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Abstract 

 

This thesis suggests incorporation of theories that could affect positively or negatively the behavior 

of self-control in a computational model. These theories align with the belief that self-control 

should be viewed and treated as a skill, a virtue and as a muscle. Self-control is defined as the 

dilemma between a smaller sooner reward (SS) and a large later reward (LL) (Rachlin, 2000), that 

is experienced as an internal conflict between the higher (prefrontal cortex) and lower (limbic 

system) parts of the brain . The Prisoners Dilemma (PD) game is used to effectively simulate the 

nature of this conflict and the upper and lower parts of the brain are represented with two agents. 

The agents are engaging in the Iterated Prisoner’s Dilemma (IPD) game, through a   Q-Learning 

model with the goal of learning to cooperate and thus achieve self-control. The values of the IPD’s 

payoff matrix T, R, P, S, define the reinforcement signals that the agents receive according to their 

collective actions during each round of the game. Each implemented concept was simulated in 

compliance with what the psychologists and neuroscientists suggest, indicating that attained results 

and the model are cognitively adequate. The self-control “strength model” (Muraven and 

Baumeister, 2000) was the basis on which we simulated the behavior as a body muscle. The 

depletion of self-control muscle (lack in self-control resource or strength) was amplified when 

high conflict payoff matrixes were used and it was restricted when the system was entering 

recovery states by alternating between a higher and a lower conflict payoff matrixes during the 

IPD game. Furthermore, an increase or decrease in self-control outcome was found when an initial 

self-control task (payoff matrix) was followed by subsequent tasks of similar or different response 

conflict, respectively. When extrinsic motivation (Berlyne, 1966) factors were presented during 

the IPD game there was an increase on self-control outcome, whether that factor was an external 

reward or an external player forcing the agents to periodically choose to cooperate. The final theory 

we incorporated was self-control virtue theory according to which self-regulation is defined by the 

individual standards and his/her ability reset those standards (Baumeister & Exline ,2001) while 

in the presence of negative emotions. The intensity of the experienced negative emotion (decreased 

R or increased T) during the IPD game defined how often the payoff matrix was required to be 

reset back to its initial-standard payoff values, in order for self-control to be achieved.  
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1.1 Introduction 

 

The purpose of this thesis is to examine theories that could affect positively or negatively the 

behavior of self-control. The theories are aligned with the belief that self-control should be viewed 

and treated as a skill, a virtue and as a muscle. Self-control refers to the capability to regulate one's 

emotions, thoughts, and behavior in the face of temptations and impulses. In cognitive psychology 

it is defined as the dilemma of choosing between a smaller sooner (SS) reward versus a large later 

(LL) reward (Rachlin ,2000). People experience everyday these types of dilemmas especially when 

they are considering changing an aspect of themselves. For instance, a person who committed to 

quitting smoking has to maintain control and resist the immediate sooner reward which is to light 

up a cigarette (SS reward), in order to achieve the long-term goal of improving his health (LL 

reward). Unfortunately, change is rarely aligned with choosing the easiest option (SS reward) at 

any given moment but it is mainly aligned with the choice of commitment (LL reward).  

 

The dilemma described above is experienced in the brain as an internal conflict between the higher 

and lower parts of the brain. Neuroscientists confirmed this internal conflict by studying the 

activation of brain during the anticipation of long-term rewards and the exertion of self-control 

(Hare et al., 2009; McClure et al., 2004).The higher parts of the brain are  described by the  brain’s 

prefrontal cortex which is responsible for the intellectual processed responses and could be viewed 
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as the “rational” brain . On the other hand, the lower parts of the brain are described by the brain’s 

limbic system that is responsible for the subconscious autopilot responses that are more aligned 

with our animal instincts and motivations. To simulate the conflict we deploy the general-sum 

game of the Prisoner’s Dilemma (Kavka, 1991) with two agents representing the lower and higher 

parts of the brain . Each agent is driven by his own motives and is focused on maximizing its own 

reward by defecting, however the best outcome for the organism and the group is only achieved in 

mutual cooperation. During the game, the agents have to choose between cooperating (C) or 

defecting (D) with each of them not knowing what the other one will choose to do. All the 

combinations of states in which the agents can result in are CC, CD, DC, DD. The state of self-

control is represented by the CC state. The self-control model that is going to be used is similar to 

the one Georgiou (2015) and Nikodemou (2020) used on their theses. The model consists of two 

agents representing two parts of the brain that interact by engaging in the Iterated Prisoner’s 

Dilemma (IPD). The Q-Learning algorithm was used to train the agents and the desired outcome 

comes when both agents learn to cooperate (CC states) and therefore, achieve self-control. 

Previously, Banfield (2006) and Cleanthous (2010) , modelled self-control behaviour using neural 

networks and it was proven that the deployment of biological realistic spiking neural networks, 

was not necessary in order to successfully model self-control (Christodoulou et al., 2010) 

 

The main part of the thesis is focused on reinforcing the idea that self-control should be treated as 

a muscle and should be trained as such in order to be improved. The psychology model aligned 

with this concept is the “self control strength model ”. According to this model, self-control 

resembles a muscle and the ability to exhibit self-control relies on a limited resource, or self-control 

strength, where all different self-control operations draw on that same resource (Muraven and 

Baumeister,2020).Before Cleanthous (2010) incorporate some of the ideas related to strength 

model and showed that exercising self-control similar to a body muscle helps resolving intense 

internal conflicts .The first method we will be considering is the muscle recovery theory . 

Assuming that self-control represents a muscle, incorporating recovery periods during the 

interaction of the agents in the IPD game could influence positively the desired outcome for the 

organism. Recovery period in our case is modeled by decreasing the level of conflict that the agents 

experience for a certain amount of rounds in the game. The next method, we will be using to 

decrease the negative consequences of self-control depletion is by applying the theory of extrinsic 
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motivation in our model.  A person is extrinsically motivated if he performs an activity driven by 

an external reward that is not directly associated with the activity itself (Berlyne, 1966). An 

example is a student who studies driven by the desire to get good grades (external reward). To 

simulate the external motivator, we change the discount rate of the higher brain agent (limbic 

system) as soon as the effects of depletion appear during the IPD game. Decreased discount rate 

means that the organism gives greater value to the future reward (LL), which is a result of the 

external reward that showed up. Furthermore, in continuation with the self-control strength model 

theory we will be examining the outcome that comes when the system participates in subsequent 

self-control tasks. According to studies performed by Dewitte, Bruyneel and Geyskens (2009) self-

control performance varies when the subsequent self-control task involved a different response 

conflict or a similar response conflict. Modeling the subsequent tasks is achieved by changing the 

value payoff of the system during the game. According to previous studies on the topic, it has been 

proven (Cleanthous,2010) that the level of conflict that the agents have during the IPD game is 

proportional to the difference between the Temptation to defect reward (T) and the Sucker’s payoff 

reward (S). The level of conflict could also represent the level of difficulty of the task that the 

agents ought to achieve self-control (CC States). We will be using this approach in order to 

simulate the difference in conflict between the subsequent tasks.  

 

Finally, the last position to take into account is the self-control virtue theory according to which 

self-regulation is analyzed into three main ingredients: standards, monitoring, and operations that 

alter the self. The ability of the individual to reset his standards while in the presence of negative 

emotions is an important factor determining whether self-control will be accomplished or not. In 

order to simulate the presence of negative emotions we will be using the same approach that 

Nikodemou (2020) used, where at the course of the game we will be increasing or decreasing 

periodically the T or R value respectively. The system will then periodically return to the relevant 

standards by setting the payoff value matrix back to the initial one.     

Through the implementations we will be discussing whether and how our results are in alignment 

with what the Psychology and Neuroscience bibliography suggests on each self-control theory in 

order to prove the cognitive accuracy of the model.         
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1.2 Thesis outline 

 

Chapter 1 is an introduction and Chapter 2 presents the epistemological background of self-control 

behavior in psychological and neurobiological terms. In this chapter we will look at the concept 

behind each theory of self-control and the definitions that the simulations are based on. First, we 

will examine the theory of self-control muscle and virtue as well as the findings that psychologists 

found that are been related to the theory. In continuation, we will explore the influence that intrinsic 

and extrinsic motivation could have in the process of self-regulation. Besides those theories, we 

present the Prisoner’s Dilemma game, and its variation, the Iterated Prisoner’s Dilemma game, 

that was deployed to simulate the interaction and the dilemma that is experienced during a self-

control task. Finally, we present the reinforcing learning algorithm of Q-Learning that is deployed 

by our model. Chapter 3 is focused on the design and the implementation of the self-control model 

that consist of two Q-learning agents that represent the higher and lower parts of the brain. In 

addition, the methodology that is used for the simulation of each self-control theory is described 

in more detail. In Chapter 4 we observe the results of the simulations and clarify the influence on 

self-control that was found in each speculation. Finally, chapter 5 is an overview, where we 

synopsized the correlation between our findings and the existing information on each inspected 

theory.    
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2.1 Self-control 

 

Morality is a set of rules that enable people to live together in harmony, and virtue involves 

internalizing those rules.  If virtue depends on overcoming selfish or antisocial impulses for the 

sake of what is best for the group or collective, self-control can be said to be the master virtue 

(Beumaister,1997). In our daily life we are called many times to make decisions about the actions 

we are ought to take. Most of the time is easier for our brain to make subconscious-autopilot 

decisions that are coming mainly from our habits and our preferences. However, when it comes to 

changing our habits, is essential to become aware and conscious about the decisions we make in 

order to be able to stop our self from repeatedly following the same patterns of behaviors. Such 

decisions require from oneself to have Self Control and Self-discipline.  



 

 

6 

 

  

Self control behavior has received special attention and has been extensively researched by 

psychologists, behavioral economists, and neuroscientists in the search of revealing its 

mechanisms. The exact mechanisms have not been clearly defined, however many experimental 

findings could be pointing to the core of this behavior. In addition, throughout human evolution it 

is not obvious why perfect self-control would be difficult to evolve, after all self-control decisions 

are, ostensibly, just like another mental operation. One thing we know for sure however is that 

many socially problematic behaviors involve self-control failures, whereas the majority of positive 

virtues are based on high and effective self-control.  In a study, it was found that young people 

high in self-control invest more time on doing their homework, have higher school attendance and 

focus and as a result get higher grades (Duckworth & Seligman, 2005). On the other hand, low 

self-control is connected to a variety of difficulties, including academic underachievement, an 

unhealthy lifestyle, procrastination and problems with the law (Moffitt et al., 2011). Self-control 

problems arise because human nature is not always rational as perceived in the context of economic 

theory which assumes rational utility agents (von Neumann and Morgenstern, 1947), otherwise 

the choice of the large delayed reward would have always been practiced. 

 

The good news nevertheless is that human’s skills are not predefined and the self-control behavior 

can for sure be developed and improved. For example, in a study (Muraven et al., 1999), a group 

of students was asked to regularly perform some easy self-control tasks for two weeks. These 

participants showed significant improvements on self-control compared with participants who did 

not practice self-control. Discovering our full potential in life will never be achieved if we cannot 

master the ability to control ourselves in the face of hardship and darkness. As the stoic philosopher 

Epictetus puts it, “No man is free who is not master of himself “.    
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2.1.1 Cognitive Neuroscience model of self-control    

 

Self-control is defined as the dilemma between a smaller sooner reward (SS) and a large later 

reward (LL) (Rachlin, 2000), that is experienced as an internal conflict between the higher 

(prefrontal cortex) and lower (limbic system) parts of the brain . When we set a long term goal , 

we know from the beginning that we will be encountering such dilemmas where the sooner but 

smaller reward (SS) seems tempting and invigorating in the short term but that option is rarely 

aligned with the long term goal , that is the large but delayed reward (LL) . Figure 2.1 illustrates 

the concept of the delay of gratification. When faced with the dilemma of choosing the SS and the 

LL reward, one has to exert self-control and not surrender to the temptation at time t2 where the 

value of immediate reward becomes greater than the value of future reward. When we set a long-

term goal, in the beginning (t1) the future reward (LL) has the greatest value since is the only 

option aligned with the goal. However, as time passes and the temptation is getting closer, the SS 

value is increasing and the preferences reverse. 

 

 This reversal of preference is a result of the discount mechanism the brain uses in order to 

determine value of any reward at the present moment. The longer the distance in time of receiving 

a reward, the more discounted is value appears and vice versa. That’s the reason why the longer 

we managed to stick in the right track the easier it is to proceed until we complete the long-term 

goal. Let us consider a simple example of a student who faces the following dilemma. The student 

got an invitation for a party that takes place tonight, but he also has a quiz the next morning. Thus, 

he has to choose between the SS reward which is to accept the invitation, go to the party and have 

fun, and the LL reward which is to stay at home, focus on studying, perform well on the quiz the 

next day and ultimately have good grades at the end of the semester. In the previous scenario if 

the quiz was happening next week instead of next morning, the level of conflict that the student 

would experience is much smaller and the choice of accepting the invitation for the party seems 

more valid.         
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Figure 2.1: Delay of gratification (based upon Rachlin, 1995). One has a choice between the SS reward 

at time t2 and the LL reward at time t3. The SS reward at time t2, its greater than the discounted LL 

reward. Achieving self-control means to wait for the bigger reward at time t3 and not succumb to the 

immediate smaller reward (t2). 

   

Cognitive neuroscience suggests a model of self-control (Figure 2.2) which depicts the internal 

process that an individual experiences, as our student in the previous example. In this model, the 

state of the environment is perceived from the higher center of the brain (prefrontal cortex) which 

is responsible for rational thinking, planning and control, and interacts with signals from the lower 

brain (limbic system), which is associated with our animal instinct and motivations, and is 

responsible for selecting an action. Finally, this internal conflict results in an action, which is 

rewarded or punished by stimuli from the external environment (Rachlin, 2000). 

 

 

Figure 2.2: A model of self-control behavior based upon Rachlin (2000). The higher brain perceives the 

state of the environment (Arrow 1). Through the interaction of the higher and lower brain an action is 

generated (Arrow 2). Stimulus reinforces the behavior by giving a reward or a punishment (Arrow 3).     
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The activation of the prefrontal cortex while anticipating long-term rewards and the activation of 

the limbic system with immediate rewards, are shown in brain-imaging studies (McClure et al., 

2004) and thus, they confirm that an internal conflict takes place and the need of exercising self-

control. Furthermore, neuroscientists showed that there is increased activity in the prefrontal 

cortex (PFC) whenever one exerts self-control over temptation (Hare et al., 2009) .To simplify 

things ,we can imagine the two parts of the brain as two systems where the one is patient and 

knows that the longer it waits the better it is and the other is impatient and is driven by desire of 

receiving a fast reward (Kahneman, 2011). 

 

2.2 Prisoners Dilemma  

 

In order to model the internal conflict that two parts of the brain experience through their 

interaction we will be using a general sum game the Prisoner’s Dilemma (PD) game. In the PD 

game the two agents have two options, one is to cooperate for a common good outcome and the 

second option is to defect for the service of personal interest. The nature of this game allows us to 

successfully describe the dilemma one could experience when faced with a self-control task.  

 

The Prisoner’s Dilemma game is described in the following scenario. A crime is committed and 

the police arrest two suspects - Merry and Louis. The police, however, do not have enough 

evidence to charge the two suspects so they decide to interrogate the two suspects in two different 

rooms. Both suspects are then given two options. The first is to remain silence, that is to cooperate 

with the other suspect, and the second option is to confess against the other suspect, that is to 

defect. If she decides to confess (defect), and he decides not to confess, then Merry will be 

rewarded with her freedom because she helped the police, and Louis will be sentence to 20 years 

in prison. The reverse scenario is also valid. In case that both of the suspects decide to defect, they 

will be sentence to 10 years in prison. The last scenario is when both Merry and Louis decide to 

remain silent and not confess (cooperate). In that scenario the police will not collect any further 

information that would reinforce the charges and the criminals will be sentence for only 2 years. 

Since both of them are in different rooms, they cannot know what their partner will choose to do. 

When both decide to act considering only their individual interest, they will both choose to confess 

against their partner. This strategic reverts them from risking to get the highest sentence (20 years) 
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but also gives them a chance to be set free if their partner decides not to confess. However since 

both will follow the same strategy of defecting, this will cause both of them to be sentenced to 10 

years in prison. The dilemma arises from the fact that that there is better outcome than mutual 

defection and that is, the mutual cooperation. The strategy that is chosen by the players and from 

which nobody wants to deviate, is called a Nash equilibrium (Nash, 1950). According to Nash the 

best results comes from everyone in the group doing what’s best for themselves and the group. 

The following figure shows all the possible scenarios of the PD.  

 

 

 

  

Louis 

  
Cooperate Defect 

 
Merry 

Cooperate 2, 2 20, 0 

Defect 0, 20 10, 10 

 

Figure 2.3: The number of years in prison for Merry  and Louis according to the Prisoner’s Dilemma 

game. If one of them defects and the other remains silent, the one who defected is set free, while his/her 

partner is sentenced to 20  years in prison. Merry  and Louis get 2 years in prison if they cooperate and do 

not confess and  10  years if they both defect and confess .  

 

In our model the higher and lowers parts of the brain could be thought as two agents participating 

in a Prisoner’s Dilemma game with each having to choose to either cooperate or defect. In that 

way the internal conflict that the parts of the brain experience during a self-control task will be 

represented through the PD rewarding matrix . The four possible states are extracted by the two 

possible actions:  

• CC states is the result of mutual cooperation.  

• CD or DC states are the result of one of the agents cooperating and the other defecting. 

• DD state is a result of mutual defection. 
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Since CC is the best outcome for both agents, CC states are the goal states that represent self-

control behavior. Below are the choices of the student who experiences a value conflict (have fun 

or have good grades), and how it resembles with the PD game (Christodoulou et al., 2010): 

a. Go to the party, which corresponds to cooperation from the brain’s lower part.  

b. Stay home and study, which corresponds to cooperation from the brain’s higher part. 

c. Go to the party for some time and return home to study, which corresponds to mutual 

cooperation (CC state). 

d. Do nothing, which corresponds to defection from both sides (DD state). 

Each outcome is accompanied with different rewards (payoff values) for the two players. The four 

possible rewards an agent could receive are the following:  

• Temptation payoff (T) – The agent’s reward for defecting while the other agent 

cooperates. 

• Reward payoff (R) - The agent’s reward for mutual cooperation  

• Punishment payoff (P) – The agent’s reward for mutual defection 

• Sucker’s payoff (S) - The agent’s reward for cooperating while the other agent 

deflect 

   

The basic rule that must be satisfied in a PD game defines the following inequality: 

T > R > P > S (1) 

  Figure 2.4 shows the payoff matrix of the Prisoner’s Dilemma game. 

 
  

Column Player 

  
Cooperate Defect 

 
Row player 

Cooperate R, R S, T 

Defect T, S P, P 

 

Figure 2.4: The payoff matrix of the Prisoner’s Dilemma game. Each player either cooperates or defects. 

When both cooperate, they both receive a Reward payoff (R), but when they both defect, they receive a 

Punishment payoff (P). When one of the players cooperate and the other defects, they receive the Sucker’s 

payoff and Temptation payoffs, respectively. 
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2.2.1 The Iterated Prisoner’s Dilemma 

 

In our implementation we will be using the Iterated Prisoner’s Dilemma (IPD) that is a game where 

the one-shot PD is played consecutively by the two agents. The repeated version suits the 

interpretation of intra-personal conflict more realistically as the two internal agents compete with 

each other for more than one time. Additionally, the duration of the game allows incorporating 

learning in the decision-making process and the agent’s strategy can differs from before. The 

design of the game requires the following extra rule to be always satisfied throughout the game. 

 

2R >T +S (2) 

 

 

This rule guarantees that CC states are indeed the best option for the organism since the players 

are not collectively better off by having each player alternate between “Cooperate” and “Defect”. 

During each round of the IPD, the states of the two agents represent the decision that the person 

took to solve his/her dilemma. Our goal state is the CC state, since is the state that both agents 

cooperate and self-control is achieved. The implemented agents are rational, meaning that they 

pursue reward maximization during the game according to their own value systems that satisfy 

their individual goals, giving no interest on the well being of the other agent or the organism. 

Fortunately, the well being of the organism is in line with their individual well being in the long 

run. This is because the agents can achieve long term payoff maximization only through mutual 

cooperation which maximizes payoff for the whole system as well. 

 

Other general-sum games than the PD game like the Battle of the Sexes game (BoS) or the 

Rubinstein’s Bargaining Game (RBG) (Rubinstein, 1982), could be considered to simulate the 

interaction between the higher and the lower brain . However , it is proven empirically that the PD 

game is for now the optimum option in modeling self-control internal conflict  — Also employed 

by Banfield (2006), Cleanthous (2010), and Christodoulou et al. (2010).   
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2.3 Self-control Strength Model  

 

Self control was something that concerned the psychologists for many years and they tried to 

provide a theory that explains the self control failure. The idea that self-control resembles a muscle 

that its exertion depletes a limited resource makes specific predictions with respect to self-control 

failure (Muraven and Baumeister,2000). Muraven and Baumeister embraced the idea that self 

control should be viewed both as a muscle and as a skill and should be trained as such in order to 

be improved. They introduced the “self-control strength model”. According to this model, the 

ability to exhibit self-control relies on a limited resource, or self-control strength, and all different 

self-control operations draw on that same resource.  

 

In their previous study, Muraven et al. (1998) demonstrated that participants’ performance was 

impaired in a self-control task that followed an initial one. In addition, the impairment was found 

even if the two tasks were completely different in context. The model’s view of self-control 

resembles a muscle that its short-term ability decreases after exertion but at the same time repeated 

exercise strengthens it in the long run. In another study (Muraven et al., 1999), a group of students 

was asked to regularly perform some easy self-control tasks for two weeks. These participants 

showed significant improvements on self-control compared with participants who did not practice 

self-control. Finally, Dewitte, Bruyneel and Geyskens, (2009) found that depletion effects were 

reversed when the two subsequent self-control tasks involved similar response conflicts. In three 

studies, they showed that when adapted to a demanding situation, people’s self-control 

performance decreased in situations when the subsequent self-control task involved a different 

response conflict (replicating the typical depletion effects) but improved when the subsequent self-

control task involved a similar response conflict. 

 

Muraven et al. (1999) did not specify the nature of the limited resource on which self control relies 

on. However, a series of experiments confirmed that willpower and self control are tied to glucose 

(Gailliot et al., 2007). The study showed that reduced blood glucose and poor glucose tolerance 

(reduced ability to transport glucose to the brain) are linked highly with lower performances in 

self-control tasks. In addition, it was confirmed that the effects of ego depletion (depleted energy 

resources) can be counteracted by giving people a dose of glucose. 
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2.3.1 Muscle Recovery 

  

Recovery is the single most important part of any training or exercise program. Muscle recovery 

is an improvement in the performance of your skeletal muscles utilized during prolonged or intense 

exercise 1. After a workout, the body replaces, or repairs damaged muscle fibers through a cellular 

procedure where it tempers muscle strands together to make new myofibrils or muscle protein. 

De-loading is another term for giving your muscles a rest 2. However, it is not a complete rest, 

where you stop training for a time, but a reduction in the stress you place on your muscles. It’s 

based on the concept of supercompensation. 

 

 When we train, we apply stress to your muscles by forcing them to work harder than they are 

accustomed to. This creates muscle fatigue and neurological or brain fatigue. During the rest or 

recovery phase between workouts, your muscles recover. The idea behind the de-load is to give 

your muscles a longer break where you still train but with less intensity. In response, your muscles 

enter a phase called supercompensation where they bounce back to a higher level of performance. 

For instance, let us take a person who works out each week in a high intensity training program 

could choose to de-load by choosing 1 week of each month where he will keep training but this 

time with a more relaxed and less intense training program. On a self-control task however, 

intensity is described by the intensity of the internal conflict that the individual experience.  

Assuming that the self-control muscle theory is valid, we can examine whether muscle recovery 

theories could be applied in our model in order to increase the self-control strength. 

 

 

2.4 Self-control Motivators  

 

Psychology distinguishes between two broad classes of motivation to perform an activity: intrinsic 

motivation and extrinsic motivation. A person is intrinsically motivated if he performs an activity 

for no apparent reward except the activity itself (Berlyne, 1966). Extrinsic motivation, on the other 

hand, refers to the performance of an activity because it leads to external rewards (e.g., status, 

 
1.http://www.yourwebdoc.com/musclerecovery.php 
2 https://www.muscleandstrength.com/expert-guides/strength 
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approval, or passing grades). The ability to show self-control is deeply linked with both classes of 

motivation. 

 

For instance, let us take a smoker who tries to quit smoking for a certain period. The intrinsic 

strategy that he could follow is to study the benefits and overall the reasons why quitting smoking 

is a good thing for him. In that way, he will more internally motivated to show resistance in the 

face of temptations. On the other hand, the extrinsic strategy would be to have an external 

motivator that offers the smoker an external reward (e.g., money) in case he manages to persist in 

abstaining from smoking. Elimination of the depletion effect has been found when participants are 

offered the monetary incentive to perform better on the persistence task (Baumeister, 2006), 

informed that persistence would improve their performance on a target task, or believe that 

persistence is warranted because the issue requiring persistence is of substantial importance 

(Muraven and Slessareva 2003).  

 

2.5 Self-control Virtue  

 

Self-regulation can be analyzed into three main ingredients: standards, monitoring, and operations 

that alter the self (Baumeister & Exline, 2001). Failures or problems with any of these ingredients 

can result in the breakdown of self-control (e.g., Baumeister & Heatherton, 1994; Baumeister, 

Heatherton, & Tice, 1996). Virtue thus depends on three factors. The first is having clear standards. 

Much of Western literature has revolved around portraying people facing moral dilemmas, because 

such dilemmas reflect the difficulty of doing what is right when moral standards are lacking or, 

more commonly, in conflict. In our case, when people experience a dilemma between choosing a 

sooner tempting SS reward or choosing to wait for the later but more rewarding future reward 

(LL), the standards of the individual set the amount of the internal conflict that exist. 

 

Second, virtue depends on monitoring, which is a matter of keeping track of one’s own behavior 

and comparing it to the relevant standards. Self-regulation is thus closely allied with self-

awareness (Carver & Scheier, 1981). Circumstances that cause people to stop monitoring their 

behavior are likely to reduce virtuous behavior. An example of these circumstances could be the 

presence of negative emotions. Studies showed that negative emotions such as anger, anxiety, fear 

and sadness often reduce self-control (Cyders & Smith, 2008; Heatherton, 2011; Schmeichel & 
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Tang, 2015) .By the same token, alcohol reduces self-awareness (Hull, 1981), and alcohol is well 

known to be implicated in a broad range of nonvirtuous behavior ranging from interpersonal 

violence to sexual misdeeds (Baumeister, 1997; Baumeister, Heatherton, & Tice, 1994).Therefore 

the ability of monitoring the self and his relevant standards is an important factor on sustaining the 

virtuous behavior , that is self control.    

 

Third, virtue depends on the self’s capacity to alter its own behavior so as to conform to standards. 

Violent impulses must be restrained, promises must be kept even despite disinclinations, 

temptations must be resisted, and so forth. Even if the self has clear standards of virtue and 

understands how they apply to its current situation, behavior may fall short of virtue if the self is 

unable to make itself behave according to them. In other words, self-control and self-regulation 

relies on the capability to recorrect oneself and align one’s behavior with the standards, relevant 

to the desired outcome. 

 

2.6 Reinforcement Learning 

 

Reinforcement Learning (RL) is one of the three categories of learning that exist (Supervised, 

Unsupervised, Reinforcement Learning). It constitutes of a class of algorithms that can be used in 

order to train an agent to maximize his accumulated reward, through the interaction with an 

environment (dynamic or static) where the only source of feedback is a reinforcing signal. The 

reinforcing signal could be either a reward or a penalty. Since the goal of the agent is to maximize 

his accumulated reward, each reinforcement signal could either impact positively or negatively 

towards following a certain strategic. This concept underlies all human learning theories and is 

considered to be the most “natural” way of learning. This learning is also a trial-and-error learning. 

For example, an infant who tries to touch the fire for the first time will burn and the reinforcement 

signal(pain) that he will receive would motivate him to avoid doing the same action again.  

 

Reinforcement learning is also applied when we as human behave in society, throughout the 

interaction with other people we change our behaviors and actions in order to adapt to the 

environment situation , to maximize our chances of achieving are goals and overall to avoid 

receiving any form of a penalty .Reinforcement learning differs from the other two categories of 
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learning (Supervised and Unsupervised ) , since there is no learning towards a predefined desired 

output and is the most efficient learning method when dealing with a dynamic problem – 

environment .  In RL, the agent does not know a priori an optimal policy and is not told which 

actions to perform. For this reason, the agent has to explore the environment and learn which 

strategic of actions is more rewarding. During the course of the interaction with the environment, 

before choosing an action the agent must decide whether he will use the knowledge he already 

obtained through learning (exploitation) in order to choose the best next action or whether he will 

explore and try an action he never tried before. This is the exploration-exploitation trade-off; in 

order to learn it has to explore, but in order to perform well it needs to exploit what it already 

knows (Woergoetter & Porr, 2008). Generally speaking, the best approach most of the times is to 

be optimistic over uncertainty in the beginning of learning, that is to explore more , and then as 

learning takes places to tend to be making good use the obtain knowledge.  

 

The formal framework of Markov decision processes (MDP) is used to define the interaction 

between a learning agent and its environment in terms of states, actions and rewards. Sequential 

decision-making problems where actions influence subsequent situations are formalized by 

deploying MDPs. In the following figure we can see an example of the interaction of an agent with 

the environment. The interaction is a cyclic relation between the agent’s action and the 

reinforcement signal that the action produce. To be more precise, the agent at the start of each 

round chooses an action α, by considering both the environment’s current state and his obtain 

knowledge. According to the action that is then taken, the environment would change state and a 

reinforcement signal will be send back to the agent. Since the agent’s objective is to maximize the 

accumulated reward over time, it forms a policy by which the agent selects actions as a function 

of states. The goal is then to find the optimal policy where a value function links each state-action 

pair with the largest expected return.  

 

 

 

https://www.zotero.org/google-docs/?a9VWOc
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Figure 2.5: The reinforcement-learning model. At each step t, the agent selects an action Αt according to 

the state St and the reward Rt . The action will then have an impact on the environment from which the next 

state St+1 and reward Rt+1 will be induced. 

    

 

In our case we deploy temporal-difference (TD) learning (Sutton, 1988) which combines the 

Dynamic Programming (DP) and Monte Carlo methods. TD methods are model-free and learn 

from episodes of experience like Monte Carlo methods and they update estimates without waiting 

for the final outcome by using bootstrapping methods similarly to DP.  

The update rule of TD is equation (1): 

 

V(St) ← V(St) + η [ Gt −V(St) ] (1) 

 

V(St) is the expected reward - value when we are in the state St , n is the learning rate and Gt is the 

actual returned reward  . The expected reward - value for each state is updated considering both 

the previous estimation and the actual reward. In our model we will be using the Q-Learning 

algorithm which belongs to the TD method.  
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2.6.1 The Q-Learning Algorithm 

 

The Q-Learning Algorithm is belonging to the TD methods and is one of the most common 

methods used for estimating the expected reward of a state-action pair, that is the Q-value function. 

The basic idea of Q-Learning method is always following the action that is so far more rewarding 

according to our current knowledge and in therefore minimize the chance of a good move, followed 

by a bad move. Its update rule is the following equation (2): 

 

Q(St, At) ← Q(St, At) + η [ Rt+1 + γ maxaQ(St+1, a) − Q(St, Αt) ] (2) 

 

The Q-learning algorithm follows the same logic we the basic TD methods. Each time when the 

agent is in a state St and takes an action At then the expected Q-value of the state-action pair, that 

is the Q(St,At) , is updated according to this rule . At time t+1 after the action is taken the agent 

receives the reward Rt+1  and this reward combined with the discounted estimate optimal future 

reward are consider in the new Q-value . The η term is the learning rate, which defines how much 

change will be consider in the new Q-value. The future optimal reward is the maxaQ(St+1, a) , 

which is the maximum expected Q-value considering the next state St+1. This future reward is 

discounted by the parameter γ ∊ [0, 1]. The discount rate γ is an important parameter since is the 

parameter that defines the whether the agent is myopic and focus more on the immediate or long-

sighted and focus more on the future rewards. Values of the γ parameter closer to 1 indicate that 

the agent focus on the future (or LL) rewards, whereas values closer to 0 indicate that the agent is 

more myopic and focus on the immediate (or SS) rewards.  

 

Q-Learning is an off-policy TD control algorithm, because no matter the agent’s starting policy 

the Q-Learning update rule will always be predicting that the best possible action α will a be taken 

in each next state. In that way the algorithm guarantees that the optimal policy and the optimal 

value function are found. Other TD methods could be considered in the self-control model, 

however Georgiou (2015) model self-control using both Q-learning algorithm and SARSA method 

and showed that the agents learnt to exercise self-control more easily with the Q-Learning 

algorithm in comparison with the SARSA algorithm. 
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2.6.2 The ε-greedy policy 

 

Throughout the game the agents must have a policy for deciding between exploitation – choosing 

an action based on agent’s knowledge, or exploration – randomly choosing an action. Choosing 

only to explore is not a valid option since we will never be able to find converge to an optimal 

strategic. On the other hand, choosing only to exploit is not a valid option either since this will 

mean that the agent will follow the same actions and no further learning will take place. For that 

reason, we need a good policy that can solve the exploration-exploitation problem. The policy that 

is going to be used in order to resolve this dilemma is the ε – greedy policy. The e-greedy policy 

defines that in each round the agent will choose to explore a new random action with a probability 

ε, or will choose to exploit and use the already accumulated knowledge with a probability 1-ε . For 

example, with ε-value= 0.2 , the agent will choose with probability 0.2 to explore and with 

probability 0.8 to exploit.  

 

 

Figure 2.6: The e-greedy policy of the agent. Exploit (At*) action with probability 1-ε  , Exploration Action 

with probability ε.  
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Chapter 3 

 

Design and Implementation 
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3.1 Introduction 

 

In this chapter we analyse and explain the methodology that is being used in order to simulate the 

findings align with the self-control muscle and virtue theory. We discover how the effects of ego 

depletion (depleted self-control resources) appear in our model. Furthermore, we determine the 

method that is used to simulate the self-control muscle recovery periods and self-control task 

switching. We also examine the method on which the presence of an external motivator could be 

simulated as well as the design aspects that are used on modeling self-control as a virtue.  Finally, 

we display our baseline self-control program along with the methods that are used for each 

different simulation. The development of Q-Learning Agents is entirely based on the work of 

Georgiou (2015), who created the class Player and the main class is an extension of the Main  class 

used by Nikodemou (2020). The programming language that is used is Java. 
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3.2 Simulating Self-control Strength Model   

 

In the following subsections we discover how some theories associated with self-control “strength 

model” are simulated. Before we proceed however, it is important to clarify the nature of the 

computational model that is used. We deployed a reinforcement learning  model that consists of 

two Q-learning subagents that interact in the IPD game with the goal of learning to cooperate , and 

thus achieve self-control .Banfield (2006) and Cleanthous (2010) , modelled self-control behaviour 

using neural networks and it was proven that irrespective of whether we use a biological realistic 

spiking neural networks or a simpler model ,  self-control  is successfully modelled and the results 

remain the same (Christodoulou et al., 2010) .  

 

According to the self-control “strength model, self-control resembles a muscle and the ability to 

exhibit self-control relies on a limited resource or self-control strength. Self-control strength is 

limited, in the sense that a person has finite capacity for self-control and can override only a finite 

number of urges at the same time (Muraven and Baumeister 2000). Ego depletion refers to the 

reduction of such resources as a result of the depletion of self-control muscle during a task or a 

sequence of tasks. Apart from the intensity of the internal conflict that the brain experiences during 

a self-control task, the duration of the task has a major influence also on whether the desired 

behavior is achieved. The duration of a self-control task is described by the total of rounds of IPD 

game, in which the two Q-learning agents participate. By increasing the total number of rounds in 

the IPD game, we expect to notice a reduction on the CC states that represent self-control as a 

result of the further depletion of the brain. Moreover, we expect to observe a constant decrease on 

CC states when the system reaches the depletion period during the game. (Muraven, M. and 

Baumeister, R. F, 2000). The muscle depletion is explained in more detail in section 2.3. 

Moving on to the next subsections, we examine how these fatigue effects could be limited in our 

model by incorporating the concept of recovery and extrinsic motivation in our simulations.     
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3.2.1 Muscle Recovery 

 

The strength model entails that the available stock of resources is depleted by exertion and must 

be replenished before the full measure is available again ( Muraven and Baumeister, 2000). It thus 

resembles a muscle that becomes fatigued by exertion and becomes less able to function. 

Simulating recovery periods in which the agents retain their strength resources cannot be achieved 

by simply pausing the IPD game, since the concept of recovery is not implemented in the first 

place. For that reason, we need to follow a different approach where the agents continue to 

participate on the IPD game while experiencing a recovery state. Therefore, recovery states are 

simulated as states in which the agents continue to interact but experience a decreased internal 

conflict . 

 

Cleanthous (2010) indicated that the increment of the difference between the Temptation (T) 

payoff value and Sucker’s (S) payoff value ( T-S ) , increases the internal conflict that the system 

perceives , whereas the decrement of T-S , decreases it . We used that knowledge to implement 

the reduction in conflict accordingly. Finally, muscle recovery is simulated by changing 

periodically the payoff matrix during the IPD game from the initial baseline matrix to the recovery 

state matrix for a certain recovery period (certain amount of rounds). By incorporating muscle 

recovery in the model, we expect to notice an increase in CC states in comparison with the default 

execution where only a constant payoff matrix is used. Figure 3.1 shows the two states of the 

payoff matrix that exist when training is combined with recovery. The conflict intensity of the 

payoff matrix is modified when we change the positive values X and Y.  
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Figure 3.1: The payoff matrix of the Prisoner’s Dilemma game. (Left) The default payoff matrix that the agents have 

when they are not recovering. (Right) The recovery payoff matrix that the agents have while recovering. Note that X 

and Y are positive values and as they increase the intensity of the internal conflict of the payoff matrix decreases.     

 

3.2.2 Subsequent Self-control Tasks 

 

In our model a self-control task is described by two elements, the payoff value matrix which 

describes the difficulty of the task, and the duration in rounds of IPD game that the task lasts.  

We simulate accordingly the self-control task switching by changing the payoff matrix for the 

subsequent task. Dewitte , Bruyneel and Geyskens (2009) showed through their studies that self-

control performance differs when a subsequent task involved similar or different response conflict. 

To simulate a subsequent task that has a similar internal conflict to the initial one, we add a random 

constant value to each payoff value of the initial matrix ( T,R,P,S) . By doing that the two rules of 

IPD game are unaffected since the correlation of each payoff value remains still and at the same 

time the agents experience a completely new task. On the other hand, when it comes to simulating 

a subsequent task with a different internal conflict we change only the difference between the 

Temptation (T) payoff and the Sucker’s (S)  payoff value . An extra rule guarantees that the random 

updated T and S values do not violate the rules of the IPD game (section 2.2).  

 

In the first case where the subsequent tasks follow a similar internal conflict with the initial one, 

we expect to notice an increase in self-control ( CC states ) . Alternatively, when the following 

tasks hold a different internal conflict we expect to notice a decrease in self-control. On the 

occasion that our assumptions are correct, the results would be aligned with the experimental 

findings on the related performed studies (Dewitte, Bruyneel and Geyskens,  2009)    
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3.3 Simulating Extrinsic Motivation  

 

Extrinsic motivation refers to the performance of an activity that is driven by an external reward 

(or an external factor) independent of the reward of the activity itself (Berlyne, 1966). Such 

external rewards could be status, approval, money and more. The first simulation related to 

extrinsic motivation has to do with an external monetary reward that appears in the IPD game just 

as the effects of ego depletion appear that cause a constant decrease in CC states. To simulate this 

external reward, we change the discount rate of the higher brain agent as soon as the effects of 

depletion appear during the IPD game. By doing that the upper brain agent will give greater value 

to the large later (LL) reward that’s the desired reward for the system. Remember, the lower brain 

agent is driven by default to the short-term reward as it represents the limbic system that is 

associated with our animal instincts and motivations. 

 

The second simulation is associated with an external authority that changes the nature of the game 

by forcing the system to cooperate more. This is achieved by forcing the agents to choose 

periodically cooperation for some rounds during the IPD game.  For both simulations, we expect 

to notice an increase on CC states in comparison with the baseline execution since the external 

motive drives the organism towards the behavior of self-control. 
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3.4 Simulating Self-control as a Virtue   

 

Self-control virtue theory suggests that self-regulation can be analyzed into three main ingredients: 

standards, monitoring, and operations that alter the self (Baumeister & Exline ,2001). Before, 

viewing how the self-control virtue theory is incorporated in our model is important to understand 

the way in which the presence of negative emotions is implemented in our model. Nikodemou 

(2020) was the first to implement the concept of emotions and she proven that the presence of 

negative emotions is successfully simulated by periodically increasing T (Temptation) and/or 

decreasing R (Reward) payoff value during the IPD game. Both strategies guarantee a decrease on 

self-control (CC states).      

 

In our model we will be combining the presence of negative emotions with the self-control virtue 

theory. The three ingredients previously mentioned that describe self-control as a virtue can be 

distinguished into two elements. The first element is the relevant standards that are described by 

the initial payoff matrix before the effects of the presence of negative emotions are applied. 

Everyone can experience the same self-control task differently depending on his/her relative 

standards. The second element refers to the ability of the system to alter its own behavior so as to 

conform to relevant standards. This is simulated by resetting the payoff matrix back to it is initial 

standard values, while the system continues to experience the presence of negative emotions. 

Through this simulation, we expect to notice an increase on self-control compared to the 

executions where only the effects of the presence of negative emotions were applied. Such 

outcome would reinforce the beliefs associated with the self-regulation virtue theory.           

 

3.5 The Q-Learning agents 

 

The Q-learning subagents are objects of the Player class. The model consists of two agents that 

represent the lower and higher parts of the brain that interact through the IPD game. The state of 

the object is described by the following fields:  the learning rate (η), the epsilon value which defines 

the e-greedy policy, the discount factor (γ), the Q-table that the agent keeps for the estimated value 

for every state-action pair , the payoff matrix  and the current action that keeps the agent’s chosen 

action. It’s important to note that the discount rate is the parameter that is set differently to 
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distinguish the one agent from the other (see Section 2.4.1). The Player’s Q-table and the payoff 

matrix is initialized through the constructor. The Q-table consists of 4 rows with 2 columns each. 

This is due to the fact that there are 4 possible states (CC,CD,DC,DD) and 2 actions that the agent 

can choose to take , that is to Cooperate (C ) or Defect (D) . Setters and getter methods for the 

fields of the object are also implemented.  

 

The exploration-exploitation problem was solved using the e-greedy policy (section 2.4.2) and is 

implemented in the method choose_action. Lastly, the core method of the class Player is  

update_Q . Through this method learning takes places by applying the Q-learning algorithm 

(section 2.4.1)  to update the values of the Q-table .  

 

3.6 The Q-Learning model  

 

The Q-Learning model is created through the MainQ class. More specifically in the MainQ class 

we decide which function is to be called depending on the theory (e.g. muscle recovery, extrinsic 

motivation) that we want to investigate. We will analyze each method in more detail but is essential 

to underline that each function has same structure before and after their main body. The code of 

the program along with each function is at the appendix A. Before the main body of any of these 

functions by default we set the model to run for 15 trials of 1000 episodes each. In the beginning 

we initialize 3 arrays : states_results   to hold the states that the agents reach during the game , 

payoff_results  that have the rewards each agent earns from the payoff matrix and the 

overall_payoff  array with the overall payoff of the agents. When the learning is done, the results 

stored in these arrays are uploaded in text files. The two agents are then initialized through the 

constructor of the class Player  (section 3.4) . Proceeding we set the payoff matrix of both agents 

with the values T,R,P,S  accordingly  and also the epsilon value of the e-greedy exploration . To 

distinguish the two agents we set the discount factor (γ) to 0.1 for the agent that represents the 

lower part of the brain (the limbic system) and to 0.9 for the agent that represents the upper part 

of the brain (prefrontal cortex) . In this manner the lower brain agent becomes myopic and is driven 

towards the short term reward (SS) , whereas the upper brain agent becomes long-sighted  and is 

driven towards the long term reward (LL) . In every round of a trial both agents select an action 

based on their current state, which is then used to update their Q-tables. 
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As we mentioned previously, when the learning takes place we call a different method depending 

on the theory we are analyzing.  

The functions related to self-control “strength model” are the following :  

• Round_depletion  : This function takes only 1 parameter as input . The parameter is an 

integer and it represents the total of rounds of IPD game that the agents will interact in 

every trial . This method is used explore the fatigue effects that appear when the duration 

of the same task changes. 

• Muscle_Recovery : The function takes 2 integers as parameters . The first parameter is 

the variable recover that represents the recovery period in rounds of the IPD game and 

the second argument is the variable maxDays that indicates the maximum rounds before 

the agents enter a recovery state. When in recovery the agents experience a lower conflict 

payoff matrix than the standard payoff matrix that is used otherwise (section 3.2.1).  

• Task_Switching : This function contains 2  variables as arguments . The first argument is 

the variable Similar that is a 28oolean value indicating whether the system will be 

switching to a similar conflict payoff matrix for the next task (when is true) or we will 

be switching to a different conflict payoff matrix (when is false). The two scenarios are 

explained in more detail in section 3.2.1. The second parameter is the variable rounds  

which is the interval in rounds before the system shifts to a new task .  

The next two functions are mainly related to the theory of extrinsic motivation.  

• External_Monetary_Reward : This function  has only 1 parameter . The parameter is an 

integer variable named discount_interval that defines the round in which the discount rate 

of the lower brain agents changes as a result of the external reward that showed up. The 

discount rate is then decreased by 0.3.   

• External_Motivator :  The following function takes only 1 argument as input . The 

argument is an integer variable named forced_rounds_interval that defines how often the 

agents are forced to cooperate as a result of the external authority forcing them to do so. 

 

The final function is related to the self-control virtue theory as well as the concept of the presence 

of negative emotions used by Nikodemou (2020). 
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• Clear_Standards :  The next function takes 4 arguments as parameters . The first argument 

is the variable payoff_interval that defines the number of rounds between each change of 

R or T payoff value. The ratio that these payoff values change is defined by the third and 

fourth argument respectively (ratio_R , ratio_T). Finally, the second argument is called 

standards_interval  and it determines the number of rounds that should pass each time 

before we reset the payoff matrix back the initial one.        

  

Despite the function that is used, in all cases we save the states that the agents reached and their 

returns. The findings are then saved to the payoffs.txt and states.txt  text files . In the file payoffs.txt 

we save in 3 columns the accumulated payoff of the lower part of the brain, the higher part, and 

their sum, respectively. In the file states.txt each of the 4 columns are the average percentage of 

the frequency of the CC, CD, DC, and DD states, respectively. Based on these two files we produce 

the figures that describe the results of Chapter 4. 

 The three types of figures we will be using for our analysis in the next chapter are the following: 

1. A line plot with 4 traces, with each trace representing one of possible outcome states. With 

this plot we can observe how the preference of the system changes throughout the rounds 

as well as the behavior that the system shows when any of the changes previously 

described are applied.  

2. A bar plot which shows the overall average outcomes, that is, the percentage of the 

appearance of each state. The information that we obtain from this chart is only the 

difference between the outcomes and which state dominated at the end. 

3.  A line plot which shows the overall accumulated payoff (3rd column in the payoffs.txt) 

achieved by both agents during the game. The achieved outcome is compared to the 

theoretical best outcome.  
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4.1 Introduction 

 

In this chapter we will be reviewing the results from each simulation related to the self-control 

strength model, the extrinsic motivation and self-control virtue theory as the two Q-learning agents 

participate in the IPD game. Each concept is was previously analyzed in more detail in Chapter 3 

(sections 3.2 and 3.3). 

 

4.1.1 Constant payoff matrix 

 

Before moving forward to the results from each implemented method is essential to underline our 

baseline model. The basic model of self-control was first described in the thesis of Georgiou (2015) 

where the learning rate was set to 0.1 and the epsilon value to 0.1. The basic model has also a 

constant payoff matrix that holds the values T= 5 ,R= 4, P= -2 , S = -3 . The program runs 15 trials 

of the game with each trial lasting 1000 rounds of the IPD game. We will be using the same payoff 

matrix as the initial one for almost every following experiment. According to Cleanthous (2010), 

these chosen values for the initial payoff matrix represent a self-control task with an internal 

conflict of moderate intensity. The baseline results are presented in Figures 4.1 a-c. Figure 4.1a 

shows the average states achieved during the rounds of the IPD game and Figure 4.1b represent 

the overall outcome of the appearance of each state after 1000 rounds. Lastly, Figure 41c shows 

the overall performance of the Q-learning agents. 

 

The accumulated payoff of a given round is calculated by adding together the payoff each agent 

received during a round according to the payoff matrix. For example, if the outcome for a given 

round was CC, then both agents will receive the reinforcement signal R ( 4 ) and the total 

accumulated payoff that will be added is R+R=4+4=8. The overall performance (Figure 4.1c ) 

comes from the addition of the accumulated payoffs of each agent at each round , and then we 

calculate the average accumulated payoff when we divide with the number of the trials. The 

theoretical best performance is achieved when the system always chooses mutual cooperation (CC 

states )  and in that case the maximum accumulated reward is 8000 ( 8 *1000 ) . In all cases, we 

compare the obtained performance with the theoretical best performance ( dot-dashed line ).    
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Figure 4.1a: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Constant Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . 

 

 
 
Figure 4.1b: Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD game. 

The constant payoff matrix is used: T=5, R=4, P=-2, S=-3. 

 

 

Figure 4.1c: Overall performance of the Q-learning agents during the 1000 rounds of the IPD game (blue 

line). The theoretically best performance is shown for comparison (dot-dashed line) 
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4.2 Simulating Self-control Strength model  

 

In this section, we are focused on the results of the simulations related to the theory of self-control 

“strength model “. According to this model, self-control resembles a muscle and has limited 

resource or self-control strength, in the sense that a person has finite capacity for self-control. 

Thus, success or failure of self-control depends on the person's level of self-control strength.  For 

example, people who have more strength should be more likely to reach a self-control goal, such 

as losing 10 pounds, than people who are lower in strength. However, although in the short–term 

self-control resources are depleted, repeated exercise strengthens the available resource in the 

long-run (Muraven et al., 1999). 

 

The first simulation related to the previous concept aims on investigating the nature of self-control 

resources as well as the behaviour that our model exhibits when the resource is depleted. Secondly, 

we will be viewing the results achieved when we deploy the concept of muscle recovery in our 

model ( section 3.2.1 ) . Finally, the last simulation linked to the concept of self-control strength 

model is focused on the performance in self-control that is achieved when the system shifts from 

the initial task (the initial payoff matrix) to subsequent tasks. In every simulation, the results could 

vary when different combinations of arguments are given. However, in all cases we will be using 

the same initial payoff matrix, learning rates and epsilon value as we used for our baseline results 

(section 4.1.1). 

 

4.2.1 Ego depletion  

 

A self-control task is described in our model by two factors. The first is the duration of the task, 

that is defined by the total number of rounds that the IPD game lasts in each trial. The second 

factor is the internal conflict of the task, that is represented by the values of the constant payoff 

matrix that is used in the course of the game. In the experiments that follow, we are using the 

method Round_depletion to discover the implications on self-control when we change these two 

factors.  
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4.2.1.1 Increasing the Total number of rounds of IPD   

 

We used our baseline constant payoff matrix (section 4.1.1) to observe the influence on self-control 

when the total number of rounds is increasing. At the first attempt we set the total number of rounds 

to 500.That is 500 rounds less that our baseline. The obtained CC states reached the 60% of all the 

outcomes, which is around 10 percentage more than our baseline results (figures 4.2a,4.2c). In the 

second experiment we increased the total number of rounds of the IPD game by 500 compared to 

the baseline. When 1500 rounds were used in each trial, self-control behavior was not achieved 

since the achieved CC states reached only the 42% of all the outcomes. When we take a look at 

the 3 trace plot figures (4.1a ,4.2a ,4.2b), we observe that despite the three different results we 

obtain in the end of each experiment, the behavior that the system demonstrated throughout the 

rounds was similar. At first the system converges toward the desired behavior of self-control (CC 

states). Later, it reaches a peak on the CC states approximately at 250 rounds and right after that 

there is a constant decrease on self-control.  

 

 

Figure 4.2 a: Average of the outcomes CC, CD, DC and DD during 500 rounds of the Q-learning agents 

playing the IPD game. Constant Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) .Self-control states (CC) reach 

the maximum around 200-300  round then the system starts experiencing a constant decrease on CC states 

(Ego depletion period). 
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Figure 4.2 b: Average of the outcomes CC, CD, DC and DD during 1500 rounds of the Q-learning agents 

playing the IPD game. Constant Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) .Self-control states (CC) reach 

the maximum around 200-300 round then the system starts experiencing a constant decrease on CC states 

(Ego depletion period) 

 

 

     

 

Figure 4.2 c: Overall average outcomes of the Q-learning agents playing the IPD game. A constant payoff 

matrix is used: T=5, R=4, P=-2, S=-3. (top-left) Total of rounds = 500 ,(middle) Total of rounds =1000    

– baseline results. (top-right) Total of rounds =1500 . Notice how self-control (CC states) decreases as the 

total of rounds – the duration of the task- increases. 
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The phenomenon that we observed could be link to the depletion of self-control resources. Before 

the system experiences the effects of brain fatigue the organism is restful and thus is more easily 

driven towards the healthier outcome. However, as the self-control muscle is depleted the organism 

becomes more vulnerable to temptations and self-control is reduced (Muraven, M. and Baumeister, 

2000). We will be referring to the ego depletion period later in our analysis.  

 

4.2.1.2 Increasing the Intensity of Internal conflict   

               

Modelling the intensity of the internal conflict was first suggested by Cleanthous (2010). He 

proved that by increasing or decreasing the difference between Temptation (T) payoff value and 

Sucker’s (S ) payoff value  , the internal conflict that the agents experience is more or less intense 

respectively . In the next experiments we are increasing the intensity of internal conflict using this 

method in order to explore how long it requires for the system before it reaches the point that we 

notice a constant decrease in CC states (ego depletion period). We still hold a constant payoff 

matrix but the starting values for T and S can vary.  At the first attempt, we increase the intensity 

of the conflict by 1 as we set the T to 5.5 and S to -3.5. The other payoff values are set according 

to the baseline matrix (R = 4, P = -3) and the IPD game last 1000 rounds. We obtained a similar 

behavior compared to the baseline however, the system reached the maximum in CC states 

approximately 50 rounds faster than before (Figure 4.2 d). Moving on, in the second experiment 

we set T to 6.5 and S to -4.5 which increases the intensity of conflict ( T-S )  by 3. The maximum 

in CC states has now reached 150 rounds faster compared to the baseline (Figure .4.2 e).  

 

Figure 4.2 d: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Constant Payoff Matrix ( T=5.5, R=4 , P=-2 , S=-3.5) ,the intensity of internal 

conflict     (T-S) is increased by 1. Notice that CC states peak at round 250 approximately which is 50 

rounds earlier compare to the baseline results (figure 4.2 a). Self-control resources are now depleting 

faster. 
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Figure 4.2 e: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Constant Payoff Matrix ( T=6.5, R=4 , P=-2 , S=-4.5) ,the intensity of internal 

conflict  (T-S)  is increased by 3. Notice that CC states peak at round 150 approximately which is 150 

rounds earlier than the baseline results (figure 4.2 a). Self-control resources are now depleted much faster 

compared to the baseline. 

 

The previous results indicate that as the intensity of task increases, more self-control resources are 

required in each round and thus the self-control muscle is depleted faster. This is aligned with 

Muraven (2000) findings, who showed that participants in tasks that require more self-control are 

more affected by ego depletion in comparison to when the tasks required less self-control. 

      

4.2.2 Simulating Muscle Recovery  

 

The concept of muscle recovery is implemented in our model with the method Muscle_Recovery. 

The method has two parameters: recover variable indicating how many rounds recovery state lasts, 

maxDays variable indicating the interval in rounds before the system enters recovery. The initial 

payoff matrix is always the payoff matrix of section 4.1.1 and the IPD game lasts 1000 rounds in 

each trial. At the first attempt, we set the recover period to 10 , the maxDays interval to 40 and 

when the agents enter the recovery state T is set to 4.5 and S to -2.5 . The achieved outcome in CC 

states on the final round was 53% , only 3% higher than the baseline . In the next experiment, we 

set the recover period to 10 and maxDays interval to 30 but we keep the same recovery matrix. 

Again, we have not noticed big difference with the CC states reaching the 54% (figure 4.2 f). 
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Nevertheless, in both previous experiments the system experiences the effects of self-control 

fatigue approximately at 300 rounds which is 50 rounds later compared to the baseline. In the third 

experiment, we tried to increase the recovery period by setting recover to 15 and maxDays to 30 

(figure 4.2 g-h). Self-control was again successfully achieved with the average outcome in CC 

states reaching the 55%. What was interesting about this experiment, was that not only depletion 

was delayed for 150 rounds but in addition the maximum CC outcome obtained was 74 % which 

is 10% more than the baseline maximum.     

 

 

Figure 4.2 f: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents playing 

the IPD game. Normal Payoff Matrix ( T=5.0, R=4 , P=-2 , S=-3) and the Recovery state payoff matrix  (T=4.5, R=4 

, P=-2 , S=-2.5) . Switching from Normal payoff matrix to Recovery state payoff matrix every 30 rounds and the 

Recovery state duration is 10 rounds each time. The depletion period is delayed by 50 rounds compared to the baseline 

and maximum CC states reached are 68%.  

 

Figure 4.2 g: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents playing 

the IPD game. Normal Payoff Matrix ( T=5.0, R=4 , P=-2 , S=-3) and the Recovery state payoff matrix  (T=4.5, R=4 

, P=-2 , S=-2.5) . Switching from Normal payoff matrix to Recovery state payoff matrix every 30 rounds and the 

Recovery state duration is 15 rounds each time. The depletion period is delayed by 150 rounds compared to the 

baseline and maximum CC states reached are 74%. 
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Figure 4.2 h: Overall average outcomes of the Q-learning agents playing the IPD game. Normal Payoff 

Matrix (T=5.0, R=4, P=-2, S=-3) and the Recovery state payoff matrix (T=4.5, R=4, P=-2, S=-2.5). 

(left)Switching from Normal payoff matrix to Recovery state payoff matrix every 30 rounds and the 

Recovery state duration is 10 rounds each time. (right) Switching from Normal payoff matrix to Recovery 

state payoff matrix every 30 rounds and the Recovery state duration is 15 rounds each time. 

 

  

Moving on, we repeated all 3 previous scenarios but this time the recovery state was set to have   

T = 4.1 and S=-2.1. In these circumstances, the intensity of the internal conflict of the matrix is the 

least possible so as to not violate the first rule of the PD game (T > R > P >S). The expected results 

would be to observe an improvement in self-control compared to the previous experiments due to 

the decreased conflict of the recovery state. This however was not always correct. When recover 

period was set to 10 and maxDays interval to 30 and 40, the achieved self-control was slightly 

increased than previously for around 1%. Nevertheless, in the last experiment when the recover 

period was set to 15 and maxDays interval to 30 the overall average outcome in CC states was 2% 

less compared to the case that a less intense conflict matrix was used for recovery (figures 4.2i). 

Furthermore, the maximum outcome in CC states was 67% which is 7% less than before and the 

overall performance was decreased by 300 (figure 4.2 j). 
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Figure 4.2 i: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Normal Payoff Matrix ( T=5.0, R=4 , P=-2 , S=-3) and the Recovery state payoff 

matrix  (T=4.1, R=4 , P=-2 , S=-2.1) . Switching from Normal payoff matrix to Recovery state payoff matrix 

every 30 rounds and the Recovery state duration is 15 rounds each time. The maximum CC states are 67%. 

 

      

 

Figure 4.2 j: Overall performance of the Q-learning agents during the 1000 rounds of the IPD game (blue 

line). The theoretically best performance is shown for comparison (dot-dashed line). Normal Payoff Matrix 

values (T=5.0, R=4, P=-2, S=-3). Switching from Normal payoff matrix to Recovery state payoff matrix every 

30 rounds and the Recovery state duration is 15 rounds each time. (left) Recovery state payoff matrix values 

(T=4.5, R=4, P=-2, S=-2.5). (right) Recovery state payoff matrix values (T=4.1, R=4 , P=-2 , S=-2.1) .  

 

The findings support the muscle recovery theory, and more specifically the de-load resting 

method3 since the depleted period was successfully delayed as well as the system managed to 

achieve a higher maximum performance in self-control during the game. In addition, we detected 

that too much recovery seems to backfire in some cases.    

 

 
3 https://www.muscleandstrength.com/expert-guides/strength 



 

 

41 

 

4.2.3 Simulating Task Switching   

 

For the simulations that follow the method Task_Switching is being used to discover the behavior 

in self-control that is accomplished when the system shifts from one task to another (section 3.2). 

The subsequent tasks could either be of similar or different intensity internal conflict that is defined 

by the boolean variable Similar. The rounds parameter determines the interval (number of rounds) 

before shifting to a new task. In all cases, the initial payoff matrix that is used is the same as the 

baseline matrix (section 4.1.1).  

  

4.2.3.1 Switching to Similar Intensity conflict tasks  

 

At the first attempt, we set the rounds variable to 500 which means we will be shifting only to 1 

subsequent task of similar internal conflict at the round 500 of IPD game during each trial. 

Although, self-control was achieved the overall average CC states that we obtain was 53% that is 

only 3% higher compared to the baseline results (figure 4.2k). The influence of one subsequent 

task later in the game did not show significant impact on the desired outcome. A similar outcome 

was accomplished when we increased the subsequent tasks to 3 by setting the rounds variable 

interval to 250. It appears that when we use large intervals for task switching self-control behavior 

was not essentially reinforced (figure 4.2.L). 

 

 

Figure 4.2 k: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Initial Payoff Matrix (T=5, R=4, P=-2, S=-3). Switching to a random Similar Payoff 

Matrix every 500 rounds. 
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Figure 4.2 L: Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD game. 

Initial Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . (left) Switching to a random Similar payoff Matrix every 

500 rounds.  (right) Switching to a random Similar payoff Matrix every 250 rounds.  Both simulations have 

a similar outcome.    

 

We then tried smaller intervals for task switching with the aim of achieving a higher impact on 

self-control states. In the next experiment we set the interval to 125, which equals to 7 subsequent 

tasks during the IPD game. The outcome in CC states was 58%, around 8% more compared to the 

baseline results (figure 4.2 m). The best performance was achieved when the interval was set to 

100, with CC states reaching 62% (figure 4.2n). In all the previous scenarios, self-control was 

indeed improved when the subsequent task involved a similar internal conflict. The organism 

seems to perform better when the game involves many continuous tasks with smaller duration.       

       

 
 
Figure 4.2 m: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Initial Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . Switching to a random Similar 

Payoff Matrix every 100 rounds. 
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Figure 4.2 n: Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD game. 

Initial Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . (left) Switching to a random Similar payoff Matrix every 

100 rounds.  (right) Switching to a random Similar payoff Matrix every 125 rounds.  Self-control was 

crucially increased in both cases.    

 

4.2.3.2 Switching to Different Intensity conflict tasks 

 

A series of similar experiments was performed to discover the influence in self-control when the 

subsequent task involved a different internal conflict. In the first experiment, we set the rounds 

variable to 500 to shift only to 1 subsequent task during each trial. We would expect to view a 

small negative impact on CC states, since no significant change was observed in the previous 

scenario with a similar intensity subsequent task. Surprisingly enough, not only self-control was 

not achieved but the overall average CC states we obtained was 42%, which is 8% lower than the 

baseline results (figure 4.2o). The CC states were reduced by 32% when rounds variable interval 

was set to 250 and DD states reached the 40% (figure 4.2p). In contrast with the scenario that a 

similar conflict subsequent task was used, we now see a huge impact on self-control even with 

large interval values (figures 4.2q). 

 

Figure 4.2 o: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Initial Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . Switching to a random Different 

intensity payoff matrix every 500 rounds. 
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Figure 4.2 p: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Initial Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . Switching to a random Different 

intensity payoff matrix every 250 rounds. 

 

     

Figure 4.2 q: Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD game. 

Initial Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . (left) Switching to a random Different intensity payoff 

matrix every 500 rounds.  (right) Switching to a random Similar payoff Matrix every 250 rounds.  Notice 

the impact on CC and DD states.    

 

 

Finally, self-control was further decreased when smaller interval values were used. We set the 

rounds interval to 100 and 125, and the achieved outcome in CC states was only 29% and 31%, 

respectively (figure 4.2 r). The difference in the overall performance when large or small rounds 

interval is used is presented in figure 4.2 s. The earlier results support the findings of the studies 

done by Dewitte, Bruyneel and Geyskens (2009) related to the consequence in self-control when 

an initial self-control task is followed by subsequent tasks of similar or different response conflict.    
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Figure 4.2 r: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Initial Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . Switching to a random Different intensity 

payoff matrix every 100 rounds. 

 

 

  

Figure 4.2 s: Overall performance of the Q-learning agents during the 1000 rounds of the IPD game (blue 

line). The theoretically best performance is shown for comparison (dot-dashed line ). Initial Payoff Matrix         

( T=5, R=4 , P=-2 , S=3). (left) Switching to a random Different intensity payoff matrix every 500 rounds. 

(right) Switching to a random Different intensity payoff matrix every 100 rounds.  Self-control was not 

achieved in both scenarios. 

 

4.2.4 Summary and discussion on Self-control Strength model   

 

The self-control strength model theory entails that self-control operates like a muscle (Muraven 

and Baumeister,2000). The first concept we manage to observe from our model was the depletion 

of the self-control muscle that appears during a self-control task. From our simulations, we 

observed that during the IPD game the system had an upward trend towards the behavior of self-

control, then CC states reached a maximum point. Right after that there was downward trend with 

the self-control constantly decreasing. Despite the system’s ability to converge towards the most 

beneficial outcome at the beginning, when self-control resources were crucially depleted the 

system became more vulnerable to temptations and thus self-control was decreasing.  
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The muscle or ego depletion period  appeared earlier during the game when higher conflict 

matrix was used. Moving on, by incorporating the concept of muscle recovery in our model we 

observed some interesting facts. Not only the ego depletion period was delayed during the IPD 

game but in addition the organism was able to perform a higher overall performance. These 

findings align with the overloading resting method, and higher performance that could be achieved 

when muscles enter supercompensation phase (see section 2.3.1).  

 

Finally, we deployed the concept of self-control task switching in our model. Dewitte, Bruyneel 

and Geyskens (2009) showed through their studies that self-control performance increases and 

decreases when an initial self-control task is followed by a subsequent task of similar or different 

response conflict, respectively. The impact of a single subsequent tasks of similar conflict was not 

crucial on the increased self-control. However, when multiple subsequent tasks of similar conflict 

were presented in the system, we attained a huge improvement on self-control. When the system 

was switching to different response conflict tasks there was a significant decrease in performance 

despite the task shifting interval that was used.      

 

4.3  Extrinsic Motivation   

 

Extrinsic motivation refers to behavior that is driven by external factors such as a reward or a 

negative outcome (Berlyne, 1966). The concept is implemented in our model with the methods 

External_Monetary_Reward  and External_Motivator. The first method is related to an external 

reward that arrives during the IPD game in order to influence positively the system when depletion 

is experienced. The second method is associated to an external condition or authority that changes 

the rules of the game, by forcing the two agents to periodically choose to cooperate. For all the 

following experiments we will be using the same constant payoff matrix as our baseline model 

(section 4.1.1) and the IPD game lasts 1000 rounds in each trial.   
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4.3.1 Simulating External monetary reward  

 

The method has one parameter as input, the variable discount_interval. This value defines the exact 

round at which the external reward is presented in the system, which causes the lower brain agent 

discount rate to decrease by 0.3. At the first attempt, we set the discount_interval value to 750. 

The overall average in CC states we attained was 53%, which is only 3% higher than the baseline 

(figure 4.3 a). As we previously discuss in section 4.2.1.1, the depletion period is experienced 

approximately after 300 rounds during the game. The external reward was presented too late 

compared to the depletion period and due to the lack of self-control resources the system could not 

change behavior at 750 rounds. In the next experiment we set the discount_interval to 500, that is 

much closer to the depletion starting point (figure 4.3 b-c). The obtained CC states outcome was 

around 57%. 

 

Figure 4.3 a: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Constant Payoff Matrix (T=5, R=4, P=-2, S=-3). At round 750 the discount rate of 

the lower brain agent decreases by 0.3.   

 

Figure 4.3 b: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Constant Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . At round 500 the discount rate 

of the lower brain agent decreases by 0.3.   
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Figure 4.3 c: Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD game. 

Constant payoff Matrix ( T=5, R=4 , P=-2 , S=-3). (left) Discount interval round set to 750.  (right) 

Discount interval round set to 500.  

 

In the final experiment we set the discount_interval to 300 rounds, almost at the depletion starting 

point. With the final attempt we achieved the best performance with the CC states reaching 61% 

(figures 4.3 d-e). The system did not experience fatigue during the game and also managed to 

perfectly sustain the desired outcome in a very high percentage. Additionally, the accumulated 

payoff was significantly improved and approached the theoretical best payoff.           

 

 
Figure 4.3 d: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents playing the 

IPD game. Constant Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . At round 300 the discount rate of the lower brain 

agent decreases by 0.3 . Notice how the CC states are sustained on high percentages. 
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Figure 4.3 e: Constant payoff matrix (T=5, R=4 , P=-2 , S=-3) .Discount interval round set to 300. (left) Overall 

average outcomes after 1000 rounds of the Q-learning agents playing the IPD game. (right) Overall performance of 

the Q-learning agents during the 1000 rounds of the IPD game (blue line). The theoretically best performance is 

shown for comparison (dot-dashed line). The achieved performance is 1000 points greater than the baseline results. 

 

 

4.3.2 Simulating External motivator 

 

The next method has one parameter that is the variable forced_rounds_interval which defines how 

often the agents are forced in the game to cooperate. In the first experiment, we set that interval to 

50. The attained results indicate that there was no difference in the CC states compared to the 

baseline results (figure 4.3 f). Obviously, the interval that the agents are forced to cooperate is not 

enough so as to change their overall strategy for the rest of the game. 

 

 

  

Figure 4.3 f: Constant Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) and forced rounds interval is set to 50.(left) Average 

of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents playing the IPD 

game.(right)Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD game . The 

achieved self-control (CC) states did not change compared to the baseline.  
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 In the second experiment, we decrease the forced_rounds_interval to 25. With a much smaller 

interval we expect to see improved performance. That was indeed accurate since the overall 

average outcome of CC states was 58%, that is 8% higher compared to the baseline (figure 4.3 g-

h). In addition, the attained accumulated payoff increased by 1000 compared to the baseline (figure 

4.3h).   

.  

 

 

Figure 4.3 g: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents playing the 

IPD game. Constant Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) .Forced rounds interval is set to 25. The maximum CC 

states reached was 78%.  

 

  

Figure 4.3 h: Constant payoff matrix (T=5, R=4 , P=-2 , S=-3) .Forced rounds interval round set to 25. (left) Overall 

average outcomes after 1000 rounds of the Q-learning agents playing the IPD game. (right) Overall performance of 

the Q-learning agents during the 1000 rounds of the IPD game (blue line). The theoretically best performance is 

shown for comparison (dot-dashed line). The achieved performance is 1000 points higher than the baseline results 

and self-control outcome states was increased. 
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The best outcome was obtained by setting the interval to 10, where CC states reached 63% (figures 

4.3.i-j) . It is worth mentioning that by using smaller intervals we managed to achieve at a certain 

round CC states around 80%. Furthermore, the the overall accumulated payoff improved and 

undoubtedly approaches the theoretical best performance. The previous findings reflect how 

crucial is the influence of an external player when it comes to general sum games. Although it is 

still tempting in any round for the agents to deflect, the system is driven by the external motivator 

towards the best strategy which is the mutual cooperation. 

 

 

Figure 4.3 i: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents playing the 

IPD game. Constant Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) .Forced rounds interval is set to 10. The maximum 

outcome in CC states was 80%. 

 

   

Figure 4.3 j: Constant payoff matrix (T=5, R=4 , P=-2 , S=-3) .Forced rounds interval round set to 10. (left) Overall 

average outcomes after 1000 rounds of the Q-learning agents playing the IPD game. (right) Overall performance of 

the Q-learning agents during the 1000 rounds of the IPD game (blue line). The theoretically best performance is 

shown for comparison (dot-dashed line ). The achieved performance is 1500 points higher than the baseline results 

and self-control states outcome increased by 12%. 
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4.3.3 Summary and discussion on Extrinsic motivation  

 

Extrinsic motivation is when someone or something is conditioned to behave a certain way due to 

a reward or consequence (Berlyne, 1966). In our simulations, we deployed the concept of the 

appearance of an external reward during the IPD game. The round in which the external reward 

was presented in the system defined how much self-control was improved. When the external 

reward was presented later in the game, there was not major impact on self-control. However, 

when it showed up at a round near the peak in CC states, we documented a major improvement on 

self-control with the system managing to sustain the desired outcome to high percentages for the 

rest of the game. The elimination of the depletion effect was indeed accomplished by the offered 

the monetary incentive (Baumeister, 2006). 

 

Moving on, we deployed an external motivator which forced the two agents to mutual cooperation 

periodically. When the interval for the forced rounds was large, we did not notice a change in the 

overall performance. Despite of that, with smaller intervals the system was driven towards 

cooperation more often and that forced the two agents to learn to follow the most beneficial 

strategy for system. The maximum CC states we attained with this method was around 80%. 

 

4.4 Simulating Self-control as a virtue  

 

For the last simulations we are using the method Clear_Standards that is associated to the self-

control virtue theory. The presence of negative emotions is experience in our model by periodically 

decreasing or increasing the R and T payoff values, respectively. We will discover in the following 

experiments how self-control is influenced when we periodically reset the payoff matrix to the 

initial “ standard ” values. The concept of self-control virtue is analysed in more detail in section 

3.4. The initial payoff matrix values are T=5 , R=4 , P=-2 , S=-3 and the IPD game last 1000 rounds 

.  
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4.4.1 Presence of Negative emotions  

 

We first need to define the baseline when only the presence of negative emotions is experienced 

in the model. The presence of negative emotions was first implemented by Nikodemou(2020) and 

is explained in more detail along with the virtue theory in section 2.4.We start by setting the payoff 

interval to 25 and the ratio that R change to -0.1 . That means in every 25 rounds during the IPD 

game the R payoff value will decrease by 0.1. The results we obtain are presented in figures 4.4a-

b. Self-control was not achieved and the overall average outcome in CC state was 32%. We will 

later use these results as the baseline for the experiments where only R changes . The second 

baseline results we will be using are attained when the payoff interval is set to 25 and the ratio that 

T changes is set to 0.1 (figures 4.4c-d). The overall average outcome in CC states was 38 %. The 

third baseline results are obtained when both T and R are increasing or decreasing respectively, 

with payoff interval 25 and change ratio 0.1 (figures 4.4e-f). The overall average obtain outcome 

in CC states for the last scenarios was 26% and DD states reached 41%.  In all three cases the two 

agents did not learn to cooperate.    

 

 

 
Figure 4.4 a: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 

playing the IPD game. Decreasing the R payoff. Ratio R=0.1 and payoff interval=25. This is the baseline 

when only R changes.     
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Figure 4.4 b: Initial payoff matrix (T=5, R=4 , P=-2 , S=-3) . Decreasing the R payoff. Ratio R=0.1 and 

payoff interval=25. (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing the 

IPD game.  (right) Overall performance of the Q-learning agents during the 1000 rounds of the IPD game 

(blue line). The theoretically best performance is shown for comparison (dot-dashed line) 

 

 
Figure 4.4 c: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 
playing the IPD game. Increasing the T payoff. Ratio T=0.1 and payoff interval=25. This is the baseline 
when only T changes. 
 
 

  
Figure 4.4 d: Initial payoff matrix (T=5, R=4 , P=-2 , S=-3) . Increasing the T payoff. Ratio T=0.1 and 

payoff interval=25. (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing the 

IPD game.  (right) Overall performance of the Q-learning agents during the 1000 rounds of the IPD game 

(blue line). The theoretically best performance is shown for comparison (dot-dashed line) 
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Figure 4.4 e: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 
playing the IPD game. Increasing the T payoff and decreasing R payoff. Ratio T=0.1,R=0.1 and payoff 
interval=25.This is the baseline when both T and R changes. 
 
 

Figure 4.4 f: Initial payoff matrix (T=5, R=4 , P=-2 , S=-3) . Increasing the T and decreasing R payoff . 

Ratio T=0.1,R=0.1 and payoff interval=25.(left) Overall average outcomes after 1000 rounds of the Q-learning 

agents playing the IPD game.  (right) Overall performance of the Q-learning agents during the 1000 rounds 

of the IPD game (blue line). The theoretically best performance is shown for comparison (dot-dashed line) 

 

 

4.4.2  Simulating Clear standards  

 

Having used the presence of negative emotions in 4.4.1 that produced the baseline results, we are 

now ready to experiment using the Clear_Standards method. We will examine how self-control is 

influenced by incorporating this method when R and T payoff values change separately or together 

when we keep the baseline parameters for payoff ratio and interval. In all scenarios the IPD game 

lasts 1000 rounds.  
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4.4.2.1 Decreasing the Reward payoff    

 

In the following experiments, we always keep the R ratio to -0.1, the payoff interval to 25 but we 

are changing the standards interval. At the first experiment, the standards interval was set to 250 

rounds. This means in every 25 rounds the R payoff value will decrease by 0.1 and in every 250 

rounds all the payoff values along with R will reset to the initial values. The overall average 

outcome in CC states was 45% (figure 4.4 g). Although self-control was not successfully achieved, 

the obtain outcome was 13% higher compared to the baseline (figures 4.4 a-b). The overall 

performance was also increased with the achieved accumulated payoff value being 1400 greater 

than the baseline result. 

   
Figure 4.4 g: Initial Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . Decreasing R payoff. Ratio R=0.1 and 

payoff interval=25 . The system reset to the initial payoff matrix (T=5 ,R=4 ,P= -2. S= -3) every 250 rounds 

(standards interval = 250). (left) Average of the outcomes CC, CD, DC and DD during 1000 rounds of the 

Q-learning agents playing the IPD game. (right)Overall average outcomes after 1000 rounds of the Q-

learning agents playing the IPD game. The achieved self-control (CC) states were 13% compared to the 

baseline.   

 

 Moving on, in the next experiment we used a smaller interval for the standards reset. When 

standards interval was set to 125 not only the desired behaviour was successfully achieved with 

CC states reaching the 50% but also the overall accumulated performance of the system increased 

by 2200 (figures 4.4 h-j). It is noteworthy that even when we set the standards interval to 500, a 

much greater value, the produced CC states was again increased by around 9%.  Despite the 

constant presence of negative with the R (Reward) payoff value periodically decreasing, the 

capability of the system to often change behaviour according to the relevant standards had a 

significant impact on the overall outcome.      
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Figure 4.4 h: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 
playing the IPD game. Decreasing R payoff. Ratio R=0.1 and payoff interval=25. The system reset to the 

initial payoff matrix (T=5 ,R=4 ,P= -2 . S= -3) every 125 rounds ( standards interval = 125 ) 

 

 

         
Figure 4.4 i: Initial payoff matrix (T=5, R=4 , P=-2 , S=-3) . Decreasing the R payoff. Ratio R=0.1 and 
payoff interval=25. (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD 

game (baseline). (right) Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD game 

with standards interval = 125.  
 

 

   

Figure 4.4 j: Overall performance of the Q-learning agents during the 1000 rounds of the IPD game (blue line). The 

theoretically best performance is shown for comparison (dot-dashed line ). Initial Payoff Matrix ( T=5, R=4 , P=-2 , 

S=3). Decreasing the R payoff. Ratio R=0.1 and payoff interval=25. (left) Baseline results. (right) Standards 

interval set to 125.  Strong impact on the performance indicating that the system sustains the desired behaviour.  
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4.4.2.2 Increasing the Temptation payoff   

 

A series of similar experiments was performed with only the T(Temptation) payoff value 

increasing periodically every 25 rounds. We would expect to encounter an analogous improvement 

on self-control by incorporating the same concept. When the standards interval was set to 500, we 

did not observe a huge impact on self-control since the CC states appear only 42% of the time. 

Moving on, we tested the method with smaller standards interval. We set the standards interval to 

250 and 125, and the overall average outcome in CC states was 45% and 47% respectively (figure 

4.4 k).  

 

   
Figure 4.4 k: Initial Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . Increasing T payoff. Ratio T=0.1 and payoff 

interval=25 . The system reset to the initial payoff matrix (T=5 ,R=4 ,P= -2 . S= -3 ) every 250 rounds                  

(standards interval = 250).(left) Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-

learning agents playing the IPD game.(right)Overall average outcomes after 1000 rounds of the Q-learning agents 

playing the IPD game . The achieved self-control (CC) states were 7% compared to the baseline.  

 

 

The best outcome was obtained with standards interval set to 100. The overall attained CC states 

was 50% which is 12% higher compared to the baseline (figures 4.4 l-m). Furthermore, the 

accumulated performance in the last scenario was also increased by 1000 (figure 4.4 n). The 

clear_standards method did indeed influence positively self-control, however smaller intervals 

were required in order to view a meaningful impact.    
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Figure 4.4 l: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents 
playing the IPD game. Increasing T payoff. Ratio T=0.1 and payoff interval=25 . The system reset to the 

initial payoff matrix (T=5 ,R=4 ,P= -2 . S= -3 ) every 100 rounds ( standards interval = 100) 

 

 

       
 
Figure 4.4 m: Initial payoff matrix (T=5, R=4 , P=-2 , S=-3) . Increasing the T payoff. Ratio R=0.1 and 
payoff interval=25. (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD 

game (baseline) .(right)   Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD game 

with standards interval = 100.  
 

 
Figure 4.4 n: Overall performance of the Q-learning agents during the 1000 rounds of the IPD game (blue line). The 

theoretically best performance is shown for comparison (dot-dashed line ). Initial Payoff Matrix ( T=5, R=4 , P=-2 , 

S=3). Increasing the T payoff. Ratio T=0.1 and payoff interval=25 . (left) Baseline results . (right) Standards 

interval set to 100.    
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4.4.2.3 Increasing Temptation and Decreasing Reward payoff  

 

In the final experiments, we discover how well our method performs when there is the presence of 

an intense negative emotion. More specifically, we will examine the influence of the method when 

both R(Reward) and T(Temptation) payoff values are decreasing and increasing respectively with 

a payoff interval 25 and a payoff ratio 0.1. At first, we set the standards interval to 500, which 

means in every 25 rounds of the IPD game the R and T payoff values are decreased and increased 

by 0.1 respectively, and in every 500 rounds all the payoff values are reset to the initial payoff 

values (T=5, R=4, P=-2, S=-3). The produced CC states were 32% which is only 6% greater than 

our baseline results (figures 4.4 e-f and figure 4.4 o). There was neither a huge improvement on 

self-control when the standards interval was set to 250.  

 

  
 
Figure 4.4 o: Initial Payoff Matrix ( T=5, R=4 , P=-2 , S=-3) . Increasing T and decreasing R payoff. Ratio 

T=0.1,R=0.1 and payoff interval=25 . The system reset to the initial payoff matrix (T=5 ,R=4 ,P= -2 . S= 

-3 ) every 500 rounds (standards interval = 500).(left) Average of the outcomes CC, CD, DC and DD during 

1000 rounds of the Q-learning agents playing the IPD game.(right)Overall average outcomes after 1000 rounds of 

the Q-learning agents playing the IPD game . Self-control was not achieved but there is a small increase on CC states 

compared to the baseline.    

 

The best performance was attained when we used smaller intervals for the standards. The overall 

average outcome that the system produced in CC states with the standards interval set to 125 and 

75 was 46% and 50%, respectively (figures 4.4 p-q). It is noteworthy that the overall accumulated 

reward was also increased by around 3000 compared to the baseline (figure 4.4 r). When large 

intervals were used, the system did not manage to converge to a different outcome because of the 

large duration of the negative circumstances before resetting to the standards. However, the 

performance of the organisms was significantly improved when smaller interval was used.       
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Figure 4.4 p: Average of the outcomes CC, CD, DC and DD during 1000 rounds of the Q-learning agents playing 

the IPD game. Increasing T and decreasing R payoff. Ratio T=0.1,R=0.1 and payoff interval=25 . The system reset 

to the initial payoff matrix (T=5 ,R=4 ,P= -2 . S= -3 ) every 75 rounds ( standards interval =75). 
 

 
Figure 4.4 q: Initial payoff matrix (T=5, R=4 , P=-2 , S=-3) . Increasing the T and decreasing R payoff. Ratio T=0.1 

and payoff interval=25. (left) Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD 

game (baseline) .(right) Overall average outcomes after 1000 rounds of the Q-learning agents playing the IPD game 

with standards interval = 75.  
 

Figure 4.4 r: Overall performance of the Q-learning agents during the 1000 rounds of the IPD game (blue line). The 

theoretically best performance is shown for comparison (dot-dashed line ). Initial Payoff Matrix ( T=5, R=4 , P=-2 , 

S=3). Increasing the T and decreasing R payoff. Ratio T=0.1,R=0.1 and payoff interval=25 . (left) Baseline results. (right) 

Standards interval set to 75. Self-control was achieved with an enormous increase on the accumulated payoff reward 

(3000 more).  
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4.4.3 Summary and discussion on self-control virtue theory  

 

In section 4.4 we presented the results of the simulations related to the self-control virtue theory. 

Self-control virtue theory suggests that self-regulation can be analyzed into three main ingredients: 

standards, monitoring, and operations that alter the self (Baumeister & Exline ,2001).  

We deployed the presence of negative emotions in our model by changing the T and R payoff 

values periodically. At first, we decreased the R payoff value alone with ratio 0.1 and we tested 

different intervals on how often the matrix is reset to the initial values (the standards interval). 

With large standards intervals the improvement on self-control was quite satisfying but the best 

outcomes were attained when smaller intervals were used (100 or 125). Similar results were found 

when only T payoff value increased alone with the same ratio.  Finally, we increased the intensity 

of the negative emotion by simultaneously reducing and increasing R and T, respectively. This 

time large intervals for the standards did not manage to influence quite enough the overall outcome. 

The intensity of the negative emotion was only successfully countered when small intervals for 

the standards were used. Obviously the indented self-control outcome was not always attained, 

however when good intervals are used this method amplitudes self-control and the overall 

accumulated payoff. Our findings seem to support most of our initial hypothesis for the self-

regulation virtue theory.  
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Chapter 5 

 

Conclusions and Future Work 
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5.1 Overview and conclusions 

 

The current thesis examined the influence of self-control theories when they are incorporated on a 

cognitive computational model. The theories are aligned with the idea that self-control should be 

viewed as a skill, a virtue and as a muscle, and thus should be treated accordingly. The 

computational model was inspired from a cognitive neuroscience model suggested by Rachlin 

(2000). He defined self-control as a dilemma between a smaller sooner reward (SS) and a large 

later reward (LL), that is experienced as an internal conflict between the higher part of the brain 

that is responsible for cognition and the lower part of the brain that is responsible for motivation. 

To express the self-control dilemma and the interaction between the two parts of the brain, we 

deployed a general sum game, the Prisoner’s Dilemma game. Two agents representing the upper 

and lower parts of the brain engage in a variation of the PD game, the Iterated Prisoner’s Dilemma 

(IPD) game, with the goal of learning to cooperate and thus achieve self-control. The Q-learning 

algorithm is used for training and the values of the payoff matrix in the IPD game provide the 

reinforcement signals that the agents receive according to their collective chosen actions during 

each round of the game.  

 

The first concept we examined in the thesis is the self-control “strength model”, introduced by 

Muraven and Baumeister (2000). The model entails that self-control operates like a muscle and 

the capability of exhibiting self-control relies on a limited resource, or self-control strength, which 
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depletes after any self-control operation. Initially, we were interested in addressing how self-

control fatigue is experienced in our model. We observed that at the beginning of the IPD game 

the system always converges towards the self-control outcome (CC states), it then peaks at a certain 

round and finally there is a downward trend with self-control constantly decreasing. Although at 

first the system was able to distinguish the most beneficial collective outcome, when self-control 

resources were essentially depleted, exhibiting self-control became much harder. This 

phenomenon is caused by the lack of self-control resources and in psychology is referred as the 

ego depletion period (Muraven&Slessareva,2003; Muraven&Baumeister,2000). 

  

Moving on, through our simulations we have showed that by increasing the intensity of internal 

conflict that is experienced during a self-control task, more self-control resources are required 

during each round of the game which causes the ego depletion period to arrive much earlier. In 

other words, this indicates that tasks which require more self-control are more affected by 

depletion than tasks which require less self-control (Muraven and Baumeister ,2000). The intensity 

of internal conflict was expressed and implemented in the model based on Cleanthous (2010) 

previous work. 

 

The next concept, we incorporated was the self-control muscle recovery. The idea here was to 

alternate the system between the initial and an easier self-control task, to allow for recovery to take 

place. By this means we achieved to delay the ego depletion period and improved the overall 

performance. Afterwards, the concept of self-control task switching was further developed with 

the goal of exploring the overall performance when an initial task is followed by subsequent tasks 

of similar or different response conflict. When multiple subsequent tasks of similar conflict were 

presented during the game, we documented a significant increase on self-control performance. On 

the other hand, we observed a decreased performance when the initial task was followed by a 

different response conflict task. Our findings are aligned with previous studies done by Dewitte, 

Bruyneel and Geyskens (2009). 

 

The next theory we considered, was extrinsic motivation which refers to the behavior that is driven 

by external factor such as a reward or a negative outcome (Berlyne, 1966). At first, we deployed 

the appearance of an external reward during the IPD game by increasing the lower brain agent’s 
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motivation towards the large later (LL) reward. The round in which the external reward was 

presented in the system defined how much self-control was improved. Elimination of the ego 

depletion period was found when the external reward arrived at a round near the documented 

maximum outcome in CC states. Furthermore, we deployed an external authority that motivates 

the two agents towards the self-control behavior by forcing them periodically to cooperate. When 

the interval of the forced rounds was large the overall performance remained the same. However, 

with smaller intervals the influence of the external motivator was crucial, and the agents managed 

to sustain the strategy of cooperating throughout the game. We documented the higher outcome in 

CC states with this method, around 80%.    

 

The final concept, we examined in this thesis is the self-control virtue theory. The theory suggests 

that self-regulation can be analyzed into three main ingredients: standards, monitoring, and 

operations that alter the self (Baumeister & Exline ,2001). Our goal was to discover how could 

these three ingredients be applied while the system is experiencing the effects of the presence of 

negative emotions. We deployed the negative emotions based on Nikodemou (2020) and we 

simulated the operations that recorrect the system towards its relevant standards. When the 

experienced emotion was of moderate intensity, self-control was significantly improved despite 

how often the virtue operations was applied. However, with a high intensity emotion, it was 

required to apply the operations much more often for the system to manage to sustain the desired 

behavior despite the negative circumstances.  

 

In conclusion, we achieved to incorporate many theories that affect positively or negatively self-

control in a computational model. The analyzed concepts point out on the belief that self-control 

should be viewed and treated as a skill, a muscle, and a virtue. Each implemented theory has a 

psychological background and is supported by findings of neuroscientific research; therefore the 

model is cognitively adequate. Furthermore, the low complexity of the model in combination with 

the nature of the PD game allowed us to express each self-control concept in a precise manner. 

Self-control provides the power to do what is right and is considered to be one of the most 

important indicators of life success. Therefore, challenging ourselves daily and practicing self-

control should be our primary ambition. 
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5.2 Future Work 

 

We investigated many different concepts, some were highly related to one another and others were 

not. Perhaps, the most important theory was the strength model of self-control that provides one 

of the most influential explanation according to psychologists, on what causes self-control failure 

(Muraven and Baumeister ,2000). All the implemented theories have been individually examined 

in order to be unambiguous of what caused the corresponding change in self-control every time. 

For that reason, one by one the theories could stand alone and provide the bases for further 

research. Moreover, the next step would be to build a more complex self-control scenario in which 

multiple concepts are been combined to express the behavior in a more collective manner. We 

already did the first step, by combining the effects of emotions provided by Nikodemou (2020) 

and intensity of the internal conflict provided by Cleanthous (2010), however there is still potential 

for much more development.  

 

The definition of self-control allowed us to design a model of two agents representing the lower 

and higher parts of the brain. One agent is driven towards smaller sooner (SS) rewards while the 

other is driven towards large later (LL) rewards. The agents are experiencing a dilemma and their 

goal is to learn the best strategy to maximize their reward, which is to cooperate in our case. In the 

business world, companies are dealing with similar dilemmas where a short-term investment could 

appear rewarding however a more patient and more methodical long-term approach can bring a 

much higher benefit. Therefore, the concepts we deployed in the computational model of self-

control could serve as an implementation in a more practical model of autonomous agents that are 

driven by short-term and long-term motives, and ought to collectively decide the most beneficial 

and balanced option to maximize a company’s profit. 

 

Finally, throughout human evolution it is not clear why self-control was not perfectly evolved. The 

most efficient strategy that was developed by humans to solve self-control problems is the 

precommitment behavior. Precommitment is defined as making a choice now with the specific 

goal of denying (or at least restricting) oneself future choices (Rachlin, 1995). This self-control 

strategy however is not the optimal because it presupposes that the current choice would remain 

the best option in the future. Something that is not always correct, especially in the unpredictable 
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world we live in. Christodoulou, Banfield, & Cleanthous (2010) previously proven that the effects 

of precommitment behavior could be model by applying a differential bias ( Ψ ) on the 

accumulated payoff of CD and DC states . A negative differential bias ( Ψ ) is applied to the CD 

state in order to decrease the motivation of the system towards the smaller sooner (SS) reward and 

at the same time a positive differential bias ( Ψ) is applied to the DC state in order to increase the 

motivation of the system towards the large later (LL) reward . For that reason, as we increase the 

differential bias Ψ, the incentive of the system to cooperate is promoted. Implementing genetic 

algorithms in our computational model could give us an insight on why the evolved strategy of 

humans for solving self-control problems is precommitment.  

 

One possible approach to be taken here is to have a population of pairs of lower and higher brain 

agents. Each pair has a different IPD payoff matrix at the beginning and in each generation the 

pairs of the population are playing the IPD game for 1000 rounds. The pairs that achieve the highest 

CC outcome at the end, have a larger probability to be selected as the parents of the next generation. 

A crossover operation follows on the IPD payoff matrixes of the selected parents and a new 

population of pairs is generated with evolved IPD payoff matrixes. An initial solution for the 

crossover operation could be to change the accumulated payoff for each state of IPD matrix of the 

generated child pair based on the averages of the accumulated payoff of the corresponding states 

that are calculated by the IPD payoff matrixes of the two parents. Independently of the crossover 

operation that is chosen, a mechanism should guarantee that the two rules of the IPD game are not 

violated throughout the evolution. Finally, as we proceed into the next generations the pairs of 

agents that “survive” are those that developed the best strategy for solving the problem of self-

control. If the precommitment behavior was indeed the evolved self-control strategy of the final 

population, then we must observe an increased and decreased accumulated payoff of the DC and 

CD states respectively, compared to the initial accumulated payoffs of the corresponding states in 

the IPD matrix of each pair. 
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Appendix A 

 

The development of the basic Q-Learning model (Appendices A-B) is by Georgiou (2015).  

  

Class MainQ.java 

 
 
import java.io.BufferedWriter; 
import java.io.File; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.util.Random; 
 
/** 
 * The basic model was created by Jeannette Chahwan & Anna Georgiou on 20/01/15. 
    Later updated by Kyriakos Georgiou 2021. 
 */ 
public class MainQ { 
    public static Player lower; 
    public static Player higher; 
    int momentum=50; 
    public static double[][][] states_results; 
    public static double[][][] payoff_results; 
    public static double[] overall_payoff; 
 
    public static double[] overall_payoff_neutral; 
    public static double[][][] payoff_results_neutral; 
 
    public static double T, R, P, S; 
 
    public static int get_state(int action_lower, int action_higher) { 
        int next_state; 
 
        if(action_lower==0 && action_higher==0) 
            next_state = 0; 
        else if(action_lower==0 && action_higher==1) 
            next_state = 2; 
        else if(action_lower==1 && action_higher==0) 
            next_state = 1; 
        else 
            next_state = 3; 
 
        return next_state; 
    } 
 
    public static void update_states_results(int episode, int state, int trial){ 
        states_results[episode][trial][0] = states_results[episode-1][trial][0]; 
        states_results[episode][trial][1] = states_results[episode-1][trial][1]; 
        states_results[episode][trial][2] = states_results[episode-1][trial][2]; 
        states_results[episode][trial][3] = states_results[episode-1][trial][3]; 
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        states_results[episode][trial][state]++; 
    } 
 
    public static void update_payoff_results(int episode, double lower_payoff, double higher_payoff, int 
trial){ 
        payoff_results[episode][trial][0] = payoff_results[episode-1][trial][0]; 
        payoff_results[episode][trial][1] = payoff_results[episode-1][trial][1]; 
 
        payoff_results[episode][trial][0] += lower_payoff; 
        payoff_results[episode][trial][1] += higher_payoff; 
 
        // for neutral emotion 
        if ((lower_payoff == S && higher_payoff == T) || (lower_payoff == T && higher_payoff == S)) { 
            payoff_results_neutral[episode][trial][0] = payoff_results_neutral[episode - 1][trial][0]; 
            payoff_results_neutral[episode][trial][1] = payoff_results_neutral[episode - 1][trial][1]; 
 
        } 
        else { 
            payoff_results_neutral[episode][trial][0] = payoff_results_neutral[episode - 1][trial][0]; 
            payoff_results_neutral[episode][trial][0] += lower_payoff; 
            payoff_results_neutral[episode][trial][1] = payoff_results_neutral[episode - 1][trial][1]; 
            payoff_results_neutral[episode][trial][1] += higher_payoff; 
        } 
    } 
 
    public static void statistics(int numberOfTrials, int numberOfEpisodes){ 
        int e, t, s, p; 
        double sumAll_states; 
        double sumAll_payoffs; 
 
        for(e=0; e<numberOfEpisodes; e++){ 
            for(t=0; t<numberOfTrials; t++){    // find sum of states visits from each trial of current episode and 
save in last column 
                for(s=0; s<4; s++){     // states 
                    states_results[e][numberOfTrials][s] += states_results[e][t][s]; 
                } 
 
                for(p=0; p<2; p++){     // payoffs 
                    payoff_results[e][numberOfTrials][p] += payoff_results[e][t][p]; 
                    payoff_results_neutral[e][numberOfTrials][p] += payoff_results_neutral[e][t][p]; 
                } 
            } 
            sumAll_states=0; 
            sumAll_payoffs=0; 
 
            for(s=0; s<4; s++){     // sum of state fields in last column (#trials+1) 
                sumAll_states += states_results[e][numberOfTrials][s]; 
            } 
 
            for(s=0; s<4; s++){     // normalise 
                states_results[e][numberOfTrials][s] /= sumAll_states; 
            } 
 
            for(p=0; p<2; p++){     // sum of payoff fields in last column (#trials+1) 
                sumAll_payoffs += payoff_results[e][numberOfTrials][p]; 
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            } 
 
            overall_payoff[e] = sumAll_payoffs/numberOfTrials; 
        } 
 
    } 
 
    //Use this function if you want to print the state and payoff results 
    public static void print_statistics(int numberOfTrials, int numberOfEpisodes){ 
        int e, s, p; 
 
        // states 
        for(e=0; e<numberOfEpisodes; e++){ 
            for(s=0; s<4; s++){ 
                System.out.printf("%.4f ", states_results[e][numberOfTrials][s]); 
            } 
            System.out.println(); 
        } 
 
        // payoffs 
        for(e=0; e<numberOfEpisodes; e++){ 
            for(p=0; p<2; p++){ 
                System.out.printf("%.4f ", payoff_results[e][numberOfTrials][p]); 
            } 
            System.out.println(); 
        } 
    } 
 
    public static void printToFile_statistics(int numberOfTrials, int numberOfEpisodes){ 
        int e, s, p; 
 
        // write results to file 
        try { 
            File file_s = new File("states_results.txt"); 
            File file_p = new File("payoff_results.txt"); 
 
            // if file doesnt exists, then create it 
            if (!file_s.exists()) { 
                file_s.createNewFile(); 
            } 
 
            if (!file_p.exists()) { 
                file_p.createNewFile(); 
            } 
 
            FileWriter fw_s = new FileWriter(file_s.getAbsoluteFile()); 
            FileWriter fw_p = new FileWriter(file_p.getAbsoluteFile()); 
            BufferedWriter bw_s = new BufferedWriter(fw_s); 
            BufferedWriter bw_p = new BufferedWriter(fw_p); 
            bw_s.write("Rounds\tCC\tCD\tDC\tDD\n"); 
            for(e=0; e<numberOfEpisodes; e++){ 
                bw_s.write((e+1)+"\t"); 
                for(s=0; s<4; s++){ 
                    bw_s.write(Double.toString(states_results[e][numberOfTrials][s])); 
                    bw_s.write("\t"); 
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                } 
                bw_s.write("\n"); 
 
                for(p=0; p<2; p++){ 
                    bw_p.write(Double.toString(payoff_results[e][numberOfTrials][p]/numberOfTrials)); 
                    bw_p.write("\t"); 
                } 
                bw_p.write(Double.toString(overall_payoff[e])); 
                bw_p.write("\t"); 
                bw_p.write(Double.toString(overall_payoff_neutral[e])); 
                bw_p.write("\n"); 
            } 
 
            bw_s.close(); 
            bw_p.close(); 
        } catch (IOException ex) { 
            ex.printStackTrace(); 
        } 
    } 
    /* 
        This is the main function of the Program. The variable option defines which theory - function is going 
to be 
        tested each time . 
     */ 
    public static void main(String[] args) { 
        // The option variable 
        int option =1; 
        switch(option) { 
            case 1: 
                System.out.println("Chosen method : Round Depletion"); 
                Round_Depletetion(1000); 
                break; 
            case 2: 
                System.out.println("Chosen method : Muscle Recovery"); 
                Muscle_Recovery(15,30); 
                break; 
            case 3: 
                System.out.println("Chosen method : Task Switching "); 
                TaskSwitching(true,125); 
                break; 
            case 4: 
                System.out.println("Chosen method : External Monetary Reward "); 
                External_Monetary_Reward(300); 
                break; 
            case 5: 
                System.out.println("Chosen method : External Motivator"); 
                External_Motivator(20); 
                break; 
            case 6: 
                System.out.println("Chosen method : Clear Standards "); 
                Clear_Standards(25,100 , 0 ,0.1); 
                break; 
            default: 
                // Wrong Option - Give an option from 1-6 
                System.out.println("Please Set the option to be from 1-6");        } 
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    } 
 
    /** 
     *  This is the basic method for the Self-control model 
     *  The caller provides only the number of episodes (rounds) that the IPD game lasts 
     **/ 
    public static void  Round_Depletetion(int episodes){ 
        int initial_state, current_state, next_state; // Takes values 0-3 
        int i; 
        int episodes_before = episodes; 
        int episodes_after = 000; 
        int trials = 15; 
        states_results = new double[episodes_before + episodes_after][trials+1][4]; 
        payoff_results = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff = new double[episodes_before + episodes_after]; 
 
        payoff_results_neutral = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff_neutral = new double[episodes_before + episodes_after]; 
 
        T=5; R=4; P=-2; S=-3; 
 
        for(int t=0; t<trials; t++) { 
            lower = new Player(); 
            lower.setDiscount(0.9); 
            lower.setLearning_rate(0.1); 
            lower.setEpsilon(0.1); 
            lower.setPayoff_matrix(4, 7.5, -4.5, -2); 
 
            higher = new Player(); 
            higher.setDiscount(0.1); 
            higher.setLearning_rate(0.1); 
            higher.setEpsilon(0.1); 
            higher.setPayoff_matrix(4, -4.5, 7.5, -2); 
 
            initial_state = (int) (Math.random() * 4); 
            current_state = initial_state; 
            states_results[0][t][current_state]++; 
 
            for (i = 1; i < episodes_before; i++) { 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
                current_state = next_state; 
 
                update_states_results(i, current_state, t); 
                update_payoff_results(i, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
 
            // Set epsilon = 0 and initial payoff matrix 
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            lower.setEpsilon(0); 
            higher.setEpsilon(0); 
            R=4; T=5; S=-3; P=-2; 
            lower.setPayoff_matrix(4, 5, -3, -2); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
 
            for (i = 1; i <= episodes_after; i++) { 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
                current_state = next_state; 
 
                update_states_results(episodes_before+i-1, current_state, t); 
                update_payoff_results(episodes_before+i-1, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
        } 
 
        statistics(trials, (episodes_before+episodes_after)); 
        printToFile_statistics(trials, (episodes_before+episodes_after)); 
 
    } 
 
    /** 
     *  The function is used to implement the Muscle recovery concept 
     *  recover var. defines how many rounds the agents are staying in the recovery state 
     *  maxDays var. defines the maximum continuous Rounds that the agent interact on the normal payoff 
matrix before entering recovery 
     */ 
    public static void Muscle_Recovery(int recover , int maxDays){ 
        if(recover > maxDays) 
        { 
            System.out.println("Wrong values !\n Recover days cannot exceed maxDays (max continuous Days 
working out the Self control muscle)"); 
            return; 
        } 
        int initial_state, current_state, next_state; // Takes values 0-3 
        int i; 
        int episodes_before = 1000, episodes_after = 000; 
        int trials = 15; 
        states_results = new double[episodes_before + episodes_after][trials+1][4]; 
        payoff_results = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff = new double[episodes_before + episodes_after]; 
 
        payoff_results_neutral = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff_neutral = new double[episodes_before + episodes_after]; 
 
        T=5; R=4; P=-2; S=-3; 
 
        for(int t=0; t<trials; t++) { 
            lower = new Player(); 
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            lower.setDiscount(0.9); 
            lower.setLearning_rate(0.1); 
            lower.setEpsilon(0.1); 
            lower.setPayoff_matrix(4, 5, -3, -2); 
 
            higher = new Player(); 
            higher.setDiscount(0.1); 
            higher.setLearning_rate(0.1); 
            higher.setEpsilon(0.1); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
 
            initial_state = (int) (Math.random() * 4); 
            current_state = initial_state; 
            states_results[0][t][current_state]++; 
 
            int counter =0; 
            int rest_counter=0; 
            int restFlag=0; 
            for (i = 1; i < episodes_before; i++) { 
                counter++; 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                current_state = next_state; 
 
                update_states_results(i, current_state, t); 
                update_payoff_results(i, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
 
                if(counter>=maxDays){ 
                    // Enter Recovery State 
                    lower.setPayoff_matrix(4, 4.5, -2.5, -2); 
                    higher.setPayoff_matrix(4, -2.5,4.5, -2); 
 
                    rest_counter=recover; 
                    counter=0; 
                    restFlag=1; 
                    continue; 
                } 
                // Rest - counter defines the number of rounds left before entering the next recovery state 
                else if(rest_counter>0 && restFlag==1){ 
                    rest_counter--; 
                } 
 
                else if(rest_counter==0 && restFlag==1) { 
                    // Back to the Initial Matrix  - Recovery 
                    restFlag=0; 
                    lower.setPayoff_matrix(4, 5, -3, -2); 
                    higher.setPayoff_matrix(4, -3, 5, -2); 
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                    counter=0; 
                } 
 
            } 
 
            // Set epsilon = 0 and initial payoff matrix 
            lower.setEpsilon(0); 
            higher.setEpsilon(0); 
            R=4; T=5; S=-3; P=-2; 
            lower.setPayoff_matrix(4, 5, -3, -2); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
 
            for (i = 1; i <= episodes_after; i++) { 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                current_state = next_state; 
 
                update_states_results(episodes_before+i-1, current_state, t); 
                update_payoff_results(episodes_before+i-1, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
 
                if(counter>=maxDays){ 
                    // Enter Recovery State 
                    lower.setPayoff_matrix(4, 4.5, -2.5, -2); 
                    higher.setPayoff_matrix(4, -2.5,4.5, -2); 
 
                    rest_counter=recover; 
                    counter=0; 
                    restFlag=1; 
                    continue; 
                } 
                // Rest - counter defines the number of rounds left before entering the next recovery state 
                else if(rest_counter>0 && restFlag==1){ 
                    rest_counter--; 
                } 
 
                else if(rest_counter==0 && restFlag==1) { 
                    // Back to the Initial Matrix  - Recovery 
                    restFlag=0; 
                    lower.setPayoff_matrix(4, 5, -3, -2); 
                    higher.setPayoff_matrix(4, -3, 5, -2); 
                    counter=0; 
                } 
            } 
        } 
 
        statistics(trials, (episodes_before+episodes_after)); 
        printToFile_statistics(trials, (episodes_before+episodes_after)); 
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    } 
 
    /** 
     *  Task switching to Similar Conflict Task - (when true) or Different Conflict Task (when false) 
     *  rounds variable - indicates how often swapping to new task happens 
     */ 
    public static void TaskSwitching(boolean Similar_Conflict ,int rounds){ 
 
        int initial_state, current_state, next_state; // Takes values 0-3 
        int i; 
        int episodes_before = 1000, episodes_after = 000; 
        int trials = 15; 
        states_results = new double[episodes_before + episodes_after][trials+1][4]; 
        payoff_results = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff = new double[episodes_before + episodes_after]; 
 
        payoff_results_neutral = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff_neutral = new double[episodes_before + episodes_after]; 
 
        T=5; R=4; P=-2; S=-3; 
 
        for(int t=0; t<trials; t++) { 
            lower = new Player(); 
            lower.setDiscount(0.9); 
            lower.setLearning_rate(0.1); 
            lower.setEpsilon(0.1); 
            lower.setPayoff_matrix(4, 5, -3, -2); 
 
            higher = new Player(); 
            higher.setDiscount(0.1); 
            higher.setLearning_rate(0.1); 
            higher.setEpsilon(0.1); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
 
            initial_state = (int) (Math.random() * 4); 
            current_state = initial_state; 
            states_results[0][t][current_state]++; 
 
            for (i = 1; i < episodes_before; i++) { 
 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                // Switch to a different task 
                if ( i%rounds==0 ) { 
                    double RealConfilct = T-S; 
                    Random r = new Random(); 
                    if (Similar_Conflict) { 
                        // Add Random values from  1 to 3 
                        double randomValue = r.nextInt(3)+1; 
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                        // Similar Conflict - Add a Constant value to each payoff reward. 
                        T=T+randomValue; 
                        R =  R+randomValue; 
                        P =  P+randomValue; 
                        S =  S+randomValue; 
                    } 
                    else { 
                        while (true) { 
 
                            // Random values from 0 to 7 
                            T =  r.nextInt(8); 
                            // Random value from 0 to -7 
                            S = -r.nextInt(8); 
 
                            // Make sure the rules of IPD game are not violated 
                            if (RealConfilct != T - S && 
                                    T > R && R > P && P > S && 2 * R > T + S) { 
                                // Good values 
                                break; 
                            } 
                        } 
                    } 
                    higher.setPayoff_matrix(R, S, T, P); 
                    lower.setPayoff_matrix(R, T, S, P); 
 
                    System.out.printf("R:%.4f T:%.4f S:%.4f P:%.4f e:%d t:%d\n", higher.getPayoff_matrix(0), 
                            higher.getPayoff_matrix(2), higher.getPayoff_matrix(1), 
                            higher.getPayoff_matrix(3), i, t); 
                } 
 
                current_state = next_state; 
                update_states_results(i, current_state, t); 
                update_payoff_results(i, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
 
            // Set epsilon = 0 and initial payoff matrix 
            lower.setEpsilon(0); 
            higher.setEpsilon(0); 
            R=4; T=5; S=-3; P=-2; 
            lower.setPayoff_matrix(4, 5, -3, -2); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
 
 
            for (i = 1; i <= episodes_after; i++) { 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
                // Switch to a different task 
                if ( i%rounds==0 ) { 



 

 

A-11 

 

                    double RealConfilct = T-S; 
                    Random r = new Random(); 
                    if (Similar_Conflict) { 
                        // Add Random values from  1 to 3 
                        double randomValue = r.nextInt(3)+1; 
 
                        // Similar Conflict - Add a Constant value to each payoff reward. 
                        T=T+randomValue; 
                        R =  R+randomValue; 
                        P =  P+randomValue; 
                        S =  S+randomValue; 
                    } 
                    else { 
                        while (true) { 
 
                            // Random values from 0 to 7 
                            T =  r.nextInt(8); 
                            // Random value from 0 to -7 
                            S = -r.nextInt(8); 
 
                            // Make sure the rules of IPD game are not violated 
                            if (RealConfilct != T - S && 
                                    T > R && R > P && P > S && 2 * R > T + S) { 
                                // Good values 
                                break; 
                            } 
                        } 
                    } 
                    higher.setPayoff_matrix(R, S, T, P); 
                    lower.setPayoff_matrix(R, T, S, P); 
 
                    System.out.printf("R:%.4f T:%.4f S:%.4f P:%.4f e:%d t:%d\n", higher.getPayoff_matrix(0), 
                            higher.getPayoff_matrix(2), higher.getPayoff_matrix(1), 
                            higher.getPayoff_matrix(3), i, t); 
                } 
 
                current_state = next_state; 
                update_states_results(episodes_before+i-1, current_state, t); 
                update_payoff_results(episodes_before+i-1, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
        } 
        statistics(trials, (episodes_before+episodes_after)); 
        printToFile_statistics(trials, (episodes_before+episodes_after)); 
    } 
 
 
 
 
    /** 
     *  The function is used to implement an external reward that appears during the IPD game. 
     *  When the system reaches round discount_interval , the higher brain agent discount rate is reduce by 
0.3 
     */ 
    public static void External_Monetary_Reward(int discount_interval){ 
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        int initial_state, current_state, next_state; // Takes values 0-3 
        int i; 
        int episodes_before = 1000, episodes_after = 000; 
        int trials = 15; 
        states_results = new double[episodes_before + episodes_after][trials+1][4]; 
        payoff_results = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff = new double[episodes_before + episodes_after]; 
 
        payoff_results_neutral = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff_neutral = new double[episodes_before + episodes_after]; 
 
        T=5; R=4; P=-2; S=-3; 
 
        double discountRate= 0.3 ;  // Discount decrease factor 
 
        for(int t=0; t<trials; t++) { 
            lower = new Player(); 
            lower.setDiscount(0.9); 
            lower.setLearning_rate(0.1); 
            lower.setEpsilon(0.1); 
            lower.setPayoff_matrix(4, 5, -3, -2); 
 
            higher = new Player(); 
            higher.setDiscount(0.1); 
            higher.setLearning_rate(0.1); 
            higher.setEpsilon(0.1); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
 
            initial_state = (int) (Math.random() * 4); 
            current_state = initial_state; 
            states_results[0][t][current_state]++; 
 
            for (i = 1; i < episodes_before; i++) { 
 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                if ( i== discount_interval ){ 
                    lower.setDiscount(lower.getDiscount()-discountRate); 
 
                } 
 
                current_state = next_state; 
 
                update_states_results(i, current_state, t); 
                update_payoff_results(i, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
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            // Set epsilon = 0 and initial payoff matrix 
            lower.setEpsilon(0); 
            higher.setEpsilon(0); 
            // Set lower brain discount rate to the initial one 
            lower.setDiscount(0.9); 
            R=4; T=5; S=-3; P=-2; 
            lower.setPayoff_matrix(4, 5, -3, -2); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
 
            for (i = 1; i <= episodes_after; i++) { 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                if ( i== discount_interval ){ 
                    lower.setDiscount(lower.getDiscount()-discountRate); 
 
                } 
 
                current_state = next_state; 
 
                update_states_results(episodes_before+i-1, current_state, t); 
                update_payoff_results(episodes_before+i-1, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
        } 
 
        statistics(trials, (episodes_before+episodes_after)); 
        printToFile_statistics(trials, (episodes_before+episodes_after)); 
 
    } 
 
    /** 
     *  The function is used to implement an external motivator ( authority) that forces the agents to 
cooperate. 
     *  When the system reaches a round that is divided exactly by the forced_rounds_interval the agents are 
forced to choose their next actions 
     *  to be cooperation . 
     */ 
    public static void External_Motivator(int forced_rounds_interval){ 
 
        int initial_state, current_state, next_state; // Takes values 0-3 
        int i; 
        int episodes_before = 1000, episodes_after = 000; 
        int trials = 15; 
        states_results = new double[episodes_before + episodes_after][trials+1][4]; 
        payoff_results = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff = new double[episodes_before + episodes_after]; 
 
        payoff_results_neutral = new double[episodes_before + episodes_after][trials+1][2]; 
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        overall_payoff_neutral = new double[episodes_before + episodes_after]; 
 
        T=5; R=4; P=-2; S=-3; 
 
 
 
        for(int t=0; t<trials; t++) { 
            lower = new Player(); 
            lower.setDiscount(0.9); 
            lower.setLearning_rate(0.1); 
            lower.setEpsilon(0.1); 
            lower.setPayoff_matrix(4, 5, -3, -2); 
 
            higher = new Player(); 
            higher.setDiscount(0.1); 
            higher.setLearning_rate(0.1); 
            higher.setEpsilon(0.1); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
 
            initial_state = (int) (Math.random() * 4); 
            current_state = initial_state; 
            states_results[0][t][current_state]++; 
 
            for (i = 1; i < episodes_before; i++) { 
 
                // External Authority Forcing the agents to Both Cooperate 
                if ( i% forced_rounds_interval ==0){ 
                    lower.setCurrent_action(0); 
                    higher.setCurrent_action(0); 
                } 
                else{ 
                    lower.setCurrent_action(lower.choose_action(current_state)); 
                    higher.setCurrent_action(higher.choose_action(current_state)); 
                } 
 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                current_state = next_state; 
 
                update_states_results(i, current_state, t); 
                update_payoff_results(i, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
 
            // Set epsilon = 0 and initial payoff matrix 
            lower.setEpsilon(0); 
            higher.setEpsilon(0); 
            R=4; T=5; S=-3; P=-2; 
            lower.setPayoff_matrix(4, 5, -3, -2); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
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            for (i = 1; i <= episodes_after; i++) { 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                current_state = next_state; 
 
                update_states_results(episodes_before+i-1, current_state, t); 
                update_payoff_results(episodes_before+i-1, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
        } 
 
        statistics(trials, (episodes_before+episodes_after)); 
        printToFile_statistics(trials, (episodes_before+episodes_after)); 
 
    } 
 
    /** 
     *  This function is used to model Self-control as a virtue. 
     *  The agents interact in the IPD game while experiencing changes in R and T values. 
     *  Those changes collapse each time payoff_interval rounds pass and the matrix is set to default after 
     *  standards_inverval number of rounds. 
     */ 
    public static void Clear_Standards(int payoff_interval,int standards_interval , double ratio_R ,double 
ratio_T){ 
 
        int initial_state, current_state, next_state; // Takes values 0-3 
        int i; 
        int episodes_before = 1000, episodes_after = 000; 
        int trials = 15; 
        states_results = new double[episodes_before + episodes_after][trials+1][4]; 
        payoff_results = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff = new double[episodes_before + episodes_after]; 
 
        payoff_results_neutral = new double[episodes_before + episodes_after][trials+1][2]; 
        overall_payoff_neutral = new double[episodes_before + episodes_after]; 
 
        T=5; R=4; P=-2; S=-3; 
 
        int flag=0; 
 
        for(int t=0; t<trials; t++) { 
            lower = new Player(); 
            lower.setDiscount(0.9); 
            lower.setLearning_rate(0.1); 
            lower.setEpsilon(0.1); 
            lower.setPayoff_matrix(4, 5, -3, -2); 
 
            higher = new Player(); 
            higher.setDiscount(0.1); 
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            higher.setLearning_rate(0.1); 
            higher.setEpsilon(0.1); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
 
            initial_state = (int) (Math.random() * 4); 
            current_state = initial_state; 
            states_results[0][t][current_state]++; 
 
            for (i = 1; i < episodes_before; i++) { 
 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                if ( flag==0 && i%payoff_interval==0 && 
                        ((T+ratio_T) > (R+ratio_R+0.01)) && 
                        ((R+ratio_R) > (P+0.01)) && 
                        ((P) > (S+0.01)) && 
                        (2*(R+ratio_R) > ((T+ratio_T) + (S))) 
                        ){ 
                    R = R + ratio_R; 
                    T = T + ratio_T; 
 
                    higher.setPayoff_matrix(R, S, T, P); 
                    lower.setPayoff_matrix(R, T, S, P); 
 
                    System.out.printf("R:%.4f T:%.4f S:%.4f P:%.4f e:%d t:%d\n", higher.getPayoff_matrix(0), 
                            higher.getPayoff_matrix(2), higher.getPayoff_matrix(1), 
                            higher.getPayoff_matrix(3), i, t); 
                } 
                // Set Matrix back to standards value 
                if (i % standards_interval == 0){ 
                    R = 4; 
                    T = 5; 
                    S = -3; 
                    P = -2; 
                    lower.setPayoff_matrix(4, 5, -3, -2); 
                    higher.setPayoff_matrix(4, -3, 5, -2); 
                    System.out.printf("R:%.4f T:%.4f S:%.4f P:%.4f e:%d t:%d\n", higher.getPayoff_matrix(0), 
                            higher.getPayoff_matrix(2), higher.getPayoff_matrix(1), 
                            higher.getPayoff_matrix(3), i, t); 
                } 
 
                current_state = next_state; 
 
                update_states_results(i, current_state, t); 
                update_payoff_results(i, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
 



 

 

A-17 

 

            // Set epsilon = 0 and initial payoff matrix 
            lower.setEpsilon(0); 
            higher.setEpsilon(0); 
            R=4; T=5; S=-3; P=-2; 
            lower.setPayoff_matrix(4, 5, -3, -2); 
            higher.setPayoff_matrix(4, -3, 5, -2); 
 
            for (i = 1; i <= episodes_after; i++) { 
                lower.setCurrent_action(lower.choose_action(current_state)); 
                higher.setCurrent_action(higher.choose_action(current_state)); 
 
                next_state = get_state(lower.getCurrent_action(), higher.getCurrent_action()); 
 
                lower.update_Q(current_state, next_state); 
                higher.update_Q(current_state, next_state); 
 
                if ( flag==0 && i%payoff_interval==0 && 
                        ((T+ratio_T) > (R+ratio_R)) && 
                        ((R+ratio_R) > (P)) && 
                        ((P) > (S)) && 
                        (2*(R+ratio_R) > ((T+ratio_T) + (S))) 
                        ){ 
                    R = R + ratio_R; 
                    T = T + ratio_T; 
                    higher.setPayoff_matrix(R, S, T, P); 
                    lower.setPayoff_matrix(R, T, S, P); 
                    System.out.printf("R:%.4f T:%.4f S:%.4f P:%.4f e:%d t:%d\n", higher.getPayoff_matrix(0), 
                            higher.getPayoff_matrix(2), higher.getPayoff_matrix(1), 
                            higher.getPayoff_matrix(3), i, t); 
                } 
                // Set Matrix back to standards value 
                if (i % standards_interval == 0){ 
                    R = 4; 
                    T = 5; 
                    S = -3; 
                    P = -2; 
                    lower.setPayoff_matrix(4, 5, -3, -2); 
                    higher.setPayoff_matrix(4, -3, 5, -2); 
                    System.out.printf("R:%.4f T:%.4f S:%.4f P:%.4f e:%d t:%d\n", higher.getPayoff_matrix(0), 
                            higher.getPayoff_matrix(2), higher.getPayoff_matrix(1), 
                            higher.getPayoff_matrix(3), i, t); 
                } 
 
                current_state = next_state; 
 
                update_states_results(episodes_before+i-1, current_state, t); 
                update_payoff_results(episodes_before+i-1, lower.getPayoff_matrix(current_state), 
higher.getPayoff_matrix(current_state), t); 
            } 
        } 
        statistics(trials, (episodes_before+episodes_after)); 
        printToFile_statistics(trials, (episodes_before+episodes_after)); 
    } 
 
}
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Appendix B 

 

Class Player.java 

 
/** 
 * Created by jeannettechahwan on 20/01/15. 
 */ 
 
// Aristedou Player 
public class Player { 
    int counter=0; 
    private double learning_rate; 
    private double epsilon; 
    private double discount; 
    private double[][] Q_table; 
    private double[] payoff_matrix; 
    private int current_action; 
 
    public Player(){ 
        this.Q_table = new double[4][2]; 
        this.payoff_matrix = new double[4]; 
    } 
 
    public void setDiscount(double value){ 
        this.discount = value; 
    } 
 
    public double getDiscount(){ 
        return this.discount; 
    } 
 
    public void setEpsilon(double value){ 
        this.epsilon = value; 
    } 
    public double getEpsilon(){ 
        return this.epsilon; 
    } 
 
    public void setLearning_rate(double value){ 
        this.learning_rate = value; 
    } 
 
    public double getLearning_rate(){ 
        return this.learning_rate; 
    } 
 
    public void setQ_table(int row, int column, double value){ 
        this.Q_table[row][column] = value; 
    } 
 
    public double getQ_table(int row, int column){ 
        return this.Q_table[row][column]; 
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    } 
 
    public void setPayoff_matrix(double value1, double value2, double value3, double value4){ 
        payoff_matrix[0] = value1; 
        payoff_matrix[1] = value2; 
        payoff_matrix[2] = value3; 
        payoff_matrix[3] = value4; 
    } 
 
    public double getPayoff_matrix(int row){ 
        return this.payoff_matrix[row]; 
    } 
    public void setCurrent_action(int action){ 
        this.current_action = action; 
    } 
 
    public int getCurrent_action(){ 
        return this.current_action ; 
    } 
 
    public int choose_action(int state){ 
        int action; 
        double random = Math.random(); 
 
        if(random<epsilon){ //explore 
            action = (int) (Math.random() * 2);    // values: 0(cooperate) or 1(defect) 
        } 
        else {    //exploit 
            // find best known action 
            if (this.getQ_table(state, 0) > this.getQ_table(state, 1)) 
                action = 0; 
            else if(this.getQ_table(state, 0) < this.getQ_table(state, 1)) 
                action = 1; 
            else 
                action = (int) (Math.random() * 2);    // values: 0(cooperate) or 1(defect) 
        } 
        return  action; 
    } 
 
    public void update_Q(int current_state, int next_state){ 
        double max, Q; 
 
        // find maximum value from Q table 
        if(this.getQ_table(next_state,0) >= this.getQ_table(next_state,1)) 
            max = this.getQ_table(next_state, 0); 
        else 
            max = this.getQ_table(next_state, 1); 
 
        // Calculate Q and set value in player's Q table 
        Q = ((1 - this.learning_rate) * this.getQ_table(current_state, this.getCurrent_action())) 
                + (this.learning_rate * (this.getPayoff_matrix(next_state) + (this.getDiscount() * max))); 
         
        this.setQ_table(current_state, this.getCurrent_action(), Q); 
    } 
} 


