
 

 

 

 

 

 

Bachelor Thesis 

 

 

SOFTWARE SYSTEM FOR THE FINANCIAL MANAGEMENT OF ERASMUS+ 

STRATEGIC PARTNERSHIPS PROJECTS 

 

 

 

Maria Anastasiou 

 

 

UNIVERSITY OF CYPRUS 

 

 

 

 

 

DEPARTMENT OF COMPUTER SCIENCE 

 

 

 

 

 

 

May 2021 



 

 

 

UNIVERSITY OF CYPRUS 

DEPARTMENT OF COMPUTER SCIENCE 

 

 

 

 

 

 

Software system for the financial management of Erasmus+ strategic partnerships 

projects 

 

Maria Anastasiou 

 

 

 

 

Supervising Professor 

George Papadopoulos 

 

Co-Supervisor 

Christos Mettouris 

Evangelia Vanezi 

 

 

The Diploma Thesis was submitted for partial fulfilment of the requirements for 

obtaining a degree in Computer Science from the Department of Computer Science of 

the University of Cyprus 

 

 

 

May 2021 



 

 

 

Acknowledgements 

 

With the help of God, I managed to complete this work. Throughout the writing of this 

thesis, I have received a plethora of support and assistance. I would first like to express 

my thanks to my supervisor, Professor George Papadopoulos. Furthermore, I would like 

to thank the Researchers Evangelia Vanezi and Christo Mettouri at the Software 

Engineering and Internet Technologies (SEIT) Laboratory at the Computer Science 

department of the University of Cyprus for the excellent cooperation we have had 

throughout this thesis. Their advice and guidelines helped me to complete this work. 

Besides, I would also like to thank my parents for their help and their love. Finally, I 

could not have achieved all of this without the support of my friends. They helped me by 

listening to my problems and by providing happy distractions to rest my mind. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

Summary 

 

For the purposes of this dissertation, we have implemented a platform for the financial 

management of Erasmus+ projects. On this platform, employees can complete their 

timesheets, see the projects and work packages they work on, and for each of them, keep 

track of their budget. Administrators have their own menu that allows them to execute 

additional functionalities. They can add new projects and work packages, perceive all the 

timesheets and contracts, or change the rates and the hours. 

  



 

 

CONTENT 

INTRODUCTION ............................................................................................................................. 1 

1.1 MOTIVATION ................................................................................................................................. 1 
1.2  METHODOLOGY ......................................................................................................................... 1 
1.3  CONTENTS OUTLINE .................................................................................................................... 2 

RELATED WORK ........................................................................................................................ 4 

2.1  INTRODUCTION .......................................................................................................................... 4 
2.2  OTHER SIMILAR TOOLS ................................................................................................................. 5 

1. TimeCamp ............................................................................................................................. 5 
2. Harvest .................................................................................................................................. 5 
3. Zoho Projects ......................................................................................................................... 6 
4. Toggl ..................................................................................................................................... 6 
5. ClickTime ............................................................................................................................... 7 
6. TickSpot ................................................................................................................................. 7 
7. Hubstaff ................................................................................................................................ 7 
8. Timesheets.com ..................................................................................................................... 8 
9. Clockify .................................................................................................................................. 8 
10. Replicon ................................................................................................................................. 9 

2.3  CHARACTERISTICS ....................................................................................................................... 9 
2.4  CONCLUSION ........................................................................................................................... 11 

METHODOLOGY ........................................................................................................................... 12 

3.1 INTRODUCTION............................................................................................................................. 12 
3.2 SOFTWARE DEVELOPMENT LIFE CYCLE ............................................................................................... 13 

3.2.1  What is Software Development Life Cycle? ...................................................................... 13 
3.2.2  Software Development Process Models ........................................................................... 13 
3.2.3  How to choose a development model .............................................................................. 29 
3.2.4 What we chose? .............................................................................................................. 30 

3.3 QUESTIONNAIRE ........................................................................................................................... 30 
3.3.1 Steps ............................................................................................................................... 30 
3.3.2 Questions ........................................................................................................................ 31 
3.3.3 Responses ....................................................................................................................... 32 

3.4 INTERVIEW .................................................................................................................................. 32 
3.4.1 Why Interview? ............................................................................................................... 32 
3.4.2 Interview questions ......................................................................................................... 33 
3.4.3 Interview responses ........................................................................................................ 33 

3.5 REQUIREMENTS ............................................................................................................................ 34 
3.5.1 Steps ............................................................................................................................... 34 
3.5.2 List of Requirements........................................................................................................ 34 

IMPLEMENTATION........................................................................................................................ 37 

4.1 WORDPRESS................................................................................................................................ 37 
4.2  DATABASE .................................................................................................................................. 38 
4.3 METAPHORS ................................................................................................................................ 40 
4.4 VISUAL DESIGN CONSTRAINTS........................................................................................................... 41 
4.5 USABILITY HEURISTICS .................................................................................................................... 41 
4.6 PROTOTYPING .............................................................................................................................. 43 

4.6.1 Low fidelity prototyping ....................................................................................................... 43 
4.6.2 Medium fidelity prototype .................................................................................................... 44 

DEMONSTRATION......................................................................................................................... 46 

5.1 PERSONAS ................................................................................................................................... 46 



 

 

5.2 SCENARIOS .................................................................................................................................. 48 
5.2.1  New employee ............................................................................................................... 48 
5.2.2 New project .................................................................................................................... 48 

5.3 USER MANUAL ............................................................................................................................. 49 
5.3.1 Login ............................................................................................................................... 49 
5.3.2  Register ........................................................................................................................... 49 
5.3.3 Forgot Password ............................................................................................................. 50 
5.3.4 Menu .............................................................................................................................. 50 
5.3.5 Dashboard ...................................................................................................................... 50 
5.3.6 Projects ........................................................................................................................... 51 
5.3.7 Work Packages ............................................................................................................... 51 
5.3.8  Work package hours ....................................................................................................... 51 
5.3.9 Budget ............................................................................................................................ 51 
5.3.10   Contracts .......................................................................................................................... 52 
5.3.11   New Contract ................................................................................................................... 52 
5.3.12 Timesheets ................................................................................................................. 53 
5.3.13 Edit Timesheet ............................................................................................................ 54 
5.3.14 New Timesheet ........................................................................................................... 54 
5.3.15 Admin Panel ....................................................................................................................... 54 

EVALUATION ............................................................................................................................... 59 

6.1 INTRODUCTION ................................................................................................................................ 59 
6.2 QUESTIONNAIRE ........................................................................................................................... 59 

6.2.1 Steps .................................................................................................................................... 59 
6.2.2 Questions ............................................................................................................................. 60 
6.2.3 Results ................................................................................................................................. 60 

6.3 INTERVIEW .................................................................................................................................. 61 

CONCLUSION ............................................................................................................................... 63 

7.1  CONCLUSION ........................................................................................................................... 63 
7.2. FUTURE WORK ............................................................................................................................... 63 
BIBLIOGRAPHY ....................................................................................................................................... 65 

 

 

  



 

 

FIGURES 
 

INTRODUCTION ............................................................................................................................. 1 

RELATED WORK ........................................................................................................................ 4 

FIGURE 2.1........................................................................................................................................... 10 
FIGURE 2.2........................................................................................................................................... 10 

METHODOLOGY ........................................................................................................................... 12 

FIGURE 3.1........................................................................................................................................... 13 
FIGURE 3.2 - THE WATERFALL MODEL ......................................................................................................... 17 
FIGURE 3.3 – V-MODEL........................................................................................................................... 18 
FIGURE 3.4 – INCREMENTAL DEVELOPMENT MODEL ...................................................................................... 22 
FIGURE 3.5 – PROTOTYPING DEVELOPMENT MODEL ....................................................................................... 24 
FIGURE 3.6 - EXTREME PROGRAMMING ...................................................................................................... 27 
FIGURE 3.7 – SPIRAL MODEL .................................................................................................................... 28 
FIGURE 3.8........................................................................................................................................... 30 
FIGURE 3.9........................................................................................................................................... 31 
FIGURE 3.10 ......................................................................................................................................... 34 

IMPLEMENTATION........................................................................................................................ 37 

FIGURE 4.1 – CMS TECHNOLOGIES ............................................................................................................ 38 
FIGURE 4.2 – DATABASE SCHEMA.............................................................................................................. 40 
FIGURE 4.3 –ER DIAGRAM ....................................................................................................................... 40 
FIGURE 4.4 - METAPHORS ....................................................................................................................... 41 
FIGURE 4.5 – CONSTRAINTS ..................................................................................................................... 41 
FIGURE 4.6 – LOW FIDELITY PROTOTYPE ...................................................................................................... 44 
FIGURE 4.7– MEDIUM FIDELITY PROTOTYPES................................................................................................ 45 

DEMONSTRATION......................................................................................................................... 46 

FIGURE 5.1 – PERSONAS ......................................................................................................................... 47 
FIGURE 5.2 – NEW CONTRACT .................................................................................................................. 53 
FIGURE 5.3 – NEW TIMESHEET ................................................................................................................. 54 
FIGURE 5.4 – ASSIGN.............................................................................................................................. 56 

EVALUATION ............................................................................................................................... 59 

FIGURE 6.1........................................................................................................................................... 61 

CONCLUSION ............................................................................................................................... 63 

 



 

1 
 

CHAPTER 1 

INTRODUCTION 

 

CONTENT 
 

INTRODUCTION ............................................................................................................................. 1 

1.1 MOTIVATION ................................................................................................................................. 1 
1.2  METHODOLOGY ......................................................................................................................... 1 
1.3  CONTENTS OUTLINE .................................................................................................................... 2 

 

 

1.1 Motivation 

 

Many researchers work on Erasmus+ research projects, but they do not have a 

specific platform or application to complete their timesheets and track their 

projects. A reason for this could be that other applications and platforms offering 

project management functionalities are a bit difficult to learn or are not specialized 

in meeting their needs. Many different platforms assist their users with project 

management tasks, but to the best of our knowledge, none is a good fit for the 

Erasmus+ type of projects. This is because researchers need to handle specific, 

predefined budget information and templates. Additionally, it is not efficient to 

have a lot of extra functionalities that they will eventually not use. Researchers 

need to have an easy-to-use and simple platform where they will find everything 

they need in just one place.  

Currently, researchers mostly use Excel for timesheets and several different tools 

for project management. With that in mind, we have designed and developed this 

platform for their use. 

1.2  Methodology 

 

The methodology we followed consists of five steps:  



 

2 
 

 

1. We researched, found, and examined related applications and platforms/tools to 

determine what they offer. We analyzed and compared the various functions 

provided by them, found those that we may need, and got an idea of what already 

exists. 

2. A questionnaire was implemented that was given to researchers and the public to 

find people with experience in Erasmus+ projects. The questionnaire's objective 

was to understand what exactly researchers want and need this platform to offer. 

After analyzing the results, a group interview was conducted with two researchers 

where feedback was given about the system's interface and functionalities.  

3. We extracted the requirements from both the questionnaire and  a meeting that we 

had with two researchers. 

4. The most significant phase was the implementation. We started this phase by 

designing and building the database with the required tables and the columns. 

Then, we decided about the interface, and, last but not least, we created and tested 

the various functionalities. 

5. When everything was ready, we sent the link to the researchers and they accessed 

it to try it and learn it and then we received their feedback. 

 

1.3  Contents Outline 

 

CHAPTER 1 - INTRODUCTION  

In the introduction chapter, we briefly present the motivation that we had to 

develop this platform and who will be using it. Moreover, we analyze the 

methodology used to achieve this bachelor thesis.  The first chapter is a general 

introduction to the topics that are going to be discussed in depth later. It includes 

the goals and motivation for my thesis, the methodology followed, and the 

structure of the rest bachelor thesis. 

 

CHAPTER 2  - RELATED WORK  

In the second chapter, we study and analyze other work done on similar topics. 

We found a number of platforms and applications that have some of the functions 



 

3 
 

we are looking for, and we explain how their work is related or different from ours 

and why researchers need our platform and not something that already exists. 

 

CHAPTER 3 – METHODOLOGY 

The methodology chapter defines our methodology and explains each step we 

took. First, we present what model we chose for software engineering and why. 

We describe how we got the requirements and how we use the information we 

acquired from the questionnaire.  

 

CHAPTER 4 – IMPLEMENTATION 

In the implementation chapter, we are going to show the software design. 

Additionally, we will have an ER diagram for the database and explain the tables 

and columns. Flow data diagram and workflow chart will be there as well.  In 

general, it will be the chapter that will describe everything about the design and 

the implementation. 

 

CHAPTER 5 – DEMONSTRATION 

This fifth chapter discusses how this platform will be used by the users and have 

a user manual to help them find everything they need without any difficulty. It 

explains what an employee can or cannot do based on his/her role in a more 

pragmatic way. 

 

CHAPTER 6 - EVALUATION 

In the evaluation chapter, we discuss the way we evaluate our results. We get 

feedback from some researchers who worked on this platform and add their 

projects and their timesheets.  

 

CHAPTER 7 - CONCLUSION 

This final chapter briefly describes what other functions could be added in the 

future and some final though 

 



 

4 
 

CHAPTER 2 

RELATED WORK 

 

CONTENT 

RELATED WORK ........................................................................................................................ 4 

2.1  INTRODUCTION 4 
2.2  OTHER SIMILAR TOOLS 5 

1. TimeCamp 5 
2. Harvest 5 
3. Zoho Projects 6 
4. Toggl 6 
5. ClickTime 7 
6. TickSpot 7 
7. Hubstaff 7 
8. Timesheets.com 8 
9. Clockify 8 
10. Replicon 9 

2.3  CHARACTERISTICS 9 
2.4  CONCLUSION 11 

 

 

 

 

2.1  Introduction 

 

There are many time-tracking or budgeting tools and applications. Some of them 

are listed below, along with some characteristics explained in subchapter 

characteristics, shown in Figure 2.1. Nevertheless, none of them is the best option 

for Erasmus+ Projects because many of them have features that researchers do not 

need to use (for example, the features in Figure 2.2), and they do not have some 

functionalities that researchers need. Researchers want to have an easy-to-use 

application with all the characteristics they want in one place so they will do their 

job more efficiently. Unused components that researchers need to know how they 

work, but do not find helpful for their job, make an application's learning time 

increase. This is one reason why, at present, some researchers do not use any 

platform or application for their financial management.  



 

5 
 

  

Today, the researchers we worked with are completing their timesheets in a 

spreadsheet, and they have their projects and work packages in another sheet. 

Applications and platforms like ours or the ones below allow them to have all their 

projects and work packages in one place and in a more orderly way. With these 

applications, they can visualize many things and get a more general idea of what 

is going on. 

 

2.2  Other similar tools 

 

 In this subchapter, we are going to see a few platforms and applications that have 

similar features to those that we are looking for: 

1. TimeCamp 

 

TimeCamp is a platform that helps the users to track their team's performance, 

their project's profitability, and their productivity. It provides automatic time 

tracking, which automatically completes the timesheets, which users can edit or 

delete later. It also helps you with productivity tracking by tracking how much 

time they were in each application and platform while working or by setting up 

some goals. With TimeCamp, the users can also export some reports about various 

topics like projects, etc. Additionally, if they need it, they can have some 

customizable bill rates and smart invoicing with adjustable tax rates. As for the 

budget, users can define project costs and timespan budgets, track their 

performance, and get notifications when a project is about to overrun its time or 

cost budgets. Finally, timesheets can be approved by the manager, and after the 

approval, timesheets are locked, and no one can change them. 

 

2. Harvest 

 

Harvest is a simple time-tracking application. With Harvest, the users can track 

their time automatically, and their timesheets will be completed by themselves. It 

http://www.timecamp.com/
https://www.getharvest.com/


 

6 
 

also has reminders to help the users to track their time. Another feature is a wide 

selection of visual reports that help support the team and keep projects running 

smoothly. Project reports allow users to stay on budget while team reports 

visualize the team's capacity so they can adjust their workload accordingly.  

Harvest also has the feature for the manager to approve the timesheets. Invoicing 

page can generate invoices automatically and email them to the clients with few 

clicks. It supports PayPal and Stripe. 

 

3. Zoho Projects 

 

Zoho Projects is a cloud-based project management software that helps its users 

to plan their projects, track work efficiently, and collaborate with their team, 

wherever they are. With Zoho Projects, each user can manage both simple and 

complex projects by breaking them down into milestones, task lists, tasks, and 

subtasks and then visualize them. Additionally, they can assign tasks to other 

users, set work hours, and track them as they are finished. With the help of Gaant 

diagrams, users can plan their projects thoroughly and track progress closely. 

Also, they can set up dependencies, identify critical tasks, and create baselines at 

regular intervals so they can stay on track and get projects completed on time. 

Zoho Project has a timer that auto-completes the timesheets, and then the manager 

must approve them. With the Zoho Books or Zoho Invoice integration, Projects 

helps record their expenses, set up a budget for their project, and turn their 

timesheets into invoices for client billing and payroll purposes. Another feature 

that Zoho Projects has is the various reports extracted from timesheets based on 

the project or the user. 

 

4. Toggl 

 

Toggl is a simple platform that helps users with time and project management. It 

can help them get a visual overview of everything that's happening without 

spending hours keeping things up to date. Toggl Plan is fast and flexible so that 

https://www.zoho.com/
https://toggl.com/


 

7 
 

when the users' plans change, they can quickly get back to work. With Toggl, 

users can assign work to their team to make sure that everyone is working. It can 

also track time both online and offline to have a more complete and correct 

timesheet. 

5. ClickTime 

 

Click time is an application that can track, manage, and plan employee time with 

ease. With ClickTime, users can complete their timesheets, keep track of their 

expenses, track their time, etc. Another feature is that you can request some time 

off, and the manager can approve or deny their request. With this application, 

users can also have resource planning both in terms of time and people. They can 

also easily see which projects, activities, clients, or employees are going over 

budget and create some budget alerts to prevent overservicing and overspending. 

 

6. TickSpot 

 

TickSpot is a straightforward time tracking software and mobile app that helps its 

users to track their time and budget. It has some in-app timers that allow them to 

track time for their timesheets and some instant budget feedback for the project 

they are working on at that time. Additionally, administrators can look at all the 

projects and how the budget is spent between each task or person. Users can also 

set a specific budget for each job, so it will be easier to know if they are over-

budget. Moreover, the administrator can assign the employees to the projects. 

 

7. Hubstaff 

 

Hubstaff's time tracking app is an easy way to keep track of time. Hubstaff offers 

time tracking, budgeting, online timesheets, and other things that researchers are 

looking for, but at the same time, it has a lot of other features too. Hubstaff 

provides its users with Geofencing and GPS tracking as well as employee 

monitoring.  

https://www.clicktime.com/
https://www.tickspot.com/
https://hubstaff.com/


 

8 
 

 

8. Timesheets.com 

 

It is a time tracking software for teams. It helps with timesheets for employees in 

the office or working from home. It is mainly used for small or medium-sized 

businesses. With timesheets.com, the users can complete their timesheets online 

either automatically, with the online timer, or manually. Timesheets.com offers 

many ways to get the time for billing, job costing, and productivity. Each user can 

have a customizable permission setting. Via this platform, they can also track the 

employees who work in the field and know their location. Another feature is that 

if a user is an administrator, he/she can check for time off conflicts between 

workers and approve requests from the calendar screen or the employee's 

timesheet. Timesheets.com also offers powerful reporting features. Reports can 

be filtered by employee, customer, or job so that the users will know precisely 

their costs. 

 

9. Clockify 

 

Clockify is a simple time tracker and timesheet app that lets its users and their 

team track work hours across projects. They can track their time for each project 

and task manually or automatically with the timer and choose if it is billable. As 

for the timesheets, they can select the activity and then complete the hours they 

worked on each day. It offers them the possibility to see all the week together and 

the task they have done each day. Another feature Clockify has is the calendar, 

which visualizes every day, and the users can add or edit their block hours 

accordingly. It also has a dashboard to see the team's latest activity and who is 

currently working. With Clockify, the users have the option to download some 

reports or send them via email to someone else. Finally, they can see the projects 

and the team members, and if they are the administrator, they can edit rates, roles, 

etc. 

 

https://www.timesheets.com/
https://clockify.me/


 

9 
 

10. Replicon 

 

Replicon is an All-in-One Project Timesheet Software. With Replicon, users can 

track the time they spent on each activity, project, or task. They can also have 

some pre-populated timesheets records (for example, the previous month's 

timesheet). Some other features it has are GPS monitoring and time off 

scheduling. Replicon has notifications to remind its users about timesheets or 

approvals if you are the administrator.  This application allows them to add 

projects and specify their budget, their milestones, etc. Lastly, it has an advanced 

analytics engine that enables the proper information access to the right people 

based on their organization's hierarchy and controls. 

 

 

2.3  Characteristics 

In this subchapter, we present the features that most of the above applications and 

platforms have. We choose those features because it was the most common ones and those 

we believed might be useful for our web tool. 

 

Auto tracker: It is a personal timer that helps you count the exact hours you 

worked on each project.  

Offline time tracker: It is exactly like the auto tracker, but it works with or 

without the internet. 

Budgeting: It is a section where you can see the actual spending in relation to the 

budgeted amount. 

Invoices: It is a section where you can list the products and services your team 

provides to a client and establish an obligation on the client to pay your team for 

those products and services. 

Project dashboard: It is a screen where all the projects and due dates are 

displayed. 

https://www.replicon.com/


 

10 
 

Absence analysis: It is a screen where you can apply for leave days and see if 

they are approved. 

Computer using tracking: It tracks the amount of RAM, storage, etc., used, the 

platforms visited, and the time employees spent on the computer. The system will 

keep this information, and the project manager can have access to this. 

Timeline chart: It shows the calendar and the team's tasks at a specific time. 

Google synchronization 

Financial reports: They are reports that show how each project's budget is 

consumed through time and personnel. 

 

Figure 2.1 
 

 

 

Figure 2.2 
 

 



 

11 
 

 

2.4  Conclusion 

 

Our platform needs budget information and report, a dashboard, timesheets, and 

an administrator panel, along with some basic features like view or add projects, 

work packages, and contracts. As described above, many applications and 

platforms have the functions we are looking for in our web tool. One essential 

feature that they do not have that will be easier for the researchers if they have it 

is the limitation in daily and monthly hours on timesheets. On our platform, we 

would like the administrator to define the daily and monthly hours that employees 

can complete for their timesheets. If someone is going to be over that hours on a 

daily basis, or over the budget of the project in general, or he/she is over the hours 

in his/her contract, there must be a notification, and the timesheet must not be 

completed. 

Additionally, we need our platform not to allow employees to complete timesheets 

on weekends or national days. With these limitations, the administrator will not 

have to accept or deny a timesheet, giving researchers more time for work. 

Another significant issue is money. None of the above applications and platforms 

does all these things for free. All of those applications are proprietary, so 

researchers need to pay to get all the functions they require.  

 

Many online applications with similar features have been recognized, but either 

they do not provide all the functionality that we need or provide additional 

complex functionality. Additionally, researchers need to pay for many of them to 

get some of the functionalities that they need. As we can see, researchers may 

need some different features that are not be offered by those tools, so we only got 

an idea of what already exists out there to create our own platform.  

 



 

12 
 

CHAPTER 3 

METHODOLOGY 

 

 

CONTENT 

METHODOLOGY ........................................................................................................................... 12 

3.1 INTRODUCTION 12 
3.2 SOFTWARE DEVELOPMENT LIFE CYCLE 13 

3.2.1  What is Software Development Life Cycle? 13 
3.2.2  Software Development Process Models 13 
3.2.3  How to choose a development model 29 
3.2.4 What we chose? 30 

3.3 QUESTIONNAIRE 30 
3.3.1 Steps 30 
3.3.2 Questions 31 
3.3.3 Responses 32 

3.4 INTERVIEW 32 
3.4.1 Why Interview? 32 
3.4.2 Interview questions 33 
3.4.3 Interview responses 33 

3.5 REQUIREMENTS 34 
3.5.1 Steps 34 
3.5.2 List of Requirements 34 

3.5.2.1  Projects 34 
3.5.2.2 Contracts 35 
3.5.2.3 Working Packets 35 
3.5.2.4 Milestones 35 
3.5.2.5 Timesheets 35 

 

 

 

3.1 Introduction 

 

 In this chapter, we describe the methodology followed and explained each step 

taken. Our software is based on the researchers' requirements, so we needed to 

find the best software development life cycle that covers our needs. After that, we 

had a questionnaire and interviews from where we extracted the requirements. 

Later on, in this chapter, we present the list of the requirements. In Figure 3.1 is 

seen the methodology we used to develop this platform. 

 



 

13 
 

 

Figure 3.1 
 

 

 

3.2 Software Development Life Cycle 

 3.2.1  What is Software Development Life Cycle? 

 

Software Development Life Cycle (SDLC) is a process used by the software 

industry to design, develop and test high-quality software. The SDLC aims to 

produce high-quality software that meets or exceeds customer expectations, 

reaches completion within times and cost estimates. 

 

ISO/IEC 12207 is an international standard for software life-cycle processes. It 

aims to be the standard that defines all the tasks required for developing and 

maintaining software.  

 

Various SDLC models are followed during the software development process. 

These models are also referred to as "Software Development Process Models." 

Each process model follows a series of steps unique to its type to ensure success 

in software development. The most common models are explained below. 

 

3.2.2  Software Development Process Models 

 



 

14 
 

Waterfall Model 

 

The waterfall model breaks the software development process into several stages. 

Each phase must end before the next one starts. Additionally, the development 

team cannot return to a previous step when it is done; it is like a waterfall that 

goes down and never comes back. That is why this model is known as the waterfall 

model. The waterfall model is an instance of a plan-driven approach. They must 

plan and schedule every activity of the whole project before beginning software 

development.  In each stage of the software development process, they have to 

examine the results obtained against those they expect. In all parts, quality has to 

be assured and controlled. After each stage in the waterfall model, they have one 

or more reports to be approved by the client.  

 

The phases of the waterfall model are: 

 

1. Requirements analysis and definition 

The development team tries to recognize the user's demands from the very 

beginning and as quickly as possible. They establish the system's services and 

restrictions by interviewing the system users or by making a questionnaire. 

The users then explain their work and their needs in detail, which is used as 

the system specification. 

 

2. System and software design 

In the systems design process, the development team allocates the 

requirements to either hardware or software systems. That way, they set a 

system design that covers all the requirements of the client. In the software 

design, they need to recognize and explain the most necessary software system 

concepts and their connections. 

 

3. Implementation and unit testing 

At this stage, the development team breaks the software into multiple program 

units, and they implement each of these units until they design every part of 



 

15 
 

the software. Afterward, they do some unit testing to verify that each part or 

unit meets its specifications. 

 

4. Integration and system testing 

The development team combines the distinct program units, and they test them 

as a whole system to guarantee that they met the software requirements. After 

the various tests, they deliver the software system to the client.  

 

5. Operation and maintenance 

In most cases, this is the phase that takes the most time. The system is set up 

and is functional in the user's place. The development team needs to maintain 

the system, which means: 

a. Fixing errors and omissions that were not detected before 

b. Enhancing the implementation of system units 

c. Upgrading the system's services with the new requirements that the 

development team discovered in order to evolve the system so it will 

remain useful 

However, they must consider that they may have to repeat previous process 

stages by changing things, which is unacceptable in the waterfall model.  

 

As it is stated before, the next phase should not start until the previous one has 

finished. That leads to numerous difficulties where some of them are: 

 

1. Actual projects rarely match the sequential flow that the model suggests.  

2. It is frequently difficult for the client to declare all requirements explicitly. 

The waterfall model expects this and has difficulty accommodating the 

natural doubt at the beginning of many projects. 

3. The customer must be patient. A working draft of the program will not be 

accessible until late in the project period. 

4.  If the development team does not detect a significant mistake until the 

final project review, it can be very harmful. 

 



 

16 
 

The fear that new information may appear leads to the possibility that both 

customers and developers may rush to freeze the software specification so that no 

one can make further changes to it. Sadly, this means that many obstacles are left 

for later resolution or ignored. Early freezing of requirements may mean that the 

system will not do what the user requires. [8] 

 

In an impressive examination of actual projects, Bradac [Bra94] found that the 

linear nature of this life cycle leads to a loop, in which some project members 

must wait for coworkers to complete dependent tasks. The time wasted waiting 

can exceed the time spent on productive work.[6] 

 

There is evidence that the waterfall model has many weaknesses. In many 

projects, the development team does not follow the linear sequence of phases as 

they see them in the waterfall model.  In reality, the software has to be flexible 

and accommodate change while developing. Additionally, software work is fast-

paced and is subject to continuous streamflow of changes (to features, functions, 

and information content). The waterfall model is often unsuitable for such work.  

[8] 

 

The need for early dedication and system rework while having any changes means 

that the waterfall model is only appropriate for some varieties of systems such as:  

 

1. Enclosed systems where the software has to interface with hardware 

systems 

Because of the firmness of hardware, it is not usually desirable to postpone 

decisions on the software's functionality until the development team 

implements it.[8] 

 

2. Crucial systems where the client needs boundless safety and security 

analysis of the software specification and design 

In this type of software, the specification and design records must be 

perfect for making the different kinds of evaluation possible. Safety-



 

17 
 

related restrictions in the specification and design are usually very costly 

to fix at the implementation stage. [8] 

 

3. Massive software systems that are part of more general engineering 

systems developed by several partner companies 

The development team can develop the hardware using a similar model, 

and companies find it easier to use an ordinary model for hardware and 

software. Moreover, where numerous corporations are involved, complete 

specifications may be needed to allow for the autonomous improvement 

of different subsystems.[8] 

 

In conclusion, the waterfall model is not the most suitable process model in 

situations where informal team communication is desirable. Additionally, this 

model will not be the best one if the software requirements change quickly. 

 

Figure 3.2 - The waterfall model 

  

 V-model 

 

V-model is a variation in the design of the waterfall model. The V-model shows 

the relationship of tests to the primary activities. As the software team moves 

down the left side of the V, there are the basic activities of the waterfall as we saw 

them, and the code is generated. When the development team writes the code, they 

move up the right side of the V by performing a series of tests that validate each 

model they create as they move down the left side. However, like the waterfall 



 

18 
 

model, they cannot go back into previous stages. There is no significant difference 

between the waterfall life cycle and the V-model. The V-model gives us a way of 

visualizing how verification and validation actions are applied. 

 

 Figure 3.3 – V-model  
 

 

Agile Methodologies – Scrum model 

 

Agile development is a systems development strategy wherein the system 

developers can select from various tools and techniques to best accomplish their 

tasks. Agile development is believed to strike an optimal balance between 

productivity and quality for systems development [10] 

 

The philosophy behind agile methods is reflected in the agile manifesto (HTTP:// 

agilemanifesto.org) issued by the leading developers of these methods. This 

manifesto states: 

 



 

19 
 

 

Agile methodologies have many different models with which developers can 

work. The most popular and typical examples are Scrum, eXtreme Programming 

(XP), Feature Driven Development (FDD), Dynamic Systems Development 

Method (DSDM), Adaptive Software Development (ASD), Crystal, and Lean 

Software Development (LSD). 

 

The scrum model encourages teams to learn through experiences, self-organize 

while working on a problem, and reflect on their wins and losses to improve 

continuously. Scrum has many roles. One of them is the product owner, which is 

the customer representative, he/she works with the team, decides the features, is 

responsible for the final approval, and he/she has to accept or reject the work 

results. Another role is the scrum master. The scrum master has a leadership role, 

and he/she helps the team members to be responsible. The scrum master is 

responsible for the daily scrums and the sprint planning meetings. The last type 

of role is a scrum team member. The team has to develop the product. Scrum is 

based on sprints. At the start of each sprint, there is the sprint planning meeting, 

in which all roles took part. The product owner is responsible for prioritizing the 

items which are more important for the specific sprint. The sprint planning 

meeting is focused on what to do and how to do it in that specific sprint. During 

the sprints, there are some daily scrums on which the scrum master and the 

development team members report to each other. At the end of each sprint, there 

is the sprint review meeting on which the product owner reviews the sprint. 

Another meeting on the scrum model is the sprint retrospective meeting. Everyone 

discusses their experiences and problems faced during the sprint and discusses 

what to be followed and not to be followed to improve further. [7,11] 



 

20 
 

 

In scrum, there are three artifacts, product backlog, sprint backlog, and burndown 

chart. The product backlog is an ordered list of "requirements" that is maintained 

for a product. The product backlog is the master list of work that needs to get done 

maintained by the product owner or product manager. This is a dynamic list of 

features, requirements, enhancements, and fixes that act as the sprint backlog's 

input. The product backlog is constantly revisited, re-prioritized, and maintained 

by the Product Owner. As we learn more or as the market changes, items may no 

longer be relevant, or problems may get solved in other ways. The sprint backlog 

is the list of items, user stories, or bug fixes selected by the development team for 

implementation in the current sprint. Before each sprint, in the sprint planning 

meeting, the team chooses which items it will work on for the sprint from the 

product backlog. A sprint backlog may be flexible and can evolve during a sprint. 

The sprint burndown chart is a displayed chart showing the remaining work in the 

sprint backlog. Updated every day, it gives a simple view of the sprint progress. 

It also provides quick visualizations for reference. [7,11] 

 

 

Incremental development model 

 

Incremental development is based on the idea of producing a first version of the 

software with the basic features, give it to the client to get feedback, and based on 

that feedback, develop the next version. Developers will create numerous versions 

until they implement all the requirements. 

 

Most of the time, they start with the most critical or most urgently required 

functionalities. That means that they deliver some fundamental requirements, but 

many additional features remain undelivered until future versions. The customer 

gets the current product and gives us his/her thoughts and comments about the 

functionalities that have been implemented and the new functionalities that he 

may want. As a result of this use and evaluation, they plan the next increment. 

Each new version includes some other requirements that the client wants. They 

repeat those stages after each version until they produce the final product with all 



 

21 
 

the client's functionalities. Developing software this way avoids the 'Big Bang' 

effect, i.e., for a long time, nothing happens, and then, suddenly, there is an 

entirely new situation. Instead of building software, the software grows [9] 

because instead of building the software, the software grows itself within each 

version. 

 

The incremental development model is most appropriate when: 

 

a. The client does not know all the requirements from the very beginning and 

wants to see a version of the software and think about what else he needs 

b. When the client needs some functionalities right away, and other 

functionalities can come in later versions. 

 

Incremental development is now the most common approach for the development 

of application systems and software products.[6] We can have incremental 

development as plan-driven, agile, or both. In a plan-driven approach, the 

development team must say from the beginning which increments will be in each 

version. If they prefer agile, they have the main functionalities in the first version 

and they see with the client the increments for each of the subsequent versions.  

 

Incremental development has three significant advantages over the waterfall 

model: 

 

1. In the waterfall model, the development team cannot go back and change 

requirements, so they have to start from the beginning, making it very costly. 

In contrast, in the incremental development model, they can add new 

requirements after each version with much less cost.  

2. With the incremental development model, they can get a lot more customer 

feedback because they evaluate each version after each phase. On the other 

hand, in the waterfall model, after each step, the client has just a document 

with the work that is completed until the current stage, which is not helpful 

because even if he does not like something, he could not do anything about it. 



 

22 
 

3. In the incremental development model, the client has an early version from 

the beginning and can use it, even if some functionalities are missing. That is 

very helpful for the client to familiarize himself with the software and give us 

feedback. 

 

The incremental development model has two main drawbacks: 

 

1. Managers need frequent deliverables to measure progress. If the various 

versions are developed quickly, it is costly both in terms of time and money 

to produce documents that reflect every system version.  

2. The client can change the requirements and the functionalities, so this leads to 

messy code. Each time the client changes the requirements, it becomes more 

difficult for the manager and the programmers to include them effectively in 

the existing code without any problems appearing. To overcome these 

problems, developers should regularly refactor the software. 

 

Figure 3.4 – Incremental Development Model 
 

 

Prototyping 

 

Prototyping is an alternative system model.  Most of the time, the user has 

difficulties identifying detailed requirements for functions and features precisely. 

In situations like this, prototyping may be the best approach. 



 

23 
 

 

 A prototype is an early version of the software system that the development team 

uses to show some functionalities, user interface, design alternatives, to get the 

perfect system for the client. They use rapid, iterative development to control the 

various costs, and the clients can experiment with each prototype throughout the 

software process. Prototyping can be used as a stand-alone model, but most of the 

time is used as a routine within the context of other process models such as the 

incremental development model. 

 

The prototyping model helps the stakeholders and developers better understand 

what they need to build when they do not have specific requirements. The first 

thing they do is start with communication. They meet the clients to establish the 

goals of the software, identify the known requirements, and express other items 

that may be needed. They start by developing the user interface as the first 

prototype. The stakeholders who take the prototype provide us with feedback that 

we use to explain further the requirements that are not so clear and develop the 

next prototype with more features. Prototyping is an essential tool for 

requirements engineering. After the feedback of each prototype, it is possible that 

some functions or some designs that are in a particular prototype will be thrown 

away. This is known as throwaway prototyping. 

 

The numerous prototypes allow the clients to see if the system will do the work 

they need it to do. Additionally, they may get new ideas for requirements and find 

some system vulnerabilities before the final stage so that they can overcome them 

quickly. Furthermore, while developing some prototypes, they may expose some 

omissions in the requirements when they combine the functions. In those cases, 

they can modify the requirements to be more clarified. 

 

After a few iterations, the user is satisfied with a prototype, then the last version 

is developed, and the final product is delivered. This is known as evolutionary 

prototyping. In practice, evolutionary prototyping is used much more often than 

throwaway prototyping because it is not easy to throw away something that they 

worked on for many days. 



 

24 
 

 

Advantages 

 

● The resulting system is easier to use because the users will be already familiar 

● User needs are better accommodated 

● The resulting system has fewer features because the developers can throw 

away some unnecessary features (throwaway prototyping) 

● Problems are detected earlier 

● The design is of higher quality. 

● The resulting system is easier to maintain. 

● The development incurs less effort  

 

Disadvantages 

 

● The resulting system has more features if the developers do not like to throw 

away unnecessary features and, in each prototype, they find more 

requirements 

● The performance of the resulting system is worse if the final product has many 

features 

● The design is of lesser quality 

● The resulting system is harder to maintain 

● The prototyping approach requires more experienced team members  

Figure 3.5 – Prototyping development model 
 



 

25 
 

Extreme Programming 

 

Extreme Programming is a pure agile method and is the most widely used 

approach from agile software development models. Extreme Programming is 

based on four primary activities: planning, design, coding, and testing. 

 

1. Planning 

 

The planning activity helps the team understand the business context of the 

software and get a general idea about the main features and functionalities needed. 

Then the customer creates user stories that explain the required features that the 

development team needs to build for the software. The customer writes the user 

stories and places them on an index card. Then he assigns a priority on each, based 

on the value of that feature on the software. Then the members of the team get 

each user story and allocate the cost of it. 

 

Each user story must be calculated to require less than three weeks. Otherwise, 

the customer must split it into smaller user stories and reassign value and cost. A 

user story can be written at any time, not only at the beginning of the project. The 

whole team, customers, and developers decide how to group the user stories into 

the next increment developed. When the basic agreement on the stories to be 

included, the delivery date, and other project matters are made, then the team 

chooses how will implement the user stories. The three ways are the highest value 

first, highest risk first, or all user stories are equal. 

 

When the developers deliver the first software increment, the team figures how 

many user stories they implement into the first increment. That helps to estimate 

the delivery dates and schedule each increment. Throughout the project, the client 

can add, change, split, or delete some user stories. Then the team must review the 

remaining releases and adjust the plan. 

 

2. Design 

 



 

26 
 

Extreme Programming design strictly follows the keep it simple principle. The 

development team prefers a simple design that is literally what the user story 

writes. They do not design additional functionalities that may be required later. 

Extreme Programming uses the CRC cards, which are the only design work 

product in Extreme Programming, to identify and organize the classes that are 

relevant to each increment. Extreme Programming support refactoring of the code 

to make it simpler. It is also a way to clean up the code and minimize the chances 

of introducing bugs. A problem that occurs is the increment of the effort they need 

to refactor the code when the software grows. 

 

3. Coding & Testing 

 

Before the beginning of coding, the team must develop some unit tests that will 

be needed to test if the user stories that were included in that release have been 

implemented correctly. When they complete the tests, then they write the exact 

code that is needed to pass them. With that in mind, they keep the code of each 

feature very simple. When they finish coding, they unit-test the code instantly; 

that way, they get immediate feedback. During coding, they do pair programming, 

which means that two people work together on the same computer. For example, 

one is coding, and the other ensures that everything is going as the plan says. 

 

Practical, Extreme Programming, as proposed initially, is more complicated than 

expected. It cannot be easily combined with the management practices and culture 

of most businesses. Therefore, the companies selecting the agile methods pick 

those Extreme Programming practices that are most appropriate for their way of 

working and not the Extreme Programming as a whole. 

 

Extreme Programming is suited for particular projects, but not for all. If 

requirements are unsure, the system is not too big, and the customer can be 

available throughout the project, Extreme Programming deserves serious 

consideration. 

 



 

27 
 

Figure 3.6 - Extreme Programming 
 

 

Spiral Model 

 

The spiral model is an evolutionary risk-driven software process model with 

repetitive prototypes like prototyping or incremental development and is 

controlled and systematic like the waterfall model. It has two main features, the 

cyclic approach for incrementally growing the implementation of the system 

while decreasing the risk and a set of milestones. By using the spiral model, the 

software is developed in a series of incremental releases. 

 

At the beginning of the project, the releases are some models or prototypes. 

During later iterations, there are versions of the system that are more whole. A 

spiral model is divided into some activities established by the software 

engineering team like design or coding, which are the activities around the spiral 

clockwise. The project begins at the center, and clockwise it goes to the outer 

layers. Risk is considered each time the development team finishes all the 

activities. After the risk analysis, they start again with the activities adding more 

features. Anchor point milestones are written each time after the risk analysis. The 

first turn around the spiral might result in the development of a product blueprint. 

Next, loops around the spiral are used to produce a prototype and, later, more 

advanced software versions. 



 

28 
 

 

They recalculate the cost and readjust the schedule, depending on the feedback 

they receive from the customer after each delivery. In addition, the project 

manager calculates the number of iterations they seem to require until the software 

will be ready.   

 

The spiral model is a more practical approach to the development of large-scale 

systems and software. As is known, the software evolves as the process proceeds. 

Both the developer and customer understand better the requirements and the risks 

after each iteration. The spiral model uses prototyping as a risk-reducing 

mechanism and lets us implement the prototyping approach at any phase in 

developing the product. It maintains the systematic stepwise approach suggested 

by the classic life cycle but organizes it into an iterative process that is more 

realistic. The spiral model requires attention to technical risks at all steps of the 

project. The risks that are found need to be reduced before they become 

problematic. However, the spiral model is not the perfect model. It demands 

significant risk evaluation expertise and depends on its success on this. If a 

considerable risk is not revealed and maintained, problems will indeed occur. 

 

 

Figure 3.7 – Spiral model 
 



 

29 
 

3.2.3  How to choose a development model 

 

1. Fixed requirements VS Flexible requirements 

 

The Agile and Iterative methods are perfect if they want to build an application, 

and the requirements will be changing during the project. The waterfall fits a 

classic web and app development where they know right from the beginning of 

the project all the requirements. 

 

2. One major release VS Continuous delivery 

 

If the client wants only the final release, then they choose Waterfall or V-model. 

However, these two models are most suitable for small projects. If they have to 

develop a large project, then a single final release has a risk of a more significant 

number of bugs due to a more considerable amount of code for the developers to 

keep track of. 

 

All other models suggest regular releases, every four weeks approximately, and 

represent 'iterative' delivery, where we get a working product early in the 

development and then see it develop. Any coding errors or disagreements with 

our requirements can be quickly spotted and quickly fixed. 

 

3. Documentation VS Communication 

 

Many models, like Spiral, V-model, and Waterfall, recommend very detailed 

documentation and limited communication, while the Iterative model tries to 

balance documentation and communication. On the other hand, in the models of 

the Agile group, direct and frequent communication is a must. 

 



 

30 
 

Figure 3.8 
 

 

3.2.4 What we chose? 

 

 The user requirements were clear enough for our software but not a hundred 

percent, so the waterfall and V-shaped model was not our choice. Additionally, 

we preferred to have continuous delivery, so the users can check it and tell us if 

they want to change anything. So we were leaning on the incremental model or 

Agile. Finally, we wanted to have more communication and not documentation. 

So Agile was our best option. We choose to go with Scrum methodology, which 

is easy to implement. It has a series of sprints and a lot less documentation than 

other traditional models. With the Agile method, we had a lot more 

communication with the customer, so the platform has everything he/she 

needs.[11] On our team, the product owner was the researchers, the scrum master 

was the co-supervisors, and the team was me.  

3.3 Questionnaire 

3.3.1 Steps  

 



 

31 
 

To make the questionnaire, we followed some steps, as shown in Figure 3.9. First, 

we decided which information we needed to collect. Demographic data, 

experience, and which features users think as essential. Then we decided who will 

be our target respondents, who, for us, were the researchers that will use this 

platform. After that, we decided to create our questionnaire on google forms and 

send it to the respondents via email. Afterward, we decided on the exact questions 

and found the right way to write them to be easily understandable. Later we 

reorder the questions and cut them into sections to have a meaningful order that 

does not confuse the respondent. Finally, we checked the length and the content 

of the form, and we sent it to the respondents. 

 

Figure 3.9 
 

3.3.2 Questions 

 

The questionnaire was developed in three main parts. First, there were some 

general instructions and explanations. The second part was about personal 

information and demographics, and the third part was the main body. In the second 

part, we have gathered information about the gender, age, and relevance of the 

person who is completing the questionnaire with the research projects in general 

and Erasmus+ specific. If he/she has previous experience, we had questions about 

the sector (Industry/Academia/Other) he/she had worked on, years of experience, 

and the role he/she has/had. After gathering this information, we asked about some 

scenarios to get a more specific idea of what they need. In the third section, the 



 

32 
 

body of the questionnaire, we had some functionalities for which we asked the 

importance they have for the person who was completing the questionnaire. We 

found those functionalities in other web tools, and we thought that there might be 

important. At the end of this section, we asked if something else is wanted. 

Questions can be found in Appendix A 

 

3.3.3 Responses 

We had sixteen answers, nine from Females and seven from males. Half of them 

were between eighteen and thirty years old, five persons forty-six to sixty and 

three persons thirty-one to forty-five. Six of those have worked or are currently 

working on a research project. Our responders have different years of 

experience; one-third of them has less than two years of experience, one-third 

has two to five years of experience, and one-third has more than five years of 

experience. All of our responders have experience in Erasmus+ Strategic 

Partnership projects in various roles except Admin. As stated by their responses, 

it was very important to have financial reports from several months and several 

projects, and it was essential to have for different personnel. 

 

The most crucial feature from the ones we stated was the project dashboard. 

After that, the next necessary functionality based on the responses was the 

timeline chart, the budgeting, and the financial reports. The rest was important to 

neutral except computer using tracks which was the voted as slightly to not at all 

important. 

3.4 Interview 

3.4.1 Why Interview? 

 

Interviews are a perfect way to gather requirements right away from the users. We 

get precisely the features that they need, and they can explain to us everything we 

need. 

 



 

33 
 

3.4.2 Interview questions 

 

We conducted extensive interviews with two of the researchers. In the beginning, 

they showed us what they are using now. After that, we had some general 

questions like "What do you want the platform to look like?" or "Which 

functionalities do you believe are essential?".  Throughout the process, we try to 

have more like a conversation. This way, we get as much as possible from those 

who will use it. But we were constantly having in mind not to get away from our 

theme. 

 

3.4.3 Interview responses 

After the interview with the two researchers, we got some time to analyze the 

responses and get the results. During the interview, the respondents state that the 

most critical functions were the timesheets and the budget. As it was said by them, 

they need a tool to expedite the process of completing and checking timesheets. 

Especially the checking of timesheets is a process that takes a lot of time when 

something went wrong. Another thing that was stated was that they need to have 

the budget information compacted in a place so it will be easier to analyze it. 

Having all the budget information in one place was a thought of relief because 

they do not want to update the budget manually to avoid potential errors. In 

conclusion, the interview with the researchers help us understand the following 

requirements: 

1. Each type of employee has a different rate 

2. Rates can be changed but are the same for each project 

3. Total hours for the day and the month can be changed 

4. Total hours for the day and the month are the same for everyone 

5. Information needed for each project, work package, contract and 

milestone 

6. How the contracts work 

7. Limitations about timesheets 

a. Cannot add timesheet on weekends 

b. Cannot add timesheet on National days 



 

34 
 

 

3.5 Requirements 

3.5.1 Steps  

The steps needed to get the requirements we will need to develop the platform are 

listed in Figure 3.10. 

 

Figure 3.10 

3.5.2 List of Requirements 

3.5.2.1  Projects 

 

● The user can see the projects that he/she works on 

● Each project has a name 

● Each project has a budget 

● Each project has some work packages.  

● Each project can have the following roles: 

o Manager with a rate of €164/day 

o Researcher with a rate of €137/day 

o Technician with a rate of €102/day 

o Administrator with a rate of €78/day 

● Rates can be changed from settings, but there are the same for each 

project. 

● Each project has some project milestones at which some deliverables 

must be delivered and some financial milestones. 

 



 

35 
 

3.5.2.2 Contracts 

 

● The user can see his/her active or inactive contracts 

● Each contract is about one user 

● Each contract has a start and an end date 

● Each contract is about one project and one role. Different roles on the 

same project are separate contracts 

● Each contract has some hours 

 3.5.2.3 Working Packets 

 

● Each working packet has a name 

● Each working packet has a number 

● Each working packet has a start date and end date 

● Each working packet has some hours 

● Each working packet has a budget 

● At the beginning of a project, each working hour of a working packet is 

assigned to users with contracts. The program will show the working 

hours left for each working packet after the employees fill their 

timesheets each month. 

3.5.2.4 Milestones 

 

● Each milestone has a date 

● Each milestone has a name 

● The platform must send a notification when the due date is near 

 

 3.5.2.5 Timesheets 

 

● On timesheets, the employees cannot claim hours on weekends or 

public holidays. 

● Employees cannot claim more than a maximum of hours each day on 

all the projects they are working on. 



 

36 
 

● Employees cannot claim more than maximum hours each month on all 

the projects they are working on. 

● For now, the maximum hours per day on all the projects that he/she is 

working are 7.5  

● For now, the maximum number of hours each month on all the projects 

that he/she is working are 140 

● Hours per day or month can be changed from the settings. 

● Timesheets can be downloaded and printed as PDF 

● Additionally: Total hours claimed for each employee (in all of her/his 

timesheets) as well as the individual hours claimed for each project (in 

each separate timesheet), should match their total and per agreed 

working hours according to their contracts 

  



 

37 
 

 

 

CHAPTER 4 

IMPLEMENTATION 

 

 

CONTENT 

IMPLEMENTATION........................................................................................................................ 37 

4.1 WORDPRESS 37 
4.2  DATABASE 38 
4.3 METAPHORS 40 
4.4 VISUAL DESIGN CONSTRAINTS 41 
4.5 USABILITY HEURISTICS 41 
4.6 PROTOTYPING 43 

4.6.1 Low fidelity prototyping 43 
4.6.2 Medium fidelity prototype 44 

 

 

4.1 WordPress 

For the implementation, we chose to exploit the WordPress Content Management System 

(CMS) as a basis for our development. WordPress is a free software with a lot of plugins 

and themes we can choose from. It has a lot of existing themes which provide "user-

friendly interfaces." WordPress is open source, so developers can add their functionalities 

on top of its code by creating their plugins. WordPress is safer and more secure than 

trying to secure our own platform, so we relied on this to focus on implementing in detail 

the financial functionalities studied in this thesis. WordPress takes privacy into 

consideration. It has taken some measures towards GDPR compliance. We constructed 

our own plugins to use, and we only used one existing plugin from the WordPress 

repository, UltimateMember. Ultimate Member plugin helped us with User management. 

It is responsible for new users, sign up, log in, forgot password, and account. We chose 

to use a plugin for these functions because it matters to be secure. After all, we need to 

focus on the financial details of the projects, and user-related functions must is essential 

https://wordpress.org/news/2018/05/wordpress-4-9-6-privacy-and-maintenance-release/


 

38 
 

to be secured. WordPress is a very popular CMS that is used by millions of developers, 

as we can see in Figure 4.1. 

 

Figure 4.1 – CMS technologies 

 

4.2  Database 

 We work on phpMyAdmin with a MariaDB database. We need the database to 

save the projects, the working packets, who works where etc. We have eight tables 

with many columns in each one. The Database Schema is presented in figure 4.2.  

 

Firstly we have a table for the national holidays with three columns, the key, the 

name of the national holiday and the date. We use this table to check if an 

employee can or cannot add a timesheet one day. 

 



 

39 
 

Another table we have is Hours, and this table also has three columns, the id, daily 

hours, and monthly hours. This table only has a row showing the hours that an 

employee can work in a day and a month. This table helps us again with the 

timesheets to ensure that no employee completes timesheets for more ours than 

the one he/she be entitled to.  

 

We also have the roles table, which is a table that held the information about the 

four positions, and we have the role id, the role name, and its rate.  

 

Next, we have the Projects table, which has six columns. It has a project id which 

is used by other tables too, as a foreign key, the project name, the initial budget of 

this project and the budget left at this moment, the total Project hours, and the 

hours left at this moment. The project's budget is reduced when a work package 

with some budget is created. The project's hours are reduced when someone adds 

a contract to this project.  

 

After that, we have the work packages table. It has fifteen columns. Each work 

package has a number, a name, a start date, an end date, an initial budget, and 

initial hours for each role. The remaining columns are the budget left and the hours 

that have been worked from each position. The work package budget and the 

corresponding hours are reduced when an employee completes his/her timesheets 

for a specific role and work package.  

 

In addition, we have the works on table where we save all the contracts of the 

users. It has eleven columns, a unique id,  the id the user who has the agreement, 

the project on which he/she has the contract, when the contract start and ends, the 

role, the hours assigned to this contract, how many hours left on this contract, and 

if it is active or not with a description. We also compute the number of months the 

contract is on. Hours left on a contract are reduced when the user is assigned to a 

work package.  

 

Another table we have is the work on work package, which is a table that shows 

us which user is assigned to which work package. It has seven columns, the user 



 

40 
 

who is assigned, the project and the work package that the user is set on, the hours 

he/she has to work, the role of this employee, the start, and the end date. We also 

have the hours left on this assignment  which are reduced when an employee 

completes his/her timesheets.  

 

At last, we have the table with the timesheets. It has six columns, the date for 

which the employee is completing the timesheet, the hours, the employee id, the 

project, and the work package, and the role. 

 

Figure 4.2 – Database Schema  

 

Figure 4.3 –ER diagram 
 

 

4.3 Metaphors 

 Metaphors in web design are essential. The advantage of using a metaphor is that 

the user can identify with the environment presented on the screen. Having a 

metaphor allows users to predict the outcome of their actions more quickly [1]. 

We used metaphors in the admin panel on our platform to be easier for him/her to 



 

41 
 

understand each button. We have on each line both the verbal description and an 

icon which is the metaphor. As we can is in Figure 4.4, we have the euro symbol 

for the rates, a clock for hours, a person for the accept an administrator, etc.  

Figure 4.4 - Metaphors 

 

4.4 Visual design constraints 

 On our platform, we use some visual design constraints. In the various forms we 

have on our platform, we have a specific input type in each cell so we can avoid 

some possible problems. For example, if a number is needed, the employee must 

complete a number. If he/she tries to write letters, then nothing will be registered. 

Another example is the dates, if the employee needs to complete a date, then a 

calendar will pop up, and he/she will choose a day. That way, all the dates will be 

passed in the same format. [1,3,4,5] 

Figure 4.5 – Constraints 
  

 

 

 

 

 

 

4.5 Usability heuristics 

Heuristic evaluation (Nielsen and Molich, 1990; Nielsen 1994) is a usability 

engineering method for finding the usability problems in a user interface design 

so that they can be attended to as part of an iterative design process. Jakob Nielsen 

described the 10 general principles for interaction design. These principles were 



 

42 
 

developed based on years of experience in the field of usability engineering and 

they've became rules of thumb for human-computer interaction. 

They can help to save development teams considerable amounts of time during 

early usability testing, so that they can direct their attention to more complex 

design challenges. In addition, it's also worth it to use them as a checklist when 

designing a new product or a feature. [2] 

 

1. Visibility of system status 

We have messages about what is happening. If something went wrong or if 

everything is okay. 

 

2. Match between system and real world 

We have simple words with which the employees are familiar. We used words 

that they are already using to complete their job. 

 

3. User control and freedom 

User has many choices if he/she wants to leave a page. First of all, we have 

the menu on the header from where he/she can go to other pages. We also 

have the back button on pages where the employee can go back. 

 

4. Consistency and standards 

 All the buttons and links on the platform have the same colors. Additionally, 

all the forms have the same format. 

 

5. Help user recognize, diagnose, recover from errors 

We have error messages which explain exactly what went wrong so the 

employee can correct it next time. 

 

6. Error prevention 

We have some visual constraints on the forms to avoid errors. 

 

7. Recognition rather than recall 



 

43 
 

We have a header menu on which there are various pages. Also, in some 

forms, where is needed to remember which projects the employee has 

contracts on and with what role we have some dropdown menus. Additionally, 

when the employee chooses a day on timesheets, we have an alert with the 

hours left to complete on that day and on that month.   

 

8. Flexibility and efficiency of use 

We have shortcuts in the header menu because researchers can go from one 

page to another. 

 

9. Aesthetic and minimalistic design 

We only show what is needed on each page. 

 

10. Help and documentation 

 

4.6 Prototyping 

 4.6.1 Low fidelity prototyping 

 

 A low-fidelity prototype does not look very much like the final product, nor does 

it provide the same functionality. For example, it may use very different materials, 

such as paper and cardboard, rather than electronic screens and metal. It may 

perform only a limited set of functions or represent the functions and not perform 

any of them. Low-fidelity prototypes are helpful because they tend to be simple, 

cheap, and quick to produce. This also means that they are simple, inexpensive, 

and fast to modify to support the exploration of alternative designs and ideas. This 

is particularly important in the early stages of development during conceptual 

design. Low-fidelity prototypes are not meant to be kept and integrated into the 

final product. [5]  For our system, we had a few low-fidelity prototypes on the 

tablet, mainly about the forms. 

 



 

44 
 

Figure 4.6 – Low fidelity prototype 
 

 

 

 

   

 

 

 

 

 

 4.6.2 Medium fidelity prototype 

 

A medium-fidelity prototype is a prototype with limited functionality but 

clickable areas that present an application's interactions and navigation 

possibilities. Medium fidelity prototypes are usually built on some software. For 

every action employee is getting, a basic visual design is created. The medium-

fidelity prototype is suited for the validation of the interaction concept. In contrast 

to a low fidelity prototype, the understandability of interaction elements can be 

validated. For our platform, we made some pages with proto io to choose the 

interface we wanted. 

 



 

45 
 

Figure 4.7– Medium fidelity prototypes 
 

 

 

 

 

  

 

 

 

  

  



 

46 
 

CHAPTER 5 

DEMONSTRATION 

 

 

CONTENT 

 

DEMONSTRATION......................................................................................................................... 46 

5.1 PERSONAS 46 
5.2 SCENARIOS 48 

5.2.1  New employee 48 
5.2.2 New project 48 

5.3 USER MANUAL 49 
5.3.1 Login 49 
5.3.2  Register 49 
5.3.3 Forgot Password 50 
5.3.4 Menu 50 
5.3.5 Dashboard 50 
5.3.6 Projects 51 
5.3.7 Work Packages 51 
5.3.8  Work package hours 51 
5.3.9 Budget 51 
5.3.10 Contracts 52 
5.3.11 New Contract 52 
5.3.12 Timesheets 53 
5.3.13 Edit Timesheet 54 
5.3.14 New Timesheet 54 
5.3.15 Admin Panel 54 

5.3.15.1  Rates 55 
5.3.15.2  Hours 55 
5.3.15.3 Assign employees 55 
5.3.15.4  Accept Administrators 56 
5.3.15.5  Projects and Work packages 56 
5.3.15.6 New Project 57 
5.3.15.7 New Work Package 57 
5.3.15.8 Timesheets 57 
5.3.15.9 Contracts 58 

 

 

 

 

5.1 Personas 

 



 

47 
 

A persona is a rich picture of an imaginary person who represents the core user group. 

They do not describe specific people, but they are realistic and not idealized. Each persona 

represents a synthesis of several real users who have been involved in data gathering, and 

it is based on a set of user profiles. Each persona is characterized by a unique set of goals 

relating to the particular product under development, rather than a job description or a 

simple demographic. This is because goals often differ among people within the same job 

role or the same demographic. In addition to their goals, a persona will include a 

description of the user's behavior, attitudes, activities, and environment. These items are 

all specified in some detail. A persona has two goals (Caddick and Cable, 2011), to help 

the designer make design decisions and remind the team that real people will be using the 

product. When a design solution is proposed, the team can ask, 'how would Angie react 

to this?'. The detail is deliberately more than is strictly necessary, but this is essential. It 

is only by feeling that Angie is a real person that the team can imagine how she will 

behave. [1][4] In Figure 5.1 are two of the personas we had.  

 

Figure 5.1 – Personas 
 

 

 



 

48 
 

 

 

5.2 Scenarios 

 5.2.1  New employee 

 

 Angie just starts working at this lab. On her first day, her manager informed her 

that she needs to make an account on the platform. Angie then went to her desk, 

and she signed up on the platform using her email. After that, she logged in, and 

then she added her contract. Every day, Angie goes on the platform and sees if she 

is assigned anywhere else and completes her timesheets. 

 

5.2.2 New project 

 

 Alex is the administrator of a new project that just came in. When he went to the 

job on Monday morning, he opened the platform, and he added the project and the 

work packages associated with this project. When all the employees added their 

contracts for this project, he went on the platform and assigned them to work 

packages.  



 

49 
 

   

5.3 User manual 

 5.3.1 Login 

 

1. If you do not have an account, 

you can register by pressing the 

"Register" button 

2. If you forget your password, 

you can press the link "Forgot 

your password?".  

3. If you already have an account, you can log in by completing your username or 

email and the password and then press the "Login" button. ( You can also tick the 

"Keep me signed in" box if you want) 

4. If the email (or username) or password is wrong, you will need to recomplete 

them. 

5. When you are successfully logged in, you can see your account. 

5.3.2  Register 

1. If you are here by accident and already 

have an account, you can press the "Login" 

button to go to the Login screen.  

2. If you do not have an account, then: 

 i. Complete your information (Username, 

First Name, Last Name, Email, Password 

twice). 

 ii. Choose the account type you want to 

have (to become Admin, another Admin 

must accept you) iii. Press the "Register" 

button  

 

  

 
1 2 

 

3 

  

 

2i 

 
1 

2ii 

 2iii 

 



 

50 
 

5.3.3 Forgot Password 

 

1. If you have an account, but you have 

forgotten the password, then complete the 

username or the email of your account and 

press the "Reset my password" button to get 

an email to change the password 

2.  If you are here by accident, you can press 

the "Login" or "Register" button on the header 

menu to go to that screen.  

 

5.3.4 Menu 

 On the header, you can see the menu with the various pages. To see 

the contract's page, you must go on the + sign next to projects. 

  

 

  

 5.3.5 Dashboard 

On the dashboard page, we have: 

 

1. Projects: You can find the 

projects on which you have a 

contract and you are assigned 

right now. 

 

2. Timesheets: You can see the last timesheet you have completed. 

(chronologically) 

3. Contracts: You can see the contracts that you have active now. 

4. Budget: You can go to the budget page. 



 

51 
 

5.3.6 Projects 

 

On the project's page, you can 

find the tasks that you have a 

contract with, along with their 

name and their budget.  

 

**If you click on the project's name, you can see its work packages** 

 5.3.7 Work Packages 

 

On the Work Packages page, you 

can find the work packages for a  

specific project along with the 

start and end date for each one and 

if you are assigned on it (✓) or not 

(✗).  

**If you click on the work package's name, you can see more information about 

the hours** 

 

5.3.8  Work package hours 

 

On this page, you can see the initial 

hours of each role for the specific 

work package and the hours left for 

each position. 

 
5.3.9 Budget 

On the budget page, you can see 

the budget for every project you 

have a contract on and the work 

packages. You can also hide 

some projects if you want to. 



 

52 
 

 5.3.10 Contracts 

 On the contract's page, you can: 

1. View all the active contracts 

you have. You can see the project's 

name, the start and end date, the role, 

and the hours left for each one.  

2. Deactivate an active 

agreement 

3. Show or hide the inactive 

contracts 

4. View all the inactive 

contracts. You can see all the 

information you had for active contracts 

and a description of why they are inactive (Either "Cancelled" or "Ended as 

planned") 

5.  Click the new contract button to go to a form to add a new contract. 

5.3.11 New Contract  

 

On this page, you can add your contract. 

To add a new contract, you will need: 

1. A start date 

2. An end date 

3. The project 

4. The hours you will work on this 

project 

5. The role that you will have. 

 

**End date must be after start date** 

 

 

  

3 

 
4 

 

1 

 

2 
 

5 

  2  



 

53 
 

Figure 5.2 – New Contract 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.12 Timesheets 

On the timesheet's page, you can: 

1. Choose the projects and for which 

you want to see the timesheets 

2. Sort the timesheets by date or by 

project 

3. Edit your timesheets 

4. Complete a timesheet by pressing 

the "New Timesheet" button 

5. Download a CSV file with your 

completed timesheets 

 

  
2 

 
3 

4 

5 

1 



 

54 
 

5.3.13 Edit Timesheet 

 

 

On this page, you can edit your 

timesheets. You only can change the 

hours for that specific day and project.  

 

 

5.3.14 New Timesheet 

To add a new timesheet, you need to 

complete the date for the timesheet, the 

hours for that corresponding day, and 

choose the project work package and role 

from the dropdown menu. When you select 

a date, it will pop an alert about the daily 

and monthly hours that remain to complete 

for your timesheets.  

Figure 5.3 – New Timesheet 

 

5.3.15 Admin Panel 

 ** You have access only if you are an administrator** 



 

55 
 

In the admin panel, you have access to: 

1. Change the rates 

2. Change the maximum hours per day or 

month 

3. Assign employees to projects 

4. Accept other administrators 

5. See all the projects 

6. See the budget based on timesheets 

7. See the budget that is already assigned 

8. See all the contracts 

5.3.15.1  Rates 

 

 

You can change the rates of each role 

 

 

   

5.3.15.2  Hours 
 

You can change daily and monthly hours that 

employees can complete on timesheets.  

 

 

 

 

5.3.15.3 Assign employees 

You can choose an employee and 

complete this form to assign him/her to 

a specific work package of a project 

he/she has a contract on. You must 

complete the start and end date, hours, 

and select the project, the work package, 

and the role from the dropdown menu. 



 

56 
 

Figure 5.4 – Assign 
 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.15.4  Accept Administrators 

 

On this page, you can accept 

other users as administrators. 

 

 

 

5.3.15.5  Projects and Work packages 

You can see all the projects and 

work packages in the same 

form as in 5.3.6, 5.3.7, 5.3.8, 

but you can also add new 

projects and work packages, 

and you can see who is 

assigned to each work package. 



 

57 
 

5.3.15.6 New Project 

 

To add a new project, you 

only need to complete the 

project's name and budget. 

  

 

 

5.3.15.7 New Work Package 

This is the form you have to 

complete in order to add a 

new work package. Work 

packages need a name, a 

start and end date, a budget, 

and the hours assigned to 

each role. 

 

5.3.15.8 Timesheets 

 

You can choose multiple project 

users and months for which you 

will see the timesheets. After 

submitting, everything is like in 

5.3.12 but for many users. 

   

 

 



 

58 
 

5.3.15.9 Contracts 

 

You can choose multiple 

projects and users for which you 

will see the contracts. After 

submitting, everything is like in 

5.3.10 but for many users.  



 

59 
 

CHAPTER 6 

EVALUATION 

 

CONTENT 

EVALUATION ............................................................................................................................... 59 

6.1 INTRODUCTION 59 
6.2 QUESTIONNAIRE 59 

6.2.1 Steps 59 
6.2.2 Questions 60 
6.2.3 Results 60 

6.3 INTERVIEW 61 

 

 

6.1 Introduction 

 

This chapter present the methodology we used for the evaluation of the web tool we 

developed. The evaluation was about the user's interaction with the system, the usability 

of the system, and the functionalities that have been offered. The evaluation by the 

researchers was happening during the development between the sprints. Nevertheless, 

we have some evaluations at the end of the project too. This evaluation was split into 

two phases. The first phase was a questionnaire that we sent to people who might use it 

in the future. In the second phase, we had some group interviews with the researchers 

with whom we have discussed at the beginning of this project to get their evaluation 

because they were with us throughout the project. This evaluation aimed to understand 

if this web tool will be easily adapted by the users, if it is user-friendly, and if 

everything was covered.  

6.2 Questionnaire 

 

6.2.1 Steps  

To make the questionnaire, we followed the same steps, as shown in Figure 3.9. 

First, we decided which information we needed to collect. Demographic data, 

experience with the specific topics, and how they feel about the web tool. At this 

time, we decided that our target responders will be people who know about 



 

60 
 

human-computer interaction and people who will use this web tool in the future. 

Afterward, we decided to create our questionnaire on google forms and send it to 

the respondents via email.  

 

6.2.2 Questions 

 

The questionnaire was developed in three main parts. First, there were some 

general instructions and explanations. The second part was about personal 

information and demographics, and the third part was the main body. In the second 

part, we have gathered information about the gender, age, and relevance of the 

person completing the questionnaire with the concepts of timesheets, budgeting, 

and contracts. In the third section, the body of the questionnaire, we had some 

statements about the web tool, and the responders had to answer with the Likert 

scale and then some other questions on which they had to choose between two 

words with opposite meaning for how they feel about the web tool. 

 

6.2.3 Results 

 

 We had seven responses to the evaluation questionnaire from people with 

different knowledge. Based on the answers, the web tool will help them 

accomplish their work more quickly and improve their efficiency and 

effectiveness. Additionally, most of them stated that it will be easier to 

accomplish their financial tasks and that now they have to spend on average a 

day to complete them. Most of the responders believe that maybe it will be easy 

to learn the web tool. On a scale of 1-7, they found the web tool: 

 

 

 

 

 

 

 

 



 

61 
 

Figure 6.1  
 

 

 

6.3 Interview 

 

We conducted extensive interviews with the two researchers being the product 

owner. During the last evaluation meeting, we had a discussion with another 

researcher as well. The three researchers worked at the web tool while we were in 

the meeting and provided some live feedback. They tried to get a full picture of the 

tool by making accounts, adding contracts, adding timesheets, and the admins by 

assigning people to work packages, etc. Through this process, we got some tips on 

the interface of the web tool.  

The researchers preferred that the menu will be in a more compact and 

straightforward way, so we changed it to match their preferences. Additionally, they 

pointed out that they will prefer that the Admin Panel page is in the same format as 

-3 -2 -1 0 1 2 3

annoying/enjoyable

dull/creative

inferior/valuable

not interesting/interesting

slow/fast

obstructive/supportive

complicated/easy

usual/leading edge

not secure/secure

does not meet expectations/meets expectations

confusing/clear

cluttered/organized

unfriendly/friendly

Mean value per Item



 

62 
 

the employee dashboard to match it, so we changed that too. Moreover, in the process 

of adding a contract, there was a misunderstanding by some of the researchers about 

the hour's field. They thought that what was needed was the number of hours for each 

month when it was the total hours of the contract that they needed to complete. To 

overcome this problem, we changed the wording in that specific field.  

Except from the interface tips, we got some extra functionalities that may be needed. 

An issue like that was that contacts could not be edited. Either if a contract was active 

or inactive, there was no edit button to edit it. That was found to be necessary by one 

of the participants who checked the wrong dates. Another thing that was stated during 

the interview was the process of assigning a work package to an employee if you are 

the administrator. After the assignment, you can only see who is assigned to each 

work package and not the hours and the duration of this assignment. That was 

something that all researchers agreed was necessary. The interview was very useful, 

feedback was collected and changes were applied. 

  



 

63 
 

CHAPTER 7 

CONCLUSION 

 

CONTENT 

CONCLUSION ............................................................................................................................... 63 

7.1  CONCLUSION ........................................................................................................................... 63 
7.2.            FUTURE WORK ........................................................................................................................ 63 

 

 

7.1  Conclusion 

 

My thesis aimed to develop a web tool that helps the researchers manage the 

financial aspect of Erasmus+ Strategic Partnerships projects. The use of a web 

tool for financial management will help the researchers be more efficient at their 

work and need less time to complete their financial tasks. We followed scrum, 

an agile methodology that helped us understand better what the researchers 

needed throughout the project because we had continuous communication, and 

they could try the web tool when something was ready. That way, if something 

else was needed, we could provide it. The final prototype is running on the web 

and has many features available. Any interested user can create an account and 

access it. Then users can navigate through the web application, add their 

contracts, see the budget and practice with the other functionalities. 

 

 

7.2. Future Work 

 

The web tool we developed for this thesis is already functional and tested with 

projects and work packages. Nevertheless, there are always new functionalities 

that may be needed. During the interview with the researchers, we discussed 

some extra functionalities that will make the tool even more helpful and clear for 

them. A great future work will be to get some extra financial reports except from 

the budget and the timesheets that we have now. Additionally, something else 

that we would have done if we had time was to add the edit buttons everywhere 



 

64 
 

so the researchers can edit their contracts if they are employees or the 

assignments if they are administrators. Another functionality that might be 

useful was to let the administrator add contracts as well, and the researcher can 

accept it or deny it. Moreover, the tool can offer the possibility to become an 

Admin after you create the account.  Additionally, in a future update, we can add 

the milestones feature with some notifications. 

  



 

65 
 

 

Bibliography 

 

[1] Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale. Human-Computer 

Interaction. 3rd edition, Prentice-Hall. 

 

[2] Jacob Nielsen, Enhancing the Explanatory Power of Usability Heuristics, 1994. 

 

[3]  Donald Norman. The Design of Everyday Things. MIT Press, London 

 

[4] Catherine Plaisant, Ben Shneiderman. Designing the User Interface: Strategies for 

Effective Human-Computer Interaction. 3th edition, Addison-Wesley. 

 

[5]  Jennifer Preece, Yvonne Rogers, Helen Sharp, Interaction Design: Beyond 

human-computer Interaction, John Wiley & Sons, Fifth Edition, 2019 

 

[6] R. Pressman, Software Engineering: A Practitioner's Approach, 8th Edition, Mc-

Graw-Hill Education, 2015. 

 

[7]  M. Sundararajan, M. Mahalakshmi Traditional SDLC Vs Scrum Methodology – 

A Comparative Study 

 

[8] I. Sommerville, Software Engineering, 10th Edition, Addison-Wesley, 2016 

 

[9] H. van Vliet, Software Engineering: Principles and Practice, Third Edition, John 

Wiley & Sons, 2008. 

 

[10] J. Whitten, L. Bentley και K. Dittman, Systems Analysis and Design Methods, 

7th Edition, McGraw-Hill, 2007. 

 

[11] International Journal of Emerging Technology and Advanced Engineering 

Platform: www.ijetae.com 



 

A-1 
 

 

  

 

Questionnaire 

 

 



 

A-2 
 

 

 

 



 

A-3 
 



 

B-1 
 

 

  

 

Evaluation Questionnaire 

 



 

B-2 
 

 



 

B-3 
 

 



 

B-4 
 

 



 

B-5 
 

 

 



 

B-6 
 

 



 

B-7 
 

 



 

B-8 
 

 



 

B-9 
 

 



 

B-10 
 

 



 

B-11 
 

 

 

 

 

 

 

 

 

 


