

Thesis Dissertation

ENCODING MULTI-TOKEN REVERSING PETRI NETS IN

ANSWER SET PROGRAMMING FOR SIMULATION-BASED

REASONING

Michail Angelos Pittakaras

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2021

i

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

ENCODING MULTI-TOKEN REVERSING PETRI NETS IN ANSWER SET

PROGRAMMING FOR SIMULATION-BASED REASONING

Michail Angelos Pittakaras

Supervisor

Dr. Anna Philippou

Thesis submitted in partial fulfilment of the requirements for the award of degree of

Bachelor in Computer Science at University of Cyprus

May 2021

ii

Acknowledgments

 I wish to express my deepest gratitude to my supervisor, Dr. Anna Philippou for her

constant support and guidance that she provided during my study. She encouraged me to be

more professional and showed her belief in me, and without her persistent help, this project

would not have been completed.

 I am extremely grateful to the PhD students, Eleftheria Kouppari and Kyriaki Psara, for

always being available and willing to help me and transfer useful knowledge.

 I would like to express my gratitude to Dr. Yannis Dimopoulos, for his assistance in better

understanding the ASP language and optimizing my code.

 I cannot dismiss to thank my family as well as my friends, for their support for the

duration of this diploma thesis.

iii

Abstract

 A Petri Net is a mathematical modeling tool for the description and analysis of

concurrent processes which arise in distributed systems. Multi-token Reversing Petri nets

(MRPNs) are an extension to normal Petri nets that can be a very useful and powerful tool

for describing applications which are reversible by nature.

 Answer Set Programming language (ASP) is a declarative programming style aimed at

solving difficult, NP-hard search problems and it is especially helpful in knowledge-

intensive applications. Rather than using programs to decide how a problem should be

solved as in conventional programming, the idea now is to create a supervised program

that is general and can solve any instance of the problem. The solution in ASP is built

using stable models and we can get multiple or all the stable models without adding too much

overhead to the execution time. That works like parallel processing, giving us the option to

choose the optimal answer.

 In this thesis we describe MRPNs in ASP. MRPNs can be used as the base for describing

other difficult problems which will then be solved automatically using ASP. The encoding

of Multi-token Petri Nets in ASP along with some improvements for performance and

memory usage are shown in detail in this thesis. We show the usefulness of our approach

through a case study involving the multiple-input multiple-output (MIMO) problem of the

Antenna Selection in wireless communication services. is described in Multi-token Petri nets

and then solved using ASP.

iv

Contents

Chapter 1 Introduction……………………………………………………………1

 1.1 Motivation 1

 1.2 Work Purpose 1

 1.3 Work Methodology 2

 1.4 Thesis Structure 3

Chapter 2 Related Work…………………………………………….…...……….4

 2.1 Reversible Computation 4

2.2 Reversible Modeling 5

2.3 Petri Nets 6

2.4 Reversible Petri Nets 9

2.5 Multi-token Petri Nets 12

 2.5.1 Forward Execution 14

 2.5.2 Reverse Execution 15

2.6 Answer Set Programming Language (ASP) 16

 2.6.1 ASP syntax and semantics 17

2.7 Clingo 18

2.8 Python 19

 2.8.1 Clingo API documentation 19

2.9 MIMO – Antenna Selection 19

Chapter 3 Encoding Collective Petri Nets into ASP………………………23

 3.1 Forward Execution 23

 3.2 Reversible Execution 43

v

 3.3 Conditions 53

 3.4 Extension to support Antenna Selection 63

 3.5 Optimizations 74

Chapter 4 Case Study……………………….……………………….…………….88

4.1 Antenna Selection Case Study 88

4.2 Reachability 94

4.3 Greedy Algorithm Comparison 96

Chapter 5 Conclusions……………………………...……………………………...99

 5.1 Summary 99

 5.2 Challenges 100

 5.3 Future Work 101

R e f e r e n c e s ………………………………………………………………………. 1 0 3

1

Chapter 1

Introduction

 1.1 Motivation 1

 1.2 Work Purpose 1

 1.3 Work Methodology 2

 1.4 Thesis Structure 3

1.1 Motivation

 Multi-token Reversible Petri nets have been proposed in [4] and they are formed for

describing applications which are reversible by nature. Encoding them in a language such as

Answer Set Programming [23], which is oriented towards difficult search problems, can help

us describe and solve difficult problems such as the MIMO problem of Antenna Selection

proposed in [3].

1.2 Work Purpose

 In this thesis, we consider a particular model of computation, known as Collective Petri

nets and its implementation in Answer Set Programming language (ASP) using clingo as the

grounder and solver. Collective Petri nets, a type of multi-token Petri nets (MRPNs), are an

extended form of Petri nets that give more possibilities and can be applied in many problems

and simulations. The purpose of analyzing this type of Petri nets is to show the properties of

their behavior and use them as a base to describe difficult problems like the massive-MIMO

2

antenna selection problem and solve it. MRPNs will be further extended with the addition of

the conditions with the intent to make them more flexible and give more possibilities for

describing applications. With some additional ASP and Python extensions, an algorithm for

solving the MIMO problem of antenna selection is encoded and simulated on the Multi-token

Collective Reversing Petri nets.

1.3 Work Methodology

 The study of Petri nets and Reversing Petri nets, as well as their semantics and definitions,

was the first step in putting this thesis into action. It was necessary to understand the

Reversible computation separately. The next step was to learn how to use and code in Answer

Set Programming and understand its abilities and potential use. Further research on the

implementation of normal Petri nets and reversing Petri nets in Answer Set Programming

was vital to explore Answer Set Programming and how Answer Set Programming works in

practice.

 After becoming acquainted with ASP, I began researching an extended form of Petri nets,

MRPNs under the collective interpretation. I started encoding their forward computation on

ASP and my methodology is described in this thesis. Then, to be able to encode and expand

my ASP program with reversible execution, I continued my research on reverse semantics.

 The validity and the correctness of the code I propose for the collective reversible Petri

nets was then thoroughly checked using examples and test runs. To allow conditions to

control both forward and reverse executions of the transitions in the Petri nets, the forward

and reverse semantics for controlled execution were studied and subsequently added to the

program. This was a vital step in order to solve the MIMO problem of the Antenna Selection,

as conditions are required for the simulation, to control which transitions can fire according

to the model’s rules.

 To extend and apply the research, the problem of Antenna Selection was then thoroughly

investigated. I modified the algorithm proposed in [2][3] and added ASP and Python

extensions on the Controlled Multi-Token Petri nets to solve the problem. Python is required

3

for calculations and table multiplications, and it is dynamically called from ASP when

required.

 Finally, the ASP solving process was further studied and optimizations both on Python

and ASP were made to reduce the complexity and make the model work more efficiently.

Many attempts were made to reduce the time and the computation complexity of the model

and of the solving process.

1.4 Thesis Structure

 Chapter 2 starts with the description of Reversible Computation and Modeling. The

following are the basics of Petri nets and Reversible Petri nets. Collective Petri nets are then

explained, and their forward and reverse execution is shown. A basic explanation of Answer

Set Programming is also provided in Chapter 2, along with its syntax and semantics. Clingo,

the solver used in this thesis for ASP, is also included as well as the Python language, which

is used for the problem of the Antenna Selection. Finally, the antenna selection problem is

discussed in this chapter, together with an algorithm and its model on MRPNs.

 In Chapter 3, emphasis is given on the encoding of a form of Multi-token Petri nets under

the collective interpretation, in ASP language. The whole process of encoding is thoroughly

explained in Chapter 3 with examples of execution. Subsequently, additions and slight

modifications are made to the program, to support reversible execution and conditions. Then,

the extensions needed for simulating and solving the MIMO problem of the Antenna

Selection in a neighborhood are also added. Further optimizations are discussed for the

program to achieve a better performance.

 Chapter 4 contains a case study on the problem of the Antenna Selection where the

program we encoded is used to solve an Antenna Selection example. The property of

reachability is then explained and using it we compare a greedy approach solution to the non-

greedy one proposed in [2].

 Chapter 5 of this thesis summarizes the work done on this diploma thesis, noting the

difficulties encountered during implementation, as well as the work's limitations. The chapter

concludes with a brief mention of possible work that could be done based on this study.

4

Chapter 2

Related Work

 2.1 Reversible Computation 4

 2.2 Reversible Modeling 5

 2.3 Petri Nets 6

 2.4 Reversible Petri Nets 9

 2.5 Collective Multi-token Petri Nets 12

 2.5.1 Forward Execution 14

 2.5.2 Reverse Execution 15

 2.6 Answer Set Programming Language (ASP) 16

 2.6.1 ASP syntax and semantics 17

 2.7 Clingo 18

 2.8 Python 19

 2.8.1 Clingo API documentation 19

 2.9 MIMO – Antenna Selection 19

2.1 Reversible Computation

 Reversible computation [12] is an expanded type of standard-forward computation,

that allows us to reverse the execution of an operation at any time. This makes it possible

for the system to return to a previous state and possibly be used as a way to recover from

errors.

 Possibly the biggest reason for the study of reversible computation technologies is

that they give the only potential way to increase computer computational energy

5

efficiency. Due to the laws of physics, at some point, smaller transistors will no longer

produce the improvements they used to yield, and at this stage the development of

conventional semiconductor technology is going to stop as it is not going to be cost

effective.

 The concept of reversible computing is at the core of thermodynamics and information

theory, and it is the only way, according to the laws of physics, to keep improving the

cost and energy efficiency of general-purpose computing into the far future.

 The history of reversible computing started with Landauer's finding, that only

irreversible computing produces heat [16]. This finding led to the impetus for reversible

computing, and a strong line of research into the development of reversible logical gates

and circuits. Reversible computing never received much attention in the past because it

is hard to implement. Now that the end is in sight, it is time for the finest physicists and

engineers to begin a comprehensive effort.

 Petri nets are a visual mathematical language that can be used to specify and test

discrete event systems. They are linked to a rich mathematical theory and have widely

been used to model and reason for a wide variety of applications.

 The first analysis of reversible Petri nets was suggested in [9][10]. The authors of

these works examined the effects after inserting reversed transitions in a Petri net. These

transitions are obtained by reversing the direction of the arcs from a subset of selected

Petri net transitions. In the resulting Petri nets, they then explore problems of decidability

regarding reachability and coverability. This approach however, does not model

reversible behavior since it allows to reverse non-executed transitions.

2.2 Reversible Modelling

 Reversible computation has posed some unanswered questions. The key methods,

effects, potential benefits, and applications of reversible computation must all be

described. To answer these questions, it is helpful to apply various notions of reversibility

to appropriate modeling languages and formulate theoretical foundations for what

reversibility is, what it aims for, and what benefits it offers to systems.

6

 Exploring reversibility across formal languages, would aid in understanding its

definitions and semantics. It is easier to describe a unified theory for reversibility by

applying reversibility to particular case studies and using various notions and strategies.

This will also aid in comprehending how reversibility can improve specification,

verification, and testing.

 Once developed, reversible formalisms can also be useful to experts outside of the

field of computer science. Since there are natural and artificial systems that embed or

may use reversibility, it can be a useful setting for researching and analyzing systems.

Such reversible formalism will also find application in biochemistry, mathematics, and

material sciences.

2.3 Petri Nets

 Petri Nets were developed by Carl Adam Petri [5] in 1962, as the subject of his

dissertation. A Petri Net is a mathematical modeling tool for the description and analysis

of concurrent processes which arise in distributed systems. Since 1962, they have been

developed and extended, to support applications in many areas like protocols and

networks, performance evaluation, hardware systems, telecommunications, e-commerce

and many more.

 A Petri Net consists of two types of elements, the places, drawn as circles and the

transitions, drawn as rectangles. Places can contain a finite number of tokens drawn as

black dots inside places. Tokens can represent the elements of a system that are subject

to dynamic change. The number of tokens stored in different places in a specific state is

called a marking. The starting token distribution in a Petri Net is called the initial

marking. Transitions, however, have no capacity and they do not store tokens.

 Directed Arcs, connect places to transitions or vice versa, forming a bipartite graph.

Arcs connecting a place with a transition, form the input places. Arcs connect a transition

to a place from which the output places are formed. These arcs are weighted and denote

the number of tokens that will be moved through the arc. The weights are represented

with a label above the arc.

7

 A transition T when enabled may fire, moving tokens from input places to output

places as declared on the arcs. For a transition T to be enabled, all its input places must

have equal or more tokens than the weight of their corresponding arc that connects them

with T.

 Tokens will move from a place Pi to a place Pj, if there is an arc from Pi to a transition

T, and an arc from the transition T to Pj. The transition T has to be enabled and it also

has to fire. An enabled transition may or may not fire.

A Petri net is formally defined as a 4-tuple N = (P, T, F, W) and an initial marking M0,

where:

1. P is a finite set of places.

2. T is a finite set of transitions, P∪T≠∅, and P∩T = ∅

3. F: is the set of directed arcs from places to transitions, and from transitions to

places, F⊆(P×T)∪(T×P).

4. W: F→ℕ+ is a function that assigns weights to the directed arcs.

 The Petri net in Figure 2.3.1 contains five places, P1, P2, P3, P4 and P5, and two

transitions, T1 and T2. The arcs have no labels, so the weight by default is set to 1. In the

initial marking M0, places P1 and P3 have 1 token each, and place P4 has two tokens. P1

Figure 2.3.1: Petri Net

8

and P2 are the input places for transition T1 and P3 and P4 its output places. For T2, the

input place is P3 and the output place is P5.

 A transition in a Petri Net is enabled if all its input places hold at least the number of

tokens specified in the arc’s label. Therefore, in figure 2.1, transition T2 is enabled as P3

holds a token and the arc connecting P3 and T2 has a weight of one. On the other hand,

transition T1 is not enabled as place P2 has zero tokens.

 The Petri Net in Figure 2.3.2 has three places, P1, P2 and P3 and one transition T1.

T1 is enabled since all the input places of T1 have the required number of tokens. After

transition T1 fires, tokens will move from input places P1 and P2 to the output place P3.

The result of firing transition T1 is shown in figure 2.3.3. Input places and output places

will lose and tokens respectively, equal to the weight of their arc and the fired transition.

Figure 2.3.3: Petri Net after transition fire

Figure 2.3.2: Petri Net before transition fire

9

P1 and P2 each lost one token in this example, while P3 gained one token because the

arcs are all of weight one.

2.4 Reversible Petri Nets

 On Petri nets, reversible computation aims to undo the consequences of a previously

performed transition. This might be necessary for applications that naturally embed

reversibility or to be used to go back to a previous state from an undesired one and recover

from faults. The philosophy of Reversible Petri Nets (RPNs) will be explained in this

subchapter.

 Consider a catalyst c, which aids in the bonding of the otherwise inactive molecules a

and b. Catalysis is achieved by element c bonding with a, which then allows a and b to bond.

The catalyst is then no longer needed, and its bond with the other two molecules is broken.

 Figure 2.4.1 depicts a Petri net model of this operation. The Petri net performs transition

t1 to create the bond c-a, then transition t2 to create c-a-b. Finally, action t1 “reverses” the a-

c bond, yielding a-b and releasing c. This example shows that Petri nets are not reversible by

nature, in the way that no transition can be carried out in both directions. As a result, a

supplementary forward transition (e.g., transition t1 for undoing the effect of transition t1,

bond c-a) is required to achieve the undoing of a previous action.

Figure 2.4.1: Biochemistry catalysis in normal Petri Nets

10

 In systems that express several reversible patterns of execution, this explicit approach to

modeling reversibility can be cumbersome, resulting in larger and more complex systems. In

Figure 2.4.2, is a method for modeling reversible computation which does not involve the

development of new, reversal transformations and instead allows transitions to be executed

both forward and backward using reversible Petri nets. Note that this is the approach taken

in RPNs and there could be other approaches as well.

 This Petri net is only valid when tokens are individual, although this restriction will be

lifted subsequently in this thesis. That means that for now, only one token of a certain type

can be present in a reversing Petri net. While this restriction will be removed later in this

thesis, this Petri net is only applicable when tokens are individual. That means that in a

reversing Petri net, only one token of each kind can exist. Distinguishing the causal course

of each transformation is another area where attention should be paid. Two new concepts,

bases and bonds, have been implemented to accomplish this. A base is a non-consumable

token that lasts forever. Via numerous transformations, a base safeguards the token's

uniqueness. A bond is a token-to-token relation formed by transitions. A transition's reversal

will break the bond, and thus the transition's effect.

 Another decision that had to be made was whether to use a transition that only took a

subset of the bonds and bases available as input. This ensures that only the ones required

are chosen, while the others are available for any other transformation that may arise. As

a result, negative bonds/bases are introduced. When a negative token ā is used to mark

Figure 2.4.2: Biochemistry catalysis in reversible Petri

Nets

11

an arc, it means that token a should not be present in the incoming places of t for the

transition to fire, and vice versa for bond b̅.

Reversing Petri nets are formally defined [4] by the 5-tuple (A, P, B, T, F) where:

1. A is a finite set of bases or tokens ranged over by a, b, Ā ={ ā | a ∈ A}where Ā

contains negative instance for each token, and we write 𝒜 =A∪Ā.

2. P is a finite set of places.

3. B ⊆A×A is a set of bonds ranged over by β, γ, ... A bond (a, b) ∈ B is denoted by

the notation a-b. B̅ ={ b̅ | b ∈ B} contains negative instances of the bonds. We

write ℬ =B ∪ B̅.

4. T is the set of the finite transitions.

5. F: (P×T ∪ T×P) →2𝒜 ∪ℬ is a set of directed arcs.

 The places and transitions remain the same as the traditional Petri nets , as well as the

arcs which remain labelled and directed. Their label now is a subset of 𝒜 ∪ℬ. Tokens are

now being distinguished from each other as they have a unique name. Bases can exist as

stand-alone elements or be combined to create bonds. The marking is the same as in

traditional Petri nets with the addition of bonds. A bond between 2 tokens is graphically

marked with a black line connecting the two black dots that represent the bonded tokens.

 To be well formed, the following should hold true for the transitions of a Reversing Petri

net:

 1. A ∩ pre(t) = A ∩ post(t).

 2. If a-b ∈ pre(t) then a-b ∈ post(t).

 3. F(t, x) ∩ F(t, y) = Ø for all x, y ∈ P x ≠ y.

 According to the above, no transition should consume tokens (1), no bonds are destroyed

during the execution of a transition (2) and no tokens or bonds are cloned into more than one

outgoing place (3).

12

 The history of the transition firings must be stored also to decide which transitions can

be reversed. Three types of reversibility for reversing Petri nets, backtracking, causal

reversibility, and out-of-causal-order reversibility are discussed in [4].

2.5 Multi-token Petri Nets

 We define a new type of reversibility in this section based on the collective token

interpretation philosophy [4], in which tokens of the same type are not differentiated. The

limitation of standard reversible Petri nets is now lifted, and multiple tokens of the same

type can exist in a marking, giving transitions the chance of multiple firings. Collective

Reversible Petri nets is a type of Multi-token Reversible Petri net (MRPN). This

philosophy is maintained by a variety of application domains, such as resource aware

systems or biological systems, and is implemented as a firing rule for multi-token

reversing Petri nets. This approach emphasizes the local nature of reversing Petri nets and

introduces a new perspective on reversing systems that focuses on token location rather

than transition relations.

 Consider the example of Figure 2.5.1 that was originally presented in [13]. This

example depicts two students attempting to purchase a present for their teacher. They

both have a coin, denoted by C1 and C2. Their coins can be found in places S1 and S2.

Transitions t1 and t2 represent the coin contributions, while transition t3 represents the

act of purchasing the present which costs one coin.

13

Figure 2.5.1: Students buying a present for their teacher.

 After the contributions have been made and the gift was purchased, there remains a

coin in S1.2, which must be returned. According to the collective token interpretation,

this coin can be randomly returned to any of the students because the purchase was made

possible by both of their contributions. This relation in which a transition may be causally

dependent on one either of the transitions is called disjunctive causality.

 A Collective Petri net is formally defined as a 6-tuple N = (P, T, A, AV, B,F) and an

initial marking M0.

1. P is a finite set of places.

2. T is a finite set of transitions, P∪T≠∅, and P∩T = ∅

3. A is a finite set of token types.

14

4. AV is a finite set of variables.

5. B ⊆ Α x A is a finite set of undirected bond types. We use the notation a-b for a

bond (a,b) ∈ B.

6. F: (P×T ∪ T×P) is the set of directed labelled arcs from places to transitions, and

from transitions to places.

 In Collective Reversible Petri nets, we are not interested in identifying the exact

tokens that participate in specific transitions. We assume that any token of the same type

has identical capabilities on firing transitions and can only take part in transition

involving variables of the same type. So, we let tokens that were not used in the forward

execution of a transition, to reverse the transition if they are of the same type as the ones

used in the forward execution.

2.5.1 Forward Execution

 A transition that is enabled for forward execution, is characterized by the non-

deterministic selection of tokens if they obey the transition's incoming arcs' variable

types. We also want to allow tokens to reverse transitions in which they have not

participated. Based on a selected forward enabling assignment, namely Uf, we can

identify the tokens that are removed from places as defined by the •Uf and moved to

places defined by Uf•. As a result, a transition firing in the forward direction, will pass a

collection of token and bond instances, and potentially form or destroy bonds as required.

These instances that will move, are specified by the transition's incoming arcs, and will

be passed to the transition's outgoing places, as specified by the transition's outgoing arcs.

Token and bond instances are transferred without being supplemented with memories of

their previous transformations. For the transitions, their history of execution is updated

accordingly, incrementing the number of times that they have been executed.

 To be more specific, a transition occurrence is enabled:

15

(1) if token instances in the transition's incoming places are assigned to variables on

the incoming edges in a type-respecting manner, with token instances originating

from the appropriate input places and tokens connected with bonds as required by

the transition's incoming edges.

(2) If the selected token instances are bonded together in the transition's incoming

position, the bond should also exist on the variables labeling the incoming arcs

(thus transitions do not recreate bonds).

(3) When removing the selected incoming tokens and adding the selected outgoing

tokens, if two token instances are moved by a transition to separate outgoing

places, these tokens do not remain bonded(we do not clone tokens).

2.5.2 Reverse Execution

 Now we will focus on reversing transitions. If a transition has been previously

executed and there are token instances in its output places that fit the requirements on its

outgoing arcs, it can be reversed in that state. We neglect the causal paths allocated to the

tokens during forward execution. As a result, tokens can reverse any transition given that

the variable types are respected, regardless of whether the tokens were directly used to

fire this particular transition event.

 To be more specific, a transition occurrence is enabled to reverse:

(1) If there is a type-respecting assignment of token instances from the out-places of

the transition to the variables on the transition's outgoing edges, and the instances

are connected with bonds as required by the outgoing edges.

(2) If the selected token instances are bonded together in the transition's outgoing

position, the bond should also exist on the variables labeling the outgoing arcs

(thus we do not recreate existing bonds).

(3) If two tokens are passed to different incoming places by a transition, these tokens

should not be linked when the selected outgoing tokens are removed and the

selected incoming tokens are added (we do not clone tokens).

16

2.6 Answer Set Programming

 Answer Set Programming (ASP) is a declarative programming style aimed at solving

difficult, NP-hard search problems and it is especially helpful in knowledge-intensive

applications. It is based on the stable model [7] semantics of logic programming which

applies ideas from auto epistemic logic [11] and default logic [15] to the study of negation

as failure. Years of research into information representation, logic programming, and

constraint satisfaction have resulted in it. The planning method was proposed in 1997 and

was an early example of answer set programming, based on the relationship between

plans and stable models.

 Unlike traditional programming, where the idea is to use programs to specify how a

problem should be solved, the idea now is to view a program as a formal representation

of the problem as such. In other words, instead of trying to solve each individual problem

separately, we program the machine to be able to solve any problem of that kind. We

encode the solving algorithm, and then we provide our encoded problem to it to solve it

for us. The first step is to express the problem using first logic programming syntax. The

grounder then produces a finite propositional representation of the input program. A

ground program does not contain any variables but has the same answer sets as the

original program. After producing the ground program, a solver then computes the stable

models of the propositional program. The solution is then built using the stable models,

computed in a bottom-up approach. The solving process is shown in Figure 2.6.1.

Figure 2.6.1: ASP solving process.

17

2.6.1 ASP syntax and Semantics

 The building blocks of ASP are atoms, literals, and rules. Atoms are simple statements

that may be true or false. Literals are atoms, or atoms preceded by not, declaring negation.

An ASP rule is as follows:

 h :- p1, … ,pm, not r1, … ,not rk.

 Where h, pi’s and ri’s are all atoms. In every rule, the part on the left of ‘:-’ is called

the head and the right part is called the body. In the above rule, h is the head and the pi’s

and ri’s form the body of the rule.

 A rule is an argument to derive that the head of a rule is correct if all literals in the

body are true. A negated literal not rj is true if the atom rj does not have a derivation. For

instance, from the rule

 charging :- plugged_in, not broken.

we can conclude that something is charging if we establish that it is plugged in and nothing

is broken.

Rules can have no body.

 plugged_in :- .

 Such rules are called facts. Facts are unconditionally true and usually “ :- ” is omitted.

Rules can also have no head.

 :- broken.

 Such rules are called constraints and they affect the collection of answer sets by

eliminating all the answer sets where the body is true.

 The atoms and facts can have several parameters. An atom with name weather with

X parameters, X ∈ Z+, is symbolized as weather/X. Next is a simple example of two ASP

rules using the atoms parent/2, father/1, mother/1, male/1, female/1:

 mother(A):- parent(A,_), female(A).

18

 father(A):- parent(A,_), male(A).

 Notice that underscores represent anonymous variables that can be used if their

assignment is unimportant, i.e., if they are not used in another rule predicate or if they

are irrelevant. For example, someone is a mother if is a parent to anyone and is a female.

 Rules alone without facts will produce no more facts. Using the following facts,

 female(alice). parent(alice,bob). male(bob).

our program will produce the fact mother(alice) from the first rule.

 Semicolons in the head of a rule, will result in the creation of multiple facts:

 human(A ; B) :- parent(A,B).

 parent(alice,bob).

will produce the facts human(alice) and human(bob).

2.7 Clingo

 Clingo is an ASP system to ground and solve logic programs of the Potsdam Answer Set

Solving Collection (Potassco) [23]. Grounding is the procedure of computing the equivalent

variable-free program. A grounder example is gringo [20], which is also used as a grounder

for Clingo. The output of gringo can be further processed with clasp, claspfolio or clingcon.

 For Clingo, the solver used is clasp. Clasp is a solver for (extended) normal and

disjunctive logic programs. It integrates the high-level simulation capabilities of ASP with

cutting-edge Boolean constraint solving techniques. The main clasp algorithm, which is

based on conflict-driven nogood learning, is proven to be a very effective technique for

satisfiability testing (SAT).

19

2.8 Python

 Python is an object-oriented, high-level programming language with dynamic semantics

that is interpreted. Python's plain, easy-to-learn syntax enhances readability, reducing

software maintenance costs.

 Its high-level built-in data structures, along with dynamic typing and dynamic binding,

make it ideal for Rapid Application Development but also as a scripting or glue language for

connecting existing components.

 2.8.1 Clingo API documentation

 The clingo module [21] can be used to provide functions and classes controllable

grounding and solving. Clingo will be able to execute Python code embedded in logic

programs if the clingo framework is built with Python support.

 Functions which are defined inside a Python script block can be called during the

instantiation process using @-syntax.

2.9 MIMO – Antenna Selection

 Antenna selection in distributed Massive MIMO (Multiple Input Multiple Output)

[18] antenna arrays is an optimization problem on a complex system with components that

behave similarly to each other. It is possible to keep the benefits of a massive antenna array,

such as interference reduction, spatial multiplexing, and diversity [1], while also reducing the

amount of radio frequency (RF) chains and antennas to power at once. Utilizing all available

antennas is not optimal, as certain antennas do not contribute to the operation [8].

 Our goal is to find the optimal subset of antennas to power on, for us to have the optimal

results. This problem however for large antenna arrays is computationally demanding [19].

As a result, for real-time use, suboptimal methods are sought.

20

 A fast, environment-aware, asynchronous, distributed antenna selection algorithm that

maximizes sum-capacity within a distributed array's RPN scheme is presented in [2].

 The optimization problem we face here, is the maximization of the sum capacity in a

distributed massive MIMO base station with NT antennas. Our task is to select a subset of

NTS antennas in a cell with NR users and attempt to maximize the sum capacity C.

 In the equation of C, ρ is the signal to noise ratio (SNR), matrix I is a NTS x NTS identity

matrix, P is a diagonal power distribution NR x NR matrix initiated with 1/NR. Hc is the NTS x

NR channel submatrix for the subset of selected antennas from the NT x NR channel matrix H,

which is known in its entirety.

 The RPN framework is independent of the array structure (or, in a broader sense, network

topology) because it is not dependent on the number of antennas or how they are connected

to one another. This hints at its generalizability as a resource allocation framework in

wireless communications.

 To model the antenna selection problem on Petri nets, we represent the antennas with

places, and power tokens are held by the switched-on antennas. Transitions, depicted as bars

between adjacent antenna places, allow the tokens to flow and move from one antenna to

another. Transitions operate as follows:

1) If a token exists in exactly one of the two places it binds, the transformation is

possible, otherwise it is not.

2) A transition can fire and move the power token from one antenna A to another antenna

B, only if that leads to an increase in sum-capacity. In other words, if the sum-capacity

with antenna B powered on and antenna A powered off is greater than the current

sum-capacity, the transition is enabled.

21

3) In the case of multiple possible transitions from a place, the one with the maximum

sum-capacity difference is preferred. Prioritisation is implemented in the transition

condition function.

4) Transition execution has no set order, and transitions are carried out until a stable

state is reached.

 The state of the antennas is altered until the RPN converges, and the antennas with tokens

are switched on for the period of the coherence interval. The algorithm resumes operation

after the next update of the channel state information.

 In the Multi-token Petri net interpretation, antennas are represented by places A1,...,An,

where n=NT, and the overlapping neighborhoods by places M1,...,Mh. When there is a

connection link between antennas Ai and Aj, these places are connected via transitions ti,j,

which connect Ai, Aj, and Mk. The transition captures the fact that antenna Ai may be

preferred over Aj in place Mk based on local knowledge, or vice versa.

 Three types of tokens are used to implement the intended mechanism. The power tokens

p1,...,pk are the first, with k denoting the number of enabled antennas. Antenna Ai is

considered powered on if a token of type p is located on place Ai. The transfer of these tokens

results in new antenna selections, which should converge to a locally optimal solution in the

best-case scenario. Second, each neighborhood is represented by tokens m1,...,mh. The third

type of tokens are the antenna tokens a1,...,an which represent the antennas. Here, is how the

tokens are used:

 Transition ti,j between antenna places Ai and Aj in the neighborhood Mk is enabled if

token p is available on Ai, token aj on Aj, and bond (ai,mk) on Mk. The antennas Ai and Aj

are on and off, respectively, in this configuration. The transition then causes the bond (ai,mk)

to be broken, the token ai to be released to place Ai, the power token to be transferred to Aj,

and the bond (aj, mk) to be created on Mk.

22

 Finally, an antenna token ai is associated with data vector I(Ai)=hi, hi ∈ ℂ, i.e. the

corresponding row of H, to capture the transition's condition. The condition creates the

matrix Hc by collecting the data vectors hi associated with the powered-on antennas.

Hc=(h1,...,hn)T where hi=I(Ai) if antenna Ai is powered on, otherwise hi=(0...0). If the sum

capacity calculated for all currently active antennas (including ai), Cai, is less than the sum

capacity calculated for the same neighbourhood with the antenna Ai replaced by Aj, Caj, i.e.,

Cai < Caj, the transition ti,j will occur.

 Figure 2.9.1 shows the implementation of the transition for moving the power to

antenna Ai from Aj through transition ti,j. Another transition exists, not shown above,

that transfers the power from Aj to Ai, namely tj,i.

Figure 2.9.1: Part of MRPN model of Antenna Selection

23

Chapter 3

Encoding Collective Petri Nets into ASP

 3.1 Forward Execution 23

 3.2 Reversible Execution 43

 3.3 Conditions 53

 3.4 Extension to support Antenna Selection 63

 3.5 Optimizations 74

 The aim of this Chapter is to describe the methodology followed, to create the rules

and encode the Multi-token Petri nets into the ASP programming language. Each rule and

fact are explained, and all together the program simulates the way a multi-token Petri net

under the collective implementation behaves. The Extensions to support Antenna

Selection are also discussed and then the code is being optimized for better performance.

3.1 Forward Execution

 The time, places and transitions are represented with the following facts:

 f1: time(ts), 0 ≤ ts ≤ k.

 f2: place(pi), pi ∈ P is a place.

 f3: trans(tj), tj ∈ T is a transition.

 The simulation of a Petri net is being split into different time instances from 0 to k,

and at each time instance exactly one transition fires given that at least one is enabled.

24

 We also need to represent the tokens of the Petri net.

 f4: token(q), q ∈ A.

 There can be multiple tokens of the same type in Collective Petri nets, as well as many

different types of tokens. So, we need to clarify the type of each token with the following

fact:

 f5: type(ty,q), where ty ∈ Av is the type of token q.

 Tokens are held by places.

 mk1: holds(pi,q,ts), where pi ∈ P, q ∈ A, ts is a timestamp.

 A place can also hold bonded tokens.

 mk2: holdsbonds(pi,qa,qb,ts), where pi ∈ P, qa,qb ∈ A, ts is a timestamp

 For simplifying things in future rules, we construct the following helping rules:

i. A bond exists both ways between the tokens.

ii. A token is only the same with itself.

iii. If a place either holds Q alone, or in a bond, we say place P has token Q.

25

 In every Petri Net, there are arcs from places to transitions, and arcs from transitions

to places. In Collective Petri Nets, arcs are labelled with variables or variable pairs.

Variables ask for a specific type of token, and only tokens of that type can be assigned to

it. We need to describe these arcs with facts and include in these facts the variables and

the type of tokens they ask for. For this purpose, we use the following rules:

 f6: ptarc(pi,tj,v,ty),

 where pi ∈ P, tj ∈ T, v ∈ Av is a variable, ty ∈ A is a token type.

 f7: tparc(tj,pi,v,ty),

 where pi ∈ P, tj ∈ T, v ∈ Av is a variable, ty ∈ A is a token type.

 f8: ptarcbond(pi,tj,va,ta,vb,tb),

 where pi ∈ P, tj ∈ T, va,vb ∈ Av are variables, ta,tb ∈ A are token types.

 f9: tparcbond(tj,pi,va,ta,vb,tb),

 where pi ∈ P, tj ∈ T, va,vb ∈ Av are variables, ta,tb ∈ A are token types.

 Fact f6, is a fact for a single token arc, from place pi to place tj. Similarly, f7 is a

single token arc, from transition tj to place pi. Facts f8 and f9 encode the arcs moving

bonds from place pi to transition tj and from transition tj to place pi respectively.

 As we mentioned, our arcs now have variables, asking for a specific type of token.

For a transition to be enabled, we need to find an enabling assignment that will respect

all the restrictions on the types of tokens of the arc. In Figure 3.1.1 is an example with an

Figure 3.1.1: Enabling Transition

26

arc and 5 different variables, that we need to satisfy with the type of token they ask for.

In this case, we need to have at least 3 different tokens of type “o” and at least 3 different

type “h” tokens. One of the type “o” tokens, the one assigned to the variable u, has to be

bonded with 2 different type “h” tokens. In this example, the only type “o” token that

meets these criteria to be assigned to u, is token o1. Tokens h1 and h2 are assigned to w

and s respectively, as they are the only two tokens bonded with o1. Similarly, we assign

o2 to r, h3 to q and o3 to v, forming an enabling assignment. With this enabling

assignment, transition T in in figure 3.1.1 is enabled with this current marking.

 If we want to encode the arc from place P to transition T of the figure 3.1.1, we need

to split all the different variables and bonded variables into ptarc/4 facts or ptarcbond/6

facts. This is needed because our facts are of static length and we cannot dynamically

change them according to the number of parameters our arc needs.

 Figure 3.1.2 demonstrates the way multiple arc requirements of Figure 3.1.1 are being

split into ptarc and ptrarcbond facts. We need 3 different ptarcbond/6 facts and 1 ptarc/4

fact to encode this arc.

1. ptarcbond(p,t,u,o,w,h).

2. ptarcbond(p,t,u,o,s,h).

3. ptarcbond(p,t,r,o,q,h).

4. ptarc(p,t,v,o).

Figure 3.1.2: Enabling Transition for Encoding

27

 For a transition to be enabled, we need to check whether there is a type-respecting

assignment of token instances in the incoming places of the transition, to the variables on

the incoming edges. We need to satisfy every incoming arc to our transition, by assigning

a token or a bond to the arc’s variables. If the total number of satisfied incoming arcs to

a transition T, is the same in quantity as all the arcs that point to T, it shows that all the

arcs have been satisfied, there is an enabling assignment and transition T is now enabled.

 Let us now see in detail the rules needed to encode the enabling assignment. We want

our program to non-deterministically select an available token of the correct type, from

the appropriate place, and assign it to a value. Then proceed with the remaining tokens

that are available and try to assign them to the other values. The program should check

all the available correct combinations and return the first one found.

 For every place-transition arc that carries a single token (ptarc), if the place has an

available token of the correct type, or a bond with at least one token of the correct type,

then this token might be the one that satisfies the arc. This translates into the following

rule:

 Rule r1a: If place P, has a token Q at time TS, that is not unavailable, and it is of the

same type as the arc demands, then it might be the one satisfying the arc. Notice how the

head of the rule is surrounded with curly brackets. The curly brackets indicate a choice

rule. Even if all of the atoms in the body of the rule are true, the rule might not always

execute and produce the fact satisfied/5. This is part of the random selection of the token

that can satisfy the variable, but also because we only want one token to be assigned to

V and travel through the arc. The fact unavailable(Q,TS) is also used here and it divulges

28

that a token Q is unavailable for satisfying any variable at time TS and we will encode it

subsequently. From r1a, a new fact is created:

 f10: satisfied(pi,tj,v,q,ts), where pi ∈ P, tj ∈ T, v ∈ Av, q ∈ A, ts is a timestamp.

 Until now, we have found a way to find the satisfied arcs of single tokens. From figure

3.1.2 that is only the last arc, the one defined with ptarc(p,t,v,o). We need another rule to

satisfy variables for bonds. For every place-transition arc that carries a bond (ptarcb), if

the place has a bond of the correct type, that both tokens are available, then this bond

might be the one that satisfies the arc. This translates into the following rule:

 Rule r1b: If place P that relates to transition T with a ptarcb/6, holds a bond between

two different type-respecting tokens Q1 and Q2 at time TS, that are not unavailable, then

this bond might be the one satisfying the arc if it also does not cause un undecidable split.

29

 Notice in rule r1b, we also include another atom, not splitcycle/4. This is for capturing

circles in our tokens that combined with a transition that splits the bond, will lead to

undecidable situations. This is captured by condition (3) in [4], saying that “if two token

instances are transferred by a transition to different outgoing places, then these tokens should

not remain connected when removing the selected incoming tokens and adding the selected

outgoing tokens (we do not clone tokens).”

 To encode splitcycle/4 and prevent cloning tokens, we first need to identify when this

problem might occur. In Figure 3.1.3 we see an example demonstrating this situation. Given

an enabling assignment of v:a1 and w:b1, the execution of transition T will lead to a bond

breakage between a1 and b1 as we can see from the outgoing arcs. Bonds between a1 and c1,

and b1 and c1 remain unaffected from the transition’s firing but c1 cannot follow both a1 and

b1 to their new places as this will lead to token cloning. Those undecidable situations happen

when tokens are circularly connected like in Figure 3.1.3, and we have a transition that

destructs a bond of this circular chain.

 Therefore, first we need to identify transitions that destroy bonds. This is done from the

following rule:

Figure 3.1.3: Undecidable Split

30

 Fact splitbond/6 is created for every instance where there is an incoming bond-arc to a

transition with bond between the tokens assigned to V1 and V2, but the same outgoing bond-

arc is absent. That means the bond assigned to V1 and V2 is now destructed.

 Now we need to create the splitcycle/4 facts used in r1b for two tokens. The only thing

left to do is to identify when two tokens remain connected through different chains of tokens,

after their initial bond destruction. We do just this with the following rules:

 With rule r3a, we construct a chain on place P, connecting all the tokens Q1, Q2 of the

place, except from any bond A and B where A and B are the bonded tokens that might break

from splitbond(P,T,V1,T1,V2,T2), as A is type T1 and B is type T2. Rule r3b recursively

captures that, if a token Q1 is chained with Q3 and Q2 is chained with Q3, then Q1 is chained

with Q2, if Q1 and Q2 are not the same token. Finally, r3c defines the rule backwards as well

for tokens Q1 and Q2.

31

 Our goal is to identify and capture the bonds that will be susceptible to a splitcycle so

that we can avoid assigning them to such variables. The following is how a splitcycle/4 is

encoded:

 The body of r4 contains four atoms. The chain atom indicates that, after creating a chain

between all the bonds, except Q1 and Q2, Q1 and Q2 still form a chain at time TS. The other

3 atoms are included to create the fact splitcycle/4 for forward execution only. Let us consider

the example of figure 3.1.3 and follow the r3 rules.

 Because there is no outgoing arc transferring the same bond as the incoming arc, we

clearly have the fact splitbond(p1,t,v,a,w,b) from rule r2. A chain is created only when we

have a splitbond/6 fact and only for tokens of the same types as the ones that split. Other than

that, there is no need for these facts, and we want to avoid generating them for performance

reasons when they are not required. To avoid forming unnecessary rules for chains, we

include in the rule’s r3a body, which is the rule that will initiate the creation of the chain, the

splitbond/6 requirement, and the types of the splitting bond.

 With splitbond(p1,t,v,a,w,b) in mind, we can construct the chain(P,Q1,Q2,A,B,TS) and

see that the only type a token is a1 and the only type b token is b1. Therefore, in

chain(P,Q1,Q2,A,B,TS), the ASP variable A is given the value of the token a1, and B of b1.

We assume time TS is 0. So, we can replace the variables with constants and obtain

holds(p,Q1,Q2,a1,b1,0). We need two bonded tokens, Q1 and Q2, where Q1!=a1 and Q2!=b1

to replace the last variables. Q1 can be either b1 or c1 and Q2 can be a1 or c1. Since all of

these tokens are bonded, we have 2 x 2 = 4 different combinations:

 chain(p1,b1,a1,a1,b1,0), chain(p1,b1,c1,a1,b1,0),

 chain(p1,c1,a1,a1,b1,0), chain(p1,c1,b1,a1,b1,0).

32

In our example, rule r3b will create more facts. But r3c will produce 2 more facts:

 chain(p1,a1,c1,a1,b1,0) and chain(p1,a1,b1,a1,b1,0).

 From the fact: chain(p1,a1,b1,a1,b1,0) we got what we were looking for. According to

this fact, a1 and b1 will still be chained, even after destroying their bond. And this fact will

be the body of r4 to give us the splitcycle(p,a1,a2,0) we need, in order to avoid assigning a1

to a and b1 to b.

 The facts for the unavailable tokens are the final piece of the puzzle in fully encoding

the rules r1a and r1b for satisfied incoming arcs and satisfied incoming bond arcs,

respectively. It is a straightforward explanation, and the encoding is as follows:

 A not assigned token Q, is unavailable if it is bonded with an assigned token QQ (r5a)

or an unavailable token QQ (r5b). A token Q that is bonded with an assigned or an

unavailable token QQ, will follow the assigned token when the transition fires. On that

account, we cannot assign token Q to a different variable for this execution.

33

 After making the satisfied/5 and satisfied/7 facts from r1a and r1b respectively, we

save the assigned tokens to each variable on a new fact, assigned/5. We save single tokens

to single variables this time because bonds might be formed or break after the execution.

We capture for each time, which token, from which origin place P, is assigned to which

variable V on an arc that travels to transition T.

 Rule r6a captures the assignment of token Q1 to the variable V1. Rule r6b creates two

new rules, one for V1 and Q1 and one for V2 and Q2 to capture the bond’s assignment

into a single token to variable assignment.

 To complete the enabling assignment, a few things need to be sorted out first. As for

now, because of the nature of the selective rules r1a and r1b, a couple of things could go

wrong. The grounding process generates all the desirable satisfiable results, but it also

creates some undesirable ones that we need to dispose of. First, a token can be assigned

to more than one variable. Similarly, multiple tokens can be assigned to a single variable.

Both scenarios contradict the implementation of the Collective Petri Nets, so we need to

remove those instances from our results.

 Count the number of variables assigned to a token for any transition. If more than one

variable is assigned to a token at this timestamp for the same transition, then discard the

set.

 Similarly, count the number of tokens assigned to a variable for any transition. If more

than one token is assigned to a variable at this timestamp for the same transition, then

discard the set.

34

 Rules with no head, constraint rules, show that a solution is deadlocked. Deadlocks

are undesirable, and the current assignment to the variables is discarded if the body of the

deadlock is true.

 Note that if a place P is an incoming place to multiple transitions, then the token

should be able to get assigned to more than one variable, but for different transitions.

These rules do not prevent this from happening, since they count assignments of the token

for the same transition.

 Finally, to correctly finish the enabling assignment, another scenario must be

considered. During the execution of the program, some transitions might not be shown as

enabled at some time instance TS, despite having all the appropriate tokens to the

incoming places at TS.

 Let us consider the scenario of two transitions, namely A and B. We assume that all

the incoming places to A and B have all the type-respecting tokens at time TS. That makes

both A and B transitions enabled at TS. The problem is that the program, so far, can

produce solutions where not all the arcs of A and B are getting satisfied. It can get along

with just enough assignments, to make at least one transition enabled, because there is

nothing to prevent this from happening. As a result, in some solutions we have neglected

assignments that lead to having one of the two transitions shown as not enabled. This is

happening again because of the optional satisfied rule and a non-complete solution can

get along just fine, with fewer assignments.

 To prevent this, we need to make sure that all the tokens that can get assigned do so.

In other words, we run the satisfied rules r1a and r1b as many times as possible, assigning

all tokens that can get assigned. Then all the transitions that should be enabled are indeed

enabled in all the solutions, and one of them is chosen randomly at each distinct time to

fire.

35

 r7a:

 According to rule r7a, solutions are deadlocked if we have an arc from place P to a

transition T that is not satisfied from any token, but place P has at least an appropriate,

not unavailable, and not assigned token that does not get assigned to T and V1, at time

TS.

 With the same logic, rule r7b is used for deadlocking solutions for unassigned

appropriate token bonds.

 r7b:

 Rule r7b is of the same logic as r7a, but this time for a bond instead of a token. The

only extra rule here is the addition of not splitcycle/4, because we do not want to deadlock

solutions where a bond is not assigned because it would lead to an undecidable situation.

36

 We are now ready to declare the rule to capture the enabled transitions at each time.

 A transition is set to “enabled” when the number of satisfied incoming arcs is equal to

the number of the total incoming arcs of the same transition. This is captured from rule r8.

C1 counts the number of the bond incoming arcs to T and then we surround

satisfied(_,T,_,_,_,_) with curly brackets and C1, to say we want exactly C1 satisfied facts.

We do the same thing, but now for single arcs and with C2 as our counter. If we have exactly

C2 satisfied arcs at TS, then transition T is enabled at TS.

 We now have a set of enabled transitions that may fire. We want a rule to encode the

point that an enabled transition may fire.

 r9: {fires(T,TS)} :- enabled(T,TS), time(TS).

 In our simulation, we want exactly one transition to fire at each distinct time instance,

assuming that at least one transition is enabled at that time instance. We force this by

deadlocking situations in which multiple transitions fire, or when no transition fires, but we

have an enabled transition.

37

 There is only one thing left to do to finish the encoding of the forward firing Collective

Petri Net. The assigned tokens must move through the arcs and go to their destined place.

Also, tokens irrelevant to the firing must stay in the same place for the next time instance,

after the fire.

 We devised a useful rule, r10, to determine which tokens will split after a transition

fire. It is based on the splitbond/6 rule that we discussed previously.

 This rule r10 captures all token bonds assigned to variables on a splitbond. In other

words, the bonded tokens Q1 and Q2 will have their bond destroyed after the firing of

transition T.

 The following rules apply to tokens and bonds that are unrelated to transition T's

firing:

 Rule r11: Any token that was not assigned nor unavailable, will remain in the same

place P for the next time instance.

 Rule r12: Any bond that was not assigned nor unavailable, will remain in the same

place P for the next time instance. We only need to include not assigned and not

38

unavailable for one token, as if one is assigned then the other one is at least marked as

unavailable.

We continue with tokens and bonds that were assigned to a fired transition.

 Rule r13: A place P will hold a token, if there is an incoming arc to P from the fired

transition T, that carries a token assigned to V1. Token Q1 assigned to V1 was not bonded

before.

 Rule r14: A place P will hold a token, if the assigned token was bonded with exactly

one other token and their bond brakes on T.

 Rule r15: This rule captures two scenarios. If PT1 is equal with PT2 then a bond

moved through the arc to the new place. If PT1 is not equal with PT2 then a new bond

was formed from transition T and will end up to place P.

39

 According to [4] definition (2), “if the selected token instances are bonded together

in an outgoing place of the transition, then the bond should also exist on the variables

labelling the outgoing arcs (thus we do not recreate existing bonds)”. Tokens bonded with

assigned tokens must move with them to the place declared on the outgoing arc. These

are the rules that capture this:

 Rule r16: If a token Q2 was bonded at the origin place PT, with the assigned token

Q1 and the two tokens did not split, then the destination place P will now hold Q1 and

Q2 bonded.

 Rule r17: This rule recursively captures that, if a bond has moved to place P at time

instance TS+1, then all the bonds it previously had will also move to place P if they did

not split.

 Rules r11 to r17 keep the tokens in case of a firing. In case of no transition firing at a

time instance, we want the tokens to stay at their places.

 holds(A,B,TS+1) :- holds(A,B,TS),not fires(_,TS),time(TS).

 holdsbonds(A,B,C,TS+1) :- holdsbonds(A,B,C,TS),not fires(_,TS),time(TS).

40

 Consider the Collective Petri Net of Figure 3.1.4. If we want to describe our problem

and simulate it on our program, we need to create facts that describe it. The only facts

that someone needs to always declare, are the facts for all the arcs, the type of tokens,

and the initial markings are holds/3 and holdsbonds/4. Facts for tokens, places and

transitions can be created using the following set of rules:

Figure 3.1.4: Encoding Petri Net Example

41

The Net of figure 3.1.4 can be described from the facts:

 We should also declare how many time instances we want our simulation to run. For

example, for 5 instances we give the fact:

 time(0..4).

 Figure 3.1.5 shows how tokens satisfy the arcs on time zero. Token a1 is assigned to

u, and its bonded token c1 is marked as unavailable. Bond a2-b2 satisfies the

ptarcb(y,t,v,a,w,b), with a2 getting assigned to v and b2 to w. Token c2 is also marked

Arcs Type Initial Marking

ptarc(x,t,u,a).

ptarcb(y,t,v,a,w,b).

tparcb(t,z,u,a,w,b).

tparc(t,z,v,a).

type(a,a1). type(a,a2).

type(b,b1). type(b,b2).

type(c,c1). type(c,c2).

holdsbonds(x,a1,c1,0).

holdsbonds(y,a2,b2,0).

holdsbonds(y,b2,c2,0).

Figure 3.1.5: Encoding Petri Net Example

transition fire clingo output time instance 0.

42

unavailable as it is bonded to b2. Both arcs are satisfied, and now transition t is enabled

and it fires. (Not all the facts generated are shown in Figure 3.1.5).

 After the firing of t at time 0, the bond between a2 and b2 is destroyed and a new

bond is being created between a1 and b2. Tokens c1 and c2 follow a1 and b2 respectively

and stay bonded with them after the transition fire. Program output from clingo is shown

in figure 3.1.7.

Figure 3.1.7: Encoding Petri Net Example

transition fire clingo output time instance 1.

Figure 3.1.6 Encoding Petri Net Example

transition fire

43

3.2 Reversible Execution

 Reversible execution in Collective Petri nets, can take part in a certain state, if the

transition has been previously executed and there are token instances in the outgoing

places, that match the requirements of the outgoing arcs, requires a way of keeping track

of when a transition has fired. We do not need to keep track of the paths of tokens, or

which specific tokens were used in the forward executions, as this is not required. Any

tokens that match the requirements of the outgoing arcs on the outgoing places, can be

used to reverse a transition, given that the transition has been previously executed

forward.

 Because reverse execution cannot happen on its own without forward execution, the

new code presented in this subchapter, must be used in conjunction with the code for the

forward execution.

 A way of keeping track of how many times a transition has fired, is required for this

approach. Then, the transition can fire back, no more times than the times it has

previously been fired forward. The first new rules that we need are the following:

 The first parameter of execcounter/3 represents the transition, the second is its

counter and the third parameter is the time instance. The rule r18a tells the program that

every transition T has zero executions at first (at time instance zero). If the transition did

not fire during time instance TS, rule r18b keeps the same count for the next time instance.

If the transition fires forward at TS, we increment its count by one for TS+1 using rule

r18c, and we decrement it using rule r18d for reverse fire.

44

 Apart from the new rules above, everything else in reversing executions works with

the same logic as in forward execution. The code looks similar, but we need to modify it

to fit the reversing execution.

 The first thing we change is the enabling assignment for the collective reversal. We

are interested in the outgoing arcs of our transitions that can be reversed and we need to

find a reversing enabling assignment for these arcs.

 Notice in r19a, the addition of the execcounter/3 atom in the body of the collective

satisfied (coll_satisfied/5). In our execcounter/3 atom, we want the counter C to be greater

than zero. This addition was made to avoid reversing executions that were not fired

forward more times than reverse. The next change is the replacement of the ptarc/4 atom

with tparc/4 and this is done because we are now interested in satisfying the outgoing

arcs of the transitions. Some tokens might be assigned to forward transitions as well as

for reversing transitions, so we need to distinguish some facts from the forward facts via

giving them new names. The fact unavailable/2 is replaced with the coll_unavailable/2

fact for reversing, as well as coll_splitcycle/4 replaces splitcycle/4.

 In a similar way, we encode coll_satisfied fact for outgoing arcs with bonds:

45

 For reversing executions, splitting cycles may also apply here. To capture the

transitions that break bonds, similarly with the forward execution, we used the following

rule:

 Rule r20 creates facts to help us create the coll_splitcycle. As with the forward

execution, the same idea applies here as well. We want to see if 2 tokens remain chained

after breaking their bond in a reverse execution. Therefore, we initiate a chain of two

variables that will cause a coll_splitbond/6.

 Now, to identify that our chain refers to a splitting bond after reversal and avoid

assigning it, we use the following rule:

 This rule is the same as the r4 rule in forward execution with the exception of using

coll_splitbond/6 instead of splitbond/6. This is done to distinguish when a bond breaks

after a forward or a reversing execution.

46

 New unavailable facts named coll_unavailable for reversing execution were also used

above.

 Moving on with the reverse assignments, they change accordingly to:

 To complete the reverse enabling assignment, we need to deadlock the unwanted

situations using constraint rules similar to forward execution. The next two rules concern

over-assignment.

 Next, we also need to prevent under-assignment with the following two constraint

rules for arcs and bond-arcs respectively:

47

 A transition is set to “coll_enabled” when the number of satisfied outgoing arcs is equal

to the number of the total outgoing arcs of the same transition. This is captured from the

following rule r25:

 We now have a set of coll_enabled transitions that may fire back (in reverse). We want a

rule to encode the point that an enabled transition may fire back.

 Given that at least one transition is enabled or coll_enabled, we want exactly one

transition to fire, either forward or negative, at each time instance. The following rules are

derived from the forward execution, along with two constraint rules. To apply this updated

principal, we also need to update our rules.

48

 Now we want to count both forward and backward firings and make sure they happen

when possible and that only one takes place at every time instance. So, we replace the

above three lines of code with the following:

 A fact firing(Q, TS) records the total number of firings Q for a time instance TS. If

more than one firing happens at the same time, or if no firings happen when we could

possibly have one, then with the constraint rules we deadlock the answers with these

results.

 To update the markings of the tokens after a transition reverses, we recreate the next

helping rule for the reversing execution.

 Lastly, for moving the tokens after a reversing firing, we create new rules, similar to

forward execution but this time we replace fires/2 with firesb/2, ptarc/4 and ptarcb/6 with

tparc/4 and tparcb/6 respectively, and all the facts we changed with their equal collective

facts.

 The new rules for tokens (r28) and bonds (r29) unrelated to transition T’s firing are:

49

For coll_assigned tokens and bonds:

 And finally for tokens that are bonded with assigned tokens and bonds:

50

The not fire rules are updated as well:

holds(A,B,TS+1) :- holds(A,B,TS),not fires(_,TS),not firesb(_,TS),time(TS).

holdsbonds(A,B,C,TS+1) :- holdsbonds(A,B,C,TS),not fires(_,TS), not firesb(_,TS),time(TS).

Reverse Execution Example:

Figure 3.2.1: Reversing Petri Net example time 0.

51

 Consider the Reversing Petri Net of Figure 3.2.1. To encode this Petri Net, we need

at least the following facts:

 There are many different scenarios and solutions to this problem. In every scenario,

t1 is not coll_enabled at time zero, because it did not fire yet.

 Figure 3.2.2 shows that at time zero, token a1 is assigned to u, token b1 is assigned to

v and token c1 is assigned to w. This way the 2 bond-arcs are satisfied and the transition

t1 fires. The visual result of the forward execution of t1 is shown in Figure 3.2.3.

Arcs Type Initial Marking

ptarcb(x,t1,u,a,v,b).

ptarcb(x,t1,u,a,w,c).

tparcb(t1,z,u,a,w,c).

tparc(t1,y,v,b).

type(a,a1). type(a,a2).

type(b,b1). type(b,b2).

type(c,c1). type(c,c2).

holdsbonds(x,a1,c1,0).

holdsbonds(x,a1,b1,0).

holdsbonds(z,a2,c2,0).

holds(y,b2,0).

Figure 3.2.2: Encoding Reversing Petri Net Example,

transition fire, clingo output, time instance 0.

52

Figure 3.2.4 shows that at time one, tokens are now assigned for a collective reverse

execution of transition t. Also, at this solution, not all the same tokens that were used to

fire the transition at time 0, are being used now at time 1 to reverse it.

Figure 3.2.4: Encoding Reversing Petri Net Example,

transition fire, clingo output, time instance 1.

Figure 3.2.3: Reversing Petri Net example time 1.

t1

1

53

 Figure 3.2.6 shows the marking of the tokens at time two, and Figure 3.2.5 shows the

visual representation of the Net at time 2.

3.3 Conditions

 An addition to Multi-token Petri nets, are the transition conditions. Apart from the

rules that cause a transition to be forward or reverse enabled presented in subchapters

2.5.1 and 2.5.2 respectively, we add conditions on the transitions of a Petri net, that need

Figure 3.2.6: Encoding Reversing Petri Net Example,

transition fire, clingo output, time instance 2.

Figure 3.2.5: Reversing Petri Net example time 2.

t1

54

to be respected as well. These conditions are not designed explicitly for the problem of

Antenna selection. They are general and can be used for many problems needing

controlled firing or conditions on some variables.

 If a transition bears a forward condition on a variable, then the token assigned to this

variable, not only has to respect the type of token that the variable is asking, but it also

must respect the conditions of the transition.

 Consider the example of Figure 3.3.1, with two type respecting tokens a1 and a2, held

by the input place of transition t, x. In a normal Collective Petri Net without conditions,

both a1 and a2 can be assigned to u on the incoming arc of t. With this addition, tokens

now have values assigned to them and these values must meet the criteria of the

transitions’ conditions that may be present. In this example, transition t asks for a token

of type a, that its value is greater than 4. So, the only token that can be assigned to variable

u is token a1, which has a value of 5 and is of course greater than 4.

Figure 3.3.1: Forward Condition

Figure 3.3.2: Forward Condition after transition fire

55

 Token a2 is unable to satisfy the transition’s t condition, and thus cannot be assigned

to u and travel to place y, so in figure 3.3.2 transition t is not forward enabled.

 The same idea applies to conditions for transition reversing. Figure 3.3.3 shows an

example of a transition with conditions for both forward and reverse executions.

 The two first conditions (before the backslash) concern forward execution, whereas

the last one (after the backslash) concerns reverse execution. From the initial marking

shown in this example, we can see that bond a1-b1 is type-respecting and also condition

respecting, as a1’s value is indeed equal to five and b1’s value is greater than 20. That

makes transition t enabled to fire forward.

Figure 3.3.3: Forward and Reverse Conditions

Figure 3.3.4: Forward and Reverse Conditions after forward fire

56

 Figure 3.3.4 depicts the Petri Net after transition t fires forward. For reversing, we

have a condition only on variable u. Because transition t fired once, it can now reverse

once. Both bonds in y are type respecting the outgoing arc and both bonds are condition

respecting. Remember that both bonds can be non-deterministically selected to reverse

transition t, regardless of whether the tokens were directly used to fire transition t before.

 Assuming that bond a2-b2 was non-deterministically picked to reverse transition t,

the outcome is shown in figure 3.3.5. Bond a2-b2 is now type-respecting in regards of the

forward execution of t, but a2 does not comply with the condition. Transition t was

already reversed the same amount of times as it was forwardly executed, so there are no

more possible firings in this example.

 It is now time to encode conditions and add them to the Collective Petri Nets program.

The first thing we need is to add values to our tokens. This is done initially using the fact

value/3.

 f6: value(q,v,ts), q ∈ A, v ∈ Z, ts is a time instance.

 Fact f6 declares that token Q has a value V at time instance TS. Values can be different

in different time instances. But if a value is not given for some time instances, the same

value is being kept for the token. This is captured by:

Figure 3.3.5: Forward and Reverse Conditions after backward fire

57

 Rule r35 is responsible for creating a fact updated/2 if a token’s value has been

updated to a new value for the next time instance TS+1. If it has not been updated with a

new value, rule r36 renews the current value for TS+1. In other words, the value of a

token is kept the same for all time instances, unless explicitly updated.

Forward conditions:

 We want our conditions to be flexible through different time instances and allow

different time instances to have different conditions. We use the following fact for

forward conditions:

 f7: fwcond(tj,v,s,x,ts) , tj ∈ T is a transition, v ∈ Av is a variable,

 s ∈ { > , < , !=, = }, x ∈ Z+ is the condition value and ts is a time instance.

 For convenience, for transitions that do not change during the simulation, we can use

f7 with only the four first parameters (ts is excluded) and the following rule generates the

conditions for every time instance of our simulation:

 Our next goal is to find tokens that satisfy all the conditions of a transition for a

variable that they can be assigned to. If this is the case, the token can be assigned to the

variable.

 Using the following rules, we capture the value type pairs to minimize later on the

code needed to encode the Conditions.

58

 The symbols =, ≠, <, ≤, >, and ≥ are used to compare integers. We must write one rule

for each one of them in ASP to encode them. Next is an example for encoding greater

than (>) but the rest are very similar.

 Rule r37 states that a token Q, satisfies the forward condition on value V of transition

T, for having a value greater than X in time TS. In the body of the rule, we have a forward

condition of transition T, a place P connected with T that holds a token Q, the same type

asked from the condition, with value A that is greater than X at time instance TS. We

encode other symbols similar to this one, changing the body’s comparison symbol as well

as the fourth and third parameters of fwsatcond/6 and fwcond/5 respectively, according

to the symbol we try to encode.

 In many problems, more than one rule might apply to a variable. We want to find the

tokens of the variable’s asking type that also fulfill all the condition requirements.

 In general, the idea here is to find the tokens that satisfy all the rules of a transition

for a variable and save them in facts. The first thing is to count the conditions for a

variable on a transition, and then find the tokens, whose type matches the variable’s type,

and count how many of these conditions they satisfy. If the number of conditions they

satisfy is the same as the total number of the conditions for the variable, then we create a

fact satAllFwCond/4, saying that the token satisfies all the conditions of a variable of a

transition.

59

 One might notice there are some unwanted scenarios. In the event of multiple

conditions for multiple variables that concern tokens of the same type, even if there is a

perfect matching, because tokens are non-deterministically assigned to variables, there

will be “correct” answer sets, where the tokens are not perfectly matched with the

variables. Although there is always going to be the desired solution with the perfect

matching, if it exists, optimally we would like to get the maximum matching every time

and ignore the other solutions.

 Figure 3.3.6 shows an example of this problem:

 The problem here is that we will have 2 answer sets, one where a1 and a2 are assigned

to variables v and u respectively and one answer set where only a1 gets assigned to u.

The second answer set does not have a maximum/optimal matching and thus the transition

t will be not enabled.

 To solve this problem for 2 variables, we can deadlock the scenario with a constraint

rule:

:- not assigned(P,T,Vns,_,TS), satAllFwCond(T,Vns,Q,TS), assigned(P,T,V,Q,TS), Vns!=V,
 satAllFwCond(T,V,Q2,TS), not same(Q,Q2), not assigned(P,T,_,Q2,TS), not unavailable(Q2,TS),
 time(TS).

 The constraint rule above suggests deadlocking an answer set, if there is a token Q

that can be assigned to a not assigned variable Vns, but instead is assigned to a variable

that can be satisfied by a different available token Q2. This solution will deadlock the

second answer set for Figure 3.3.6.

Figure 3.3.6: Variable matching problem

60

 For more than two variables asking for tokens of the same type, the deadlock above

will not deadlock all the non-perfect matchings. However, extra constraint rules, much

more complex but similar to this one, can be added to achieve a perfect matching in every

answer set. To avoid adding extra rules, another approach is to use reachability

constraints for problems of this kind if they might exist.

 Generally, the problem of perfect matching can be solved in polynomial time using

the algorithm of Hopcroft–Karp [22] that is based on augmenting paths.

 Conditions are successfully encoded in ASP, but we need to take them into account

before our assignments. We avoid satisfying arcs with tokens that do not respect the

conditions and to do that, we add the atom satAllFwCond/4 in the body of the rules r1a

and r1b as follows:

 We also need to relax the constraint rules r7a and r7b, and stop deadlocking solutions

where tokens are not assigned because of not satisfying conditions.

61

Reverse conditions:

 Similarly with the forward conditions, reverse conditions are described with the

following fact:

 f8: rvcond(tj,v,s,x,ts) , tj ∈ T is a transition, v ∈ Av is a variable, s ∈ { > , < , !=, = },

x ∈ Z+ is the condition value and ts is a time instance.

 For convenience, for transitions that do not change during the simulation, we can use

f8 with only the four first parameters (ts is excluded) and the following rule generates the

conditions for every time instance of our simulation, exactly like in forward conditions.

62

 Our next goal is to find tokens that satisfy all the conditions of a transition for a

variable that they can be assigned to. If this is the case, the token can be assigned to the

variable.

 This time we want to capture the value pairs of tparc and tparcb instead, because our

conditions apply to the variables of the outgoing arcs of a transition.

 The symbols =, ≠, <, ≤, >, and ≥ are used to compare integers. We must write one rule

for each one of them in ASP to encode them. Next is an example of encoding less than

(<) for a reversing condition, but the rest are very similar.

 Rule r39 states that a token Q, satisfies the reverse condition on value V of transition

T, for having a value less than X in time TS. In the body of the rule, we have a reverse

condition of transition T, a place P connected with T that holds a token Q, the same type

asked from the condition, with value A that is less than X at time instance TS. We encode

other symbols similar to this one, changing the body’s comparison symbol as well as the

fourth and third parameters of rvsatcond/6 and rvcond/5 respectively, according to the

symbol we try to encode.

 The matching deadlock rule for the reverse conditions is:

 :- not coll_assigned(P,T,Vns,_,TS), satAllRvCond(T,Vns,Q,TS),
 coll_assigned(P,T,V,Q,TS), Vns!=V, satAllRvCond(T,V,Q2,TS),
 not same(Q,Q2), not coll_assigned(P,T,_,Q2,TS),
 not coll_unavailable(Q2,TS), time(TS).

63

 Similarly to forward conditions, more than one rule might apply to a variable. We

want to find the tokens of the variable’s asking type that also fulfill all the condition

requirements.

In general, the idea here is to find the tokens that satisfy all the rules of a transition for a

variable and save them in facts. The first thing is to count the reverse conditions for a

variable on a transition, and then find the tokens, whose type matches the variable’s type,

and count how many of these reverse conditions they satisfy. If the number of reverse

conditions they satisfy equals the total number of conditions for the variable, then we

create a fact satAllRvCond/4, saying that the token satisfies all the conditions of a variable

of a transition.

 Just like in forward execution, we update the relative satisfied rules and constraint

rules, adding satAllRvCond/4 this time as an atom to their body.

3.4 Extension to support Antenna Selection.

 With Controlled Multi-token Petri nets (CMPN) coded in ASP, we are now almost

ready to describe a problem of antenna selection as a CMPN and solve it. Reversible

execution will not be used for this problem as it is not required by the algorithm. What is

left to do, is to figure out a way of calculating and storing the sum capacity and create the

conditions for transitions. The algorithm proposed in [7], does not have a low-level way

of updating a neighborhood when its place is being changed from a different

neighborhood. That can happen in the situation of overlapping neighborhoods or when

64

an antenna on the edge of a neighborhood passes the token to the adjacent neighborhood.

So in this implementation, we use only one neighborhood, without dividing it into smaller

ones.

Problem Encoding:

 Figure 3.4.1 shows a part of the CMPN model for moving the power from place Ai to

place Aj via the execution of transition ti,j. Notice that this is the half image, and there

exists another transition tj,i , with similar arcs but in reverse, moving the power to place

Ai from place Aj. Generally, for every two adjacent antennas we need two places

representing each antenna, one place for the neighborhood, two transitions for moving

tokens between the antennas, and twelve arcs, eight of them are single token arcs and the

rest four are bonded arcs.

 Having to declare all these facts to describe a problem, makes it very susceptible to

mistakes. A problem with just 10 connections between antennas requires 120 arcs to be

declared. To avoid deadly type mistakes which are not being identified by ASP, and make

the life of the user easier, we use a custom constructor for the problem which is a 5-tuple,

defined with constructor(Ai, Aj, Tij, Tji, Mk) where Ai and Aj are the two antennas, Tij

Figure 3.4.1: Part of the RPN model for Antenna Selection

65

is the transition for moving the power from Ai to Aj, Tji is the transition for moving the

power from Aj to Ai and Mk is the neighborhood.

 For each constructor, using the following rules we produce all the arcs needed:

 ptarc(Ai,Tij,u,p ; Aj,Tji,u,p ; Aj,Tij,v,a ; Ai,Tji,q,a) :- construct(Ai,Aj,Tij,Tji,Mk).
 tparc(Tji,Ai,u,p ; Tij,Aj,u,p ; Tji,Aj,v,a ; Tij,Ai,q,a) :- construct(Ai,Aj,Tij,Tji,Mk).

 tparcb(Tij,Mk,w,m,v,a ; Tji,Mk,w,m,q,a) :- construct(Ai,Aj,Tij,Tji,Mk).
 ptarcb(Mk,Tji,w,m,v,a ; Mk,Tij,w,m,q,a) :- construct(Ai,Aj,Tij,Tji,Mk).

 As previously mentioned in subchapter 3.2, to encode a problem we need to define

the arcs, the facts for token types and the initial marking using the facts holds/3 and

holdsbonds/4. We have shown how the rest of the facts are being generated in subchapter

3.1.

There are three types of tokens in this algorithm, as mentioned previously. These are:

1. the type ‘p’ tokens that represent the power,

2. the tokens of type ‘m’ that represent the neighborhood and

3. the tokens of type ‘a’ that represent the antennas.

 Places that represent powered-on antennas, hold a token of type p, and their antenna

token is bonded with a neighborhood token, type m, at the neighborhood place. Places

that represent powered off antennas, hold a token of type a. The number of the tokens

that are of type m and type p, are equal to the number of the powered-on antennas, while

the number of type a tokens is equal to the number of the total antennas of our net = NT.

The antenna users are not being represented graphically but their contribution can be seen

on the matrix H. For our simulation, we assume that users do not change during the

execution.

 Since we have an antenna token for every antenna on our net, it is easy to declare the

types of the antenna tokens automatically, creating tokens with the same names as the

antennas, for every antenna used.

66

 type(a,Ai ; a,Aj) :- construct(Ai,Aj,Tij,Tji,Mk).

 It is only necessary to give facts for the tokens of type p and m manually. We declare

the same number of type p tokens and type m tokens, equal to the number of powered on

antennas we want to have.

 Finally, the initial marking must be given, expressing which antennas are powered on

initially. With holds/3 facts we write facts for the antennas that hold each power token

and with holdsbonds/3 facts we write facts for the bonds created on the neighborhood

place, between the antenna tokens of powered on antenna places and the type m tokens

of the neighborhood place.

 The next rule can also help placing the antenna tokens to the antennas without any

power token, making the definition of the problem as easy as possible.

 holds(A,A,0):- #count{P:holds(A,P,0),type(p,P)}=0, type(a,A).

 Some mistakes in ASP are hard to identify and problems like these will lead to wrong

results and results. To help identify some errors, the following rules were created:

 error("Type_Not_Specified",A):-holdsbonds(_,A,_,_),not type(_,A).
 error("Type_Not_Specified",A):-holdsbonds(_,_,A,_),not type(_,A).
 error("Type_Not_Specified",A):-holds(_,A,_),not type(_,A).
 error("Token_Not_Used",Q):-type(T,Q), not holds(_,Q,0),not holdsbonds(_,Q,_,0),T!=a.

ASP Extension:

 To solve the problem of Antenna selection, we must create a few extra rules that will

create the conditions and give values to our tokens. In short, we first identify the antennas

that might get powered on, also known as the unpowered antennas adjacent to powered

on antennas. Then we calculate the new sum capacity that will be produced from moving

the power to the candidate antenna from their neighbour’s powered-on antenna. The sum

67

capacity is calculated using Python and is being stored in the value of the antenna tokens

found in antenna places. The current sum capacity is also stored in power tokens’ value.

Then we create conditions and allow transitions to fire only if this exchange of power

results in an increase of the sum capacity.

 We use the fact candidateOn/3 to capture the candidates for getting the power. The

first parameter is of candidateOn/3 is the candidate antenna, the second one is the

adjacent powered-on antenna, symbolizing the antenna that might give its power to the

candidate, and the last parameter is the current time instance. The rule for this fact is the

following:

 The Atom connected is created using the following rules:

 connected(P,T):-ptarc(P,T,_,_).
 connected(P,T):-ptarcb(P,T,_,_,_,_).
 connected(T,P):-tparc(T,P,_,_).
 connected(T,P):-tparcb(T,P,_,_,_,_).

 Rule m1 construes that an antenna place A is candidate on, if it is connected with a

place P through transition T, place P is currently on while place A is not. We can see that

place P is indeed powered on, as it holds a token of type ‘p’ and place A is not powered

on as it holds a token of type ‘a’.

 For the calculation of the sum capacity, we first need to identify the antennas that are

powered on and then construct the matrix Hc, by collecting their data vectors from the

corresponding rows in matrix H. Sum capacity will be calculated using python, and a way

of communicating to python which antennas are currently on is needed, otherwise matrix

Hc cannot be created, and sum capacity cannot be calculated.

68

 This is the trickiest part of calculating the sum capacity because ASP does not support

lists and thus, we cannot send a list with all the currently powered on antennas. For every

problem, the number of power tokens/powered-on antennas may vary and the number of

parameters of each fact is static. So, it is not practical to have different rules and facts

with different number of parameters, one for every possible number of powered on

antennas.

 The first approach was to send each powered-on antenna one by one to python and

create a list with the powered-on antennas stored in a global variable in python. However,

that does not produce the desired results every time, because of the way grounding works.

Because every combination of possible constants is used to replace the variables, the

calculation of sum-capacity was not reliable this way. Using non static global variables

in Python in conjunction with Clingo turned out to be not such a good idea.

 The solution used for this problem, is to use recursive rules in ASP and store the list

as a string in a parameter of a fact, and then this list is translated back to a list in Python.

 m2: list("",0,TS):-time(TS).

 m3: list(@genList(L, A),TS):- holds(A,Q,TS), type(p,Q), list(L,S,TS).

 m4: list(L,@getSize(L),TS) :- list(L,TS),time(TS).

 We want the parts of this list to be the names of the places that hold a power token at

time instance TS. So, we initiate an empty list of length zero for every TS using rule m2.

Then for every place A that holds a type ‘p’ token Q, we add it to the list L, and using the

function genList from python, shown in Figure 3.4.1, we get the new list with A appended

to L alphabetically.

69

 Alphabetical order is used to reduce the number of facts created in ASP, as if it was

not alphabetical, we would create a number of lists, equal to all the different combinations

of powered-on places starting with length one.

 Finally, rule m4 creates a list with 3 parameters, including the length of the list L. The

length is vital to know which is the complete list. The complete list is a list with a length

equal to the number of power tokens.

 The results of the facts created for three power tokens, held in places a1, a2, and a3, are

shown in Figure 3.4.3. This is not optimal in terms of the number of facts created, but list

creation in ASP will be further optimised in the next chapter. The fact that we are interested

in, is the list of length 3, which is equal to the number of all powered on antennas, and is the

last fact in Figure 3.4.3.

Figure 3.4.1: Python function genList for ASP

Figure 3.4.3: Python function getSize for ASP

Figure 3.4.4: List results

70

 Now that the lists have been prepared, everything is in place for the sum capacity to

be calculated. For every candidate on place, we want to store the new sum capacity

produced, if we exchange the power token with its powered-on neighbor. This value of

sum capacity can be stored at the value of the antenna token held by the place. It is

important to note that a place can be a candidate from multiple adjacent powered places.

We need an additional value/4 fact, that will also save the adjacent antenna’s name, from

which we acquire the sum capacity calculated if the power token is exchanged.

 m5: value(Q,@c(A,P,L),TS; Q,@c(A,P,L),P,TS):- candidateOn(A,P,TS),
 holds(A,Q,TS), type(a,Q),
 list(L,C,TS), C=#count{T:type(p,T)},
 time(TS).

 In rule m5, we use python function c with 3 parameters. The first parameter is the

candidate place, next is the token donor adjacent place, and last is the list of all the

powered-on places. We use C to get the list of the correct length, containing all these

places. Python, will turn on place A and turn off place P, and calculate the sum capacity

based on the exchange of power between A and P. The process of calculating the sum

capacity using Python function c will be explained subsequently.

 Similarly, rule m6 calculates the sum capacity for the currently powered on places.

To limit the functions used, we use the same python function using P as the first and

second parameter, where P is the place holding a power token.

 m6: value(Q,@c(P,P,L),TS):- holds(P,Q,TS), type(p,Q),
 list(L,C,TS), C=#count{T:type(p,T)},
 time(TS).

 Finally, we give value 0 to antenna tokens that are not candidates to be turned on, to avoid

extra Python calls that decrease the performance.

 m7: value(Q,0,TS) :- not candidateOn(A,_,TS), holds(A,Q,TS), type(a,Q), time(TS).

71

 For the calculation of sum capacity, as mentioned previously, we used the function c

of Python. Python code in ASP file is surrounded with #script (python) … #end. There

we have as a global variable the table H and a parallel matrix named antennas, for the

matching of each antenna name (names must be the same ones used in ASP code), with

its corresponding row in H. We also have ρ defined in a global variable named SNR.

 The function c, depicted in Figure 3.4.5, begins by translating the list l obtained by

the fact from ASP code. The currently on antenna, neighbor of candidate on antenna, is

shut down, and power is transferred to the candidate. Using the function calcSumCap

shown in figure 3.4.6, sum capacity for sorted list t that contains the names of the new

powered on antennas is calculated and returned.

Figure 3.4.5: Python function c for ASP

Figure 3.4.6: Python function calcSumCap for ASP

72

 The problem faced here with calculating and storing the sum capacity is that clingo

cannot have complex nor real parameters, and thus we must turn the result into an integer

value.

 The imaginary part of the complex number is zero, so on the last line of the code, we

multiply the real part of the result stored in variable c, with a power of 10. The power of

10 in variable PREC (10PREC) symbolizes the precision we want to have. Notice here that

the result after multiplying the real part with 10 to PREC power, our result must remain

within the Integer range. For maximum integer values in matrix H (unrealistic scenario),

the max PREC number we can have is 7, since the logarithmic operation at the end brings

the max c value at around 62, and 62x107 does not escape the Integer range (620,000,000

< 2,147,483,647).

 For more realistic values in table H, we can safely set PREC to bigger values. Figure

3.4.6 shows an example for PREC=15 and realistic complex values in H.

 The final step is to create the conditions and control how transitions fire in order to

achieve an increase in total capacity every time. The general conditions coded in

subchapter 3.3 are used to create conditions for our problem.

 One antenna place can be a candidate on from multiple adjacent powered antennas.

The algorithm in this scenario, can choose only the transition that will increase the sum

capacity the most. With the following rule, we exclude all the transitions that do not offer

the maximum local increase.

Figure 3.4.7: Sum Capacity values returned to ASP

73

 If an antenna Aj is candidate-on from multiple places X, then set the transitions from

all the places to Aj to “unsat”, except for the transition that brings the power token from

the place that gives the maximum increase of sum capacity when its power is transferred

to place Aj. So, this basically creates a condition that can never be satisfied by any token

and shuts down the transitions that do not offer the maximum local increase, only for this

time instance.

 The most important condition for a transition to fire is when it increases the sum

capacity.

 Rule m9 creates a condition for a transition Tij (Tij moves token from to Aj) to be

enabled, only when a token can be assigned to variable q (q takes values ‘a’, antenna

tokens) that its value is greater than VQnj. Value VQnj is the value of the token held at

the adjacent power antenna. If the token in the candidate antenna has greater value than

this one, it means that this condition is satisfied, and the antenna token held by the

candidate place will be assigned to q.

 There is also the option to make this algorithm greedy and choose the transition only

if it offers the overall max increase in sum capacity on the net. In other words, for multiple

74

power tokens and candidate on antennas, always choose the one with the max impact on

sum capacity.

 m10: maxdiff(M,TS):- M=#max{V:value(Q,V,TS)},time(TS).

 The fact maxdiff/2 created from rule m10, holds the maximum increase M stored in

value of a token for time TS.

 Then, with rule m11, we create conditions for every transition moving a token to a

candidate place, to only fire when the value of the token in the candidate place is the one

that offers the maximum overall increase.

3.5 Optimizations

 The current solution is correct, but it does not provide the best possible performance.

ASP and Python communication can be slow if Python is called a lot of times and that

will cost in performance. Some optimizations are made in this subchapter, and the

performance benefits are significant, while the program remains correct.

 To inspect the performance gains of each optimization phase, a Python program on

my personal computer is used to run a problem 10 times, incrementing by 1 the number

of time instances in each run, starting with 2 time instances, time(0..1), and finishing with

11 time instances, time(0..10).

 While the performance on small nets is fast, we will see subsequently that it grows

exponentially for bigger nets with more variables. Worth noting is that most of the time

75

is spend for the grounding phase and a much smaller fraction of the time is spent on the

solving phase. That gives a hint that reducing the number of constants in the problem and

the number of facts created are the bottleneck of the performance, and thus we should

focus on them.

 Figure 3.5.1 shows the solving time, which is the time needed for grounding the

variables and producing an answer set, for a net with 5 antennas, with 6 connections

between them and 2 power tokens in total.

 From now on, a problem with 10 antennas and 4 power tokens will be used to compare

the results after each optimization. There are 12 connections between the antennas, and

we run the non-greedy approach. The power tokens are placed statically in the same

places every time.

 Below are the initial results for the current stage without optimizations:

Figure 3.5.2: Results optimization stage 0

Figure 3.5.1: Solving Time for small net

76

 Results in Figure 3.5.2 show that the initial performance of the algorithm is very slow

for the more complex net and it is unable to run past 5 time instances.

Stage 1:

 As mentioned previously, due to some neighborhood communication problems, the

algorithm proposed in [7] can run only for one neighborhood. So, the first optimization

is to remove the neighborhood places and bond arcs, because distinguishing between the

different neighborhoods is unnecessary because we can only have one. Instead of bonding

the tokens of the powered-on antennas, places simply now exchange their power and

antenna tokens.

 The arcs remaining are created by the following rules.

 ptarc(Ai,Tij,u,p ; Aj,Tji,u,p ; Aj,Tij,q,a ; Ai,Tji,q,a) :- construct(Ai,Aj,Tij,Tji,Mk).
 tparc(Tji,Ai,u,p ; Tij,Aj,u,p ; Tji,Aj,q,a ; Tij,Ai,q,a) :- construct(Ai,Aj,Tij,Tji,Mk).

 With this optimization not only we decreased the number of arcs and places but also

the number of tokens and variables. When we run the problem with the new optimizations,

we can see that the performance has greatly improved, and we can now run for more time

instances, without running out of memory and crashing.

Figure 3.5.1: Results after stage 1 optimizations

77

Stage 2:

 Another approach for optimization is to reduce the number of facts we create.

Optimizing the custom lists created can reduce the number of facts created. Because lists

are created with the help of Python, we also significantly reduce the number of calls made

to Python, so this change has a double benefit in terms of performance. Without the

alphabetical condition in Python, creating a list of five components would require 1 + 5

+ 52 + 53 + 54 + 55 = 3906 facts because the rule would generate all possible combinations

of the powered-on places names.

 Currently, for five powered-on places, our program with Python using alphabetical

order, will create 32 different lists/facts.

Figure 3.5.3: List optimisation starting stage

Figure 3.5.2: Graph comparing optimization stage 0 vs stage 1.

78

 Instead of starting with an empty list, we can start with a list of one antenna,

containing the antenna that holds the alphabetically first power token. This way, we

eliminate half the facts in total for this scenario, left with 16 facts.

 There is also the ability to select only the last power token, alphabetically sorted, and

create just one list of length two, list with a1 and a5 in this case.

 That leaves us with only 9 facts. The optimal would be 5 facts, starting at length one,

and appending one antenna every time until length five. However, adding more rules to

bring down the number of lists created is not beneficial at this point. The following, is

the final code for creating the custom lists in ASP using Python, replacing rules m2, m3

and m4 shown in subchapter 3.4.

 list(@genList("",A),TS):- holds(A,Q,TS), Q=#min{O:type(p,O)},time(TS).
 list(@genList(L ,A),TS):- holds(A,Q,TS), Q=#max{O:type(p,O)},list(L,1,TS),time(TS).
 list(@genList(L, A),TS):- holds(A,Q,TS), type(p,Q), list(L,S,TS), S>1.
 list(L,@getSize(L),TS) :- list(L,TS),time(TS).

Figure 3.5.4: List optimisation optimisations 1

Figure 3.5.5: List optimisation optimisations 2

79

Stage 3:

 Stage three is an attempt to reduce the number of times Python is called by ASP.

Because of the way our value rule has been structured thus far, variable L can be ground

to any possible list. As a result, Python is called unnecessarily to calculate the sum

Figure 3.5.6: Results after stage 2 optimizations

Figure 3.5.7: Graph comparing optimization stage1 vs stage 2.

80

capacity of an incorrect list that will never be used. For this reason, a new fact corrlist/2

is created, that holds the single correct list for each time instance.

 corrlist(L,TS):- list(L,C,TS), C=#count{T:type(p,T)}.

 We replace list(L,C,TS), C=#count{T:type(p,T)} with corrlist(L,TS) in the rules that

calculate the value and now the new L can only be grounded to the correct lists of each time

instance only. Furthermore, rather than calling c twice to create facts value/3 and value/4 like

is done in rule m5, we call python once and then use an extra rule m5b that uses value/4 to

create value/3.

old rule:

 m5:
 value(Q,@c(A,P,L),TS; Q,@c(A,P,L),P,TS):- candidateOn(A,P,TS),
 holds(A,Q,TS), type(a,Q),
 list(L,C,TS), C=#count{T:type(p,T)},
 time(TS).

new rules:

 m5(updated):

 value(Q,@c(A,P,L),P,TS):- candidateOn(A,P,TS),
 holds(A,Q,TS), type(a,Q),
 corrlist(L,TS), time(TS).

 m5b:
 value(Q,V,TS):-value(Q,V,P,TS).

 For power tokens, the value they have depends on the transition that fires, and is the

same as the value of the antenna token used to execute a transition. Thus, if a transition

fires, we update the values of the power tokens to the old value of the antenna token, and

we only call Python for power tokens once at the earliest time instance.

old rule:

 m6: value(Q,@c(P,P,L),TS):- holds(P,Q,TS), type(p,Q),
 list(L,C,TS), C=#count{T:type(p,T)},
 time(TS).

81

new rules:

 m6(updated):

 value(Q,@c(P,P,L),TS) :- holds(P,Q,TS), type(p,Q),
 corrlist(L,TS),
 time(TS),TS=#min{X:time(X)}.

 m6b:
 value(Qp,V,TS):- type(p,Qp), TS>#min{X:time(X)}, time(TS), fires(T,TS-1),
 assigned(P,T,q,A,TS-1), V=#max{Z:value(A,Z,TS-1)}.f

 The value of power tokens after the minimum time instance, get the maximum value

of the token of type ‘a’ that was used to fire a transition. That value is equal to the next

sum capacity of the net. We can be sure the maximum value will be used, because locally

we only enable the transition with the maximum positive impact on the sum-capacity. All

the other transitions that offer less or negative gains, will have an unsatisfiable condition

that will not let them fire, as we seen with rule m8 in the previous subchapter.

 Those changes contribute to the decrease of Python calls from ASP, and that

positively impacts the performance.

Figure 3.5.8: Results after stage 3 optimizations

82

Stage 4:

 In this stage we optimize the python script, limiting the amount of times sum capacity

is calculated. We can save the results for a combination of turned-on Antennas in a

HashMap using the list as the key, and before we calculate it check if it was previously

calculated.

 The second improvement in this stage is to stop calculating the sum capacity if the

currOn antenna which is specified as parameter to function c, is not found in the list of

turned-on antennas. Normally the currently on (currOn) antenna should be found in the

list of turned-on antennas, but since all the different combinations are grounded, antenna

place P, which is the parameter sent as the currOn antenna, can get any possible place

constant value. This can be fought in a similar manner with the lists in stage 3 and the

corrlist/2, but is proven to be worse that way, due to the large number of new rules and

facts needed to implement a similar idea.

Figure 3.5.9: Graph comparing optimization stage 2 vs stage 3.

83

 The solution that gave better results in this case, was to just return any value (-1 is

returned below) and not calculate the sum capacity, because we are sure the value created

will not be included in any answer set as the rest of the atoms in the body will not match

to true.

 A global variable mydict={ } must also be declared. The hit ratio for this problem is

around 98%, so the number of times sum capacity is calculated is greatly reduced.

Figure 3.5.10: Updated function c for optimisations

Figure 3.5.11: Results after stage 4

optimizations

84

Stage 5:

 Another idea for achieving better performance on ASP language is to limit the number

of parameters used in facts. One extra parameter can exponentially increase the number

of grounded facts.

 Take as an example the code below:

 temp(A,B,C,D,E,F) :- a(A), b(B), c(C), d(D), e(E), f(F).

 a(0..9). b(0..9). c(0..9). d(0..9). e(0..9). f(0..9).

 goal:- temp(0,0,0,0,0,0).

 :- not goal.

 Even though there is only one correct answer set, with the fact temp(0,0,0,0,0,0), the

grounder will ground every variable in the rule above with all the possible constant values

Figure 3.5.12: Graph comparing optimization stage 3 vs stage 4.

85

it can take, and create all the possible combinations of facts temp/6. It will only then go

to the solving process and start checking for the answer sets. For this example, there will

be 106 possible facts created during grounding. Removing one parameter from the above

rule, will result in 105 grounded facts, 90% less than with six parameters.

 Quite a big amount of time is trimmed from the results, if we remove the conditions

for the problem of the Antenna Selection. That leads to the conclusion that conditions

should be optimized to get better results. Currently we count how many conditions of a

variable in a transition a token satisfies marking them as satisfied using the fact

fwsatcond/6 (rule r37). If it satisfies the same number of conditions as the total number

of conditions, we say it satisfies all the conditions with the fact satAllFwCond/4.

 Instead of creating a fact for every condition satisfied, we create facts for every

variable condition that is not satisfied from a token in a transition. If there are no

unsatisfied conditions, then we say that the token satisfies all the conditions with the fact

satAllFwCond/4. That brings the number of parameters down to 4 from 6.

Rule r37 changes to:

 There are two changes in the body of the rule r37. The first one is the addition of the

negation (not) when comparing A and X, to now check for non-satisfiability of the

condition. The second one is that we only use the maximum value of a token, that can

have multiple values if it has multiple powered-on neighbors. We are only interested in

the maximum values because only the greatest increase in sum-capacity may fire locally.

Rule r37u cancels all other transitions from the same location that offer less total capacity

86

gains. Similarly, we apply these changes of r37 to the rest of the comparing symbols

(>,=.!=…).

 r37u: fwUnsatcond(T,V,Q,TS) :- fwcond(T,V,"unsat",X,TS),
 ptValTypePair(P,T,V,TY),
 has(P,Q,TS), type(TY,Q),
 value(Q,M,TS), time(TS).

 Now a token Q satisfies a variable V of a transition T when there are no unsatisfied

conditions.

 satAllFwCond(T,V,Q,TS):- not fwUnsatcond(T,V,Q,TS), place(P),
 ptValTypePair(P,T,V,TY), has(P,Q,TS), type(TY,Q), time(TS).

 Next are the performance results for the changes mentioned above:

Figure 3.5.13: Results after stage 5

optimizations

87

 Concluding with this chapter, we see that after the optimizations, the performance of

the algorithm has been dramatically improved while still producing the same correct

results as before. The machine used for running these experiments is an outdated laptop

and much better results are expected on more capable machines.

Figure 3.5.15: Graph comparing all optimization stages.

Figure 3.5.14: Graph comparing optimization stage 4 vs stage 5.

88

Chapter 4

Case Study

4.1 Antenna Selection Case Study 88

4.2 Reachability 94

4.3 Greedy Algorithm Comparison 96

4.1 Antenna Selection Case Study

 We will specify a problem to the ASP program and then execute the algorithm to obtain

the results in this subchapter. The following example, in Figure 4.1.1, is a case of an Antenna

Selection problem for a neighborhood. The lines between the antenna places indicate that the

two antennas connected are adjucent and thus we can exchange power between them if the

criteria are met. Every line is an abstract representation of Figure 4.1.2, which shows the arcs

and transitions between two adjucent antennas. If we replace each line with the corresponding

schema like in Figure 4.1.2, we will get the real image of how the problem is described to

ASP and which transitions are created. There are ten antennas, the number of users is four

and the SNR is 0.5.

89

To describe the problem in ASP, we use the construct/5 facts.

Figure 4.1.2: Adjacent Antennas real schema

Figure 4.1.1: Antenna Selection Case

90

 construct(a1,a2,t12,t21,m).

 construct(a1,a4,t14,t41,m).

 construct(a1,a5,t15,t51,m).

 construct(a2,a3,t23,t32,m).

 construct(a3,a6,t36,t63,m).

 construct(a4,a7,t47,t74,m).

 construct(a5,a7,t57,t75,m).

 construct(a5,a9,t59,t95,m).

 construct(a6,a9,t69,t96,m).

 construct(a7,a8,t78,t87,m).

 construct(a8,a9,t89,t98,m).

 We need eleven construct/5 facts to show which antennas are adjacent in our

neighborhood m. The rest of the facts for the arcs and transitions shown in Figure 4.1.2

between every two adjacent antennas will be generated by the rules having construct/5 in

their body.

 For the calculation of sum capacity, we need to declare two parallel arrays in the Python

script part inside the ASP program. The first array antennas will include the names of the

antennas as given in ASP, and the array H, parallel to the other array, will contain the values

of each antenna in the array antennas.

 The values for each antenna are shown below:

a1: 0.0001-0.0003i -0.0004-0.0001i 0.0003+0.0004i 0.0001+0.0002i

a2: 0.0003-0.0002i -0.0002+0.0002i 0.0005+0.0003i -0.0004+0.0005i

a3: 0.0004-0.0002i 0.0004+0.0000i 0.0005-0.0000i -0.0006+0.0001i

a4: -0.0002+0.0002i 0.0003-0.0003i -0.0001-0.0004i 0.0003-0.0005i

a5: 0.0003-0.0001i 0.0006-0.0001i -0.0001+0.0002i 0.0002-0.0003i

a6: 0.0006-0.0002i -0.0001+0.0000i 0.0000+0.0004i -0.0006+0.0006i

a7: -0.0002-0.0004i -0.0003+0.0002i 0.0006+0.0002i 0.0001-0.0008i

a8: 0.0005-0.0003i -0.0005+0.0005i 0.0004-0.0001i -0.0003-0.0003i

a9: 0.0003-0.0004i -0.0004-0.0008i 0.0003-0.0002i 0.0001+0.0002i

a10: 0.0005+0.0001i -0.0001+0.0001i 0.0004+0.0005i 0.0004-0.0002i

91

 The array H has dimensions NT x NR where NT is the number of antennas and NR is the

number of users.

 Figure 4.1.3 shows the arrays for the values of our problem. Besides the two arrays, global

variable SNR is set to 0.5 and we initialize the dictionary as seen in the next lines. Precision

is set to 15.

 SNR = 0.5

 PREC=15

 mydict = {}

 We are using three power tokens p1, p2 and p3 and we assume they are initially

positioned at places a1, a5 and a10 respectively.

 type(p,p1). holds(a1,p1,0).

 type(p,p2). holds(a5,p2,0).

 type(p,p3). holds(a10,p3,0).

 After running the program, we obtained the first solution with the following results:

fires(t14,0). fires(t58,1). fires(t47,2). fires(t102,3). fires(t89,4). fires(t92,5). fires(t23,6).

 Figure 4.1.4 Demonstrates the visual result after running the program.

Figure 4.1.3: Python Arrays for case study

92

Figure 4.1.4: Case Study visual run results.

93

Following are the clingo results for time(0).

 The enabled transitions at time 0 are t106, t12, t14 and t58. Transitions t54 and t102 have

an unsat forward condition fwcond/5, as places a4 and a2 are candidate on from 2 places

each, and only the one with the maximum increase can be chosen. In the end of time(0), we

can see that the transition t14 is chosen to fire, non-deterministically, in this answer set.

Figure 4.1.5: case study clingo results time(0).

94

 The net converges within seven time instances in this solution, with final sum capacity

of 2,63291834 x 10-7 and antennas a3, a6 and a7 being powered-on. To allow the program to

run until it converges, we use the following rule:

 time(0).
 time(TS+1):- trans(T), enabled(T,TS), time(TS), TS<20.

 If the current time instance has a transition enabled, the above rule will create the next

time instance.

 The results of this answer set are sub-optimal. The optimal sum capacity is given when

enabling antennas a6, a7 and a9 and it is equal to 2,81325521 x 10-7
.

 The firings that result in this sum capacity are given from a different answer set and this

will be further discussed in subchapter 4.3 where the non-greedy algorithm is being compared

to the greedy one.

4.2 Reachability

 In a Petri net NP with initial marking M0, <NP, M0>, reachability is the question of

determining whether a marking Mn is reachable. A marking Mn is said to be reachable in

<NP,M0> if M0 can be transformed to Mn after a sequence of firings, σ=M0 T1 M1 T2 M2

T3 ... TN Mn. L(NP,M0) denotes the set of all markings that are reachable by <NP,M0>.

Although it takes exponential space and time to verify [14], the issue of reachability has

been shown to be decidable [6][17].

 We can test if a specific state of the program is reachable, by restricting the solutions

that do not contain it. We can restrict these solutions using constrain rules and deadlock

solutions that do not contain our desired state. If all the solutions are deadlocked and no

answer is given, then we get to the conclusion that our desired state was not reachable.

95

On the other hand, if the state is reachable, the solutions containing the given state will

be printed.

 Any fact and combination of facts can be used to see if there is a solution containing

them, or in other words to see if they are reachable. For example, if we want to test

whether a transition t1 will fire forward after time instance 3, we can use the following

set of rules:

 goal :- fires(t1,TS), TS>3.

 :- not goal.

 In this example, we deadlock all the solutions where transition t1 does not fire after

time instance three. If the state is reachable, then the output of clingo will be

SATISFIABLE and all the answer sets will be printed, and will contain the fact

fires(t1,TS), with TS being greater than three.

We can also get more creative with more atoms in the rule’s body and multiple goals:

 s1: goal1 :- holds(P1,Q1,TS), type(cat,Q1), not holds(P1,Q2,TS), type(dog,Q2),

 place(P1), time(TS).

 s2: goal2 :- holds(zoo,Q3,_), type(lion,Q3), place(zoo).

 State s1 sets a goal to find a solution where any place holds a token of type cat and a

token of type dog at the same time. Similarly, state s2 checks the reachability of a state

where place zoo holds a token of type lion. We could combine the two rules into one rule,

but this rule separation gives us the opportunity to check if any of the two states is

reachable, using one constraint rule for both.

 :- not goal1, not goal2.

96

 This constraint rule will block solutions where neither of the 2 desired states , s1 and

s2, is reachable. For our example with the above constraint, we check if any place can

simultaneously have a cat and a dog OR if the zoo has a lion at some point. If any of the

two or both are reachable, then solutions will be given from the solver.

 We can still constrain the solutions via using 2 separate constraint rules, one for each

goal, and check if they can appear together:

 :- not goal1.

 :- not goal2.

 It is enough for either of the states to be unreachable for our solver to produce no

solutions and give UNSATISFIABLE as the answer. With the above constraint, we check

the reachability of a state where a place has a cat and a dog at the same time AND if the

zoo has a lion at any time instance.

 Combining facts and different rules, we can check the reachability of any state. We

are not limited to which atoms we can use in the constraint rule’s body. Any atom or

combination of atoms can be used to check for their reachability.

 For the problem of Antenna Selection, we can use a rule like the following, and check

whether a higher value of sum capacity is reachable in our net.

 goal:- value(Q,X,_), X>1000000, type(p,Q).

 :- not goal.

97

4.3 Greedy Algorithm Comparison

 The results in subchapter 4.1 were given by the non-greedy algorithm where a

transition is selected to fire non-deterministically among all the enabled transitions. The

greedy algorithm on the other hand, will always select the transition that gives the

maximum increase in sum capacity for the next step. As we will see in this subchapter,

the greedy algorithm produces worse results compared to the non-greedy algorithm while

also being slower in performance.

 Adding back to the program the extra rules for greedy-solving, and running it again

for the net shown in Figure 4.3.1, we obtain the following results:

fires(t58,0). fires(t106,1). fires(t12,2). fires(t89,3). fires(t23,4).

 The powered-on antennas when converging, are the antennas a3, a6 and a9. The final

sum-capacity is 2,52471621 x 10-7, and it is inferior to the first answer set of the non-

greedy algorithm which was 2,63291834 x 10-7.

Figure 4.3.1: Antenna net for greedy vs non-greedy

98

 The problem of the greedy algorithm is that it does not explore sufficiently, and it can

miss turning on a beneficial antenna. On the other hand, the non-greedy algorithm allows

for partial exploration in the net, and the power can end up in multiple locations in

different answer sets.

 The way that Clingo works, it can produce multiple answer sets without adding a lot

of overhead to the solving process. This works similarly with running the algorithm in

parallel. However, the greedy algorithm has only one solution, as it always selects the

one transition that increases the sum capacity by the biggest amount.

 The non-greedy algorithm can produce different answer sets and if we get all the

answer sets, the results from the best answer set will be equal or better than the greedy

algorithm, while also being faster in performance (due to fewer rules). This is guaranteed

because the greedy solution can also always be found in the non-greedy algorithm results.

 We can use some extra constraint rules to check the reachability of an answer set that

has better results than what we currently have, or we can print all the answer sets and

choose the best one manually.

 goal:- value(Q,X,_), X>263291834, type(p,Q).

 :- not goal.

 The best solution returned from the non-greedy algorithm, is a solution where

eventually antennas a6, a7 and a9 are turned on. The sequence of firings is as follows:

fires(t58,0). fires(t89,1). fires(t14,2). fires(t47,3). fires(t106,4).

and the resulting sum capacity is 2,81325521 x 10-7
 and it is equal to what an optimal

algorithm would return.

99

Chapter 5

Conclusions

 5.1 Summary 99

 5.2 Challenges 100

 5.3 Future Work 101

5.1 Summary

 The subject of this diploma thesis is focused on encoding the Multi-token Petri Nets

(MPNs) into Answer Set Programming language. Algorithms were developed for MPN

and reversible MPN, also called MRPN, as well as Controlled MPN and Controlled

MRPN. Additional extensions were also developed for an algorithm proposed towards

solving the optimization problem of Antenna Selection, which belongs to the category of

Multiple Input Multiple Output (MIMO) problems and is an NP-hard problem. Python

was necessary to work in conjunction with ASP and provide a way to compute the

complex equation that measures the sum capacity of an Antenna network. Following the

creation of the program, some optimizations were made to achieve better performance

results. The program was then demonstrated in the case study for an antenna selection

algorithm. Finally, a comparison was made between the greedy and the non-greedy

algorithm for finding the optimal token distribution on a net.

100

5.2 Challenges

 Several challenges were faced during the implementation of this diploma thesis. One

of the bigger challenges was to start getting into the correct mindset, for writing code in

a completely different manner than I was used to. Trying to understand how Petri nets

and Reversible Petri nets were implemented in ASP, and how the code works seemed

impossible at first, especially since there is little to no online support. After spending

more time experimenting with ASP, and better understanding Petri Nets, how they work

and how they can be reversed, I started feeling more confident.

 When the time came for me to start implementing a form of Multi-token Petri Nets,

the Collective Petri Nets I had to rethink the process from almost the very beginning, as

Collective Petri Nets need many different facts to be created from the very early stages.

Many hours of thinking about the algorithm and the rules that I needed to implement for

each step of the coding process were needed and I had to have a clear and fresh mind to

be productive. However, I really enjoyed the challenge involved and solving a problem

was very satisfying and motivational to move forward.

 Another challenge with ASP is the difficulty of finding simple problems like

typographical errors, especially when searching in hundreds of lines of code. Aside from

that, when implementing the Multi-token Petri Nets, there are many different scenarios

that must be thoroughly tested and are difficult to find and solve in some cases, such as

the problem of identifying cycles in token bonds.

 When something is not working as expected, there is no formal debugger. The

programmer must search and follow the code and while this is simple for small programs,

it gets much harder for bigger programs with many facts and rules. After becoming more

familiar with ASP, I found out ways to "debug" my problems and find where the mistake

is and why the desired results are not produced, by having extra debugging and error

rules, or adding extra parameters in some facts and atoms. The time spent developing this

custom debugging process was well worth it in the long run. I also automated the process

of declaring a problem as much as possible, leaving the minimal number of facts needed

to be declared and minimizing the room for errors.

101

 ASP does not support lists of any kind, but to encode the problem of Antenna

Selection in ASP, the use of lists at some point is inevitable. Several other ways without

the use of lists were tried but none had the desired outcome. This was one of the most

difficult problems I faced, and I solved it using custom lists that were created with the

help of Python calls.

 Changing a basic fact in ASP, will result in many changes in the program, as most

likely, all the rules that contain the fact must now be changed as well, and that continues

recursively. This makes it hard to change fundamental facts after creating rules based on

them. To avoid this mistake, extensively checking each stage is required.

 While solving the problem of the Antenna Selection, difficult mathematic equations

and matrix multiplications arise which are not possible to be calculated using just ASP.

At that point, a higher-level language was needed. Getting Python to work with ASP for

calculating difficult equations was also a difficult task due to limited online help.

 Finding the source of “low” performance and fixing it was also a challenge. Better

understanding of ASP was vital at this point, in order to understand what is stalling

performance and what could be a better alternative.

 Regardless, ASP is now one of my favorite programming languages because it

involves a challenge, it forces you to think of a way to solve your own problems, and not

just use the internet to find the solution.

5.3 Future Work

 Future work on this topic could involve further optimizations on the MPN and MRPN

algorithms, making them more efficient. Other problems like the Antenna Selection

problem can be simulated using the CMPNs or CMRPNs and solved using ASP and

clingo. ASP is a very powerful tool that can help solve NP-hard problems and give all the

possible answer sets/solutions to a problem without increasing the time needed by much

compared to a single answer.

102

 Specifically for the problem of the Antenna Selection, future work can be done to

further optimize the algorithm suggested for MPNs. The algorithm can be extended to

support multiple neighborhoods. A dynamically changing matrix H can also make the

problem more realistic, with users changing over time. In this case using reversible

execution would be reasonable for error recovering. Further optimisations to the problem

are also possible.

 More properties can also be implemented for the multi-token reversing Petri nets.

Some examples are the property of Persistence, a transitions’ liveness, finding home

states, finding the shortest path etc.

 The code is available at: https://github.com/PittMichaelAngelo/ThesisRepository

https://github.com/PittMichaelAngelo/ThesisRepository

103

REFERENCES

[1] A. Ozgur, O. Lévêque, and D. Tse, “Spatial degrees of freedom of large distributed

MIMO systems and wireless ad hoc networks” IEEE Journalon Selected Areas in

Communications, vol.31, no.2, pages 202–214, 2013.

[2] A. Philippou, K. Psara, and H. Siljak. Distributed antenna selection for massive

MIMO using reversing Petri nets. IEEE Wireless Communications Letters, 2019.

[3] A. Philippou, K. Psara, and H. Siljak, “Controlling Reversibility in Reversing Petri

Nets with Application to Wireless Communications,” in 11th International Conference

on Reversible Computation, pages 1-7, Springer, 2019.

[4] A. Philippou and K. Psara, Reversible computation in Petri nets, in International

Conference on Reversible Computation, pages 136-148, Springer, 2018.

[5] C. A Petri, Kommunikation mit Automaten. Bonn: Institut für Instrumentelle

Mathematik, Schriften des IIM Nr. 2, 1962, Second Edition: New York: Griffiss Air Force

Base, Technical Report RADC-TR-65--377, Suppl. 1, English translation, Vol.1, 1966.

[6] E. W. Mayr. An algorithm for the general Petri net reachability problem. SIAM, vol.

13 no.3, pages 441-460, 1984.

[7] Gelfond, M., and Lifschitz, V. The stable model semantics for logic programming.

In Kowalski, R., and Bowen, K., Proceedings of International Logic Programming

Conference and Symposium, pages 1070–1080. MIT Press, 1988

104

[8] J. Hoydis, S. t. Brink, and M. Debbah, “Massive MIMO in the UL/DL of Cellular

Networks: How Many Antennas Do We Need?” IEEE Journal on Selected Areas in

Communications, vol.31, no.2, pages 160–171, 2013.

[9] K. Barylska, M. Koutny, L. Mikulski, and M. Piatkowski. Reversible computation vs.

reversibility in Petri nets. In Proceedings of RC 2016, LNCS 9720, pages 105–118. Springer,

2016.

[10] K. Barylska, L. Mikulski, M. Piatkowski, M. Koutny, and E. Erofeev. Reversing

transitions in bounded Petri nets. In Proceedings of CS&P 2016, volume 1698 of CEUR

Workshop Proceedings, pages 74–85. CEUR-WS.org, 2016.

[11] Moore, R. Semantical considerations on non-monotonic logic. Artificial Intelligence

25(1):75–94, 1985.

[12] M. Frank, "The Future of Computing Depends on Making It Reversible", IEEE

Spectrum: Technology, Engineering, and Science News, 2017.

[13] R. J. van Glabbeek. The individual and collective token interpretations of Petri nets.

In Proceedings of CONCUR 2005, LNCS 3653, pages 323–337. Springer, 2005.

[14] R. J. Lipton. The reachability problem requires exponential space. New Haven, CT,

Yale University, Department of Computer Science, Res. Rep. 62, 1976.

[15] R., R. A logic for default reasoning. Artificial Intelligence 13: pages 81–132, 1980.

[16] R. Landauer. Irreversibility and heat generation in the computing process. IBM

Journal of Research and Development, 5(3):183–191, 1961.

105

[17] S. R. Kosaraju. Decidability of reachability in vector addition systems. In

Proceedings of 74th Annual ACM Symp. Theory Computing, San Francisco, pages 267-

281,1982.

[18] X. Gao, O. Edfors, F. Tufvesson, and E. G. Larsson. Massive MIMO in real prop-

agation environments: Do all antennas contribute equally? IEEE Transactions on

Communications, 63(11):3917–3928, 2015.

[19] Y. Gao, H. Vinck, and T. Kaiser, “Massive MIMO antenna selection: Switching

architectures, capacity bounds, and optimal antenna selection algorithms,” IEEE

Transactions on Signal Processing, vol.66, no.5, pages 1346–1360, 2018.

[20] clingo and gringo. Available: https://potassco.org/clingo/

[21] "Clingo API documentation" Available: https://potassco.org/clingo/python-api/5.4

[22]"Hopcroft–Karp algorithm - Wikipedia", En.wikipedia.org. Available:

https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm.

[23] Potassco , Potassco.org. Available: https://potassco.org/

https://potassco.org/clingo/
https://potassco.org/clingo/python-api/5.4
https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm
https://potassco.org/

	Contents
	CHAPTER1
	Motivation
	WorkPurpose
	WorkMethodology
	ThesisStructure
	CHAPTER2
	ReversibleComputation
	ReverisbleModeling
	PetriNets
	ReversiblePetriNets
	CollectiveMultitokenPetriNets
	ForwardExecutionChapterTwo
	ReverseExecutionChapterTwo
	AnswerSetProgramming
	ASPSyntandSemant
	Clingo
	Python
	ClingoAPIdocumentation
	MIMOAntennaSelection
	CHAPTER3
	ForwardExecution
	ReversibleExecution
	Conditions
	ExtensiontosupportAntennaSelection
	Optimizations
	CHAPTER4
	AntennaSelectionCaseStudy
	Reachability
	GreedyComparison
	CHAPTER5
	Summary
	Challenges
	FutureWork
	References
	REF1
	REF2
	REF3
	REF4
	REF5
	REF6
	REF7
	REF8
	REF9
	REF10
	REF11
	REF12
	REF13
	REF14
	REF15
	REF16
	REF17
	REF18
	REF19
	REF20
	REF21
	REF22
	REF23

