Thesis Dissertation

CONTINUOUS INPUT VECTOR REPRESENTATION
THROUGH EMBEDDINGS FROM LANGUAGE MODELS FOR
PROTEIN STRUCTURE PREDICTION USING
CONVOLUTIONAL NEURAL NETWORKS WITH HESSIAN
FREE OPTIMISATION

Sotiris Chatzimiltis

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2021

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

Continuous input vector representation through Embeddings from
Language Models for Protein Structure Prediction using Convolutional

Neural Networks with Hessian Free Optimisation

Sotiris Chatzimiltis

Supervisor
Dr. Chris Christodoulou

Thesis submitted in partial fulfilment of the requirements for the award of

bachelor’s degree in Computer Science at University of Cyprus

May 2021

Acknowledgements

Firstly I would like to express my opinion on academic research. Academic research
provides the opportunity to students to explore a whole new world and develop skills that
could be very valuable in the future.

At this point I would like to thank my advisor Dr. Chris Christodoulou for the continuous
support on my related research, for his patience, motivation and knowledge of the subject.
His guidance played a major role in the completion of this thesis. Moreover | would like
to pay my special regards to Dr. Vasilis Promponas for his initial idea about this
dissertation and his knowledge in biology that helped me understand crucial parts of this

project.
Special thanks to Dr. Michalis Agathokleous for his constant support and alumnus
Panayiotis Leontiou that provided to me necessary programs and scripts to implement

this project.

Finally I would like to thank my family for all the mental and emotional support

throughout my studies.

Abstract

This dissertation is attempting to solve the protein secondary structure prediction

problem, a problem that concerns the field of Computer Science and Biology for decades.

Proteins are highly complex substances that are present in all living organisms. Proteins
are of great nutritional value and they directly contribute in the chemical processes
essential for life. The study proteins (structure and function), can help to improve food
supplements, drugs and antibiotics. Moreover, the study of existing proteins could
possibly help treat diseases and solve numerous biological problems, such as the covid-
19.

There are millions of proteins with known primary structure but only for a small fraction
of those we know the secondary and tertiary structure. The reason is that current state-of-
the art methods and instruments for protein structure determination are extremely
expensive in terms of both money and time. This is incredibly serious, since the primary
structure on its own, tells nothing about the actual function of the protein. This emerged
the need of a number of computational algorithms and techniques that attempt to predict
the secondary and tertiary structure of a protein, given its primary, which do so

significantly faster and cheaper.

For the purpose of this dissertation a CNN with a HFO algorithm was utilized in order to
predict the secondary structure of proteins based on inputs (embeddings) that were
extracted from a language model (BERT). The results obtained for this combination, for
the CB513 dataset were an overall Q3 accuracy of 81.76% for a single fold and 93.65%
for 10-fold cross validation with ensembles and random forest filtering technique. The
SOV score was 75.17 and 89.63 respectively. Moreover for the PISCES dataset, the Q3
accuracy was 81.80% for a single fold and 87.13% for 5-fold cross validation with
ensembles and random forest filtering, while the SOV score was 79.29 and 84.28
respectively. In addition the results for the independent testing dataset (CASP13) with the
system trained on PISCES was 78.92% for single fold and 90.69% with ensembles and
random forest. The SOV score was 72.17 for single fold and 87.94 with ensembles,

random forest and external rules. The results for the CASP13 dataset when the system

was trained with the CB513 dataset were 78.74% for single fold and 90.54% with
ensembles and random forest. The SOV score was 71.33 for single fold and 87.47 for
ensembles, random forest and external rules. Additional experiments showed that the
bigger the window variable gets, the better the Q3 accuracy of the test set is. The reason
is that a larger window will use more neighboring secondary structures to build the post
processing datasets, thus being able to capture longer connections between secondary

structures leading in higher Q3 accuracy up to 98% and SOV score of almost 97.

Contents

R 1110 [8Tox o] ISP RORSP 1
1.1 Protein Secondary Structure Prediction problem.........ccocoovviiiiiiiiiiiiiin, 2
1.2 IMPOrtANCe OF PSSPc.oiiiiiiiiiiiit e 3
1.3 Previous ReSearch 0N PSSP ... 3

A = T ot 1 | (0] 1T OSSR 6
2.1 Biology BaCKgroUndcccooeiiiiiiiiiieieie s 7

2.11 The biological Role of Proteins........ccccccuueieeiiieie et 7
2.1.2 AMINO ACIS 1ottt st e s sbe e e bt e e sate e ssbeeesabeesbeeeseaesnbeeenn 8
2.13 Protein STrUCTUIESciiiiiieeeee ettt e e e e e e e e 9
2.1.3.1 Primary STIUCIUIE........cceiiiieiieiee et 9
2.1.3.2 SECONAArY STIUCTUIE.......eiiiiieiieieie et 9
2.1.3.3 Tertiary StrUCIUIE.......cccveiueiieeieecie e 10
2.1.3.4 QUALEINAIY SIIUCTUIEcviiiiiietiiee e 10
2.2 Atrtificial Neural Networks Backgroundc.ccoovevieeienincnencseseeee, 10
2.2.1 Origins of Artificial Neural NetWorkseeevciiiiiiiiiiee e 10
2.2.2 Variations of Artificial Neural Networks and Optimizers.........ccccoceeeverveeeennnenn. 11
2.2.2.1 McCulloch and PittS (MCP)ccooiiiiiiiiiiieecee e 11
2.2.2.2 Multi-Layer Perceptron (MLP) ..o, 13
2.2.2.3 Convolutional Neural Networks (CNN).......ccccceeveviereiieieece e, 17
2.2.24 LINE SEAICNooiiiee e 20
2.2.25 Conjugate Gradient (CG)ccevviieiieieeie e 20
2226 Newton’s Methodcccoooiiiiiiiiiiiii e 21
2.2.2.7 Hessian Free Optimisation (HFO).........ccocvviiiiiiniieieecee 23

3 Data ManipUlBTIONcooiiiiieiee e 25
0 B SIS o |V 1= 1 [PR SRR 26
3.2 Protein Databases ant DSSP.........cccooeiiiieiieiiee e 26
3.3 Datasel FOrMALcooiiiieiii e 27
3.4 Extracting embedding from Natural Language Processingcccocceeereeeens 28

3.4.1 BERT coutetutietetetse sttt ettt ettt etttk 29
3.4.2 PPOEBERT ..vvvtiiaceeietetet sttt sttt ettt ettt ees 30
3.5 CB513, PISCES and CASP13 DatasetsS.........cccvvevreereeremrienieriesiesieseneeseeeenes 30
3.6 Training/Testing Set and Cross Validationccccceviiiiiiiiienienecscie s 31
3.7 ENSEMDIES ..ottt nne s 32
3.8 FHEIING oo e 32

Vi

3.8.1 EXEEINGI RUIES..ccceeeeeiieeeeeeee e e e e e et a e e e e e e e e aaaaans 33

3.8.2 DECISION TIEES c.eeieetee e ettt ettt e e e e e sttt e e e e e s s atr et e e e e e e e ssasnraeaeeeas 33
3.8.3 RANAOM FOMEST...iiiiiiiiiiiiiiie ettt et s are e be e sba e s naee e ssbaeenaees 34
3.84 SUPPOIt VECtor MaChiNgScoccuviiieciiiiee ettt e et 35

4 IMPIEMENTALION......iiiiiiicie et 36
4.1 Subsampled Hessian Newton (SHN) Method...........ccccoooiiiiiiniiiiicicien, 37
4.2 Network Implementationccocevieiiiine e 37

5 EXperiments and RESUILSccoviiiiiiiece et 39
5.1 Fine tuning of HYper Parameters..........cocooiieririnenieieiee e 40
5.2 Experiments With CB513 datasetl.........cccoocvrereiiiiniiinieese e 41
5.3 Filtering techniques on CB513 dataSetlccoovveiieinieniene e 43
5.4 Final results for CB5L3ooiiiiiieiiee e 47
5.5 CASP13 results with the system trained on CB513..........cccccovviiiinienieieninn 47
5.6 Experiments With PISCES dataSetccccoveiiiinieniininiesene s 48
5.7 Filtering Results fOr PISCESccooiiiiiiieeee e 49
5.8 Final ResUlts FOr PISCEScoooiiiiiiiie e 51
5.9 CASP13 results with the system trained on PISCES...........cccocoiviiniiniiicnne, 52
5.10 (@] 0T=] V7 1 T0] SRS 54
5.11 Additional EXPErimMeNtS........ccoeieiiiiiiii e 54
5.11.1 WiINAOW Variable ...cooeveeiie ettt et e e saaee s 54
5.11.2 N-Terminus VS C-LEIMINUS ..coueveeiiiieee ettt et e e s e e s ebeeee s snneeessanee 60

6 Conclusions and FULUIE WOTKcccouiiieiieeiieseee e 63
0.1 CONCIUSIONS ...ttt ettt sttt 64
0.2 FULUIE WOTK ..ottt anaenne s 65
T 1=] 1<) 0TSSR 67
y N Y o] 1= o [USSR TPP A-1
B U ADPPENGIX ...ttt B-1
C APPENTIX .t bbbt C-1
DY o 1= o L GRS PUPSPRRSO D-1
A o] 01T Lo | GRS PPTBOPRON E-1
[o] o 1=] 1o | USSP P PP F-1
LAY o] 1= [0 3 SO OUTRPPRTROPR G-1
[I o] 01T o | USRS H-1
L o] 1< 1T | TP PRSP RPTPPRTRPRRIN I-1
B AN o] o 1= 0 o [G SRR RPP J-1
(AN o] 01T T | PRSPPI K-1

Vil

L Appendix

IV APPENAIX . bbbttt bt

N Appendix

VI

Chapter 1

1 Introduction

1.1 Protein Secondary Structure Prediction problem ...,
1.2 IMPOrtanCe OF PSSP........ccoiiiiiiiieiee e
1.3 Previous ReSearch 0N PSSP ..o

1.1 Protein Secondary Structure Prediction problem

Proteins are highly complex substances that are present in all living organisms. Proteins
are of great nutritional value and they directly contribute in the chemical processes
essential for life. Proteins are made up of amino acid residues linked together by peptide
bonds. Several hundred amino acids are found in nature, but only 20 amino acids appear
in the human body. Proteins of similar function have similar amino acid composition and
sequence [1]. However in order to explain the function of a protein we need to know how
amino acids composing a protein interact and fold in a three-dimensional (3D) space. This
3D structure determines the function of each protein. The field of studying about protein
structures and functions can contribute to enhance food supplements, drugs and

antibiotics.

In general, there are four levels of protein structure. The Primary, Secondary, Tertiary
and Quaternary structures, and each one differs from the other by the degree of
complexity in the polypeptide chain. The primary structure is the linear sequence of
amino acids that form a specific protein. Secondary structure refers to the folding of one
polypeptide chain of a protein. There are 8 different types of secondary structures
appeared in proteins, but we can group them into 3 wider categories, the alpha (a) helix,
the beta (B) pleated sheet, and coil/loops. The tertiary structure is a three-dimensional
(3D) representation of the polypeptide chain, that determines the specific function of a
protein. Finally, the quaternary structure is the structure of a protein macromolecule

formed by interactions of multiple polypeptide chains [2].

At the moment there are millions of proteins with known primary structure, but only for
a small fraction of them we know their secondary and tertiary structure. The reason is that
methods used to determine secondary and tertiary structures demand a serious amount of
time and money. To be precise the cost of structure determination using conventional
means, such as X-ray crystallography or Nuclear Magnetic Resonance, can vary between
$100,000 — $300,000 per protein structure [3]. Thus this process is made the bottleneck
of the pipeline for the protein function determination. There was therefore an emerging
need to develop methods for predicting the secondary and tertiary structures, which are
considerably cheaper and require less time than the experimental methods.

This dissertation tries to predict the secondary structure of proteins using embeddings
from Language Models and Convolutional Neural Networks with Hessian Free
Optimisation algorithm. Embeddings are extracted from two different language models,
ELMo and ProtBERT and are used as inputs to the CNN.

1.2 Importance of PSSP

The solution of the PSSP problem is very important because the secondary structure is
essential to determine the tertiary structure, which gives information about how proteins
function. The experimental methods used for determining the tertiary structure of proteins
are extremely expensive in both time and money, which led to the study of just a small
portion of known proteins. As a result, the scientific community has information about
the functions of just a small (a few thousands) of proteins, compared to the millions of
proteins that exist.

Furthermore, this means that the PSSP can help identify the tertiary structure of a protein
with higher accuracy and less effort. It is very important to note that the functions of a
protein are based on the 20 amino acids that compose a protein, which is the main reason
why the research in this field is very important. Understanding how these molecules fold
around space, assemble and function can help to understand why people are getting older,
why they suffer from dangerous diseases and viruses (such as cancer), how can a cure for
a disease be found (like the cure for covid-19), and other ‘difficult to answer’ questions.

The proteins’ functions are related with their structure, which depends on both the
physical and chemical parameters of these molecules. Bioinformatics is an
interdisciplinary field that develops methods and software tools for understanding
biological data. It combines knowledge from biology, computer science, information

engineering, mathematics, and statistics to analyze and interpret biological data.

1.3 Previous Research on PSSP

Predicting the secondary structure of proteins is a problem that researchers have been
working on for more than six decades. Multiple machine learning algorithms have been
developed over the years that are dedicated to this problem. Algorithms using only

machine learning techniques have reported three-state accuracy around 85% whereas

algorithms that rely on sequence-based structural similarities have achieved Q3 accuracy
over 90% [4].

Figure 1.1 shows the number of publications on the PSSP problem over a period of 40
years, as well as the cumulative number of publications. According to the graph the
cumulative number of publications for the PSSP problem increased significantly between
1973 and 2015. Also we can observe that this is a problem that concerns the scientific

community since new publications come out every year.

Table 1.1 shows the Q3 accuracy of various methods trying to solve the PSSP problem in

chronological order. Those algorithms are better described here [5].

IIIIIllIlllllllll]llllllllllllllllllllllll

N
(3]

20

15

—t
<)
Cumulative Number

Number of Publications Per Year
1)

S %) QS

)
S (N) N N
v & & P

Figure 1.1: Number of publications for PSSP per year [6]

NO. METHOD

O~NOO O~ WN

©

10
11
12
13
14
15
16
17
18

Feedforward Fully Connected NN (Qian and Sejnowski,1988)

PHD (Rost,2001;Rost and Sander,1993)

NNSSP (Salamov and Soloveyev, 1997)

DSC (King and Sternberg, 1996)

PREDATOR (Frishman and Argos, 1997)

Consensus (Cuff and Barton, 1999)

BRNN-Backpropagation (Baldi et al, 1999)

LAD (Jacek et al. ,2005)

MASSP3 (Giuliano et al., 2005)

Evolutionary method for learning HMM structure (Won et al.,2007)
Two-Stage method (Fadime et al., 22007)

Cascade BRNN (Jinmiao and Narendra, 20070)

Deep Convolutional Neural Field (Wang et al., 2016)
Convolutional Neural Networks (Pavlidis, 2016)

LSTM-BRNN (Heffernan et al., 2017)

MUFold — SS (Fang et al., 2018)

Feed Forward NN with HFO (Charalambous et al., 2020)
Convolutional Neural Network with SVM filtering (Dionysiou et al., 2020)

Table 1.1: Methods used for PSSP in chronological order

Q3

ACCURACY (%)

63.30
71.40
68.41
71.95
68.60
72.70
76.00
70.60
76.10
65.00
74.10
74.38
83.00
40.00
84.00
86.49
80.40
81.00

Chapter 2

2 Background

2.1 Biology BacKgroUnd............cccoiieiiieiieiiie e 7
2.1.1 The biological Role of Proteins.........ccceecviieiiiiieeecciiee e 7
2.1.2 AMINO ACIS 1ottt sttt ste e sbee e sbe e s beeesabeesnbeessareesnes 8
2.1.3 Protein STIUCTUIESeeiiiiiiieiieeeee ettt e et e e e e e s e e e eeee s 9

2.1.3.1 Primary STFUCKUIEccoiiiieiieieieee e 9
2.1.3.2 SeCoNdary StrUCIUIE.......c.cccueieeie et 9
2.1.3.3 Tertiary StrUCIUIE......cc.ccee et 10
2.1.3.4 QUALEINArY SIUCIUIE........ciiiiiiieiteere e 10

2.2 Artificial Neural Networks Backgroundccocevevevenenenenesieneseeens 10
2.2.1 Origins of Artificial Neural NetWorkscccceeeeciieeieciiee e 10
2.2.2 Variations of Artificial Neural Networks and Optimizers........ccccccvveeerinnenn. 11

2.2.2.1 McCulloch and PittS (MCP)c.cooiiiiiiiiiicceee e 11
2.2.2.2 Multi-Layer Perceptron (MLP).......ccccooiiiiiiiiiiece e, 13
2.2.2.3 Convolutional Neural Networks (CNN)........ccccocveveiieirciciiennen, 17
2.2.24 LINE SEAICN ..o 20
2.2.25 Conjugate Gradient (CG)........ccceeveeiriiiieiiieie e 20
2226 Newton’s Methodcccovviiiiiiiiiiiic e 21
2.2.2.7 Hessian Free Optimisation (HFO)ccccooviiiiiiiniiiiiicee, 23

2.1 Biology Background

2.1.1 The biological Role of Proteins

Proteins are macromolecules made of amino acids. They are coded for by our genes and
form the basis of living tissues. They also play a central role in biological processes. For
example, proteins catalyse reactions in our bodies, transport molecules such as oxygen,

keep us healthy as part of the immune system and transmit messages from cell to cell [7].

Food consumption is the main source of proteins for the human body. The digestive
system breaks down the consumed food into amino acids, which enter the blood stream.
Cells of the human body gather amino acids from the blood stream to create all the
essential proteins to perform specific functions. If there is a shortage of amino acids in
the blood stream, probably because of a poor diet with less proteins, the immune system
will become weak, causing dizziness, exhaustion, or even serious diseases. That happens
because to create the necessary proteins for the human body, the cells need enough amino

acids, otherwise they will not be able to support the needs of the entire human body.

Understanding the structure of a protein and consequently its function will help in the
development for better food supplements, drugs and antibiotics. Research or studies on
existing proteins could also help solve numerous biological problems and treat diseases.
The advancement of technology made this procedure easier due to the computational

power we have.

There are over thirty thousand (30.000) different proteins in the human body which
perform a wide variety of functions. Table 2.1 describes some of the most important types

of proteins and the functions they perform.

Type Function Description

Enzymes They build and break down molecules. They are critical for growth, digestion, and many
other processes in the cell. Without enzymes, chemical reactions would happen too slowly
to sustain life.

Structural | Proteins that strengthen cells, tissues, organs and more.

Signaling Proteins that allow cells to communicate with each other.

Regulatory | Proteins that bind the DNA to turn genes on and off.

Transport Transport proteins move molecules and nutrients around the body and in and out of cells.

Sensory Proteins that help us learn about our environment. They help us to detect light, sound,
touch, smell, taste, pain and heat.

Motor They keep cells moving and changing shape. They also transport components around
inside cells.

Defense Defense proteins help organisms fight infection, heal damaged tissue, and evade
predators.

Storage Proteins that store nutrients and energy-rich molecules for later use.

Table 2.1: Types of proteins and their function [8]

2.1.2 Amino Acids

Example
Lactase

Collagen
Insulin
Estrogen
Hemoglobin
Opsin

Myosin
Antibodies

Casein

Proteins consist of hundreds or even thousands of amino acids, which are organic

compounds that contain amine (NH2) and carboxyl (COOH) functional groups. Amino

acids and proteins are the building blocks of life. There over 500 amino acids found in

nature, but only 20 of those amino acids are needed to make all the proteins found in the

human body. Figure 2.1 illustrates the 20 common amino acids with their structure.

Amino acids can be divided into two groups, the essential and the non-essential. Essential

amino acids have to be obtained from our diet, where as non-essential amino acids can be

synthesized from the human body [9].

A GUIDETO THETWENTY COMMON AMINO ACIDS

AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER 500 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE
ONLY DIRECTLY ENCODES 20. 'ESSENTIAL' AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.

Clmrl'ﬁey: . ALIPHATIC AROMATIC . ACIDIC . BASIC HYDROXYLIC SULFUR-CONTAINING . AMIDIC ONON ESSENTIAL .: :A ESSENTIAL

-~ -~ " a5
d . ¢ . v .
Chemical AR T ! o 3\ ’ oy
Structure I\/\HLM 1 I\'/ﬁ)‘\m 1 1)\|/“\cn 1
\ LI | \ b, I \ NH, l
~ ’
P

N»\ME AlANNEo stvcmz 0 IsoLEvciNe @) uucm[o PROLINE 0 vnuuz 0
2N 1"“:::‘\
o s Bag Lorp
PHENYLALANINE TRYPTOPHAN TYROSINE AsPARTICACID (1) GLUTAMIDAKIU (€] ARGININE 0 msnumz 0
o e asp
g - - . " o
7’ N
’ e o oH o «H’\ \/\‘)k
\ \L)\] /\dk NH, \ N, L
Y /’ 5 2 / \ 4
S . X
Lvsive @ SERINE THREONINE CYSTENE METHIONINE ASPARAGINE o CLUTAMINE G
iys Ser The O Met

Figure 2.1: The twenty amino acids found in human body [9]

2.1.3 Protein Structures

As mentioned before, there are four levels of protein structure. The Primary, Secondary,
Tertiary and Quaternary structures, and each one differs from the other by the degree of
complexity in the polypeptide chain. Knowing only the number and type of amino acids
of a protein are not enough, since order and layout of amino acids are needed to determine
the three-dimensional structure and consequently the function of the protein. Below we

can take a closer look at the four different structures of a protein.

Types of Protein Structures

HO C
G > -
0 7 - S (i /
alpha helix ~ (: Ty /beta pleated sheet
o (’ &
H ¢ —
N)) N< (:,
H
Primary Structure Secondary Structure
Tertiary Structure Quaternary Structure
Thought

Figure 2.2: Protein structures illustration [2]

2.1.3.1 Primary Structure

Primary structure describes the order in which amino acids are linked together to form a
protein. The order of amino acids in a polypeptide chain is unique and specific in each
protein. The sequence of amino acids for every protein is determined by the gene
encoding . Changing just a single amino acid will generate a different protein [2]. Figure

2.2 illustrates the primary structure of a protein.

2.1.3.2 Secondary Structure

The secondary structure is the local folding of a polypeptide chain due to hydrogen bonds
that are formed between the backbone-chain peptide groups. There are two main

categories of secondary structures observed in proteins. The first category is the alpha (o)

helix structure. This structure resembles a coiled spring and is secured by hydrogen
bonding in the polypeptide chain. The second category of secondary structure in proteins
is the beta (B) pleated sheet. This structure appears to be folded or pleated and is held
together by hydrogen bonding between polypeptide units of the folded chain that lie
adjacent to one another [2]. Figure 2.2 show the two main categories of secondary

structure.

2.1.3.3 Tertiary Structure

The tertiary structure of a protein refers to its three-dimensional structure, which is
represented by the three-dimensional coordinates of each atom of the protein. The tertiary
structure of a protein depends on multiple elements of the secondary structure, and is
generally the result of side chain interactions between various amino acids. Therefore, the
amino acid sequence of a protein (primary structure), forms the secondary structure of the
protein and then the local folding of the protein determines the tertiary structure of the

protein, thus the final shape and function of the protein.

2.1.3.4 Quaternary Structure

The quaternary structure of a protein is the three-dimensional structure consisting of the
aggregation of two or more individual polypeptide chains. Each polypeptide chain can be
referred as a subunit. Proteins with quaternary structure, consist of more than one of the
same type of protein subunit. For example Hemoglobin contains four subunits, two alpha

subunits and two beta subunits.

2.2 Artificial Neural Networks Background

2.2.1 Origins of Artificial Neural Networks

Anrtificial neural networks are computational systems that try to mimic the behavior of
biological neural networks. Biological neural networks are found in almost every living
creature that has the ability to adapt in a changing environment. The term “neural” is
derived from the basic functional unit of the nervous system called “neuron”. Neurons

are located in multiple parts of the human body.

10

impulses carried
toward cell body

branches

dendrites

. > axon

nucleus terminals

impulses carried

away from cell body
cell body

Figure 2.3: Biological Neuron Illustration [10]

A biological neural network consists of multiple neurons that receive, process and
transmit information between each other. A biological neuron consists of three main parts.
The dendrites which receive input signals from other neurons. The cell body that adds all
the input signals and triggers a response if the sum is higher than a threshold, and the
axons that transmit the signal from the cell body to other neurons via synapsis
connections. The impulses carried toward or away from the cell body are as shown in
Figure 2.3.

An Artificial Neural Network (ANN) has the same architecture with a biological neural
network. An ANN has nodes that represent neurons, edges between neurons instead of

synaptic connections, and a threshold function that determines the output of the network.

Through the years a variety of ANN have been developed in order to tackle different

problems and some of them are going to be discussed in the following section.
2.2.2 Variations of Artificial Neural Networks and Optimizers

2.2.2.1 McCulloch and Pitts (McP)
The first ANN model was suggested by Warren McCulloch and Walter Pitts in 1943. This

artificial neuron has a very simple design and was based on a single biological neuron of
the human brain. The McP model is a binary threshold unit. It computes a weighted sum
of its inputs and fires a one or a zero depending on whether the sum is above or below a
certain threshold. The weights of this neuron can be varied enabling it to perform arbitrary

logic operations and indeed making the neuron adaptable.

11

1 ifw-x>s

y= .
0 otherwise

Equation 2.1: McP equation

Inputs Weights
Wi

I

|5
Threshold T

. Figure 2.4: McCulloch and Pits artificial neuron [11]
In Figure 2.4 we can see the basic components of a McP artificial neuron. The inputs and
the weights of the neuron can be written as two vectors. The dot product of those two
vectors is then compared with the threshold to determine if the output is one or zero
(Equation 2.1). Weights are key components in ANN since are the ones that make our
model capable to learn. Usually weights are initialized with random values and through

the training process are altered until the reach an optimal value.

_J1 fw-z+b>0
/(=) {1] otherwise o8

4

Figure 2.5: The step or heaviside threshold function

12

McP neurons are trained using the Perceptron Learning Algorithm (Algorithm 1). This
algorithm modifies the weights when the target and predicted outputs are different,
whereas if target and predicted outputs are the same the weights remain the same. The
drawback using the perceptron algorithm was that it could only solve linearly separable

patterns.

Perceptron Learning Algorithm

1. Initialize weights and threshold randomly.
2. Present input and desired output.

3. Calculate actual output (Equation 2.1).

4. Adapt weights:

if output 8, should be 1: wi(t+1)= wi(t)+ n x(t)
if output 1, should be 8: wi(t+1)= w;(t)— n -x(t)
if output is correct Dowi(t+ 1) = wy(t)

where 0 =n =<1 the learning rate, controlling the
adaptation rate.

Algorithm 1: Perceptron Learning Algorithm [5]

2.2.2.2 Multi-Layer Perceptron (MLP)
Multi-Layer Perceptron is a class of feed-forward neural networks. MLP was design in

order to solve problems that were not linearly separable. They consist of multiple

McCulloch and Pitts neurons which form layered feed forward networks (Figure 2.6).

>

Figure 2.6 I\/ILJIti-Layer Perceptl"_(')rj'with one Hidden La_yér Ilustration

LA
\¢

DR
:r
Q
[X X]
&-Q 0

13

An MLP neural network consists of an input layer, at least one hidden layer and an output
layer. Hidden and output layers are active, whereas the input layer is inactive since it only
forwards the data to the network. Each layer has one or more neurons and an independent
neuron unit, also known as ‘bias’, which has a constant input value of one (1). The role

of the bias unit is to help the network adapt more effectively to the provided data.

Choosing the number of hidden layers and the number of neurons per layer is very
important as it specifies the complexity of the network and thus the problems it can solve.
The Kolmogorov Theorem says that having three active layers (2 hidden layers and the
output layer) are enough to form any arbitrary complex shape that is capable of separating
any classes (Figure 2.7). In general every neuron of the first active layer adds a new
decision line that separates the data into classes. Every neuron of the second active layer
combines the decision lines, from the first active layer, forming convex regions. Finally

the third active layer forms the arbitrary complex shapes that separate the classes.

Structure Reglans Meshed reglans

single layer

7
Half planc /o
bounded 7
by hyper- /

planc

two layer

Cunvex
vpcn or
elosed

T

three layer

Arbitrary
(limited
by # of

nodes)

Figure 2.7: The shape of regions in pattern space that can be separated by a Multi-Layer
Perceptron [38]

14

Name Plot Equation Derivative Range
Heaviside HE= { 0 L{Ffe:wise f@= [? Iff ; =0 b
Logistic / 1 —— 1 0.1
Sigmoid f0) = 1o FO)=f@0-f@) | (1)

/_,—-" 11 gX — p=% ,

TanH i == F® =5 -1.1)

Rectified
_(0ifx<0 ieon _ [0ifx<0 =
linear unit / fx) = {x i O— - fx) = [1 otherwise [0.)

(ReLU)
e

/"/ — X L - =]
SoftPlus | f(x) =In(1 +e%) P = (0,%)
Gaussian ZTH J flx)=e™* f'(x) = —2xe~*" (0,1)

Table 2.2: List of activation functions [5]

Another advantage that multilayer perceptron have is the use of a variety of activation
functions. McP neurons use a specific threshold activation function (step function) while
MLP neurons can use any arbitrary activation function (Table 2.2). This is the reason why
McP can only perform binary classification, while MLP can perform regression or
classification, depending on the selected activation function. Furthermore, activation
functions provide an indication to the network whether the outputs are closer or further
of the expected outputs, which helps the network adjust the weights accordingly, to

improve predictions.

Almost the same process as McP is followed to produce the output of an MLP network.
In each active layer the dot product of the weights and the respective inputs is calculated
and then the bias term is added. The value calculated as then passed in an activation
function (Equation 2.2). The outputs produced are then fed as inputs to the next active

layer if there is one.

15

y= f(wr_r—b)

Equation 2.2: MLP equation that calculates output

Gradient Descent
The main objective when creating an ANN is to adjust the weights of the network in order

to make the best predictions possible. To evaluate how good the predictions are, an error
function is utilized, like the mean squared error (MSE) that shows how close the

predictions are with respect to the target outptus.

1 n
MSE = EZ(I}{ _— ﬂk)z
k=1

Equation 2.3: Mean square error equation (n is the number of output neurons, tk is the target
output and ok is the actual output for neuron k)

Gradient descent is a widely used optimization algorithm used for training neural
networks. It is an iterative algorithm that is able to minimize an error function by moving
in the direction of the steepest descent, which is defined as the negative of the gradient.
To minimize this error, weight vectors are adjusted according to the negative of the

derivative of the error value, with respect to each weight (Equation 2.4).

4 dE
W:: = —n
H dWU

Equation 2.4: Gradient descent change in weights

Backpropagation Algorithm (BP)
Adjusting the weights using the gradient descent algorithm demands knowing the

predicted and target outputs. This is feasible only in the output layer where both of the
values are known, thus only the weights between the last hidden layer and the output can
be adjusted. The backpropagation algorithm, which solves this issue, propagates the error
from the output layer back to the last hidden layer, which then does the same until all the

weights are updated.

The BP algorithm needs two passes in order to update all the weights. The first pass is a

forward pass that based on a given input calculates the predicted output, and a backward

16

pass that calculates and propagates the error to the previous layers (Algorithm 2). This
process is repeated until all of the patterns have been passed into the network (one epoch).

The goal is to feed the neural network all the input patterns several times until the error

decreases to a specific value or until a number of epochs are completed.

Backpropagation

Repeat:
For each pattern :
// Forward Pass
Calculate the output
// Backward Pass
For each layer j, starting at the output:
For each unit i:
// Compute the error
If output neuron: &; = yi(1— vy)(dy — yi))
If hidden neuron: &; = (1 — ;) X O - Wik
For each weight to this unit:
Compute and apply Aw
Compute total error
Increment epoch counter
Until small enough error or epoch counter exceeded

Algorithm 2: Backpropagation Algorithm (8ij is the error signal, yij is the predicted output, dij is
the target output of neuron i of layer j. The ik is the same as 8ij but for the previous iteration of

the algorithm).

2.2.2.3 Convolutional Neural Networks (CNN)

A Convolutional Neural Network is a class of deep artificial neural networks, which is
most commonly applied to analyze visual imagery. CNN have a wide range of
applications, from image and video recognition, recommender systems, image
classification to medical image analysis, and natural language processing (NLP).
Convolutional Neural Networks, is an extension of traditional MLP, perform convolution

instead of matrix multiplication in at least one of their layers.

CNN are trying to solve two major problems that multilayer perceptrons have. Firstly
since MLP are fully connected networks, meaning that each neuron in one layer is
connected to every neuron in the next layer, making them prone to overfitting. CNNs on

the other hand take advantage of the hierarchical pattern in data and assemble patterns of

17

increasing complexity using smaller and simpler patterns. Secondly CNNs are translation
equivariant meaning that it preserves translations [12].

Architecture of Convolutional Neural Networks
CNNs consist of an input and an output layer, and multiple hidden layers. Those hidden

layers are classified into convolutional layers and sub-sampling (pooling) layers. The
activation function used is Rectified Linear Unit (RELU) and it is applied after a

convolutional layer. CNNs end with a fully connected layer, usually a MLP network.

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution | K—A
(SI)_(dS) ke;r_\el Max-Pooling (5 x5) kernel Max-Pooling (with
valid padding (2x2) valid padding (2x2) dropout)
A A e ® @0
! ® 01
3&J WH A
INPUT nlchannels nl channels n2 channels n2 channels . 9
(28x28x1) (24 x 24 x nl) (12 x12 x nl) (8 x8xn2) (4 x4 x n2) O OUTPUT
n3 units

Figure 2.8: A CNN sequence to classify handwritten digits [13]

The input of a convolutional neural network is an image of size d x d x ¢, where d is the
height and width of the image and c is the number of channels the input image has (e.g.
RGB ¢ = 3, GRAYSCALE c = 1). A convolutional layer has n filters (kernels) of size
k x k x m, where k is smaller than the dimensions of the image and m can be either the
same as the number of channels (c) or smaller. Convolutional layers convolve the input,
which leads to n feature maps of size smaller or equal than d — k + 1, and pass their output
to the next layer. If the next layer is a convolutional layer the same process is repeated,
but if the next layer is a pooling layer, the feature maps are sub-sampled, typically
averaging or maximizing above the same areas in feature maps of size p x p (p is between

2 and 5 depending on the size of the image).

18

Figure 2.8 illustrates a CNN which is used to classify handwritten digits. The diagram
shows the different layers of a CNN (convolution, pooling, multilayer perceptron) and
the feature maps that are extracted from each image (small squares). At the end of the
CNN, there is a fully connected network (MLP) which is used to classify the handwritten
digit.

Pooling layers are typically placed between two convolutional layers. The main scope of
pooling layers is to reduce the dimensions of the feature maps produced by convolutional
layers. Reducing the dimension of a feature map, reduces the number of parameters and
the complexity of the network, which consequently reduces the total computation time of
the network, as well as preventing the network from overfitting. However using sub-
sampled layers may remove details that are useful to train the network resulting in poorer
overall performance. There are several types of pooling layers such as min pooling, max
pooling, average pooling and L2-normalization pooling. Figure 2.9 shows an example of

max pooling with kernel size 2 x 2 and stride 2.

vSingIe d'eplhvslice‘

X N 2 | 4
max pool with 2x2 filters
5|16|7 |8 and stride 2 6 8
3|2 [1]o0 3|4
112|334
v -

Figure 2.9: Max pooling example

Finally in some cases we may need to apply padding around the image in order to control
the dimensions of the outputs produced from the convolution layers. There are several
types of padding such as constant padding and zero padding. Figure 2.10 illustrates a

4 x 4 matrix that has zero padding and became a 6 x 6 matrix.

19

0 13 22 16 53 0

o | 4 | 3 | 7 [10 |0
o|leo | 8 | 1 |3 |o

Figure 2.10: Zero padding in a 4 x 4 matrix [14]

2.2.2.4 Line Search

Line search is one of the two basic iterative approaches used to find a minimum x* of an
objective function. In ANN x represents the weights of the network and the objective
function represents the error function. Line search in each iteration firstly finds a descent
direction along which the objective function will be reduced and then computes a step
size that determines how far we should move in that direction [15].

Xp+1 = X + ap Py
Equation 2.5: Line search update rule (axis the step size , pkis the descent direction)

2.2.2.5 Conjugate Gradient (CG)

Conjugate Gradient is a line search method that in every iteration tries not to undo part of
the moves done previously, by conjugating the directions of all previous moves. In an N-
dimensional problem, conjugate gradient can converge in an optimal solution making at
most N steps [16]. Figure 2.11 illustrates an example of a two-dimensional problem.

Conjugate gradient converges in only 2 steps, whereas gradient descent needs more.

A 4
W, . W,
VR “\. \\\
\ \ T \
\
/ Pa 4
/ ,_// 7 387 S
‘ P / Error , ‘ 3 ” Error
N contours [\ “——_~7 / contours
\ — g » \ ~— g 7
e — > 4 — " >
. oo w, e s W,

Figure 2.11:Gradient descent (left) vs Conjugate Gradient (right)

20

2.2.2.6 Newton’s Method

An iterative method, originally used to find approximations of the roots of real-valued
functions. Newton’s Method is currently used in optimisation problems to find the
maximum or minimum of a function. This method is considered a second-order
optimisation method since it requires information about the second derivative of the

optimisation function.

The difference between first and second order optimisation methods is that, while first-
order algorithms provide a plane that is tangent to a point on the error surface, second-
order methods provide a quadradic surface that hugs the curvature of the error surface.

Consequently second-order algorithms can converge to a minimum faster.

A simple approach of Newton’s method is by using only the first derivative of a function
to find its root. Starting with a sub-optimal initial point Xoand a function y = f(x), iterate

as follows:

Set Xi = Xo
Find the equation for the tangent line at Xx;
Find the point (xi+1) of intersection between the tangent line and the x-axis

Find the projection of xi+1 on f(x)

o B~ w0 D

Set xi = Xi+1 and repeat from 2 until f(x;) < threshold

! y=f(x)
/. Tangent at x,

)
o

/ Tangent at x,

— 'ﬁy}; : |
__ /
//’
e

Figure 2.12: Ilustration of Newton’s method using first-derivative of a function

21

Equation 2.6: Update rule for Newton’s method using first-derivative of a function

Having an intuition about how Newton’s method finds an approximation using a first-
degree polynomial, we can proceed to examine the Newton’s method for a second-degree
polynomial function with one variable. A second degree polynomial is quadratic in nature
and would need a second-order derivative to work with. Taylor approximation series are

used.

Second-order Taylor expansion for x; is

f(xo +x) = f(x0) + f'(x0)x + f(x0) ’;2

To minimize f(xy + x) we find the derivative and equate to zero
d ’ " x?
£ (Fxo) + F o)z + £ (x0)5) = 0

f'(x0) + f"(x0)x =0

_ _ [
[11(x0)

In order to find the minimal of ‘x’ we iterate the process as follows:

_ frm)

X. =X
n+1 n Fri(zxn)

Figure 2.13: Update rule for Newton’s method using second-order derivative of a function

The above update rule can be generalize when the objective function has multiple
dimensions. First derivatives are replaced with gradients, and second derivatives with the

Hessian matrix.

f'(x) - Vf(x)
1 (x) - H{f)(x)

Which gives us:

Figure 2.14: Newton's method update rule

22

Using the Newton’s method to find the optimal parameters of our network seems to be a
huge advantage since by fitting a curve at a specific point and not a plane we can directly
find the minima of the curvature, making the whole process faster [17]. However
computing a Hessian matrix for a network with a big number of parameters in every
iteration is inefficient, because of the amount of storage and computation needed. A
solution to this problem is instead of calculating and storing the entire Hessian matrix, we
can calculate an approximation the requires less computational resources and does not

have to be stored.

- d%e d%e d%e
aw? dwqdw, T dwqdwy,
d%e d%e d%e

H(e) = |aw,0w, aws T awdwy,

d%e d%e d%e

Ll dwp,dwy dwpdw, owz

Figure 2.15: Hessian matrix of the error function with respect to the weights

2.2.2.7 Hessian Free Optimisation (HFO)
As mentioned before, computing the Hessian matrix for a large ANN with thousands to

millions of parameters is not always possible due to the extremely high memory
requirements and computational resources needed. The HFO method proposes solutions

to these memory requirements which enables it to be effective to train NNs [18].

HFO is a variation of Newton’s method. This algorithm, instead of calculating and storing
the entire Hessian Matrix (H), calculates the dot product of H with an arbitrary vector u
(Hu). It takes advantage of mathematical techniques, like finite differences, which
computationally costs the same as a single gradient calculation. Usually the Gu product
is used, where G is the Gauss-Newton matrix, an approximation of the Hessian Matrix
[19]. While it seems pointless to use an approximation instead of the actual matrix, Gauss-
Newton bypasses some of the problems that the Hessian may face, which could make the
algorithm completely ineffective. In fact, even when those problems do not occur, the use

of the G matrix consistently results in better search directions utilizing half the memory

23

and running twice as fast, comparing to the usage of the Hessian matrix. A detailed
analysis of the HFO method was described by Charalambous [20].

24

Chapter 3

3 Data Manipulation

3.1
32
33
34
341
3.4.2
3.5
3.6
3.7
3.8
3.8.1
3.8.2
3.8.3
3.84

PSSP IMELIICS ..ottt ettt ettt st e et e esreeanee s 26
Protein Databases and DSSP...........ccccovviieiieiicc e 26
Dataset FOMMALcccviiiiie i 27
Extracting embedding from Natural Language Processing...........cc.cceevevene. 28
BERT cotttetetetet et ettt ettt b bbbttt et et s e n s bt s s b b rebena 29
PPOEBERT w.vivtitcteteecieeeseee ettt s bbbt a ettt s e s s s s s s senenas 30
CB513, PISCES and CASP13 DataSetSccovvreeiiiiiieeiieieeeesiviee s sveeeeeens 30
Training/Testing Set and Cross Validationcccceveviveninininiicieee, 31
ENSEMDBIES. ... s 32
FIIEIING oottt 32
EXEEINAl RUIES.. ... ettt e et e e e e e e aabaaaee s 33
(D T=T ol] (o o T I =TS 33
28 TaTe [oT o g T ST] < USSR 34
SUPPOrt Vector Machingsccueieeeiiiie ettt 35

25

3.1 PSSP Metrics

The main objective of the PSSP problem is to predict the secondary structure of proteins
as accurately as possible, based on their respective primary structure. This dissertation
utilizes supervised learning methods. Supervised learning demands the input data
(primary structure) with their corresponding labels (secondary structure) in order to train

an ANN to make predictions.

To be able to measure how good the predictions of the trained models, two different
metrics were used. First the per residue Q3 accuracy, which measures the number of
correctly classified amino acids, divided by the total number of amino acids. Second the
Segment Overlap (SOV) score, is used to measure the overall quality of the predicted

structure by comparing segments of classes.

For example, if the correct secondary structure of a protein starts with four (4) helices,
followed by two (2) coils and then another four (4) helices and the predicted secondary
structure is just ten (10) helices in a row, the two metrics will produce different results.
The Q3 accuracy will be 80%, since eight out of ten amino acids were predicted correctly,

whereas the SOV score would be just 48.

3.2 Protein Databases and DSSP

Documented proteins are organized in various protein databases such as the iProClass
(Protein Information Resource), the PDBe (Protein Data Bank in Europe), the PDBj
(Protein Data Bank in Japan) and the RCSB (RCSB Protein Data Bank). Protein databases
contain various information about millions of proteins. Information includes name,
length, structures and other biological information related to proteins. Protein information
from the above databases were extracted in order to create the datasets of the PSSP

problem.
The Dictionary for Secondary Structure of Proteins (DSSP) defined a standardized format

of categorizing the secondary structures of a protein [21]. This format proposes eight (8)

different classes of secondary structures, based on their shape and they are represented

26

by a capital letter of the English Alphabet. The classes are, the a-helix (H), 3-helix (G),
n-helix (1), B-strand (E), B-bridge (B), p-turn (T), bend (S), and random coil (C) for
residues which are not in any of the other conformations (Table 3.1). The above eight (8)
categories are usually grouped into three (3) broader classes that describe the nature of
the shape of the specific local segment of the protein. For the purpose of this dissertation
the 3-class classification is used. This includes the helix (H) conformations that contain
the first three categories (H, G, 1), the sheet (E) conformations, containing the next two
categories (E,B), and finally Coil (C) conformations which contain everything else
(T,S,C).

a-helix H
3-helix G H
m-helix I
B-strand =
B-bridge B .
B-turn T
bend S C
Random coil C

Table 3.1: Protein secondary structures abbreviations, grouped in 8 and 3 classes

3.3 Dataset Format

All the datasets used for this dissertation had records of a 3-line format per protein. The
first line of each triplet has the protein name, the second line has the primary structure
and the third line the original secondary structure of the protein. This project makes use
of the primary structure of a protein, in order to extract the embeddings that will be used
as inputs to the CNN. Moreover, the original secondary structure of the protein will be
compared with the predicted secondary structure obtained from the trained model, to

evaluate the model. An example of the triplet is shown in Figure 3.1.

27

Protein Name Primary Structure Secondary Structure

1bdsA_1-43
AAPCFCSGKPGRGDLWILRGTCPGGYGYTSNCYKWPNIGLYPH
CCCCCCCCCCCCCEEECCCCCCCCCCCCCCEEEECCEEEECCC

Figure 3.1: Example of a protein representation

3.4 Extracting embedding from Natural Language Processing
The innovating part of this dissertation was the use of embeddings, as inputs to the CNN,

obtained from different language models (LMs). Two different Natural Language
Processing models that were adapted to extract protein embeddings were used, the
Sequence-to-Vector (SeqVec) [22] embedder and the Protein Bidirectional Encoder
Representations from Transformers (ProtBERT) embedder [23]. The former was inspired

from the ELMo language model [24] and the latter from the BERT [25] language model.

However, the final experiments were performed on the embeddings that were extracted
from ProtBERT. The choice of ProtBERT was based on a preliminary testing of a
Convolutional Neural Network (CNN) with the Subsampled Hessian Newton (SHN)
optimization [26] (that we are using in this project), which resulted to a Q3 accuracy of
78% with the ProtBert embedding whereas with the SeqVec embedding the Q3 accuracy
was around 71%. This is due to how the embedders extract the embeddings. As shown in
Figure 3.2, ELMo can be considered a shallow bidirectional model whereas BERT is deep
bidirectional. Thus ProtBert extracts stronger representations for every amino acid

because it takes into account all of the other amino acids in the same sequence.

Figure 3.2: ELMo vs BERT architecture [27]

28

3.4.1 BERT
Bidirectional Encoder Representations from Transformers (BERT) is the current state of

the art Natural Language Processing (NLP) framework. BERT is designed to pre-train
deep bidirectional representations from unlabeled text by jointly conditioning on both left

and right context [25].

BERT is based on the encoder part of Transformers, left part of Figure 3.3. Transformers
are the first transduction model relying entirely on self-attention to compute
representations of its input and output without using sequence-aligned Recurrent Neural

Networks (RNNSs) or convolution [28].

Qutput
Probabilities

Add & Norm

Add & Norm

Add & Norm
SR Multi-Head
Feed Attention
Forward Nx
N Add & Norm
. J
Add & Norm Masked
Muiti-Head Multi-Head
Attention Attention
N=A===) N==)
. J . —
Positiona D Positional
input Output
Embedding Embedding
Inputs Outputs

(shiftea nght)

Figure 3.3: Key Components of a Transformer, Encoder (left) and Decoder (right) [28]

Self-attention or so called intra-attention, is a mechanism that relates different positions
of a single sequence in order to compute a representation of the sequence. Simpler,
attention is a metric that indicates how relevant each word in a sentence is with respect to

the other words.
BERT provides the freedom to be pre-train to approach a variety of tasks, one of them is

to extract embeddings from protein sequences (ProtBERT), that can be used for the PSSP

problem.

29

3.4.2 ProtBERT
ProtBERT as mentioned before, it is simply the BERT model trained on a large corpus of

unlabeled data. There are two different versions of the ProtBERT embedder, the first
version was trained with the UniREF100 dataset that contained 216 million protein
sequences, and the second with the BFD dataset that has 2.1 billion protein sequences
[23]. This dissertation makes use of the version trained with the BFD dataset with the
mindset that an embedder that is trained with more data will extract more powerful
embeddings. The main concept behind this approach is to interpret protein sequences as

sentences and every amino acid in a protein sequence as a word.

During the training phase of the ProtBERT model useful features and constrains are
extracted from protein sequences. Finally each amino acid is represented with a vector of
size 1024 , which is then transformed in a 32 x 32 x 1 matrix in order to be used as input
to the CNN.

3.5 CB513, PISCES and CASP13 Datasets

There are many datasets that can be used to train ANNSs to solve the PSSP problem. For
the purpose of this dissertation two widely used datasets were utilized, the CB513 [29]
and the PISCES [30] datasets. These two datasets have been used for the PSSP problem

by many researchers, thus making the results comparison possible.

The CB513 dataset contains 513 unique proteins with maximum similarity per protein
pair of 25%. Maximum similarity threshold is really important in order to avoid the
selection bias problem, where the data sample is not truly random and there is no even
representation of all classes of the problem. In selection bias, the trained model learns
some classes better than others, which results in poor classification/prediction on patterns
in the testing set, which belong to a poorly represented class on the training dataset.

The PISCES dataset contains 8632 protein sequences with also maximum similarity per
protein 25%. Both CB513 and PISCES datasets were used for training and cross

validation.

The CASP13 (13" Critical Assessment of Protein Structures) dataset, was used for

independent testing. CASP13 contains 40 protein sequences.

30

3.6 Training/Testing Set and Cross Validation

The training dataset is used for training the model so it can extract useful patterns in order
to classify each training example into a specific class. However, it is necessary to have
another dataset that will evaluate if the model has the ability to generalize. For this reason,
a test dataset is used, which is independent from the training dataset, and its purpose is to
measure the effectiveness of the network to classify new data, that has never seen before.
In general, the 80-20 rule is used to split a given dataset into training and test set, meaning
that 80% of the entire dataset is used as training dataset and 20% is used a test dataset.
However different problems may produce better results when the dataset splitting is
different.

Sometimes a simple training/testing set split is not enough to test the ability of a network
to predict new data, since having a single test set may not give a good indication on how
well the model generalizes new data. Another widely used method that solves this issue
is the k-fold cross validation (Figure 3.4). This method splits evenly the data into k folds
and trains k different models. Each model will have a unique fold selected as the test
dataset and the rest k-1 folds will be used as the training dataset. The average test accuracy

of all models is the cross validation accuracy.

Training folds Test fold
I

| \ -
1" teration [| 7 ‘(I { | ‘ — El

T T T g - E
2™ iteration [] 1 ‘ - ‘ —’ 2 .
- - . o

3 iteration [I ‘ l - J o— Ej {

-— . e

Figure 3.4: 10-fold cross validation

31

3.7 Ensembles

Ensemble learning, in machine learning, is a method that can be used to enhance the
performance of a model. This method works by training multiple models and combining
the predictions obtained, instead of just using the predictions of a single model. There are
several types of ensemble methods, ranging from simple to advanced, such as the
Bayesian Voting and the Bagging method [31]. In this dissertation a fairly simple

approach was used.

For example, in the PSSP problem, if we have trained five different models each one of
them will produce a prediction/output (H, E, C) for a specific input. The predictions are
then compared with the method ‘winner takes all’ and the class with the most appearances
is chosen as the final class of the specific input. In case of a tie between some of the
classes, an arbitrary class from those tied is selected as the final class. Using the ensemble
method it can remove random errors from the models, which may result in better overall

predictions.

3.8 Filtering

Post processing filtering is another way of improving the predictions of a model. A
filtering technique can either be applying another learning algorithm on the existing
predictions [32], or by using some predefined external rules on the predictions. Both types

were utilized in this dissertation in order to observe the impact of each filtering technique.

Applying another learning algorithm on the existing predictions demands the creation of
a new training and test set. The sets are basically the original sets with the only difference
being that instead of having as inputs the amino acids, they have the class of each amino
acid. Also to be able to build the training and testing sets, a window variable needs to be
determined that indicates the number of neighboring classes that are going to be used to
construct the inputs, an example of how the window variable works is illustrated in Figure
3.5. The window variable plays a big role on the accuracy of the predictions. A bigger
window variable may be able to capture long range connections/interactions between

classes resulting in better Q3 accuracy.

32

CCEEHHHCCCCE:CCEEEC CCJCCCCEEEEECCC

Window size =9

Figure 3.5: Example of how window variable is used

3.8.1 External Rules
External rules are based on empirical observations and are specific for the PSSP problem,

targeting on improving the SOV score rather than the Q3 accuracy. They are also
computationally cheap. Those external rules were derived from [33].
The external rules for the 3 class prediction (H, E, C) are:

1. Single ‘H’ or ‘E’ are replaced with ‘C’

2. Sequence ‘HEEH’ is replaced with ‘HHHH’

3. Sequence ‘HEH’ is replaced with ‘HHH’

4. Sequence ‘'HH!’ is replaced with ‘!CC!’

3.8.2 Decision Trees
Decision Trees (DTs) are a supervised learning method used for classification and

regression. The goal is to create a model that predicts the value of a target variable by

learning simple decision rules inferred from the data features.

11 000 O0DO0

l

Yes l Is red? l No
110 O 0 0 O
l
Yes l Is underlined? l No
1 2 0

Figure 3.6: Decision tree example

33

For instance, we have a dataset that consists of numbers with different features as shown
in Figure 3.6. We have two different classes (1 and 0), and we want to find a way to
separate the classes using their features as decision rules. We need to create decision rules
that will split the observations in a way that the resulting groups are as different from

each other as possible but observations in the same group are as similar as possible [34].

3.8.3 Random Forest
Random forest is a classification method that combines the predictions produced from

multiple decision trees. Each individual tree outputs a class prediction and the class with

the most votes becomes the models prediction (Figure 3.7) [34].

Predict 1 Predict 0 Predict 1
= =
[‘*‘%_] TS T
@ B BY am
ge W B o 1 _r"'x
] D eF =8 B = B8 051 B 8 23 U
Predict 1 Predict 1 Predict 0
Predict 1 Predict 1 Predict 0

Tally: Six 1s and Three Os
Prediction: 1
Figure 3.7: Example of random forest

The great performance of Random is based on just a simple concept. Having a large
number of relatively uncorrelated models operating as a group, will outperform any of

the individual models. In order to ensure that every decision tree inside a random forest

34

is as diverse as possible with respect to the others two methods can be used. The first one
Is bagging, where each individual tree takes a random sample from the dataset to be
trained with instead of the whole dataset. The second method is feature randomness, that
restricts the number of features that can be used to split a node in each decision tree, by

selecting a random subset of the available features.

3.8.4 Support Vector Machines
Support Vector Machines (SVMs) is a supervised learning algorithm that can be used for

classification problems. SVMs trying to find a hyperplane that best separates a dataset
into classes. If the data are not linearly separable, SVMs introduce additional features to
the data with the hope that they will become separable in a higher dimension. Mapping
data in higher dimensions is achieved by using non-linear kernels. Figure 3.8 shows an
example of how SVM projects the initial data (left plot) in a higher dimension in order to

be separable by a hyperplane (right plot).

-
© o
.. o | - Decision surface
(o] o [=]
®o .. --.. » .:::.
o m"E m® kernel |
Q | | m ...
o o a o
o " g a'm —] am
a ©
o ()
(o) Oglg_ & 0o
o on e 0
o oooo © OOOOOO O@OOOOC
o © < 008
o o O 8 00 o %O
o o @ - 0n0 ©.0000°
o) oY% ©
o © 00 0 0% -
& ple

Figure 3.8: How SVM projects the problem in higher dimension in order to be separable

35

Chapter 4

4 Implementation
4.1 Subsampled Hessian Newton (SHN) Methodccccoceviiiiiiiicinnieen, 37
4.2 Network Implementation..........cccccevveiiiieieeie e 37

36

4.1 Subsampled Hessian Newton (SHN) Method
There are several studies that used variations of the Newton’s method to train deep ANNSs

but were mostly used on fully connected feed forward neural networks (FFNNSs). A new
variation of the HFO, called the Subsampled Hessian Newton method, was introduced by
Wang et al. [26] and can be applied to CNNs. This optimisation method along with a
CNN was used by Leontiou [5] for the PSSP problem and showed very promising results.
Due to the complexity of the algorithm it is better to refer to the original paper for a better
understanding of the SHN algorithm. An outline of the algorithm is shown at Algorithm
3 below ((35) is Equation 4.1, (36) is Equation 4.2 and (37) is Equation 4.3).

Given initial 8. Calculate f(8);
while Vf(8) # 0 do
Chooseaset S c {1,..., I};
Compute V f(8) and the needed information for Gauss Newton matrix-vector products;
Approximately solve the linear system in (36) by CG to obtain a direction d;
a=1;
while true do
Compute (6 + ad);
if (35) is satisfied then
break;
end
o —af2;
end
Update A based on (37);
0 «— 0+ad,;
end

Algorithm 3: Subsampled Hessian Newton method for CNNs

f(0+ad) < f(0)+naVf(0)d
Equation 4.1

(G +AD)d = -V f(0),
Equation 4.2

Axdrop p > pupper
Anext = { A Plower = P = Pupper
A ®x boost otherwise,
Equation 4.3

4.2 Network Implementation
As a means to complete this dissertation , a Convolutional Neural Network (CNN) with

the Subsampled Hessian Newton(SHN) optimization method was used, which was

37

implemented in Python by Wang et al. [26] and can be found here [https://github.com/
cjlinl/simpleNN]. The paper also discusses multiple optimisation techniques that were
utilized in order to reduce memory consumption and to improve efficiency. The Python

implementation used the Tensorflow machine learning framework.

The initial implementation that the paper [26] used for the experiments was implemented
in Matlab. Consequently, the input datasets used a matlab format (.mat), which was
transferred to the Python version. The input files are made up of a matrix and a vector.
The matrix has dimensions N x M where N is the number of amino acids and M is the
number of features for each amino acid. In the paper this matrix was called the ‘Z’
variable whereas in the implementation of this project is referred as the ‘x’ variable.
Moreover the vector, also referred as the ‘y’ variable, is of size N x 1 and includes the

label of every amino acid in the ‘X’ matrix.

Embeddings are used as input to the CNN, and were derived from here
[https://github.com/sacdallago/bio_embeddings]. There are several different bio
embeddings but at the current time ProtBERT and SeqVec embeddings are considered
the optimal models to use. The necessary code that extracts and converts the embeddings
into .mat files can be found at [https://gitlab.com/schatz06/pssp/-

Itree/master/data_preprocessing] and as well as in Appendix B.

The implementation of the above network was modified by Leontiou [5] (Appendix A)
in order to be adapted to the PSSP problem, and also to be executed in a Jupiter notebook.
The matlab files constructed from the CB513 dataset were uploaded to a public Gitlab

repository so they can be easily accessible.

38

Chapter 5

5 Experiments and Results

5.1 Fine tuning of Hyper parameters...........cocoviiiininieiieie e 40
5.2 Experiments With CB513 dataSetlccccovvreriiininiieieiesese e 41
5.3 Filtering techniques on CB513 dataSet..........ccccuuerimiieieneneneseseseseeeeens 43
5.4 Final results For CB513ooiiiiiieiie e 47
5.5 CASP13 results with the system trained on CB513............ccocvviniiivniiniinnn, 47
5.6 Experiments with PISCES datasetccccovevveieiieiieie e 48
5.7 Filtering Results for PISCES.........cccoioiiieeeee e 49
5.8 Final ResuUlts FOr PISCES ..ot 51
5.9 CASP13 results with the system trained on PISCEScccoovviiviiiniiennn, 52
T L O ¢ =T V7 11 o] OSSR 54
5.11 Additional EXPerimMeNntSc.covieriiiieieiiseseeeee e 54

5.11.1 WiINOW Variablecocveieieecee e 54

5.11.2 N-termMinUS VS C-TEIMINUSuvviiieiiie ittt e e e e s ssareeeee s 60

39

5.1 Fine tuning of Hyper parameters
In order to find the optimal hyper parameters for the network, various experiments were

performed and each time only one hyper parameter was altered while the rest remained
the same. For each combination of hyper parameters three different models were trained
and the best Q3 accuracy was saved in an excel file. For hyper parameter tuning, all the
experiments were performed on fold 8 of CB513 datasets, because models trained with
this fold had the worst overall test performance(on CASP13), compared to the rest folds.
The motivation behind this was to maximize the performance of the fold with the lowest
test accuracy with the hope that this would increase the overall Q3 accuracy and SOV

score for the rest of the folds.

Max Iterations were set to 50, a sufficient number of iterations so the model can converge.
Since ProtBert embedder extracts 1024 values for each amino acid, the input dimensions
of the CNN were 32 x 32 x 1.

The first step was to find the number of samples used in the subsampled Gauss-Newton
matrix (GNsize). Seven different values were tested while the rest were set at a constant

value.

GNsize C CNN Layers bsize Max Iterations Dimensions Q3 Test Accuracy
50 0.01 4 1024 50 32%*32*1 77.94%
100 0.01 4 1024 50 32%32*1 78.34%
200 0.01 4 1024 50 32%*32*1 78.45%
512 0.01 4 1024 50 32%32*1 78.17%
1024 0.01 4 1024 50 32%*32*1 78.24%
2048 0.01 4 1024 50 32%32*1 78.10%
4096 0.01 4 1024 50 32%*32*1 78.26%

Table 5.1: Q3 accuracy results for GNsize for fold 8 of CB513 dataset

For the following experiments GNsize was selected to be equal to 200. After that, the

regularization parameter (C value) had to be determined so the same process was repeated

but this time the C values were examined.

GNsize C CNN Layers bsize Max Iterations Dimensions Q3 Test Accuracy
200 0.01 4 1024 50 32%32*1 78.40%
200 0.05 4 1024 50 32%*%32*1 78.46%
200 0.1 4 1024 50 32%*32*1 78.30%
200 0.5 4 1024 50 32%*32*1 78.24%
200 1 4 1024 50 32%32*1 78.27%

Table 5.2: Tuning the C hyper parameter for fold 8 of CB513 dataset

40

Table 5.2 shows the Q3 test accuracy results of the models based on the C values. Thus
the C value was set to 0.05 because achieved a Q3 accuracy of 78.46%

The next step was to determine the batch size (bsize), but due to memory constrains was
set to 1024.

After the optimization hyper parameters were extracted, it was time to alter the CNN
parameters to observe whether or not we can achieve higher Q3 accuracies. After
various executions we concluded to the parameters shown in Table 5.3, for our CNN.
Pooling layers were not utilized in the CNN since they removed sufficient information
resulting to poorer results, almost 3% less accuracy on CASP13 dataset (Q3 accuracy

with pooling layers = 75.5%, Q3 accuracy without pooling layers = 78.5%) .

Kernel Size Number of Filters Activation Function

CNN Layer 0 Convolutional Hidden Layer | 5x5 64 RelLU
CNN Layer 1 Convolutional Hidden Layer | 5x5 64 RelLU
CNN Layer 2 Convolutional Hidden Layer 5x5 128 RelLU

CNN Layer 3 Fully Connected MLP - - -
Table 5.3: Hyper Parameters for CNN for all experiments

5.2 Experiments with CB513 dataset
To check whether the results of a model are good just for a specific testing dataset or

whether the trained network is a good prediction model, additional techniques must be
utilized. One such technique is cross-validation. To be precise, a 10-fold cross-validation
was used for the CB513 dataset to validate the model’s ability to generalize. Table 5.4
shows the hyper parameters for all the trained models, which are used for the cross-
validation of CB513.

200 0.05 4 1024 50 32*%32*1
Table 5.4: Hyper parameters for trained models

Table 5.5 shows the cross-validation results for the CB513 dataset. The table shows the
overall Q3 accuracy (Appendix F) and SOV score (Appendix E) for the best model trained
for each fold. Moreover the Q3 accuracy and SOV scores for each secondary structure

are shown. Finally the last row contains the average results for all the folds.

41

As we can observe from the Table 5.5 the average Q3 accuracy is 79.96% with a standard
deviation of 1.23%, and a mean SOV score of 71.76 with a standard deviation of 2.19.
Also if we compare the accuracy for every class we can see that models were unable to
predict the ‘E’ structure with high success, having an average of just 69% (QE) whereas

accuracies for ‘H’ and ‘C’ classes where around 83%.

Q3 QH QE (o] @ SOV SOVH SOVE SOvC
FoldO 78.69 83.98 63.35 81.07 69.27 70.25 63.29 65.89
Foldl 78.01 80 65.88 83.59 69.47 68.09 68.3 69.59
Fold2 78.01 80 65.88 83.59 69.47 68.09 68.3 69.59

Fold3 79.86 84.8 69.5 80.73 69.99 68.4 69.9 68.21
Fold4 81.76 85.46 70.98 83.54 73.45 72.71 64.89 70.94
Fold5 80.89 82.01 74.75 83.95 75.17 72.32 74.14 72.93
Fold6 80.88 86.06 67.79 83.07 73.21 75.93 66.57 71.8

Fold7 80.21 83.83 69.62 83.35 70.44 72.27 69.69 69.05
Fold8 79.77 81.58 70.5 83.19 71.55 69.28 71.67 70.19
Fold9 81.55 84.97 72.07 83.79 75.6 74.85 76.73 72.85
Average 79.96 83.27 69.03 82.99 71.76 71.22 69.35 70.10

Table 5.5: Q3 and SOV results for 10-fold cross validation for the CB513 dataset

In order to utilize the ensembles method, 5 models were trained on each fold. Table 5.6

shows the ensembles method results for the cross validation datasets (Appendix C).

Q3 QH (0]3 QcC SOV SOVH SOVE SOVC
FoldO 78.72 83.63 63.89 8121 69.4 7195 63.02 64.99
Foldl 78.1 80.11 66.37 83.42 69.1 66.16 | 67.99 | 69.68
Fold2 80.2 81.67 73.54 82.6 72.25 71.18 69.14 69.33
Fold3 80.33 85.57 6899 | 81.46 70.63 70.56 | 69.66 | 67.85
Fold4 81.92 85.59 7141 83.6 73.74 72.54 | 65.7 71.41

Fold5 81.03 82.08 | 75.07 84.02 75.58 71.69 | 75.63 | 73.52
Fold6 81.02 86.06 67.14 83.72 74.43 78.8 68.04 | 72.23
Fold7 80.38 83.53 | 69.32 84.12 70.7 7215 | 69.92 | 69.88
Fold8 79.76 81.61 70.05 83.37 71.71 69.61 71.05 70.27
Fold9 81.69 84.56 | 71.77 84.66 76.85 73.72 | 77.23 | 74.82

Average 80.32 83.44 69.76 83.22 72.44 71.84 69.74 | 70.4
Table 5.6: Q3 and SOV results for ensembles cross validation for the CB513 dataset

If we compare Table 5.5 and Table 5.6, we can see a slight increase in the average Q3
accuracy and SOV score. How the Q3 accuracy and SOV score will fluctuate depends on
the variance of the predictions between the trained models, but since all models were

trained with the same hyperparameters the variance between these models was small.

42

5.3 Filtering techniques on CB513 dataset

As mentioned in section 3.8 the use of post-training filtering techniques can help to
achieve higher Q3 accuracy and SOV score. Different combinations from the available
techniques were used in order to see the impact they have in the final predictions, since
the order that the filtering techniques are applied can produce different results. The

window size used to extract (Appendix G) the following results was 19 (Appendix H).

Q3 QH (0]3 QcC SOV SOVH SOVE SOVC
FoldO 78.92 81.87 61.35 84.4 73.61 714 62.21 69.71
Fold1 77.87 | 77.17 62.55 87.48 71.29 66.24 | 69.17 69.39
Fold2 80.03 79.04 71.2 85.38 75.84 73.64 69.64 719
Fold3 80.39 | 83.5 66.55 85.04 74.25 72.69 68.66 71
Fold4 82.27 83.49 68.24 87.69 76.78 73.48 64.04 @ 74.06
Fold5 81.38 | 80.12 73.78 87.03 7831 | 7241 75.72 74.66
Fold6 81.09 84.08 64.23 87.02 7738 79.03 67.69 @ 74.47
Fold7 80.61 81.65 67.1 87.22 73.89 | 74.56 @ 69.98 70.64
Fold8 80.25 79.2 67.77 87.51 77.89 73.52 7278 76.79
Fold9 81.23 81.96 68.71 87.49 78.53 7593 77.8 74.56

Average 80.40 81.21 67.15 86.63 75.78 73.29 69.77 @ 72.72
Table 5.7: Q3 accuracy and SOV score for ensembles and external rules for CB513 dataset

As mentioned in section 3.8.1 external rules are usually used in order to improve the SOV
score (Appendix D). We can confirm this statement if we compare the Table 5.6 and
Table 5.7. The average Q3 accuracy remained almost the same whereas the average SOV
score increased from 72.44 to 75.78 when the external rules were applied to the
predictions obtained from the ensembles method.

Q3 QH QE (o] @ SOV SOVH SOVE SOVC
Fold0o 83.96 86.4 70.05 88.19 7733 76.03 70.11 74.42
Foldl 83.89 8351 74.75 89.59 77.29 7262 77.24 73.24
Fold2 8492 8382 77.14 89.81 79.76 76.16 75.73 76.68
Fold3 8555 88.18 77.15 87.63 78.69 77.29 74.49 74.1
Foldd 86.89 86.72 77.32 91.44 827 77.73 77.03 81.62
Fold5 86.44 84.89 8159 90.59 8246 76.09 8247 79.58
Foldé 86.04 88.03 75.74 89.52 81.22 8234 76.21 77.41
Fold7 86.39 86.78 76.41 91,55 7853 78.52 753 76.01
Fold8 8553 83.82 76.8 9136 82.48 773 8036 80.47
Fold9 86.23 86.19 76.67 9154 8257 7887 83.02 79.13

Average 85.58 85.83 76.36 90.12 80.30 77.3 772 77.27

Table 5.8: Q3 accuracy and SOV score for ensembles, external rules and SVM filtering for CB513
dataset

43

Q3 QH (0]3 QcC Sov SOVH SOVE SOVC
Foldo 88.48 90.87 80.01 90.27 8351 8338 77.85 8151
Fold1 913 9188 87.84 9287 86.97 85.85 85.7 83.96
Fold2 89.68 89.86 85.21 91.89 85.41 83.3 83.07 8223
Fold3 91.22 94.46 86.9 90.41 85.86 84.92 86.41 82.66
Fold4 91.6 92.65 8577 9339 88,54 84.72 8545 88.09
Fold5 90.25 9132 86.47 9185 87.62 84.26 8898 85.88
Foldé 91.64 93.29 84.82 93.67 89.72 90.7 87.32 88.04
Fold7 90.17 9154 8174 93.77 85.09 8551 83 | 83.38
Fold8 91.11 91.11 8597 93.78 86.63 81.25 85.38 86.63
Fold9 91.64 93.17 86.51 93.14 88.23 86.1 88.85 86.35

Average 90.71 92.02 85.12 9250 86.76 85 85.20 84.87
Table 5.9: Q3 accuracy and SOV score for ensembles and SVM filtering for CB513 dataset

Q3 QH QE Qc Sov SOVH SOVE SOVvC ‘

Foldo 87.74 90.15 76.87 90.6 82.25 8235 70.71 79.57
Foldl 90.27 90.76 84.71 93.16 84.92 84.42 82.2 80.36
Fold2 88.79 89.15 81.88 92.16 84.2 81.63 80.95 80.07
Fold3 90.49 9398 83.84 90.73 84.29 84.14 80.12 79.69
Fold4 90.7 92.15 8154 93.67 86.29 83.82 77.69 83.35
Fold5 89.6 90.54 84.13 9235 8698 84.57 8537 83.99
Foldé 90.97 92.73 81.73 94.12 869 89.76 76.98 84
Fold7 89.4 91.01 78.47 94.18 833 85.29 79.53 8041
Fold8 90.38 90.47 82.7 9429 87.19 8298 81.58 85.55
Fold9 90.88 9255 83.39 9355 87.11 8522 86.79 83.7
Average 89.92 9135 8193 92.88 8534 84.42 80.2 82.07

Table 5.10: Q3 accuracy and SOV score for ensembles, SVM filtering and external rules for CB513
dataset

Tables 5.8, 5.9 and 5.10 show the Q3 accuracies and SOV scores of all the possible
combinations that we can apply the SVM filtering method to the results we got from the
ensembles method. The impact of SVM filtering was significant for both Q3accuracy and
SOV score. According to Tables 5.8 and 5.10 applying the SVM filtering before the
external rules the results are substantially better, with almost 4.5% increase in Q3
accuracy and about 5 points growth in the overall SOV score. Lastly Table 5.9 shows that
if we apply only the SVM filtering and not the external rules actually improves the Q3
accuracy and SOV score about 0.8% and 1 point respectively.

Tables 5.11, 5.12, 5.13 show the Q3 accuracies and SOV scores for all the possible
combinations that we can apply the decision tree filtering method to the predictions we
got from the ensembles method (Table 5.6). The best results obtained when just the

decision tree method was applied to the ensembles shown in Table 5.12. The Q3 accuracy

44

went form 80.32% to just over 93% and the SOV score increased from 72.44 to 88.59. Decision
Trees had a better overall performance than SVM method too. The highest Q3 accuracy
concerning the SVM filtering technique was 90.71% almost 2% lower than the highest decision
tree accuracy.

Q3 QH (0]3 QcC SOV SOV SOV SOV
Foldo 8551 86.84 72.04 90.52 7855 79.85 71.03 76.24
Foldl 86.18 84.96 76.52 9287 7892 76.78 76.65 76.83
Fold2 87.5 85.01 7854 94.04 8043 77.79 76.63 78.62
Fold3 87.61 88.37 78.8 9177 79.75 7935 76.34 76.01
Foldd 88.66 87.22 78.19 94.73 83 7935 77.49 8331
Fold5 88.99 85.6 84.29 9435 84.8 79.5 83.32 83.59
Fold6 87.8 87.5 76.57 93.67 8236 81.39 78.2 80.45
Fold7 88.36 87.16 78.02 94.87 80.17 80.37 75.75 79.07
Fold8 87.41 83.65 79.18 94.58 8278 78.26 79.25 82.44
Fold9 88.69 86.85 80.52 94.78 85.48 84.883 8431 84.45
Average 87.67 86.32 78.27 93.62 81.62 79.75 77.9 | 80.10

Table 5.11: Q3 accuracy and SOV score for ensembles, external rules and Decision Tree filtering
for CB513 dataset

Q3 QH (0]3 Qc Sov SOVH SOVE SOVC
FoldO 90.9 91.03 84.12 93.9 85.25 86.34 81.45 84.75
Fold1 939 93.22 9147 9588 89.37 90.86 86.72 87.34
Fold2 92.31 90.74 88.44 9549 86.49 87.06 8392 84.81
Fold3 93.04 94.3 89.74 93.64 86.27 85.3 87.7 84.18
Fold4 93.75 9338 89.68 9593 89.41 87.01 87.48 91.27
Fold5 93.09 9253 88.97 96.06 90.38 87.27 90.11 90.45
Foldé 93.74 934 89.15 96.32 91.28 89.68 91.65 91.89
Fold7 92.41 92.44 8546 96.19 87.5 86.97 85.85 87.8
Fold8 93.27 91.98 88.7 96.63 88.99 84.81 87.24 89.58
Fold9 94.01 93.42 90.26 96.57 90.94 88.78 89.57 91.53
Average 93.04 92.64 88.6 95.66 88.59 87.41 87.17 88.36

Table 5.12: Q3 accuracy and SOV score for ensembles and Decision Tree filtering for CB513
dataset

Q3 QH QE Qc SOV SOVH SOVE SOVC
Fold0O 89.92 9043 79.35 94.32 83.2 86.32 73.14 81.25
Foldl 9286 92.14 88.19 96.2 87.85 9143 84.07 83.51
Fold2 91.16 89.67 84.06 9598 86.07 86.63 81.65 82.62
Fold3 91.87 93.12 8571 94.05 84.61 84.883 80.13 79.8
Foldd 92.46 9248 84.28 96.22 87.7 88.26 79.64 85.61
Fold5 91.78 90.79 85.7 96.29 88.24 86.14 86.01 85.5
Foldé 92.62 92.38 85.17 96.55 88.49 90.2 79.68 86.37
Fold7 91.27 9161 8129 96.46 85.61 86.98 83.62 83.43
Fold8 92.19 91.01 84.53 97.07 88.05 8358 8341 86.88

Fold9 92.72 9226 86.01 96.82 89.23 86.58 88.11 86.78

Average 91.89 91.59 84.43 96 86.91 87.1 8195 84.18
Table 5.13: Q3 accuracy and SOV score for ensembles, Decision Tree filtering and external rules
for CB513 dataset

45

Q3 QH (013 QcC SOV SOVH SOVE SOVC
Foldo 8552 8791 73.85 88.77 78.4 7997 7138 75.69
Foldl 86.27 86.88 78.38 90.43 78.63 78.65 78.02 74.41
Fold2 87.74 86.3 81.46 92.1 8045 77.36 79.72 78.32
Fold3 87.72 89.65 81.24 89.43 78.71 79.6 = 75.02 73.97
Fold4 88.73 88.82 80.92 9224 8337 81.21 78.08 81.68
Fold5 89.09 86.81 85.86 92.73 84.13 80.3 83.81 81.98
Foldée 87.83 89.45 7835 9121 81.94 83.2 77.65 79.03
Fold7 88.38 88.17 79.63 93.31 79.78 81.6 7586 77.62
Fold8 87.76 85.09 8245 9257 84.15 79.52 8186 83.07
Fold9 88.78 88 82.6 9285 84.15 8557 84.07 82.55

Average 87.78 87.71 80.47 9156 81.37 80.7 7855 78.83

Table 5.14: Q3 accuracy and SOV score for ensembles, external rules and Random Forest filtering
for CB513 dataset

Q3 QH (0]3 QcC SOV SOVH SOVE SOVC
FoldO 91.38 93.26 86.84 91.8 86.48 87.78 82.58 84.43
Foldl 9441 9511 9279 94.81 89.8 92.89 @ 88.15 86.5
Fold2 9333 9289 91.61 9456 87.68 89.83 87.56 83.87
Fold3 93.82 9599 9178 92.82 8799 88.73 89.93 84.83
Foldd 94.19 94.74 91.8 94.82 9193 90.75 90.24 91.76
Fold5 93,57 9381 9162 9462 90.35 88.56 91.5 89.68
Foldé 93.94 9474 90.69 94.89 90.57 92.1 90.76 90.47
Fold7 93.04 93.34 88.68 95.2 89.16 89.19 88.39 88.34
Fold8 94.17 9335 91.87 9599 90.64 86.74 89.26 90.16
Fold9 94.62 9471 9273 9559 91.67 9336 90.62 91.03
Average 93.65 94.19 91.04 9451 89.63 89.99 88.9 88.11

Table 5.15: Q3 accuracy and SOV score for ensembles and Random Forest filtering for CB513
dataset

Q3 QH QE (o] @ SOV SOVH SOVE SOVC
Fold0O 90.44 9241 82.13 9252 8498 88.09 74.6 81.66
Foldl 93.65 9431 89.61 9551 89.02 93.18 84.81 84.07
Fold2 92.31 92.11 87.19 95.14 8733 89.55 83.3 82.67
Fold3 9299 9564 8798 93.17 86.26 87.75 819 81.28
Foldd 93.12 94.18 86.58 95.22 89.52 91.89 80.98 86.33
Fold5 9243 92,53 87.88 95.2 88.92 87.28 86.63 85.89
Foldé 92.89 93.68 86.48 9543 88.56 90.59 80.4 86.05
Fold7 92.02 9251 84.66 9567 86.77 8831 85.04 84.17
Fold8 93.21 92.64 87.8 96.45 89.35 87.85 84.67 87.37
Fold9 93.57 9392 8853 96.03 9055 88.85 8951 8791

Average 92.66 93.40 86.88 95.03 88.13 89.33 83.18 84.74

Table 5.16: Q3 accuracy and SOV score for ensembles, Random Forest filtering and external rules
for CB513 dataset

Tables 5.14, 5.15, and 5.16 shows the results of the final machine learning algorithm used
as a filtering technique, Random Forest. The Q3 accuracy and SOV score when using

Random Forest only outperformed every other combination used on the ensembles. The

46

Q3 accuracy reached 93.65%, almost a 13% increased and the SOV score rose by almost
17.

5.4 Final results for CB513
The average Q3 accuracy and SOV score for each filtering technique are presented in

table 5.17, which makes it easier to compare the different filtering methods. According
to table 5.17, the best results for CB513, in terms of overall Q3 accuracy and overall SOV
score, came from the ensembles model with the random forest filtering. This model

managed to reach 93.65% Q3 (per residue) accuracy and 89.63 SOV score.

Method Q3 QH QE Qc sov SOVH SOVE SovC
Cross Validation 79.96 83.27 69.03 82.99 71.76 71.22 69.35 70.10
Ensembles 80.32 83.44 69.76 83.22 72.44 71.84 69.74 70.40
Ensembles + External Rules Results 80.40 81.21 67.15 86.63 75.78 73.29 69.77 72.72
Ensembles + External Rules + SVM Results 85.58 85.83 76.36 90.12 80.30 77.30 77.20 77.27
Ensembles + SVM Results 90.71 92.02 85.12 92.50 86.76 85.00 85.20 84.87
Ensembles + SVM + External Rules Results 89.92 91.35 81.93 92.88 85.34 84.42 80.19 82.07
Ensembles + External Rules + Decision Tree Results 87.67 86.32 78.27 93.62 81.62 79.75 77.90 80.10
Ensembles + Decision Tree Results 93.04 92.64 88.60 95.66 88.59 87.41 87.17 88.36
Ensembles + Decision Tree + External Rules Results 91.89 91.59 84.43 96.00 86.91 87.10 81.95 84.18
Ensembles + External Rules + Random Forest Results 87.78 87.71 80.47 91.56 81.37 80.70 78.55 78.83
Ensembles + Random Forest Results 93.65 94.19 91.04 94.51 89.63 89.99 88.90 88.11
Ensembles + Random Forest + External Rules Results 92.66 93.39 86.88 95.03 88.13 89.33 83.18 84.74

Table 5.17: Average Q3 accuracy and SOV score for all methods for CB513 dataset

5.5 CASP13 results with the system trained on CB513
CASP13 was used as an independent testing set on all the models trained with CB513

dataset. Table 5.18 shows the best results obtained for each fold.

Q3 (0], (0]3 Qc SOV SOVH SOVE SOVC \
Fold0O 78.66 84.40 68.22 78.97 70.37 71.24 67.12 68.84
Foldl 7855 84.56 69.10 78.10 70.54 72.44 67.68 68.53
Fold2 7852 84.42 69.84 77.77 7133 72.19 69.54 67.89
Fold3 78.69 84.37 69.47 78.43 70.73 | 7150 67.43 68.68
Foldd 78.74 84.23 69.01 78.90 7130 7133 67.54 69.17
Fold5 7870 84.83 69.24 78.17 69.96 71.40 67.42 68.06
Foldé 78.60 84.26 6891 78.59 71.15 71.72 67.25 69.79
Fold7? 7855 84.61 6859 7831 71.26 | 72.79 67.05 69.51
Fold8 78.49 84.29 69.56 77.96 7066 7131 67.83 68.62
Fold9 7850 84.10 68.64 78.62 70.36 | 73.72 65.89 | 69.09
Average 78.60 84.41 69.06 78.38 70.77 7196 67.48 68.82
Table 5.18: Best Q3 and SOV for CASP13 trained on CB513 dataset

47

Ensembles and filtering techniques were then applied to the results. The window variable

for the datasets used for the machine learning techniques was set to 19.

Average 7854 84.37 68.77
Table 5.19: Q3 and SOV for ensembles method of CASP13 dataset trained on CB513

78.41

| a3 o

70.75

SOVH SOVE
72.38 66.80
71.97 67.91
72.16 69.21
70.66 67.51
71.78 66.93
71.01 67.77
7111 66.86
72.41 67.63
71.71 67.71
70.82 65.91
71.60 67.42

€ ac

SOVC
68.83
68.36
68.89
68.54
69.12
68.69
69.33
69.42
70.00
68.56
68.97

sovc |

Method sov SOVH SOVE
Cross Validation 78.60 | 84.41 69.06 | 78.38 70.77 71.96 67.48 68.82
Ensembles 78.54 84.37 68.77 78.41 70.75 71.60 67.42 68.97
Ensembles + External Rules Results 78.60 83.03 67.16 80.57 73.04 73.11 68.67 70.33
Ensembles + External Rules + SVM Results 82.97 85.95 73.82 85.02 77.17 75.99 75.40 75.52
Ensembles + SVM Results 86.95 90.47 81.16 | 86.82 82.38 82.53 81.60 81.96
Ensembles + SVM + External Rules Results 86.35 89.61 78.64 87.43 82.83 83.22 79.18 81.28
Ensembles + External Rules + Decision Tree Results 85.67 85.93 75.67 90.57 79.14 76.69 76.83 79.89
Ensembles + Decision Tree Results 90.08 90.75 83.72 92.74 85.08 84.38 84.12 86.97
Ensembles + Decision Tree + External Rules Results 88.99 89.49 79.50 93.40 86.05 86.85 82.62 84.64
Ensembles + External Rules + Random Forest Results 85.72 87.51 78.86 87.66 79.52 79.08 79.02 78.01
Ensembles + Random Forest Results 90.54 | 92.75 87.35 90.23 86.49 87.00 87.30 85.80
Ensembles + Random Forest + External Rules Results 89.77 91.76 83.45 91.25 87.47 89.88 84.19 85.17

Table 5.20: Average Q3 and SOV for CASP13 trained on CB513 for all filtering techniques

According to Table 5.20 the highest Q3 accuracy is when the ensembles results are

filtered with random forest, at 90.54%, whereas the best SOV score is when the ensembles

results are filtered with random forest and external rules (87.47).

5.6 Experiments with PISCES dataset
A larger dataset like PISCES can help the model to learn more effectively the patterns of

the data, resulting in higher performance. Table 5.21 shows the 5-fold cross validation

results, which are about 1.5% on average better than the CB513 cross validation results

shown in Table 5.6. Post processing methods were used for the cross validation results of

PISCES.

48

Q3 QH (0]3 Qc SOV SOVH SOVE SOVC
Fold0O 81.37 86.24 74.03 8046 7580 77.20 76.07 70.41
Foldli 8156 86.06 74.68 81.06 75.75 75.86 77.56 70.70
Fold2 8149 86.36 74.25 80.88 76.30 76.94 76.89 70.96
Fold3 81.27 85.78 7421 80.88 7540 76.22 76.67 70.08
Foldd 8156 8598 74.02 8137 76.28 75.33 77.19 70.16
Average 81.45 86.08 74.24 80.93 7591 7631 76.88 70.46
Table 5.21: Q3 and SOV results for 5-fold cross validation for the PSICES dataset

As in CB513 dataset, 5 models were trained on each fold for the PSICES dataset in order
to use the ensembles method. Table 5.22 presents the results for Q3 accuracy and SOV

score of the ensembles method, for each fold of PISCES.

Q3 QH QE Qc SOV SOVH SOVE SOVC

Average 81.59 86.14 7433 81.18 76.31 76.60 77.07 70.84
Table 5.22:Q3 accuracy and SOV score for ensembles method for PISCES dataset

The comparison between table 5.21 and 5.22 reveals that there is a similar issue with the
CB513 dataset. There is not enough variance between the trained models, which results

in only a small improvement in overall Q3 accuracy (0.14%) and SOV score (0.4).

5.7 Filtering Results for PISCES
The results from the ensembles method were then filtered using external rules, decision

trees, and random forest, with a window variable of 19.

Q3 QH (0]3 QcC SOV SOVH SOVE SOVC
Foldo 8155 84.74 7226 83.49 78.89 7887 76.69 73.40
Foldl 81.80 84.80 73.19 83.82 7856 77.20 77.59 73.15
Fold2 8178 85.06 72.79 83.79 79.29 7813 77.71 73.96
Fold3 81.44 8424 7255 83.84 7817 7739 77.00 72.59
Foldd 8179 8454 7262 84.26 79.08 76.93 77.72 72.64
Average 81.67 84.68 72.68 83.84 7880 77.70 7734 73.15

Table 5.23: Q3 accuracy and SOV score for ensembles with external rules filtering for PISCES
dataset

49

As expected when external rules are applied to the ensembles results, the Q3 accuracy
remains almost the same, but the SOV score increased by over 2 units.

Q3 QH (0] 3 QcC Sov SOVH SOVE SOVC
FoldoO 8295 8543 7450 85.16 79.86 79.59 78.06 74.06
Foldl 83.20 8549 75,51 85.39 79.54 77.76 7891 73.86
Fold2 83.17 85.61 75.10 85.48 80.01 78.37 78.86 74.48
Fold3 8283 85.00 74.88 85.30 7897 77.67 78.40 73.16
Fold4 83.18 85.30 75.08 85.70 7998 77.52 79.11 73.32
Average 83.07 85.37 75.01 85.41 79.67 78.18 78.67 73.78

Table 5.24: Q3 accuracy and SOV score for ensembles, external rules and Decision Tree filtering
for PISCES dataset

Q3 QH QE Qc SOV SOVH SOVE SOVC
Foldo 8556 88.06 79.27 86.52 81.78 81.63 80.95 77.54
Foldl 85.85 88.18 80.54 86.63 82.27 80.69 82.82 77.83
Fold2 85.78 88.27 79.88 86.75 82.66 8155 82,54 78.30
Fold3 8557 88.01 79.93 86.42 81.45 80.41 82.25 77.15
Fold4 8580 87.91 80.06 86.96 82.52 80.17 82.71 77.07
Average 85.71 88.09 79.94 86.66 82.14 80.89 82.25 77.58

Table 5.25: Q3 accuracy and SOV score for ensembles and Decision Tree filtering for PISCES
dataset

Q3 QH (0]3 Qc SOV SOVH SOVE SOVvC
Foldo 85.06 87.11 77.54 87.20 82.37 8192 80.33 77.06
Foldl 85.37 87.15 7899 87.33 82.58 80.84 8197 77.35
Fold2 8530 87.33 7819 87.45 83.09 81.88 81.77 77.78
Fold3 85.07 87.03 7823 87.09 82.22 80.86 81.36 76.81
Foldd 8532 87.00 7831 87.65 8299 8091 81.71 76.53
Average 85.22 87.12 78.25 87.34 82.65 81.28 81.43 77.11
Table 5.26: Q3 accuracy and SOV score for ensembles, Decision Tree and external rules filtering
for PISCES dataset

According to Table 5.24, 5.25 and 5.26 applying the decision tree filtering method
produces significantly better results. The best overall Q3 accuracy was achieved when
using just the decision tree method on the ensembles results (85.71% Table 5.25 —81.59%
Table 5.22) a 4% increase, whereas the best overall SOV score was when external rules
were applied after the decision tree method (82.65 Table 5.26 — 76.31 Table 5.22).

Tables 5.27, 5.28, 5.29 show the results for the different combinations of applying the
random forest method on the ensembles results.

Q3 QH QE (o] @ SOV SOVH SOVE SovC
FoldO 83.12 85.98 75.50 84.47 80.00 80.17 78.60 73.69
Fold1 83.36 86.09 76.49 84.64 79.75 78.39 79.49 73.46
Fold2 83.30 86.16 75.97 84.76 80.23 79.04 79.58 74.14
Fold3 82.99 85.58 75.83 84.58 79.15 78.24 79.06 72.79
Fold4 83.34 85.83 76.15 84.94 80.30 78.25 79.62 73.11
Average 83.22 85.93 75.99 84.68 79.89 78.82 79.27 73.44

Table 5.27: Q3 accuracy and SOV score for ensembles, external rules and Random Forest filtering
for PISCES dataset

Q3 QH (0]3 QcC SOV SOVH SOVE SovC
FoldO 87.04 89.81 82.51 86.71 83.96 84.31 83.77 79.23
Fold1 87.21 89.84 83.41 86.79 84.38 83.37 85.31 79.51
Fold2 87.16 89.88 82.78 87.01 84.55 84.04 84.84 79.76
Fold3 87.02 89.72 83.01 86.64 83.80 83.47 85.09 78.66
Fold4 87.21 89.58 83.16 87.10 84.69 82.97 85.19 78.53

Average 87.13 89.77 82.97 86.85 84.28 83.63 84.84 79.14

Table 5.28: Q3 accuracy and SOV score for ensembles and Random Forest filtering for PISCES
dataset

(0K] QH (0]3 Qc Sov SOVH SOVE SOvC
FoldO 86.62 89.16 80.81 87.28 84.06 84.56 82.35 78.56
Fold1 86.78 89.13 81.77 87.36 84.25 83.29 83.78 78.72
Fold2 86.71 89.21 81.03 87.55 84.60 84.07 83.45 79.12
Fold3 86.59 89.06 81.30 87.20 83.83 83.40 83.32 78.16
Fold4 86.77 88.93 81.40 87.65 84.52 82.65 83.68 77.82
Average 86.69 89.10 81.26 87.41 84.25 83.59 83.32 78.48

Table 5.29: Q3 accuracy and SOV score for ensembles, Random Forest and external rules filtering
for PISCES dataset

As in CB513 dataset, random forest gave the best overall Q3 accuracy (87.13%) and SOV
score (84.28). Again, if we are going to use external rules it is better applying them after

the machine learning technique (Table 5.27 and Table 5.29).

5.8 Final Results for PISCES
The average for all filtering methods are shown in table 5.30. The best results according

to this table, came from the ensembles model after applying the random forest filtering.
This method managed to reach 87.13% overall Q3 (per residue) accuracy and 84.28
overall SOV score.

a3 aH aF

Method Qc Ssov SOVH SOVE SOVC
Cross Validation 81.45 | 86.08 | 74.24 | 80.93 75.91 76.31 76.88 | 70.46
Ensembles Results 81.59 86.14 | 74.33 81.18 | 76.31 76.60 77.07 | 70.84
Ensembles + External Rules Results 81.67 84.68 72.68 83.84 78.80 77.70 77.34 73.15
Ensembles + External Rules + Decision Tree Results 83.07 85.37 75.01 85.41 79.67 78.18 78.67 73.78
Ensembles + Decision Tree Results 85.71 88.09 79.94 86.66 82.14 80.89 82.25 77.58
Ensembles + Decision Tree + External Rules Results 85.22 87.12 78.25 87.34 82.65 81.28 81.43 77.11
Ensembles + External Rules + Random Forest Results 83.22 85.93 75.99 84.68 79.89 78.82 79.27 73.44
Ensembles + Random Forest Results 87.13 89.77 82.97 86.85 84.28 83.63 84.84 79.14
Ensembles + Random Forest + External Rules Results 86.69 | 89.10 | 81.26 | 87.41 | 84.25 83.59 83.32 | 78.48

Table 5.30: Average Q3 accuracy and SOV score for all method for the PISCES dataset

5.9 CASP13 results with the system trained on PISCES
Independent testing was performed as well for all the models trained with the PISCES

datasets. Table 5.31 shows the best results obtained for each fold. In comparison with
Table 5.18. The Q3 accuracy slightly increased (~0.2%) and the SOV by almost 1.

Q3

Foldo 78.78
Foldl 78.67
Fold2 78.90
Fold3 78.89
Foldd 78.92
Average 78.83
Table 5.31

86.03

: . Best Q3 and SOV for CASP13 trained on PISCES dataset

Qc
71.45 76.04
71.59 @ 75.76
7132 76.54
7122 76.73
7132 76.59
7138 76.33

SOV SOVH SOVE
7135 7375 68.99
70.62 | 72.77 69.66
72.17 74.23 68.16
72.06 7449 69.12
7192 74.19 70.54
71.62 73.89 69.29

SOvVC

Table 5.32 shows the ensembles method results and Table 5.33 shows the average results

for every filtering technique that was applied to the ensembles. The best overall Q3

accuracy was achieved when using the random forest filtering technique with 90.69%.

Training datasets seem to not make a big difference in the accuracy of the predictions on

the independent test set (CASP13), since the best overall Q3 accuracy achieved on
CASP13 when the system is trained with the CB513 dataset is 90.54% (Table 5.20), just
0.15% lower than the best Q3 accuracy for CASP13 when the system is trained on
PISCES dataset.

Fold0
Foldl
Fold2
Fold3
Fold4
Average

Q3
78.73
78.76
78.95
78.87
78.89
78.84

85.90

71.49

76.41

SOV SOVH SOVE
72.58 76.10 69.47
7191 73.86 69.54
72.11 7447 69.40
7192 74.83 69.59
72.40 7494 69.66
72.18 74.84 69.53

SOVC

67.86
68.21
68.50
68.00
68.94
68.30

Table 5.32: Q3 and SOV for ensembles method of CASP13 dataset trained on PISCES dataset

52

The same applies for the SOV score as well, the best overall SOV score of CASP13 with
the system trained with CB513 dataset is 87.47 almost 0.5 lower than the respective SOV

score when the system is trained with PISCES dataset.

Method ‘ Q3 ‘ [o]}] [o]3 (o] Sov SOVH SOVE SOVC
Cross Validation 78.83 | 86.03 7138 | 76.33 71.62 73.89 69.29 68.10
Ensembles Results 78.84 | 85.90 | 71.49 76.41 72.18 74.84 | 69.53 68.30
Ensembles + External Rules Results 79.12 84.87 70.17 78.64 74.27 75.05 70.47 70.82
Ensembles + External Rules + Decision Tree Results 86.29 86.82 76.90 90.63 80.69 80.95 76.29 79.29
Ensembles + Decision Tree Results 90.30 91.10 85.30 92.16 86.07 85.26 85.04 86.40

Ensembles + Decision Tree + External Rules Results 89.24 89.85 81.37 92.72 87.08 88.29 83.79 84.94

Ensembles + External Rules + Random Forest Results 86.32 88.26 80.39 87.64 80.76 81.53 78.39 77.53

Ensembles + Random Forest Results 90.69 92.57 88.03 90.39 87.54 87.61 87.74 85.59

Ensembles + Random Forest + External Rules Results 89.88 91.62 84.40 91.15 87.94 89.52 85.32 84.95

Table 5.33: Average Q3 and SOV for CASP13 trained on PISCES for all filtering techniques

The following confusion matrices show how many times each of the 3 classes were
predicted right or wrong, when the system was trained with the Fold 4 of the PISCES
dataset. Fold 4 was chosen because it had the highest Q3 accuracy on a single CNN

model.

Predicted H Predicted E Predicted C

3197 64 456
82 1544 539
505 487 3245

Table 5.34: Confusion matrix for CASP13 when system was trained on Fold 4 of PISCES dataset
on a single CNN model (Q3 accuracy 78.92%)

Predicted H PredictedE Predicted C

True H 3436 25 256
35 1899 231
True C 252 168 3817

Table 5.35: Confusion matrix for CASP13 when the system was trained on Fold 4 of PISCES
dataset with Ensembles & Random Forest with window size 19 (Q3 accuracy 90.44%)

Predicted H PredictedE Predicted C

True H 3645 5 67
10 2134 21
True C 76 7 4154

Table 5.36: Confusion matrix for CASP13 when the system was trained on Fold 4 of PISCES
dataset with Ensembles & Random Forest with window size 31 (Q3 accuracy 98.16%0)

If we observe table 5.34 we can see that the major misclassifications are when the true
structure was H but a C was predicted, the correct structure was E but C was predicted

and when in general was a misclassification of the C class. After applying the filtering

53

techniques, as shown in Table 3.35 and Table 3.36, we can clearly see that those
misclassifications drop dramatically.

5.10 Observations
After analyzing the predicted secondary structures obtained without any filtering

techniques applied to them, we observed that there are misclassified structures that can
be easily corrected with the use of post-processing methods, thus increasing the overall
Q3 accuracy. An example is illustrated in Figure 5.1. If those 3 misclassified structures
with red color are corrected then the Q3 accuracy is going to increase by almost 7%
(3/41).

Protein Name : > 5wof 1
Original Secondary Structure: CCHHHHHHHHHHHHCCCCEEECCCCCCCEEEECCCCEEEEC
Predicted Secondary Structure: CHHHHHHHHHHHHCHCCCCCCCCCCCCCECECCCCCCCCCC

Figure 5.1: Easily corrected misclassified structures

Based on this simple observation we can say that the predicted secondary structure
obtained with the NLP embeddings as inputs are in a form which they can be easily
corrected with post-processing techniques and maybe this is the reason that the results

after the filtering techniques are applied are very high.

5.11 Additional Experiments

5.11.1 Window variable

Additional experiments were performed in order to see the impact the window variable,
that is used to create the datasets for the machine learning filtering techniques, has on the
predictions. Since the window variable has to be an odd number, we performed
experiments from window size 3 to window size 31. A size of 31 can be considered a
limit since the smaller protein in the CASP13 dataset is 31 and we want to keep the test
dataset intact in order to be able to make comparisons. Furthermore, the best filtering

technique is random forest so the following experiments are based only in this technique.

54

WINDOW 3 79.15 85.40 71.09 77.79
WINDOW 5 79.50 85.78 72.08 77.78
WINDOW 7 80.25 86.70 73.17 78.20
WINDOW 9 81.32 87.68 74.81 79.07
WINDOW 11 82.70 88.38 76.85 80.69
WINDOW 13 84.40 89.45 79.42 82.50
WINDOW 15 86.39 90.86 81.02 85.22
WINDOW 17 88.51 91.34 84.33 88.17
WINDOW 19 90.69 92.57 88.03 90.39
WINDOW 21 92.62 94.21 90.71 92.20
WINDOW 23 94.37 95.52 93.78 93.67
WINDOW 25 95.78 96.47 95.83 95.14
WINDOW 27 96.79 97.23 97.04 96.28
WINDOW 29 97.58 97.63 97.97 97.33
WINDOW 31 98.12 98.01 98.46 98.05

Table 5.37: Average Q3, QH, QE and QC accuracies, based on window size, for Random Forest on
CASP13 trained with PSICES dataset

Q3 ACCURACY ENSEMBLES + RANDOM
FOREST PROTBERT

——Q3_ALL —8—Q3_H Q3_E Q3_C

100

95

90

85
80
75

70

Figure 5.2: Graph illustration of the average Q3, QH, QE and QC accuracies, based on window
size, for Random Forest on CASP13 trained with PSICES dataset

According to Figure 5.2 we can actually see that as the window size increases the
prediction accuracy increases as well. Moreover we can see that the curves that illustrate
the accuracy of each class (QH, QE, QC) and the overall Q3 accuracy converge at around

98%. Finally, we can observe from Table 5.37 that initially the QE accuracy is the worst

55

with just over 71% but at the end QE is the best predicted class with an accuracy of
98.46%. As mentioned in section 3.8, a larger window may capture long range
connections/interactions between classes resulting in better Q3 accuracy, and this is
proved by the graph of Figure 5.2. The same experiment was used to analyze the SOV
score as well. The results are shown in Table 5.38 and Figure 5.3. When using window
size from 3 to 17, the SOVE score was the worst but from window size 19 to 31 the SOVE

score was the best.

SOV SOVH SOVE SOVC |

WINDOW 3 74.58 75.80 71.65 70.44
WINDOW 5 74.90 76.46 71.82 71.07
WINDOW 7 75.18 76.48 73.43 71.62
WINDOW 9 76.02 77.43 74.97 72.96

WINDOW 11 78.34 79.70 76.16 75.54
WINDOW 13 80.31 82.07 78.87 77.14
WINDOW 15 81.99 83.26 80.56 79.28
WINDOW 17 83.89 8491 83.29 82.31
WINDOW 19 87.54 87.61 87.74 85.59
WINDOW 21 89.20 88.71 90.72 88.25
WINDOW 23 91.83 90.49 92.89 91.95
WINDOW 25 92.97 92.51 94.93 92.02
WINDOW 27 94.69 93.33 95.53 94.55
WINDOW 29 94.69 92.63 96.77 95.56
WINDOW 31 96.98 95.61 97.35 97.23

Table 5.38: Average SOV, SOVH, SOVE and SOVC scores, based on window size, for Random
Forest on CASP13 trained with PSICES dataset

56

SOV SCORE ENSEMBLES + RANDOM
FOREST PROTBERT

—e—SOV_ALL —@—SOV_H SOV_E SOV_C

100.00

95.00 , / _,/;l\
90.00 , /i/

85.00 x
80.00
75.00
70.00
65.00

60.00

QTN e ‘“\\A P ‘“\\\\ P ‘“\\\\ P ‘“\V\ . ‘“@\ P ‘“\V\ P ‘“\V\ P ‘“\V\ _ ‘“\V\ _ ‘“\V\ _ ‘“\V\ P

\\N\/ \\@\/ \\\‘l\/ \\\\l\/ - - - - - - - - - - -
D NEES DRSS NN LLgiNL L EgiNE RN ARgNA L EgiN) LRI RgN) AEgiRE LRGN RGN

Figure 5.3:Graph illustration of the average SOV, SOVH, SOVE and SOVC scores, based on
window size, for Random Forest on CASP13 trained with PSICES dataset

The same experiment was performed on the results when the same CNN with the HFO
was trained on a different data representation, implemented by Dionysiou [35] [36]and
used by Leontiou [5]. It is a two dimensional (2D) input representation method, where
Multiple Sequence Alignment (MSA) profile vectors are placed one under another.

57

Q3 QH (0]3 Qc
WINDOW 3 77.61 84.21 67.03 77.22
WINDOW 5 78.20 84.23 66.71 78.78
WINDOW 7 79.23 85.09 68.29 79.68
WINDOW 9 80.51 86.13 70.46 80.72
WINDOW 11 82.18 87.32 72.29 82.74
WINDOW 13 84.05 88.49 76.21 84.15
WINDOW 15 86.04 89.81 79.50 86.07
WINDOW 17 88.08 91.24 82.27 88.29
WINDOW 19 90.23 92.63 86.67 89.94
WINDOW 21 92.00 93.84 89.91 91.44
WINDOW 23 93.66 95.00 92.44 93.10
WINDOW 25 95.00 96.31 93.92 94.41
WINDOW 27 95.93 97.11 94.96 95.40
WINDOW 29 96.62 97.58 95.95 96.12
WINDOW 31 96.97 97.74 96.43 96.57
Table 5.39: Average Q3, QH, QE and QC accuracies, based on window size, for Random Forest on
CASP13 trained with PSICES dataset using Dionysiou data representation

Q3 ACCURACY ENSEMBLES + RANDOM
FOREST MSA

——Q3_AlL —8—Q3_H Q3_E Q3_C

100.00

95.00

90.00

85.00

80.00

75.00
70.00
65.00

60.00
%) A o) N ” % A o N) A o) N
OS o@ O$ O$ $'\/ $\/ $'\, $'\, $’\/ $’L $’1/ $’1/ $’1/ $’L $”>
Q Q Q Q Qo O O Qo Qo O o o O o o
SN NN EOEEEEEE O
K\ {D N K\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\
Figure 5.4: Graph illustration of the average Q3, QH, QE and QC accuracies, based on window
size, for Random Forest on CASP13 trained with PSICES dataset using Dionysiou data
representation

58

SOV SOVH SOVE SOVC

WINDOW 3 71.75 76.57 70.93 68.02
WINDOW 5 70.79 76.51 69.98 66.43
WINDOW 7 72.57 77.45 72.18 68.47
WINDOW 9 73.78 78.29 73.48 69.84
WINDOW 11 74.48 78.79 74.46 71.14
WINDOW 13 76.63 80.93 75.76 73.87
WINDOW 15 78.74 82.92 78.33 76.03
WINDOW 17 80.11 84.54 79.93 77.72
WINDOW 19 83.69 86.89 84.28 80.98
WINDOW 21 86.20 88.73 86.76 83.49
WINDOW 23 87.68 88.80 88.70 85.92
WINDOW 25 89.77 90.89 91.03 87.32
WINDOW 27 91.47 92.81 91.75 89.27
WINDOW 29 92.29 93.14 92.88 90.24
WINDOW 31 92.90 93.73 93.55 90.70

Table 5.40: Average SOV, SOVH, SOVE and SOVC scores, based on window size, for Random
Forest on CASP13 trained with PSICES dataset using Dionysiou data representation

SOV SCORE ENSEMBLES + RANDOM FOREST

MSA
——SOV_ALL —@—SOV_H SOV_E SOV_C
100.00
95.00
v“vw
90.00 ~
85.00 =
80.00 1
75.00
70.00
65.00
60.00
>) 1 9 N >) 1 9 N > S 1) N
0O o0% o o g g gt e et et e et et e
) W W N N\ N\ N\ N\ N\ N\ N\ Y N\ N\ N\
S\ RN SN DA RIS A AL A AN A A REA A A RN AN

Figure 5.5: Graph illustration of the average SOV, SOVH, SOVE and SOVC scores, based on
window size, for Random Forest on CASP13 trained with PSICES dataset using Dionysiou data
representation

From Table 5.39 and Figure 5.4 we can observe how the Q3 accuracy varies as we change

the window size. For the smallest window we have a Q3 accuracy of 77.61% and for the

59

biggest window we have a Q3 accuracy of 96.97%. Table 5.40 and Figure 5.5 show how
the SOV score increases as the window size increases as well. For the smallest window
we have an SOV score of 71.75 and for a window size of 31 we have an SOV score of
92.90. Now if we compare the results between the two different data representations we
can extract some conclusions. The Q3 accuracy when the smallest window size was used
(window size 3), was for the data representation that used embeddings 79.15% and for
the other data representation 77.61%. There is a difference of almost 1.5%, this difference
fluctuates a bit as the window size increases but even when the biggest window size was
used the difference in Q3 accuracy remains around 1.5%. The same applies for the SOV
score as well, there is a difference of just under 3, but this difference remains as the
window size increases. This leads that the filtering techniques make a proportional
increase on the Q3 accuracy and SOV score no matter the data representation that was

used to train the CNN. This may contradict the observation made on Section 5.10.

5.11.2 N-terminus vs C-terminus
Inspired from this paper [37], we wanted to determine whether the predictions near the

N-terminus (first) amino acid are better than the predictions near the C-terminus (last)
amino acid. In order to be able to determine the part of the protein that had the highest
prediction accuracy, the protein is theoretically split into quarters as shown in Figure 5.4
(Appendix N). The predictions for CASP13 dataset trained on PISCES were used to
extract the conclusions. To be more precise the predictions obtained from the CNN for
CASP13 with the system trained on PISCES fold0, and the predictions for CASP13 with

ensembles and random forest filtering technique for window sizes 19 and 31.

CCEEHHHCCCCCCCEE EEEEECCC
L J M A J
T T T T
o1 a2 a3 o4

CCEEHHHCCCCCCCEEECCC

A

o a2 a3 04

Figure 5.6: Example of how a protein is split in quarters

60

NUMBER OF PROTEINS WITH HIGHER ACCURACY EITHER IN N-
TERMINUS OR C-TERMINUS ON SINGLE RUN PREDICTIONS

Qc QE

H N-terminus W C-terminus M Not applicable

Figure 5.7: Number of proteins with higher accuracy either in n-terminus or c-terminus on single
run predictions

Figure 5.5 shows how many proteins have higher overall accuracy as well as accuracy on
each class near the N-terminus or C-terminus amino acid. It is obvious that the overall Q3
accuracy as well as QC, QE and QH accuracies were better near the C-terminus (last)
amino acid. The non applicable parts represent the proteins that either do not have a
specific secondary structure (E, H) near the N or C terminus structures, or they have the

same prediction accuracy.

NUMBER OF PROTEINS WITH HIGHER ACCURACY EITHER IN N-
TERMINUS OR C-TERMINUS FOR ENSEMBLES + RANDOM FOREST WITH
WINDOW SIZE 19

13

Qc QE

B N-terminus M C-terminus ® Not applicable

Figure 5.8: Number of proteins with higher accuracy either in n-terminus or c-terminus for
ensembles and random forest with window size 19

61

NUMBER OF PROTEINS WITH HIGHER ACCURACY EITHER IN N-
TERMINUS OR C-TERMINUS FOR ENSEMBLES + RANDOM FOREST WITH
WINDOW SIZE 31

B N-terminus B C-terminus ® Not applicable

Figure 5.9: Number of proteins with higher accuracy either in n-terminus or c-terminus for
ensembles and random forest with window size 31

In addition as we can see from Figure 5.6 and Figure 5.7, as the window size increases
less proteins are available for comparison. In almost every occasion the accuracy near the

C-terminus (last) amino acid were better.

62

Chapter 6

6 Conclusions and Future Work

.1 CONCIUSIONS ...ttt e e e e e e e e e e e e e aeeeeans
0.2 FULUIE WOIK .o

63

6.1 Conclusions

The main purpose of this dissertation was to use embeddings that were extracted from
language models as inputs to a Convolutional Neural Network (CNN) that uses a second
order optimization algorithm, the Subsampled Hessian Newton (SHN), in order to train
models that predict the Secondary Structure of Proteins (PSSP), given its primary

structure.

The initial results, that were obtained from just a model trained on a single fold of the
CB513 dataset, without further post processing looked very promising. Specifically when
the CNN was trained with fold4 of the CB513 dataset, achieved a Q3 accuracy on the
cross validation dataset of 81.76% (Table 5.5), and a test Q3 accuracy (CASP13) of
78.74% (Table 5.18). However the really impressive results came when the various
filtering techniques were applied to the initial predictions. As shown in Table 5.17 of
section 5.4 and Table 5.20 of section 5.5, the overall Q3 accuracy and SOV score
skyrocketed. The overall cross validation Q3 accuracy increased from 79.96% to 93.65%,
and the SOV score rose by almost 18 (71.76 to 89.63), with the use of ensembles and
random forest filtering techniques and a window of 19. The overall test Q3 accuracy went
from 78.60% to 90.54% and the SOV score from 70.77 to 87.47.

For the PISCES dataset, the best overall Q3 accuracy of a single CNN with SHN was
81.56% (Table 5.21), while the overall Q3 accuracy for the 5-fold cross validation was
81.45%. The highest Q3 accuracy for the 5-fold cross validation was 87.13% and was
achieved with the ensembles model with the random forest filtering (Table 5.30). The
best overall SOV score for a single model was 76.30 and for the 5-fold cross validation
was 75.91. The highest overall SOV score achieved was 84.28, with the combination of

the ensembles model and random forest filtering (Table 5.30).

The results for the CASP13 dataset when the system was trained on PISCES were slightly
better than those when the system was trained on CB513. The best Q3 accuracy of a
single CNN with SHN was 78.92% and the overall Q3 accuracy was 78.83% (Table 5.31).
The highest Q3 accuracy was 90.69% and was obtained with the ensembles model with
random forest filtering (Table 5.33). Finally the best SOV score for a single model was

72.17 and for the 5-fold cross validation was 71.62. The highest overall SOV score was

64

87.94 and was achieved with the ensembles model , random forest and external rules post

processing methods.

Based on the results and the additional experiments we can make some conclusions. The
use of embeddings as inputs to the CNN gave results equally good or even slightly better
than multiple sequence alignment (MSA) [5]. Thus making the use of embeddings more
convenient for multiple reasons. While existing solutions in Protein Bioinformatics
usually have to search for evolutionary related proteins in exponentially growing
databases, LMs offer a potential alternative to this increasingly time consuming database
search as they extract features directly from single protein sequences. Moreover the
performance of existing solutions decrease if not a sufficient number of related sequences
can be found, e.g. the quality of predicted protein structures correlates strongly with the
number of effective sequences found in today’s databases. Additionally, some proteins
are intrinsically hard to align (e.g. intrinsically disordered proteins or proteins which do
not have any related sequences). On the other hand, embeddings require a considerable

amount of storage space.

Finally, filtering techniques were the ones that boosted the final results. As we can
observe the order that the filtering techniques were applied played a major role in the final
outcome. However the most important aspect of the post processing methods was the size
of the window variable (section 3.8). As the window variable was getting bigger the
results were getting better as well. This concludes that a bigger window is able to capture

long range connections between classes resulting in better Q3 accuracy.

6.2 Future Work

Based on section 5.10.1 where various window variables were used we can see that when
using a window size of 31, the overall test Q3 accuracy reached 98.12% which is an
almost perfect prediction. However since CASP13 is a really small dataset, just the
correction of a few secondary structures leads in a big improvement in the accuracy. A
different and bigger test set can possibly be used in order to observe if the overall Q3
accuracy remains at the same levels, for instance we can concatenate previous versions

of the CASP datasets in order to create a new dataset that will have a couple of hundreds

65

of protein sequences. In addition we can introduce a 3D representation as an input to the
CNN, specifically instead of using a 32 x 32 x 1 matrix we can make a 32 x 32 x 3 tensor
that consists of the representation of the amino acid we want to classify as well as the left
and the right neighbor of this amino acid. This representation may help increase the
overall Q3 accuracy and SOV score. Finally the experiment of Section 5.11.1 can be
perform on the results of the implementation of Dionysiou [35] [36].

66

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

F. Haurowitz, "Britannica: Protein Definition,” December 2020. [Online].
Available: https://www.britannica.com/science/protein. [Accessed 20 December
2020].

R. Bailey, "ThoughCo: Protein Structrure Types," May 2019. [Online]. Available:
https://www.thoughtco.com/protein-structure-373563. [Accessed 20 December
2020].

T. C. Terwilliger, D. Stuart and S. Yokoyama, "Lessons from structural
genomics,” Annual review of biophysics, vol. 38, pp. 371-383
doi:10.1146/annurev.biophys.050708.133740, 2009.

C. N. Magnan and P. Baldi, "SSpro/ACCpro 5: almost perfect prediction of
protein secondary structure and relative solvent accessibility using profiles,
machine learning and structural similarity,” Bioinformatics, vol. 30, no. 18, pp.
2592-2597, 2014.

P. Leontiou, Protein secondary structure prediction using convolutional neural
networks and Hessian free optimisation, BSc Thesis, Computer Science
Department,University of Cyprus, 2020.

Y. Yang, J. Gao, J. Wang, R. Heffernan, J. Hanson, K. Pailwal and Y. Zhou,
"Sixty-five years of the long march in protein secondary structure prediction: the
final stretch?,” Briefings in Bioinformatics, vol. 19, no. 3, pp. 482-494, 2018.

Science Learning Hub — Pokapti Akoranga Piitaiao, "Role of proteins in the
body," 2011. [Online]. Available: https://www.sciencelearn.org.nz/resources/209-
role-of-proteins-in-the-body. [Accessed 21 April 2021].

Learn.Genetics,Genetic Science Learning Center, "Types of Proteins,” [Online].
Available: https://learn.genetics.utah.edu/content/basics/proteintypes/. [Accessed
21 April 2021].

Compound Interest, "A Brief Guide to the Twenty Common Amino Acids,"
[Online]. Available: https://www.compoundchem.com/2014/09/16/aminoacids/.
[Accessed 21 April 2021].

[10] "Convolutional neural networks for visual recognition," [Online]. Available:

https://cs231n.github.io/neural-networks-1/. [Accessed 23 April 2021].

[11] K. Kawaguchi, "The McCulloch-Pitt Model of Neuron,” [Online]. Available:

http://osp.mans.edu.eg/rehan/ann/2_3_1%20The%20McCulloch-
Pitts%20Model%2001%20Neuron.htm. [Accessed 24 April 2021].

[12] Wikipedia, "Convolutional Neural Networks," [Online]. Available:

https://en.wikipedia.org/wiki/Convolutional _neural _network. [Accessed 26 April
2021].

[13] S. Saha, "A Comprehensive Guide to Convolutional Neural Networks,” [Online].

Available: https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53. [Accessed 26 April
2021].

67

[14] A. Saxena, "Convolutional Neural Networks: An Illustrated explanation,"
[Online]. Available: https://blog.xrds.acm.org/2016/06/convolutional-neural-
networks-cnns-illustrated-explanation/. [Accessed 26 April 2021].

[15] Wikipedia, "Line Search," [Online]. Available:
https://en.wikipedia.org/wiki/Line_search. [Accessed 27 April 2021].

[16] J. Hui, "Conjugate Gradient,” [Online]. Available: https://jonathan-
hui.medium.com/rl-conjugate-gradient-5a644459137a. [Accessed 27 April 2021].

[17] V. Preetham, "How to tame the valley Hessian-free hacks for optimizing large
NeuralNetworks," [Online]. Available: https://medium.com/autonomous-
agents/how-to-tame-the-valley-hessian-free-hacks-for-optimizing-large-
neuralnetworks-5044c50f4b55. [Accessed 28 April 2021].

[18] J. Martens, "Deep learning via Hessian-free optimization,” Proceedings of the
27th International Conferenceon Machine Learning, pp. 735-742, 2010.

[19] N. Schraudolph, "Fast Curvature Matrx-Vector Products for Second-Order
Gradient Descent,” Neural Computation, vol. 14, no. 7, pp. 1723-1738, 2002.

[20] C. Charalambous, Protein secondary structure prediction using bidirectional
recurrent neural networks and hessian free optimisation, BSc Thesis, Department
of Computer Science, University of Cyprus, 2018.

[21] W. Kabsch and C. Sander, "Dictionary of protein secondary structure: Pattern
recognition of hydrogen-bonded and geometrical features,” Biopolymers, vol. 22,
pp. 2577-2637, 1983.

[22] M. Heinzinger, A. Elnaggar, Y. Wang, C. Dallago, D. Nechaev, F. Matthes and B.
Rost, "Modeling aspects of the language of life through transfer-learning protein
sequences,” BMC Bioinformatics, vol. 20, no. Article 723, 2019.

[23] A. Elnaggar, M. Heinzinger, C. Dallago, G. Rihawi, Y. Wang, L. Jones, T. Gibbs,
T. Feher, C. Angerer, D. Bhowmik and B. Rost, "bioRxiv:ProtTrans: Towards
Cracking the Language of Life’s Code Through Self-Supervised Deep Learning
and High Performance Computing,” bioRxiv preprint bioRxiv:
2020.07.12.199554, 2020.

[24] M. E. Peters, M. Neumann, M. lyyer, M. Gardner, C. Clark, K. Lee and L.
Zettlemoyer, "Deep contextualized word representations,” arXiv preprint
arXiv:1802.05365v2, 2018.

[25] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, "BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding," arXiv preprint arXiv:
1810.04805v2, 2019.

[26] C. Wang, K. Tan and C.-J. Lin, "Newton Methods for convolutional neural
networks,"” ACM Transactions on Intelligent Systems and Technology, vol. 11, no.
2. Article 19, 2020.

[27] G. Ghati, "Compariston between BERT, GPT-2 and ELMo," [Online]. Available:
https://medium.com/@gauravghati/comparison-between-bert-gpt-2-and-elmo-
9ad140cdlcda. [Accessed 24 May 2021].

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser and I. Polosukhin, "Attention is all you need," arXiv preprint
arXiv:1706.03762v5, 2017.

68

[29] J. A. Cuff and G. J. Barton, "Evaluation and improvement of multiple sequence
methods for protein secondary structure prediction,” Proteins: Structure,
Function, and Bioinformatics, vol. 34, no. 4, pp. 508-519, 1999.

[30] G.Wang and R. L. Dunbrack Jr, "Pisces: a protein sequence culling server,"
Bioinformatics, vol. 19, no. 12, pp. 1589-1591, 2003.

[31] T. G. Dietterich, "Ensemble Methods in Machine Learning,” MCS '00:
Proceedings of the First International Workshop on Multiple Classifier, pp. 1-15,
June 2000.

[32] P. Kountouris, M. Agathocleous, V. J. Promponas, G. Christodoulou, S.
Hadjicostas, V. Vassiliades and C. Christodoulou, "A Comparative Study on
Filtering protein Secondary Structure Prediction,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 9, no. 3, pp. 731-739, 2021.

[33] A. A. Salamov and V. V. Solovyev, "Prediction of Protein Secondary Structure by
Combining Nearest-neighbor Algorithms and Multiple Sequence Alignments,"
Journal of Molecular Biology , vol. 247, pp. 11-15, 1995.

[34] T. Yiu, "Understanding Random Forest,” Toward Data Science, 2019. [Online].
Available: https://towardsdatascience.com/understanding-random-forest-
58381e0602d2. [Accessed 29 April 2021].

[35] A. Dionysiou, M. Agathocleous, C. Christodoulou and V. Promponas,
"Convolutional Neural Networks in Combination with Support Vector Machines
for Complex Sequential Data Classification," Artificial Neural Networks and
Machine Learning - ICANN, Lecture Notes in Computer Science, ed. by V.
Kurkova, Y. Manolopoulos, B. Hammer, L. lliadis, I. Maglogiannis, Cham:
Springer, 11140, Part 11, 444-455, 2018.

[36] A. Dionysiou, IIpéfiewn devtepotayoids Oops TPWTEIV®V UE YPHOT COVEAKTIKMV
VEVPWVIK®V OIKTOMV G GVVOIOOUO UE PIlTpa gabor kal support vector machines,
BSc Thesis,Department of Computer Science ,University of Cyprus, 2018.

[37] R. Saunders and C. M. Deane, "Protein structure prediction begins well but ends
badly," Proteins, vol. 78, no. 5, pp. 1282-1290, 2010.

[38] M. Johnson, "The Multilayer Perceptron,” [Online]. Available:
https://www.massey.ac.nz/~mjjohnso/notes/59302/110.html. [Accessed 25 Aprl
2021].

69

A Appendix

Python Implementation

The code below includes the implementation of the Convolutional Neural Network with
the Subsampled Hessian Newton method. This program was used to perform all the
experiments of this dissertation. Note that commands that begin with !” should be
executed as bash commands. It is recommended to use the notebook version of the
implementation which can be found at [https://gitlab.com/schatz06/pssp/-
/blob/master/Neural%20Network/CNN_HFO_v2.ipynb]. This implementation was
based on the Python implementation from [26], however, several modifications have been

made from Leontiou [5] to improve the results of the CNN for the PSSP problem.

-*- coding: utf-8 -*-

from google.colab import drive
drive.mount ('/content/drive')

fold = 0 # which fold to take
embedding = "protbert"
#dataset="PISCES"
dataset="CB513"

USE_HFO=True

Commented out IPython magic to ensure Python compatibility.
Reload all modules (except those excluded by %aimport) every time
before executing the Python code typed.
%load ext autoreload
%autoreload 2
matplotlib graphs will be included in your notebook, next to the
code.
%matplotlib inline

install hdfb5storage package
'pip install hdfb5storage

A-1

import pdb # python debugger

import numpy as np # import numpy

import tensorflow as tf # import tensorflow
tf.compat.vl.disable eager execution() # disable eager execution
import time # import time

import math # import math

import argparse # import argparse

import os # import os

import scipy.io as sio # import scipy.io

import tensorflow.compat.vl as tf

tf.disable v2 behavior() # makes different behaviors betweem tf vl &
tf v2 behave the same

from tensorflow.python.client import device lib # package to find
available gpus

import pandas as pd # import padas

import hdf5storage # import hdf5storage

HHH## Get data ##HHH
valid url="https://gitlab.com/schatz06/pssp/-

/raw/master/Datasets/CB513/matlab files/{0} {1} testSet{2}.mat".forma
t(

dataset.lower () ,embedding, fold)
train url="https://gitlab.com/schatz06/pssp/-
/raw/master/Datasets/CB513/matlab files/{0} {1} trainSet{2}.mat".form
at(

dataset.lower () ,embedding,fold)
test url="https://gitlab.com/schatz06/pssp/-
/raw/master/Datasets/CASP13/caspl3 protbert.mat"
VALID FILE="{0} {1} testSet{2}.mat".format(dataset.lower(),embedding,
str(fold))
TRAIN FILE="{0} {1} trainSet{2}.mat".format(dataset.lower () ,h embedding
,str(fold))
TEST FILE="caspl3 protbert.mat"

'[-f "SVALID FILE"] && echo "SVALID FILE exists" || wget

"$valid url"

'[-f "STRAIN FILE"] && echo "STRAIN FILE exists" || wget

"Strain url”

'[-f "STEST FILE"] && echo "STEST FILE exists" || wget "Stest url"

VALID FILE =
"/content/drive/MyDrive/Datasets/{0} {1} testSet{2}.mat".format (datas
et.lower (),embedding, str (fold)) # validation set

TRAIN FILE =
"/content/drive/MyDrive/Datasets/{0} {1} trainSet{2}.mat".format (data
set.lower (), embedding,str(fold)) # train set

TEST FILE =
"/content/drive/MyDrive/Datasets/caspl3 {0}.mat".format (embedding) #
test set CASP13

print(VALIDiFILE)

print(TRAINiFILE)

print(TEST_FILE)

HEIGHT = 32

WIDTH = 32

DEPTH = 1

CATEGORIES = 3 # number of different classification categories

HHH## VGG ##HHH

Codes are modifeid from PyTorch and Tensorflow Versions of VGG:
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.

py, and
https://github.com/keras-team/keras-
applications/blob/master/keras applications/vgglé6.py

import tensorflow.compat.vl as tf
tf.disable v2 behavior ()
import numpy as np

import pdb

from tensorflow.keras.applications.vgglé import VGGl6 as vgglé6 #
import vggl6 convolutional network

from tensorflow.keras.applications.vggl9 import VGGl9 as vggl9 #
import vggl9 convolutional network

_all = ['VGGll', 'VGG13', 'VGGle','VGG19']l # array holds all vgg
CNN's names

def VGG (feature, num cls): # define VGG

with tf.variable scope('fully connected') as scope:
dim =np.prod(feature.shape[l:]) # returns the product of the
given array
x = tf.reshape(feature, [-1, dim]) # reshape tensor

x = tf.keras.layers.Dense(units=4096, activation='relu',
name=scope.name) (x) # define layers

x = tf.keras.layers.Dense(units=4096, activation='relu',
name=scope.name) (x)

x = tf.keras.layers.Dense(units=num cls, name=scope.name) (x)

return x
make the layers of CNN
def make layers(x, cfg):
for v in cfg:
if v == "M':
x = tf.keras.layers.MaxPool2D(pool size=[2, 2],
strides=2, padding='valid') (x)
else:
x = tf.keras.layers.Conv2D(
filters=v,
kernel size=[3, 3],
padding='SAME',
activation=tf.nn.relu
) (x)
return x
ctg = {
IA' -
'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M',
512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512,
512, 'mMm', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512,
512, 512, 512, '™M',

512, 512, 512, 512, 'M'],

def VGGl1l(x images, num cls):
feature = make layers(x images, cfg['A'])
return VGG (feature, num cls)

def VGG13(x _images, num _cls):
feature = make layers(x images, cfg['B'])
return VGG (feature, num cls)

def VGG16(x _images, num_cls):
feature = make layers(x _images, cfg['D'])
return VGG (feature, num cls)

def VGG19(x images, num cls):
feature = make layers(x_images, cfg['E'])
return VGG (feature, num cls)

import tensorflow.compat.vl as tf
tf.disable v2 behavior ()

import math

import pdb

from tensorflow.python.client import device 1lib
import numpy as np

from net.vgg import *

Y T

def CNN 4layers(x image, num cls, reuse=False):
_NUM CLASSES = num cls
with tf.variable scope('convl', reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(
filters=64,
kernel size=[5,5],
padding='SAME',
activation=tf.nn.relu
) (x_image)

with tf.variable scope('conv2', reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(
filters=064,
kernel size=[5,5],
padding='SAME",
activation=tf.nn.relu
) (conv)

with tf.variable scope('conv3', reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(
filters=128,
kernel size=[5,5],
padding='SAME",
activation=tf.nn.relu
) (conv)

with tf.variable scope('fully connected', reuse=reuse) as scope:
dim =np.prod(conv.shape[l:])
flat = tf.reshape(conv, [-1, dim])
outputs = tf.keras.layers.Dense(units= NUM CLASSES,
name=scope.name) (flat)

return outputs

with tf.variable scope('convl', reuse=reuse) as scope:

conv = tf.keras.layers.Conv2D (

filters=32,

kernel size=[5, 5],

padding="'SAME',

activation=tf.nn.relu

) (x_image)

pool = tf.keras.layers.MaxPool2D(pool size=[2, 2], strides=2,
padding='valid') (conv)

N x 16 x 16 x 32

with tf.variable scope('conv2', reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D (

filters=64,

kernel size=[3, 3],

padding='SAME',

activation=tf.nn.relu

) (pool)

pool = tf.keras.layers.MaxPool2D(pool size=[2, 2], strides=2,
padding='valid') (conv)
N x 8 x 8 x 64

with tf.variable scope('conv3', reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D (

filters=64,

kernel size=[3, 3],

padding='SAME',

activation=tf.nn.relu

) (pool)

pool = tf.keras.layers.MaxPool2D(pool size=[2, 2], strides=2,
padding='valid') (conv)
N x 4 x 4 x 64

with tf.variable scope('fully connected', reuse=reuse) as
scope:

dim =np.prod(pool.shape[l:])

flat = tf.reshape (pool, [-1, dim])

outputs = tf.keras.layers.Dense (units= NUM CLASSES,
name=scope.name) (flat)

return outputs

def CNN_ 7layers(x_image, num cls, reuse=False):
_NUM CLASSES = num cls
with tf.variable scope('convl', reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D (
filters=64,
kernel size=[3, 3],
padding="'SAME',
activation=tf.nn.relu
) (x_image)
conv = tf.keras.layers.Conv2D (
filters=64,
kernel size=[3, 3],
padding='SAME',
activation=tf.nn.relu

A-5

) (conv)

with tf.variable scope('conv2', reuse=reuse) as scope:

conv = tf.keras.layers.Conv2D (
filters=64,
kernel size=[3, 3],
padding='SAME',
activation=tf.nn.relu

) (conv)

conv = tf.keras.layers.Conv2D (
filters=64,
kernel size=[3, 3],
padding='SAME',
activation=tf.nn.relu

) (conv)

with tf.variable scope('conv3', reuse=reuse) as scope:

with tf.variable scope('fully connected',

conv = tf.keras.layers.Conv2D(
filters=64,
kernel size=[3, 3],
padding='SAME',
activation=tf.nn.relu

) (conv)

conv = tf.keras.layers.Conv2D (
filters=64,
kernel size=[3, 3],
padding='SAME',
activation=tf.nn.relu

) (conv)

dim = np.prod(conv.shape[l:])
flat = tf.reshape(conv, [-1, dim])

outputs = tf.keras.layers.Dense (units= NUM CLASSES,

name=scope.name) (flat)

return outputs

#
#
#
#
#
#
#
#
#
#
#
#
#

#

reuse=reuse)

as scope:

with tf.variable scope('convl', reuse=reuse) as scope:

conv = tf.keras.layers.Conv2D (
filters=32,
kernel size=[5, 5],
padding="'SAME',
activation=tf.nn.relu

) (x_image)

conv = tf.keras.layers.Conv2D (
filters=32,
kernel size=[3, 3],
padding='SAME"',
activation=tf.nn.relu

) (conv)

pool = tf.keras.layers.MaxPool2D(pool size=[2,

padding='valid') (conv)

#

#
#
#
#
#

N x 16 x 16 x 32

21,

strides=2,

with tf.variable scope('conv2', reuse=reuse) as scope:

conv = tf.keras.layers.Conv2D(
filters=64,
kernel size=[3, 3],
padding='SAME',

activation=tf.nn.relu
) (pool)
conv = tf.keras.layers.Conv2D (
filters=64,
kernel size=[3, 3],
padding='SAME',
activation=tf.nn.relu
) (conv)
pool = tf.keras.layers.MaxPool2D(pool size=[2, 2], strides=2,
padding='valid') (conv)
N x 8 x 8 x 64

S oS e S 3 S SR o

with tf.variable scope('conv3', reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D (

filters=64,

kernel size=[3, 3],

padding="'SAME',

activation=tf.nn.relu

) (pool)

conv = tf.keras.layers.Conv2D (

filters=128,

kernel size=[3, 3],

padding="'SAME',

activation=tf.nn.relu

#

) (conv)
pool = tf.keras.layers.MaxPool2D(pool size=[2, 2], strides=2,
padding='valid') (conv)
pool = tf.layers.dropout (pool, rate=0.25, name=scope.name)

N x 4 x 4 x 128

with tf.variable scope('fully connected', reuse=reuse) as
scope:

dim = np.prod(pool.shape[l:])

flat = tf.reshape(pool, [-1, dim])

outputs = tf.keras.layers.Dense(units= NUM CLASSES,
name=scope.name) (flat)

return outputs
def CNN(net, num cls, dim):

_NUM CLASSES = num cls
_IMAGE HEIGHT, IMAGE WIDTH, IMAGE CHANNELS = dim

with tf.name scope('main params') :
x = tf.placeholder (tf.float32, shape=[None, IMAGE HEIGHT,
_IMAGE WIDTH, IMAGE CHANNELS], name='input of net')
y = tf.placeholder (tf.float32, shape=[None, NUM CLASSES],
name="'labels"')

call CNN structure according to string net
outputs = globals() [net] (x, NUM CLASSES)

outputs = tf.identity(outputs, name='output of net')
return (x, y, outputs)

"""## Utllltles ##"""

import numpy as np
import math

import scipy.io as sio
import os

import math

import pdb

ERgeE

class ConfigClass (object) :

def init (self, args, num _data, num cls):
super (ConfigClass, self). init ()
self.args = args
self.iter max = args.iter max
Different notations of regularization term:
In SGD, weight decay:
weight decay <- lr/(C*num of training samples)
In Newton method:
C <= C * num_of training samples

self.seed = args.seed

if self.seed is None:

print ('You choose not to specify a random seed.'+\

'A different result is produced after each run.')

elif isinstance(self.seed, int) and self.seed >= 0:

print ('You specify random seed {}.'.format (self.seed))
else:

raise ValueError ('Only accept None type or nonnegative

integers for'+\

' random seed argument!"')

self.train set = args.train_ set
self.val set = args.val set
self.num cls num cls

self.dim = args.dim

self.num data = num data

self.GNsize = min(args.GNsize, self.num data)
self.C = args.C * self.num data

self.net = args.net

self.xi = 0.1

self.CGmax = args.CGmax

self. lambda = args. lambda
self.drop = args.drop
self.boost = args.boost
self.eta = args.eta

self.lr = args.lr

self.lr decay = args.lr decay

self.bsize = args.bsize
if args.momentum < 0O:

raise ValueError ('Momentum needs to be larger than 0!'")
self.momentum = args.momentum

self.loss = args.loss
if self.loss not in ('MSELoss', 'CrossEntropy'):
raise ValueError ('Unrecognized loss type!')
self.optim = args.optim
if self.optim not in ('SGD', 'NewtonCG', 'Adam'):
raise ValueError ('Only support SGD, Adam & NewtonCG
optimizer!")

A-8

self.log file = args.log file
self.model file = args.model file
self.screen log only = args.screen log only

if self.screen log only:
print ('You choose not to store running log. Only store
model to {}'.format(self.log file))
else:
print ('Saving log to: {}'.format(self.log file))
dir name, = os.path.split(self.log file)
if not os.path.isdir(dir name):
os.makedirs (dir name, exist ok=True)

dir name, = os.path.split(self.model file)
if not os.path.isdir(dir name) :
os.makedirs (dir name, exist ok=True)

self.elapsed time = 0.0

def read data(filename, dim, label enum=None) :
args:
filename: the path where .mat files are stored
label enum (default None): the list that stores the original
labels.
If label enum is None, the function will generate a new
list which stores the
original labels in a sequence, and map original labels to
[0, 1, ... number of classes-1].
If label enum is a list, the function will use it to

convert
original labels to [0, 1,..., number of classes-1].
mmn
#mat contents = sio.loadmat (filename)
mat contents = hdf5storage.loadmat (filename)

images, labels = mat contents['x'], mat contents['y']

labels labels.reshape(-1)
images = images.reshape (images.shape[0], -1)

_IMAGE HEIGHT, IMAGE WIDTH, IMAGE CHANNELS = dim
zero_to_append = np.zeros((images.shape([0],
_IMAGE CHANNELS* IMAGE HEIGHT* IMAGE WIDTH-
np.prod (images.shape[l:])))
images = np.append(images, zero to append, axis=l)

check data validity
if label enum is None:

label enum, labels = np.unique(labels, return inverse=True)
num cls = labels.max() + 1
if len(label enum) != num cls:

raise ValueError ('The number of classes is not equal to
the number of\
labels in dataset. Please verify them.')
else:
num cls = len(label enum)
forward map = dict(zip(label enum, np.arange (num cls)))

A-9

labels = np.expand dims (labels, axis=1)
labels = np.apply along axis(lambda x:forward map[x[0]],
axis=1, arr=labels)

convert groundtruth to one-hot encoding
labels = np.eye (num cls) [labels]
labels = labels.astype('float32"')

return [images, labels], num cls, label enum

def normalize and reshape (images, dim, mean tr=None):
_IMAGE HEIGHT, IMAGE WIDTH, IMAGE CHANNELS = dim
images shape = [images.shape[0], IMAGE CHANNELS, IMAGE HEIGHT,
_IMAGE WIDTH]
images normalization and zero centering
images = images.reshape (images_shape[0], -1)
#images = (images/255.0) .astype (np.single)
if mean tr is None:
#print ('No mean of data provided! Normalize images by their
own mean."')
if no mean tr is provided, we calculate it according to the
current data
mean tr = images.mean (axis=0)
else:
#print ('Normalize images according to the provided mean.')
if np.prod(mean tr.shape) != np.prod(dim):
raise ValueError ('Dimension of provided mean does not
agree with the data! Please verify them!')

#images = (images - mean tr) .astype(np.single)
images = images.reshape (images_shape)

Tensorflow accepts data shape: B x H x W x C
images = np.transpose (images, (0, 2, 3, 1))

return images, mean tr

def predict (sess, network, test batch, bsize):
x, y, loss, outputs = network

test inputs, test labels = test batch
batch size = bsize

num data = test labels.shapel[0]
num batches = math.ceil (num data/batch _size)

results = np.zeros (shape=num data, dtype=np.int)
infer loss = 0.0

for i in range (num batches) :
batch idx = np.arange(i*batch size, min((i+1l)*batch size,
num_data))

batch input = test inputs[batch idx]
batch labels = test labels[batch idx]

net outputs, loss = sess.run(
[outputs, loss], feed dict={x: batch input, y:
batch labels}
)

A-10

results[batch idx] = np.argmax(net outputs, axis=1)
note that loss was summed over batches

infer loss = infer loss + loss
avg_acc = (np.argmax(test labels, axis=1) == results) .mean()
avg_loss = infer loss/num data

return avg loss, avg acc, results

llllll## Newton - CG ##H""

S o S S R o

def

def

import pdb

import tensorflow as tf
import time

import numpy as np

import os

import math

from utilities import predict

Rop (f, weights, v):
"""Implementation of R operator
Args:
f: any function of weights
weights: list of tensors.
v: vector for right multiplication
Returns:
Jv: Jaccobian vector product, length same as
the number of output of £

if type(f) == list:

u = [tf.zeros like(ff) for ff in f]
else:

u = tf.zeros like(f) # dummy variable

g = tf.gradients(ys=f, xs=weights, grad ys=u)
return tf.gradients(ys=g, xs=u, grad ys=v)

Gauss_Newton vec (outputs, loss, weights, v):
"""Tmplements Gauss-Newton vector product.
Args:
loss: Loss function.
outputs: outputs of the last layer (pre-softmax).
weights: Weights, list of tensors.
v: vector to be multiplied with Gauss Newton matrix
Returns:
J'BJv: Guass-Newton vector product.

won

Validate the input

if type(weights) == list:
if len(v) != len(weights):
raise ValueError ("weights and v must have the same
length.")
grads_outputs = tf.gradients(ys=loss, xs=outputs)

BJv = Rop(grads_ outputs, weights, v)
JBJv = tf.gradients (ys=outputs, xs=weights, grad ys=BJv)
return JBJv

class newton cg(object):

A-11

def

newton

init (self, config, sess, outputs, loss):

initialize operations and vairables that will be used in

args:
sess: tensorflow session
outputs: output of the neural network (pre-softmax layer)
loss: function to calculate loss

super (newton cg, self). init ()

self.sess = sess

self.config = config

self.outputs = outputs

self.loss = loss

self.param = tf.compat.vl.trainable variables()

self.CGiter = 0
FLOAT = tf.float32
model weight = self.vectorize(self.param)

initial variable used in CG

zeros = tf.zeros (model weight.get shape (), dtype=FLOAT)

self.r = tf.vVariable(zeros, dtype=FLOAT, trainable=False)

self.v tf.Variable (zeros, dtype=FLOAT, trainable=False)
)
)

self.s tf.Variable (zeros, dtype=FLOAT, trainable=False
self.g = tf.Variable(zeros, dtype=FLOAT, trainable=False
initial Gv, f for method minibatch

self.Gv = tf.Variable(zeros, dtype=FLOAT, trainable=False)
self.f = tf.Variable (0., dtype=FLOAT, trainable=False)

rTr, cgtol and beta to be used in CG

self.rTr = tf.Variable (0., dtype=FLOAT, trainable=False)
self.cgtol = tf.vVariable (0., dtype=FLOAT, trainable=False)
self.beta = tf.Variable (0., dtype=FLOAT, trainable=False)

placeholder alpha, old alpha and lambda

self.alpha = tf.compat.vl.placeholder (FLOAT, shape=[])
self.old alpha = tf.compat.vl.placeholder (FLOAT, shape=[])
self. lambda = tf.compat.vl.placeholder (FLOAT, shape=[])

self.num grad segment =

math.ceil (self.config.num data/self.config.bsize)

self.num Gv_ segment =

math.ceil (self.config.GNsize/self.config.bsize)

newton

cal loss, cal lossgrad, cal lossGv, \
add reg avg loss, add reg avg grad, add reg avg Gv, \
zero loss, zero grad, zero Gv = self. ops in minibatch ()

initial operations that will be used in minibatch and

self.cal loss = cal loss

self.cal lossgrad = cal lossgrad
self.cal lossGv = cal lossGv
self.add reg avg loss = add reg avg loss
self.add reg avg grad = add reg avg grad
self.add reg avg Gv = add reg avg Gv

self.zero loss = zero loss
self.zero grad = zero_grad
self.zero Gv = zero Gv

A-12

self.CG, self.update v = self. CG()

self.init cg vars = self. init cg vars()

self.update gs = tf.tensordot(self.s, self.g, axes=1)

self.update sGs = 0.5*tf.tensordot (self.s, -self.g-self.r-
self. lambda*self.s, axes=1)

self.update model = self. update model ()

self.gnorm = self.calc norm(self.q)

def vectorize(self, tensors):
if isinstance(tensors, list) or isinstance(tensors, tuple):
vector = [tf.reshape(tensor, [-1]) for tensor in tensors]
return tf.concat (vector, 0)
else:
return tensors

def inverse vectorize(self, vector, param):
if isinstance (vector, list):
return vector
else:
tensors = []
offset = 0
num_total param = np.sum([np.prod(p.shape.as list()) for
p in param])
for p in param:
numel = np.prod(p.shape.as list())
tensors.append(tf.reshape (vector[offset:
offset+numel], p.shape))
offset += numel

assert offset == num total param
return tensors

def calc norm(self, v):

default: frobenius norm

if isinstance (v, list):
norm = 0.
for p in wv:

norm = norm + tf.norm(tensor=p) **2

return norm**0.5

else:
return tf.norm(tensor=v)

def ops_in minibatch (self):
mwoan
Define operations that will be used in method minibatch
Vectorization is already a deep copy operation.
Before using newton method, loss needs to be summed over
training samples
to make results consistent.

wuan

def cal loss():
return tf.compat.vl.assign(self.f, self.f + self.loss)

def cal lossgrad():
update f = tf.compat.vl.assign(self.f, self.f +

self.loss)

A-13

grad = tf.gradients(ys=self.loss, xs=self.param)
grad = self.vectorize(grad)
update grad = tf.compat.vl.assign(self.g, self.g + grad)

return tf.group (*[update f, update grad])

def cal lossGv():
v = self.inverse vectorize(self.v, self.param)
Gv Gauss Newton vec (self.outputs, self.loss,
self.param, v)
Gv = self.vectorize (Gv)
return tf.compat.vl.assign(self.Gv, self.Gv + Gv)

add regularization term to loss, gradient and Gv and
further average over batches
def add reg avg loss():
model weight = self.vectorize(self.param)
reg = (self.calc norm(model weight))**2
reg = 1.0/ (2*self.config.C) * reg
return tf.compat.vl.assign(self.f, reg +
self.f/self.config.num data)

def add reg avg lossgrad() :
model weight = self.vectorize(self.param)
reg grad = model weight/self.config.C
return tf.compat.vl.assign(self.g, reg grad +
self.g/self.config.num data)

def add reg avg lossGv():
return tf.compat.vl.assign(self.Gv, (self. lambda +
1/self.config.C)*self.v
+ self.Gv/self.config.GNsize)

zero out loss, grad and Gv
def zero loss():
return tf.compat.vl.assign(self.f, tf.zeros like(self.f))
def zero grad():
return tf.compat.vl.assign(self.g, tf.zeros like(self.qg))
def zero Gv():
return tf.compat.vl.assign(self.Gv,
tf.zeros like(self.Gv))

return (cal loss(), cal lossgrad(), cal lossGv(),
add reg avg loss(), add reg avg lossgrad(),
add reg _avg lossGv (),
zero_loss (), zero _grad(), zero Gv())

def minibatch (self, data batch, place holder x, place holder vy,

mode) :

mwoan

A function to evaluate either function value, global gradient
or sub-sampled Gv

if mode not in ('funonly', 'fungrad', 'Gv'):

raise ValueError ('Unknown mode other than funonly &

fungrad & Gv!'")

inputs, labels = data batch
num_data = labels.shape[0]
num segment = math.ceil (num data/self.config.bsize)

A-14

X, y = place holder x, place holder y

before estimation starts, need to zero out f, grad and Gv
according to the mode

if mode == 'funonly':
assert num data == self.config.num data
assert num_segment == self.num grad segment
self.sess.run(self.zero loss)
elif mode == 'fungrad':
assert num data == self.config.num data
assert num_segment == self.num grad segment
self.sess.run([self.zero loss, self.zero grad])
else:
assert num data == self.config.GNsize
assert num_ segment == self.num Gv segment

self.sess.run(self.zero Gv)
for i in range (num segment) :

load time = time.time ()

idx = np.arange(i * self.config.bsize, min((i+1) *
self.config.bsize, num data))

batch input = inputs[idx]

batch labels = labels[idx]

batch input = np.ascontiguousarray(batch input)

batch labels = np.ascontiguousarray (batch labels)
self.config.elapsed time += time.time() - load time
if mode == 'funonly':

self.sess.run(self.cal loss, feed dict={
x: batch input,
y: batch labels, })

elif mode == 'fungrad':
self.sess.run(self.cal lossgrad, feed dict={
x: batch input,
y: batch labels, })
else:
self.sess.run(self.cal lossGv, feed dict={
x: batch input,
y: batch labels})

average over batches

if mode == 'funonly':
self.sess.run(self.add reg avg loss)
elif mode == 'fungrad':

self.sess.run([self.add reg avg loss,
self.add reg avg grad])
else:
self.sess.run(self.add reg avg Gv,
feed dict={self. lambda: self.config. lambda})

def update model (self):
update model ops = []

A-15

x = self.inverse vectorize(self.s, self.param)
for i, p in enumerate(self.param):
op = tf.compat.vl.assign(p, p + (self.alpha-
self.old alpha) * x[i])
update model ops.append (op)
return tf.group (*update model ops)

def init cg vars(self):
init ops = []

init r = tf.compat.vl.assign(self.r, -self.q)

init v = tf.compat.vl.assign(self.v, -self.q)

init s = tf.compat.vl.assign(self.s, tf.zeros like(self.q))

gnorm = self.calc norm(self.qg)

init rTr = tf.compat.vl.assign(self.rTr, gnorm**2)

init cgtol = tf.compat.vl.assign(self.cgtol,
self.config.xi*gnorm)

init ops = [init r, init v, init s, init rTr, init cgtol]
return tf.group(*init ops)

def CG(self):
CG:
define operations that will be used in method newton
Same as the previous loss calculation,
Gv has been summed over batches when samples were fed into
Neural Network.

def CG ops():
vGv = tf.tensordot (self.v, self.Gv, axes=1l)

alpha = self.rTr / vGv
with tf.control dependencies([alpha]):
update s = tf.compat.vl.assign(self.s, self.s + alpha
* self.v, name='update s ops')
update r = tf.compat.vl.assign(self.r, self.r - alpha
* self.Gv, name='update r ops')

with tf.control dependencies([update s, update r]):
rnewTrnew = self.calc norm(update r)**2
update beta = tf.compat.vl.assign(self.beta,
rnewTrnew / self.rTr)
with tf.control dependencies([update betal):
update rTr = tf.compat.vl.assign(self.rTr,
rnewTrnew, name='update rTr ops')

return tf.group (*[update s, update beta, update rTr])
def update v():
return tf.compat.vl.assign(self.v, self.r +

self.beta*self.v, name='update v')

return (CG ops (), update v())

A-16

def newton(self, full batch, val batch, saver, network,
test network=None) :
Conduct newton steps for training
args:
full batch & val batch: provide training set and
validation set. The function will
save the best model evaluted on validation set for
future prediction.
network: a tuple contains (x, y, loss, outputs).
test network: a tuple similar to argument network. If you
use layers which behave differently
in test phase such as batchnorm, a separate
test network is needed.
return:
None
check whether data is valid
full inputs, full labels = full batch
assert full inputs.shape[0] == full labels.shapel[0]

if full inputs.shape[0] != self.config.num data:
raise ValueError ('The number of full batch inputs does
not agree with the config argument.\
This is important because global loss is
averaged over those inputs')

X, Yy, _, outputs = network

tf.compat.vl.summary.scalar('loss', self.f)
merged = tf.compat.vl.summary.merge all ()
train writer =
tf.compat.vl.summary.FileWriter ('./summary/train', self.sess.graph)

print (self.config.args)

if not self.config.screen log only:
log file = open(self.config.log file, 'w')
print (self.config.args, file=log file)

self.minibatch (full batch, x, y, mode='fungrad')
f = self.sess.run(self.f)
output str = 'initial f: {:.3f}'.format (f)
print (output str)
if not self.config.screen log only:
print (output str, file=log file)

best acc = 0.0

total running time = 0.0

self.config.elapsed time = 0.0

total CG = 0

for k in range(self.config.iter max):
randomly select the batch for Gv estimation
idx = np.random.choice (np.arange (0,

full labels.shapel0]),

size=self.config.GNsize, replace=False)

mini inputs = full inputs[idx]

A-17

mini labels = full labels[idx]
start = time.time ()

self.sess.run(self.init cg vars)
cgtol = self.sess.run(self.cgtol)

avg_cg time = 0.0
for CGiter in range(l, self.config.CGmax+1l) :

cg _time = time.time ()

self.minibatch((mini_ inputs, mini labels), x, vy,
mode="'Gv")

avg _cg time += time.time() - cg time

self.sess.run (self.CG)
rnewTrnew = self.sess.run(self.rTr)

if rnewTrnew**0.5 <= cgtol or CGiter ==
self.config.CGmax:
break

self.sess.run(self.update v)

print ('Avg time per Gv iteration: {:.5f}
s\r\n'.format (avg cg time/CGiter))

gs, sGs = self.sess.run([self.update gs,
self.update sGs], feed dict={
self. lambda: self.config. lambda
})

line search
f old = f
alpha =1
while True:

old alpha = 0 if alpha == 1 else alpha/0.5

self.sess.run(self.update model, feed dict={
self.alpha:alpha, self.old alpha:old alpha
H)

prered = alpha*gs + (alpha**2) *sGs

self.minibatch (full batch, x, y, mode='funonly')
f = self.sess.run(self.f)

actred = £ - £ old

if actred <= self.config.eta*alpha*gs:
break

alpha *= 0.5

update lambda
ratio = actred / prered
if ratio < 0.25:
self.config. lambda *= self.config.boost

A-18

elif ratio >= 0.75:
self.config. lambda *= self.config.drop

self.minibatch (full batch, x, y, mode='fungrad')
f = self.sess.run(self.f)

gnorm = self.sess.run(self.gnorm)

summary = self.sess.run (merged)
train writer.add summary (summary, k)

exclude data loading time for fair comparison
end = time.time ()

end = end - self.config.elapsed time
total running time += end-start

self.config.elapsed time = 0.0
total CG += CGiter

output str = '{}-iter f: {:.3f} |gl: {:.5f} alpha:

time: {:.3f}'.\

done. ..

{:.3f}\r\n"

{:
ratio: {:.3f} lambda: {:.5f} #CG: {} actred: {:.5f} prered: {:.5f}

.3e}

format (k, f, gnorm, alpha, actred/prered,
self.config. lambda, CGiter, actred, prered, end-start)

print (output str)
if not self.config.screen log only:
print (output str, file=log file)

if val batch is not None:

Evaluate the performance after every Newton Step

if test network == None:
val loss, val acc, _ = predict(
self.sess,
network=(x, vy, self.loss, outputs),
test batch=val batch,
bsize=self.config.bsize,
)
else:
A separat test network part has not been

val loss, val acc, _ = predict(
self.sess,
network=test network,
test batch=val batch,
bsize=self.config.bsize

)

output _str = '\r\n {}-iter val acc: {:.3f}% val loss

A

format (k, val acc*100, val loss)
print (output str)
if not self.config.screen log only:
print (output str, file=log file)

if val acc > best acc:
best acc = val acc
checkpoint path = self.config.model file

A-19

save path = saver.save(self.sess,
checkpoint path)

print ('Best model saved in
{}\r\n'.format (save path))

if val batch is None:
checkpoint path = self.config.model file
save path = saver.save(self.sess, checkpoint path)
print ('Model at the last iteration saved in
{}\r\n'.format (save path))

output str = 'total #CG {} | total running time
{:.3f}s'.format (total CG, total running time)
else:
output str = 'Final acc: {:.3f}% | best acc {:.3f}% |

total #CG {} | total running time {:.3f}s'.\
format (val acc*100, best acc*100, total CG,
total running time)
print (output str)
if not self.config.screen log only:
print (output str, file=log file)
log file.close()

"nrddSet Train Arguments##"""

if USE_HFO:
Arguments for HFO - PSSP dataset
train args = ("--optim NewtonCG --GNsize 50 --C 0.05 --net
CNN 4layers --bsize 1024 --iter max 10 " +
"--train set " + TRAIN FILE + " --val set " +
VALID FILE + " --dim " +
str (HEIGHT) + " " + str(WIDTH) + " " +
str (DEPTH)) .split ()
else:
Arguments for SGD - PSSP dataset
train _args = ("--optim SGD --1lr 0.05 --momentum 0.01 --C 0.01 --
net CNN 4layers --bsize 1024 --epoch max 1000 " +
"--train set " + TRAIN FILE + " --val set " +
VALID FILE + " --dim " +
str(HEIGHT) + " " + str(WIDTH) + " " +
str (DEPTH)) .split ()

""nidDeclare Train Function##"""

import pdb

import numpy as np

import tensorflow as tf
tf.compat.vl.disable eager execution()
import time

import math

import argparse

e

from net.net import CNN

from newton cg import newton cg

from utilities import read data, predict, ConfigClass,
normalize and reshape

def parse args():

parser = argparse.ArgumentParser (description='Newton method on
DNN'")

parser.add argument('--C', dest='C',

A-20

help='regularization term, or so-called weight
decay where'+\
'weight decay = lr/(C*num of samples)
in this implementation' ,
default=0.01, type=float)

Newton method arguments
parser.add argument ('--GNsize', dest='GNsize',
help="number of samples for estimating Gauss-
Newton matrix',
default=4096, type=int)
parser.add argument ('--iter max', dest='iter max',
help='the maximal number of Newton iterations’',
default=100, type=int)
parser.add argument ('--xi', dest='xi',
help='the tolerance in the relative stopping
condition for CG',
default=0.1, type=float)
parser.add argument ('--drop', dest='drop',
help="'the drop constants for the LM method',
default=2/3, type=float)
parser.add argument ('--boost', dest='boost',
help="'the boost constants for the LM method',
default=3/2, type=float)
parser.add argument ('--eta', dest='eta',
help='the parameter for the line search
stopping condition',
default=0.0001, type=float)
parser.add argument ('--CGmax', dest='CGmax',
help='the maximal number of CG iterations',
default=250, type=int)
parser.add argument ('--lambda', dest=' lambda',
help='the initial lambda for the LM method',
default=1, type=float)

SGD arguments

parser.add argument ('--epoch max', dest='epoch',
help='number of training epoch’',
default=500, type=int)

parser.add argument ('--1r', dest='lr',
help='learning rate',
default=0.01, type=float)

parser.add argument ('--decay', dest='lr decay',
help='learning rate decay over each mini-batch

update',

default=0, type=float)

parser.add argument ('--momentum', dest='momentum',
help="momentum of learning',
default=0, type=float)

Model training arguments
parser.add argument ('--bsize', dest='bsize',
help='batch size to evaluate stochastic
gradient, Gv, etc. Since the sampled data \
for computing Gauss-Newton matrix and etc.
might not fit into memeory \
for one time, we will split the data into
several segements and average\
over them.',
default=1024, type=int)

A-21

parser.add argument ('--net', dest='net',
help='classifier type',
default='CNN 4layers',6 type=str)
parser.add argument ('--train set', dest='train set',
help='provide the directory of .mat file for
training',
default=None, type=str)
parser.add argument ('--val set', dest='val set',
help='provide the directory of .mat file for
validation',
default=None, type=str)
parser.add argument ('--model', dest='model file',
help='model saving address',
default='./saved model/model.ckpt', type=str)
parser.add argument ('--log', dest='log file',
help='log saving directory',
default='./running log/logger.log', type=str)
parser.add argument ('--screen log only', dest='screen log only',
help='screen printing running log instead of
storing it',
action='store true')
parser.add argument ('--optim', '-optim',
help='which optimizer to use: SGD, Adam or
NewtonCG',
default="NewtonCG', type=str)
parser.add argument ('--loss', dest='loss',
help='which loss function to use: MSELoss or
CrossEntropy',
default="MSELoss', type=str)
parser.add argument ('--dim', dest='dim', nargs='+', help='input
dimension of data, "+\

'shape must be: height width num channels’,
default=[32, 32, 3], type=int)
parser.add argument ('--seed', dest='seed', help='a nonnegative

integer for \
reproducibility', type=int)

args = parser.parse_args(args=train args)
return args

args = parse_args()

def init model (param) :
init ops = []
for p in param:
if 'kernel' in p.name:
weight = np.random.standard normal (p.shape)* np.sgrt (2.0
/ ((np.prod(p.get _shape().as_list () [:-1]))))
opt = tf.compat.vl.assign(p, weight)
elif 'bias' in p.name:
zeros = np.zeros (p.shape)
opt = tf.compat.vl.assign(p, zeros)
init ops.append(opt)
return tf.group(*init ops)

def gradient trainer(config, sess, network, full batch, val batch,
saver, test network):
x, y, loss, outputs, = network

A-22

global step = tf.Variable(initial value=0, trainable=False,
name='global step')

learning rate = tf.compat.vl.placeholder (tf.float32, shape=[],
name="'learning rate')

Probably not a good way to add regularization.
Just to confirm the implementation is the same as MATLAB.
reg = 0.0
param = tf.compat.vl.trainable variables()
for p in param:
reg = reg + tf.reduce sum(input tensor=tf.pow(p,2))
reg const = 1/(2*config.C)
batch size = tf.compat.vl.cast(tf.shape(x)[0], tf.float32)
loss with reg = reg const*reg + loss/batch size

if config.optim == 'SGD':
optimizer = tf.compat.vl.train.MomentumOptimizer (
learning rate=learning rate,
momentum=config.momentum) .minimize (
loss with reg,
global step=global step)

elif config.optim == 'Adam':
optimizer =
tf.compat.vl.train.AdamOptimizer (learning rate=learning rate,
betal=0.9,

betaz2=0.999,
epsilon=1e-08) .minimize (
loss _with reg,

global step=global step)

train inputs, train labels = full batch
num data = train labels.shape[0]
num iters = math.ceil (num data/config.bsize)

print (config.args)
if not config.screen log only:

log file = open(config.log file, 'w')

print (config.args, file=log file)
sess.run(tf.compat.vl.global variables initializer())

print('-——————---———~ initializing network by methods in He et
al. (2015) —-—-—-—==——-————~ ")

param = tf.compat.vl.trainable variables|()

sess.run (init model (param))

total running time = 0.0
best acc = 0.0
lr = config.lr

for epoch in range (0, args.epoch):

loss avg = 0.0
start = time.time ()

for i in range(num iters):

load time = time.time ()
randomly select the batch
idx = np.random.choice (np.arange (0, num data),

A-23

size=config.bsize, replace=False)

batch input = train inputs[idx]

batch labels = train labels[idx]

batch input = np.ascontiguousarray(batch input)
batch labels = np.ascontiguousarray (batch labels)
config.elapsed time += time.time() - load time

step, , batch loss= sess.run(
[global step, optimizer, loss with reg],
feed dict = {x: batch input, y: batch labels,
learning rate: 1lr}

)

print initial loss
if epoch == 0 and i ==
output str = 'initial f (reg + avg. loss of 1lst
batch): {:.3f}'.format (batch loss)
print (output str)
if not config.screen log only:
print (output str, file=log file)

loss _avg = loss_avg + batch loss
print log every 10% of the iterations
if 1 % math.ceil (num iters/10) ==
end = time.time ()
output str = 'Epoch {}: {}/{} | loss {:.4f} | 1lr
{:.6} | elapsed time {:.3f}'\
.format (epoch, i, num iters, batch loss , 1r,
end-start)
print (output str)
if not config.screen log only:
print (output str, file=log file)

adjust learning rate for SGD by inverse time decay
if args.optim != 'Adam':

lr = config.lr/(1 + args.lr decay*step)

exclude data loading time for fair comparison

epoch _end = time.time() - config.elapsed time
total running time += epoch end - start
config.elapsed time = 0.0

if val batch is None:
output str = 'In epoch {} train loss: {:.3f} | epoch time
{:.3f}"\
.format (epoch, loss avg/(i+l), epoch end-start)
else:
if test network == None:
val loss, val acc, _ = predict(
sess,
network=(x, vy, loss, outputs),
test batch=val batch,
bsize=config.bsize
)
else:
A separat test network part have been done...
val loss, val acc, _ = predict(
sess,
network=test network,

A-24

test batch=val batch,
bsize=config.bsize

)

output str = 'In epoch {} train loss: {:.3f} | val loss:
{:.3f} | val accuracy: {:.3f}% | epoch time {:.3f}'\

.format (epoch, loss avg/(i+l), val loss, val acc*100,
epoch end-start)

if val acc > best acc:
best acc = val acc
checkpoint path = config.model file
save path = saver.save(sess, checkpoint path)
print ('Saved best model in {}'.format (save path))

print (output str)
if not config.screen log only:
print (output str, file=log file)

if val batch is None:
checkpoint path = config.model file
save path = saver.save(sess, checkpoint path)
print ('Model at the last iteration saved in
{}\r\n'.format (save_ path))

output str = 'total running time
{:.3f}s'.format (total running time)
else:
output str = 'Final acc: {:.3f}% | best acc {:.3f}% | total

running time {:.3f}s"\
.format (val acc*100, best acc*100, total running time)

print (output str)

if not config.screen log only:
print (output str, file=log file)
log file.close()

def newton trainer(config, sess, network, full batch, val batch,
saver, test network):
_+ _, loss, outputs = network
newton solver = newton cg(config, sess, outputs, loss)
sess.run(tf.compat.vl.global variables initializer())

print ('-—--=-—-—----———- initializing network by methods in He et
al. (2015) —-=—======—————- ")

param = tf.compat.vl.trainable variables|()

sess.run (init model (param))

newton solver.newton (full batch, val batch, saver, network,
test network)

def train model () :
full batch, num cls, label enum =
read data(filename=args.train set, dim=args.dim)

if args.val set is None:
print ('No validation set is provided. Will output model at
the last iteration.')
val batch = None
else:

A-25

val batch, , = read data(filename=args.val set,
dim=args.dim, label enum=label enum)

num data = full batch[0].shape[0]
config = ConfigClass(args, num data, num cls)
if isinstance (config.seed, int):

tf.compat.vl.random.set random seed(config.seed)
np.random.seed (config.seed)

if config.net in ('CNN_4layers', 'CNN 7layers', 'VGGll', 'VGG1l3',
'VGGl6', 'VGG19') :
X, y, outputs = CNN(config.net, num cls, config.dim)
test network = None
else:

raise ValueError ('Unrecognized training model')

if config.loss == 'MSELoss':

loss = tf.reduce sum(input tensor=tf.pow (outputs-y, 2))
else:

loss =

tf.reduce sum(input tensor=tf.nn.softmax cross entropy with logits(lo
gits=outputs, labels=y))

network = (x, y, loss, outputs)

sess _config = tf.compat.vl.ConfigProto()
sess_config.gpu options.allow growth = True

with tf.compat.vl.Session(config=sess config) as sess:

full batch[0], mean tr = normalize and reshape(full batch[0],
dim=config.dim, mean tr=None)
if val batch is not None:
val batch[0], = normalize and reshape(val batch[0],
dim=config.dim, mean tr=mean tr)

param = tf.compat.vl.trainable variables|()

mean param = tf.compat.vl.get variable (name='mean tr',
initializer=mean tr, trainable=False,
validate shape=True, use resource=False)
label enum var=tf.compat.vl.get variable (name='label enum',
initializer=label enum, trainable=False,
validate shape=True, use_ resource=False)
saver = tf.compat.vl.train.Saver (var list=param+[mean param])

if config.optim in ('SGD', 'Adam'):
gradient trainer (
config, sess, network, full batch, val batch, saver,
test network)
elif config.optim == 'NewtonCG':
newton trainer (
config, sess, network, full batch, val batch, saver,
test network=test network)

"""## Train ##"""

train model ()

A-26

nn n## Predict ##n nn

Arguments for prediction PSSP dataset
pred args = ("--bsize 1024 --valid set " + VALID FILE + " --train set
" + TRAIN FILE +
" --model ./saved model/model.ckpt --dim " +
str (HEIGHT) + " " + str(WIDTH) + " " +
str (DEPTH)) .split ()

valid £ =
"/content/drive/MyDrive/Datasets/{0} test fold{l}.txt".format (dataset
.lower (), str(fold)) # train set

train f =
"/content/drive/MyDrive/Datasets/{0} train fold{l}.txt".format (datase
t.lower (),str(fold)) # validation set

test f = "/content/drive/MyDrive/Datasets/CASP13 3class.txt" # test
set CASP13

print(valid f)

print(train f)

print(test f)

valid origin = "https://gitlab.com/schatz06/pssp/-
/raw/master/Datasets/{0}/{1} folds/{2} test fold{3}.txt".format (datas
et, dataset.lower(),dataset.lower (), fold)

train origin = "https://gitlab.com/schatz06/pssp/-
/raw/master/Datasets/{0}/{1} folds/{2} train fold{3}.txt".format (data
set, dataset.lower(),dataset.lower (), fold)

test origin = "https://gitlab.com/schatz06/pssp/-
/raw/master/Datasets/CASP13/CASP13 3class.txt"

train origin, valid origin, test origin

import requests

valid f = requests.get(valid origin)
valid f = valid f.text.split('\n')[0:-1]
train f requests.get (train origin)
train f = train f.text.split('\n')[0:-1]
test f = requests.get(test origin)
test f = test f.text.split('\n')[0:-1]

VALID PRED FILE="pred test fold{0}.txt".format (fold)
TRAIN PRED FILE="pred train fold{0}.txt".format (fold)
TEST PRED FILE="pred caspl3 fold{0}.txt".format (fold)
print(VALID_PRED_FILE)
print(TRAIN_PRED_FILE)
print (TEST PRED FILE)

""nidDeclare Predict Methods##"""

def create output pred(pred, origin f, outFileName) :
pred = pred.astype (int)
labels = ['C', 'H', 'E']
counter = 0
with open(outFileName, 'w') as out file:
for line in range (0, len(origin f)//3):

protein name = origin f[line*3]

primary structure = origin f[line*3+1].replace('!"', '")
secondary structure = origin f[line*3+2].replace('!', '")
prediction = ""

for ¢ in secondary structure:

A-27

if (c = '1"):
prediction = prediction + labels[pred[counter]]
counter += 1
out file.write(protein name + "\n")
out file.write(primary structure + "\n")
out file.write(secondary structure + "\n")
out file.write(prediction + "\n")

def create output pred(pred, origin f, outFileName):
labels = ['C','H','E"]

read file = open(origin f,"r")
output file = open(outFileName, "w")

count =1

target name =1

target primary = 2
target secondary = 3

counter = 0

while True:

line = read file.readline()
if not line:

break

if count == target name:

output file.write(line)

target name+=3

if count == target primary:

output file.write(line)

target primary+=3

if count == target secondary:

output file.write(line)

target secondary+=3

line = line.replace("\n","")

prediction = ""

for ¢ in line:

if (cli="1"):

prediction = prediction + labels[pred[counter]]
counter +=1

output file.write(prediction + "\n")

count+=1

import tensorflow as tf

tf.compat.vl.disable eager execution ()

from utilities import predict, read data, normalize and reshape
from net.net import CNN

import numpy as np

import argparse

import pdb

R

def parse args():
parser = argparse.ArgumentParser (description='prediction')
parser.add argument ('--test set', dest='test set',
help='provide the directory of .mat file
for testing',
default=None, type=str)
parser.add argument ('--valid set', dest='valid set',
help='provide the directory of .mat file
for validation',
default=None, type=str)
parser.add argument ('--train set', dest='train set',
help='provide the directory of .mat file
for training',

A-28

default=None, type=str)

parser.add argument ('--model', dest='model file',
help='provide file storing network
parameters, i.e. ./dir/model.ckpt’',
default='./saved_model/model.ckpt',
type=str)
parser.add argument ('--bsize', dest='bsize',

help='batch size',
default=1024, type=int)
parser.add argument ('--loss', dest='loss',
help='which loss function to use: MSELoss
or CrossEntropy',
default="'MSELoss', type=str)
parser.add argument ('--dim', dest='dim', nargs='+"',
help='input dimension of data, '+\
'shape must be: height width
num_ channels',
default=[32, 32, 3], type=int)

args = parser.parse_args (args=pred args)
return args

def predict model () :
args = parse_args()

sess _config = tf.compat.vl.ConfigProto()
sess_config.gpu options.allow growth = True

with tf.compat.vl.Session(config=sess config) as sess:
graph _address = args.model file + '.meta'
imported graph =
tf.compat.vl.train.import meta graph(graph address)
imported graph.restore(sess, args.model file)

mean param = [v for v in
tf.compat.vl.global variables() if 'mean tr:0' in v.name] [0]
label enum var = [v for v in
tf.compat.vl.global variables() if 'label enum:0' in v.name] [0]

sess.run(tf.compat.vl.variables initializer ([mean param,
label enum var]))

mean tr = sess.run(mean param)
label enum = sess.run(label enum var)
X

tf.compat.vl.get default graph().get tensor by name('main params/inpu
t of net:0")

y =
tf.compat.vl.get default graph().get tensor by name('main params/labe
1s:0")

outputs =
tf.compat.vl.get default graph().get tensor by name ('output of net:0'

if args.loss == 'MSELoss':
loss =
tf.reduce sum(input tensor=tf.pow(outputs-y, 2))
else:
loss = tf.reduce sum(input tensor=

A-29

tf.nn.softmax cross entropy with logits(logits=outputs,
labels=tf.stop gradient(y)))

network = (x, y, loss, outputs)

if args.valid set is not None:
valid batch, num cls, =
read data(args.valid set, dim=args.dim, label enum=label enum)
valid batch[0], =

normalize and reshape(valid batch[0], dim=args.dim, mean tr=mean tr)

avg_loss valid, avg_acc_valid, results valid
= predict(sess, network, valid batch, args.bsize)

convert results back to the original labels

inverse map = dict(zip(np.arange(num cls),
label enum))

results valid = np.expand dims(results valid,
axis=1)

results valid np.apply along axis(lambda x:
inverse map[x[0]], axis=1l, arr=results valid)

create output pred(results valid, valid f,
VALID PRED FILE)

print ('In valid phase, average loss: {:.3f} |
average accuracy: {:.3f}%'.\

format (avg_loss_valid,

avg_acc_valid*100))

if args.train set is not None:
train batch, num cls, =
read data(args.train set, dim=args.dim, label enum=label enum)
train batch[0], =

normalize and reshape (train batch[0], dim=args.dim, mean tr=mean tr)

avg_loss train, avg acc_train, results train
= predict (sess, network, train batch, args.bsize)

convert results back to the original labels

inverse map = dict(zip(np.arange (num cls),
label enum))

results train = np.expand dims(results train,
axis=1)

results train = np.apply along axis(lambda x:
inverse map[x[0]], axis=1, arr=results train)

create output pred(results, results train)

create output pred(results train, train f,
TRAIN PRED FILE)
print ('In train phase, average loss: {:.3f} |
average accuracy: {:.3f}%'.\
format (avg_loss_train,
avg_acc_train*100))

if args.test set is not None:
test batch, num cls, =
read data(args.test set, dim=args.dim, label enum=label enum)
test batch[0], =

normalize and reshape(test batch[0], dim=args.dim, mean_ tr=mean tr)

A-30

avg loss test, avg _acc _test, results test =
predict (sess, network, test batch, args.bsize)

convert results back to the original labels

inverse map = dict(zip(np.arange (num cls),
label enum))

results test np.expand dims (results test,
axis=1)

results test = np.apply along axis(lambda x:
inverse map([x[0]], axis=1, arr=results test)

create output pred(results, results train)

create output pred(results test, test f,
TEST PRED FILE)

print ('In test phase, average loss: {:.3f} |
average accuracy: {:.3f}%'.\

format (avg_loss_test, avg acc test*100))

""UE4Run Predict and Display output##"""
predict model ()
!'head "SVALID PRED FILE"
!'head "$TRAIN_PRED_FILE"

""r4d Check Test score on CASP13 ##"""

Arguments for prediction PSSP dataset

pred args = ("--bsize 1024 --test set " + TEST FILE +
" --model ./saved model/model.ckpt --dim " +
str (HEIGHT) + " " + str(WIDTH) + " " +

str (DEPTH)) .split ()
predict model ()

'head "S$TEST PRED FILE"

A-31

B Appendix

Data Preprocessing

The following two programs are used in order to extract the ProtBERT embeddings (1%
program) and save them into matlab files (2" program). Both programs can be found at
[https://gitlab.com/schatz06/pssp/-/tree/master/data_preprocessing]. Matlab files for the
CB513 are already uploaded into the GitLab repository.

-*— coding: utf-8 -*-

dataset = "CASP13 3class.txt"”

'pip3 install -U pip > /dev/null
'pip3 install -U "bio-embeddings[all] @
git+https://github.com/sacdallago/bio embeddings.git" > /dev/null

from bio embeddings.embed import prottrans bert bfd embedder

embedder protbert=
prottrans bert bfd embedder.ProtTransBertBFDEmbedder ()

import numpy as np

from numpy import asarray
from numpy import save
from tgdm import tgdm
import os

def extract protBert(lines,path,embedder protbert):

count = 1 # current line

target name = 1 # target line that has the name of the protein

target primary = 2 # target line that has the primary structure

for line in tgdm(lines):

if count == target name:
line = line.replace("\n","") # remove the newline character in

the end of the string

B-1

line = line.replace(™ ","")
line = line.replace(">","")
path to save = path + '/' + line
target name +=3
if count == target primary:
line = line.replace("\n","") # remove the newline character in
the end of the string
embedding protbert = embedder protbert.embed(line) # extract
the embeddings
save (path to save,embedding protbert) # save the embedding in a
new txt in a directory
target primary +=3
count+=1

filename = dataset.replace(".txt","")

path = os.getcwd() # get the current directory
new directory = path +'/'+filename +' ProtRert'
os.mkdir (new_directory)

pointer = open(dataset,'r")
lines = pointer.readlines()
extract protBert(lines,new directory,embedder protbert)

zipped file = new directory + '.zip'
'zip -r "Szipped file" "Snew directory"

import sys

import numpy as np

import os

import os.path

from os import path
import hdf5storage

HifhdHdtd a4 4444444444 FILES AND FOLDERS #######

folder = sys.argv[l] + '/content/' + sys.argv[l] + '/'

fold file = sys.argv[2]

output file = sys.argv[3]

print (folder)

print (fold file)

print (output file)

train = open(fold file,"r")

#H4HHHFAHEHAHA S 4SS MAIN PROGRAM #####4### #4444 4# #4444 #HH#E
target name = 1 # target line that has the name of the protein

target secondary =
count = 1
new = 0
while True:
Get next line from file
if count % 100
print (count)

line = train.readline()

if not line:
break

if count == target name:
line = line.replace("\n", ")

character in the end of the string

line = line.replace("™ ", "")
line = line.replace(">", "")
name = folder 4+ line + ".npy"

target name += 3
print (name)
if path.exists(name) :
embedding = np.load(name)
a = np.array(embedding)
#a = a.flatten()
if count
new = a
else:
new =

np.vstack ([new,
else:

print ("Protein not exists:

if count == target secondary:
line = line.replace("\n",
character in the end of the string

")

temp = np.zeros((len(line)),
for j in range (0, len(line)):
if line[]] == 'C':
temp[j] = 0
if line[]] == 'H':
temp[3j] = 1
if line[3] == 'E':

temp[j] = 2
if count ==
y=
else:
y = np.append(y,
target secondary += 3
scipy.io.savemat (f,
count += 1
hdf5storage.savemat (output file,
y = y.reshape(-1,1)
#print (y.shape)
hdf5storage.savemat (output file,

temp

temp,

{VXV:

{VyV:

3 # target line that has the primary structure

remove the newline

al)
", name)

remove the newline

dtype=np.short)

axis=0)

{line:arr})

new})

v}

C Appendix

Ensembles Program

This Python program was used to combine the results from multiple trained models using

the ensembles method. It was provided by Dionysiou [35].

from numpy import *
import string as string
import sys

class Ensembles:
def run(filenames, windowSize, ensemble, outPred, outSOV,
outWeka) :
f = open(outPred, "w'")

files = open(filenames, "r").readlines()
files = [w.replace('\n', '') for w in files]
files = [open(i, "r") for i in files]

i=0

LABELS = ['C', 'E', 'H', '"1']

if ensemble ==
for rows in zip(*files):
if 1 ==
for j in range (0,
len(rows[0] .translate(str.maketrans('', '', string.whitespace))),
1):
count = [0, 0O, 0, 0]
for k in range(0, len(rows), 1):

if rows[k][J] == 'C':
count[0] += 1

elif rows[k][]j] == 'E':
count[1l] += 1

elif rows[k][j] == 'H':
count[2] += 1

else:

count[3] += 1
f.write (LABELS[argmax (count)])
f.write('\n")

i=0
else:
f.write(rows[0])
i 4= 1
f.close()
else:
print ('ERROR!!! Invalid ensemble option."')

count accuracy
f = open (outPred, "r")

lines = f.readlines|()
f.close()

count = 0

countall = 0

for i in range (0, len(lines), 4):

C-1

for j in range(0, len(lines[i +
2] .translate(str.maketrans('', '', string.whitespace))), 1):
if lines[i + 2][j] == lines[i + 31[7J]:
count += 1
countall += 1

print ('Accuracy: ' + str(float(count) / float (countall)
100) + 's")

Confusion Matrix
countHH = 0
countHE =
countHC
countEH =
countEE =
countkC
countCH =
countCE
countCC =
countH = 0
countk
countC = 0
countHp = 0
countEp
countCp
for i in range(0, len(lines), 4):
for j in range(0, len(lines[i +

Il
Il
o
[cNoNeNeoNoNoNeNe)

I
o o

2] .translate(str.maketrans('', '', string.whitespace))), 1):
if lines[i + 2][j] == '"H' and lines[i + 3][]j] ==
IHI:
countHH += 1
elif lines[i + 2][3j] == 'H' and lines[i + 3]1[j]
IEI
countHE += 1
elif lines([i + 2][j] == 'H' and lines[i + 3]1[73]
ICI.
countHC += 1
elif lines[i + 2][3j] == 'E' and lines[i + 31I[73]
lHl
countEH += 1
elif lines([i + 2][3] == 'E' and lines[i + 31[7]
IEI
COuntEE += 1
elif lines([i + 2][3] == 'E' and lines[i + 31[7]
ICI.
countEC += 1
elif lines[i + 2][3j] == 'C' and lines[i + 31I[73]
IHI
countCH += 1
elif lines([i + 2][3j] == 'C' and lines[i + 31[7]
IEI
countCE += 1
elif lines[i + 2][3j] == 'C' and lines[i + 3]1[j]
ICI.
countCC += 1
'"'"if lines[i + 2][j] == 'H':
countH += 1
elif lines[i + 2][3] == 'E':

countkE += 1

*

elif lines[i + 2][j] == 'C'
countC += 1
if lines([i + 3]1[j] == 'H'
countHp += 1
elif lines[i + 3][j] == 'E'
countEp += 1
elif lines[1i + 3][j] == 'C'
countCp += 1'"'"
print ("\n\t\tCONFUSION MATRIX\n')
print ('{0:10}{1:10}{2:10}{3:10}"'.format ("' ', 'H', 'E', 'C"))
print ('{0:1}{1:10d}{2:10d}{3:10d}"'.format('H', countHH,
countHE, countHC))
print ('{0:1}{1:10d}{2:10d}{3:10d}"'.format ('E', countEH,
countEE, countEC))
print ('{0:1}{1:10d}{2:10d}{3:10d}"'.format ('C', countCH,
countCE, countCC))

SOV input file

f = open(outPred,
fl = open (outsov,
lines = f.readlines
f.close()

for i in range (O,
f1
f1
f1
f1
f1
f1

fl.close()

.write
.write ('>AA\n"')

weka input file
fl =

len(lines),
.write ('>0SEQ\n")
.write(lines[1i + 217)
(">PSEQ\n"'")
.write(lines[1i + 37)
(
(

llrll)

"W")

0

4) :

.write(lines[1i + 17)

open (outWeka, "w")

fl.write ('@RELATION secondary structure\n\n')

for i in range (O,

{C,E,H,0.0}\n")

windowSize * 2 -
fl.write ('@ATTRIBUTE aminoacid'

1, 1):

fl.write ('QATTRIBUTE output {C,E,H}\n'")

fl.write ('\n@DATA\n')

+ str(i) +

leadingzeros = zeros((l, (windowSize - 1)))
for i in range (3, len(lines), 4):
line = leadingzeros
line = append(line, list(lines([i].rstrip()))
line = append(line, leadingzeros)
for j in range (0, len(lines[i].rstrip()), 1):
for k in range (0, windowSize * 2 - 1, 1):
fl.write(str(linel[j + k]) + ', ")
fl.write(lines[i - 1].rstrip()[J] + '"\n'")
fl.close()

files =

sys.argv[l].replace(', "',

ll)

run (files,

int(sys.argv([2].replace(',"',

"))y

int(sys.argv[3].replace(',"',
sys.argv[5].replace ('

"))y

A\l
4 4

sys.argv[4].replace(',"',
''), sys.argv[6])

print ('\nEnd of ensembles script\n')

"),

C-3

D Appendix

External Rules Program

This Python program was used to apply the external rules filtering. It was provided by
Dionysiou [35].

import sys

class externalRules:
def zpplyRules(filename, outSOV, outPred):
f = open(filename, "r"
lines = f.readlines()
f.close()
f = open(outsov, "w'")
fl = open(outPred, "w'")

for i in range(0, len(lines), 4):
fl.write(lines[i])
fl.write(lines[i + 1])
fl.write(lines[i + 2])
f.write (">0SEQ\n")
f.write(lines[i + 2])
f.write(">PSEQ\n")

j =0
lines[i1i + 3] = list(lines[i + 3].translate({ord(c):'"
for c in ' \n\t\r'}))
print(len(lines[i + 3]))
while j < len(lines[i + 3]):
if len(lines[i + 3]) - j >= 4:

if lines[i + 3][j] == 'H' and lines[i + 3][] +
1] == 'E' and lines[i + 3][]J + 2] == 'E' and \
lines[i + 3]1[]J + 3] == 'H':
lines[i + 31[3j]1 = '"H'
lines[i + 3]1[] + 1] = 'H'
lines[i + 3]1[] + 2] = 'H'
lines[i + 3]1[] + 3] = 'H'
j += 4
continue
if lines[i + 3]1[j] '= '"H' and lines[i + 3][] +
1] == 'H' and lines[i + 3][]J + 2] == 'H' and \
lines[i + 3]1[7J + 3] !'= '"H':
lines[i + 3]1[] + 1] = 'C'
lines[i + 3]1[] + 2] = 'C'
j += 4
continue

if len(lines[i + 3])

if lines[i + 311[3]

J >= 3:
== 'H' and lines[i + 3][]J +

1] == 'E' and lines[i + 3][j + 2] == 'H
lines[i + 3][j + 1] = 'H'
j +=3
continue
J 4= 1
if lines[i + 3][0] == '"E' and lines[i + 3][1] != 'E':

f.write("C")

D-1

fl.write("C")

elif lines[i + 3]1[0] == 'H' and lines[i + 3][1] != 'H':
f.write("C")
fl.write("C")

else:

f.write(lines[i + 3]1[0])
fl.write(lines[i + 3][0])
for j in range(l, len(lines[i + 3]) - 1):
if lines([i + 3]1[j - 1] !'= 'E' and lines[i + 3][j] ==
'E' and lines[i + 3][j + 1] !'= '"E':
f.write("C")
fl.write ("C")
continue
elif lines[i + 3][j - 1] != 'H' and lines[i + 3][7]
== 'H' and lines[i + 3][3 + 1] != 'H':

f.write("C")

fl.write ("C")

continue
f.write(lines[i + 3]11[]
fl.write(lines[i + 3] [

1)
j1)

if lines[i + 3] [len(lines[i + 3]) - 1] == 'E' and
lines([i + 3][len(lines[i + 3]) - 2] != 'E':
f.write("C")
fl.write("C")
elif lines[i + 3][len(lines[i + 3]) - 1] == 'H' and
lines[i + 3][len(lines[i1 + 3]) - 2] != 'H':
f.write("C")
fl.write("C")

else:
f.write(lines[1i + 3] [len(lines[i + 3]) - 1])
fl.write(lines[i + 3] [len(lines([i + 3]) - 11)

f.write('\n")
fl.write('\n")
f.write (">AA\n")
f.write(lines[i + 11])

applyRules (sys.argv[l].replace(',', '""),
sys.argv[2].replace(',', '"'), sys.argv[3])
print ('End of external rules script\n')

D-2

E Appendix

SOV Calculation

To calculate the SOV score the two following C programs were used. Both were provided

by Dionysiou [35].

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char* argvl[]) {
FILE *fp=fopen(argv[1l], "r");
FILE *out;
char *line = NULL;
size t len = 0;
ssize t read;
fclose(fopen("resultSOV.txt","w")) ;

if (fp == NULL)
exit (0);
system("gcc ./g3 sov_scripts/sov.c -o ./g3 sov_scripts/sov -
Im™) ;

while ((read = getline(&line, &len, fp)) !'= -1) {
out=fopen ("SOVinput.txt", "w'");
if (out == NULL)
exit (0);

fprintf (out,"%s", line);

getline(&line, &len, fp);
fprintf (out,"%s", line);

getline(&line, &len, fp);
fprintf (out,"%s", line);

getline(&line, &len, fp);
fprintf (out,"%s", line);

getline(&line, &len, fp);
fprintf (out,"%s", line);

getline(&line, &len, fp);
fprintf (out,"%s", line);

fclose (out) ;

system("./g3 sov _scripts/sov SOVinput.txt >>resultSOV.txt");
}

free(line) ;
fclose(fp) ;
return 0O;

E-1

Program: sov.c
Secondary structure prediction accuracy evaluation
SOV (Segment OVerlap) measure

Copyright by Adam Zemla (11/16/1996)
Email: adamz@llnl.gov

NN TS TN T TN T N S S

/ Compile cc sov.c -0 sov —-1lm
/
o */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define MAXRES 5000
typedef struct {
int input;
int order;
int g3 _what;
int sov_what;
int sov_method;
float sov_delta;
float sov_delta_ s;
int sov_out;
char fname [1;
} parameters;
char *letter AA="ARNDCQEGHILKMFPSTWYV-?X"; /* 23 chars */

void default parameters (parameters *);

int read aa osec_psec(char[MAXRES], char[MAXRES], char[MAXRES],
parameters *, char¥*);

float sov(int, char[MAXRES], char[MAXRES], parameters ¥*);

float g3 (int, char[MAXRES], char[MAXRES], parameters *);

int check aa(char, char*, int);

int main (int argc, char *argvl[])
{
int i, n_aa, sov_method;
char ¢, aa[MAXRES], osec|[MAXRES], psec[MAXRES];
parameters pdata;
float out0O, outl, out2, out3;

if (argc<2) {
printf (" Usage: sov <input data>\n");
printf ("™ HELP: sov -h\n");

exit (0) ;
}
if (!strncmp (argv[1],"-h\0",2) ||
I'strncmp (argv[1],"help\0",5) ||
!'strncmp (argv[1],"-help\0",6)) {

system ("more ./README.sov");

printf ("\n") ;
exit (0) ;
}

default parameters (&pdata);
strcpy (pdata.fname,argv[1l]);
n_aa=read aa osec psec(aa,osec,psec, &épdata, letter AA);

if (pdata.input==1) {
n_aa=read aa osec_psec(aa,osec,psec, &pdata,letter AA);

}

if (pdata.order==1) {
for (i=0;i<n_aa;i++) {
c=osec[1i];
osec[i]=psec[i];
psecli]l=c;
}
}

if(n_aa<=0) {
printf ("\n ERROR! There is no 'AA OSEC PSEC' data in submited

prediction.™);
printf ("\n The submission should contain an observed and
predicted");
printf ("\n secondary structure in COLUMN format.\n");
exit (0);

}

printf("\n\n SECONDARY STRUCTURE PREDICTION") ;

printf("\n NUMBER OF RESIDUES PREDICTED: LENGTH = %d",n_aa);
printf ("\n AA OSEC PSEC NUM") ;

for (i=0;i<n_aa;i++)

%

printf ("\n %lc lc $lc
%4d",aali],osec[i],psec[i],i+1);
}
printf ("\n --——-------——————————- \n") ;

printf ("\n SECONDARY STRUCTURE PREDICTION ACCURACY EVALUATION.
N AA = %4d\n",n _aa);
if (pdata.sov_out>=1) {
printf ("\n SOV parameters: DELTA
pdata.sov_delta,
pdata.sov_delta s);

%5.2f DELTA-S = %5.2f\n",

}

printf ("\n ALL HELIX STRAND
COILANn") ;

pdata.qg3 what=0;

out0=g3 (n_aa, osec,psec, &pdata) ;

pdata.qg3 what=1;

outl=g3(n_aa, osec,psec, &pdata);

pdata.qg3 what=2;

out2=g3 (n_aa, osec,psec, &pdata) ;

pdata.qg3 what=3;

out3=g3 (n_aa, osec,psec, &pdata) ;

printf ("\n Q3 : $6.1f $6.1f $6.1f

%$0.1f",

out0*100.0,0utl1*100.0,0ut2*100.0,0ut3*100.0) ;
printf ("\n");

sov_method=pdata.sov_method;
if (sov_method!=0) pdata.sov_method=1;

if (pdata.sov_method==1) {

pdata.sov_what=0;

outO=sov (n_aa, osec,psec, &épdata) ;
pdata.sov_what=1;

outl=sov(n_aa, osec,psec, &pdata) ;
pdata.sov_what=2;

out2=sov(n_aa, osec,psec, &pdata) ;
pdata.sov_what=3;

out3=sov(n_aa, osec,psec, &pdata) ;
printf ("\n SOV : %$6.1f %$6.1f %$6.1f

%$6.1f",

out0*100.0,0utl1*100.0,0ut2*100.0,0ut3*100.0) ;
printf ("\n");
}

if (sov_method!=1) pdata.sov_method=0;

if (pdata.sov_method==0) {
pdata.sov_delta=1.0;

pdata.sov_what=0;

outO=sov (n_aa, osec,psec, &épdata) ;

pdata.sov_what=1;

outl=sov(n_aa, osec,psec, &pdata);

pdata.sov_what=2;

out2=sov(n_aa, osec,psec, &pdata) ;

pdata.sov_what=3;

out3=sov(n_aa, osec,psec, &pdata) ;

printf ("\n SOV (1994 JMB. [delta=50]) : %6.1f %6.1f %6.1f

%6.1f",

out0*100.0,0utl1*100.0,0ut2*100.0,0ut3*100.0);
pdata.sov_delta=0.0;

pdata.sov_what=0;

outO=sov (n_aa, osec,psec, &pdata) ;

pdata.sov_what=1;

outl=sov(n_aa, osec,psec, &pdata);

pdata.sov_what=2;

outz2=sov(n_aa, osec,psec, &pdata) ;

pdata.sov_what=3;

out3=sov(n_aa, osec,psec, &pdata) ;

printf ("\n SOV (1994 JMB. [delta=0]) : $6.1f $6.1f $6.1f

%$6.1f",

out0*100.0,0utl*100.0,0ut2*100.0,0ut3*100.0) ;

printf ("\n") ;
}

exit (0);
}
2
/
/ check aa - checks an amino acid
/
= */

int check aa(char token, char* letter, int n)

{

int 1i;

for (i=0;i<n;i++) {
if (letter[i]==token)
return 1i;

}

return n;

/* ___

/

/ read aa osec_psec - read secondary structure segments file
/

/e */

int read aa osec_psec(char aa[MAXRES], char sssl[MAXRES],
char sss2[MAXRES], parameters *pdata, char*

letter)
{

int i, j, n aa, n aa 1, n aa 2, n aa 3, f seq, alt ¢, alt e, alt h;

float x;

char
line [MAXRES], keyword [MAXRES], first [MAXRES], second [MAXRES], third [MAXRE
S],junk [MAXRES] ;

FILE *fp;

alt c=0;
alt e=0;
alt h=0;

if((fp = fopen(pdata->fname,"r"))==NULL) {
printf ("\n# error opening file %s for read\n\n",pdata->fname);
exit (0) ;

}

f seg=0;
pdata->input=0;
n_aa=0;

n_aa 1=0;

n_aa 2=0;

n_aa 3=0;

while (fgets(line, MAXRES, fp) != NULL) {
strcpy (keyword, " ")
strcpy (first," ")
strcpy (second, " ") ;
strcpy (third, " ")
strcpy (Junk, " ")
i=0;

—~ e~~~

3=0;
while (line[i] == ' ' && line[i] !'= '"\n' && line[i] != '\0' &&
1<MAXRES) i++;
if (1<MAXRES) {
J=1i;
while (line[i] != ' ' && line[i] '= '"\n' && line[i] !'= '"\0' &&
1i<MAXRES) i++;
}
j=i-3;
if (J<MAXRES && j>0) {
sscanf (line, "%s", keyword) ;
}
if (!strncmp (keyword, "#",1)) {}
else if(!strncmp (keyword,"----- ",5)) {1}
else if (!strncmp (keyword, "NUMBER\O", 7)) {}
else if (!strncmp (keyword, "SECONDARY\0",10)) {}
else if (!strncmp (keyword, "END\O",4) && f seg==0) {
fclose (fp);
return n aa;
}
else if (!strncmp (keyword, "AA-OSEC-PSEC\O0",13)) {
printf ("%$s", line);
sscanf (line, "%s %s",keyword, first);
strcpy (pdata->fname, first) ;
pdata->input=1;
}
else 1if(line[0] == '\n' || !strncmp (keyword," \NO",4)) {}
else if (!strncmp (keyword, "AA\O",3) && f seg==0) {
sscanf (line,"%s %s %s", keyword, first, second);
if (!strncmp (keyword, "AA\O",3) &&
!'strncmp (first, "PSEC\O0",5) && !strncmp (second,"OSEC\0",5)) {
pdata->order=1;
}
}
else if (!strncmp (keyword, "SOV-DELTA\O0",10)) {
printf ("%s", line);
sscanf (line, "%s %$f", keyword, &x) ;
pdata->sov_delta=x;
}
else if (!strncmp (keyword, "SOV-DELTA-S\Q",12)) {
printf ("%s", line);
sscanf (line, "%s %$f", keyword, &x) ;
pdata->sov_delta s=x;
}
else if (!strncmp (keyword, "SOV-METHOD\O", 9)) {
printf ("%s", line);
sscanf (line, "%s %d", keyword, &i) ;
pdata->sov_method=i;
}
else if (!strncmp (keyword, "SOV-OUTPUT\O0", 9)) {
printf ("%s", line);
sscanf (line, "%s %d", keyword, &1i) ;
pdata->sov_out=i;
}
else if(line[0]==">") {
printf ("%s", line);
if (f seg<2) n_aa=0;
f seqg++;
}
else if (f seg==0) {

if(3>1) |
if (!strncmp (keyword, "SSP\0",4)) {
sscanf (line,"%s %s %s %s
%s", keyword, junk, first, second, third) ;
}

else {

printf ("\n ERROR! (line: %d) Check COLUMN format of your

prediction!\n",n aa+l);
fclose (fp) ;
exit (0);
}
}
else {
sscanf (line, "%s %s %s",first, second, third);
}
aal[n _aal=first[0];
sssl[n_aal=second[0];
sss2[n_aal=third[0];
if (check aa(aaln_aal,letter,23)==23) {
printf ("\n# ERROR!\n%s",line);
printf ("\n# ERROR! (line: %d) Check amino acid code
$c\n",n _aatl,aaln _aal);
fclose (fp);
exit (0);
}
if(sssl[n_aal==' "' || sss2[n_aal=="' ") {
printf ("\n# ERROR!\n%s",line);
printf ("\n# ERROR! (line: %d) Check secondary structure
code\n",n aa+l);
fclose (fp);
exit (0);
}
if(sssl[n _aal]=='L' || sssl[n aal=='T' || sssl[n _aal=='S")
if (alt_c==0) {
printf ("# WARNING! (line: %d) The '%c' characters are
1)

interpreted as 'C' (coil)\n",n aa+l,sssl[n_aal);
alt c=1;
}
sssl[n_aal='C';
}
if(sssl[n_aal]=='B') {
if (alt_e==0) {
printf ("# WARNING! (line: %d) The '%c' characters are
interpreted as 'E' (strand)\n",n_aa+1,sssl[n_aa]);
alt e=1;

}
sssl[n_aal="E';
}
if(sssl[n_aal]l=='G' || sssl[n _aa]=="'I") {
if (alt_h==0) {
printf ("# WARNING! (line: %d) The '%c'
interpreted as 'H' (helix)\n",n aa+l,sssl[n aal);
alt h=1;
}

sssl[n_aal="H';

characters are

}

if(sss2[n_aal=="'L' || sss2[n _aal=='T' || sss2[n _aal]=='S")
if(alt _c==0) {
printf ("# WARNING! (line: %d) The '%c' characters are
interpreted as 'C' (coil)\n",n aa+l,sss2[n aal);

E-7

alt c=1;
}
sss2[n_aal='C';

}

if (sss2[n_aal=='B') {
if (alt _e==0) {
printf ("# WARNING! (line: %d) The '%c' characters are
interpreted as 'E' (strand)\n",n aa+l,sss2[n _aal);
alt e=1;

}
sss2[n_aal="E';
}
if(sss2[n_aal=='G' || sss2[n_aal=="'I") {
if (alt_h==0) {
printf ("# WARNING! (line: %d) The '%c' characters are
interpreted as 'H' (helix)\n",n aa+l,sss2[n_aal);
alt h=1;
}
sss2[n_aal="H';
}
if(sssl[n_aal]!='C' && sssl[n aa]!='E' && sssl[n aa]!='H")
printf ("\n# ERROR!\n%s",line);
printf ("\n# ERROR! (line: %d) Check secondary structure
$c\n",n _aa+l,sssl[n_aal);
fclose (fp);
exit (0);
}
if(sss2[n_aal]!='C' && sss2[n _aal]!='E' && sss2[n_aal!='H')
printf ("\n# ERROR!\n%s",line);
printf ("\n# ERROR! (line: %d) Check secondary structure
$c\n",n _aa+l,sss2[n_aal);
fclose (fp);
exit (0);
}
n_aa++;
if (n_aa>=MAXRES) {

code

code

printf ("\n# ERROR! Check number of amino acid lines. (MAX =

%d) \n\n",MAXRES) ;
fclose (fp);

exit (0);
}
}
else if (f seg==1) {
i=0;
while (line[i] !'= "\n") {
if(line[i] != ' ' && line[i] !'= "\t' && line[i] != "\O'
line[1] != '"\a' && line[i] != '\b' && line[i] != "\f'
line[1] != '"\r' && line[i] != '"\v' && 1i<MAXRES) {
aa[n_aal="'X";
sssl[n_aal=line[i];
if(sssl[n_aal]=='L"' || sssl[n aa]l=='T' || sssl[n_aal]l=="'
if(alt _c==0) {
printf ("# WARNING! The '%c' characters are interpreted
as 'C' (coil)\n",sssl[n_aal);
alt c=1;

}
sssl[n_aal='C';

}

if(sssl[n_aal=='B') {
if (alt e==0) {

&&
&&

")

E-8

printf ("# WARNING! The '%c' characters are interpreted
as 'E' (strand)\n",sssl[n aal);
alt e=1;
}
sssl[n_aal="'E"';
}
if(sssl[n _aal=='G' || sssl[n aal=="'I") {
if (alt_h==0) {
printf ("# WARNING! The '%c' characters are interpreted
as 'H' (helix)\n",sssl[n_aal);
alt h=1;
}
sssl[n_aal="H';
}
if(sssl[n aal]l!='C' && sssl[n aa]!='E' && sssl[n aa]!='H') {
printf ("\n# ERROR!\n%s",line);
printf ("\n# ERROR! Check secondary structure code:
sc\n",sssl[n _aal);
fclose (fp);
exit (0);
}
n_aa++;
if (n_aa>=MAXRES) {
printf ("\n# ERROR! Check number of residues. (MAX =
%d) \n\n",MAXRES) ;
fclose (fp);
exit (0) ;

}
i++;
}
n _aa l=n aa;
}
else if (f seg==2) {

i=0;
while (line[i] !'= "\n") {
if(linef[i] != ' ' && line[i] != "\t' && line[i] != '"\0' &&
line[i] != '"\a' && line[i] !'= "\b' && line[i] != '"\f' &&
line[i] != "\r' && line[i] != "\v' && 1<MAXRES) {

aa[n _aal='X";
sss2[n_aal=line[i];
if(sss2[n _aal=='L' || sss2[n _aal=='T' || sss2[n_aal=='S"') {
if(alt_c==0) {
printf ("# WARNING! The '$%c' characters are interpreted
as 'C' (coil)\n",sss2[n_aal);

alt c=1;
}
sss2[n_aal='C';
}
if(sss2[n_aal]=='B') {
if (alt_e==0) {
printf ("# WARNING! The '%c' characters are interpreted
as 'E' (strand)\n",sss2[n aal);
alt e=1;

}
sss2[n_aal="E';

}

if(sss2[n_aal=='G' || sss2[n aal=="1") {
if (alt h==0) {

printf ("# WARNING! The '%c' characters are interpreted
as 'H' (helix)\n",sss2[n_aal);
alt h=1;
}
sss2[n_aal="H';
}
if(sss2[n_aal]!='C' && sss2[n _aal]!='E' && sss2[n_aal]!='H') {
printf ("\n# ERROR!\n%s",line);
printf ("\n# ERROR! Check secondary structure code:
%c\n",sss2[n_aal);
fclose (fp) ;
exit (0) ;
}
n_aat+;
if (n_aa>=MAXRES) {
printf ("\n# ERROR! Check number of residues. (MAX =
%d) \n\n",MAXRES) ;
fclose (fp);
exit (0);

}
i++;
}
n_aa 2=n_aa;

}

else if (f seg==3) {
i=0;
while (line[i] !'= '\n') {
if(line[i] != ' ' && line[di] != '"\t' && line[i] != '"\0' &&
line[i] !'= '"\a' && line[i] != "\b' && line[i] != '"\f' &&
line[i] != "\r' && line[i] != "\v' && 1i<MAXRES) {

aaln _aa 3]=linel[i];
if (check aa(aaln_aa 3],letter,23)==23) {
printf ("\n# ERROR!\n%s",line);
printf ("\n# ERROR! (N res: %d) Check amino acid code
$c\n",n _aa 3+l,aaln_aa 31);
fclose (fp);
exit (0);
}
n_aa 3++;
if (n_aa 3>=MAXRES) {
printf ("\n# ERROR! Check number of residues. (MAX =
%d) \n\n",MAXRES) ;
fclose (fp);
exit (0) ;

i++;

}
}
if(n aa 1!=n aa 2) {
printf ("\n# ERROR! Check format of your submission.");
printf ("\n# Different length of observed and predicted
structures.\n");
fclose (fp);
exit (0);
}
return n_aa;

}

E-10

void default parameters (parameters *pdata)
{

pdata->input=0;

pdata->order=0;

pdata->sov_method=1; // 0 - SOV definition (1994 JMB.) , 1 - SOV
definition (1999 Proteins)

pdata->sov_delta=1.0;

pdata->sov_delta s=0.5;

pdata->sov_out=0;

return;

sov - evaluate SSp by the Segment OVerlap quantity (SOV)
Input: secondary structure segments

float sov(int n_aa, char sssl[MAXRES], char sss2[MAXRES], parameters
*pdata)
{

int i, k, lengthl, length2, beg sl, end sl, beg s2, end s2;

int j1, j2, k1, k2, minov, maxov, d, dl, d2, n, multiple;

char sl1, s2, ssel[3];

float out;

double s, x;

sse[0]="#";
sse[l]l="#";
ssel[2]="#";

if (pdata->sov_what==0) {

sse[0]="H";
sse[l]="'E"';
sse[2]='C";

}

if (pdata->sov_what==1) {
sse[0]="H";
sse[l]="'H';
sse[2]="H';

}

if (pdata->sov_what==2) {
sse[0]="E";
sse[l]="E"';
sse[2]="E';

}

if (pdata->sov_what==3) {
sse[0]="'C";
sse[l]='C";
sse[2]="'C";

}

n=0;

for (i=0;i<n aa;i++) {

E-11

sl=sssl[i];

if (sl==sse[0] || sl==sse[l] || sl==sse[2]) {
n++;
}
}
out=0.0;
s=0.0;
lengthl=0;
length2=0;
i=0;
while (i<n_aa) {
beg sl=i;

sl=sssl[i];

while(sssl[i]==s1 && i<n aa) {
i++; B

}

end sl=i-1;

lengthl=end sl-beg sl+1;

multiple=0;

k=0;
while (k<n_aa) {
beg s2=k;
s2=sss2[k];
while (sss2[k]==s2 && k<n aa) {
k++; N
}
end s2=k-1;
length2=end s2-beg s2+1;
if (sl==sse[0] || sl==sse[l] || sl==sse[2]) {
if (sl==s2 && end s2>=beg sl && beg s2<=end sl)

if (multiple>0 && pdata->sov_method==1) {
n=n+lengthl;
}
multiplet+;
if (beg sl>beg s2) {
jl=beg sl;
j2=beg s2;
}
else {
Jl=beg s2;
j2=beg sl;
}
if (end sl<end s2) {
kl=end sl1;
k2=end s2;
}
else {
kl=end s2;
k2=end _sl;
}
minov=kl-j1+1;
maxov=k2-j2+1;
dl=floor (lengthl*pdata->sov_delta s);
d2=floor (length2*pdata->sov_delta_s);
if (d1>d2) d=d2;
if (dl<=d2 || pdata->sov_method==0) d=dl;
if (d>minov) {
d=minov;
}

if (d>maxov-minov) {

E-12

d=maxov-minov;
}
x=pdata->sov_delta*d;
x=(minov+x) *lengthl;
if (maxov>0) {
s=s+x/maxov;
}

else {
printf ("\n ERROR! minov = %-4d maxov = %-4d length = %-4d
-4d s4d 34d %4d $4d",

o\

d =

minov,maxov,lengthl,d,beg sl+l,end sl+l,beg s2+1,end s2+1);
}
if (pdata->sov_out==2) ({
printf ("\n TEST: minov = %$-4d maxov = %-4d length = %$-4d
-4d %4d %4d %4d $4d",

o\

d =

minov,maxov,lengthl,d,beg sl+l,end sl+l,beg s2+1,end s2+1);

}
}

}
}
if (pdata->sov_out==2) {
printf ("\n TEST: Number of considered residues = %d",n);
}
1f (n>0) {
out=s/n;
}
else {
out=1.0;
}

return out;

/

/

/ Q3 - evaluate SSp by the residues predicted correctly (Q3)
/ Input: secondary structure segments

/
/

float g3 (int n_aa, char sss1[MAXRES], char sss2[MAXRES], parameters
*pdata)
{

int i, n;

float out;

char s, ssel3];

sse[0]="#";
sse[l]="#";

sse[2]="#";

if (pdata->g3 what==0) {
sse[0]="H";
sse[l]="E"';
sse[2]="'C"';

}

if (pdata->g3 what==1) {
sse[0]="H";
sse[l]="H';

E-13

sse[2]="H';

}
if (pdata->g3 what==2) {

sse[0]="E"';
sse[l]="'E"';
sse[2]="E';

}

if (pdata->g3 what==3) {
sse[0]="'C";
sse[l]='C";
sse[2]='C";

}

n=0;

out=0.0;

for (i=0;i<n_aa;i++) {
s=sssl[i];

if (s==sse[0] || s==sse[l]
n++;
if(sssl[i]==sss2[i]) {

out=out + 1.0;
}

}
}
if (n>0) {

out=out/n;
}
else {

out=1.0;
}

return out;

s==sse[2])

E-14

F Appendix

Calculation of Q3 accuracy

The following Python program was used to calculate the Q3 accuracy for each class and

the overall Q3 accuracy. It was provided by Leontiou [5].

import sys
Execute: python calc Q3.py <pred file>
import string
lines = None
labels = ['H'", 'E', 'C']
with open(sys.argv[l]) as file:
lines = file.readlines()
if lines is None: exit(0)
countCor = [0, 0, 0]
countAll = [0, 0, 0]
for 1 in range (0, len(lines)//4):
protein name = lines[4%*1]
primary = lines[4*1 + 1]
secondary = lines[4*1 + 2]
prediction = lines[4*1 + 3]
for s, p in zip(secondary, prediction):
if s == '"\n': continue
if s == p:
countCor[labels.index(s)] += 1
countAll[labels.index(s)] += 1
total = countAll[0] + countAll[1] + countAll[2]
correct = countCor[0] + countCor[l] + countCor[2]
headers = ['03 All", 'Q3 C', 'O3 E', "0O3 H']
g3 = [(100*correct/total),
(100*countCor[0]/countAll[0]),
(100*countCor[1]/countAll[1]),
(100*countCor[2]/countAll[2])]
print("\n {0:113{1:11}{2:11}{3:11}".format (' O3 ALL', " O3 H"', '
03 E', " 03 C"))
print (' {0:11.4F}{1:11.4F}{2:11.4f}{3:11.4f}\n"'.format(g3[0], q3[1],
a3[2], a3[31))

F-1

G Appendix

Data pre-processing for filtering

This python program was used to prepare the datasets for the filtering methods. Initially
was used only for the SVM filtering technique but now the same datasets are used to train

the decision trees and random forests. It was provided by Dionysiou [35].

Execute: python prepare SVM files.py <test filename>
<train filename> <WINDOW> <out test> <out train>
import sys
EXCL MIDDLE = False
#open TEST file to read data
with open(sys.argv[l],"r") as testfile:
lines_test = testfile.readlines()
#open TRAIN file to read dat
with open(sys.argv[2],"r") as trainfile:
lines train = trainfile.readlines()
linenum = 1
window = int(sys.argv[3])
leftwindow = int(window/2)
#create train file
with open(sys.argv[5], "w'") as svmtrain:
for line in lines train:

if linenum == 5: linenum = 1
if linenum == 3:
target out = line

if linenum ==
for i in range(leftwindow) :
zeros = leftwindow - 1
for zer in range(zeros):
svmtrain.write ("0, ")
for rem in range(i):

if line[rem] == "C": svmtrain.write("0,")
if line[rem] == "E": svmtrain.write("1,")
if line[rem] == "H": svmtrain.write("2,")

#place right aminos
for j in range(leftwindow+l):

if (EXCL MIDDLE and j == 0): continue
if line[i+3] == "C": svmtrain.write("0,")
if line[i+j] == "E": svmtrain.write("1,")
if line[i+j] == "H": svmtrain.write("2,")
#place label at the end
if target out[i] == "C": svmtrain.write("0")
if target out[i] == "E": svmtrain.write("1")
if target out[i] == "H": svmtrain.write("2")

svimtrain.write ("\n'")

#place aminos with no boundary constraints

for amino in range(leftwindow,len(line)-leftwindow-1):
for curr in range(-leftwindow,leftwindow+l):

if (EXCL MIDDLE and curr == (): continue

if line[amino+curr] == "C": svmtrain.write("0,")
if linel[amino+curr] == "E": svmtrain.write("1,")
if line[amino+curr] == "H": svmtrain.write("2,")

G-1

#place label

if target out[amino] == "C": svmtrain.write("0")
if target out[amino] == "E": svmtrain.write("1")
if target out[amino] == "H": svmtrain.write("2")

svmtrain.write ("\n")

#place last aminos with padding
for i in range(len(line)-leftwindow-1,len(line)-1):

printed=0

for left in range(i-leftwindow-1,1):
if (EXCL MIDDLE and left == i-1): continue
if line[left] == "C": svmtrain.write("0,")
if line[left] == "E": svmtrain.write("1,")
if line[left] == "H": svmtrain.write("2,")

for j in range(i,len(line)-1):
if line[]J] == "C": svmtrain.write("0,")
if line[]J] == "E": svmtrain.write("1,")
if line[j] == "H": svmtrain.write("2,")

printed=printed+1l

zZeros

leftwindow-printed

for z in range(zeros):
svmtrain.write ("0, ")

place label

if target out[i] == "C": svmtrain.write("0")
if target out[i] == "E": svmtrain.write("1")
if target out[i] == "H": svmtrain.write("2")

svmmtrain.write ("\n'")

linenum += 1
svmtrain.flush()
linenum=1
fcreate TEST file
with open(sys.argv[4],
for line in lines test:

"w") as svmtest:

if linenum == 5: linenum = 1
if linenum == 3: target out = line
if linenum == 4:

for i in range(leftwindow) :

zeros

leftwindow -

i

for zer in range(zeros):
svmtest.write ("0,")

for rem in range(i):
if line[rem] == "C": svmtest.write("0,")
if line[rem] == "E": svmtest.write("1,")
if line[rem] == "H": svmtest.write("2,")

#place right aminos
for j in range(leftwindow+l):

if (EXCL MIDDLE and j == (): continue
if line[i+3] == "C": svmtest.write("0,")
if line[i+3] == "E": svmtest.write("1,")
if line[i+j] == "H": svmtest.write("2,")
#place label at the end
if target out[i] == "C": svmtest.write("0")
if target out[i] == "E": svmtest.write("1")
if target out[i] == "H": svmtest.write("2")

svmtest.write ("\n")

#place aminos with no boundary constraints

for amino in range(leftwindow,len(line)-leftwindow-1):
for curr in range(-leftwindow,leftwindow+l):

if (EXCL MIDDLE and
if line[amino+curr]
if line[amino+curr]

curr == (0): continue
"C": svmtest.write("0,")
"E": svmtest.write("1,")

G-2

if line[amino+curr] == "H": svmtest.write("2,")
#place label

if target out[amino] == "C": svmtest.write("0")
if target out[amino] == "E": svmtest.write("1")
if target out[amino] == "H": svmtest.write("2")

svmtest.write("\n")
#fplace last aminos with padding
for i in range(len(line)-leftwindow-1,len(line)-1):

printed=0
for left in range(i-leftwindow-1,1):
if (EXCL MIDDLE and left == i-1): continue
if line[left] == "C": svmtest.write("0,")
if line[left] == "E": svmtest.write("1,")
if line[left] == "H": svmtest.write("2,")
for j in range(i,len(line)-1):
if line[]J] == "C": svmtest.write("0,")
if line[j] == "E": svmtest.write("1,")
if line[j] == "H": svmtest.write("2,")
printed+=1
zeros = leftwindow-printed

for z in range(zeros):
svmtest.write("0,")
place label

if target out[i] == "C": svmtest.write("0")
if target out[i] == "E": svmtest.write("1")
if target out[i] == "H": svmtest.write("2")

svmtest.write("\n")
linenum 4= 1
svmtest.flush()

H Appendix

Training Filtering Methods

The following program was implemented to train the filtering models and apply the
filtering techniques on the output data of the Convolutional Neural Network. It was

provided by Leontiou [5].

Execute: python train SVM.py <test filename> <train filename>
<WINDOW> <pred file> <out prediction> <out sov> <filter opt>
import sys

import string

import numpy as np

from sklearn.metrics import classification report

from sklearn.svm import SVC

from sklearn.metrics import confusion matrix

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

SEED = 42

np.random. seed (SEED)

def get balanced data(X train, y train):
classH = []
classk =
classC = []
for i,label in enumerate(y train):
if label ==
classH.append (i)
elif label == 1:
classE.append (i)
else:
classC.append (i)
rows = min(len(classH), len(classEkE), len(classC))

|
L]
—

Create a balanced data set
X balanced = np.concatenate((X train[classH][0:rows],
X train[classE] [0O:rows], X train[classC][0:rows]), axis=0)

y _balanced = np.concatenate((y_train[classH][0:rows],
y_train[classE][0:rows], y train[classC][0O:rows]), axis=0)

balanced = np.zeros((X balanced.shape[0],
X balanced.shape[1]+1), dtype=int)

balanced[:,-1] = y balanced
balanced[:,:-1] = X balanced
np.random.shuffle (balanced)

return balanced[:,:-1], balanced[:,-1]

def create output pred(pred, input £, out f, outsSoOV):
with open(input f, "r") as pred file:
pred lines = pred file.readlines()
pred = pred.astype (int)

H-1

labels = ['C'", '"E', "H']
counter = 0
with open(out f, 'w') as out file:
for line in range(0, len(pred lines)//4):
protein name = pred lines[line*4][0:-1]
primary structure = pred lines[line*4+41][0:-1]
secondary structure = pred lines[line*4+42][0:-1]
prediction = ""
for ¢ in secondary structure:
prediction = prediction + labels[pred[counter]]
counter += 1
out file.write(protein name + "\n'")
out file.write(primary structure + "\n'")
out file.write(secondary structure + "\n")
out file.write(prediction + "\n")

with open(out f, "r") as out file:
lines = out file.readlines()
with open(outsSoOv, "w'") as fl:
for i in range(0, len(lines), 4):
fl.write('>0SEQ\n")
fl.write(lines[i + 2])
fl.write('>PSEQ\n")
fl.write(lines[i + 31])
fl.write('>AA\n")
fl.write(lines[i + 11])

train dataset = np.loadtxt(sys.argv[l], delimiter=",")
Subtract one because we dropped the middle column to prevent data
leaks

win=int(sys.argv[3])

X train = train dataset[:, O:win]

y_train = train dataset[:, [win]]

test dataset = np.loadtxt(sys.argv[l], delimiter=",6")
X test = test dataset[:, O:win]

y_test = test dataset[:, [win]]

y_train = np.reshape(y train,len(y train))

y_test = np.reshape(y test,len(y test))

X train, y train = get balanced data(X train, y train)
print("Training ...")
if (sys.argv[7] == "1"):

clf = svC(C=100, decision function shape='ovr', kernel='rbf',
random_ state=SEED, gamma='scale')
elif (sys.argv[7] == '2"):

clf = DecisionTreeClassifier (max depth=20)
elif (sys.argv[7] == '3'):

clf = RandomForestClassifier (max depth=25, random state=SEED,
n_estimators=100)
elif (sys.argv[7] == '0'"):
kernels = ['Polynomial', 'RBF', 'Sigmoid', 'Linear']
#A function which returns the corresponding SVC model
def getClassifier (ktype):
if ktype ==
Polynomial kernal
return SVC(kernel='poly', degree=8, gamma="auto'")
elif ktype ==
Radial Basis Function kernel
return SVC (kernel='rbf', gamma="auto")

H-2

elif ktype ==

Sigmoid kernel

return SVC (kernel='sigmoid', gamma="auto')
elif ktype ==

Linear kernel

return SVC(kernel='linear', gamma="auto")

for i in range(l, 4):
Train a SVC model using different kernels
svclassifier = getClassifier (i)
svclassifier.fit (X train, y train)
Make prediction
y_pred = svclassifier.predict (X test)
Evaluate model
print("Evaluation:", kernels[i], "kernel')
print(classification report(y test, y pred))

from sklearn.model selection import GridSearchCVv

param grid = {'c': [0.1, 1, 10], 'gamma': [1, 0.1, 0.01,
0.001]1, "kernel': ['rbf']}

grid = GridSearchCV(SVC(), param grid, refit=True, verbose=2)

grid.fit(X train, y train)

print(grid.best estimator)

y_pred = grid.predict (X test)
print (confusion matrix(y test, y pred))
print(classification report(y test, y pred))

exit (0)
else:

print ('Error! train SVM.py currently has no such filtering
option.")

print ('Please try again (availiable options: 0-3)"'")

exit (0)

Predict the response for test dataset
clf.fit (X train, y train)
y _pred = clf.predict (X test)

print ("THE SCORE: ", clf.score(X test, y test))
print("")

creating a confusion matrix

cm = confusion matrix(y test, y pred)
print ('Confusion Matrix')

print (cm)

print("")

create output pred(y pred, sys.argv[4], sys.argv[5], sys.argv[6])

I Appendix

All filtering methods on CB513

Bash script that is used to apply the ensembles and the various filtering techniques and
display the results for each fold of the CB513 dataset. It was provided by Leontiou [5].

#!/bin/bash

Author : Panayiotis Leontiou
Since : April 2020

Version: 1.0

Bugs : No known bugs

TEST_FOLDER="./CB5l3iteSt7pred"

TRAIN FOLDER="./CB513 train pred"

CROSS VAL FOLDER="./CB513 cross validation”
WINDOW="15"

SVM WIN="11"

filterOpt=("1™ "2" "3")
SCRIPTS="./g3 sov scripts"

Check if required scripts exist
declare -a REQUIRED SCRIPTS=("calc 03.py" "ensembles.py"
"externalRules.py" "prepare SVM files.py" "runSOV.c" "sov.c"
"train SVM.py")
if [' -d "SSCRIPTS"]1; then

echo "Error! $SCRIPTS directory could not be located."

exit 1
else

for s in "${REQUIRED75CRIPTS[@}}"

do

if [! -f "SSCRIPTS/Ss" 1; then
echo "Error! $SCRIPTS/S$s file is missing."

exit 1
fi
done
[-£ "SSCRIPTS/runSOV" 1 || gee "$SCRIPTS/runSOV.c" -o
"SSCRIPTS/runSOvV"
[-f "SSCRIPTS/sov"] || gee "SSCRIPTS/sov.c" -o "SSCRIPTS/sov"
fi
echo "
PPPPPPPPPPPPPPPPP SSSSSSSSSSSSSSS PPPPPPPPPPPPPPPPP
| I = SS:rrrriiriiii:S
SS:rrrrrsrrrrrriiSPrrsrririiiiiiii P
P::::::PPPPPP:::: P
S:::::5SSSSSS::::::8S:::::55SSSSSt i SPr i :PPPPPPr: P
PP:::::P Pii:::PS:::::S SSSSSSSS:i: S SSSSSSSPPi::::P
P::::tP
P:: P P:::::PS:::::S S:::::S P P
P::::tP

P:: P P:::::P
Pi::::P

P::::PPPPPP:::::P
P ::PPPPPP:::::P

Prooooorrriii PP
Prooooorrrii PP

P::::PPPPPPPPP
P::::PPPPPPPPP

PP::::::PP
PeoooootP
ProooootpP
PPPPPPPPPP
n

print fold () {
case $1 in
fo0ldO0)

cat

_‘_HWH ‘ o
./o--000" " -0-0-" "
EOF

foldl)
cat

F‘_O_O_l "

fold2)
cat << "EOF"

./0=-000" " -0-0-"' "

EOF
fold3)
cat << "

wuan I

{======| _| B
./0--000" "'-0-0-' "
EOF

S:::::S S:::::S P:
S::::SSSS S::::SSSS
SS::::::SSSSS SS::::::SSSSS
SSS:scr::SS SSS:scr::SS
SSSSSS::::S SSSSSS::::S P
S:::::S S:::::S P
S:::::S S:::::S P
SSSSSSS S:::::SSSSSSSS S:::::SPPri
S::::::55555S::: 0SS SSSSSSr i SPrrs s
SsrsrrsrrrrsrssSS S SS Prrose
SSSSSSSSSSSSSSS PPPPPPPPPP

N/ | |/

‘_O_O_v " _O_O_l H‘_O_O_l

P—

) [L)
\ / l l l /

~0-0-' " -0-0-"

C_0-0=' "

I"""""I I"""""I I"""""I

"-0-0-' " -0-0-"

EOF"

\/ | |/

I"""""I I"""""I I"""""I

"-0-0-' " -0-0-"

" _0-0-"

" _0-0-"

" _0=0=-"' " =0-0-"

" _0=-0-="

" _0=-0="

)
o /7
I /]

I"""""I I"""""I

F_O_O_l "_O_O_l

| | | /

I"""""I I"""""I

" _0-0-"

" _0-0-"

fold4)
cat << "EOF"

{ ______ ‘ ‘_HHH_‘ ‘HHHHH‘

./0=-000" " =0-0-' " -0-0-' "'-0-0-' " -0-0-' "'-0-0-' " -0-0-"
EOF
fold5)
cat << "EOF"

o L/ _\ I A o
o [N D L) I\

TS__[0] l_| \ / | | | / | | | /

{ ______ ‘ ‘_HFH_‘ ‘HHHHH‘ HHHHH‘ ‘HHHHH‘ HHHHH‘ _‘HHHHH‘

./0=-000" " =0-0-' " -0-0-' " -0-0-' "'-0-0-' " -0-0-' " -0-0-'
EOF
folde)
cat << "EOF"
o /N I B /T
o [I T O I I 1) / N\

TS__[O] l_| \ / | | | / | | \ /

{::::::‘ ‘_HFH_‘ ‘ nnwun ‘ nm‘ ‘ nnwun ‘ nnwun ‘ _‘ nnwun ‘

./0=-000" " =0-0-' " -0-0-' " -0-0-' "'-0-0-' "'-0-0-' " -0-0-'
EOF

cat << "EOF"

o N AR I [|
o (I N N G0 I N L) /7

TS__ [O] l_| \ / | | | / | | /_/

{ —_————— ‘ ‘ win ‘ ‘ URIRIRIAI] ‘ URIRIRINI] ‘ ‘ URIRIRINI] ‘ URIRIRINI] ‘ ‘ URIRIRINI] ‘

./0=--000" " =0-0-' " -0-0-' "'-0-0-' "'-0-0-' "'-0-0-' " -0-0-'
EOF

cat << "EOF"

o AR | N (

)
o I L) Pl L) . / \
TS__ [O] l_| \ / | | | / | | \ /

{ —_————— ‘ ‘ wnn ‘ ‘ URIRIRINI] ‘ URIRIRINI] ‘ ‘ URIRIRINI] ‘ URIRIRINI] ‘ ‘ URIRIRINI] ‘

./0=-000" " =0-0-' " -0-0-' " -0-0-' " -0-0-' " -0-0-' " -0-0-'
EOF
£01d9)
cat << "EOF"

o N VAR I [/
o [R N G A N L)

TsS__ [O] l_| \ / | | | / | | /_/

{ —_————— ‘ ‘ woin ‘ ‘ URIRIRIAI] ‘ URIRIRIAI] ‘ ‘ URIRIRIAI] ‘ URIRIRIAI] ‘ ‘ URIRIRIAI] ‘

./0o--000"' " -0-0-"

" _0-0-" W_O_O_l " _0=0=" " =—0-0=-'" " =0-0-"

esac

print SOV _score () {
cat ./resultSOV.txt | grep -e 'SOV'

sovH += $4; sovE += $5; sovC += $6} END {printf "\n

SOV _H SOV_E SOV_C\n $.4f
sovAll/NR, sovH/NR, sovE/NR, sovC/NR}'
}

get filter name () {
case $1 in

"l")

filter name="SVM"
"2")

filter name="Decision Tree"
"3")

filter name="Random Forest"
*)
filter name="Unknown Filter"
esac

}

get filter abr(){
case $1 in

"1")

filter abr="svm"
"2")

filter abr="dtree"
"3")

filter abr="rforest"
*)
filter abr="unknown"
esac

}

TEMP_FOLDER="./temp runAll CB513"

RUN ALL FOLDER="./CB513 runAll out files"
| mkdir "$TEMP FOLDER"
[-d "$RUN_ALL FOLDER"] || mkdir "$RUN ALL FOLDER"

[-d "STEMP FOLDER"] |

PRINT CROSS VAL=true

awk

s.4f

-F!

%

'{sovAll += $3;

.4f

SOV _ALL
$.4f\n",

if ["SPRINT CROSS VAL" = true]; then
echo
echo " >Cross Validation Results"

for i in “1ls "$CROSS_ VAL FOLDER""

do
echo "s$i"
new folder="$RUN ALL FOLDER/cross val res"
[-d "Snew folder"] || mkdir "$new folder"

out file=("S$TEMP FOLDER/$i"" cross val.txt")

for j in “1ls "$CROSS VAL FOLDER/$i"®

do

echo "$CROSS VAL FOLDER/$i/$j"

done > "Sout file"

python "$SCRIPTS/ensembles.py" "Sout file" "SWINDOW" 1
"$new folder/ens pred.txt" "Snew folder/ens sov.txt"
"$new folder/ens weka.txt"

"$SCRIPTS/runSOV" "Snew folder/ens sov.txt"

print SOV _score

python "$SCRIPTS/calc Q3.py" "Snew folder/ens pred.txt"

echo "--—————---""-"-"-"-"-"-"-"-"—"-"——————— e ——
done
fi
echo
echo mn
for i in “1s "STEST FOLDER"®
do
print fold $i
new folder="S$SRUN ALL FOLDER/$i"" results"
[-d "Snew folder"] || mkdir "S$new folder"
out file=("STEMP FOLDER/$i"" files.txt")
for j in “1s "S$STEST FOLDER/$Si""
do
echo " $TEST_FOLDER/$1/$j "
done > "Sout file"
echo
11
11
echo " >Ensembles Results"
echo "--——-——"—-"—-"-"-""""""""""""—" "\ "~ ——
python "$SCRIPTS/ensembles.py" "Sout file" "SWINDOW" 1
"$new_folder/ensembles_pred.txt" "$new_folder/ensembles_sov.txt"

"$new folder/ensembles weka.txt" > "$new folder/ensembles out.txt"

"SSCRIPTS/runSOV" "$new folder/ensembles sov.txt"
print SOV score

python "$SCRIPTS/calc Q3.py" "Snew folder/ensembles pred.txt"
echo

echo " >Ensembles + External Rules Results"

echo "--—————-—--"--"—--""-"-""-"-""""""""\""\"—"\—"—— =

python "S$SCRIPTS/externalRules.py"
"Snew folder/ensembles pred.txt" "$new folder/ens rules sov.txt"
"Snew folder/ens rules pred.txt"
"SSCRIPTS/runSOV" "Snew folder/ens rules sov.txt"
print SOV score

python "$SCRIPTS/calc Q3.py" "Snew folder/ens rules pred.txt"

for filter in "${filterOpt[Q@]}"
do

get filter name Sfilter

get filter abr S$filter

train preds='ls "S$TRAIN FOLDER" | grep "$i" | head -n 1°

echo

echo " >Ensembles + External Rules + $filter_name Results"
echo "---------- - --- --- - -- - - - - - -\ - -: : : i i i

python "$SCRIPTS/prepare SVM files.py"
"$new folder/ens rules pred.txt" "STRAIN FOLDER/S$train preds”
"$SVM WIN" "S$new folder/temp svm test.txt"
"Snew folder/temp svm train.txt"

python "$SCRIPTS/train SVM.py"
"S$new folder/temp svm test.txt" "Snew folder/temp svm train.txt"
"SSVM_WIN" "Snew folder/ens rules pred.txt"
"$new folder/ens_rules Sfilter abr"" pred.txt"

"Snew folder/ens rules S$filter abr"" sov.txt" "$filter" >

"Snew folder/ens rules S$filter abr"" out.txt"
"SSCRIPTS/runSOvV"

"$new folder/ens rules Sfilter abr"" sov.txt"

print SOV _score
python "$SCRIPTS/calc Q3.py"

"Snew folder/ens rules S$filter abr"" pred.txt"
echo

echo " >Ensembles + $filter name Results"

python "$SCRIPTS/prepare SVM files.py"
"$new folder/ensembles pred.txt" "STRAIN FOLDER/$train preds"
"$SVM WIN" "Snew folder/temp svm test.txt"
"$new folder/temp svm train.txt"
python "$SCRIPTS/train SVM.py"
"S$new folder/temp svm test.txt" "Snew folder/temp svm train.txt"
"SSVM _WIN" "Snew folder/ensembles pred.txt"
"Snew folder/ens $filter abr"" pred.txt"
"Snew folder/ens $filter abr"" sov.txt" "Sfilter" >
"S$new folder/ens $filter abr"" out.txt"
"SSCRIPTS/runSOV" "Snew folder/ens Sfilter abr"" sov.txt"
print SOV _score
python "$SCRIPTS/calc Q3.py"
"Snew folder/ens $filter abr"" pred.txt"
echo

echo " >Ensembles + Sfilter name + External Rules Results"

python "S$SCRIPTS/externalRules.py"
"Snew folder/ens $filter abr"" pred.txt"

"Snew folder/ens S$filter abr"" rules sov.txt"

"Snew folder/ens S$filter abr"" rules pred.txt"
"$SCRIPTS/runSov"

"$new folder/ens $filter abr"" rules sov.txt"

1-6

print SOV _score
python "$SCRIPTS/calc Q3.py"
"$new folder/ens $filter abr"" rules pred.txt"
done
echo

echo nmn
exit 0
done

Remove temp files
rm -rf "$TEMP FOLDER"
rm resultSOV.txt

rm SOVinput.txt

J Appendix

View filtering results of CB513

The following bash script was implemented and used to view all the ensembles and

filtering results in a table format, for the CB513 dataset. It was provided by Leontiou

[5].

#!/bin/bash

Path to file with ensembles and filtering results
if [$# -ne 1]1; then
file="./final results CB513.txt"

else
file="5S1"

fi

if [! -f "Sfile"], then
echo "This file does not exist: $file"
exit 1

fi

echo "Cross Validation"
echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV_E\tSOvV _C"
echo VY o o o o e e e e e e e e e e e e e e e e 11

sed -n "/fold/,/-—-—- /p" "Sfile" | grep -E '[0-9]+' | grep -v '[a-
zA-72]" | tr -s " " | sed -e 's/"[\t]*//' | awk -F' '
'BEGIN{switch=1}{if (switch == 1) {vl=$1l; v2=S$2; v3=$3; vid=$4;

switch=2;} else {printf
"SL2ENESL2EN\E% .28\t % .28 \t% .28 \t% .28 \t%.2F\ts.2f\n", $1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"

echo ""

echo "Ensembles Results"
echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV ALL\tSOV H\tSOV E\tSOV C"
echo L L "

sed -n '/Ensembles Results/,/=====/p' "$file" | grep -E '[0-9]+"]|
grep -v '[a-zA-Z]'" | tr -s " " | sed -e 's/"[\t]*//'" | awk -F' '
'BEGIN{switch=1}{if (switch == 1) {vl=$1l; v2=S$2; v3=$3; vid=$4;

switch=2;} else {printf
"SL2E\E%.28N\t%.28\t%.28\t%. 28 \t%. 28 \t%.2f£\t%.2f\n", S$1, $2, $3, 4,
vl, v2, v3, v4; switch=1}}"

echo ""

echo "Ensembles + External Rules Results"
echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV ALL\tSOV H\tSOV_ E\tSov C"
echo L "

sed -n '/Ensembles + External Rules Results/,/=====/p' "S$file" |
grep -E '[0-9]+'| grep -v '[a-zA-Z]' | tr -s " " | sed -e 's/"|
\t]*//" | awk =-F' ' 'BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2;

v3=$3; v4=$4; switch=2;} else {printf
"SL2F\t%.25\t%. 28\t .28\t 2F\t%.28\t%.2f\t%.2f\n", S$1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"

J-1

echo ""

echo "Ensembles + External Rules + SVM Results"
echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV_E\tsOov C"
echo VY e e e e e e e e e e e e e e e e e o o o o o o o o "

sed -n '/Ensembles + External Rules + SVM Results/,/=====/p' "S$file"
| grep -E '[0-9]+'| grep -v '[a-zA-Z]' | tr -s " " | sed -e 's/"][
\tl1*//"'" | awk -F' ' 'BEGIN{switch=1}{if (switch == 1) {v1=S$1l; v2=S$2;

v3=$3; v4=$4; switch=2;} else {printf
"SL2F\tS.2F\ES . 2F\t% . 2E\t% . 2E\t%.2E\t%.2f\t%.2f\n", S$1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"

echo ""

echo "Ensembles + SVM Results"
echo -e "Q3 ALLAtQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
echo VT o o o o e e e e e e e e e e e e e e e e e e "

sed -n '/Ensembles + SVM Results/,/=====/p' "$file" | grep -E '[0-
9]+'| grep -v 'l[a-zA-Z]' | tr -s " " | sed -e 's/~[\t1*//'" | awk -
F' ' '"BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4;

switch=2;} else {printf
"SL2EN\t%.28\t% .28\t .28\t % .28 \t%.2E8\t%.2E8\t%.2f\n", S$1, $2, $3, %4,
vl, v2, v3, v4; switch=1}}"

echo ""

echo "Ensembles + SVM + External Rules Results"
echo -e "Q3 ALLAtQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
echo L "

sed -n '/Ensembles + SVM + External Rules Results/,/=====/p' "$file"
| grep -E '[0-9]+'| grep -v '[a-zA-Z]' | tr -s " " | sed -e 's/"[
\t]*//'" | awk -F' ' '"BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=3$2;

v3=$3; v4=$4; switch=2;} else {printf

"SL2E\ES .28\t %.28\t% .28 \t% .28 \t%.2E8\t%.2E£\t%.2f\n", $1, $2, $3, s$4,
vl, v2, v3, v4; switch=1}}"

echo ""

echo "Ensembles + External Rules + Decision Tree Results"

echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV E\tSOV_C"
echo "----—m - —————— "
sed -n '/Ensembles + External Rules + Decision Tree

Results/, /=====/p' "S$file" | grep -E '[0-9]+'| grep -v '[a-zA-Z]"' |
tr =s " " | sed -e 's/~[\t]*//'" | awk -F' ' 'BEGIN{switch=1}{if
(switch == 1) {vl1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf

"SL2F\t%.28\t%.28\t%.28\t%.28\t%. 28 \t%.2E8\t%.2f\n", $1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"
echo mn

echo "Ensembles + Decision Tree Results"
echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV E\tSOV_C"
echo VY o e e e e e e e e e e e e e e e e o e e o e o e e o — — — — — — — —— — — — — — — — . —— "

sed -n '/Ensembles + Decision Tree Results/,/=====/p' "S$file" | grep
-E '[0-9]+'| grep -v '[a-zA-Z]' | tr -s " " | sed -e '"s/~[\tl*//" |
awk -F' ' 'BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3;

v4=$4; switch=2;} else {printf
"SL2EN\t%.20\t%. 28\t 28\t % .28 \t%.2E8\t%.2E\t%.2f\n", $1, $2, $3, %4,
vl, v2, v3, v4; switch=1}}"

echo mn

echo "Ensembles + Decision Tree + External Rules Results"
echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_ H\tSOV_E\tSov C"
echo VY o o o o o o e "

sed -n '/Ensembles + Decision Tree + External Rules

Results/, /=====/p' "$file" | grep -E '[0-9]+'| grep -v '[a-zA-Z]"' |
tr =s " " | sed -e 's/~[\tl1*//'" | awk -F' ' 'BEGIN{switch=1}{if
(switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf

"SL2EN\t%.28\t% .28\t .28\t % .28 \t%.2E8\t%.2E8\t%.2f\n", $1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"
echo nmn

echo "Ensembles + External Rules + Random Forest Results"

echo -e "Q3 ALLAtQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
echo "---——————-—--—--"—-"-""-""-""""-""""""""""\""\“""\“"—"\—" (=== "
sed -n '/Ensembles + External Rules + Random Forest

Results/, /=====/p' "$file" | grep -E '[0-9]+'| grep -v '[a-zA-Z]"' |
tr =s " " | sed -e 's/"[\t]*//' | awk -F' ' '"BEGIN{switch=1}{if
(switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf

"SL2EN\t%.28N\t% .28\t .28 \t% .28 \t%.2E8\t%.2E8\t%.2f\n", $1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"
echo mn

echo "Ensembles + Random Forest Results"
echo -e "Q3 ALLAtQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
echo L "

sed -n '/Ensembles + Random Forest Results/,/=====/p' "$file" | grep
-E '[0-9]+'| grep -v '[a-zA-Z]' | tr -s " " | sed -e 's/"[\tl*//" |
awk -F' ' '"BEGIN{switch=1}{if (switch == 1) {v1=$1l; v2=$2; v3=$3;

v4=84; switch=2;} else {printf

"L 2F\t%.25\t%. 28 \t% .28\t 28\t %.28\t%.2f\t%.2f\n", S$1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"

echo ""

echo "Ensembles + Random Forest + External Rules Results"

echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_ H\tSOV E\tSOvV C"
echo "----—m - —————— "
sed -n '/Ensembles + Random Forest + External Rules

Results/, /=====/p' "S$file" | grep -E '[0-9]+'| grep -v '[a-zA-Z]"' |
tr =s " " | sed -e 's/~[\t]*//'" | awk -F' ' 'BEGIN{switch=1}{if
(switch == 1) {vl=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf

"SL2E\E%.28N\t%.28\t% .28 \t%. 28 \t%.2E8\t%.2E£\t%.2f\n", $1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"

K Appendix

All filtering methods on PISCES

Used to apply the ensembles and the filtering methods in various orders and display the
results for each fold of the PISCES dataset. It was provided by Leontiou [5].

#!/bin/bash

Author : Panayiotis Leontiou
Since : May 2020

Version: 1.0

Bugs : No known bugs

TEST FOLDER="./PISCES test pred"
TRAIN FOLDER="./PISCES train pred"
WINDOW="15"

SVM WIN="19"

filterOpt=("2" "3")
SCRIPTS="./g3 sov scripts"

Check if required scripts exist
declare -a REQUIRED SCRIPTS=("calc 03.py" "ensembles.py"
"externalRules.py" "prepare SVM files.py" "runSOV.c" "sov.c"
"train SVM.py")
if [' -d "SSCRIPTS"]1; then

echo "Error! S$SCRIPTS directory could not be located."

exit 1
else

for s in "S{REQUIRED SCRIPTS[@]}"

do

if [! -f "SSCRIPTS/Ss"]; then
echo "Error! $SCRIPTS/S$s file is missing."

exit 1
fi
done
[-£ "$SCRIPTS/runSOV" 1 || gee "$SCRIPTS/runSOV.c" -o
"SSCRIPTS/runSOvV"
[-f "SSCRIPTS/sov"] || gee "SSCRIPTS/sov.c" -o "SSCRIPTS/sov"
fi
echo "
PPPPPPPPPPPPPPPPP SSSSSSSSSSSSSSS PPPPPPPPPPPPPPPPP
PeeroorssoosoetP SStrrrrrrrrrri:S
SS:rrrrisrrsrrriiSPrrsrrrriiiiiii P
P::::::PPPPPP:::::P
S:::::55SSSS::::::SS:::::555SSSS::::::SP::::::PPPPPP:::::P
PP:::::P Pee:::PSe::::S SSSSSSSS:r:S SSSSSSSPP:i::::P
Pee:::P
P:: P P:::::PS:::::S S:::::S P P
Pi::::P
P:: P P:::::PS:::::S S:::::S P P
Pee:::P

K-1

::::PPPPPP
:::PPPPPP

::::PPPPPPPPP
::::PPPPPPPPP

PPPPPPPPPP

print fold () {
case $1 in

fol1dO0)
cat <<
o I /
o \
TS__[0] _|_I_
{====== ‘ _ ‘ wun ‘
./0--000" " -0-0-"
EOF
foldl)
cat <<
o I /
o I
Ts__ [O] 1
{:::::: ‘ _ ‘ wwn ‘
./0=-000" " =0-0-"
EOF
fold2)
cat <<
o I /
o I
TS [O] e
{:::::: ‘ _ ‘ wwn ‘
./0=-000" " =0-0-"
EOF
fold3)
cat <<
o I /
o I
Ts__ [O] |
{:::::: ‘ _ ‘ nan ‘
./0=-000" " -0-0-"
EOF
fold4)

SSSSSS

'EQOF'

N/

" -0-0-"

IIEOF"

N/

" -0-0-"

"EOF"

N/

" -0-0-"

"EOF"

N/

" -0-0-"

SSS S::::SSSS
:::SSSSS SS::::::SSSSS
tiri:SS SSS:::ri::::SS
SSSSSS::::S SSSSSS::::S P:
S:::::8 S:::::5 P::
S:::::S S:::::S P
S:::::55SSSSSS S:::::SPP
SSSSSS:::::SS::::SSSSSSir it SP
crisri:iSS SrrrsriiiiiiiiiSS P
SSSSSSSSS PPPPPPPPPP
| | \ / 0\
. 1) o O
| | | / | | N/
[AR TR A H e A
"*-0-0-'" ""=-0-0-" ""=-0-0-' ""-0-0-"
| | \ /|
o 1) o ||
| | |/ Il R
0 T T (R N B R IR
"*-0-0-'" "*'-0-0-" ""-0-0-' ""-0-0-"
| | \)
o 1) _ /7
| | |/ Il /|
0 T T (R N B R IR
"*-0-0-'" ""-0-0-" ""-0-0-' ""-0-0-"
| | \ |/
ol 1) o I\
| | | / | | | /
_‘"""""‘ _‘"""""‘ _‘"""""‘ _‘"""""‘
"-0-0-'" ""-0-0-'" ""=-0-0-" " -0-0-"

K-2

foldb)
cat <<

(======| |
./o--000" ""-0-0-"
EOF

foldo6)
cat <<

_ ‘ _IIW"_ ‘
./o--000" " -0-0-"
EOF

fold7)
cat <<

fo0ld8)
cat <<
o 00 [
o [
TS__ [O] ||

_ ‘ _"W"_ ‘
./0==000" " -0-0-"
EOF

fold9)
cat <<
o 00 I
o [
TS [0O] ||

"EOF"

__/ I
‘"""""‘ _‘"""""‘ _‘"""""‘

"_O_O_l "_O_O_l

" _0-0-"

"EOF"

_/ | I
‘ll""""‘ ‘ll""""‘ ‘ll""""‘

" _0-0-"

" _0-0-"

" _0-0-"

IIEOF"

N R T

" _0-0-"

" _0-0-"

" _0-0-="

IIEOF"

_/ | | |/
‘llllllllll‘ ‘llllllllll‘ ‘llllllllll‘

H_O_O_'

H_O_O_‘

H‘_O_O_‘

"EOF"

_/ | | |/
‘llllllllll‘ ‘llllllllll‘ ‘llllllllll‘

H_O_O_'

H_O_O_‘

H‘_O_O_‘

"EOF"

N/ | | |/
‘"""""‘ ‘"""""‘ ‘"""""‘

H_O_O_l H_O_O_l

H_O_O_'

" _0-0-"

" _0-0-"

" _0-0-="

H‘_O_O_‘

H‘_O_O_‘

H_O_O_l

/

" _0=-0-"

" _0-0-"

P
/N

__/

" _0=-0-="

|
/7
/_/

" _0-0-="

)

A\
7

N —~

\
" _0-0-="

"we _O_O_‘

esac

print SOV _score () {

cat ./resultSOV.txt | grep -e 'SOV' | awk -F' ' '{sovAll += $3;
sovH += $4; sovE += $5; sovC += $6} END {printf "\n SOV_ALL
SOV_H SOV_E SOV C\n $.4f $.4f $.4f %.4f\n",

sovAll/NR, sovH/NR, sovE/ﬁR, sovC/NR}'
}

get filter name () {
case $1 in

"l")

filter name="SVM"
H2H)

filter name="Decision Tree"
"3")

filter name="Random Forest"
*)
filter name="Unknown Filter"

esac

get filter abr(){
case $1 in

"l")

filter abr="svm"
"2")

filter abr="dtree"
"3")

filter abr="rforest"
*)
filter abr="unknown"
esac

}

TEMP FOLDER="./temp runAll PISCES"
RUN_ALL_FOLDER="./PISCES_runAll_out_files"
CROSS_VAL FOLDER="./PISCES cross validation"

[-d "$TEMP FOLDER"] || mkdir "$TEMP FOLDER"

[-d "SRUN ALL FOLDER"] || mkdir "$RUN ALL FOLDER"
PRINT CROSS VAL=true

if ["SPRINT CROSS VAL" = true]; then
echo
"
echo " >Cross Validation Results"
echo "--—————-—--"--"—--""-"-""-"-""""""""\""\"—"\—"—— =

K-4

for i in “1ls "$CROSS VAL FOLDER""®

do
echo "S$i"
new folder="$RUN ALL FOLDER/cross val res"
[-d "Snew folder"] || mkdir "$new folder"

out file=("STEMP FOLDER/Si"" cross val.txt")

for j in “1ls "$CROSS_ VAL FOLDER/$i""

do

echo "$CROSS VAL FOLDER/$i/$j"

done > "Sout file"

python "$SCRIPTS/ensembles.py" "Sout file" "SWINDOW" 1
"Snew folder/ens pred.txt" "S$new folder/ens sov.txt"
"$new folder/ens weka.txt"

"$SCRIPTS/runSOV" "Snew folder/ens sov.txt"

print SOV _score

python "$SCRIPTS/calc Q3.py" "Snew folder/ens pred.txt"

echo "--——-—-—"—-"-"-"-"-""-""-"""""-" " -~ """ ———
done
fi
echo
echo ""
for 1 in “1ls "STEST FOLDER"®
do

print fold $i

new folder="$RUN_ALL FOLDER/S$i"" results"

[-d "Snew folder"] || mkdir "S$new folder"
out file=("$TEMP FOLDER/$i"" files.txt")

for j in “ls "STEST FOLDER/S$Si""
do

echo "$TEST FOLDER/$i/$j"
done > "Sout file"
echo

echo " >Ensembles Results"

python "$SCRIPTS/ensembles.py" "Sout file"™ "SWINDOW" 1
"Snew folder/ensembles pred.txt" "$new folder/ensembles sov.txt"
"$new folder/ensembles weka.txt" > "$new folder/ensembles out.txt"
"$SCRIPTS/runSOV" "Snew folder/ensembles sov.txt"
print SOV _score
python "$SCRIPTS/calc Q3.py" "Snew folder/ensembles pred.txt"
echo

echo " >Ensembles + External Rules Results"

python "S$SCRIPTS/externalRules.py"
"S$new folder/ensembles pred.txt" "Snew folder/ens rules sov.txt"
"S$new folder/ens rules pred.txt"
"SSCRIPTS/runSOV" "S$new folder/ens rules sov.txt"
print SOV score
python "$SCRIPTS/calc Q3.py" "Snew folder/ens rules pred.txt"
for filter in "${filterOpt[@]}"

K-5

do
get filter name S$filter
get filter abr $filter
echo "S$filter $filter name"

train preds="ls "STRAIN FOLDER" | grep "S$i" | head -n 1°

echo

echo " >Ensembles + External Rules + $filter_name Results"
echo "---—————"—"-—-"-""-"-""-""""""""""""\""\"""—"—"—"\—"(—(—(——— ===

python "$SCRIPTS/prepare SVM files.py"
"$new folder/ens rules pred.txt" "STRAIN FOLDER/S$train preds"
"$SVM WIN" "S$new folder/temp svm test.txt"
"Snew folder/temp svm train.txt"

python "$SCRIPTS/train SVM.py"
"Snew folder/temp svm test.txt" "Snew folder/temp svm train.txt"
"$SVM WIN" "Snew folder/ens rules pred.txt"
"$new folder/ens rules Sfilter abr"" pred.txt"

"$new folder/ens rules Sfilter abr"" sov.txt" "Sfilter" >

"$new folder/ens rules Sfilter abr"" out.txt"
"$SCRIPTS/runSov"

"Snew folder/ens rules S$filter abr"" sov.txt"

print SOV _score
python "$SCRIPTS/calc Q3.py"

"$new folder/ens rules Sfilter abr"" pred.txt"
echo

echo " >Ensembles + $filter name Results"
echo "---———->">"-""-"-""""""""""""""""""""""""""""—"—"—"—"—"—\—"—"———————
python "$SCRIPTS/prepare SVM files.py"
"$new folder/ensembles pred.txt" "STRAIN FOLDER/$train preds"
"$SVM _WIN" "S$new folder/temp svm test.txt"
"S$new folder/temp svm train.txt"
python "$SCRIPTS/train SVM.py"
"Snew folder/temp svm test.txt" "S$new folder/temp svm train.txt"
"SSVM _WIN" "Snew folder/ensembles pred.txt"
"$new folder/ens_ $filter abr"" pred.txt"
"Snew folder/ens $filter abr"" sov.txt" "$filter" >
"Snew folder/ens $filter abr"" out.txt"
"S$SCRIPTS/runSOV" "$new folder/ens $filter abr"" sov.txt"
print SOV _score
python "$SCRIPTS/calc Q3.py"
"$new folder/ens_ $filter abr"" pred.txt"
echo

"

echo " >Ensembles + $filter name + External Rules Results"
echo "----------"-"-"-"-"-""-""-"-"-"-"" " - (- (-
python "$SCRIPTS/externalRules.py"

"Snew folder/ens $filter abr"" pred.txt"

"$new folder/ens $filter abr"" rules sov.txt"

"S$new folder/ens $filter abr"" rules pred.txt"
"$SCRIPTS/runsov"

"Snew folder/ens S$filter abr"" rules sov.txt"

print SOV score

python "$SCRIPTS/calc Q3.py"
"S$new folder/ens $filter abr"" rules pred.txt"
done
echo

echo nmn
exit O
done

Remove temp files
rm -rf "$TEMP FOLDER"
rm resultSOV.txt

rm SOVinput.txt

L Appendix

View filtering results of PISCES

The following bash script was used to view all the ensembles and filtering results in a
table format, for the PISCES dataset. It was provided by Leontiou [5].

#!/bin/bash

Path to file with ensembles and filtering results
if [-ne 1]; then
file="./final results PISCES.txt"
else
file="51"
fi

if [! -f "Sfile"], then
echo "This file does not exist: $file"
exit 1

fi

echo "Cross Validation"
echo -e "Q3 ALL\tQ3 H\tQ3 E\t0Q3 C\tSOV_ALL\tSOV_H\tSOV_E\tSOV C"
echo "-—-—-—---""""—"-——

sed -n "/fold/,/-———- /p" "Sfile" | grep -E '[0-9]+' | grep -v '[a-
zA-721" | tx -s " " | sed -e 's/"[\t]*//" | awk -F' '
'BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$54;

switch=2;} else {printf
"SL2E\ES.28N\t%.28\t%.28\t%. 28 \t%.2E8\t%.2f\t%.2f\n", S$1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"

echo ""

echo "Ensembles Results"
echo -e "Q3 ALL\tQ03 H\tQ03 E\tQ3 C\tSOV ALL\tSOV H\tSOV E\tSOvV C"
echo "-——--—---""—""—-—-

sed -n '/Ensembles Results/,/=====/p' "$file" | grep -E '[0-9]+"]|
grep -v '[a-zA-Z2]' | tr -s " " | sed -e 's/"[\t]1*//'" | awk -F' '
'BEGIN{switch=1}{if (switch == 1) {vl=$1l; v2=S$2; v3=$3; vid=$4;

switch=2;} else {printf
"SL2F\t%.2F\t%.2F\t% .28\t 2FE\t%.28\t%.2f\t%.2f\n", S$1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"

echo ""

echo "Ensembles + External Rules Results”
echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV_E\tSOov C"
echo "——————————--- -

sed -n '/Ensembles + External Rules Results/,/=====/p' "$file" |
grep -E '[0-9]+'| grep -v '[a-zA-Z]' | tr -s " " | sed -e 's/"[
\t]*//"'" | awk -F' ' 'BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2;

v3=$3; v4=$4; switch=2;} else {printf

"2\t 26N\t 26\t 26\t 28\t 26 \t% . 2E\t% . 2f\n", $1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"

echo mwn

echo "Ensembles + External Rules + Decision Tree Results"

L-1

echo -e "Q3 ALL\tQ3 H\t03 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV_E\tSOv C"
echo VY o o o o e "
sed -n '/Ensembles + External Rules + Decision Tree

Results/, /=====/p' "$file" | grep -E '[0-9]+'| grep -v '[a-zA-Z]' |
tr =s " " | sed -e 's/"[\t]*//'" | awk -F' ' '"BEGIN{switch=1}{if
(switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf

"$L2E\ES.26N\E%.28\t% .28 \t% .28 \t%.2E8\t%.2f\t%.2f\n", $1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"
echo ""

echo "Ensembles + Decision Tree Results"
echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV_E\tSOvV C"
echo L "

sed -n '/Ensembles + Decision Tree Results/,/=====/p' "$file" | grep
-E '[0-9]+'| grep -v '[a-zA-Z]' | tr -s " " | sed -e 's/"[\tl*//" |
awk -F' ' 'BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3;

v4=$4; switch=2;} else {printf

"2\t %.28\t%. 28 \t% .28\t 2E\t%.28\t%.2f\t%.2f\n", S$1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"

echo ""

echo "Ensembles + Decision Tree + External Rules Results"

echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV ALL\tSOV H\tSOV E\tSOvV C"
echo "---———->"-"--"-"-"""-"""""---"""""""""""""""""""—"—"—"—"—"—"—"—\—~—"—~\—~———————— "
sed -n '/Ensembles + Decision Tree + External Rules

Results/, /=====/p' "S$file" | grep -E '[0-9]+'| grep -v '[a-zA-Z]"' |
tr -=s " " | sed -e 's/~[\t]*//'" | awk -F' ' 'BEGIN{switch=1}{if
(switch == 1) {vl1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf

"SL2F\tS.2F\ES . 2F\t%. 28 \t%.28\t%.2E\t%.2f\t%.2f\n", S$1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"
echo mn

echo "Ensembles + External Rules + Random Forest Results"

echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV ALL\tSOV H\tSOV E\tSOvV C"
echo "————- e ___ o ___ o ___ e ___ e ____ e ___ e ___ o ___ "
sed -n '/Ensembles + External Rules + Random Forest

Results/, /=====/p' "$file" | grep -E '[0-9]+'| grep -v '[a-zA-Z]' |
tr =s " " | sed -e 's/"[\tl]*//'" | awk -F' ' '"BEGIN{switch=1}{if
(switch == 1) {vl1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf

"SL2F\tS.2F\E%.2F\t%. 28 \t%. 28 \t%.2E\t%.2f\t%.2f\n", S$1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"
echo mn

echo "Ensembles + Random Forest Results"
echo -e "Q3 ALL\tQ3 H\t03 E\tQ3 C\tSOV_ALL\tSOV_H\tSOV_E\tSOvV C"
echo VY o e e e e e e e e e e e e e o e o — — — —— — —— — — — o — o — o — . — o — o — o — o — o — o — "

sed -n '/Ensembles + Random Forest Results/,/=====/p' "$file" | grep
-E '[0-9]+'| grep -v '[a-zA-Z]' | tr -s " " | sed -e 's/"~[\tl*//' |
awk -F' ' '"BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3;

v4=$4; switch=2;} else {printf
"SL2EN\t%.20\t%. 28\t 28\t % .28 \t%.2E8\t%.2E\t%.2f\n", $1, $2, $3, %4,
vl, v2, v3, v4; switch=1}}"

echo ""

echo "Ensembles + Random Forest + External Rules Results"

echo -e "Q3 ALL\tQ3 H\tQ3 E\tQ3 C\tSOV_ALL\tSOV_ H\tSOV_E\tSov C"
echo "—-—-—=——="="="-""-"—"-"—"“"—"“" "~ "
sed -n '/Ensembles + Random Forest + External Rules

Results/, /=====/p' "S$file" | grep -E '[0-9]+'| grep -v '[a-zA-Z]"' |
tr =s " " | sed -e 's/~[\t]1*//'" | awk -F' ' 'BEGIN{switch=1}{if

L-2

(switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf
"$.2f\t%.2F\t%.2F\t%.2F\t%.2F\t%.2F\t%.2F\t%.2f\n", $1, $2, $3, $4,
vl, v2, v3, v4; switch=1}}"

L-3

M Appendix

All filtering methods on CASP13

Bash script that is used to apply the ensembles and the various filtering techniques and

display the results for the independent test set CASP13. It was provided by Leontiou [5].

#!/bin/bash

Author : Panayiotis Leontiou
Since : April 2020

Version: 1.0

Bugs : No known bugs
if [-eq 0]; then
echo "No option provided, using default option: CB513..."
DS=CB513
SVM_ WIN="9"
elif [= CB513]; then
DS=CB513
SVM WIN="9"
elif | = PISCES]; then
DS=PISCES
SVM WIN="11"
else

echo "This option is not wvalid: $1"
echo "Available options: CB513, PISCES"
exit 1

fi

TEST FOLDER="./CASP13 pred for $SDS"

TRAIN FOLDER="./$DS"" train pred"

CROSS VAL FOLDER="./CASP13 cross validation for $SDS"
WINDOW="15"

if ["$DS" = CB513]; then
filterOpt=("1™ "2"™ "3")
else
filterOpt=("2" "3")
fi

SCRIPTS="./g3 sov_scripts"

Check if required scripts exist

declare -a REQUIRED SCRIPTS=("calc Q3.py" "ensembles.py"
"externalRules.py" "prepare SVM files.py" "runSOV.c" "sov.c"
"train SVM.py")

if [! -d "S$SCRIPTS"]; then
echo "Error! S$SCRIPTS directory could not be located."
exit 1
else
for s in "${REQUIRED SCRIPTS[@]}"
do
if [! -f "$SCRIPTS/S$s"]; then
echo "Error! $SCRIPTS/S$s file is missing."
exit 1
fi

M-1

done

[-f "$SCRIPTS/runSOV"] || gcc "S$SCRIPTS/runSOV.c" -o
"$SCRIPTS/runSov"
[-f "S$SSCRIPTS/sov"™] || gcc "$SCRIPTS/sov.c" -o "S$SCRIPTS/sov"

fi
echo "
PPPPPPPPPPPPPPPPP SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS
PPPPPPPPPPPPPPPPP
= I = SS:irrriirisii:S
SSisrrrrsrrsrsriSPrrsrrsrirriiii P
P::::::PPPPPP:::::P
S:::::55SSSS: 0SS SSSSSSrir i SPri i : PPPPPPr it P
PP:::::P P:::::PS:::::S SSSSSSSS:::::S SSSSSSSPP:::::P
P::i:::P

P:: P P:i:::PS:i:::S S:::::S P P
P::i:::P

P:: P P:i:::PS:i:::S S:::::S P P
P:::::P

P::::PPPPPP:::::P S::::SSSS S::::SSSS
P ::PPPPPP:::::P

P:eosoosoii PP SS::::::SSSSS SS::::::SSSSS
P:eosoosoii PP

P::::PPPPPPPPP SSS::::::::SS SSS::::::::SS
P::::PPPPPPPPP

P P SSSSSS::::S SSSSSS::::S P P

P P S:::::S S:::::5S P P

P P S:::::S S:::::S P P
PP::::::PP SSSSSSS S:::::8S5SSSSSS S:::::SPP::::::PP
PeoooootP S::::::55SS5SS:::::SS::::::5358SS5S:::::SPrriitP
Pe:ooooo::P S:rrrrrrsrrsiiSS SrrrrrriiiiiiiiSS PrroiiiitP
PPPPPPPPPP SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS PPPPPPPPPP

print fold () {
case $1 in
foldO0)
cat << 'EOF'

000 o / 0\] | \ /N
o || () | LD O |
TS__[01 _I_I_ __/ | | | / | | N/
{====== ‘ ‘ mmon ‘ _‘ mimwmmnn ‘ ‘ mimwmmnn ‘ ‘ mimwmmnn ‘ ‘ mimwmmnn ‘ _‘ mimwmmnn ‘

./0=-000" " =0-0-' " -0-0-' " -0-0-' " -0-0-' " -0-0-' " -0-0-'
EOF

foldl)
cat << "EOF"
o 00 I / N\ [| \ /]
o I () | ol 1) o \
TS [0O] . N/ | | 4 N .
{ —_———— ‘ ‘ mman ‘ ‘ LUARIRIRIR] ‘ ‘ LUARIRIRIR] ‘ ‘ LUARIRIRIR] ‘ ‘ LUARIRIRIR] ‘ . ‘ LUARIRIRIR] ‘

./0=--000" W‘_O_O_l "N _0-—Q="' " _Q=0="' " _Q=0=' " —Q=0=' "*—Q-0-"'
EOF

fold2)
cat << "EOF"

/ | /

TS__ [0] |1 __/
‘HHHHH‘

F*_O_O_v "

"-0-0-' " -0-0-"

./0=--000" " =0-0-' " -0-0-' " -0-0-"

EOF
cat << "EOF"

L) _ _

- |/ |

" -0-0-' "'-0-0-"

o I _
\ /

_ \
" _0=-0-="

./0=-000" " =0-0-' " -0-0-' " -0-0-"
EOF
fold4)
cat << "EOF"

" _0=-0-="

" -0-0-' "'-0-0-' " -0-0-' " -0-0-'

— _‘_HWH_‘
./o--000" " "-0-0-"
EOF

cat << "EOF"

o I
R
|

‘ URIRIRINI]

_ !
"we _O_O_ A}

URIRIRINI] ‘

o — —
TS [O] TN/ | !
‘ LARIRIRINAL ‘ LARIRIRINAL ‘

‘ win ‘

./0o--000" " -0-0-"
EOF

URIRIRINI] ‘

" -0-0-' "'-0-0-"

" _0-0-=" F‘_O_O_l

cat << "EOF"

B Y /

L / N\
| \ /

URIRIRINI] ‘

URIRIRINI] ‘

" -0-0-' "-0-0-"

o j— j—
TS__[O] |_| ___/ |
. ‘ mwrwwmnn ‘ . mwrwwmnn ‘ .

" _0=0=" " =0=-0-=' " =—0-0-" " =0-0-"

URIRIRINI] ‘

./0--000"
EOF

fold7)
cat << "EOF"

_ 1 _
/ | /

URIRIRIAI] ‘ URIRIRIAI] ‘ URIRIRIAI] ‘

o — —
\ /

‘"H"""‘

URIRIRIAI] ‘

"-0-0-' "'-0-0-' "'-0-0-' " -0-0-"

‘ woin ‘

W‘_O_O_l "‘_O_O_l

M-3

rs

fold8)

cat << "EOF"
000 /N | \
o I () | 1) |
TS [0O] R \ / | | / | |
{:::::: . mmon _‘ mirmmnnw ‘ _‘ mirmmnnw ‘ _‘ mirmmnnw ‘ _‘ mirmmnnw ‘
./o--000" " -0-0-' "*-0-0-"'" " -0-0-' "°-0-0-' " -0-0-"
EOF
fold9)
cat << "EOF"
000 /N | \
o I () | I 1) |
TS [O] R \ / | | / | |
{======‘ _‘ mmon ‘ _‘ mivrwmnn ‘ _‘ mivrwmnn ‘ _‘ mivrwmnn ‘ _‘ mivrwmnn ‘
./O__OOO' "_O_O_l "_O_O_l "_O_O_l "_O_O_l "_O_O_l
EOF
*) rr
esac
}
print SOV _score () {
cat ./resultSOV.txt grep -e 'SOV' | awk -F' '
sovH += $4; sovE += $5; sovC += $6} END {printf "\n
SOV _H SOV _E SOV_C\n $.4f $.4f $.4f
sovAll/NR, sovH/NR, sovE/NR, sovC/NR}'

}

get filter name () {
case $1 in
"l")
filter name="SVM"
"2")
filter name="Decision Tree"
"3")
filter name="Random Forest"
*)
filter name=
esac

}

get filter abr(){
case $1 in
"1")
filter abr="svm"
"2")
filter abr="dtree"

"3")

"Unknown Filter"

'{sovAll += $3;

C)
/A
__/
‘ " H mwan

\
-0-0-"

/N

\ L/
/ /

F‘_O_O_l

SOV_ALL
$.4f\n",

M-4

filter abr="rforest"

rs

filter abr="unknown"
I
esac

}

TEMP_FOLDER="./temp runAll CASP13 for $DS"

RUN ALL FOLDER="./CASP13 runAll out files for $DS"

[-d "STEMP_FOLDER"] || mkdir "$TEMP_ FOLDER"

[-d "SRUN_ALL FOLDER"] || mkdir "SRUN ALL FOLDER"

PRINT CROSS VAL=true

if ["$PRINT_CROSS_VAL" = true]; then
echo
echo " >Cross Validation Results"
echo "---—————---"-—-"-"-"-""-""-"""-""""""""\""\"""—"\—(===

for i in “1ls "$CROSS VAL FOLDER""®

echo "s$i"

new folder="S$RUN ALL FOLDER/cross val res"
[-d "Snew folder"] || mkdir "Snew folder"
out file=("STEMP FOLDER/S$i"" cross val.txt")

for j in “1ls "S$CROSS_VAL FOLDER/$i™®
do

echo "$CROSS VAL FOLDER/$i/$j"
done > "Sout file"

python "$SCRIPTS/ensembles.py" "Sout file" "SWINDOW" 1
"Snew folder/ens pred.txt" "S$new folder/ens sov.txt"

"$new folder/ens weka.txt"

"SSCRIPTS/runSOV" "Snew folder/ens sov.txt"

print SOV _score

python "$SCRIPTS/calc Q3.py" "Snew folder/ens pred.txt"

echo "--——-——"—-""""""""""""""—"—" "~ ———

_____________ "

done
fi
echo
11
echo ""
for 1 in “1s "STEST FOLDER"®
do

print fold $i

new folder="S$SRUN ALL FOLDER/$i"" results"
[-d "Snew folder"] || mkdir "$new folder"

out file=("$TEMP FOLDER/$i"" files.txt")

for j in '1ls "STEST FOLDER/S$i"®
do

echo " $TEST_FOLDER/$1/$j "
done > "Sout file"
echo

echo " >Ensembles Results"

M-5

python "$SCRIPTS/ensembles.py" "Sout file" "SWINDOW" 1
"$new folder/ensembles pred.txt" "Snew folder/ensembles sov.txt"
"$new folder/ensembles weka.txt" > "$new folder/ensembles out.txt"
"$SCRIPTS/runSOV" "Snew folder/ensembles sov.txt"
print SOV _score
python "$SCRIPTS/calc Q3.py" "S$new folder/ensembles pred.txt"
echo

echo " >Ensembles + External Rules Results"

python "$SCRIPTS/externalRules.py"
"$new folder/ensembles pred.txt" "Snew folder/ens rules sov.txt"
"Snew folder/ens rules pred.txt"
"SSCRIPTS/runSOV" "$new folder/ens rules sov.txt"
print SOV _score
python "$SCRIPTS/calc Q3.py" "Snew folder/ens rules pred.txt"

for filter in "${filterOpt[@]}"
do

get filter name S$filter

get filter abr S$filter

train preds="ls "$TRAIN FOLDER" | grep "$i" | head -n 1°

echo

echo " >Ensembles + External Rules + $filter name Results"
echo "---——f——-"—--"--"-""-"-"""-"""-"""""""""\"\""\""\—"——— =

python "$SCRIPTS/prepare SVM files.py"
"$new folder/ens rules pred.txt" "STRAIN FOLDER/S$train preds"
"S$SVM _WIN" "Snew folder/temp svm test.txt"
"S$new folder/temp svm train.txt"

python "$SCRIPTS/train SVM.py"
"Snew folder/temp svm test.txt" "S$new folder/temp svm train.txt"
"SSVM _WIN" "Snew folder/ens rules pred.txt"
"$new folder/ens rules Sfilter abr"" pred.txt"

"$new folder/ens rules Sfilter abr"" sov.txt" "Sfilter" >

"Snew folder/ens rules S$filter abr"" out.txt"
"$SCRIPTS/runsSov"

"$new folder/ens rules Sfilter abr"" sov.txt"

print SOV _score
python "$SCRIPTS/calc Q3.py"

"Snew folder/ens rules S$filter abr"" pred.txt"
echo

echo " >Ensembles + $filter name Results"

python "S$SCRIPTS/prepare SVM files.py"
"$new folder/ensembles pred.txt" "STRAIN FOLDER/S$train preds”
"$SVM _WIN" "S$new folder/temp svm test.txt"
"Snew folder/temp svm train.txt"

python "$SCRIPTS/train SVM.py"
"S$new folder/temp svm test.txt" "Snew folder/temp svm train.txt"
"$SVM WIN" "Snew folder/ensembles pred.txt"

M-6

"Snew folder/ens S$filter abr"" pred.txt"
"Snew folder/ens $filter abr"" sov.txt" "$filter" >
"Snew folder/ens $filter abr"" out.txt"
"SSCRIPTS/runSOV" "Snew folder/ens Sfilter abr"" sov.txt"
print SOV _score
python "$SCRIPTS/calc Q3.py"
"Snew folder/ens $filter abr"" pred.txt"
echo

echo " >Ensembles + $filter_name + External Rules Results"

python "$SCRIPTS/externalRules.py"
"S$new folder/ens $filter abr"" pred.txt"

"$new folder/ens $filter abr"" rules sov.txt"

"Snew folder/ens $filter abr"" rules pred.txt"
"$SSCRIPTS/runSov"

"$new folder/ens $filter abr"" rules sov.txt"

print SOV _score
python "$SCRIPTS/calc Q3.py"
"Snew folder/ens $filter abr"" rules pred.txt"
done
echo

echo mn
exit 0
done

Remove temp files
rm -rf "$TEMP_FOLDER"
rm resultSOV.txt

rm SOVinput.txt

M-7

N Appendix

N-terminus vs C-terminus

The following python program was implemented and used in order to find the part of the

protein sequence with the highest Q3 accuracy.

import numpy as np

filename = "ENRF fold0 winl9 ProtBERT.txt" # filename of file we
want to find misclassified percentages

f = open(filename,"r" # open file to read

lines = f.readlines() # read all the lines

r = len(lines) # number of lines in file

Allg = np.zeros((4,)) # matrix to store the part of the sequence we
have a misclassified prediciton in 25s
Eq = np.zeros((4,)) # matrix to store the part of the sequence we
have a misclassified E prediciton in 25s(where it had to be E and we
predicted otherwise)
Hg = np.zeros((4,)) # matrix to store the part of the sequence we
have a misclassified H prediciton in 25s
Cq = np.zeros((4,)) # matrix to store the part of the sequence we
have a misclassified C prediciton in 25s
tAllg = np.zeros((4,)) #
tEq = np.zeros((4,)) # all original E structure in 25s
tHgq = np.zeros((4,)) # all original H structure in 25s
tCq = np.zeros((4,)) # all original C structure in 25s
print("Protein name™ + ", " 4 "Type'+ ", "4"0-24%" 4 U, " 4 "25-409" 4
"M+ "50-74%" + "," 4+ "75-100%")
for i in range(0,r,4):

temp matrices for every protein########

tempAllg = np.zeros((4,)) # matrix to store the part of the
sequence we have a misclassified prediciton in 25s

tempEq = np.zeros((4,)) # matrix to store the part of the
sequence we have a misclassified E prediciton in 25s(where it had to
be E and we predicted otherwise)

tempHgq = np.zeros((4,)) # matrix to store the part of the
sequence we have a misclassified H prediciton in 25s

tempCq = np.zeros((4,)) # matrix to store the part of the
sequence we have a misclassified C prediciton in 25s

temptAllg = np.zeros((4,)) #

temptEgq = np.zeros((4,)) # all original E structure in 25s
temptHg = np.zeros((4,)) # all original H structure in 25s
temptCq = np.zeros((4,)) # all original C structure in 25s

name = lines[i].replace("\n","")

aa = lines[i + 1].replace("\n","") # hold the amino acid
sequence of the current protein(aa)

orss = lines[i + 2].replace("\n","") # hold the original
secondary structure (orss)

prss = lines[i + 3].replace("\n","") # hold the predicted
structure of the filtering technique (ft)

N-1

index = 1 # variable to determine the place we are in the
sequence we are looking

sequence len = len(aa) # sequence len
for i in range(sequence len): # start form the 6th char since
the first five are the title of each line
placeQuarters = int(np.abs(np.ceil(((index / sequence len) *

4) - 1))
tAllg[placeQuarters] += 1
temptAllg[placeQuarters] +=1
if orss[i] == 'E':
tEg[placeQuarters] += 1
temptEg[placeQuarters] += 1
elif orss[i] == 'C':
tCqgl[placeQuarters] += 1
temptCg[placeQuarters] += 1
else:
tHgl[placeQuarters] += 1
temptHg[placeQuarters] += 1
if orss[i] '= prss[il]:
Allg[placeQuarters] += 1
tempAllg[placeQuarters] += 1
if orss[i] == 'E':
Eg[placeQuarters] += 1
tempEg[placeQuarters] += 1
elif orss[i] == 'C':
CglplaceQuarters] += 1
tempCqgl[placeQuarters] += 1
else:
Hg[placeQuarters] += 1
tempHg[placeQuarters] += 1
index += 1
HHHfH A SRS S print results for quarters
it daEa A AR AR AR AR AR AL AL
print (name,end=", ")
print ("Q3",end=", ")
for i in range (0, 4):
if (temptAllg[i] '=0):
miss = (tempAllg[i] / temptAllg[il])
accuracy = (1 -miss) * 100
accuracy = round(accuracy,?)
print (accuracy, end=",")
else:
print("-", end=",")

print ("QOC",end=", ")
for i in range (0, 4):
if (temptCqgl[i] '=0):
miss = (tempCqgl[i] / temptCqglil)
accuracy = (1 -miss) * 100
accuracy = round(accuracy,?)
print (accuracy, end=",")
else:
print("-", end=",")

print ("QE",end=", ")
for i in range (0, 4):
if (temptEg[i] '=0):
miss = (tempEqg[i] / temptEqg[i])
accuracy = (1 -miss) * 100
accuracy = round(accuracy,?)

N-2

print(accuracy, end=",")
else:
print("-", end=",")

print ("QH",end ="', ")
for i in range (0, 4):
if (temptHg[i] '=0):
miss = (tempHqg[i] / temptHgl[il)
accuracy = (1 -miss) * 100
accuracy = round(accuracy,?2)
print (accuracy, end=",")
else:
print("-", end=",")
print()

#H##f# 4 # 44 PRINT TOTALSHE#####SH#SH#HHHHHHSHHSHHSHA
HHHfH A A A A H RS HH##HE print results for quarters
FHEFHHH AR AR AR A A

print(n LS II’H + "Average""' H,H+H0724f?7'| + H,H + 11257499711 + H,H +
"50-74%" 4+ "," 4+ "75-100%")
print(n LS II’H +"Q3",end= n,n)

for i in range(0,4):
miss = (Allqg[i] / tAllg[il)
accuracy = (1 - miss) * 100
accuracy = round(accuracy,?)
print (accuracy, end=",")

print ("QOC",end=", ")

for i in range(0,4):
miss = (Cq[i] / tCq[il)
accuracy = (1 - miss) * 100
accuracy = round(accuracy,?2)
print (accuracy, end=",")

print ("QE" ,end=", ")

for i in range(0,4):
miss = (Eq[i] / tEq[il)
accuracy = (1 - miss) * 100
accuracy = round(accuracy,?)
print (accuracy, end=",")

print ("QH",end=", ")
for i in range(0,4):
miss = (Hq[i]l / tHq[il)

accuracy = (1 - miss) * 100
accuracy = round(accuracy,?)
print (accuracy, end=",")

print("\n'")

N-3

