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Abstract 

 

Ledgers are distributed databases and blockchain is a specific type of distributed 

database which stores data in blocks that are then chained together. The above databases 

are built in a decentralized way so that no single person or group has control. This makes 

it more robust on cyber-attacks. 

 

Byzantine fault tolerance is the property of a distributed system that is able to resist 

faulty behavior of nodes and continue operating. Ledgers and blockchains must have the 

BFT property because they are distributed and nodes in the system may have arbitrary 

behavior. To implement this property the system must be based on a Byzantine Fault 

Tolerance algorithm. 

 

Implementing BFT algorithms has been under research for many years in an attempt to 

implement new efficient solutions or improve the existing suggested algorithms. 

Randomized algorithms has been proposed to be simpler and more efficient than 

deterministic algorithms. Hashgraph is one of them. 

 

In this thesis we implemented the Hashgraph BFT algorithm in the Go programming 

language using the ZeroMQ framework for the communication between the nodes. We 

then conducted an experimental evaluation of the implementation's performance. 
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Introduction 
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1.1 Motivation 

Nowadays, the wide use of online systems makes malicious attacks more attractive 

and the consequences of a successful attack have become more serious. Therefore, 

implementing a service that successfully defends against such attacks is crucial. Solving 

such a problem requires time and resources and this subject has been under research for 

many years.  

Online systems provide services to clients. One way to implement a service is using 

a centralized server but this is prone to cyber attacks as it is a single point of failure. For 

that reason, providing the service in a distributed way may solve the problem. However, 

some of the servers may have arbitrary behavior. Therefore, we use the approach of state 

machine replication [6], meaning that we have multiple servers providing the same 

service where they communicate with each other so the non-faulty eventually has 

consistent state. 

BFT [7] is a property of a system where all the non-faulty nodes have eventually 

consistent state despite the existence of malicious nodes. Therefore, distributed systems 

must have the BFT property. A system has that property when each server executes a 

BFT algorithm. 

Implementing a robust BFT algorithm may have negative results in terms of latency, 

CPU usage and throughput. Therefore, there are many attempts to design fault-tolereant 

algorithms with good performance. An idea that may increase the performance of BFT 
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algorithms is the use of randomization where is expected to create simpler algorithms 

with better performance than deterministic ones.  

Therefore, we want to implement a randomized algorithm and experimentally 

evaluate its performance. We also seek to compare our experimental results with similar 

BFT algorithms and draw useful conclusions. 

1.2 Objective 

The objective of this thesis is the implementation and experimental evaluation of 

Hashgraph [5] in the Go programming language [13] using the ZeroMQ framework [14] 

for the communication between the nodes. Hashgraph is a randomized BFT algorithm, 

which we have implemented, executed in different scenarios and evaluated its 

performance. 

1.3 Methodology 

We separated the thesis in different stages. In the first stage, we studied research papers 

on distributed systems and Byzantine Fault Tolerance to get more familiar with those 

terms. Then we studied some several randomized BFT algorithms and chose one of them 

to implement.  The second was divided into two parts, (a) the implementation of the 

Hashgraph algorithm and (b) its experimental evaluation. 

 

Research on Distributed Systems and BFT 

To become more familiar and acquire knowledge relative to distributed systems we 

attended the Computer Science course CS432-Distributed Algorithms. We also used 

online resources to deepen our understanding of notions like state machine replication 

[6],  Byzantine faults [7] and BFT algorithms [8]. As a first step, we studied the simpler 

form of the problem, namely the “Two General’s Problem [7]. 

Research on BFT algorithms 

First, we studied the PBFT algorithm [2] and an implementation of a variant of PBFT 

[1], which is one of the first solutions for partially asynchronous networks and is 

deterministic. 

Then we studied in depth variants of randomized BFT algorithms. In particular we 

studied the protocols presented in [10,11,5,12,4].After studying the above algorithms, 

we concluded that the HashGraph algorithm [5] is a promising suggestion and that we 

would proceed with the implementation of this algorithm. 
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Development 

We decided to implement the algorithm in the Go programming language [13] using the 

ZeroMQ framework [14] for the communication between the replicas and with the 

clients. We used the official Go website [13] to download and install Go and learn more 

about Go libraries. For practicing Go we used the Go official website, tutorials on 

YouTube and made small exercises on variables and constants, arrays and slices, maps, 

structs, conditional statements, loops, pointers, functions, goroutines and channels. We 

studied the basics of ZeroMQ using its official websites [14] and the provided Guide 

[15], where we implemented some of the simple examples of client-server 

communication. 

The implementation of  [1] was very helpful. Also very helpful was the implementation 

in [3]. Both implementations in [1] and [3] are in the Go programming language and use 

the ZeroMQ framework. 

We developed the algorithm on a Linux operating system using the VS Code source 

code editor. The source code of our implementation both the server-side and the client-

side, can be found on GitHub [16]. 

After implementing the algorithm, we performed testing locally to check its correctness. 

We proceeded with the experimental evaluation where we used a cluster of 9 machines. 

At the end we compared our results with other implementations of randomized BFT 

algorithms. 

1.4 Document Organization 

In Chapter 2, we make a background overview on Byzantine Fault Tolerance, the system 

model and the implementation language. In Chapter 3, we describe the Hashgraph 

algorithm in simple words and its core principles. In Chapter 4, we present the structs 

used to implement the algorithm, how we used them and some important functionalities. 

Then in Chapter 5, a detailed explanation of how we implemented the Hashgraph 

algorithm is given by describing its core protocols. Next, in Chapter 6, we explain the 

reasons behind some implementation decisions and analyze some algorithm 

characteristics. Chapter 7 describes the scenarios we developed to validate the 

algorithm’s correctness, demonstrating the algorithms performance and compares it with 

other works. Chapter 8, contains our conclusions, notable difficulties and ideas that may 

improve algorithm’s performance.  
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Chapter 2 

Background 

 

 

2.1 Byzantine Fault Tolerance       4 

2.2 System Model                  5 

2.2.1 Byzantine replicas       5 

 2.2.2 Overview        5 

2.3 Common Applications of BFT               6 

2.4 The ZeroMQ Communication Library                 6 

2.5 The Go Programming Language             6 

2.5.1 Overview        6 

2.5.2 Concurrency        7 

2.6 BFT Algorithms         7 

 

2.1 Byzantine Fault Tolerance 

BFT [6,7] is under research for many years and efficient algorithms with high 

throughput and low latency are in demand especially now with the popularity of the 

cryptocurrencies. 

Online systems are expected to always operate, be reliable and have excellent 

performance. Systems  that use BFT algorithms might be a cryptocurrency, a service on 

a spacecraft or a Boeing 777, therefore the implementation of an excellent solution is 

critical. 

BFT is a systems property which states that the servers in a distributed system have 

eventually consistent state despite the existence of nodes with arbitrary behavior. 

There are different scenarios where we use BFT algorithms and this is depending on the 

system model. When there is a public-blockchain we need a more robust and probably 

weaker algorithm in matter of performance because the number of participants is not 

known and anyone can join [8]. Compared to private networks we need different and 

possibly simpler algorithms because we know the identities of all the nodes who 

participate.  
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In this thesis we focused on a private network where the communication between the 

nodes is asynchronous. 

BFT algorithms must be built on the Atomic broadcast which must satisfy the following 

properties [5]: 

Agreement: If any node outputs a transaction, then every node outputs that transaction. 

Total Order: For all i > 0, if T is the i-th output of a non-faulty node and T’ is the i-th 

output of another non-faulty node, then T = T’. 

Liveness: If a transaction is input to a non-faulty node, then it is eventually output by 

every non-faulty node. 

2.2 System Model                 

2.2.1 Byzantine replicas 

Some of the replicas in the system may have Byzantine (faulty) behavior; these faults are 

considered to be the most general and most difficult category of failures [7]. The 

Byzantine replicas may delay sending messages, omit sending messages, send messages 

with arbitrary content or communicate with some nodes and not others. The malicious 

nodes may collude and we assume that they are coordinated by a single adversary. 

However, we assume that they cannot produce a valid signature of a non-faulty node or 

find two messages with the same digest (hash value). 

 

2.2.2 Overview 

We consider a fully asynchronous distributed system where nodes are connected by a 

network. The system makes no timing assumptions and there is no upper bound on the 

communication delay. The network may fail to deliver messages, delay them, duplicate 

them or deliver them out of order. Algorithms are designed for a state machine 

replication system [6] that tolerates Byzantine faults [7] where at most  out of n 

replicas may have arbitrary (Byzantine) behavior. Each node receives a transaction from 

a client or another node and by communicating with each other has to determine when to 

write each transaction in its local storage unit. 
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2.3 Common Applications of BFT    

By observing common applications of BFT algorithms we can clearly see and 

understand why an implementation of a correct and efficient protocol is so important and 

has been under research for the last 20 years.  

Especially nowadays, cryptocurrencies are a main topic and many people invest their 

money in such currencies. An example is Bitcoin [17], whose network works in parallel 

to generate a blockchain with proof-of-work [18] allowing the system to overcome 

Byzantine failures and reach a coherent global view of the system's state. 

Another application is on aircraft systems and spacecrafts which are real time systems 

and the BFT solutions must have the least latency, close to microseconds.  

We can clearly see that if the faulty nodes manage a successful attack or the system does 

not perform efficiently, the results might be catastrophic.  

2.4 The ZeroMQ Communication Library                

ZeroMQ (also spelled ØMQ, 0MQ or ZMQ) [14] is a high-performance asynchronous 

messaging library, aimed at use in distributed or concurrent applications. It provides a 

message queue, but unlike message-oriented middleware, a ZeroMQ system can run 

without a dedicated message broker. You can connect sockets N-to-N with patterns like 

fan-out, pub-sub, task distribution, and request-reply. Its goals is zero administration, 

zero cost, and zero waste. It is developed by a large community of contributors and is 

available in more than 28 programming languages. 

We used the implemented communication from the SS-BFT implementation [1] and 

modified some small parts for our project. Executing the algorithm each node has 2 

sockets for each client and other node in the system, one is responsible to receive 

messages and the other one to transmit our messages. 

2.5 The Go Programming Language            

2.5.1 Overview 

Go [13] is a statically typed, compiled programming language designed at Google by 

Robert Griesemer, Rob Pike, and Ken Thompson. Go is syntactically similar to C, but 

with memory safety, garbage collection, structural typing and CSP-style concurrency. It 

was designed at Google in 2007 to improve programming productivity in an era of 

multicore, networked machines and large codebases. The designers wanted to address 

criticism of other languages in use at Google but keep their useful characteristics such as 
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static typing and run-time efficiency (like C), readability and usability (like Python or 

JavaScript) and high-performance networking and multiprocessing. 

 

2.5.2 Concurrency  

It is said that one of the most exciting aspects of learning the language is its concurrency 

model. Go’s concurrency primitives make creating concurrent, multi-threaded programs 

simple and fun. Go routines are a very simple and easy way to implement concurrency. 

Go routines can be thought of as lightweight threads. We can create a go routine by just 

adding the go keyword to the start of calling a function, then the function is executed in 

the background and the execution continues. Goroutines are divided onto small numbers 

of OS threads. They exist only in the virtual space of go runtime. Go has a segmented 

stack that grows when needed. That means it is controlled by Go runtime, not OS. Also, 

Goroutines are started faster than threads and are created with only 2 KB stack size 

compared to java threads which takes about 1 MB stack size. Therefore, Go seems an 

excellent option. 

2.6 BFT Algorithms 

PBFT [2] is a partially asynchronous algorithm which makes synchrony assumptions for 

correctness. A group of processors serves a group of clients by replicating the client’s 

requests. At any given time, exactly one processor is assigned to be the primary 

processor. The client requests a service operation by sending a message to the primary 

which broadcasts the client’s request to the rest processors. The processors executes the 

requests and reply to the client with the result. 

 

SINTRA [12] is a randomized ABFT algorithm suggested in 2002. It contains broadcast 

primitives for reliable and consistent broadcasts, which provide agreement on individual 

messages sent by distinguished senders. Total order is achieved by using multiple 

randomized Byzantine agreement protocols for binary and multi-valued agreement and 

implements an atomic broadcast channel on top of agreement. Threshold cryptography is 

a fundamental concept in SINTRA, as it allows the group to perform a common 

cryptographic operation for which the secret key is shared among the servers such that 

no single server or small coalition of corrupted servers can obtain useful information 

about the key. 
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Honeybadger [10] is an algorithm closely related to SINTRA [12] which in its 

threshold encryption scheme, any one party can encrypt a message using a master public 

key. It requires f+1 correct nodes to compute and reveal decryption shares for a 

ciphertext before the plaintext can be recovered. It is based on agreement on a random 

batch of incoming transaction. 

 

BEAT [11] is consisting of five asynchronous BFT protocols that are designed to meet 

different goals. Three of the five protocols are applied on general state machine 

replication and the other two focus on BFT storage. It aims to outperform Honeybager 

[10] by implementing more efficient threshold encryption and optimizing broadcast 

protocols. 

 

“From Consensus to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols 

without Signatures” [4] is a signature free BFT algorithm which provides atomic 

broadcast by implementing a vector consensus above a multi-value consensus with the 

help of an underline binary consensus and reliable broadcast. 

 

We now proceed to overview the implemented algorithm, Hashgraph [5]. 
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3.1 Overview   

Hedera [19] is a public distributed ledger for building and deploying decentralized 

applications and microservices. Those applications and microservices execute underline 

the Hashgraph consensus algorithm. It is a randomized ABFT (Asynchronous Byzantine 

Fault Tolerance) algorithm suggested by Leemon Baird in 2016 and it is based on two 

techniques to reach consensus, “Gossip about Gossip” and virtual voting. It works in a 

private, permission-based setting means the identities of all nodes are known beforehand 

and the network it is not open to an arbitrary participant. 

Hashgraph aims to improve throughput and latency compared to prior algorithm such as 

HoneyBadgerBFT [10] and BEAT [11] by executing broadcast and voting 

simultaneously. Compared to public blockchains (like bitcoin), those use Proof-of-Work 

(PoW)/Proof-of-Stake (PoS) as consensus model while Hashgraph uses the  Gossip 

Protocol and Virtual Voting. It also expected to be faster, more efficient, cheap and fair.                   

3.2 The Gossip Protocol  

HashGraph nodes use the gossip protocol to communicate. In this protocol each node 

chooses randomly another node and sends it all his events which he inserted in its graph. 

This mean it sends all the events it created and all the events that other nodes told him 

that they created. In Figure 3.1 we can see the structure of the message that is sent 

between the nodes, each message contains the signature of the node who created it, a 
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timestamp which is the time that the creator claims that it created it, the transaction and 

two hashes. The hashes point to the previous event in the graph and to the parent event. 

In Figure 3.2 we can see how the Hashgraph data structure is created by exchanging 

messages.  Each line corresponds to each node, for example, if we are Alice in “Alice” 

line  is the events that we created and in the other lines  it’s the events we learned with 

gossip protocol. The previous hash is the hash of the previous event in the Hashgraph 

line and it is the vertical line between events. Parent hash is the hash of the parent event, 

meaning the event from which we learned for the first time a transaction and is 

connected with the diagonal line. 

    

 

 

 

 

 

 

 

  

3.3 See and Strongly See  

The HashGraph data structure is based on the see and strongly see property to work 

correctly and handle malicious nodes. We will use the terms parent, self-parent, ancestor 

and self-ancestor. 

In Figure 3.3 the event A2 is self-parent of A3 and B3 is 

parent of A3. 

For example, the event A3 will contain the hash of event 

A2 and event B3.  

An event x is ancestor of event y if x is y or a parent of an 

ancestor of y. Ancestor and see relation is the same thing 

and we can see the pseudocode of this property in Figure 

3.4. 

 

 

Fig3.1: Gossip Event [20] 

 

Fig3.2: An example of the 
Hashgraph Data Structure [20] 

Fig3.3: The Hashgraph Data 
Structure [5] 
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For example, in Figure 3.3 ancestors of  A3 are 

the events A2, A1, B3, B2, B1, C3, C2, C1, D1, 

E2, E1.  

Strongly see enhances the seeing property by 

having many other nodes “vouch for” another 

vote. An event x can strongly see y if it can see 

(ancestor) event y and passes through 2n/3 events by different nodes. For example, in 

Figure 3.3 event C6 can strongly see D1. A more detailed implementation of see and 

strongly see is given in Appendix A. 

3.4 Protocols    

While receiving events the algorithm executes the following operations to determine the 

events order. The operations are: "divide rounds", "decide fame", and "find order". 

3.4.1 Divide Rounds 

It divides the Hashgraph into rounds by 

giving a round number to each event. Each 

event has round number R which is the max 

round number of its parents( self-parent and 

parent) and if it can strongly.  

see more that 2n/3 round R events it has 

round R+1. If it’s the first event that it 

created with round R+1 in that Hashgraph 

line it is a round r+1 witness. 

 

Figure 3.5 shows the divide rounds pseudocode from the Hashgraph paper [5]. The else 

statement when r is set to 1 it is only happening to the very first events on each 

Hashgraph line. Similarly, the “x has no self-parent” because all the events that inserted 

have self-parent except the very first which is the initialization of the graph.  

 

 

 

 

 

 

Fig3.5: The Divide Rounds Pseudocode [5] 

Fig3.4: Ancestor Pseudocode 
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3.4.2 Decide Fame 

For every 2 consecutive rounds where the round is decided we take the witnesses of 

those rounds. Then we have to determine which one of the witnesses in the smaller 

round is famous. For each witness in the smaller round we count how many witnesses 

from the  next round can strongly see them. if it can be strongly seen by 2n/3 round R+1 

witnesses it is considered famous. 

 

3.4.3 Find Order 

For each round in which we decided who are the 

famous witnesses and there is not a round before 

where is a witness we did not decide if its famous. 

If there is an event which is ancestor(see relation) 

from each round R famous witness and round R is the 

first round that this happens for this event. We set the 

event roundReceive as R, we find all the events which 

x is an ancestor,  have round < R and take the 

timestamps of those events. We set the consensus 

timestamp of this event the median of those 

timestamps. Median is the timestamp in the middle 

position in the array, the idea is that we set consensus 

time, the time a transaction has reached half the world. Figure 3.6 shows the findOrder 

algorithm. 

        

 

 

 

 

 

 

 

 

 

 

Fig3.6: The findOrder pseudocode [5] 
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4.1 Execution   

We can execute the algorithm with the command “HashGraphBFT $ID $N $CLIENTS 

$SCE $REM” where ID is the node id, N is the total number of  nodes in the system, 

client is the total number of clients, scenario is which scenario to be executed(0-3) and 

rem refers to local execution or remote where we set the IP of the remote machines. 

 

Then, it calculates the number of faulty nodes(   ), the threshold( T = N-f ) and 

opens a TCP connection to each client and node. Then it initializes the Hashgraph 

implementation and executes the go routines sendGossip, manageClientRequest and 

Manage incoming Gossip which are explained below.  
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4.2 Encryption and Hashes      

Each node has a key pair for digital signatures and all nodes know the public key for 

each other node. The Threshenc package implements the key creation and the hashes. 

The nodes must get the public key of each node from a trusted dealer. To implement the 

trusted dealer, we created a local folder where we have the key pair for each node, then 

we execute the algorithm and each node reads its key pair and the public key of each 

other node. For the keys to be created we have to execute HashGraphBFT with first 

argument “generate_keys” and second the number of nodes (HashGraphBFT 

generate_keys $N). The keys generated is RSA keys with 2048 bits length.  

The hash function we use is SHA384 which is set in the app.Hashes.go  “makeHash” 

function where we can change it if we want. 

4.3 Structs and Variables             

4.3.1 Gossip Message 

Figure3.7 shows the EventMessage struct, this is the message that the events gossip.  

- Signature is an array of bytes where the node who 

created the event signs it and insert the signature in this 

field.  

- Timestamp: the time the owner claims it created this 

event 

- Previous Hash: the hash value of the previous event = 

the self-parent event = the previous even in the same 

HashGraph line 

- Parent Hash: The Hash value of the parent event (if 

exists, is the diagonal line in the graph) 

- Owner: Is the ID of the creator of this event (= we also know in which Hashgraph line it 

will be placed)  

- Each transaction is unique and represented in three fields in the Message 

o Transaction: the string message 

o Number: an integer number which is increased 

o ClientID: The ID of the client who sent this Transaction. 

- First Owner: shows who created first this transaction 

EventMessage is in the package type so when is used in other packages is declared as 

type.EventMessage. 

Fig4.1: The Gossip Message  
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4.3.2 HashGraph Node 

Figure 4.2 shows the EventNode which is 

the node we insert in the HashGraph. 

Each EventNode is consists of: 

- EventMessage: The gossiped 

message for which this node is 

created. 

- PreviousEvent: is the event that 

eventMessage points to and we find 

it from the previousHash Field 

- Parent: is the event that eventMessage points to and we find it from the 

parentHash Field 

- OwnHash: The hash value(sha384) of the Event Message 

- Know: an array of bool of length N where we set who knows this event 

- Round: the round we give to this event with divide rounds algorithm 

- Witness: Boolean shows if this event is witness or not 

- Famous: if this event is witness it can be famous witness 

- Round Received: The received round of this even it is given from the divide 

order algorithm 

- Orderedplace: W have a listed where we have sorted the events and this is the 

place that the event are in that list 

 

4.3.3 Helpful Structs and Variables 

Figure 4.3 shows the structs that we use which 

help in the implementation of the algorithm. 

- Hashgraph: We use history to create the 

HashGraph. Hashgraph is a list of History 

struct – an array of lists. 

- OrphanParent: event nodes that we receive 

whose parent event we did not have yet. 

- OrphanPrevious: event nodes whose 

previous(self-parent) we did not have yet 

Fig4.2: The struct of the nodes in the HashGraph. 

Fig4.3: Helpful structures and variables 
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- SortedEvents: a list in which we have all the eventNode which are in the Hashgraph 

sorted by their timestamp 

- Mu_HashGraph: a mutex for the critical section – the Hashgraph 

- Witnesses: a map mapping integer values to array of Event nodes. Each value is the 

round number and the list contains the witnesses of that round.  

4.4 Channels and Messages  

The Figure 4.4 shows the channels we use to send and receive messages to each other 

node and to the clients. 

            

4.4.1 Nodes Channels & Messages 

Sending Events to other Nodes 

When we want to send a gossip 

message(EventMessage) to another node we create an 

object of type Message. Inside the payload we encode 

our eventMessage to a stream of bytes, inside type we 

insert the String “event” and our ID in the field from. 

Then we insert the Message object in the 

MessageChannel and a go routine which is 

continuously running checks if there is any events in 

the messageChannel and sends them to the recipient 

based on the from field. 

 

 

 

 

Receiving Events from Other Nodes 

When we receive a message its type is the Message struct. For each connection to 

another node we have a go routine which continuously checks whether is an event in 

each socket. For each event in the socket with type=”event” (this always happens, type 

field is redundant) it decoded to an EventMessage and inserted in the EventChannel. 

 

 

 

Fig4.4: Channels and messages for each node 
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Sending Events to Clients  

When we decide on the order of a transaction  we send a message to the client. We 

create a Reply message where we insert our ID in the field “from” and the integer 

number which corresponds the number of the transaction that is ordered. 

 

Receiving Messages from Clients 

Similar to Receiving Events from other nodes, we continuously check if we have any 

message in the sockets connected to each client and if we have we insert the message 

contents in a struct and insert it in the ClientChannel. 

 

4.4.2 Client Channels & Messages 

Client Sending Events 

For each node we have a client request channel 

where we put the messages we want to send to that 

node. When the client wants to send a transaction it 

creates a ClientMsg and inserts it in the 

ClientRequestChannel of the node he wants to send 

the transaction. 

We have a  go routine for each clientRequestChannel 

which is continuously executed checks if there are 

messages in this channel and transmits them to the 

corresponding node. 

 

Client Receiving Replies 

Client has a TCP connection with each node and a go routine for each connection which 

checks if there is a message. When there is a message to be received it is inserted in the 

response channel. The messages that the client receives is the Reply struct as shown in 

Figure 4.5. 

4.5 Sign and verification  

Sign: When a node creates an EventMessage, it initializes the signature field as empty, 

signs the message with the private key and then inserts the signature in the 

corresponding field 

Fig4.5: Client Channels and messages structs. 
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Verify: When a node receives an EventMessage based on the Owner field it knows who 

created that event. It creates a copy of the message with the signature field as empty and 

verifies the modified message with the signature and the public Owners key. 

The above are implemented in the package threshenc, file name: sign_and_verify.go.    

4.6 Sorting Events   

When we sort the event for the sortedEvents lists we sort them based on the timestamp. 

When we sort the events in the Decide Order Algorithm we sort them based on the round 

received and then based on the consensus time.                      

4.7 Algorithm Initialization 

- The first thing the algorithm does is to initialize all variables with the default 

values or creates lists with length zero. 

- It inserts N event nodes in the Hashgraph, one for each node. Those events have 

predefined field values and are always the same for all nodes 

- Always for each event we insert in the graph we insert it in the sortedEvents list. 

- Then we call the Divide Rounds event for each one of the N transactions which 

sets the transactions field Witness to true (because they do not have parent 

events) and round number to one. 

- It executes three functions, sendGossip, manageIncomingGossip and 

manageClientRequests as go routines which are always executed. 

4.8 Comparing Event Messages 

We compare the event messages in 2 ways using two functions. 

The first function is checkSameTransaction which compares two messages and returns 

true if the messages have the same transaction meaning same transaction string, Number 

and ClientID. 

The second function is checkTotallySameTransactions which compares two messages 

and returns true if all the fields of the two EventMessages are the same. More 

specifically we make the hash of the two messages and if it is the same we return true. 

4.9 Client 

The client is responsible to send transactions to the nodes and receives ACK from them. 

The Client is executed with the command  

“HashGraph_Client $ClientID $Nodes $Clients $Rem” where 
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ClientID is the id of the client, Nodes is the total number of nodes in the system and rem 

refers to local execution or remote where we set the IP of the remote machines. 

 

When a client is executed it opens TCP connections to each node. The number of clients 

is used to set its port number and Rem is used to set the correct IP addresses. For a 

remote scenario the IP addresses should be modified dependent of the machines.  

Inside the app.client.go each client starts sending transactions to the nodes. A client 

transaction contains a string which is the transaction and a number which is an increased 

integer number. Given the number of nodes the client calculates the total number of 

faulty nodes. When a client sends a transaction, he sends it to f+1 nodes to make sure 

that an honest node received its transaction. When a node has given an order on a 

transaction it sends an ACK to the client who created it, the client counts how many 

different nodes has accept its transaction and if it is ordered by more than f (>=f+1) 

nodes it consider that the transaction is ordered and writes in a log file the time since it 

sent the transaction. For every ordered transaction we also write in a log file the total 

number to order n transaction, we keep the time we sent our transaction and for every 

ordered transaction we subtract it from the current time and write the time elapsed and 

the number of ordered transactions in a log file. 

The Hashgraph algorithm needs to build the Hashgraph and then if it can, orders some 

transaction, due to the above empty transactions may help the last transactions to be 

ordered. Therefore, we set the clients to send a number of empty transactions to help 

ordering their transactions and to not wait for other transactions to be send. The empty 

transactions contains the string ”empty” as transaction and the increased integer number. 

 

When a client is executed it waits for ID/4 seconds to start sending transactions and then 

sends a transaction every one second. We set that so not concurrently all clients start 

sending transaction despite that there will be no problem. By setting the 

“NumOfTransaction” and “EmptyTransactions” variables inside client.go we set how 

many transactions for each client to send. We will see later that the frequency on sending 

transactions may have an impact on the performance of the algorithm. 
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5.1 Send Gossip   

Figure 5.1 shows the send Gossip routine pseudocode.  

In this routine  

- each node choose randomly the ID of 

one other node different from his. 

- Locks the HashGraph mutex because it 

will possibly modify data.  

- Finds all the events in the Hashgraph 

which we know that the node we chose 

to sync does not know them.(we use the 

Boolean array Knows) 

-  We insert the events in two lists 

o the events we created  

o the events the others created 

- First we sent the events that we created 

and then the rest. 

- We send the EventMessage which is Fig5.1: Manage Gossip routine pseudocode. 
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contained in a field in the EventNode object 

- Unlocks the Hashgraph mutex 

 

We use the sortedEvents list where we have all the Hashgraph events sorted based on 

their timestamp so the recipient will receive events in order from the older to the newer. 

But this may not happen because events may arrive out of order. We send first the events 

we created so if the other node learns from us a new transaction it will create a 

transaction in his Hashgraph line pointing to the transaction to our Hashgraph line. 

The algorithm also works if we sent the transactions in ascending order based on the 

timestamp, the pseudocode of this alternative is shown in Appendix C.                             

5.2 Manage Client Requests  

This routine manages the request 

we receive from a client and is 

executed continuously. Upon 

receive, the client messages are 

inserted in the clientChannel. An 

event in the client channel has a 

string which is the transaction, an 

integer number which is the number of this transaction and it is different for each 

transaction from the same client and the ID of the client who sent this request. 

For each request in the client channel: 

- we check if we have it in the Hashgraph (in any line) using the 

checkSameTransaction function.  

o If it exists we discard it and continue to the next message 

If it does not exist in the Hashgraph 

-  We create an EventMessage and insert the received message contents in the 

Event message, we set the timestamp to the currentTime (in UnixNano), the 

ParentHash is empty because we are the first who created this event, 

PreviousHash (hash of self-parent) is the hash of the last event in my Hashgraph 

line and in FirstOwner we insert our ID. 

- Then we digitally sign this eventMessage and insert our signature in the 

corresponding field. 

Fig5.2: Manage Client Requests routine pseudocode. 
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Then we create an EventNode and insert the above message in the corresponding 

field. Also, we fill the other fields with the correct data.  

o PreviousEvent(self-parent) we have the pointer which points to our last 

event in the Hashgraph 

o ParentEvent is nil because this event does not have parent. 

o OwnHash is the hash value of the eventMessage we created above 

o Know is a Boolean array of size N where every field is false except the 

know[ID] position  

o Round is set to default(=0) 

o Witness is set to false 

o Famous is set to false 

o RoundReceived is set to default(=0) 

o ConsensusTime is set to default(=0) 

o OrderedPlace is set to default(=0) 

  

 Then we append the above event node in the Hashgraph, more specific we 

append it in the list which corresponds to the events we created (HashGraph[ID].events) 

and insert it in the sortedEvents list in the correct index.                  

5.3 Manage Incoming Gossip 

This routine is responsible to receive the nodes gossip, decide whether to insert it in the 

graph or not, create another node based on the received event and when to execute the 

algorithms to determine the order of the transactions. 

 

It is continuously executed and iterates over the EventChannel which contains the 

eventMessages we receive from other nodes. 

For each message, it executes the 

checkGossip function and then calls the 

execute algorithms. 

Both functions are shown in the Figures 

below and are explained. 

 

 
Fig5.3.: Manage Incoming Gossip Routine 
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5.3.1 Check Gossip               

The checkGossip function, Figure 5.4 , 

takes as input the received EventMessage 

and determines if its valid, if we should 

insert it in the graph and also checks 

whether we should create another node 

and insert it in the graph in our 

Hashgraph line. 

An event is valid when  

- the timestamp it contains is not 

after the currentTime 

- The events signature is verified, 

we use the event.Signature field 

and the event.Owner which shows who created this event 

- If we do not have a totally same transaction in the Hashgraph (an eventMessage 

with the same hash value as the received) 

 

• Then we find the events parent and self-parent if exists. 

• Create an event node with the given field(eventMessage, parent and self-parent) 

and initialize its fields 

o In the Knows Boolean array we set as true our ID index and the index of 

the sender 

• If the event has a parent or a self-parent which we do not have yet we insert it in 

the corresponding list. We have two lists “orphanParent” where events whose 

parent is not known to us yet “orphanPrevious” whose gossip-parent is not 

known to us yet. 

• We also check if the received event is parent or self-parent of any event in the 

two above lists and delete the event from the corresponding list. 

• Last, we have to determine if we have to create a node in our Hashgraph line 

pointing to this event. 

We check our Hashgraph line if we have the received transaction. 

If we have that transaction we don’t do anything, otherwise similar when 

receiving a transaction from a client we create an eventMessage and an 

Fig5.4: Check Gossip Function pseudocode 
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eventNode which has self-parent our last event in our Hashgraph line. The only 

difference from receiving a transaction from a client is that this eventMessage 

has parentHash the hash of the previous received event and the eventNode has 

pointer to the previously created eventNode. 

 

5.3.2 Executing the Algorithms         

The function in Figure 5.5. shows when the algorithm decides to execute its routines to 

decide the order of the received transactions. 

After encountering many difficulties, we decide to set a bound on when to start 

executing the algorithm and for how many transactions. We set it to execute the 

algorithms for each 100 transactions. For example when 

we receive 200 transactions we set the algorithm to 

iterate till the 100th transaction and then we increase the 

bound by 100 so there is a gap of 100 transactions. 

(example:  with bound/next = 300 it will iterate till the 

200th transaction). 

The algorithms iterate in the sortedEvents array which 

contains all the transactions sorted based on their 

timestamp and variable “end” shows in which index the 

algorithms stops. 

 

In the paper states that the algorithm is executed for 

each transaction it receives but we decided to set that bound because the algorithm takes 

time  to be executed and also to avoid executing the algorithm repeatedly on the same 

transactions. 

 

This is an implementation decision which we made, however we believe that it is not 

implemented in the real Hashgraph algorithm and may not be a good solution. We insert 

it, so we are surer that the Hashgraph waits to receive a number of transactions and also 

give some time for transactions to be gossiped to other nodes. The fixed values is our 

choice and we believe it can be change or removed but with those the implemented 

algorithm is harder to fail.         

                              

Fig5.5 : Execute algorithms function. 
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5.4 Protocols 

5.4.1 Divide Rounds 

We know that in the SortedEvents list we have all the events (eventNodes) which exists 

in the graph in an ascending order based on their timestamp. Also, each event has a field 

orderedPlace which is the place of the event in the sortedEvents list but this field when 

we create an event and insert it in the Hashgraph is set to the default value which is zero 

and the divide rounds algorithm is responsible to set this value. The first N events in the 

list are the initial events in each Hashgraph line for each node and those events has 

round = 1 and their orderedPlace is already set. All the other events have orderedPlace 

zero, which mean this value is not the correct based on their index place in the list. 

 

Appendix B includes the routines used to implement the DivideRounds algorithm. In the 

first Figure we iterate in the sorted Events list till the index is equal to end. “end” 

variable is initialized from the execute algorithms function above. For each eventNode 

which has ordered place field value not equal to its ordered position in the list we 

execute the divideRounds algorithm for this event. When the orderedPlace field is 

different than the index of the eventNode it means that either we have not already 

executed the algorithm for this event or that we received an event with smaller 

timestamp than this event so we will execute the algorithms again for this event. From 

the first event that we execute the algorithm, it will be executed for all the events which 

come after that, since if the ordered place changed for one event all the events that 

comes after it have to execute the algorithm again.  

 

The divide Rounds event function is the second Figure in Appendix B. It takes as 

parameter the eventNode and the list sortedEvents. Then 

- if the event has not previousEvent and timestamp equal to zero  

o has round number 1  

o it is round 1 witness 

o This only occurs for the first N events 

- If the event is orphan ( we do not have its parent or gossip-parent) we set its 

round number and order place to -1 so we just wait to get its prior events. If the 

above does not apply we find the max round number of the event’s parent and 
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gossip-parent round and store it in variable R. Gossip-parent may not exist if it’s 

the first transaction created. 

- Then we count how many round R witnesses can strongly see the given 

eventNode. 

- If it’s strongly seen by more than 2N/3 events we increase the R variable by one. 

- Now we can set the famous variable. An event its consider famous if it has 

bigger round number that its parent’s events. 

- Then we init the round and witness field of the given event node 

- If the event its famous we insert it in the map in the corresponding witness round 

events list 

o Also, we check if it is round r-1 witnesses and remove it from that list 

Also, we have two variables, a Boolean variable “witnessChange” and an integer 

“witnessChangeRound”. When we change a witness, meaning that we declare an event 

witness and insert it in the corresponding witnesses list, we set the witnessChange 

variable to true and we keep in the witnessChangeRound the minimum round we insert 

or change a witness. 

 

5.4.2 Decide Fame  

After the execution of the divide rounds protocol, we execute the decide fame protocol 

which is shown in Appendix B.  

First, we find the minimum round we modify a witness using the minWitness change 

variable from the divide order algorithm and store it in a variable R. If there is not a 

witness change means that we should not execute the algorithm and we return.  

Then starting from the round R  

- we take the events of 2 consecutive rounds  

- For each event in the prior round, we count how many witnesses can see it in the 

next round. 

- If it’s seen by 2N/3 round R+1 witnesses it is considered famous. 

 

When we execute the algorithm for every round R witness, we increase the round 

R value by one and repeat. 
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In our implementation we decided to set the iteration to stop 2 rounds prior the 

maxRound number witness and set the minWitnesschange round to that value. This 

helps us wait till more events are inserted and the witnesses won’t change.  

 

5.4.3 Find Order 

After we decide which witnesses are famous, we can now check if we can decide the 

order of some transactions. In Appendix B is the pseudocode for the find Order protocol. 

We have a list which contains the events we ordered and for which we have sent an 

ACK to the client, we also have a list of events for which we have decided their receive 

round and consensus time but not send an ack to the client and a variable where we have 

the max received round that we ordered an event. Similar to decide fame we execute the 

algorithm till the maxRound-3, because there might be witness changes, so we wait to 

receive more events and the max round witness to be increased.  

There are transactions that may be ordered, but it’s possible that we receive event 

messages containing the same transaction after we decide its order. Therefore, for each 

ordered event (in OrderedEvents list and tempOrder) we iterate in the sortedEvents 

which contains all the events and if we have the same transaction we set its 

roundReceive to the roundReceive that has the ordered event. It is possible that we 

rewrite the same number in the some events but also we may set the roundReceive to 

Transaction that arrived after we ordered an event containing the same transaction 

  

Then we iterate in the sortedEvents lists, we use the end variable which is initialized in 

the executeAlgorithms function and iterate till that index.  

For each EventNode in sortedEvents 

 We do not order the eventNode if 

- it has timestamp == 0  

o only the first eventNode has timestamp = 0 

- its round number is not set  

- it has round number greater than the desired round 

- we already set a round received 

 

We order only the events which does not have parent event (and are not orphan) 

and we have a node pointing to them from 2n/3 different nodes. 
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We take the eventNode.round which is the round number determined in the divide 

rounds algorithm. 

Then for each round witnesses starting from the round+1: 

1. if the current round does not have famous witnesses or its greater than the 

desired round we break and continue with the next eventNode.  

2. we check if all the famous witnesses can see this event and if that is true, we 

call the setRoundReceived function which is shown in Appendix B. 

3. If the above does not satisfied, we increase the round number and repeat till 

we break the for loop or we set roundReceived to the eventMessage. 

 

Before ending the function, we call the decideOrder function, the pseudocode is shown 

in Appendix B. 

Above we order events that has round number. Events that have a round number are 

events for which we have executed the algorithm divide rounds, therefore those are 

events that are not orphan because divide rounds is executed for only not orphan events. 

 

SetRoundReceived 

We call this function when we decide on the round received of an event.  

- Creates a list of timestamps (int64,UnixNano) 

- For each event V in the Hashgraph (including the given eventNode) 

o If it’s the same transaction as the given eventNode 

▪ we set the roundReceived as the given round 

▪ If the v.round is after the round of the event we decide its order 

and prior to the roundReceived we check whether this event can 

see the given eventNode 

• If it’s true we insert the events timestamp in the list 

- We find the median of the list  

o set that as the consensus time 

o insert the event in the tempOrder list 

We can insert in the events any of the events with the same transaction because in the 

tempOrder we see the round received and the consensus Time. So, we set the consensus 

time in the event we have and insert that in the list. We do not have to insert the 
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consensus time in all other same transaction because we only need one with that and 

because the roundReceived is set in all of them we won’t try to order them again. 

 

DecideOrder 

At the end of the find order protocol we call the decide order function, which is shown in 

Appendix B to finalize the order of the temporary ordered transactions which are in the 

tempOrder list. We did that that we send ACKs for a round and then proceed to the next 

round.  

- We sort the event in tempOrder based on the receive round and then the 

consensus time. 

- We find the max round receive 

- We sent Ack to the clients for all events with received round < that the max 

- We remove the events from the tempOrder list and insert them in the 

OrderedEvents list. 
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6.1 Message Size  

Client Messages to nodes 

The messages received from the client contains a string which is the transaction and for 

simplicity we consider it as a character which is 1 byte, and an integer value which is the 

transaction number and its 4 bytes.Therefore the client messages is 5 bytes. 

 

Reply messages to Clients 

The messages sent to the clients contains 2 integer values, the sender node ID and the 

number of the message that its Ordered. Therefore, the Reply message has size of 8 

bytes. 

 

Gossip messages between nodes 

The gossip messages is type message and has fields payload, type and from. The type 

contains the string “event” (5Bytes), it is not used but it will be used if we send different 

type of messages. From is an integer value (4Bytes). Payload is a stream of bytes and 

contains an encoded EventMessages. The event message has fields 
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- Signature: 256 bytes 

- Timestamp: 8 bytes 

- Transaction:  1 byte 

- PreviousHash: 96 bytes 

- ParentHash: 96 bytes 

- Owner: 4 bytes 

- Number: 4 bytes 

- ClientID: 4 bytes 

Total: 469 bytes 

So total of a gossiped message is (469+5+4) 478 bytes.                                           

6.2 Timestamps  

As timestamp  we use the function Now().UnixNano which is the number of 

nanoseconds elapsed since January 1, 1970 UTC and it has type int64.                                             

6.3 Orphan Events    

We decided to implement the orphan lists and insert in the graph events that we have not 

yet receive the prior events they point to. However, for those events when we determine 

that they are orphan we do not execute the algorithms to decide round, fame and 

therefore ordering. We conclude to this because while implementing the algorithm to 

discard events that it has not receive their previous, each node created different graph 

despite that it showed that each node had sent the events it inserted in the graph to 

everyone else. Then we observe that many times the events arrive at the destination out 

of order so the event were discarded, since we can’t wait till we receive events and 

decide to insert it in the Hashgraph we implement the orphan lists which helps us to 

solve that problem and we consider those events to not exists when we execute the 

algorithms till we get their previous events . However, implementing this allows us to let 

the node gossip to other nodes all the events in its Hashgraph including orphan events 

and this we believe improves the time for each other node to learn the existing events.  

6.4 Comparing Transactions 

Check Same Transaction and Check Totally Same Transaction 

The client sends a transaction to F+1 nodes, therefore it is possible that we learn a 

transaction and then receive that same transaction from a client. Since we have a 

transaction in my Hashgraph line we should not make another transaction with the same 
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fields but different timestamp. We can gossip the transaction we already have without 

the need to create the same. That’s why in this occasion we only need the simpler check 

function which does not checks the timestamp or hashes. 

 

Because the client sends its transaction to f+1 nodes there might be multiple events with 

the same transaction and different owner. Similar many events with the same transaction 

exist when a faulty node creates multiple events with different timestamps. Therefore  

when receiving events we check if we have the exact same event and if we don’t we 

insert it in the graph and gossip it so that everyone knows its existence. 

6.5 Sorted Events list 

SortedEvents is a list which contains all the transaction that are in the Hashgraph sorted 

by their received time. We use this list to calculate the roundNumber and fame so we 

start from the oldest event going to the newest. Similar we use this list in the sendGossip 

protocol so we send the oldest events to each other node and then the newest, so we uses 

the orphan lists as less as possible. If the events arrive out of order the orphan lists help 

us solve the problem. 

6.6 Inserted Bounds 

While executing the algorithm we observed that the graphs and the order may be 

different. Hedera says that the graphs in the nodes may be different at the last events but 

after some time when all the transactions are submitted the graphs are identical. This 

continuous for as long as there are transactions transmitted. 

Therefore, we conclude to set some bounds on the algorithms. We chose to execute  the 

algorithms to the max round witness minus 2 so that we wait some time for the max 

round witness to be increased and then execute the algorithm on the transactions. The 

value we placed is something we chose and it may not needed or there might be a 

different solution. However, Hedera does not go into details on how they solve this 

problem so we implement it in this way. 
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6.7 HashGraph Size 

For each transaction with unique timestamp, we each node to create an event message 

with this transaction in its graph pointing to the first event or to any of the event which 

points to the first or any other which has the same attribute(point to the first or to an 

event who points to the first). So, for each client transaction that is received from a node, 

an eventNode is created and inserted in the graph, we expect N eventNodes to be in the 

graph. 

Example: K Clients, each sends m Transaction to any node in a system of N nodes total  

=>HashGraph Size =  k*m* N +N. 

The  “+N” is the first transactions created to initialize the Hashgraph. 

6.8 Messages Exchanged                                                 

For each event node in the Hashgraph we have a Boolean list where we set to which 

event we sent this transaction so we know to who knows it. Also, when we receive a 

transaction if we have the exact same in our Hashgraph we set the know[ID] to true so 

we know that this event knows this transaction and fewer messages has to be sent. There 

are many times that two nodes know a transaction but they do not know that they both 

know it, in this case its possible that one or two redundant events are send among those 

nodes which are discarded. 

6.9 Empty Transactions 

If there is a steady stream of transactions entering the system the Hashgraph size is 

increased and eventually each transaction is ordered. There must be found a witness and 

a famous witness in a round so we can order all the events before that round. If there are 

not enough events to find famous witnesses the last transactions may not be ordered. 

Therefore we can set in the client to send a number of empty transaction so there are 

more events in the Hashgraph and it is easier to find famous witnesses and order its 

transactions 
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7.1 Scenarios 

When executing the algorithm the fourth parameter is the scenario. We created four (4) 

scenarios which are explained below 

0 : Normal 

Normal scenario where no malicious nodes exist.  

1 : IDLE 

The malicious nodes do not send messages to anyone. We have to execute all the 

nodes and set this parameter. The malicious nodes receive the gossip messages but they 

do not execute the “SendGossip” protocol so they do not communicate with anyone. 

2 : Sleep 

The malicious nodes stop sending event messages to the other nodes for some time 

and then continue sending from where they stop. Similar to the above scenario we have a 

function inside SendGossip where we set in how may seconds the malicious events to 

stop executing and after how many seconds to start again. The events receive 

transactions from other nodes but they don’t send anything therefore when they start 

executing they will send messages which much smaller timestamps than the current 

time. 

3 : Fork 

When a malicious node  

- will send an event which it created (parentHash is nill), meaning the client told 

me this transaction and we insert event in the graph. 

- it chooses to sync with another node with ID < N/2  
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It creates a different event message, with a much smaller timestamp than the 

currentTime (<1000), it also set that its previous event in the Hashgraph line is 

the very first event of the malicious node. 

 Then the malicious node signs this event and send it to the other node. 

When the malicious node syncs with another node with ID < N/2 it will make the 

same actions and possibly it will give a different timestamp to that transaction. 

When it will sync with another node with ID >= N/2 it will send the correct 

message. 

 

In the above scenarios we execute the algorithm multiple times(and while executing for 

evaluation), compare the order of the transactions of the non-faulty nodes and we 

observed that the order is correct. 

7.2 Evaluation Summary 

In our experimental evaluation we executed the algorithms by increasing the clients 

and/or the transactions the clients send, the frequency they send transactions and by 

increasing the nodes. Most of our experiments where with 4 nodes and different number 

of clients. At the end of this sub chapter we explain the difficulties we observe when we 

increased the nodes.  

The results shown here are executions of a system with 4 nodes. Latency and frequency 

are measured in seconds. 

We executed the algorithm in a cluster of 9 machines. 

Table 7.1 shows the number of CPU cores of each 

machine in the cluster.  

In a system of 4 nodes we the machines with number 

0,1,6,7 to simulate the nodes and machine 3 to simulate all 

the clients. 

 

 

 

 

 

 

 

Table7.1: The CPU cores of each machine in 
the cluster  

 

Machine CPU cores

0 8

1 8

2 1

3 2

4 1

5 1

6 2

7 2

8 1
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Operation Latency 

 

 

 

 

 

 

 

 

 

 

Figure 7.1, shows the average time a transaction needs to be claim as ordered from a 

client. The clients wait to receive f+1 acks to assume that a transaction is ordered. Here 

we observe that the average time vary depending on the scenario. We see that the normal 

and fork scenario are faster than the idle. This is because more transactions are send over 

each node and the graph is build faster therefore its easier and faster to find famous 

witnesses. The latency seems about 10 seconds on average. In an experiment the 

Hashgraph paper shows that the latency in 4 nodes it is about 7 seconds where in this 

scenario, our implementation is close in some cases but its higher that the results shown. 

Also, the results show 22000 transactions per second, but this is much more than the 

experiments we executed. 

 

Message Complexity 

 

 

 

 

 

 

 

  

 

 

Fig7.1: Time for client to receive Ack. 

Fig7.2 : Total Messages over all transactions  
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The above figures and tables show the message complexity in some scenarios. We made 

experiments by sending 60,240,300 and 600 transactions from multiple clients. When a 

client sends a transaction, this transaction will be sent to all nodes, so messages are 

affected by the N. 

In Table 7.3 we took the values of Table 7.2 and we divided the total number of 

messages by the transactions so we found the average number of messages sent for each 

transaction. Then we calculated the average of tshose times. We concluded that the 

average number of messages send for each transaction is about 22 and 24 in the 

scenarios normal and fork. In the Idle scenario there are much less messages created 

because its one less node in the system and that’s why the average messages send for 

each transaction are about 13.  

As described in the Chapter 6.1 the message size is 478 bytes. So in average for each 

scenario there are  

- Normal: 22*478B = 10.25 MB transmitted 

- Fork : 24*478B = 11.2   MB transmitted 

- IDLE : 12*478B =   5.6   MB transmitted 

for each transaction 

 

Frequency 

We observe that the frequency the clients send transaction may affect the latency and 

also it may affect the number of acks send to clients. In each execution the number of 

acks send to clients may vary, this probably depends on the randomization and how the 

graph is build but how the graph is build might also affected by the frequency of 

transactions entering in the system.  

So, we decided to execute the algorithm with different frequency of clients sending 

transactions. We set the system to 20 clients, 4 nodes and 50 transactions per client and 

we increase the frequency from 3 to 6 

Total Transactions Normal IDLE Fork

60 1292.25 753.00 1481.33

240 5265.25 3026.67 5577.67

300 6714.25 3802.08 7068.08

600 13589.50 7805.67 14318.67

Total Messages

Table7.2: The values used for Figure 7.2 

Normal IDLE Fork

21.54 12.55 24.69

21.94 12.61 23.24

22.38 12.67 23.56

22.65 13.01 23.86

Average 22.13 12.71 23.84

Average Messages / Transactions

Table7.3: The average messages sent for each transaction 
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In total 1000 transactions are sent, 50 clients of 20 transactions each ,and we count the 

average latency for each transaction and the total number of acks send to clients. We 

notice that there is a big difference in acks send to clients while the frequency is 

increased, but when is 5 and 6 seconds the number of acks is close. Also, the latency 

changes but we have to consider that it depends also on the Acks. We see that with 

frequency 4 the latency is about 7.9 and with frequency 5 is 8.5 but we must also see that 

there are about 60 more acks send to clients with 5 as frequency.   

 

Throughput  

We observe the Hashgraph paper [5] which shows an evaluation where it is shown that it 

can order 22,000 transactions per second with latency about 7s on a system of 4 nodes 

and we decide to check how close to this we can get. We execute the algorithms normal 

scenario with 4 nodes, 20 clients with frequency 5 (based on the above evaluation) and 

started from 50 transactions per client and increasing it by 10. 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency Acks Latency

3 775 8.05

4 887 7.88

5 954 8.53

6 963 9.33

Table7.4: The Values used for figure 7.3  

 

 

N Clients Frequency(s) Transactions Total Transactions Acks Latency
50 1000 954 8.53

60 1200 1035 11.05

70 1400 1112 22.47

80 1600 1066 14.92

4 20 5

Table7.5: Increasing the number of transactions  

Fig7.3: How latency and Acks are affected when frequency changes 

 

Fig7.4: How acks and latency are affected when transactions are increased 
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The above table shows the results of the executions. We started from 50 transactions per 

clients (total 50*20) till 80 transactions per client. Acks is the number of acks send to 

clients. It is a small scale experiment but we observe that there is a linear increase in 

acks but the same happens to the latency. We can see that with 70 transactions per client 

we have 22 seconds latency which is 3 times more than the latency in the paper.  

We iterate till 80 transactions per client because the latency was increasing a lot when 

we try to execute the algorithm with 80 transactions. The numbers we see above is the 

moment we stopped the execution because it was executed for some minutes and it 

didn’t finish or send any more acks to clients.  

 

Performance over all transactions 

Because the Hashgraph needs time to be gossiped, build we thought that it might be a 

good idea to observe its behavior when it send acks for multiple transactions. For 

example, we calculate the time needed to send Ack for n client transactions because 

many transactions are ordered in one round and each transaction has different latency. 

Also, we calculate the time that a number of transactions is ordered over all the clients. 

This metric might be similar to latency but because we calculate it for multiple 

transactions and not for each is less than latency. 

  

 

 

 

 

 

 

The above table show the average number of transaction acks send to clients and the 

total number needed for those transactions. Similar shows the number of al transactions 

ordered and the time needed. We divide the total time with the number of transactions 

and we calculated the overall. 

The First overall value is similar to the latency which in Table 7.1 its average value is 9 

but here if we don’t consider the last case it is less than 6. 

The second overall value is the ratio showing how often a transaction is being ordered 

among all clients. 

Table7.6: Behavior over a number of transactions 

Clients Transactions Client Trans Total Time Overall Total Trans Total Time Overall

20 10 8.73 44.54 5.10 262 50.54 0.19

20 12 10.56 53.96 5.11 264 57.16 0.22

20 20 18.35 93.85 5.11 367 97.68 0.27

20 50 46.20 254.57 5.51 924 257.91 0.28

20 60 51.75 299.67 5.79 1035 302.26 0.29

20 70 55.60 661.61 11.90 1112 680.98 0.61

SystemPer Client
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Increasing the Nodes 

After the execution on 4 nodes we decided to increase the number of nodes so we 

observe how the algorithm scales.  

*As a reminder we know that we set some bounds in the algorithms on till which event 

to execute the algorithms and to let some rounds as gap till it find more rounds with 

witnesses. Therefore, the Hashgraph has to be built and then if there are rounds  with 

famous witnesses it will order some transactions. 

 

We increased the number of nodes to 7 and set the number of clients to 10 where each 

sends 10 transactions, so total 100 transactions per client. The nodes are 7 so if each 

client sends 1 event there will be 700 events in the graph in the normal scenario. 

Because the nodes are 7 there are 2 faulty nodes,  the clients sends their transactions to 

(f+1) 3 nodes. If the nodes insert the transaction in their graph without learning for it 

from other node who receive the same transaction there will be 3 same transactions in 

the graph with different first owner. If this happens to all transaction the maximum 

transasctions in the graph will be 2100 (700*3). 

We observe that this behavior happens and there are about 2000 transactions in the graph 

and each node sends about 12600 messages total. But we observed that there are only 4 

rounds created and because we set the decide fame and find order to wait for some 

rounds it does not order any events.  

 

Then we decide to execute the algorithm in the Idle scenario where the faulty nodes does 

not send messages. In this scenario there will be less events in the graph and we wanted 

to see if it would order any transactions and how many. We observe that it reached only 

round 3 and did not order any event.  

 

Last we decide to increase the number of transaction, so we set it to 20, with 7 nodes and 

10 clients. We observed that the algorithm delays couple minutes and by calculating the 

time needed for the algorithm we notice that the algorithm divide rounds and then find 

Order takes the most time. Then we set it to execute the algorithms after having 2000 

event in the Hashgraph in an attempt to reduce redundant operations, It kept taking too 

much time and at 3000 events we observe that it has events with round number 6, it send 

some Acks (14 out of 200) and it keep taking too much time so we stop the execution.  
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Unfortunately, we did not make it to execute the algorithm in a bigger scale and observe 

how it behaves because in real life scenarios it matters how easily the system is scalable. 

However, we notice that there is a problem in the implementation and a possible 

bottleneck in the real implementation of Hashgraph. We observe which protocol needs 

the most time and that there should be some improvements to increase the performance. 

7.3 Comparison with other Works 

We compare the results of our HashGraph implementation with the experimental 

evaluation of “From Consensus to Atomic Broadcast: Time-Free Byzantine-Resistant 

Protocols without Signatures” [4] – below is referred as “Algorithm2”. Unfortunately, 

we were only able to compare it with the small scale experiment on a system with 4 

nodes. 

Similar to Hashgraph, Algorithm 2 uses cryptography only to sign and verify messages, 

however, a Hashgraph node has to sign all its messages and verify all the incoming 

gossip message where possibly takes more time. 

We observe that the operation latency of Algorithm 2 with up to 75 clients sending 

transactions, on the normal and Idle scenario is maximum 2 seconds which is much 

lower than the HashGraph results, which is about 10 seconds. 

Hashgraph is not affected so much with the increase of clients sending transactions 

where in the Algorithm 2 the operation latency is increased. However, we observe some 

serious delays on Hashgraph when a big amount of transactions are send in the system. 

Also, the forking scenario in HashGraph may have a negative and positive result. 

Negative because it creates even more transactions to be transmitted and the Hashgraph 

size is increased so the algorithms take more time. On the other side, more events mean 

that it is easier for the algorithm to find witnesses and famous witnesses therefore the 

operation latency may decrease. 

Comparing to Algorithm 2 we observe that there is a significant delay in a scenario 

where the faulty nodes send different messages to the non-faulty nodes. It shown that 

with 75 clients the operation latency is increased up to 5 seconds but it is still less than 

Hashgraph.     

Comparing the message complexity, we see that Hashgraph sends much less messages 

for each transaction and it is not affected by the clients but by the nodes in the graph. For 

example, we saw that Hashgraph sends about 20 messages for each transaction 

compared to Algorithm 2 that sends more than 100 messages. 
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7.4 Conclusions 

Hashgraph aims to be efficient with improvements on the message complexity compared 

to other implementations. It is based on a gossip protocol and on Virtual voting which 

we observe that it really decreases the message complexity which is affected by the 

number of nodes. We concluded that the message complexity is O(N^2) for each client 

transaction, where N is the number of nodes.  

It needs low CPU usage in matter of cryptography where it uses it only to sign and 

verify messages, but it’s core protocols may need much resource power. We observe that 

the divide rounds algorithm which is based on recursive methods takes the most time 

and needs the most CPU usage. Improvements in this protocol may increase 

significantly the HashGraph performance. 

The operation latency is not as low as expected, which is about 10 seconds. Scaling the 

system was not possible due to the big delays of the protocols divide rounds and 

findOrder and some serious improvements should be made. 

 

In conclusion, Hashgraph is an efficient protocol with significantly small message 

complexity but high demand on CPU usage due to the algorithms executed in its core. 

Therefore, more research and improvements on the core algorithms may make it one of 

the most efficient BFT algorithm in all aspects. 
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Chapter 8 

Conclusions 
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8.1 Summary 

In paper [5] it was suggested that Hashgraph is an efficient algorithm with low message 

complexity. Despite the difficulties shown and the implementation results we still 

believe that with some improvements, the HashGraph protocol may have very good 

performance on a bigger scale. It is shown that it has small message complexity, 

suppresses all the previous work and that is a serious benefit. However, the CPU usage 

needed for its core principles is the bottleneck of the algorithm which needs more dive 

into details to understand and improve it. The performance may be affected from many 

parameters such as the frequency and number of transactions entering the system as well 

as the number of nodes in it.  

 Nowadays, especially cryptocurrencies revealed and stimulated a new demand 

for consensus protocols over a wide area network among large amount of node [8]. 

Many applications especially financial are based on BFT algorithms therefore there is a 

great need for robust and efficient protocols. Researchers are working to implement 

efficient BFT algorithms to improve some aspects, but most of the time delays in other 

aspects occur. Therefore, it is very challenging to implement a BFT algorithm that is 

efficient in all aspects compared to the existing ones.  

8.2 Notable Difficulties 

For implementing Hashgraph, we had to search research online, view YouTube tutorials 

and read the HashGraph paper [5] multiple times to understand how it works. Therefore, 

we implemented the algorithm based on [5]. It is a new algorithm and there are only a 

few examples showing how it works, especially when there is a malicious node. Hedera 
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has some examples on their website and on YouTube but are only few and simple and 

show how it works without faulty behavior of nodes. The protocol “Gossip about 

Gossip” was the most difficult to understand along on how the Hashgraph is built among 

all nodes. Also, we made some decisions on whether to run the algorithms and decide 

the order, and we inserted the orphan event idea which occurred when we saw that many 

events were arriving out of order. Those are not shown anywhere but with those, our 

algorithm works and it is less likely to fail. The above difficulties took us much time to 

understand and develop the algorithm. 

In evaluating the system, we observed big delays when we put clients to send many 

transactions or when we tried to execute the algorithm on a larger scale. We tried to 

make some improvements, but we were not able to execute the algorithm on a system of 

7 nodes or on a system of 4 nodes where clients send more than 2000 transactions in 

total due to the algorithm’s delays. 

8.3 Suggested improvements 

The algorithm may not be the ideal due to implementation decisions we made in order to 

work, such as the bounds and the orphan events. Also, we decided to check if we can 

realize the order of events after we receive all the incoming messages, but still there 

were big delays. A change in the above settings might increase the performance of the 

algorithm, for example, the bounds might be changed or removed, or the algorithm can 

be executed while receiving more events. Due to the fact that the orphan list we 

implemented it does not shown anywhere else makes us believe there might be a more 

correct way to create the Hashgraph data structure. 

When we sync, we choose another event and send it all our events history; here multiple 

parallel syncs can be implemented so the events are gossiped as fast as possible. 

Also, in our implementation, we execute three go routines, SendGossip, 

ManageClientRequests and Manage incoming Gossip. Each time a routine is executed:  

- it locks the Hashgraph lock,  

- finishes sending events(sendGossip) or checking the incoming message 

- modifies data if needed, and  

- unlocks the lock so another routine can be executed 

The above implementation might not be ideal and if a more complex one is 

implemented, it is possible that it will increase the performance. 
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Also the results might be affected by the programming language and the communication 

framework. The algorithm is based on executing recursive method multiple times. We 

know that each event can see all  the events that it’s parent and self-parent sees. 

Therefore, if we store more data when we execute a recursive method on a parent it will 

reduce the operations needed for the child and the time complexity. 

We did not implement all the above due to the time needed to implement it and the 

complexity to develop them. 

Based on the above we believe that there are many improvements which can be done 

and combined with a deeper understanding of the algorithm, it may have a strong result 

on the algorithm’s performance. 
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Appendix A 
Here we show the pseudocode used to implement the see and strongly see relation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig A.1 : The function who chooses to call see or Strongly see and the see function. 
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Fig A.2: Pseudocode of stronglySee relation 
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Appendix B 
Here are shown the core protocols used in the algorithm. 

B.1 Divide Rounds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FigB.1: Divide Rounds main routine 

FigB.2: Divide rounds function for each given EventNode 
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B.2 Decide Fame 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FigB.2 : The Decide fame routine 
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B.3 Find Order 

 

 

FigB.3 : The find order routine 
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FigB.4: Set Round Received Round 

FigB.5: Decide Order Function 
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Appendix C 
Here is shown a different version of some algorithms. 

 

C.1 Send Gossip 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig C.1: Alternate Send Gossip routine pseudocode. 
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