recorded. 

 

Due to the fact that the dataset was relatively small (80 participants), a number of artificial samples 

were produced using the existing data. To do this Rectangular Window Methodology was utilized, 

which starts from the beginning of each signal and takes a chunk of the data and treats is as an 

individual data sample. This procedure was repeated for four different window sizes (10, 20, 30, 

and 40 seconds) and four datasets were generated. The work described from this point onward, 

was done in all four datasets. From each signal, multiple features were extracted. Regarding ECG 

and HRV signals, main focus was given in time-domain measures, which include finding peaks in 
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the signal and extracting information from them, like the time passed between each signal, etc. 

The EDA signal was split into its two components; SCL and SCR. Statistical metrics were 

extracted from SCL, while a similar procedure to the one followed for ECG was done in SCR. 

Statistical features were extracted from COR and ZYG muscles signals.  

 

The topic that was examined the most in this thesis, is the selection of the most relevant features. 

Three different feature selection methods were analyzed; Wrapper, Embedded, and Filter Methods. 

From each method, one technique was selected. The first technique, which belongs to Wrapper 

Methods, is Exhaustive Feature Selection, which includes training a model using all possible 

subsets of features and selecting the one with the best score. Because there were a large number of 

possible features, only combinations of size three or less were examined. Feature Importance, 

which belongs to Embedded Methods, ranks all the features from the most relative to the least. 

The results of these two techniques were similar. In stationary devices, SCL and statistical 

properties of COR and ZYG signals yielded good results, while in wearable devices, the average 

value of EDA signal, SCR amplitude, and heart rate had the best performance. The technique 

chosen from Filter Methods is Correlation Coefficient, which computes the Pearson correlation 

between all possible pairs of features aiming to exclude from the selection the features that have 

high correlation. This technique showed that none of the features are directly related to the target 

variable and that only features coming from the same signal have a strong correlation among them. 

Putting it all together, it was observed that features coming from the band had quite good results, 

so both of the features that were finally chosen came from this device. The subset selected is the 

mean value of heart rate and the mean value of SCR amplitude. 

 

Five classifiers were trained and compared. These are Adaptive Boosting, Gradient Boosting 

Decision Tree, Random Forest, and Extra Trees. All of these classifiers use decision trees to fit the 

model. To selected the best number of trees for each algorithm, the data from the 20-second 

window were used and five numbers of trees were tested:  25, 50, 100, 200 and 300. BDT 

performed better with 50 estimators, and the rest achieved the best performance when having 100 

estimators. Thereafter, all algorithms were trained on all four datasets. The classifier that showed 

the best performance is Bagging Decision Tree, with an excellent average accuracy of 85% and an 

average standard deviation of 0.03%, demonstrating that wearable devices can perform really well 

in classifying the individual to the two pain-coping categories.  

 



61 

 

Moreover, the signals that the monitoring devices had in common were compared. The findings 

are different when using different methods to compare the data. Pearson correlation shows no 

correlation between most of the features, while Bland-Altman scatter plots show agreement in the 

measurements in most of the cases. 

 

Furthermore, when comparing the results of the current study with the previous studies it was 

observed that data multiplication using RWM improves the performance of the classifiers. 

Moreover, data acquired by the band can give results with performance close to that acquired by 

the stationary device. 

 

7.2 Future Work 

 

Great results were yielded from the available data. However, there are some changes that could be 

done in data collection that may bring even better results in related studies. Firstly, it was observed 

that the monitoring devices lacked of synchronization and this may have affected the comparison 

of the devices. Additionally, the EDA signal that was recorded from the band, included several 

zeros in multiple data samples. There are two possible reasons: either the device used was of low 

quality or the sampling rate in which it was set to record was not sufficient. Although the band 

used could reach a sampling rate of 5Hz, it was set to 0.2 Hz to save memory and power. 

 

Moreover, in future work, the whole EDA signal could be extracted from the stationary devices as 

well (not only its tonic level), in order to compare it with the whole EDA signal of the wearable 

devices. This would be an indicator of whether it is admissible to use features extracted from SCR 

to train the classifiers. 

 

Lastly, the two data samples were unbalanced. More precisely, there were a lot more data samples 

that belonged to the ‘functional’ category, rather than the ‘dysfunctional’ one. Although a number 

of methodologies were used to tackle this issue, it could have resulted in classifiers getting biased, 

and decreasing their performance. 
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