

Individual Diploma Thesis

IMPLEMENTATION AND EXPERIMENTAL EVALUATION OF

THE HASHGRAPH BFT RANDOMIZED ALGORITHM

Georgios Papaioannou

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2021

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Implementation and Experimental Evaluation of the

Hashgraph BFT Randomized Algorithm

Georgios Papaioannou

Supervisor

Chryssis Georgiou

The Individual Diploma Thesis was submitted for partial fulfillment of the

requirements of obtaining the degree of Computer Science of the Department of

Computer Science of the University of Cyprus

May 2021

i

Abstract

Ledgers are distributed databases and blockchain is a specific type of distributed

database which stores data in blocks that are then chained together. The above databases

are built in a decentralized way so that no single person or group has control. This makes

it more robust on cyber-attacks.

Byzantine fault tolerance is the property of a distributed system that is able to resist

faulty behavior of nodes and continue operating. Ledgers and blockchains must have the

BFT property because they are distributed and nodes in the system may have arbitrary

behavior. To implement this property the system must be based on a Byzantine Fault

Tolerance algorithm.

Implementing BFT algorithms has been under research for many years in an attempt to

implement new efficient solutions or improve the existing suggested algorithms.

Randomized algorithms has been proposed to be simpler and more efficient than

deterministic algorithms. Hashgraph is one of them.

In this thesis we implemented the Hashgraph BFT algorithm in the Go programming

language using the ZeroMQ framework for the communication between the nodes. We

then conducted an experimental evaluation of the implementation's performance.

ii

Contents
Chapter 1 Introduction……………………………………………………….....1

 1.1 Motivation 1

 1.2 Objective 2

 1.3 Methodology 2

 1.4 Document Organization 3

Chapter 2 Background………………………………………………………......4

 2.1 Byzantine Fault Tolerance 4

2.2 System Model 5

 2.2.1 Byzantine replicas 5

 2.2.2 Overview 5

2.3 Common Applications of BFT 6

2.4 The ZeroMQ Communication Library 6

2.5 The Go Programming Language 6

 2.5.1 Overview 6

 2.5.2 Concurrency 7

 2.6 BFT Algorithms 7

Chapter 3 HashGraph…………………………………………………….......9

 3.1 Overview 9

 3.2 The Gossip Protocol 9

 3.3 See and Strongly See 10

 3.4 Protocols 11

 3.4.1 Divide Rounds 11

 3.4.2 Decide Fame. 12

 3.4.3 Find Order 12

Chapter 4 Implementation Basics……………………….……….…………...13

4.1 Execution 13

4.2 Encryption and Hashes 14

4.3 Structs and Variables 14

iii

 4.3.1 Gossip Message 14

 4.3.2 HashGraph Node 15

 4.3.3 Helpful Structs and Variables 15

4.4 Channels and Messages 16

 4.4.1 Nodes Channels & Messages 16

 4.4.2 Client Channels & Messages 17

4.5 Sign and verification 17

4.6 Sorting Events 18

4.7 Algorithm Initialization 18

4.8 Comparing EventMessages 18

4.9 Client 18

Chapter 5 Go Routines…………….……………..……………………………20

5.1 Send Gossip 20

5.2 Manage Client Requests 21

5.3 Manage Incoming Gossip 22

5.3.1 Check Gossip 23

5.3.2 Executing the Algorithms 24

5.4 Protocols 25

5.4.1 Divide Rounds 25

5.4.2 Decide Fame 26

5.4.3 Find Order 27

Chapter 6 Implementation Details and Decisions…...………………………30

6.1 Message Size 30

6.2 Timestamps 31

6.3 OrphanEvents 31

6.4 Comparing Transactions 31

6.5 Sorted Events list 32

6.6 Inserted Bounds 32

6.7 HashGraph Size 33

6.8 Messages Exchanged 33

6.9 Empty Transactions 33

iv

Chapter 7 Evaluation…...……………………………………………...………34

7.1 Scenarios 34

7.2 Evaluation Summary 35

7.3 Comparison with other Works 41

7.4 Conclusions 42

Chapter 8 Conclusions….……………………………………………...………43

8.1 Summary 43

8.2 Notable Difficulties 43

 8.3 Suggested Improvements 44

Bibliography………………………………………………………………………..46

Appendix A……………………….……..…………………………….…………....Α-1

Appendix B……………………….……..….………………………….…………...B-1

Appendix C……………………….……..….………………………….…………...C-1

1

Chapter 1

Introduction

1.1 Motivation 1

1.2 Objective 2

1.3 Methodology 2

1.4 Document Organization 3

1.1 Motivation

Nowadays, the wide use of online systems makes malicious attacks more attractive

and the consequences of a successful attack have become more serious. Therefore,

implementing a service that successfully defends against such attacks is crucial. Solving

such a problem requires time and resources and this subject has been under research for

many years.

Online systems provide services to clients. One way to implement a service is using

a centralized server but this is prone to cyber attacks as it is a single point of failure. For

that reason, providing the service in a distributed way may solve the problem. However,

some of the servers may have arbitrary behavior. Therefore, we use the approach of state

machine replication [6], meaning that we have multiple servers providing the same

service where they communicate with each other so the non-faulty eventually has

consistent state.

BFT [7] is a property of a system where all the non-faulty nodes have eventually

consistent state despite the existence of malicious nodes. Therefore, distributed systems

must have the BFT property. A system has that property when each server executes a

BFT algorithm.

Implementing a robust BFT algorithm may have negative results in terms of latency,

CPU usage and throughput. Therefore, there are many attempts to design fault-tolereant

algorithms with good performance. An idea that may increase the performance of BFT

2

algorithms is the use of randomization where is expected to create simpler algorithms

with better performance than deterministic ones.

Therefore, we want to implement a randomized algorithm and experimentally

evaluate its performance. We also seek to compare our experimental results with similar

BFT algorithms and draw useful conclusions.

1.2 Objective

The objective of this thesis is the implementation and experimental evaluation of

Hashgraph [5] in the Go programming language [13] using the ZeroMQ framework [14]

for the communication between the nodes. Hashgraph is a randomized BFT algorithm,

which we have implemented, executed in different scenarios and evaluated its

performance.

1.3 Methodology

We separated the thesis in different stages. In the first stage, we studied research papers

on distributed systems and Byzantine Fault Tolerance to get more familiar with those

terms. Then we studied some several randomized BFT algorithms and chose one of them

to implement. The second was divided into two parts, (a) the implementation of the

Hashgraph algorithm and (b) its experimental evaluation.

Research on Distributed Systems and BFT

To become more familiar and acquire knowledge relative to distributed systems we

attended the Computer Science course CS432-Distributed Algorithms. We also used

online resources to deepen our understanding of notions like state machine replication

[6], Byzantine faults [7] and BFT algorithms [8]. As a first step, we studied the simpler

form of the problem, namely the “Two General’s Problem [7].

Research on BFT algorithms

First, we studied the PBFT algorithm [2] and an implementation of a variant of PBFT

[1], which is one of the first solutions for partially asynchronous networks and is

deterministic.

Then we studied in depth variants of randomized BFT algorithms. In particular we

studied the protocols presented in [10,11,5,12,4].After studying the above algorithms,

we concluded that the HashGraph algorithm [5] is a promising suggestion and that we

would proceed with the implementation of this algorithm.

3

Development

We decided to implement the algorithm in the Go programming language [13] using the

ZeroMQ framework [14] for the communication between the replicas and with the

clients. We used the official Go website [13] to download and install Go and learn more

about Go libraries. For practicing Go we used the Go official website, tutorials on

YouTube and made small exercises on variables and constants, arrays and slices, maps,

structs, conditional statements, loops, pointers, functions, goroutines and channels. We

studied the basics of ZeroMQ using its official websites [14] and the provided Guide

[15], where we implemented some of the simple examples of client-server

communication.

The implementation of [1] was very helpful. Also very helpful was the implementation

in [3]. Both implementations in [1] and [3] are in the Go programming language and use

the ZeroMQ framework.

We developed the algorithm on a Linux operating system using the VS Code source

code editor. The source code of our implementation both the server-side and the client-

side, can be found on GitHub [16].

After implementing the algorithm, we performed testing locally to check its correctness.

We proceeded with the experimental evaluation where we used a cluster of 9 machines.

At the end we compared our results with other implementations of randomized BFT

algorithms.

1.4 Document Organization

In Chapter 2, we make a background overview on Byzantine Fault Tolerance, the system

model and the implementation language. In Chapter 3, we describe the Hashgraph

algorithm in simple words and its core principles. In Chapter 4, we present the structs

used to implement the algorithm, how we used them and some important functionalities.

Then in Chapter 5, a detailed explanation of how we implemented the Hashgraph

algorithm is given by describing its core protocols. Next, in Chapter 6, we explain the

reasons behind some implementation decisions and analyze some algorithm

characteristics. Chapter 7 describes the scenarios we developed to validate the

algorithm’s correctness, demonstrating the algorithms performance and compares it with

other works. Chapter 8, contains our conclusions, notable difficulties and ideas that may

improve algorithm’s performance.

4

Chapter 2

Background

2.1 Byzantine Fault Tolerance 4

2.2 System Model 5

2.2.1 Byzantine replicas 5

 2.2.2 Overview 5

2.3 Common Applications of BFT 6

2.4 The ZeroMQ Communication Library 6

2.5 The Go Programming Language 6

2.5.1 Overview 6

2.5.2 Concurrency 7

2.6 BFT Algorithms 7

2.1 Byzantine Fault Tolerance

BFT [6,7] is under research for many years and efficient algorithms with high

throughput and low latency are in demand especially now with the popularity of the

cryptocurrencies.

Online systems are expected to always operate, be reliable and have excellent

performance. Systems that use BFT algorithms might be a cryptocurrency, a service on

a spacecraft or a Boeing 777, therefore the implementation of an excellent solution is

critical.

BFT is a systems property which states that the servers in a distributed system have

eventually consistent state despite the existence of nodes with arbitrary behavior.

There are different scenarios where we use BFT algorithms and this is depending on the

system model. When there is a public-blockchain we need a more robust and probably

weaker algorithm in matter of performance because the number of participants is not

known and anyone can join [8]. Compared to private networks we need different and

possibly simpler algorithms because we know the identities of all the nodes who

participate.

5

In this thesis we focused on a private network where the communication between the

nodes is asynchronous.

BFT algorithms must be built on the Atomic broadcast which must satisfy the following

properties [5]:

Agreement: If any node outputs a transaction, then every node outputs that transaction.

Total Order: For all i > 0, if T is the i-th output of a non-faulty node and T’ is the i-th

output of another non-faulty node, then T = T’.

Liveness: If a transaction is input to a non-faulty node, then it is eventually output by

every non-faulty node.

2.2 System Model

2.2.1 Byzantine replicas

Some of the replicas in the system may have Byzantine (faulty) behavior; these faults are

considered to be the most general and most difficult category of failures [7]. The

Byzantine replicas may delay sending messages, omit sending messages, send messages

with arbitrary content or communicate with some nodes and not others. The malicious

nodes may collude and we assume that they are coordinated by a single adversary.

However, we assume that they cannot produce a valid signature of a non-faulty node or

find two messages with the same digest (hash value).

2.2.2 Overview

We consider a fully asynchronous distributed system where nodes are connected by a

network. The system makes no timing assumptions and there is no upper bound on the

communication delay. The network may fail to deliver messages, delay them, duplicate

them or deliver them out of order. Algorithms are designed for a state machine

replication system [6] that tolerates Byzantine faults [7] where at most out of n

replicas may have arbitrary (Byzantine) behavior. Each node receives a transaction from

a client or another node and by communicating with each other has to determine when to

write each transaction in its local storage unit.

6

2.3 Common Applications of BFT

By observing common applications of BFT algorithms we can clearly see and

understand why an implementation of a correct and efficient protocol is so important and

has been under research for the last 20 years.

Especially nowadays, cryptocurrencies are a main topic and many people invest their

money in such currencies. An example is Bitcoin [17], whose network works in parallel

to generate a blockchain with proof-of-work [18] allowing the system to overcome

Byzantine failures and reach a coherent global view of the system's state.

Another application is on aircraft systems and spacecrafts which are real time systems

and the BFT solutions must have the least latency, close to microseconds.

We can clearly see that if the faulty nodes manage a successful attack or the system does

not perform efficiently, the results might be catastrophic.

2.4 The ZeroMQ Communication Library

ZeroMQ (also spelled ØMQ, 0MQ or ZMQ) [14] is a high-performance asynchronous

messaging library, aimed at use in distributed or concurrent applications. It provides a

message queue, but unlike message-oriented middleware, a ZeroMQ system can run

without a dedicated message broker. You can connect sockets N-to-N with patterns like

fan-out, pub-sub, task distribution, and request-reply. Its goals is zero administration,

zero cost, and zero waste. It is developed by a large community of contributors and is

available in more than 28 programming languages.

We used the implemented communication from the SS-BFT implementation [1] and

modified some small parts for our project. Executing the algorithm each node has 2

sockets for each client and other node in the system, one is responsible to receive

messages and the other one to transmit our messages.

2.5 The Go Programming Language

2.5.1 Overview

Go [13] is a statically typed, compiled programming language designed at Google by

Robert Griesemer, Rob Pike, and Ken Thompson. Go is syntactically similar to C, but

with memory safety, garbage collection, structural typing and CSP-style concurrency. It

was designed at Google in 2007 to improve programming productivity in an era of

multicore, networked machines and large codebases. The designers wanted to address

criticism of other languages in use at Google but keep their useful characteristics such as

7

static typing and run-time efficiency (like C), readability and usability (like Python or

JavaScript) and high-performance networking and multiprocessing.

2.5.2 Concurrency

It is said that one of the most exciting aspects of learning the language is its concurrency

model. Go’s concurrency primitives make creating concurrent, multi-threaded programs

simple and fun. Go routines are a very simple and easy way to implement concurrency.

Go routines can be thought of as lightweight threads. We can create a go routine by just

adding the go keyword to the start of calling a function, then the function is executed in

the background and the execution continues. Goroutines are divided onto small numbers

of OS threads. They exist only in the virtual space of go runtime. Go has a segmented

stack that grows when needed. That means it is controlled by Go runtime, not OS. Also,

Goroutines are started faster than threads and are created with only 2 KB stack size

compared to java threads which takes about 1 MB stack size. Therefore, Go seems an

excellent option.

2.6 BFT Algorithms

PBFT [2] is a partially asynchronous algorithm which makes synchrony assumptions for

correctness. A group of processors serves a group of clients by replicating the client’s

requests. At any given time, exactly one processor is assigned to be the primary

processor. The client requests a service operation by sending a message to the primary

which broadcasts the client’s request to the rest processors. The processors executes the

requests and reply to the client with the result.

SINTRA [12] is a randomized ABFT algorithm suggested in 2002. It contains broadcast

primitives for reliable and consistent broadcasts, which provide agreement on individual

messages sent by distinguished senders. Total order is achieved by using multiple

randomized Byzantine agreement protocols for binary and multi-valued agreement and

implements an atomic broadcast channel on top of agreement. Threshold cryptography is

a fundamental concept in SINTRA, as it allows the group to perform a common

cryptographic operation for which the secret key is shared among the servers such that

no single server or small coalition of corrupted servers can obtain useful information

about the key.

8

Honeybadger [10] is an algorithm closely related to SINTRA [12] which in its

threshold encryption scheme, any one party can encrypt a message using a master public

key. It requires f+1 correct nodes to compute and reveal decryption shares for a

ciphertext before the plaintext can be recovered. It is based on agreement on a random

batch of incoming transaction.

BEAT [11] is consisting of five asynchronous BFT protocols that are designed to meet

different goals. Three of the five protocols are applied on general state machine

replication and the other two focus on BFT storage. It aims to outperform Honeybager

[10] by implementing more efficient threshold encryption and optimizing broadcast

protocols.

“From Consensus to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols

without Signatures” [4] is a signature free BFT algorithm which provides atomic

broadcast by implementing a vector consensus above a multi-value consensus with the

help of an underline binary consensus and reliable broadcast.

We now proceed to overview the implemented algorithm, Hashgraph [5].

9

Chapter 3

HashGraph

3.1 Overview 9

3.2 The Gossip Protocol 9

3.3 See and Strongly See 10

3.4 Protocols 11

3.4.1 Divide Rounds 11

 3.4.2 Decide Fame 12

 3.4.3 Find Order 12

3.1 Overview

Hedera [19] is a public distributed ledger for building and deploying decentralized

applications and microservices. Those applications and microservices execute underline

the Hashgraph consensus algorithm. It is a randomized ABFT (Asynchronous Byzantine

Fault Tolerance) algorithm suggested by Leemon Baird in 2016 and it is based on two

techniques to reach consensus, “Gossip about Gossip” and virtual voting. It works in a

private, permission-based setting means the identities of all nodes are known beforehand

and the network it is not open to an arbitrary participant.

Hashgraph aims to improve throughput and latency compared to prior algorithm such as

HoneyBadgerBFT [10] and BEAT [11] by executing broadcast and voting

simultaneously. Compared to public blockchains (like bitcoin), those use Proof-of-Work

(PoW)/Proof-of-Stake (PoS) as consensus model while Hashgraph uses the Gossip

Protocol and Virtual Voting. It also expected to be faster, more efficient, cheap and fair.

3.2 The Gossip Protocol

HashGraph nodes use the gossip protocol to communicate. In this protocol each node

chooses randomly another node and sends it all his events which he inserted in its graph.

This mean it sends all the events it created and all the events that other nodes told him

that they created. In Figure 3.1 we can see the structure of the message that is sent

between the nodes, each message contains the signature of the node who created it, a

10

timestamp which is the time that the creator claims that it created it, the transaction and

two hashes. The hashes point to the previous event in the graph and to the parent event.

In Figure 3.2 we can see how the Hashgraph data structure is created by exchanging

messages. Each line corresponds to each node, for example, if we are Alice in “Alice”

line is the events that we created and in the other lines it’s the events we learned with

gossip protocol. The previous hash is the hash of the previous event in the Hashgraph

line and it is the vertical line between events. Parent hash is the hash of the parent event,

meaning the event from which we learned for the first time a transaction and is

connected with the diagonal line.

3.3 See and Strongly See

The HashGraph data structure is based on the see and strongly see property to work

correctly and handle malicious nodes. We will use the terms parent, self-parent, ancestor

and self-ancestor.

In Figure 3.3 the event A2 is self-parent of A3 and B3 is

parent of A3.

For example, the event A3 will contain the hash of event

A2 and event B3.

An event x is ancestor of event y if x is y or a parent of an

ancestor of y. Ancestor and see relation is the same thing

and we can see the pseudocode of this property in Figure

3.4.

Fig3.1: Gossip Event [20]

Fig3.2: An example of the
Hashgraph Data Structure [20]

Fig3.3: The Hashgraph Data
Structure [5]

11

For example, in Figure 3.3 ancestors of A3 are

the events A2, A1, B3, B2, B1, C3, C2, C1, D1,

E2, E1.

Strongly see enhances the seeing property by

having many other nodes “vouch for” another

vote. An event x can strongly see y if it can see

(ancestor) event y and passes through 2n/3 events by different nodes. For example, in

Figure 3.3 event C6 can strongly see D1. A more detailed implementation of see and

strongly see is given in Appendix A.

3.4 Protocols

While receiving events the algorithm executes the following operations to determine the

events order. The operations are: "divide rounds", "decide fame", and "find order".

3.4.1 Divide Rounds

It divides the Hashgraph into rounds by

giving a round number to each event. Each

event has round number R which is the max

round number of its parents(self-parent and

parent) and if it can strongly.

see more that 2n/3 round R events it has

round R+1. If it’s the first event that it

created with round R+1 in that Hashgraph

line it is a round r+1 witness.

Figure 3.5 shows the divide rounds pseudocode from the Hashgraph paper [5]. The else

statement when r is set to 1 it is only happening to the very first events on each

Hashgraph line. Similarly, the “x has no self-parent” because all the events that inserted

have self-parent except the very first which is the initialization of the graph.

Fig3.5: The Divide Rounds Pseudocode [5]

Fig3.4: Ancestor Pseudocode

12

3.4.2 Decide Fame

For every 2 consecutive rounds where the round is decided we take the witnesses of

those rounds. Then we have to determine which one of the witnesses in the smaller

round is famous. For each witness in the smaller round we count how many witnesses

from the next round can strongly see them. if it can be strongly seen by 2n/3 round R+1

witnesses it is considered famous.

3.4.3 Find Order

For each round in which we decided who are the

famous witnesses and there is not a round before

where is a witness we did not decide if its famous.

If there is an event which is ancestor(see relation)

from each round R famous witness and round R is the

first round that this happens for this event. We set the

event roundReceive as R, we find all the events which

x is an ancestor, have round < R and take the

timestamps of those events. We set the consensus

timestamp of this event the median of those

timestamps. Median is the timestamp in the middle

position in the array, the idea is that we set consensus

time, the time a transaction has reached half the world. Figure 3.6 shows the findOrder

algorithm.

Fig3.6: The findOrder pseudocode [5]

13

Chapter 4

Implementation Basics

4.1 Execution 13

4.2 Encryption and Hashes 14

4.3 Structs and Variables 14

4.3.1 Gossip Message 14

4.3.2 HashGraph Node 15

4.3.3 Helpful Structs and Variables 15

4.4 Channels and Messages 16

4.4.1 Nodes Channels & Messages 16

4.4.2 Client Channels & Messages 17

4.5 Sign and verification 17

4.6 Sorting Events 18

4.7 Algorithm Initialization 18

4.8 Comparing Event Messages 18

4.9 Client 18

4.1 Execution

We can execute the algorithm with the command “HashGraphBFT $ID $N $CLIENTS

$SCE $REM” where ID is the node id, N is the total number of nodes in the system,

client is the total number of clients, scenario is which scenario to be executed(0-3) and

rem refers to local execution or remote where we set the IP of the remote machines.

Then, it calculates the number of faulty nodes(), the threshold(T = N-f) and

opens a TCP connection to each client and node. Then it initializes the Hashgraph

implementation and executes the go routines sendGossip, manageClientRequest and

Manage incoming Gossip which are explained below.

14

4.2 Encryption and Hashes

Each node has a key pair for digital signatures and all nodes know the public key for

each other node. The Threshenc package implements the key creation and the hashes.

The nodes must get the public key of each node from a trusted dealer. To implement the

trusted dealer, we created a local folder where we have the key pair for each node, then

we execute the algorithm and each node reads its key pair and the public key of each

other node. For the keys to be created we have to execute HashGraphBFT with first

argument “generate_keys” and second the number of nodes (HashGraphBFT

generate_keys $N). The keys generated is RSA keys with 2048 bits length.

The hash function we use is SHA384 which is set in the app.Hashes.go “makeHash”

function where we can change it if we want.

4.3 Structs and Variables

4.3.1 Gossip Message

Figure3.7 shows the EventMessage struct, this is the message that the events gossip.

- Signature is an array of bytes where the node who

created the event signs it and insert the signature in this

field.

- Timestamp: the time the owner claims it created this

event

- Previous Hash: the hash value of the previous event =

the self-parent event = the previous even in the same

HashGraph line

- Parent Hash: The Hash value of the parent event (if

exists, is the diagonal line in the graph)

- Owner: Is the ID of the creator of this event (= we also know in which Hashgraph line it

will be placed)

- Each transaction is unique and represented in three fields in the Message

o Transaction: the string message

o Number: an integer number which is increased

o ClientID: The ID of the client who sent this Transaction.

- First Owner: shows who created first this transaction

EventMessage is in the package type so when is used in other packages is declared as

type.EventMessage.

Fig4.1: The Gossip Message

15

4.3.2 HashGraph Node

Figure 4.2 shows the EventNode which is

the node we insert in the HashGraph.

Each EventNode is consists of:

- EventMessage: The gossiped

message for which this node is

created.

- PreviousEvent: is the event that

eventMessage points to and we find

it from the previousHash Field

- Parent: is the event that eventMessage points to and we find it from the

parentHash Field

- OwnHash: The hash value(sha384) of the Event Message

- Know: an array of bool of length N where we set who knows this event

- Round: the round we give to this event with divide rounds algorithm

- Witness: Boolean shows if this event is witness or not

- Famous: if this event is witness it can be famous witness

- Round Received: The received round of this even it is given from the divide

order algorithm

- Orderedplace: W have a listed where we have sorted the events and this is the

place that the event are in that list

4.3.3 Helpful Structs and Variables

Figure 4.3 shows the structs that we use which

help in the implementation of the algorithm.

- Hashgraph: We use history to create the

HashGraph. Hashgraph is a list of History

struct – an array of lists.

- OrphanParent: event nodes that we receive

whose parent event we did not have yet.

- OrphanPrevious: event nodes whose

previous(self-parent) we did not have yet

Fig4.2: The struct of the nodes in the HashGraph.

Fig4.3: Helpful structures and variables

16

- SortedEvents: a list in which we have all the eventNode which are in the Hashgraph

sorted by their timestamp

- Mu_HashGraph: a mutex for the critical section – the Hashgraph

- Witnesses: a map mapping integer values to array of Event nodes. Each value is the

round number and the list contains the witnesses of that round.

4.4 Channels and Messages

The Figure 4.4 shows the channels we use to send and receive messages to each other

node and to the clients.

4.4.1 Nodes Channels & Messages

Sending Events to other Nodes

When we want to send a gossip

message(EventMessage) to another node we create an

object of type Message. Inside the payload we encode

our eventMessage to a stream of bytes, inside type we

insert the String “event” and our ID in the field from.

Then we insert the Message object in the

MessageChannel and a go routine which is

continuously running checks if there is any events in

the messageChannel and sends them to the recipient

based on the from field.

Receiving Events from Other Nodes

When we receive a message its type is the Message struct. For each connection to

another node we have a go routine which continuously checks whether is an event in

each socket. For each event in the socket with type=”event” (this always happens, type

field is redundant) it decoded to an EventMessage and inserted in the EventChannel.

Fig4.4: Channels and messages for each node

17

Sending Events to Clients

When we decide on the order of a transaction we send a message to the client. We

create a Reply message where we insert our ID in the field “from” and the integer

number which corresponds the number of the transaction that is ordered.

Receiving Messages from Clients

Similar to Receiving Events from other nodes, we continuously check if we have any

message in the sockets connected to each client and if we have we insert the message

contents in a struct and insert it in the ClientChannel.

4.4.2 Client Channels & Messages

Client Sending Events

For each node we have a client request channel

where we put the messages we want to send to that

node. When the client wants to send a transaction it

creates a ClientMsg and inserts it in the

ClientRequestChannel of the node he wants to send

the transaction.

We have a go routine for each clientRequestChannel

which is continuously executed checks if there are

messages in this channel and transmits them to the

corresponding node.

Client Receiving Replies

Client has a TCP connection with each node and a go routine for each connection which

checks if there is a message. When there is a message to be received it is inserted in the

response channel. The messages that the client receives is the Reply struct as shown in

Figure 4.5.

4.5 Sign and verification

Sign: When a node creates an EventMessage, it initializes the signature field as empty,

signs the message with the private key and then inserts the signature in the

corresponding field

Fig4.5: Client Channels and messages structs.

18

Verify: When a node receives an EventMessage based on the Owner field it knows who

created that event. It creates a copy of the message with the signature field as empty and

verifies the modified message with the signature and the public Owners key.

The above are implemented in the package threshenc, file name: sign_and_verify.go.

4.6 Sorting Events

When we sort the event for the sortedEvents lists we sort them based on the timestamp.

When we sort the events in the Decide Order Algorithm we sort them based on the round

received and then based on the consensus time.

4.7 Algorithm Initialization

- The first thing the algorithm does is to initialize all variables with the default

values or creates lists with length zero.

- It inserts N event nodes in the Hashgraph, one for each node. Those events have

predefined field values and are always the same for all nodes

- Always for each event we insert in the graph we insert it in the sortedEvents list.

- Then we call the Divide Rounds event for each one of the N transactions which

sets the transactions field Witness to true (because they do not have parent

events) and round number to one.

- It executes three functions, sendGossip, manageIncomingGossip and

manageClientRequests as go routines which are always executed.

4.8 Comparing Event Messages

We compare the event messages in 2 ways using two functions.

The first function is checkSameTransaction which compares two messages and returns

true if the messages have the same transaction meaning same transaction string, Number

and ClientID.

The second function is checkTotallySameTransactions which compares two messages

and returns true if all the fields of the two EventMessages are the same. More

specifically we make the hash of the two messages and if it is the same we return true.

4.9 Client

The client is responsible to send transactions to the nodes and receives ACK from them.

The Client is executed with the command

“HashGraph_Client $ClientID $Nodes $Clients $Rem” where

19

ClientID is the id of the client, Nodes is the total number of nodes in the system and rem

refers to local execution or remote where we set the IP of the remote machines.

When a client is executed it opens TCP connections to each node. The number of clients

is used to set its port number and Rem is used to set the correct IP addresses. For a

remote scenario the IP addresses should be modified dependent of the machines.

Inside the app.client.go each client starts sending transactions to the nodes. A client

transaction contains a string which is the transaction and a number which is an increased

integer number. Given the number of nodes the client calculates the total number of

faulty nodes. When a client sends a transaction, he sends it to f+1 nodes to make sure

that an honest node received its transaction. When a node has given an order on a

transaction it sends an ACK to the client who created it, the client counts how many

different nodes has accept its transaction and if it is ordered by more than f (>=f+1)

nodes it consider that the transaction is ordered and writes in a log file the time since it

sent the transaction. For every ordered transaction we also write in a log file the total

number to order n transaction, we keep the time we sent our transaction and for every

ordered transaction we subtract it from the current time and write the time elapsed and

the number of ordered transactions in a log file.

The Hashgraph algorithm needs to build the Hashgraph and then if it can, orders some

transaction, due to the above empty transactions may help the last transactions to be

ordered. Therefore, we set the clients to send a number of empty transactions to help

ordering their transactions and to not wait for other transactions to be send. The empty

transactions contains the string ”empty” as transaction and the increased integer number.

When a client is executed it waits for ID/4 seconds to start sending transactions and then

sends a transaction every one second. We set that so not concurrently all clients start

sending transaction despite that there will be no problem. By setting the

“NumOfTransaction” and “EmptyTransactions” variables inside client.go we set how

many transactions for each client to send. We will see later that the frequency on sending

transactions may have an impact on the performance of the algorithm.

20

Chapter 5

Go Routines

5.1 Send Gossip 20

5.2 Manage Client Requests 21

5.3 Manage Incoming Gossip 22

5.3.1 Check Gossip 23

5.3.2 Executing the Algorithms 24

5.4 Protocols 25

5.4.1 Divide Rounds 25

5.4.2 Decide Fame 26

5.4.3 Find Order 27

5.1 Send Gossip

Figure 5.1 shows the send Gossip routine pseudocode.

In this routine

- each node choose randomly the ID of

one other node different from his.

- Locks the HashGraph mutex because it

will possibly modify data.

- Finds all the events in the Hashgraph

which we know that the node we chose

to sync does not know them.(we use the

Boolean array Knows)

- We insert the events in two lists

o the events we created

o the events the others created

- First we sent the events that we created

and then the rest.

- We send the EventMessage which is Fig5.1: Manage Gossip routine pseudocode.

21

contained in a field in the EventNode object

- Unlocks the Hashgraph mutex

We use the sortedEvents list where we have all the Hashgraph events sorted based on

their timestamp so the recipient will receive events in order from the older to the newer.

But this may not happen because events may arrive out of order. We send first the events

we created so if the other node learns from us a new transaction it will create a

transaction in his Hashgraph line pointing to the transaction to our Hashgraph line.

The algorithm also works if we sent the transactions in ascending order based on the

timestamp, the pseudocode of this alternative is shown in Appendix C.

5.2 Manage Client Requests

This routine manages the request

we receive from a client and is

executed continuously. Upon

receive, the client messages are

inserted in the clientChannel. An

event in the client channel has a

string which is the transaction, an

integer number which is the number of this transaction and it is different for each

transaction from the same client and the ID of the client who sent this request.

For each request in the client channel:

- we check if we have it in the Hashgraph (in any line) using the

checkSameTransaction function.

o If it exists we discard it and continue to the next message

If it does not exist in the Hashgraph

- We create an EventMessage and insert the received message contents in the

Event message, we set the timestamp to the currentTime (in UnixNano), the

ParentHash is empty because we are the first who created this event,

PreviousHash (hash of self-parent) is the hash of the last event in my Hashgraph

line and in FirstOwner we insert our ID.

- Then we digitally sign this eventMessage and insert our signature in the

corresponding field.

Fig5.2: Manage Client Requests routine pseudocode.

22

Then we create an EventNode and insert the above message in the corresponding

field. Also, we fill the other fields with the correct data.

o PreviousEvent(self-parent) we have the pointer which points to our last

event in the Hashgraph

o ParentEvent is nil because this event does not have parent.

o OwnHash is the hash value of the eventMessage we created above

o Know is a Boolean array of size N where every field is false except the

know[ID] position

o Round is set to default(=0)

o Witness is set to false

o Famous is set to false

o RoundReceived is set to default(=0)

o ConsensusTime is set to default(=0)

o OrderedPlace is set to default(=0)

 Then we append the above event node in the Hashgraph, more specific we

append it in the list which corresponds to the events we created (HashGraph[ID].events)

and insert it in the sortedEvents list in the correct index.

5.3 Manage Incoming Gossip

This routine is responsible to receive the nodes gossip, decide whether to insert it in the

graph or not, create another node based on the received event and when to execute the

algorithms to determine the order of the transactions.

It is continuously executed and iterates over the EventChannel which contains the

eventMessages we receive from other nodes.

For each message, it executes the

checkGossip function and then calls the

execute algorithms.

Both functions are shown in the Figures

below and are explained.

Fig5.3.: Manage Incoming Gossip Routine

23

5.3.1 Check Gossip

The checkGossip function, Figure 5.4 ,

takes as input the received EventMessage

and determines if its valid, if we should

insert it in the graph and also checks

whether we should create another node

and insert it in the graph in our

Hashgraph line.

An event is valid when

- the timestamp it contains is not

after the currentTime

- The events signature is verified,

we use the event.Signature field

and the event.Owner which shows who created this event

- If we do not have a totally same transaction in the Hashgraph (an eventMessage

with the same hash value as the received)

• Then we find the events parent and self-parent if exists.

• Create an event node with the given field(eventMessage, parent and self-parent)

and initialize its fields

o In the Knows Boolean array we set as true our ID index and the index of

the sender

• If the event has a parent or a self-parent which we do not have yet we insert it in

the corresponding list. We have two lists “orphanParent” where events whose

parent is not known to us yet “orphanPrevious” whose gossip-parent is not

known to us yet.

• We also check if the received event is parent or self-parent of any event in the

two above lists and delete the event from the corresponding list.

• Last, we have to determine if we have to create a node in our Hashgraph line

pointing to this event.

We check our Hashgraph line if we have the received transaction.

If we have that transaction we don’t do anything, otherwise similar when

receiving a transaction from a client we create an eventMessage and an

Fig5.4: Check Gossip Function pseudocode

24

eventNode which has self-parent our last event in our Hashgraph line. The only

difference from receiving a transaction from a client is that this eventMessage

has parentHash the hash of the previous received event and the eventNode has

pointer to the previously created eventNode.

5.3.2 Executing the Algorithms

The function in Figure 5.5. shows when the algorithm decides to execute its routines to

decide the order of the received transactions.

After encountering many difficulties, we decide to set a bound on when to start

executing the algorithm and for how many transactions. We set it to execute the

algorithms for each 100 transactions. For example when

we receive 200 transactions we set the algorithm to

iterate till the 100th transaction and then we increase the

bound by 100 so there is a gap of 100 transactions.

(example: with bound/next = 300 it will iterate till the

200th transaction).

The algorithms iterate in the sortedEvents array which

contains all the transactions sorted based on their

timestamp and variable “end” shows in which index the

algorithms stops.

In the paper states that the algorithm is executed for

each transaction it receives but we decided to set that bound because the algorithm takes

time to be executed and also to avoid executing the algorithm repeatedly on the same

transactions.

This is an implementation decision which we made, however we believe that it is not

implemented in the real Hashgraph algorithm and may not be a good solution. We insert

it, so we are surer that the Hashgraph waits to receive a number of transactions and also

give some time for transactions to be gossiped to other nodes. The fixed values is our

choice and we believe it can be change or removed but with those the implemented

algorithm is harder to fail.

Fig5.5 : Execute algorithms function.

25

5.4 Protocols

5.4.1 Divide Rounds

We know that in the SortedEvents list we have all the events (eventNodes) which exists

in the graph in an ascending order based on their timestamp. Also, each event has a field

orderedPlace which is the place of the event in the sortedEvents list but this field when

we create an event and insert it in the Hashgraph is set to the default value which is zero

and the divide rounds algorithm is responsible to set this value. The first N events in the

list are the initial events in each Hashgraph line for each node and those events has

round = 1 and their orderedPlace is already set. All the other events have orderedPlace

zero, which mean this value is not the correct based on their index place in the list.

Appendix B includes the routines used to implement the DivideRounds algorithm. In the

first Figure we iterate in the sorted Events list till the index is equal to end. “end”

variable is initialized from the execute algorithms function above. For each eventNode

which has ordered place field value not equal to its ordered position in the list we

execute the divideRounds algorithm for this event. When the orderedPlace field is

different than the index of the eventNode it means that either we have not already

executed the algorithm for this event or that we received an event with smaller

timestamp than this event so we will execute the algorithms again for this event. From

the first event that we execute the algorithm, it will be executed for all the events which

come after that, since if the ordered place changed for one event all the events that

comes after it have to execute the algorithm again.

The divide Rounds event function is the second Figure in Appendix B. It takes as

parameter the eventNode and the list sortedEvents. Then

- if the event has not previousEvent and timestamp equal to zero

o has round number 1

o it is round 1 witness

o This only occurs for the first N events

- If the event is orphan (we do not have its parent or gossip-parent) we set its

round number and order place to -1 so we just wait to get its prior events. If the

above does not apply we find the max round number of the event’s parent and

26

gossip-parent round and store it in variable R. Gossip-parent may not exist if it’s

the first transaction created.

- Then we count how many round R witnesses can strongly see the given

eventNode.

- If it’s strongly seen by more than 2N/3 events we increase the R variable by one.

- Now we can set the famous variable. An event its consider famous if it has

bigger round number that its parent’s events.

- Then we init the round and witness field of the given event node

- If the event its famous we insert it in the map in the corresponding witness round

events list

o Also, we check if it is round r-1 witnesses and remove it from that list

Also, we have two variables, a Boolean variable “witnessChange” and an integer

“witnessChangeRound”. When we change a witness, meaning that we declare an event

witness and insert it in the corresponding witnesses list, we set the witnessChange

variable to true and we keep in the witnessChangeRound the minimum round we insert

or change a witness.

5.4.2 Decide Fame

After the execution of the divide rounds protocol, we execute the decide fame protocol

which is shown in Appendix B.

First, we find the minimum round we modify a witness using the minWitness change

variable from the divide order algorithm and store it in a variable R. If there is not a

witness change means that we should not execute the algorithm and we return.

Then starting from the round R

- we take the events of 2 consecutive rounds

- For each event in the prior round, we count how many witnesses can see it in the

next round.

- If it’s seen by 2N/3 round R+1 witnesses it is considered famous.

When we execute the algorithm for every round R witness, we increase the round

R value by one and repeat.

27

In our implementation we decided to set the iteration to stop 2 rounds prior the

maxRound number witness and set the minWitnesschange round to that value. This

helps us wait till more events are inserted and the witnesses won’t change.

5.4.3 Find Order

After we decide which witnesses are famous, we can now check if we can decide the

order of some transactions. In Appendix B is the pseudocode for the find Order protocol.

We have a list which contains the events we ordered and for which we have sent an

ACK to the client, we also have a list of events for which we have decided their receive

round and consensus time but not send an ack to the client and a variable where we have

the max received round that we ordered an event. Similar to decide fame we execute the

algorithm till the maxRound-3, because there might be witness changes, so we wait to

receive more events and the max round witness to be increased.

There are transactions that may be ordered, but it’s possible that we receive event

messages containing the same transaction after we decide its order. Therefore, for each

ordered event (in OrderedEvents list and tempOrder) we iterate in the sortedEvents

which contains all the events and if we have the same transaction we set its

roundReceive to the roundReceive that has the ordered event. It is possible that we

rewrite the same number in the some events but also we may set the roundReceive to

Transaction that arrived after we ordered an event containing the same transaction

Then we iterate in the sortedEvents lists, we use the end variable which is initialized in

the executeAlgorithms function and iterate till that index.

For each EventNode in sortedEvents

 We do not order the eventNode if

- it has timestamp == 0

o only the first eventNode has timestamp = 0

- its round number is not set

- it has round number greater than the desired round

- we already set a round received

We order only the events which does not have parent event (and are not orphan)

and we have a node pointing to them from 2n/3 different nodes.

28

We take the eventNode.round which is the round number determined in the divide

rounds algorithm.

Then for each round witnesses starting from the round+1:

1. if the current round does not have famous witnesses or its greater than the

desired round we break and continue with the next eventNode.

2. we check if all the famous witnesses can see this event and if that is true, we

call the setRoundReceived function which is shown in Appendix B.

3. If the above does not satisfied, we increase the round number and repeat till

we break the for loop or we set roundReceived to the eventMessage.

Before ending the function, we call the decideOrder function, the pseudocode is shown

in Appendix B.

Above we order events that has round number. Events that have a round number are

events for which we have executed the algorithm divide rounds, therefore those are

events that are not orphan because divide rounds is executed for only not orphan events.

SetRoundReceived

We call this function when we decide on the round received of an event.

- Creates a list of timestamps (int64,UnixNano)

- For each event V in the Hashgraph (including the given eventNode)

o If it’s the same transaction as the given eventNode

▪ we set the roundReceived as the given round

▪ If the v.round is after the round of the event we decide its order

and prior to the roundReceived we check whether this event can

see the given eventNode

• If it’s true we insert the events timestamp in the list

- We find the median of the list

o set that as the consensus time

o insert the event in the tempOrder list

We can insert in the events any of the events with the same transaction because in the

tempOrder we see the round received and the consensus Time. So, we set the consensus

time in the event we have and insert that in the list. We do not have to insert the

29

consensus time in all other same transaction because we only need one with that and

because the roundReceived is set in all of them we won’t try to order them again.

DecideOrder

At the end of the find order protocol we call the decide order function, which is shown in

Appendix B to finalize the order of the temporary ordered transactions which are in the

tempOrder list. We did that that we send ACKs for a round and then proceed to the next

round.

- We sort the event in tempOrder based on the receive round and then the

consensus time.

- We find the max round receive

- We sent Ack to the clients for all events with received round < that the max

- We remove the events from the tempOrder list and insert them in the

OrderedEvents list.

30

Chapter 6

Implementation Details and Decisions

6.1 Message Size 30

6.2 Timestamps 31

6.3 Orphan Events 31

6.4 Comparing Transactions 31

6.5 Sorted Events list 32

6.6 Inserted Bounds 32

6.7 HashGraph Size 33

6.8 Messages Exchanged 33

6.9 Empty Transactions 33

6.1 Message Size

Client Messages to nodes

The messages received from the client contains a string which is the transaction and for

simplicity we consider it as a character which is 1 byte, and an integer value which is the

transaction number and its 4 bytes.Therefore the client messages is 5 bytes.

Reply messages to Clients

The messages sent to the clients contains 2 integer values, the sender node ID and the

number of the message that its Ordered. Therefore, the Reply message has size of 8

bytes.

Gossip messages between nodes

The gossip messages is type message and has fields payload, type and from. The type

contains the string “event” (5Bytes), it is not used but it will be used if we send different

type of messages. From is an integer value (4Bytes). Payload is a stream of bytes and

contains an encoded EventMessages. The event message has fields

31

- Signature: 256 bytes

- Timestamp: 8 bytes

- Transaction: 1 byte

- PreviousHash: 96 bytes

- ParentHash: 96 bytes

- Owner: 4 bytes

- Number: 4 bytes

- ClientID: 4 bytes

Total: 469 bytes

So total of a gossiped message is (469+5+4) 478 bytes.

6.2 Timestamps

As timestamp we use the function Now().UnixNano which is the number of

nanoseconds elapsed since January 1, 1970 UTC and it has type int64.

6.3 Orphan Events

We decided to implement the orphan lists and insert in the graph events that we have not

yet receive the prior events they point to. However, for those events when we determine

that they are orphan we do not execute the algorithms to decide round, fame and

therefore ordering. We conclude to this because while implementing the algorithm to

discard events that it has not receive their previous, each node created different graph

despite that it showed that each node had sent the events it inserted in the graph to

everyone else. Then we observe that many times the events arrive at the destination out

of order so the event were discarded, since we can’t wait till we receive events and

decide to insert it in the Hashgraph we implement the orphan lists which helps us to

solve that problem and we consider those events to not exists when we execute the

algorithms till we get their previous events . However, implementing this allows us to let

the node gossip to other nodes all the events in its Hashgraph including orphan events

and this we believe improves the time for each other node to learn the existing events.

6.4 Comparing Transactions

Check Same Transaction and Check Totally Same Transaction

The client sends a transaction to F+1 nodes, therefore it is possible that we learn a

transaction and then receive that same transaction from a client. Since we have a

transaction in my Hashgraph line we should not make another transaction with the same

32

fields but different timestamp. We can gossip the transaction we already have without

the need to create the same. That’s why in this occasion we only need the simpler check

function which does not checks the timestamp or hashes.

Because the client sends its transaction to f+1 nodes there might be multiple events with

the same transaction and different owner. Similar many events with the same transaction

exist when a faulty node creates multiple events with different timestamps. Therefore

when receiving events we check if we have the exact same event and if we don’t we

insert it in the graph and gossip it so that everyone knows its existence.

6.5 Sorted Events list

SortedEvents is a list which contains all the transaction that are in the Hashgraph sorted

by their received time. We use this list to calculate the roundNumber and fame so we

start from the oldest event going to the newest. Similar we use this list in the sendGossip

protocol so we send the oldest events to each other node and then the newest, so we uses

the orphan lists as less as possible. If the events arrive out of order the orphan lists help

us solve the problem.

6.6 Inserted Bounds

While executing the algorithm we observed that the graphs and the order may be

different. Hedera says that the graphs in the nodes may be different at the last events but

after some time when all the transactions are submitted the graphs are identical. This

continuous for as long as there are transactions transmitted.

Therefore, we conclude to set some bounds on the algorithms. We chose to execute the

algorithms to the max round witness minus 2 so that we wait some time for the max

round witness to be increased and then execute the algorithm on the transactions. The

value we placed is something we chose and it may not needed or there might be a

different solution. However, Hedera does not go into details on how they solve this

problem so we implement it in this way.

33

6.7 HashGraph Size

For each transaction with unique timestamp, we each node to create an event message

with this transaction in its graph pointing to the first event or to any of the event which

points to the first or any other which has the same attribute(point to the first or to an

event who points to the first). So, for each client transaction that is received from a node,

an eventNode is created and inserted in the graph, we expect N eventNodes to be in the

graph.

Example: K Clients, each sends m Transaction to any node in a system of N nodes total

=>HashGraph Size = k*m* N +N.

The “+N” is the first transactions created to initialize the Hashgraph.

6.8 Messages Exchanged

For each event node in the Hashgraph we have a Boolean list where we set to which

event we sent this transaction so we know to who knows it. Also, when we receive a

transaction if we have the exact same in our Hashgraph we set the know[ID] to true so

we know that this event knows this transaction and fewer messages has to be sent. There

are many times that two nodes know a transaction but they do not know that they both

know it, in this case its possible that one or two redundant events are send among those

nodes which are discarded.

6.9 Empty Transactions

If there is a steady stream of transactions entering the system the Hashgraph size is

increased and eventually each transaction is ordered. There must be found a witness and

a famous witness in a round so we can order all the events before that round. If there are

not enough events to find famous witnesses the last transactions may not be ordered.

Therefore we can set in the client to send a number of empty transaction so there are

more events in the Hashgraph and it is easier to find famous witnesses and order its

transactions

34

Chapter 7

Evaluation

7.1 Scenarios 34

7.1 Evaluation Summary 35

7.2 Comparison with other Works 41

7.3 Conclusions 42

7.1 Scenarios

When executing the algorithm the fourth parameter is the scenario. We created four (4)

scenarios which are explained below

0 : Normal

Normal scenario where no malicious nodes exist.

1 : IDLE

The malicious nodes do not send messages to anyone. We have to execute all the

nodes and set this parameter. The malicious nodes receive the gossip messages but they

do not execute the “SendGossip” protocol so they do not communicate with anyone.

2 : Sleep

The malicious nodes stop sending event messages to the other nodes for some time

and then continue sending from where they stop. Similar to the above scenario we have a

function inside SendGossip where we set in how may seconds the malicious events to

stop executing and after how many seconds to start again. The events receive

transactions from other nodes but they don’t send anything therefore when they start

executing they will send messages which much smaller timestamps than the current

time.

3 : Fork

When a malicious node

- will send an event which it created (parentHash is nill), meaning the client told

me this transaction and we insert event in the graph.

- it chooses to sync with another node with ID < N/2

35

It creates a different event message, with a much smaller timestamp than the

currentTime (<1000), it also set that its previous event in the Hashgraph line is

the very first event of the malicious node.

 Then the malicious node signs this event and send it to the other node.

When the malicious node syncs with another node with ID < N/2 it will make the

same actions and possibly it will give a different timestamp to that transaction.

When it will sync with another node with ID >= N/2 it will send the correct

message.

In the above scenarios we execute the algorithm multiple times(and while executing for

evaluation), compare the order of the transactions of the non-faulty nodes and we

observed that the order is correct.

7.2 Evaluation Summary

In our experimental evaluation we executed the algorithms by increasing the clients

and/or the transactions the clients send, the frequency they send transactions and by

increasing the nodes. Most of our experiments where with 4 nodes and different number

of clients. At the end of this sub chapter we explain the difficulties we observe when we

increased the nodes.

The results shown here are executions of a system with 4 nodes. Latency and frequency

are measured in seconds.

We executed the algorithm in a cluster of 9 machines.

Table 7.1 shows the number of CPU cores of each

machine in the cluster.

In a system of 4 nodes we the machines with number

0,1,6,7 to simulate the nodes and machine 3 to simulate all

the clients.

Table7.1: The CPU cores of each machine in
the cluster

Machine CPU cores

0 8

1 8

2 1

3 2

4 1

5 1

6 2

7 2

8 1

36

Operation Latency

Figure 7.1, shows the average time a transaction needs to be claim as ordered from a

client. The clients wait to receive f+1 acks to assume that a transaction is ordered. Here

we observe that the average time vary depending on the scenario. We see that the normal

and fork scenario are faster than the idle. This is because more transactions are send over

each node and the graph is build faster therefore its easier and faster to find famous

witnesses. The latency seems about 10 seconds on average. In an experiment the

Hashgraph paper shows that the latency in 4 nodes it is about 7 seconds where in this

scenario, our implementation is close in some cases but its higher that the results shown.

Also, the results show 22000 transactions per second, but this is much more than the

experiments we executed.

Message Complexity

Fig7.1: Time for client to receive Ack.

Fig7.2 : Total Messages over all transactions

37

The above figures and tables show the message complexity in some scenarios. We made

experiments by sending 60,240,300 and 600 transactions from multiple clients. When a

client sends a transaction, this transaction will be sent to all nodes, so messages are

affected by the N.

In Table 7.3 we took the values of Table 7.2 and we divided the total number of

messages by the transactions so we found the average number of messages sent for each

transaction. Then we calculated the average of tshose times. We concluded that the

average number of messages send for each transaction is about 22 and 24 in the

scenarios normal and fork. In the Idle scenario there are much less messages created

because its one less node in the system and that’s why the average messages send for

each transaction are about 13.

As described in the Chapter 6.1 the message size is 478 bytes. So in average for each

scenario there are

- Normal: 22*478B = 10.25 MB transmitted

- Fork : 24*478B = 11.2 MB transmitted

- IDLE : 12*478B = 5.6 MB transmitted

for each transaction

Frequency

We observe that the frequency the clients send transaction may affect the latency and

also it may affect the number of acks send to clients. In each execution the number of

acks send to clients may vary, this probably depends on the randomization and how the

graph is build but how the graph is build might also affected by the frequency of

transactions entering in the system.

So, we decided to execute the algorithm with different frequency of clients sending

transactions. We set the system to 20 clients, 4 nodes and 50 transactions per client and

we increase the frequency from 3 to 6

Total Transactions Normal IDLE Fork

60 1292.25 753.00 1481.33

240 5265.25 3026.67 5577.67

300 6714.25 3802.08 7068.08

600 13589.50 7805.67 14318.67

Total Messages

Table7.2: The values used for Figure 7.2

Normal IDLE Fork

21.54 12.55 24.69

21.94 12.61 23.24

22.38 12.67 23.56

22.65 13.01 23.86

Average 22.13 12.71 23.84

Average Messages / Transactions

Table7.3: The average messages sent for each transaction

38

In total 1000 transactions are sent, 50 clients of 20 transactions each ,and we count the

average latency for each transaction and the total number of acks send to clients. We

notice that there is a big difference in acks send to clients while the frequency is

increased, but when is 5 and 6 seconds the number of acks is close. Also, the latency

changes but we have to consider that it depends also on the Acks. We see that with

frequency 4 the latency is about 7.9 and with frequency 5 is 8.5 but we must also see that

there are about 60 more acks send to clients with 5 as frequency.

Throughput

We observe the Hashgraph paper [5] which shows an evaluation where it is shown that it

can order 22,000 transactions per second with latency about 7s on a system of 4 nodes

and we decide to check how close to this we can get. We execute the algorithms normal

scenario with 4 nodes, 20 clients with frequency 5 (based on the above evaluation) and

started from 50 transactions per client and increasing it by 10.

Frequency Acks Latency

3 775 8.05

4 887 7.88

5 954 8.53

6 963 9.33

Table7.4: The Values used for figure 7.3

N Clients Frequency(s) Transactions Total Transactions Acks Latency
50 1000 954 8.53

60 1200 1035 11.05

70 1400 1112 22.47

80 1600 1066 14.92

4 20 5

Table7.5: Increasing the number of transactions

Fig7.3: How latency and Acks are affected when frequency changes

Fig7.4: How acks and latency are affected when transactions are increased

39

The above table shows the results of the executions. We started from 50 transactions per

clients (total 50*20) till 80 transactions per client. Acks is the number of acks send to

clients. It is a small scale experiment but we observe that there is a linear increase in

acks but the same happens to the latency. We can see that with 70 transactions per client

we have 22 seconds latency which is 3 times more than the latency in the paper.

We iterate till 80 transactions per client because the latency was increasing a lot when

we try to execute the algorithm with 80 transactions. The numbers we see above is the

moment we stopped the execution because it was executed for some minutes and it

didn’t finish or send any more acks to clients.

Performance over all transactions

Because the Hashgraph needs time to be gossiped, build we thought that it might be a

good idea to observe its behavior when it send acks for multiple transactions. For

example, we calculate the time needed to send Ack for n client transactions because

many transactions are ordered in one round and each transaction has different latency.

Also, we calculate the time that a number of transactions is ordered over all the clients.

This metric might be similar to latency but because we calculate it for multiple

transactions and not for each is less than latency.

The above table show the average number of transaction acks send to clients and the

total number needed for those transactions. Similar shows the number of al transactions

ordered and the time needed. We divide the total time with the number of transactions

and we calculated the overall.

The First overall value is similar to the latency which in Table 7.1 its average value is 9

but here if we don’t consider the last case it is less than 6.

The second overall value is the ratio showing how often a transaction is being ordered

among all clients.

Table7.6: Behavior over a number of transactions

Clients Transactions Client Trans Total Time Overall Total Trans Total Time Overall

20 10 8.73 44.54 5.10 262 50.54 0.19

20 12 10.56 53.96 5.11 264 57.16 0.22

20 20 18.35 93.85 5.11 367 97.68 0.27

20 50 46.20 254.57 5.51 924 257.91 0.28

20 60 51.75 299.67 5.79 1035 302.26 0.29

20 70 55.60 661.61 11.90 1112 680.98 0.61

SystemPer Client

40

Increasing the Nodes

After the execution on 4 nodes we decided to increase the number of nodes so we

observe how the algorithm scales.

*As a reminder we know that we set some bounds in the algorithms on till which event

to execute the algorithms and to let some rounds as gap till it find more rounds with

witnesses. Therefore, the Hashgraph has to be built and then if there are rounds with

famous witnesses it will order some transactions.

We increased the number of nodes to 7 and set the number of clients to 10 where each

sends 10 transactions, so total 100 transactions per client. The nodes are 7 so if each

client sends 1 event there will be 700 events in the graph in the normal scenario.

Because the nodes are 7 there are 2 faulty nodes, the clients sends their transactions to

(f+1) 3 nodes. If the nodes insert the transaction in their graph without learning for it

from other node who receive the same transaction there will be 3 same transactions in

the graph with different first owner. If this happens to all transaction the maximum

transasctions in the graph will be 2100 (700*3).

We observe that this behavior happens and there are about 2000 transactions in the graph

and each node sends about 12600 messages total. But we observed that there are only 4

rounds created and because we set the decide fame and find order to wait for some

rounds it does not order any events.

Then we decide to execute the algorithm in the Idle scenario where the faulty nodes does

not send messages. In this scenario there will be less events in the graph and we wanted

to see if it would order any transactions and how many. We observe that it reached only

round 3 and did not order any event.

Last we decide to increase the number of transaction, so we set it to 20, with 7 nodes and

10 clients. We observed that the algorithm delays couple minutes and by calculating the

time needed for the algorithm we notice that the algorithm divide rounds and then find

Order takes the most time. Then we set it to execute the algorithms after having 2000

event in the Hashgraph in an attempt to reduce redundant operations, It kept taking too

much time and at 3000 events we observe that it has events with round number 6, it send

some Acks (14 out of 200) and it keep taking too much time so we stop the execution.

41

Unfortunately, we did not make it to execute the algorithm in a bigger scale and observe

how it behaves because in real life scenarios it matters how easily the system is scalable.

However, we notice that there is a problem in the implementation and a possible

bottleneck in the real implementation of Hashgraph. We observe which protocol needs

the most time and that there should be some improvements to increase the performance.

7.3 Comparison with other Works

We compare the results of our HashGraph implementation with the experimental

evaluation of “From Consensus to Atomic Broadcast: Time-Free Byzantine-Resistant

Protocols without Signatures” [4] – below is referred as “Algorithm2”. Unfortunately,

we were only able to compare it with the small scale experiment on a system with 4

nodes.

Similar to Hashgraph, Algorithm 2 uses cryptography only to sign and verify messages,

however, a Hashgraph node has to sign all its messages and verify all the incoming

gossip message where possibly takes more time.

We observe that the operation latency of Algorithm 2 with up to 75 clients sending

transactions, on the normal and Idle scenario is maximum 2 seconds which is much

lower than the HashGraph results, which is about 10 seconds.

Hashgraph is not affected so much with the increase of clients sending transactions

where in the Algorithm 2 the operation latency is increased. However, we observe some

serious delays on Hashgraph when a big amount of transactions are send in the system.

Also, the forking scenario in HashGraph may have a negative and positive result.

Negative because it creates even more transactions to be transmitted and the Hashgraph

size is increased so the algorithms take more time. On the other side, more events mean

that it is easier for the algorithm to find witnesses and famous witnesses therefore the

operation latency may decrease.

Comparing to Algorithm 2 we observe that there is a significant delay in a scenario

where the faulty nodes send different messages to the non-faulty nodes. It shown that

with 75 clients the operation latency is increased up to 5 seconds but it is still less than

Hashgraph.

Comparing the message complexity, we see that Hashgraph sends much less messages

for each transaction and it is not affected by the clients but by the nodes in the graph. For

example, we saw that Hashgraph sends about 20 messages for each transaction

compared to Algorithm 2 that sends more than 100 messages.

42

7.4 Conclusions

Hashgraph aims to be efficient with improvements on the message complexity compared

to other implementations. It is based on a gossip protocol and on Virtual voting which

we observe that it really decreases the message complexity which is affected by the

number of nodes. We concluded that the message complexity is O(N^2) for each client

transaction, where N is the number of nodes.

It needs low CPU usage in matter of cryptography where it uses it only to sign and

verify messages, but it’s core protocols may need much resource power. We observe that

the divide rounds algorithm which is based on recursive methods takes the most time

and needs the most CPU usage. Improvements in this protocol may increase

significantly the HashGraph performance.

The operation latency is not as low as expected, which is about 10 seconds. Scaling the

system was not possible due to the big delays of the protocols divide rounds and

findOrder and some serious improvements should be made.

In conclusion, Hashgraph is an efficient protocol with significantly small message

complexity but high demand on CPU usage due to the algorithms executed in its core.

Therefore, more research and improvements on the core algorithms may make it one of

the most efficient BFT algorithm in all aspects.

43

Chapter 8

Conclusions

8.1 Summary 43

8.2 Notable Difficulties 43

8.3 Suggested Improvements 44

8.1 Summary

In paper [5] it was suggested that Hashgraph is an efficient algorithm with low message

complexity. Despite the difficulties shown and the implementation results we still

believe that with some improvements, the HashGraph protocol may have very good

performance on a bigger scale. It is shown that it has small message complexity,

suppresses all the previous work and that is a serious benefit. However, the CPU usage

needed for its core principles is the bottleneck of the algorithm which needs more dive

into details to understand and improve it. The performance may be affected from many

parameters such as the frequency and number of transactions entering the system as well

as the number of nodes in it.

 Nowadays, especially cryptocurrencies revealed and stimulated a new demand

for consensus protocols over a wide area network among large amount of node [8].

Many applications especially financial are based on BFT algorithms therefore there is a

great need for robust and efficient protocols. Researchers are working to implement

efficient BFT algorithms to improve some aspects, but most of the time delays in other

aspects occur. Therefore, it is very challenging to implement a BFT algorithm that is

efficient in all aspects compared to the existing ones.

8.2 Notable Difficulties

For implementing Hashgraph, we had to search research online, view YouTube tutorials

and read the HashGraph paper [5] multiple times to understand how it works. Therefore,

we implemented the algorithm based on [5]. It is a new algorithm and there are only a

few examples showing how it works, especially when there is a malicious node. Hedera

44

has some examples on their website and on YouTube but are only few and simple and

show how it works without faulty behavior of nodes. The protocol “Gossip about

Gossip” was the most difficult to understand along on how the Hashgraph is built among

all nodes. Also, we made some decisions on whether to run the algorithms and decide

the order, and we inserted the orphan event idea which occurred when we saw that many

events were arriving out of order. Those are not shown anywhere but with those, our

algorithm works and it is less likely to fail. The above difficulties took us much time to

understand and develop the algorithm.

In evaluating the system, we observed big delays when we put clients to send many

transactions or when we tried to execute the algorithm on a larger scale. We tried to

make some improvements, but we were not able to execute the algorithm on a system of

7 nodes or on a system of 4 nodes where clients send more than 2000 transactions in

total due to the algorithm’s delays.

8.3 Suggested improvements

The algorithm may not be the ideal due to implementation decisions we made in order to

work, such as the bounds and the orphan events. Also, we decided to check if we can

realize the order of events after we receive all the incoming messages, but still there

were big delays. A change in the above settings might increase the performance of the

algorithm, for example, the bounds might be changed or removed, or the algorithm can

be executed while receiving more events. Due to the fact that the orphan list we

implemented it does not shown anywhere else makes us believe there might be a more

correct way to create the Hashgraph data structure.

When we sync, we choose another event and send it all our events history; here multiple

parallel syncs can be implemented so the events are gossiped as fast as possible.

Also, in our implementation, we execute three go routines, SendGossip,

ManageClientRequests and Manage incoming Gossip. Each time a routine is executed:

- it locks the Hashgraph lock,

- finishes sending events(sendGossip) or checking the incoming message

- modifies data if needed, and

- unlocks the lock so another routine can be executed

The above implementation might not be ideal and if a more complex one is

implemented, it is possible that it will increase the performance.

45

Also the results might be affected by the programming language and the communication

framework. The algorithm is based on executing recursive method multiple times. We

know that each event can see all the events that it’s parent and self-parent sees.

Therefore, if we store more data when we execute a recursive method on a parent it will

reduce the operations needed for the child and the time complexity.

We did not implement all the above due to the time needed to implement it and the

complexity to develop them.

Based on the above we believe that there are many improvements which can be done

and combined with a deeper understanding of the algorithm, it may have a strong result

on the algorithm’s performance.

46

Bibliography

[1] Nikolas Pafitis. Implementation of Self-Stabilizing BFT Using Go And ZeroMQ,

Diploma Project, Dept. of Computer Science, University of Cyprus (2017)

(Accessed 02.02.2021)

[2] Castro C, Liskov B.: Practical byzantine fault tolerance and proactive recovery.

ACM Trans. Comput. Syst., 20(4), pp. 398-461, 2002.

[3] V.Petrou, BFTWithoutSignatures, 2021 (Accessed 25.05.2021)

V.Petrou, BFTWithoutSignatures_Client,2021(Accessed 25.05.2021)

Go Implementation of “From Consensus to Atomic Broadcast: Time-Free

Byzantine-Resistant Protocols without Signatures”

[4] Correia, M., Neves, N.F., Veríssimo, P.: From consensus to atomic broadcast:

Time-free Byzantine-resistant protocols without signatures. Comput. J. 49(1), 82-

96,2006

[5] Baird L, Luykx A.: The Hashgraph Protocol: Efficient Asynchronous BFT for

High-Throughput Distributed Ledgers. COINS 2020, pp. 1-7

[6] Schneider F.: Implementing Fault-Tolerant Services Using the State Machine

Approach: A Tutorial. ACM Comput. Surv. 22(4), pp. 299-319, 1990.

[7] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine

generals problem. ACM Trans. Program. Lang. Syst., 4(3):382-401, 1982.

[8] Zheng Z., Xie S., Dai H., Chen X., Wang H.: An Overview of Blockchain

Technology: Architecture, Consensus, and Future Trends. BigData Congress

2017, pp. 557-564

[9] Gmytrasiewicz, P., Edmund D.: Decision-theoretic recursive modeling and the

coordinated attack problem. Proceedings of the First International Conference on

Artificial Intelligence Planning Systems, 1992, pp. 88–95.

[10] Miller A., Xia Y., Croman K., Shi E., Song D: The Honey Badger of BFT

Protocols. CCS 2016: 31-42

[11] Duan S., Reiter M., Zhang H.: BEAT: Asynchronous BFT Made Practical.

CCS, 2018, pp. 2028-2041

[12] Cachin C., Poritz J.: Secure Intrusion-tolerant Replication on the Internet. DSN

2002, pp. 167-176

[13] Go official website, https://golang.org/ (Accessed 25.06.2021)

https://github.com/npafitis/SSBFT
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://github.com/v-petrou/BFTWithoutSignatures
https://github.com/v-petrou/BFTWithoutSignatures_Client
https://www.researchgate.net/publication/220459271_From_Consensus_to_Atomic_Broadcast_Time-Free_Byzantine-Resistant_Protocols_without_Signatures
https://www.researchgate.net/publication/220459271_From_Consensus_to_Atomic_Broadcast_Time-Free_Byzantine-Resistant_Protocols_without_Signatures
https://hedera.com/hh-ieee_coins_paper-200516.pdf
https://hedera.com/hh-ieee_coins_paper-200516.pdf
https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf
https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf
https://lamport.azurewebsites.net/pubs/byz.pdf
https://lamport.azurewebsites.net/pubs/byz.pdf
https://www.researchgate.net/publication/318131748_An_Overview_of_Blockchain_Technology_Architecture_Consensus_and_Future_Trends
https://www.researchgate.net/publication/318131748_An_Overview_of_Blockchain_Technology_Architecture_Consensus_and_Future_Trends
https://dl.acm.org/doi/10.5555/139492.139503
https://dl.acm.org/doi/10.5555/139492.139503
https://dl.acm.org/doi/10.5555/139492.139503
https://www.researchgate.net/publication/309451430_The_Honey_Badger_of_BFT_Protocols
https://www.researchgate.net/publication/309451430_The_Honey_Badger_of_BFT_Protocols
https://www.csee.umbc.edu/~hbzhang/files/beat.pdf
https://cachin.com/cc/papers/sintra.pdf
https://golang.org/

47

[14] ZeroMQ official website, https://zeromq.org/ (Accessed 20.06.2021)

[15] ZeroMQ Guide, https://zguide.zeromq.org/ (Accessed 20.02.2021)

[16] G. Papaioannou, HashgraphBFT – Server Side (Accessed 02.06.2021)

 G.Papaioannou, Hashgraph_Client – Client Side (Accessed 02.06.2021)

 Go Implementation of Hashgraph BFT algorithm

[17] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009

[18] M. Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. BFT

replication. In International Workshop on Open Problems in Network Security

(iNetSec), pages 112–125, 2015

[19] Hedera official website, Hedera (Accessed 20.05.2021)

[20] L. Baird, The Hashgraph Protocol: Efficient Asynchronous BFT for High-

Throughput Distributed Ledgers, YouTube video, (Accessed 20.05.2021)

https://zeromq.org/
https://zguide.zeromq.org/
https://github.com/Giorgos-P/HashGraphBFT/
https://github.com/Giorgos-P/HashGraph_Client
https://bitcoin.org/bitcoin.pdf
https://www.researchgate.net/publication/301762992_The_Quest_for_Scalable_Blockchain_Fabric_Proof-of-Work_vs_BFT_Replication
https://www.researchgate.net/publication/301762992_The_Quest_for_Scalable_Blockchain_Fabric_Proof-of-Work_vs_BFT_Replication
https://hedera.com/
https://www.youtube.com/watch?v=BAfsN3NW2Zg&list=PLr-BND1DE3sUR7GMm4lgw3B3D94OT4NuL&index=8
https://www.youtube.com/watch?v=BAfsN3NW2Zg&list=PLr-BND1DE3sUR7GMm4lgw3B3D94OT4NuL&index=8

B-1

Appendix A
Here we show the pseudocode used to implement the see and strongly see relation.

Fig A.1 : The function who chooses to call see or Strongly see and the see function.

B-2

Fig A.2: Pseudocode of stronglySee relation

B-3

Appendix B
Here are shown the core protocols used in the algorithm.

B.1 Divide Rounds

FigB.1: Divide Rounds main routine

FigB.2: Divide rounds function for each given EventNode

B-4

B.2 Decide Fame

FigB.2 : The Decide fame routine

B-5

B.3 Find Order

FigB.3 : The find order routine

B-6

FigB.4: Set Round Received Round

FigB.5: Decide Order Function

C-1

Appendix C
Here is shown a different version of some algorithms.

C.1 Send Gossip

Fig C.1: Alternate Send Gossip routine pseudocode.

	Abstract
	Contents
	Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Methodology
	1.4 Document Organization

	Background
	2.1 Byzantine Fault Tolerance
	2.2 System Model
	2.3 Common Applications of BFT
	2.4 The ZeroMQ Communication Library
	2.5 The Go Programming Language
	2.6 BFT Algorithms

	HashGraph
	3.1 Overview
	3.2 The Gossip Protocol
	3.3 See and Strongly See
	3.4 Protocols

	Implementation Basics
	4.1 Execution
	4.2 Encryption and Hashes
	4.3 Structs and Variables
	4.4 Channels and Messages
	4.5 Sign and verification
	4.6 Sorting Events
	4.7 Algorithm Initialization
	4.8 Comparing Event Messages
	4.9 Client

	Go Routines
	5.1 Send Gossip
	5.2 Manage Client Requests
	5.3 Manage Incoming Gossip
	5.4 Protocols

	Implementation Details and Decisions
	6.1 Message Size
	6.2 Timestamps
	6.3 Orphan Events
	6.4 Comparing Transactions
	6.5 Sorted Events list
	6.6 Inserted Bounds
	6.7 HashGraph Size
	6.8 Messages Exchanged
	6.9 Empty Transactions

	Evaluation
	7.1 Scenarios
	7.2 Evaluation Summary
	7.3 Comparison with other Works
	7.4 Conclusions

	Conclusions
	8.1 Summary
	8.2 Notable Difficulties
	8.3 Suggested improvements

	Bibliography
	Appendix A
	Appendix B
	Appendix C

