

0

Ατομική Διπλωματική Εργασία

CHARACTERIZATION OF SYSTEM BEHAVIOR USING

PERFORMANCE COUNTERS

Anatoliy Atanasov

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μάιος 2022

1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

CHARACTERIZATION OF SYSTEM BEHAVIOR USING

PERFORMANCE COUNTERS

Anatoliy Atanasov

Επιβλέπων Καθηγητές

 Γιάννος Σαζεΐδης

 Χάρης Βώλος

Η Ατομική Διπλωματική Εργασία υποβλήθηκε προς μερική εκπλήρωση των απαιτήσεων

απόκτησης του πτυχίου Πληροφορικής του Τμήματος Πληροφορικής του Πανεπιστημίου

Κύπρου

Μάιος 2022

2

Acknowledgements

I would like to thank all the people that helped make this thesis project happen by giving their

constant support and effort. First a special thank you to my supervisors Mr. Yanos Sazeides

and Mr. Haris Volos for their constant help and push week in week out to keep going. Their

weekly feedback made me learn many things about a different way of thinking and overall

different professional techniques used to make a person stand out. Also, a special thanks to

Georgia Antoniou, a PhD student at the University of Cyprus, who was always available when

help was needed irrelevant of the time and persistently explored various encountered issues

until they were resolved.

3

Abstract

Cloud computing and generally the use of the cloud for designing systems has gained rapid

popularity in the recent years. Specifically, the use of microservices changes the way we

perceive applications and cloud services.

In this thesis I explore and learn what a microservice is as well as its different surrounding

technologies that are needed for it to function fully.

Research around this topic was done by the team of SAIL group at Cornell University and was

shown at the ASPLOS 2019 Conference. In this thesis I deployed one of the five end-to-end

services, they created, named Social Network to gain an understanding of how a whole system

using microservices is designed and its principles. During this deep dive into the application, I

mention the setup needed to deploy the benchmark as it was described, the configuration, the

inner workings, the errors faced along the way, and how to fix them. After that I discuss the

results of the experiments ran to determine the communication overhead between the

microservices and show how the overhead can prove a dramatic factor in latency resulting in

more nodes not giving improved latency. In addition to that I analysed the bottleneck of

“dropped” queries and showed how after some number of target requests per second the latency

has a massive increase and queries are not being completed. The goal is the deep understanding

of an end-to-end service implemented using Microservices.

4

Contents
Chapter 1 Introduction ... 6

1.1 Problem .. 6

1.2 Methodology .. 7

1.3 Contributions .. 7

1.4 Outline .. 8

Chapter 2 Microservice Architecture ... 9

2.1 API Gateway .. 10

2.1.1 Remote Procedure Calls (RPC)/Apache Thrift ... 10

2.1.2 REST API .. 11

2.2 Container Orchestration tool .. 12

2.2.1 Docker Architecture .. 12

2.2.2 Kubernetes ... 13

2.3 Where to deploy Microservices.. 14

2.4 Benefits of Microservices... 14

2.5 Drawbacks of Microservices .. 14

Chapter 3 Death star Benchmark Suite .. 16

3.1 End-to-End Services ... 16

Chapter 4 The Social Network ... 18

4.1 How it works .. 18

4.2 Functions .. 20

4.3 Workload Generator Scripts ... 20

4.3.1 Compose-Post Script: .. 20

4.3.2 Read-Home Timeline Script: ... 21

4.3.3 Read-User Timeline Script: ... 21

4.3.4 Mixed-Workload Script ... 21

4.4 Social Graph ... 21

Chapter 5 Deployments.. 23

5.1 Deployment on Local Machine .. 23

5.1.1 Specifications of the Local Machine ... 23

5.1.2 Needed Installations .. 24

5.1.3 Problems and Fixes .. 24

5.1.4 How to run ... 25

5.2 Deployment as a cluster on Cloudlab ... 26

5.2.1 Cloudlab... 26

5.2.2 Docker Swarm ... 27

5.2.3 Specifications of machines .. 27

5.2.4 Setup .. 28

5

Chapter 6 Results ... 29

6.1 Results of Local Machine Deployment .. 29

6.1.1 Frontend ... 29

6.1.2 Workload Generate Scripts .. 32

6.1.3 Validation of execute threads .. 34

6.1.4 Validation of Post .. 35

6.2 Results of cluster of Machines Deployment .. 37

6.2.1 Initial Topology ... 37

6.2.2 Initial Methodology and Results.. 37

6.2.3 Jaeger debugging ... 39

6.2.4 Cassandra ... 43

Chapter 7 Related Work... 44

Chapter 8 Conclusions ... 45

8.1 Future Work ... 45

References .. 46

6

Chapter 1 Introduction

1.1 Problem

1.2 Methodology

1.3 Contributions

1.4 Outline

1.1 Problem

When presented with the task to create a server-side application the traditional monolithic

architecture is what comes to mind first, with the User Interface the Business Layer and the

Data Interface in one block. This method is simple to develop, deploy, test and scale [1]. But

as the application grows when getting updates this approach can become a burden. It can

become too complex and too large for developers to be able to comprehend and then find and

fix errors.

In addition, as mentioned monolithic applications need to be looked upon, that means that

even when a small portion of the application needs to be fixed or tested the whole application

needs to be deployed each run [1]. Hence why a new architecture may be needed that deals

with those challenges. One such architecture, that is gaining rapid attention in recent years, is

the microservices architecture.

Microservices architecture is a new way of application development, which creates a wave of

people with mixed feelings about it. To properly evaluate the future and the possible impact

of this architecture we must fully understand it. Understanding what microservices are, is a

crucial first step. More specifically it is important to learn how a single microservice operates

and how it is setup. But microservices cannot work alone they need tools to be able to operate

fully and prove to be beneficial. When we gain an image of the singular Microservice and the

tools it needs to run, we must move onto learning the function of a cluster of Microservices

and their in between communication as well as the tools a cluster needs to operate.

The issue is that Microservices also create a lot of challenges. However, the benefits can

prove to be fundamental making it impossible to discard the Microservices as an option for

an architecture pattern. Hence why, researchers are attempting to determine what challenges

7

Microservices create, how to tackle these challenges or at least minimize their effects and

overall, how to optimize the design of this architecture so that the positives of it outweigh the

issues.

Our motivation for this thesis project is to explore the microservice architecture its

implications and validate if there are benefits.

1.2 Methodology

We explore various sources such as websites, articles and papers to gain an understanding of

Microservices and the different technologies that exist to support them. We show the

differences between those technologies and why one would choose one over the other or a

combination of them if possible. We then proceed to understand a specific application so that

we learn how the chosen technologies are used to operate, manage, monitor and scale

microservices and their communications. One of the many such researches is the Death Star

Bench Suite [2] which is an Open-source benchmark suite for cloud microservices. In the

Death Star Bench Suite there are five end-to-end services that combine many microservices

each using a different set of technologies. We attempt to deploy and run one of those end-to-

end services to see the microservice architecture in practice. More specifically we use the

Social Network end-to-end service which uses RPCs for communication and Docker for

orchestration. We deploy the benchmark both as a single container and as a cluster of

containers.

1.3 Contributions

The contribution in this thesis work is focused on explaining what a Microservice is and what

its surrounding technologies are, how they work with each other. After giving a general idea

we showcase specifically the technologies used in the Social Network by doing a deep-down

dive in the system. Meaning learning how the system works, showing the process of the

deployment and discussing the issues encountered throughout as well as minor fixes that help

to solve the temporal problems. Overall difficulties encountered during the configuration and

how the configuration was done and showing the inner workings of the system. We evaluate

if thread and/or connection increase proves to be beneficial for the latency, as well as giving a

guide on how to validate that the deployment was performed correctly. We validate if the

given scripts work as intended. We showcase how contrary to theoretical views using 20

nodes gives worse latency than 5 nodes.

8

1.4 Outline

First, we are going to explain with more detail how a Microservice architecture works and

what are its surrounding technologies, and then what are the benefits as well as challenges of

using this architecture. Then we will focus on the Death star Benchmark suite explaining

their work and mentioning the various created end-to-end services. From those services we

will pick one up (the Social Network) and focus entirely on it. Discuss how that system is

implemented then how we attempted to deploy it and what work we did on it after its

deployment. Finally, presenting the results gathered from experiments and conclusions made

about the benchmark as well as microservices architecture overall.

9

Figure 1. Differences between Monolithic and Microservice

Architecture

Figure 1. Differences between Monolithic and Microservice

Architecture

Chapter 2 Microservice Architecture

Microservice Architecture is an architectural pattern where the distinct functionalities of a

system are broken down into smaller pieces known as microservices. As we can see from

figure 1 using microservices, the business logic and data access layer are divided into

microservices, instead of being in one whole block as in Monolithic Architecture. Each

microservice can have its own database that better suits the service. For example, in figure2a

we can see how two services use SQL type of database and another service uses a NoSQL

type. Also, the types maybe the same but the database schema may be different for each

microservice. These pieces are interconnected and communicate with each other and with the

client using an API Gateway.

We can see from figure 2a how the client does not communicate directly with the

microservices but rather through the API gateway. Two popular API gateways that are often

used in combination with microservices are REST API and RPCs, we will explain in detail

each approach further on. A microservice can be implemented with different technologies

and its own database that’s why we put each microservice into containers. As we can see

from figure 2b these containers need to be managed/orchestrated using a tool. Two popular

tools are Docker and Kubernetes which we will also discuss in this chapter. [3] [4] [5] [6]

10

Figure 2b. Microservice Architecture

showcase

Of API gateway and need for

Orchestration of containers.

Figure 2b. Microservice Architecture

showcase

Of API gateway and need for

Orchestration of containers.

Figure 1. Differences between

Monolithic and Microservice

Architecture

2.1 API Gateway

 2.1.1 Remote Procedure Calls (RPC)/Apache Thrift

 2.1.2 REST API

2.2 Container Orchestration tool

 2.2.1 Docker

 2.2.2 Kubernetes

2.3 Where Microservices can be deployed

2.4 Benefits of Microservices

2.5 Drawbacks of Microservices

2.1 API Gateway

2.1.1 Remote Procedure Calls (RPC)/Apache Thrift

API gateway is needed to have communication between clients and microservices as clients

send requests. In the case of microservices also used for the in between communication.

Figure 2a. Microservice Architecture

showcase of API gateway to

communicate with client.

11

The RPC framework is used to enable developers to call a piece of code in a remote process

in another machine or code in different process in the same machine.

Apache Thrift is a set of code-generation tools that allows developers to build RPC clients

and servers by just defining the data types and service interfaces in a simple definition file.

Apache Thrift was created with the idea that there is a need to have a framework that can be

efficient and that works with any OS and any programming language. It adds flexibility for

transports and protocols. For example, a server may be setup on a Windows machine written

in C and offer a service over HTTP, that service can be accessed via a Linux machine from a

program written in Python. And to do so the code is generated from the Thrift IDL file by

writing the program logic and putting the different written pieces of code together, as well as

configuring the data types needed. Meaning different pieces of code using different

programming languages can be used for each microservice. When these pieces of code are

imported into the definition file RPCs are generated. As we can see from the figure 3a the

RPC services and user types are generated after the IDL file is compiled. [7]

This way each microservice can communicate with each other even if they are implemented

with different technologies.

2.1.2 REST API

The REST API is a type of API that provides help for communication between web service

applications. It usually uses HTTP and JSON as file transfer format. The REST API uses the

Figure 3a. Apache Thrift

Description

Figure 3b. API gateway configured

with REST.

12

given client request to present back the response. The concept of REST is based on stateless

server with the client storing the session states. Also, every file in REST is considered a

resource. A service may produce a resource or consume a resource. With microservices the

same applies, every microservice may consume or produce a resource which is how the

microservices communicate with each and the client. For example, in the figure 3b the

microservice named Account Service will produce a resource after a request happens from

the webapp service. Then the webapp service will consume that resource and show in the

browser the response in the predefined format (JSON, XML). Similarly, if one service

requires a resource from another service it will just consume the produced resource. [8]

2.2 Container Orchestration tool

A container is a software that packs up different pieces of code with their dependencies so

that the application can run efficiently and reliably. Multiple containers can run on the same

system as each executes as a unique process. Two famous container orchestration tools are

Docker and Kubernetes. It is important to note that it does not mean that you must choose

between these two tools as they can work together too.

2.2.1 Docker Architecture

Has become the default orchestration tools used in recent years as it has a small learning

curve and it’s easier to install. Also, it’s lightweight has auto-balancing and it is integrated

with Docker CLI. On the other hand, it has limited functionalities, needs manual scaling and

third-party tools for monitoring.

The Architecture of Docker consists of the client, remote or local, the docker daemon and the

registry. The interaction of the user and the Docker is mainly in the Docker Client. Docker

Figure 4. Examples of 3 docker commands in

the docker architecture.

13

Compose for example is a Docker Client. From the client the users run commands which will

access the daemon, which builds, runs, and distributes the Docker containers it can also

communicate with other daemons to manage containers. Lastly in the registry are stored the

Docker images, which can be pulled. The HUB is a public registry that is accessible by

default.

In Figure 4 we can see 3 examples of commands and how they will run. First docker build is

sent from the client and accesses the daemon which builds the images. Docker pull accesses

the daemon which accesses the registry to pull the images. Docker run access the daemon

which runs the containers with the images. [9]

2.2.2 Kubernetes

Kubernetes is a more complex tool that provides more functionalities than docker. It supports

auto scaling it has built in monitoring but needs to be set up manually for load balancing and

needs a separate CLI tool.

When deployed Kubernetes creates a cluster. This cluster is made up from worker machines

referred to as nodes. In each node there are Pods which are the running containers. The nodes

are controlled through a control plane consisting of the API server, the etcd, which acts as

backing store, the scheduler and the controller manager. The scheduler assigns newly created

pods to nodes. [10]

Figure 5. Kubernetes Architecture with its needed components to work.

14

In figure 5 we can see a diagram of the above showing how the different nodes communicate

with the control plane in a Kubernetes cluster.

2.3 Where to deploy Microservices

There are different providers for nodes when you want to run a cluster of nodes. Some of

them are AWS lambda, Microsoft Azure Serverless. With AWS lambda you can run your

code with the need of servers or creating workload-aware cluster scaling logic, maintaining

event integrations, or managing runtimes. Also, you can scale automatically your application

and optimize the execution time by choosing the right memory size for your code.

Using Microsoft Azure Serverless you can create serverless applications without the need of

infrastructure to run the code and the containers. You can orchestrate the deployment of

containers using Kubernetes with Azure Kubernetes Service (AKS) and AKS virtual nodes.

[11] [12]

2.4 Benefits of Microservices

A monolithic application can become over time very complex and not understandable. Using

microservices architecture pattern can split the whole system to many modules, with each

module having its own database and designated hardware. Also, these modules can scale

independently and can be implemented using different programming languages. By using

microservices legacy core components of a system can be modernized, because as mentioned

these modules can be implemented with different programming languages [6]. Lastly, with

microservices you can update and understand code easily making detection and fix of errors

less of a burden.

2.5 Drawbacks of Microservices

Complexity of intercommunication between the microservices remains a problem as well as

the overhead it causes. In addition, a problem in one service may cause problems in another

service as sometimes tasks require many services to be accomplished. The overhead

mentioned is mostly on network connections which may lead to latency problems and overall

QOS violations. Finally, something to think about is that with microservices logging on the

client node is not enough and logging for each microservice may be required to have a full

visualization of the system’s performance.

15

However, these drawbacks don’t seem to affect users as during a survey made by IBM 56%

of takers said they would likely adopt microservice architecture in their future applications. In

the same survey 78% of respondents said they would like to invest either money and/or time

on learning about microservices. [6]

16

Chapter 3 Death star Benchmark Suite

The Death star Bench Suite has certain design principles that were followed. The suite is

representative as it uses popular open-source applications and frameworks like NGINX,

Memcached, MongoDB, MySQL. These make the system more reliable as it is made up from

tested and well-designed components with only a portion of the code being new. Most of that

new code is about the Apache thrift RPCs and the http requests. The operations of the

services are captured as end-to-end meaning from the moment a request is sent from the

client until it returns to the client or reaches the database. The different end-to-end services

are implemented using low-level and high-level languages showing the heterogeneity that can

be achieved using microservices. The different created end-to-end services are mentioned and

explained below. [2]

3.1 End-to-End Services

The social network is a released end-to-end service with follow and follow back connections

between users, where these users can make different types of posts, see posts on their home

from different other users they follow and access another user’s profile to see its posts from

there. To simulate the interaction between users registering, composing posts, following other

users and reading posts there are created scripts. These scripts generate workload that

simulate that. First a social graph is created simulating the registration of users equivalent to

the nodes and follow connections between those users equivalent to the edges. The compose

posts script creates random posts some may contain only text; some may contain images

and/or videos. Reposting a post is the worst kind of query latency wise as it must find a post

read it and append to it.

Figure 6. Different end-to-end services showing technologies used, number of lines

of code and number of microservices

17

The E-commerce site which is still in progress is an online website for shopping of clothes.

Like the open-source Sock shop app. Highest magnitude of request is placing an order as it is

needed to add the item to the shopping cart and then login and confirm the payment. This

type of request is a lot heavier than browsing the catalogue.

The other services that have similar behaviours like the e-commerce site are the media

service, which is released, and it is a system to view movie information, give reviews and

ratings to certain movies and rent or stream movies and the Banking System which is

progress that is a service for secure banking that has certain methods to process transactions,

request loans and balance credit cards. Lastly their Drone coordination system which is in

progress is an alternative design of system. This system’s microservices run both on cloud

and on edge devices. The system’s functionality is to coordinate drones so that they can avoid

obstacles and process images.

As we can see from figure 6 Social Network uses RPC protocol for communication and has

56863 autogenerated lines of code using Apache Thrift, we notice overall how the other end-

to-end services use either REST, RPC or a combination of the two for their communication

protocol. We also notice that REST does not have autogenerated lines of code as it does not

work with Apache Thrift the way RPC does and is code needs to be handwritten. Lastly the

figure 6 shows the number of microservices used for each benchmark and which languages

were used.

18

Chapter 4 The Social Network

The Social Network Service is one of the created end-to-end services mentioned above and is

the service that this thesis focuses on. This system uses Docker for its container orchestration

tool and Apache Thrift RPCs. There are 36 microservices in this system and each is in a

different container. It is important to note that the version of the Social Network used in this

work is that of the Social Network before 19th of January 2022. The Social Network

Benchmark is still in development and some issues mentioned later on may have been already

fixed in a newer version of the benchmark.

4.1 How it works

 4.2 Functions

 4.3 Workload Generator Scripts

 4.3.1 Compose-Post Script

 4.3.2 Read-Home Timeline Script

 4.3.3 Read-User Timeline Script

 4.3.4 Mixed-Workload Script

4.1 How it works

Figure 7a. Diagram of the frontend the logic and the backend of the

Social Network.

19

In figure 7a we see the way the frontend, the logic and the backend are divided and which

microservices are used for each part and the in-between connections of these parts. Figure 7b

is the same diagram that shows the microservices and their connections, but it is a simpler

form of figure 7a which makes sense as this figure was in the paper and the figure 7a was in

the presentation of the paper with a few added details. Let us explain the figure 7b in detail.

On the far left there is a client (the user of the system) that sends requests over HTTP

protocol. These requests reach a load balancer which is implemented using Nginx. Nginx

communicates with the microservices (on the right) using php-fpm module. The

microservices communicate with each other using Apache Thrift RPCs. It is noticeable that

certain microservices have a Memcached service and a MongoDB database attached to them.

Almost every entity in these diagrams represents a microservice. In addition to those we have

the Jaeger microservices which are used for distributed tracing and the Cassandra

microservice which is a database where the traces are stored. There are three different

microservices that function together to form the whole Jaeger function. All microservices are

configured to depend on the Jaeger microservices as those microservices are needed so that

tracing is achieved. Furthermore, those Jaeger microservices depend on the Cassandra

microservice to be able to store the traces correctly. [2]

Figure 7b. Diagram of the frontend the logic and the backend of the

Social Network.

20

4.2 Functions

This end-to-end Service implements a social network where users are created, they can

follow other users and other users can follow them, they can create posts with text, links,

media, tags. Those posts can be liked, commented, favourite, report and shared. These posts

can be seen in the home timeline where all the posts of the people you follow appear.

Alternatively, by clicking on a user’s account to see the posts of the specific user.

To simulate the creation of different users and the connection between those created users we

create a social graph that is created using a certain dataset. That dataset has a number of

nodes and a number of edges that connect those nodes. The nodes represent the registered

users in the social graph and the edges are the follow connections between those registered

users.

For these functions three different workload generator scripts were created: Compose-Post

script, Read Home timeline script and Read user timeline script. Lastly, the mixed-workload

script was created to combine the other three. [2]

4.3 Workload Generator Scripts

4.3.1 Compose-Post Script:

This script composes a random post for a random user. To do so first we randomly choose

one of the nodes in the social graph meaning an existing registered user. In the current

version of the Social Network this random value is hardcoded to be between 1-962 (962

being the nodes of the first dataset used), this can be a problem in the future when different

datasets may be added to test the benchmark. However, in this thesis project that exact first

dataset is used, as it will be mentioned below in more detail, so this does not affect us.

There are 2 sets to help compose this script. First there is a charset of characters ranging from

A-Z and a-z and 0-9. Second, there is a number set with range of 0-9. The charset helps to

create random text for the post also there is a random number to determine the number of

mentions, urls and media on the post. The charset is also used to create the random url and

the number set is used to create the random media ids.

This process is repeated for each request.

21

4.3.2 Read-Home Timeline Script:

This script is used to read random number of posts of a random user’s home timeline. More

specifically a random user out of the 962 (same issue with hardcoded number of users) is

picked out and from the user’s home timeline randomly 10 posts are read. To pick those 10

posts a random number from the range 0-100 is chosen and having that number as a starting

point the next 10 posts are read. We can notice how this has the potential to lead to problems

such as what if there are not 100 posts to be read and the random number is 90-100 what

posts will be read.

4.3.3 Read-User Timeline Script:

This script is used to read random number of posts of a random user. This script works

exactly like the Read-Home timeline script with the only difference being how it reads from

the randomly chosen user’s profile (the posts made by the user). Similar issues arise in this

script as well.

4.3.4 Mixed-Workload Script

This script is used to run all the scripts above together but with a weight for each script. It is

basically a combination of the three scripts in one with the difference that each time a request

is called it will randomly, but with a weight, choose what script to execute.

There is 60% chance for the request to execute the Read-Home Timeline script, 30% for the

request to execute the Compose-Post script and 10% for the Read-User Timeline Script.

4.4 Social Graph

As mentioned, to simulate the registration of the users and the follow connections between

two registered users we create a Social Graph from a dataset. Initially the dataset used in the

Social Network was only one and it contained 962 nodes and 18.8k edges. This dataset is also

used to create the Social Graph in this thesis. However, this is the automated way for

registering users in the social network, what if we add users manually through the frontend?

To validate if the manually created users are inserted into the social graph, we will check the

database of the social graph microservice before and after creating manually users.

We manually create 15 users using the frontend. As we can see from Figure 8 the increase in

the number of objects corresponds to the number of manually created users. From this we can

22

conclude that those created users are added into the Social Graph. However, the scripts

mentioned above will never reach these users and their posts as they are new and out of

bounds.

Maybe a change should be made so that each time the social graph is checked for changes

and that number is used for the upper bound of the random user id in the workload generator

scripts.

Figure 8. On the left we have the database of the social graph before the

creation of users and on the right, we have the database after the creation

(Focus is on the number of objects)

23

Chapter 5 Deployments

In this Chapter we will discuss the two different deployments we have done. The first is on a

local machine in the laboratory of the University of Cyprus. The second deployment is that of

a swarm of nodes using hardware provided by Cloud Lab.

5.1 Deployment on Local Machine

5.1.1 Specifications of the Local Machine

5.1.2 Needed Installations

5.1.3 Problems and Fixes

5.1.4 How to run

5.2 Deployment as a cluster in Cloud Lab

 5.2.1 Cloudlab

5.2.2 Docker Swarm

5.2.3 Specifications of machines

 5.2.3.1 C-States/P-states/Turbo Boosting

5.2.4 Setup

5.1 Deployment on Local Machine

We show the deployment of the local machine by first showing the specs of the machine then

the needed installations as well as some problems that came up and how they were fixed. In

the end we discuss firstly how to open and operate the frontend and secondly how to run the

workload generator scripts and their results.

5.1.1 Specifications of the Local Machine

Architecture: x86_64CPU

CPU Number:4

CPU Type: Intel(R) Core (TM) i7-6700K CPU @ 4.00GHz

We disable all idle states with an equal or higher latency than 0 and enable all idle states with

a latency lower than 0. [13]

We set the governor to be Performance mode.

24

5.1.2 Needed Installations

First, we download the social network code from GitHub. Then downloaded the required:

Docker, Docker-compose, Python 3.5+, Libssl-dev, Libz-dev, Luarocks, Luasocket in that

order. [14]

After that we can pull the docker images, create the social graph, build the files and start

running scripts.

Needed ports: port 8080 for Nginx frontend, 8081 for media frontend and 16686 for Jaeger.

Before running the workload generator, we need to create a social graph which consists of the

users of the system. The python script that is used to create the graph also creates follow

connections between the created users. There are 3 different social graphs that can be used to

run this application. First is the Soc-fb-Reed98 which has 962 nodes and 18.8k edges.

Meaning there are 962 created users in the system and 18.8k follow connections between

them. Next is the Ego-twitter with 81306 nodes and 1768149 edges. Last, is the largest social

graph Soc-twitter-follows-mun with 465K nodes and 835.4K edges. The graph used for this

research was the first of the three.

Last step before running scripts is the build on the wrk2 directory using make.

5.1.3 Problems and Fixes

After the first attempts to setup, we attempted to run the compose-post script to validate if the

installation is correct. We encounter the problem that the local host could not connect

because of an issue with Docker. The solution to this problem was to simply reinstall docker

and docker-compose.

After fixing that issue another problem came up, when we again run the compose-post script.

The issue was with the directory of luasocket as the script could not find the required socket.

To fix this we run the command $eval $(luarocks path –bin) so that the required socket by the

script has its directory defined and works properly. This command needed to be run each time

before running the script. Also, we alter the compose-post script’s first line of code to be

local socket=require(“socket”). The above to steps were later performed for all scripts

(change of first line of code in each script and running the needed command before running

each script).

After these fixes the deployment was corrected and the workload generator scripts were

running, and the frontend was accessible. However, after an update of the repository in which

the development had added two more graphs that create registered users and redis sharding

25

the deployment was showing problems. After attempts to update the project by downloading

the new version of the Social Network again and resetting the docker containers the scripts

did not produce results but rather outputted Internal Server Error. The decision was made to

not use the updated version of Social Network but rather the previous one that was

functioning.

5.1.4 How to run

To run experiments, we will use the workload generator scripts mentioned before. However,

another approach is to access the Frontend and create manually a new user access his profile

and start creating posts and adding follow connections. Note that accessing the Frontend

successfully can also be an indication of correct initial setup. To access the Frontend its

needed to access the localhost on the port 8080. When doing so the signup and login page are

produced.

The options here are to either create new users manually and login or to access the

http://localhost:8080/main.html page that is used to create default users and from there new

posts can be composed and read.

We can create new post and login again to see that it can be read in the user profile to confirm

correct functionality, this validation is performed in chapter 6.1.1.

As mentioned, another way to run is to use the workload generation scripts. We have

explained what these scripts do. Let us now show how these scripts can be run in a command

line client.

Workload Generator with Compose-Post Script

./wrk -D exp -t <num-threads> -c <num-conns> -d <duration> -L -s ./scripts/social-

network/compose-post.lua http://localhost:8080/wrk2-api/post/compose -R <reqs-per-sec>

[14]

In the example above the flags shown represent different things. Starting from the order we

see them in the example let us explain these flags. -D is the distribution of time for each

request, -t is the number of the threads which the generator will have, -c are for the total

number of connections kept open, this number needs to be higher than the thread number as

each thread must have at least one connection. Each thread will have connections equal to

num-threads/num-conns. Next, we have the -d flag for the duration of the experiment, the -L

flag which is optional and will present a histogram of latency, -s which determines which

script will be run from the four mentioned before and finally -R which is the rate of requests

http://localhost:8080/main.html
http://localhost:8080/wrk2-api/post/compose

26

per second. Those flags are the ones used in every following experiment, but some other

optional flags exist such as -P to print each request’s latency, -p to print 99th latency every

0.2s to file, -H to add header to the request, -T to have a socker or request timeout, -B to

measure latency of whole batches of pipelined ops (as opposed to each op) and -v to print

the version details.

After running the workload generator, we see at the end some results regarding the average

latency for the requests, 99th percentile latency, thread statistics, requests made, and data

transferred. An example of the metrics and their values is presented in Figure 9 where we can

see how we had a 60 second test of compose-post script with 2 threads, 2 connections and on

average the results produced show an average of 10.6 ms latency and 21.53ms 99th percentile.

With requests per second set to 24 and total requests done equal to 1452.

5.2 Deployment as a cluster on Cloudlab

5.2.1 Cloudlab

Cloudlab is a website that provides research groups with nodes to run experiments using the

Cloud [15]. It has different functionalities as you can create certain profiles, create specific

experiments and try out different architectures. In order to use Cloudlab you need access by

requesting an account and being approved. After than you can input your own datasets and

create profiles to use in your experiments. You reserve certain nodes for some set period and

Figure 9. Example of Client Results after a run.

27

utilize them. After the end of your experiments the data from the nodes is lost as they are

refreshed. To access Cloudlab from a local ssh agent you will need to create a ssh key, have

the key to the local agents in the .ssh file and upload the public key on to Cloudlab.

In our deployment we use the MobaXterm agent and have a profile that grants permission to

move in between nodes.

5.2.2 Docker Swarm

Docker swarm is used to manage several docker engines. There is no need for an extra

orchestration tool as the management of the swarm can be done through the Docker CLI. In

docker swarm you have manager nodes and worker nodes. By default, manager nodes are

also workers meaning they can contain containers, but they have authority for other tasks as

well. Managers should be stable hosts and not many in number as they need to be available

for the swarm to function. The process of creating a swarm is simple you just need to first

create a manager node, initializing the swarm, the join to the swarm the different workers

and/or other managers. The next step is to deploy the swarm using an yml file that mentions

all the services, and their configuration, to be deployed. [16]

5.2.3 Specifications of machines

The machines that we use on Cloudlab are in the cluster of the University of Wisconsin. They

are named c220g5 (Intel Skylake, 20 core, 2 disks) with Two Intel Xeon Silver 4114 10-core

CPUs at 2.20 GHz, RAM that is 192GB ECC DDR4-2666 Memory. The two discs are 1 TB

7200 RPM 6G SAS HDs and Intel DC S3500 480 GB 6G SATA SSD. Lastly, the NICs are

Dual-port Intel X520-DA2 10Gb NIC (PCIe v3.0, 8 lanes) and Onboard Intel i350 1Gb. [17]

The machines have disabled P-states and turbo boosting, this is performed by a script we

created that is run after the nodes are allocated (Cloudlab experiment initiated).

5.2.3.1 C-states/P-states/Turbo boosting

Let us first mention Core power states (C-states) and performance states (P-states). C-state

means one or more subsystems of the CPU is at idle, powered down whereas P-state means a

subsystem is running but at a certain lower pair of frequency and voltage.

The states are numbered starting from zero like C0, C1… and P0, P1… The higher the

number is the more power is saved.

28

C0: Active, CPU/Core is executing instructions (P-state relevant).

C1: Halt, nothing is being executed, but it can return to C0 instantaneously.

C1E: Like C1 but with lowest frequency and voltage operating point.

C6: Execution cores save their architectural state before removing core voltage. [18]

Turbo boosting is used when the maximum power a CPU can sustain is not reached. Turbo

boosting increases the CPU frequency from the base frequency set if the maximum power

threshold won’t be surpassed or at least not for long. [19]

5.2.4 Setup

As mentioned, to run experiments first we create the swarm. In our experiments we have 1

manager node which is the first node of the swarm (node0) and one client node, which is not

added as a worker up until we deploy the swarm, on the last node (node n-1 where n=total

nodes). To do the above we created a script that adds the first node as a manager and the

technologies needed which are Docker, Docker-compose, Python 3.5+, Libssl-dev, Libz-dev,

Luarocks, Luasocket in that order. When we added the swarm manager, we are given a

command with a token that is used from the workers to be able to join the swarm. We access

all next nodes download on them the same technologies and add them to the swarm with the

saved command and token [16]. After all nodes are connected, except the last one, we return

to the manager node to deploy the swarm and create the defined services. It is important to

note that it is crucial to be on the first manager node when deploying the swarm. Even if there

are multiple instances of managers there is one that is above all, the one that started the

initialization, and from which the deployment is done. But what does this deployment mean?

The manager will read the yml file and create the services and allocate them evenly along the

worker/manager nodes. The distribution of the containers is done using the round-robin

method. That is by default it is also possible to have some restrictions in the yml file that

manually allocate where certain microservices will be and other characteristics such as CPU

limitations and replication of each microservice.

After that deployment is finished, we access the last node, the client. We add the client as

worker to the swarm afterwards so that he has no microservices assigned but is connected to

the swarm. On the client we again download and install all the needed technologies. Also, we

create the social graph and build the dependencies of the code. We can now run the workload

generator script from the client and get results after the runs for the client.

29

Chapter 6 Results

In this chapter we will discuss the different runs done on the two different sets of

deployments and their results. Also, we will comment on those results as to if they were

expected and what caused them.

6.1 Results of Local Machine Deployment

 6.1.1 Frontend

 6.1.2 Workload Generate Scripts

 6.1.2.1 Checking Distribution

 6.1.2.2 Checking threads and connections

 6.1.3 Validation of execute threads

 6.1.4 Validation of Post

6.2 Results of cluster of Machines Deployment

 6.2.1 Initial Topology

 6.2.2 Initial Methodology and Results

 6.2.3 Jaeger debugging

 6.2.3.1 Jaeger Limitations

 6.2.3.2 Attempting to remove Jaeger

 6.2.3.3 Changing Jaeger tracing

 6.2.3.4 Cassandra

6.1 Results of Local Machine Deployment

In this subsection we will discuss the results of the local machine deployment. Our first step

is to determine whether the initial deployment was done correctly. We will access the

frontend once and create a new user using the interface.

6.1.1 Frontend

When accessing the register interface as shown in figure 10, we must ensure that we enter a

first name, a last name, a username and password to sign up. As we can see from figure 11.

the home timeline has no posts as the newly created user has no followees. There are some

30

recommendations to follow and your frequent contacts that when the user is new are set to the

default values. We can access the user’s profile and see an about section and that the user has

no posts created from figure 12. We can see that the frontend is accessible which is a good

first step but to fully validate the setup we will create a post as the registered user and then try

to access it using the login. In figure 13 we see the results of login and we validate that the

login was successfully done, and the posts made by that user saved correctly.

Figure 10. Social Network Registration interface

31

Figure 12. Social Network frontend user timeline

Figure 11. Social Network frontend home timeline

Figure 13. Social Network frontend user timeline after posts

and login

32

6.1.2 Workload Generate Scripts

When running the workload generator there are various flags to give. Some of them are

distribution (-D), connections (-c) and threads (-t). We can run different experiments

changing one of these flags to see how it affects average latency and 99th percentile.

6.1.2.1 Checking Distribution

-D fixed, exp, zipf

We have the other flags fixed meaning we run for 100 seconds 100R/S with 4 threads and 8

connections the compose-post script each time. The command for this example would be

 -D exp -t 4 -c 8 -d 100 -L -s ./directory_script/compose-post.lua http://localhost:8080/wrk2-

api/post/compose -R 100

We run the experiment 3 times with each -D value (fixed or exp or zipf) and get the following

results:

We notice from figure 14a and 14b how exp has the lowest latency and the lowest 99th

percentile out of the three distributions. This result may be an anomaly as exp is implemented

to distribute by a random factor. A small note is that there is also a fourth distribution called

normal which is not actually implemented although it is mentioned as an option.

For all future experiments exp distribution is used.

0

1

2

3

4

5

6

7

1

A
ve

ra
ge

 L
at

en
cy

(m
s)

Avg Latency for each dist

fixed exp zipf

Figure 14a. Graph presenting the average

latency for each distribution.

0

2

4

6

8

10

12

14

1

9
9

th
 p

er
ce

n
ti

le
 (

m
s)

99th for each dist

fixed exp zipf

Figure 14b. Graph presenting the 99th

percentile for each distribution.

http://localhost:8080/wrk2-api/post/compose%20-R%20100
http://localhost:8080/wrk2-api/post/compose%20-R%20100

33

6.1.2.2 Checking threads and connections

The script doesn’t allow us to have more connections than threads that is because each

threads has several connections equal to threads/connections. Example if we have for the

thread (-t) flag 4 and for the connections flag (-c) 4 each thread will have one connection to

manage requests. Next, we will attempt to understand how increasing either the thread

number or the connection number could potentially have any impact on the client latency.

We run an experiment for 10 seconds with 1000 target requests per second (-R) running the

compost-post script with 32 connections and changing the number of threads. We notice from

that we have optimal latency time on 16 threads by looking at figure15a in which 16 threads

has the lowest average time of 343ms.

After experimenting with threads, we move on with testing the connections. We have fixed 2

threads and we increase the number of connections running like previously 1000 requests

over 10 seconds.

We notice that the optimal latency time comes with 8 connections by observing the results in

figure 15b. Because we have the restriction that connections must be more than threads and

because the optimal number of threads is 16, we can use 16 connections.

But from this experiment we noticed that the increase of threads and of the connections does

not always have a positive outcome when it comes to latency.

0

100

200

300

400

500

600

700

0 10 20 30 40

la
te

n
cy

 in
 m

s

threads

avg latency (1000 R/s)

0

500

1000

1500

2000

2500

3000

0 10 20 30 40

connections

avg latency (ms)

Figure 15a. Graph presenting the

average latency for 4 8 16 and 32

threads Running 1000r/s for 10

seconds.

Figure 15b. Graph presenting the

average latency for 4 8 16 and 32

connections Running 1000r/s for 10

seconds.

34

6.1.3 Validation of execute threads

We can use the docker engine which has a stats command to have visualization of the containers

and to analyse how the executing threads of different types of microservices scale [9].

We can see the IDs, names, CPU usage, memory usage and pids in the docker stats. An

example of sush showcase is in figure 16a where we see all the microservices and their

statistics. Pids are the executing threads for each container and the metric on which we will

focus. We can use this tool to see how scripts affect the executing threads. In figure 16a we

have the initial state of the containers before running any scripts, in figure 16b we see how

the pids change after running workload generator scripts. We can also notice that the

executing threads of mongodb containers increase by a lot more than the rest of the

containers. Every script combines a different number of microservices to complete its

function (compose post uses all 31, read-home timeline uses 8 microservices, read-user

timeline uses 7 microservices). Which could explain why for different runs of scripts some

stats may change differently, for example when running compose post we expect the

compose service container to have increased pids in comparison with the increase of pids if

Figure 16a. Initial State of docker containers stats where pids

are the executing threads for each microservice.
Figure 16b. State of

only PIDs after

running experiments.

35

we ran read-home timeline. However, by running various experiments we don’t notice a

pattern in which the threads increase.

6.1.4 Validation of Post

Furthermore, we can also examine the databases where posts are stored to detect any changes

after we run the workload generator scripts. We want to validate that compose post creates

posts which are stored in the post database, and which are equivalent to the number of total

expected requests. By looking at figure 17a we can notice how we start with 321902 objects,

and we run the Read-Home Timeline script to see if there is any change on the stats. The

result is expected Read-Home timeline does not make changes on the post database as the

objects remain 321902. We then run the Compose-post script and check again expecting now

a change in the object number relevant to the requests we made. We confirm this by seeing

how in figure 17b the objects reach 322775.

We run more tests to check if requests are equal to object increase. First, we try using 100

R/S for 10 seconds, then we run 10R/s for 100 seconds.

Figure 17a. Contains two results

on the top we have a state of the

post database and on the bottom

the state of the database after

running Read-Home timeline

Figure 17b.State of Post database after

running compose-post script

36

From figure 18 we deduce that if we run scripts as 10 R/S for 100 seconds, objects and

requests are equal. To further examine why if we have more duration and less R/s obj=req but

if the opposite the case is not the same. We attempt to run 200 R/s for 5 seconds and 1000 R/s

for 1 second to see the difference. By consulting figure 18 we can see how in the experiments

with duration of 1 second and 5 seconds the requests as well as the object are a lot less than

the expected total requests but on 100s the number is equal. Why is this happening? It needs

some time to initialize the process. This conclusion is also explained in the README file of

the wrk2 which states “It's important to note that wrk2 extends the initial calibration period to

10 seconds (from wrk's 0.5 second), so runs shorter than 10-20 seconds may not present

useful information” [14]. That can explain why our sometimes short in duration experiments

didn’t manage to create enough requests on time as we were below the calibration period.

We can also note that sometimes the reason of requests being less than objects is how

requests need to return to the client and be traced but object accesses the database. There

could be an inequality caused by the tracing not being completed and some request not been

accounted for.

0

200

400

600

800

1000

1200

10R/S 100S 100R/S 10S 200R/S 5S 1000R/S 1S

Requests and Objects over different R/s and
durations

requests objects

Figure 18. Show how requests and objects change when changing the

R/s and the duration but by keeping the expected total query number

the same.

37

6.2 Results of cluster of Machines Deployment

6.2.1 Initial Topology

We create a Cloudlab experiment with 20 machines. 19 machines containing microservices

and one client machine. Mapping using Round-Robin around the nodes. We have 31

Microservices meaning each node will have two or one microservices assigned to it. Queries

100,200,300 with constant duration of 60seconds.

6.2.2 Initial Methodology and Results

We get the CPU usage for each node by accessing the node and getting the docker stats of the

node for 2 seconds. Meaning each node is monitored for at least 2 seconds during the run of

the compose postscript.

By observing figure 19 we notice very high percentage of CPU usage in the nodes consisting

of Jaeger and Cassandra. Also, after those two next up is the compose service which makes

sense as we are running the compose-post script. Jaeger’s high utilization could be explained

by the need to monitor and give tracing for every microservice, but not to such a high extent.

Lastly, Cassandra is the database that saves the traces and since the jaeger client is not in the

same node as Cassandra there could be networking overhead between the microservices. An

0
20
40
60
80

100
120
140

CPU%

100R/S 200R/S 300R/S

Figure 19. CPU usage across all nodes when running different R/s with

fixed duration of 60 seconds

38

idea to be tested would be to check if forcing Cassandra and Jaeger into the same node

reduces average latency.

Except the CPU usage we can examine the client’s stats for different number of nodes.

In the following experiments we run the compose postscript for 60seconds on 5 nodes and on

20 nodes. Running 100 200 300 400 Requests each time. The two topologies are 4 nodes with

the containers and one client and 19 nodes with containers and one client.

1

10

100

1000

10000

100 200 300 400

Difference of Target Requests and
Final Requests

5nodes 20nodes

0

50

100

150

200

250

300

350

100 200 300 400

A
ve

ra
ge

 L
at

en
cy

(m
s)

Requests per second

Average latency different RPS

5nodes 20nodes

0

100

200

300

400

500

100 200 300 400
9

9
th

 (
m

s)

Requests per second

99th for different RPS

5nodes 20nodes

Figure 20c. Dropped Requests for different requests per

second (100,200,300,400) for both 5 and 20 nodes.

Figure 20a. Average Latency for different

requests per second (100,200,300,400) for

both 5 and 20 nodes.

Figure 20b. 99th Percentile for different

requests per second (100,200,300,400)

for both 5 and 20 nodes.

39

We notice in figure 20a that during 300 Requests per second there is a big difference between

the average latency using 5 nodes and 20 nodes with the 5 nodes having significantly lower

average latency, more specifically the average latency for 5 nodes reaches 75.6 ms and for 20

nodes 326ms. That may be possible to be explained by the big communication overhead

caused by having 20 nodes. Like the comment above the 99th percentile latency also is lower

on 5nodes than 20 nodes in the 300requests per second as seen in figure 20b. However, after

on the 400requests per second we see the times to be closer to each other, but to appreciate

this we need to also acknowledge the difference in “dropped” requests. We define dropped

requests as the difference between total target requests, QPS we input times the duration of

the experiment, and final requests, the reported number of completed requests by the client.

We notice the number of requests not completed which can be seen in figure 20c is

abnormally high both for 5 nodes and for 20 nodes. That leads us to the decision to attempt

and debug why so many requests are not completed.

6.2.3 Jaeger debugging

We attempt to debug the “dropped” requests through Jaeger interface. On the machines that

we are running there is a trend for the “drops” to happen around 300 requests per second and

more. When trying to find the missing requests we notice the limitations of Jaeger.

6.2.3.1 Jaeger limitations

Jaeger is a user interface and at the beginning of working with the interface we had some

misconceptions about it. First, Jaeger does not show all the made requests from the

experiment as there is a limitation on the UI to present only a maximum of 1500 requests.

Another wrong idea was that Jaeger traces every request as well as the “dropped” ones. The

tracer was setup to save the traces of 20% of the total requests.

However, Jaeger provides an interface to see the breakdown for each request of those 1500

with the time needed for each microservice as we can see in figure21a, where we have a

request of the type home-timeline read and the nginx web server taking up 5.76 of the total

8.45 ms, home-timeline service taking up 2.43 and post storage service taking up 2.25 ms.

In figure 21b we see how this breakdown can be presented differently using a table with

statistic for how much each microservices takes up.

40

6.2.3.2 Attempting to remove Jaeger

In a further attempt to debug the reason for “dropped” requests we attempted to remove the

tracing tool from the benchmark but that proved to be unsuccessful. The approaches and

ideas for removing jaeger were first to remove the jaeger and Cassandra services from the

yml file so that they are not created to begin with. The issue with this was that the setup was

causing problems sometimes and could not start correctly. Another idea was to deploy

normally but kill the corresponding containers of Cassandra and jaeger after the deployment,

this didn’t work as the containers are set to restart. The last idea was to change the

configuration files for the sampling so that no samples are taken, this causes the data given at

the end of the experiment from the client to be inaccurate as it is derived from the tracing.

Concluding removing Jaeger may not be a viable option for the Social Network.

Figure 21a. Jaeger example of one request of the

kind home-timeline read

Figure 21b. Jaeger example of one request of the

kind home-timeline read when selecting the

produce its statistics.

41

6.2.3.3 Changing Jaeger tracing

To have fully validate that we cannot use the jaeger interface to debug performance and

where bottleneck may occur and to find the reason for the “dropped” requests we attempt to

change the sampling rate of jaeger to 1 instead of 0.2 so that all requests are traced. We run

an experiment of 400R/s for 60 seconds and as we can see from the figure 22b that run

produces requests that need more that a second to complete, we then search in the Jaeger

interface using the min duration filter with 1 second as we can see in the 22a figure, and no

result is shown.

This proves that we cannot use Jaeger interface and if we want to continue debugging, we

will need to access the Cassandra database.

While running various experiments we noticed something extra about the experiments some

have something called non-2xx or 3xx responses. We run an experiment of 24R/s for

60seconds to have less than 1500 requests so that all fit in the jaeger interface. We then see in

figure 23a how there are 6 such responses and by also observing figure 23b we see 5 requests

that causes an internal server error and that also have time of 300ms and more which cannot

be seen in figure 23a in the client average latency and 99th results. Also, these requests occur

first in the experiment, there are first these 5 error requests and then all the rest work

normally. Non-2xx or 3xx responses means that the code in the response given by http is not

of the format 2_ _ or 3_ _ which makes sense here as a 500 response of internal server error

is neither [20].

Figure 22a. Jaeger interface result

of filter

Figure 22b. Client experiment run

results

42

Figure 23a. Client Result after run of 24R/s for 60

seconds

Figure 23b. Jaeger Result after sorting requests by

longest time.

43

6.2.4 Cassandra

We access the Cassandra Database [21] to further analyse the possible bottleneck and

“dropped” queries. We validate how the Cassandra table of traces changes when we run

different scripts and if the “dropped” requests are captured in Cassandra. We run an

experiment with 400R/s for 60s with expected total request number of 24000. However, we

notice from figure 24a that the made requests are 20061, we then check with the Cassandra

trace table. In the trace table there is saved for each request the time of each microservice.

That is why we use a query on the database that gives us the count of the unique ids, meaning

each time the newly made requests. The starting value of that count result is 120974 as seen

from the figure 24b we then ran the described experiment, and the new count result is 141041

from figure 24c by subtracting the two we see that we have 20067 which in comparison to the

20061 value is very close. This can prove to us that the “dropped” requests meaning the

expected 24000 requests are not stored in Cassandra.

Figure 24a. Client Run number of

requests is 20061

Figure 24b. Trace table unique ids

before run

Figure 24c. Trace table unique ids

after run

44

Chapter 7 Related Work

The paper named: “Microservices: Considerations before implementation” by Könönen [22]

is a similar work as mine as it analyses what microservices are, the challenges of

microservices and the positives as well, that work is also similar in the way that it is a thesis

work for a bachelor’s degree. But that paper does not explain the whole microservice

architecture and does not then implement a benchmark showing results something that is

done in this thesis project.

Another paper is the “Performance Evaluation of Microservices Architectures using

Containers” [23] in which the different ways to use containers are explored. They compare

the performance of the CPU using master-slave containers and nested containers. In our

thesis project only the master-slave containers configuration is used.

Lastly, we can compare our work with the work of the SAIL team at Cornell University on

the Social Network. As we can see from figure 12 (in the Deathstar paper) in the graph of

Social Network the SAIL team similarly to our runs used 100 200 300 400 QPS for their

experiments and noticed big increases in latency after 200QPS. The difference is that in our

work there was the factor of frequency change, we set the frequency to be fixed, but we

found also that after 200QPS there are QOS violations that cause the tail latency to increase.

45

Chapter 8 Conclusions

We can conclude that microservice architecture has a lot of different aspects to be taken in

account and needs to be researched more but it has potential using the correct optimizations

in the future. We found for example that 20 nodes perform worse than 5 nodes which is the

opposite of the expected result for microservices.

Also, more specifically we found out how for the Social Network the Jaeger Interface may

prove not very helpful in analysing all requests of an experiment, and if there are less than

expected total requests, they will not be stored in the Cassandra database.

8.1 Future Work

We can use the Cassandra Database to further analyse the bottleneck of the network and the

reason for the existence of “dropped” requests. Also, by using the database more we can find

which microservices saturates and create a heatmap using the CRISP technology [24].

To characterize the performance overhead we can use the profiler [25] which will give us the

CPU usage and transition states. To do the above we can use a topology which has 20 nodes

for the containers one node for the client and another node for the jaeger and Cassandra

microservices. The application for that could be that the mixed workload script is run and by

keeping steady the total QPS and changing the time for example we could have 400R/s for 60

seconds 300R/s for 80 seconds 200R/s for 120 seconds and 100R/s for 240 seconds.

In addition, there could be a deployment of another end-to-end service from the Benchmark

Suite that uses different technologies like Kubernetes and REST.

Important to note that the Social Network is in development so just deployment of a newer

version can also be beneficial for research.

46

References

[1] H. Sanjaya, “monolith-vs-microservices-b3953650dfd,” 11 March 2020. [Online].

Available: https://medium.com/hengky-sanjaya-blog/monolith-vs-microservices-

b3953650dfd.

[2] S. team, “An Open-Source Benchmark Suite for Microservices and Their Hardware-

Software Implications for Cloud & Edge Systems,” in In Proceedings of the Twenty-

Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS '19), New York, 2019.

[3] Chris Richardson , “introduction-to-microservices,” Eventuate, Inc., 19 May 2015.

[Online]. Available: https://www.nginx.com/blog/introduction-to-microservices/.

[Accessed 2022].

[4] C. Richardson, “https://microservices.io/,” 2021. [Online]. Available:

https://microservices.io/patterns/microservices.html. [Accessed 2022].

[5] Wikipedia, “Microservices,” Wikipedia, 2018. [Online]. Available:

https://en.wikipedia.org/wiki/Microservices.

[6] IBM Cloud Education, “learn/microservices,” IBM, 30 March 2021. [Online].

Available: https://www.ibm.com/cloud/learn/microservices.

[7] A. A. a. M. K. Mark Slee, “Thrift Apache,” 2007. [Online]. Available:

https://thrift.apache.org/static/files/thrift-20070401.pdf.

[8] P. Chandel, “The Software Design Blog,” 12 Septermber 2020. [Online]. Available:

https://medium.com/the-software-design-blog/an-introduction-to-rest-apis-and-

microservices-ea9477699b73.

[9] Docker Documentation, “Overview docker,” Docker, [Online]. Available:

https://docs.docker.com/get-started/overview/.

[10] Kubernetes, “Kubernetes-io-components,” Kubernetes, [Online]. Available:

https://kubernetes.io/docs/concepts/overview/components/.

[11] Amazon, “aws.amazon,” amazon, [Online]. Available:

https://aws.amazon.com/lambda/.

[12] Microsoft, “Azure Microsoft serverless,” Microsoft, [Online]. Available:

https://azure.microsoft.com/en-us/solutions/serverless/#overview.

[13] debian, “linuxcpupower,” [Online]. Available:

https://manpages.debian.org/testing/linux-cpupower/cpupower-idle-set.1.en.html.

[14] delimitrou, “SocialNetwork,” [Online]. Available:

https://github.com/delimitrou/DeathStarBench/tree/master/socialNetwork.

[15] Cloudlab, “Cloudlab,” [Online]. Available: https://cloudlab.us/.

[16] Docker, “Docker docs swarm,” Docker, [Online]. Available:

https://docs.docker.com/engine/swarm.

[17] Cloudlab, “Cloudlab Docs Hardware,” Cloudlab, [Online]. Available:

https://docs.cloudlab.us/hardware.html.

[18] T. Krenn, “Processor P states and Cstates,” [Online]. Available: https://www.thomas-

krenn.com/en/wiki/Processor_P-states_and_C-states.

[19] Intel, “Turbo boost,” Intel, [Online]. Available:

https://www.intel.com/content/www/us/en/gaming/resources/turbo-boost.html.

[20] Nitrox, “Redme Boards,” 2010. [Online]. Available:

https://redmine.lighttpd.net/boards/2/topics/4036.

47

[21] instaclustr, “Connect to cassandra using cqlsh,” [Online]. Available:

https://www.instaclustr.com/support/documentation/cassandra/using-

cassandra/connect-to-cassandra-using-cqlsh/.

[22] H. Könönen, “Microservices:Considerations before implementation,” 2020. [Online].

Available:

https://aaltodoc.aalto.fi/bitstream/handle/123456789/32232/bachelor_K%c3%b6n%c3

%b6nen_Heini_2018.pdf?sequence=1&isAllowed=y.

[23] IEEE, “ieeexplore.ieee.org,” 2015. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/7371699.

[24] C. Z. a. M. K. R. Milind Chabbi, “CRISP: Critical Path Analysis for Microservice

Architectures,” Uber, 18 Novermber 2021. [Online]. Available:

https://eng.uber.com/crisp-critical-path-analysis-for-microservice-architectures/.

[25] H. Volos, “Profiler,” [Online]. Available: https://github.com/hvolos/profiler.

