
Thesis Dissertation

AN EXPERIMENTAL STUDY OF TLS USAGE IN
MAIL SYSTEMS

Georgia Christou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2021

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

An Experimental Study of TLS Usage in Mail Systems

Georgia Christou

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2021

Acknowledgements

As my thesis dissertation comes to an end, I would like to express my gratitude to the

various people that made my road to this day feasible.

For starters, I would like to thank my supervisor, Dr. Elias Athanasopoulos, whose

guidance, dedication and understanding were of absolute importance to the development

of this project. I am grateful to be given the chance to work for this project, and I am

certain it would hardly be the same experience if not for our excellent collaboration and

communication.

Of course, I also have to acknowledge the importance of Dr. Georgios Portokalidis’s

contribution to this project, whose insight and ideas allowed for various optimizations to

change the project for the better.

Finally, I owe a big thank you to my friends and family, having been on my side sup-

porting me during the course of yet another important year, just like they did consistently

and sincerely throughout my life.

1

Summary

To protect private information communicated over e-mail, it is common practice for e-

mails to travel over the Internet using encryption. While an e-mail travels to reach its

recipient’s mailbox, encryption stands to hide the e-mail’s contents by transforming them

into an unreadable form so they become useless in the wrong hands. Unfortunately,

though most e-mail providers today deploy encryption in their transits, there are cases

that encryption is omitted, leaving an e-mail’s sensitive information utterly unprotected

in the wrong hands, which does not depend on the recipient but entirely on the deliv-

ery servers. This research aims to examine how frequently this happens, which websites

expose potentially sensitive information, as well as the various factors that contribute to

it.

The use of Transport Layer Security (TLS) in today’s e-mail transits was examined

by focusing on the TLS usage of multiple Gmail mailboxes. As a starting point, a Gmail-

based TLS scanning tool was designed to be installed on Chrome browsers. The tool was

then distributed to different Gmail users to scan the security of their mailbox and collect

brief summaries of data to be used for evaluation purposes. As part of this thesis, a sample

of Gmail mailboxes were examined, revealing a generally descent but not nearly ideal

image of encrypted to unencrypted e-mails, as well as an unforeseen lack of consistency

in the TLS behaviour of different e-mail providers.

2

Contents

1 Introduction 8
1.1 Problem statement . 8

1.2 Project objectives . 9

1.3 Project contributions . 10

1.4 Thesis organization . 10

2 Ethics 12

3 Background 14
3.1 Transport Layer Security in e-mail communication 14

3.2 Routing information lying in e-mail headers 15

3.3 Google Chrome extensions . 15

4 Architecture 16
4.1 The need for a tool to inspect Gmail mailboxes 16

4.2 How a Chrome extension can gain insight into any Gmail mailbox 17

4.3 The practicality of Chrome extensions in developing Gmail-based appli-

cations . 18

4.4 The extension’s interface with the user 18

4.5 The extension’s required permissions and data of interest 18

4.6 How a user of the extension becomes a study participant 20

5 Implementation 22
5.1 Communication between the extension’s components 22

5.2 User authorization . 25

5.3 How the extension’s execution differs for scanning different scopes of a

mailbox . 25

5.4 Steps and hurdles of fetching e-mail IDs 26

5.5 The handling of e-mail metadata . 29

5.6 Preparation and validation of user results 30

3

6 Evaluation 31
6.1 General observations on the gathered data 31

6.2 TLS usage of individual e-mails . 33

6.2.1 E-mail deliveries comparisons per year 33

6.2.2 E-mail deliveries comparisons per e-mail size 34

6.2.3 E-mail deliveries comparisons per MIME type 37

6.2.4 E-mail deliveries comparisons per providers’ DNS status 37

6.3 TLS usage of the various e-mail providers 40

6.3.1 A definition of TLS inconsistency 40

6.3.2 Correlations between providers of unencrypted deliveries 40

6.3.3 An overview of some of the most prevailing e-mail providers . . . 41

7 Related Work 44
7.1 Studies that analyse e-mail patterns . 44

7.2 Studies that target TLS in e-mail communication 45

8 Conclusion 46

Bibliography 48

Appendix A A-1

Appendix B B-1

Appendix C C-1

Appendix D D-1

Appendix E E-1

Appendix F F-1

4

List of Figures

4.1 Overview of how a Chrome extension can be used as an experimental tool

to gain insight into any Gmail mailbox 17

4.2 The extension’s popup screen . 19

4.3 The extension’s modal screen for labels customization 19

5.1 Communication between the extension’s components 23

6.1 Ratio of encrypted to unencrypted e-mails per user mailbox 32

6.2 E-mail observations per year. (a) Distribution of encrypted and unen-

crypted e-mails among years, (b) Ratio of encrypted to unencrypted e-

mails per year . 35

6.3 E-mail observations per e-mail size. (a) Distribution of encrypted and

unencrypted e-mails among e-mail sizes, (b) Ratio of encrypted to unen-

crypted e-mails per e-mail size . 36

6.4 E-mail observations per MIME type. (a) Distribution of encrypted and

unencrypted e-mails among MIME types, (b) Ratio of encrypted to unen-

crypted e-mails per MIME type . 38

6.5 E-mail observations per providers’ DNS status. (a) Distribution of en-

crypted and unencrypted e-mails among providers’ DNS statuses, (b) Ra-

tio of encrypted to unencrypted e-mails per providers’ DNS status 39

5

List of Algorithms

5.1 Pseudocode for popup.js . 24

5.2 Pseudocode for background.js . 24

5.3 Pseudocode for scan.js initial steps . 27

5.4 Pseudocode for scan.js processing steps 28

6

List of Tables

6.1 Encrypted and unencrypted e-mail distributions for, (i) the total of in-

spected e-mails, (ii) an average user mailbox and (iii) between the differ-

ent e-mail providers . 32

6.2 Correlations between providers of unencrypted deliveries. (a) Correla-

tions between e-mail providers with positive unencrypted e-mail ratio,

(b) Correlations between e-mail providers with positive protocol swap

frequency . 41

6.3 Top 10 most popular e-mail providers 42

6.4 Top 10 most active e-mail providers . 42

6.5 Top 10 most unsecure e-mail providers 43

6.6 Top 10 most inconsistent e-mail providers 43

7

Chapter 1

Introduction

Contents
1.1 Problem statement . 8

1.2 Project objectives . 9

1.3 Project contributions . 10

1.4 Thesis organization . 10

1.1 Problem statement

Though e-mail security is a rather expected part of today’s e-mail infrastructure, the origi-

nal design of e-mail was not introduced with e-mail security into the picture. When e-mail

was first established, over 50 years ago, e-mails were all transmitted in plain-text. Ulti-

mately, this induced a number of security risks and concerns, which, in order to be tackled,

demanded the introduction and development of various security tools and techniques that

in turn formed the picture of e-mail infrastructure as we know it today.

Even when e-mail security came into the picture, nonetheless, it was never much of a

burning issue or a concern for the general public, not until the most recent years.

In 2016, Google enhanced Gmail with a vital security update, introducing a red pad-

lock [4] to any e-mail sent or delivered without encryption, an update that allowed users

to ponder over the security of their mailboxes and consequently their privacy.

Gmail’s introduction of the red padlock did not expose something concerning or af-

flicting Gmail users exclusively, but rather it revealed a worrying truth regarding the e-

mail community as a whole. As e-mail users, unfortunately, we have no control over how

our e-mails arrive to us or how they travel over the Internet before they reach our mail-

box. What’s more than that is that, in many cases, neither as the sender side of an e-mail

exchange do we control or know how an e-mail leaves our mailbox. With that in mind,

8

it is fairly rational that we do not only expect but trust on our e-mail providers to ensure

our right to privacy. As Gmail’s red padlock revealed, however, this is not something we

should be taking for granted, as our privacy in many times is completely swept aside, with

a number of e-mails even today still travelling over the Internet in plain-text.

1.2 Project objectives

As part of this project we present a sampling evaluation of today’s use of Transport Layer

Security (TLS) in e-mail transits, by collecting and processing header information from a

number of e-mails delivered to various Gmail mailboxes.

Overall, our study reveals a generally descent yet far from perfect image of encrypted

to unencrypted e-mails, with a significant number of e-mails found to have been delivered

in plain-text and a noticeable number of e-mail providers found to be inconsistent in their

TLS usage.

Our study’s focus lies in examining both the profiles of individual e-mails as well as

the behaviour of their e-mail providers.

We examine the TLS usage in individual e-mails by comparing and contrasting en-

crypted and unencrypted e-mails in regards to,

i their year of delivery,

ii their size,

iii their MIME type and

iv the DNS status of their e-mail provider.

Our analysis of approximately 100K e-mails reveals a declining trend in the vol-

ume of unencrypted e-mails delivered in the most recent years, a uniform distribution

of encrypted and unencrypted e-mails between different sizes and DNS statuses of their

providers, whereas it appears that some MIME types are more prone to come in plain-text

than others.

A volume of around 1K e-mail providers are behind the delivery of our examined e-

mails. As part of our evaluation, we target the TLS usage of these providers in respect

to,

i their portion of unencrypted deliveries,

ii the consistency in their encrypted and/or unencrypted deliveries,

iii their popularity among users and

9

iv their activity, as this arises from their total number of e-mail deliveries.

Our e-mail providers’ examination reveals that providers with high popularity and

activity are more likely to be responsible for none or very few unencrypted deliveries,

while for the case of the most inconsistent providers, they are more likely to be of very

low popularity and activity.

1.3 Project contributions

Though a number of previous studies focused on the analysis of e-mail patterns, their

motivation did not lie in investigating how these pattern can potentially link to e-mail

security. Similarly, though a number of studies in the most recent years examined the

TLS usage in e-mail transits, their methodology did not rely on a number of volunteering

participants but rather on servers scans, connections monitoring and/or security evaluation

tests. Similarly to our study, the latter studies revealed an alarming volume of unencrypted

deliveries in today’s e-mail infrastructure, however they did not target how the profiles of

such e-mails or their deliverers can potentially hint at this phenomenon.

Developed with Gmail’s red padlock feature as a reference point, TLS SCANNER FOR

GMAIL is a Google Chrome extension designed as part of this thesis in order to give us

insight into the mailboxes of a number of Gmail users willing to participate in our study.

TLS SCANNER FOR GMAIL offers three major benefits. For starters, it gives Gmail

users that harness it an overview of the security of their mailbox, providing them with

links to any e-mails delivered to them in plain-text. Moreover, the tool stands as a research

tool, offering its users the option to participate in our study by anonymously uploading

brief summaries of their results to cloud so we can further analyse and explore them in

regards to other Gmail mailboxes. The implementation of TLS SCANNER FOR GMAIL

can moreover stand as a reference point to build similar tools and examine the TLS usage

in other e-mail services, other than Gmail.

1.4 Thesis organization

This thesis starts off with an Ethics section meant to highlight the ethical details concern-

ing the development and distribution of TLS SCANNER FOR GMAIL. It then proceeds

with providing some Background knowledge necessary to understand the remaining of

this project. The thesis continues with explaining the overall Architecture and Implemen-

tation details of the project, including the development of TLS SCANNER FOR GMAIL

extension as well as the experimental setup and data collection procedure. The thesis con-

10

cludes with presenting the Evaluation methodology and its emerging results. A section

devoted to other Related Work is also included before the Conclusion section.

11

Chapter 2

Ethics

As part of this project we aim to inspect the TLS usage in today’s e-mail infrastructure by

preserving a cautious, privacy-focused approach towards our study’s participants.

TLS SCANNER FOR GMAIL extension is developed to run as a local process, con-

fining its execution to the user’s machine. That way, any processing steps the extension

performs and any data it goes over or collects do not forsake their confidentiality within

the user’s computer until the user consciously allows for it.

If a user of the extension decides to become a study participant by making their re-

sults public to be used as part of the study, then all they have to do is upload them to a

shared Dropbox folder among the rest of the users’ results. Dropbox offers multiple ad-

vantages, among which allowing for anonymous uploads, while at the same time ensuring

that no one but the folder’s creator can gain access into the folder’s input, something that

ensures that results uploaded by one participant cannot be seen or modified by any other

participant.

Of course, the extension’s local nature of execution and the advantages offered by the

participants’ Dropbox uploads are only as privacy-preserving as the extension’s gathered

data allow them to be. The most important factor to ensure a privacy-preserving policy

in our data collection procedure is ensuring that any results uploaded to Dropbox do not

contain information that could be used to identify the user or trace back to them in any

way. To do that, the extension’s insight into a user’s data only goes as far as to fetch,

process and record information found within e-mail headers. The results a user ultimately

uploads to Dropbox merely consist of abstract descriptions of the e-mails found within

the user’s mailbox, including information such as e-mail sizes, dates and e-mail providers,

among others, but no information on the e-mail contents or the identities of senders and/or

recipients. TLS SCANNER FOR GMAIL, however, does need one piece of sensitive

information from the users’ mailboxes, a way to distinguish the users in case one user

uploads multiple files of results. To do that while preserving user anonymity, Dropbox

uploads come with a unique identifier for each distinct Gmail mailbox, a hashed value

12

of the user’s Gmail account, which by nature ensures the uniqueness between distinct

accounts and at the same time hides the user’s real identity behind a hash.

13

Chapter 3

Background

Contents
3.1 Transport Layer Security in e-mail communication 14

3.2 Routing information lying in e-mail headers 15

3.3 Google Chrome extensions . 15

3.1 Transport Layer Security in e-mail communication

Transport Layer Security (TLS) [7] is an encryption protocol designed to provide security

over communications over the Internet. When TLS is used for communication over e-

mail, the protocol protects an e-mail’s contents from being read by third parties while

the e-mail is in transit. An e-mail, however, may pass through various servers before

reaching the receiver’s mailbox. At the very least, only two servers participate in the

exchange, the sender’s Mail Transfer Agent (MTA) and the receiver’s MTA, both of which

communicate with their respective Mail User Agent (MUA) in order to transfer the e-mail

from or to the user’s mailbox. In this simple scenario, the connection’s security solemnly

depends on the protocol used by the sender’s MTA. When intermediate servers participate

in the exchange, then the protocols used by each of them may vary. Each participating

server receives the e-mail via an established connection, secure or unsecure, and passes

the e-mail on to the next server by establishing its own connection, secure or unsecure.

Eventually, the e-mail arrives at the receiver’s mailbox via the connection established by

the last participating server.

14

3.2 Routing information lying in e-mail headers

The complete list of servers participating in an e-mail’s transfer can be found in the e-

mail’s headers, by unfolding the information contained in the headers’ Received fields

from bottom to top. Received fields are appended whenever one server receives the

e-mail from another via a given protocol. The identities of the two servers as well as

the given protocol are usually recorded in the respective Received field by the recipient

MTA, however, it is not uncommon for a server to append the field with insufficient

information on the transfer. Luckily, this is not the case for the latest appended Received

fields when these are recorded by the recipient’s MTA and MUA. In the case of Gmail,

these fields bare a consistent and predictable structure that is not only reliable but presents

a well-rounded understanding of how an e-mail ultimately arrives at the user’s mailbox.

3.3 Google Chrome extensions

We can gain access into a Gmail mailbox via the use of a Google Chrome extension.

Google Chrome extensions [1] are JavaScript based applications designed to be installed

in Chrome browsers so as to alter or enhance the browsers’ functionalities. Though most

extensions offer a user interface, most often in the form of a mini popup appearing at

the top-right corner of the screen with the use of a button, Chrome extensions are also

capable to run as background processes, without requiring any user interaction. No matter

the extension’s design, nevertheless, in order for a Chrome extension to be functional, it

requires a manifest.json file, a special file including defining information on the extension,

such as a list of all the scripts it is allowed to run or any permissions it requires in order

to access various Chrome APIs. When it comes to making a Chrome extension public

for people to use, Chrome extensions are usually found and installed via the Chrome

Web Store, but it is also possible for people to install an unpublished extension to their

browser, considering the extension’s source code is available for people to download on

their computer.

15

Chapter 4

Architecture

Contents
4.1 The need for a tool to inspect Gmail mailboxes 16

4.2 How a Chrome extension can gain insight into any Gmail mailbox . 17

4.3 The practicality of Chrome extensions in developing Gmail-based
applications . 18

4.4 The extension’s interface with the user 18

4.5 The extension’s required permissions and data of interest 18

4.6 How a user of the extension becomes a study participant 20

4.1 The need for a tool to inspect Gmail mailboxes

Any Gmail user can manually inspect the headers of their e-mails [5] and determine the

protocol with which each e-mail was delivered to Gmail’s MTA. This is not a particularly

difficult thing to do, however, it is surely a time consuming and automated procedure.

With that in mind, a Chrome extension can perform this task on behalf of the user, gain

access into their Gmail mailbox and scan the headers of all their e-mails, one after the

other. Other than merely inspecting each e-mail’s latest used transfer protocol, the ex-

tension can moreover collect further information lying in each e-mail’s headers. TLS

SCANNER FOR GMAIL is a Chrome extension designed as part of this research to do just

that.

16

4.2 How a Chrome extension can gain insight into any
Gmail mailbox

Figure 4.1 presents how developing and employing a Google Chrome extension can give

us insight into anyone’s Gmail mailbox.

Figure 4.1: Overview of how a Chrome extension can be used as an experimental tool to gain

insight into any Gmail mailbox

TLS SCANNER FOR GMAIL is an open source Chrome extension, available for down-

load on a public website. Anyone with a local copy of the extension can install it on their

Chrome browser and anyone with a Google account can then have it scan their Gmail

mailbox.

Just like a Gmail user would manually scan their mailbox locally, the extension im-

itates this behaviour and bounds its execution to the user’s computer. Only after the

extension’s execution is over, TLS SCANNER offers the user the chance to make their

results public. The way TLS SCANNER presents this choice is by offering the user a link

to download a local copy of their results and another link to upload these results to cloud

so we can ultimately gain access to them.

17

4.3 The practicality of Chrome extensions in developing
Gmail-based applications

Considering both Gmail mail service and Chrome web browser are developed by Google,

it is no surprise that their RESTful APIs offer functionalities that collaborate and interact

in harmony with one another, making the development of Gmail Chrome extensions con-

siderably handy. As a Gmail Chrome extension itself, TLS SCANNER makes the most

out of Chrome API and Gmail API [3], while at the same time it harnesses its JavaScript’s

client side nature to confine its execution to the user’s computer.

4.4 The extension’s interface with the user

TLS SCANNER is free for anyone to access and download on their computer, whether

they are interested to participate in the study or merely curious to scan the security of

their mailbox. Following the instruction manuals found on the extension’s website, any-

one with a local copy of the extension can install it on their Chrome browser, regardless

of whether they have a Gmail account or not. The extension appears among any other

Chrome extensions at the top-right corner of the user’s screen and presents an introduc-

tory popup whenever it is clicked, as this is illustrated in Figure 4.2. The popup appears

even if the user doesn’t have a Gmail account, but its functionality only goes this far.

At the bottom of the popup, the extension asks the user to choose among two scanning

options, to scan their whole mailbox or only specific labels of their choice, as these are

determined dynamically via a custom modal window illustrated in Figure 4.3. To proceed

with either of the two scanning options, the extension requires the user to own a Google

account and consequently a Gmail account, necessary to authorize the extension with.

4.5 The extension’s required permissions and data of in-
terest

The extension takes a structured, iterative approach to scan a user’s mailbox as soon as

it’s given permission to. The process requires read-only access to the user’s e-mails, since

there is no need to alter anything, merely to go through each e-mail’s headers. While going

through the user’s mailbox, the extension keeps track of two distinct results statements,

one for the user to see and another to be used as part of the experiment. The first results

statement is updated whenever the extension classifies an e-mail as unsecure, while the

second results statement is updated after any e-mail is processed. Specifically, whenever

an e-mail is classified as unsecure, the user gets to see a brief summary of the given e-mail

18

Figure 4.2: The extension’s popup screen

Figure 4.3: The extension’s modal screen for labels customization

19

on their screen, including the e-mail’s subject, sender and latest transfer protocol, as well

as a link to open that e-mail in a new tab. At the same time, the extension appends its own

results statement, which the user doesn’t know of until the very end of execution. The

extension’s results statement consists of records of all the processed e-mails, with each

record including,

i the e-mail service that initiated the e-mail’s delivery,

ii information on the provider that ultimately delivered the e-mail to Gmail’s MTA,

iii the transfer protocol the e-mail reached the user’s mailbox with,

iv the date of the delivery,

v the e-mail’s size estimate and

vi the type of data lying inside the e-mail, declared via the e-mail’s media type (also

known as MIME type).

4.6 How a user of the extension becomes a study partici-
pant

As soon as the extension’s processing is over, it is now up to the user to complete their

part in the experiment, by choosing to convey the extension’s results statement to us. This

is not performed automatically. The user downloads a copy of their results statement so

they can examine it, if they want to, and make sure they comply with the data we ask from

them. Considering the user decides to deliver their results statement, all they need to do

is upload them to a shared cloud folder accessible via a Dropbox file request. Dropbox

file requests have three major benefits. For starters, they allow for anyone with the link to

the request to make an upload, regardless of whether they have or not a Dropbox account.

Moreover, they allow for anonymous uploads. And finally, no matter how many people

have access to a file request link, no one but the file request’s creator has access to the files

uploaded to that link, which protects individual user results from being read or modified

by non-entitled third parties. The fact that a user’s results cannot be modified after their

upload does not make them, however, overall reliable or resistant to change. Not only

can the file request link accidentally end up in the wrong hands, but even a user of the

extension themselves can, for some reason, decide to modify their results statement before

they upload it. For that reason, as illustrated in Figure 4.1, the complete circle of a user’s

data collection does not end with the user’s upload.

20

Before anyone’s data can be considered valid to include in the survey, the integrity and

the origin of the data first need to be established. We manage to do that by authenticating

each user’s results statement via a unique digital signature. TLS SCANNER creates that

signature at the end of its execution and includes it inside the results statement the user

uploads to Dropbox. A digital signature is by nature unique for a specific document and

if either the signature or the document is modified their unique pairing ceases to exist.

That way, as soon as someone’s results are on Dropbox so we can download them, we

first aim to authenticate them, via the given digital signature, so we can either proceed to

store them alongside the rest of valid results, or otherwise consider them unreliable and

immediately discard them from the survey.

21

Chapter 5

Implementation

Contents
5.1 Communication between the extension’s components 22

5.2 User authorization . 25

5.3 How the extension’s execution differs for scanning different scopes
of a mailbox . 25

5.4 Steps and hurdles of fetching e-mail IDs 26

5.5 The handling of e-mail metadata . 29

5.6 Preparation and validation of user results 30

5.1 Communication between the extension’s components

The development of a Chrome extension might require one or more files to function. TLS

SCANNER FOR GMAIL is developed to work with a background script and two HTML

files, each of which makes use of its own JavaScript code. Figure 5.1 illustrates how the

different files communicate with one another as soon as someone installs the extension

and clicks on its popup button.

By nature, an extension’s background script runs from the moment the extension is

installed on the browser, but, as Figure 5.1 illustrates, TLS SCANNER’s background script

does not serve any real purpose on its own. TLS SCANNER’s background script means

to serve as a bridge between the extension’s HTML files, popup.html and scan.html, both

of which stand to offer an interface for the user to interact with at different points of the

extension’s lifetime. The main difference between the two files is that, while popup.html

does not need any privileged access to function, scan.html is only meant to come alive

after the user allows for it. Specifically, the user triggers the need for scan.html to appear

with a click to either of the scanning buttons of the popup screen of Figure 4.2. At the

22

Figure 5.1: Communication between the extension’s components

click of either of the two buttons, the background script takes over so as to gain the user’s

consent before the scanning process can begin.

Whenever the user clicks on the extension’s icon, popup.html appears on the user’s

screen. The extension does this automatically because popup.html is declared inside its

manifest file as the default browser_action at the icon’s button click. When popup.html

loads, so does its affiliate script, declared via the HTML <script> tag. As illustrated in

Algorithm 5.1 of the popup’s JavaScript pseudocode, the script follows some considerably

simple steps. For so long as the user has the popup open without clicking on any of the

scanning options, the script waits. It only awakes at the click of a button, something that is

achieved using addEventListener(), a function that blocks the flow of execution until

a specific event occurs, in this case a button click. Then, when the script unblocks via one

of the two buttons, it makes use of chrome.runtime.sendMessage() to communicate

with the background process the message of the user’s scanning request.

From the moment the extension is installed, the background script waits. Just like

popup script can get out of its blocking state at the trigger of an event, background script

follows a similar approach. Using chrome.runtime.onMessage.addListener(), as

Algorithm 5.2 illustrates, the background script can only awake at the event of a message,

any message from any of the processes that belong in the scope of the extension. At

some point, and considering the user decides to click on one of the scanning options,

background receives a message coming from the popup script, given there are no other

processes other than the two of them running. Background script proceeds to handle the

popup’s message by first taking on the authorization procedure and then loading scan.html

window into a new tab. The scan script may as well handle the authorization procedure

after it is loaded, however, background’s initiative allows for any action on the user’s

mailbox to be possible right on the spot, as soon as scan.html opens.

23

Algorithm 5.1 popup.js
1: procedure SENDMSG(msg)

2: chrome.runtime.sendMessage(

3: request: msg

4:)

5: end procedure
6:

7: known var scanAllButton = < buttonID >

8: known var scanByLabelButton = < buttonID >

9:

10: scanAllButton.addEventListener(

11: "click", SENDMSG("scanAll")

12:)

13: scanByLabelButton.addEventListener(

14: "click", SENDMSG("scanByLabel")

15:)

Algorithm 5.2 background.js
1: procedure OPENSCANINTERFACE(token,msg)

2: if msg.request = "scanAll" then

3: window.open("scan.html?all")

4: else

5: window.open("scan.html?custom")

6: end procedure
7:

8: procedure HANDLEMSG(msg)

9: chrome.identity.getAuthToken(

10: "interactive": true,

11: OPENSCANINTERFACE(token,msg)

12:)

13: end procedure
14:

15: chrome.runtime.onMessage.addListener(

16: HANDLEMSG(msg)

17:)

24

5.2 User authorization

As line 9 of Algorithm 5.2 illustrates, the extension implements the authorization proce-

dure with the use of chrome.identity.getAuthToken(), which uses the information

written in oauth2 section of the manifest file. This information consists of two parts, a

client_id, unique for the extension and obtained via Google API Console [6], as well

as a list of the extension’s required scopes of access, in this case www.googleapis.

com/auth/gmail.readonly scope. Given these two arguments, the function communi-

cates with Google Authorization Server to obtain an access token to use in order to access

the given scopes. The background script calls this function interactively, which means

the user gets to sign into their Google account and manually approve the extension’s re-

quested scopes. When this is done, getAuthToken() of chrome.identity API returns

an OAuth2 access token, with which the extension can access the user’s mailbox via the

Gmail API. The background script receives this token but it does not use it itself. Instead,

the background script leaves the access token it acquires aside and proceeds to finally han-

dle popup script’s message. This message allows the background script to load scan.html

in either of the two scanning modes, illustrated in lines 3 and 5 of Algorithm 5.2.

As soon as scan.html loads and before scanning can begin, it is first necessary for the

extension to re-obtain user’s authorization access token. This is achieved the same way

background script achieves authorization, with the use of getAuthToken(), but with no

need for user interaction a second time. It is worth noting, however, that an OAuth2 access

token does not have an infinite lifetime, so when the extension exceeds approximately

one hour of processing, it is essential to re-invoke getAuthToken() and obtain a new

token to continue with processing if the first token expires. An expired token is not hard

to recognise. For each request the extension makes to the Gmail API, it immediately

afterwards checks whether the request was or not successful. HTTP 401 Unauthorized

error indicates that the reason of a failed request is lack of authorization, something that

can only mean an expired access token and can only be resolved by obtaining a new token.

5.3 How the extension’s execution differs for scanning
different scopes of a mailbox

The flow of execution of the scan script varies depending on scan.html’s page URL,

though ultimately the scanning process itself winds up the same. As Algorithm 5.3 illus-

trates, the extension differentiates the two scanning cases before it proceeds to scanning.

At the same time and via a simple switch case, the extension cuts off the flow of execu-

tion if the page’s URL does not match neither of the two valid URLs that the background

25

script is programmed to open the page with.

To begin with processing, the extension needs first to know what it is that needs pro-

cessing. The answer to this is obvious and immediate when scan.html is open in all

mode. In such case, the extension needs to process the user’s whole mailbox, the mes-

sages of which fall under the All Mail label. Unlike the rest of the user’s labels, All

Mail label is not technically a label and hence cannot be identified via a unique ID. It

can be identified and accessed, however, via its lack of ID. Given that, as line 26 of Algo-

rithm 5.3 shows, the extension simply needs to push an object with name All Mail and

an empty ID into its list of pending scan labels before it proceeds to scanning.

When in custom mode of execution, it is up to the user to decide which labels to

scan before the extension pushes the according list of labels into its pending list. The

extension’s scan script follows a number of steps to implement that, starting from line 14

of Algorithm 5.3. The script makes its first use of the Gmail API, by invoking the users.

labels.list method, which returns a list of all the labels in the given user’s mailbox.

After obtaining this list, the script proceeds to customize the modal screen of Figure 4.3

and present it to the user, before proceeding to block itself via the addEventListener()

function. The script can only unblock at the user’s button click, a trigger that at the same

time closes the modal screen and indicates the reach of a decision. When unblocked,

the extension merely needs to examine each of the modal’s toggle buttons and only push

the user’s desired labels and their unique IDs into the pending labels list, as illustrated in

line 11 of Algorithm 5.3.

5.4 Steps and hurdles of fetching e-mail IDs

As line 32 of Algorithm 5.4 shows, the extension handles each of the labels pushed in

the pending list individually and only finishes when it examines them all. The extension

follows two steps to process the e-mails under each label. First, it fetches a list of all

the e-mail IDs that fall under the given label, and afterwards it performs individual re-

quests for each of the given e-mails. As lines 4 and 23 of Algorithm 5.4 show, both steps

use the users.messages.get method to acquire their information, only with different

parameters. These parameters, nonetheless, distinguish the two calls by their response

size.

Fetching a single e-mail’s information has a rather predictable and small response

size, determined by the fact that we merely care to process specific parts of the metadata

of the e-mail, noted in line 5 of Algorithm 5.4. For that reason, a single invocation of

users.messages.get method for a specific message ID is enough to get this information

on the spot. When using the users.messages.get method to acquire not one e-mail’s

information but a label’s information, however, the response size is not nearly predictable.

26

Algorithm 5.3 scan.js initial steps
1: known var token = < oauth2Token >

2: known var modalToggles = < togglesID >

3: known var modalButton = < buttonID >

4:

5: var scanLabels = []

6: var pageURL = window.location.href

7:

8: procedure PUSHPENDINGLABELS(labels)

9: for every label in labels

10: if modalToggles[id].checked then

11: scanLabels.push({label[name],label[id]})

12: end procedure
13:

14: procedure FETCHSCANLABELS()

15: var labels = LIST gmail.users.labels{

16: access_token=token

17: }

18: DISPLAYCUSTOMLABELSMODAL(labels)

19: modalButton.addEventListener(

20: "click", PUSHPENDINGLABELS(labels)

21:)

22: end procedure
23:

24: switch (pageURL)

25: "< extensionID >/scan.html?all":

26: scanLabels.push({name:"All Mail",id:null})

27: BEGINPROCESSING()

28: break

29: "< extensionID >/scan.html?custom":

30: FETCHSCANLABELS()

31: BEGINPROCESSING()

32: break

33: default:

34: DISPLAYERRORMSG()

27

Algorithm 5.4 scan.js processing steps
1: var resultsLog = []

2:

3: procedure SCANMESSAGEBYID(msgID)

4: var msg = GET gmail.users.messages[msgID]{access_token=token,

5: format=metadata, fields=sizeEstimate, payload(mimeType, headers)}

6: var sender, date, secondReceived, hops = 0

7: for every field in msg["payload"]["headers"]

8: if field["name"] = "From" then sender = field["value"].split("@")[1]

9: if field["name"] = "Date" then date = field["value"]

10: if field["name"] = "Received" and hops < 2 then

11: hops+=1; secondReceived = field["value"]

12: var protocol = /by mx.google.com with < protocol > /.exec(secondReceived)

13: if !protocol.endsWith("S") then APPENDUNSECUREMAILTOSCREEN(msgID)

14: var deliverer = /from < sender > by mx.google.com /.exec(secondReceived)

15: var query = fetch dns.google.resolve(deliverer)

16: resultsLog.push{sender, date, protocol, query[status], query[domain],

17: msg["sizeEstimate"], msg["payload"]["mimeType"]}

18: end procedure
19:

20: procedure PROCESSBYLABEL(label)

21: var pendingMails = true, nextPage = null

22: while pendingMails do

23: var msgs = GET gmail.users.messages{access_token=token,

24: labelIds=label, pageToken=nextPage}

25: if !msgs.hasField("messages") then break

26: if msgs.hasField("nextPageToken") then nextPage = msgs["nextPageToken"]

27: else pendingMails = false

28: for each msg in msgs SCANMESSAGEBYID(msgs["messages"][msg]["id"])

29: end procedure
30:

31: procedure BEGINPROCESSING()

32: while scanLabels.length > 0 do PROCESSBYLABEL(scanLabels.pop()[id])

33: var profile = GET gmail.users.getProfile{access_token=token}

34: resultsLog.append{HASH(profile["emailAddress"]), SIGN(resultsLog)}

35: DISPLAYRESUTSLINKANDDROPBOXLINK()

36: end procedure

28

The label may have numerous e-mails under it, and oftentimes this number is dramatically

large to fetch in one go. Gmail API only responds with a maximum of 100 e-mails at one

invocation of the method. To acquire the full list of a label’s e-mails, the extension usually

needs to perform multiple fetch requests, each time by filling in the method’s pageToken

parameter with the value of the previous response’s nextPageToken field. Obviously,

when invoking the method for the first time, the pageToken parameter is unknown and

unnecessary, so it’s left empty. By default, omitting the pageToken parameter asks the

method to fetch the first 100 or less messages, as well as the nextPageToken field if

necessary. When the nextPageToken field ceases to appear in the response body, then the

extension can tell that the processing of all the labels’ messages of all the page tokens has

completed. The nextPageToken field is not the only field to indicate that however. The

absence of the messages field after the first request indicates an empty list of messages

that correspond to this label, something that also points out to the extension to stop further

processing this label and continue with the next, if there is one.

5.5 The handling of e-mail metadata

Given a list of message IDs, the fetching and processing of individual messages’ metadata

becomes trivial. Given an e-mail’s headers, as shown in line 7 of Algorithm 5.4, the

extension examines one header field after the other while recording its fields of interest.

The e-mail’s size estimate and MIME type come as individual fields of the message’s

metadata response, so the only information of interest lying in the headers include the

sender’s e-mail provider, extracted from the From field, the Date of the e-mail, as well

as the second-from-top Received field, most likely the one appended by Gmail’s MTA.

Given the second-from-top Received field, the extension attempts first to verify that it

is indeed appended by Gmail’s MTA and then proceeds to extract additional information

from it.

Gmail’s MTA appended Received field starts by declaring the delivery server the e-

mail came from, followed by the provider the e-mail was received by, which in the case of

Gmail’s MTA this is mx.google.com, and continues with noting the protocol the e-mail

was delivered with. Given this predictable structure, the extension manages to extract

both the delivery server and the transfer protocol from any Received field that is indeed

received by mx.google.com. In the rare case that it is not Gmail’s MTA that appended

this field, the extension merely chooses to skip over to the next e-mail.

Before updating its results statement with a new summary of an e-mail, the extension

uses the name of the delivery server to find the domain it belongs to. To do that, as line 15

of Algorithm 5.4 illustrates, the extension performs a DNS query to Google Public DNS,

which responds with the name of the domain and a DNS response status, among others.

29

Alongside all the previously noted data, the extension notes only the domain name and

the DNS status from the query response so as to ultimately create the e-mail’s summary,

append it to the user’s results and immediately proceed with the processing of the next

e-mail.

5.6 Preparation and validation of user results

Whether the pending list of labels consists of multiple custom labels or only the All

Mail label, when the pending list eventually empties, the extension only needs to follow

a couple more steps before finishing its execution.

As line 33 of Algorithm 5.4 illustrates, the extension makes use of Gmail API’s

users.getProfile method to acquire a user’s profile information, which, among oth-

ers, includes the user’s unique e-mail address. The extension digests the emailAddress

field using the SHA-256 hash algorithm, which produces a unique identifier of the given

user, which, at the same time, does not reveal the user’s identity. This is helpful to both

ensure user’s anonymity and also distinguish results statements that come from the same

user so as not to store or process identical e-mail summaries more than once. The exten-

sion appends the user’s hash to the user’s results and goes on to produce a unique HMAC

signature of the whole document. This is implemented given a shared secret key, in this

case found inside the manifest file, and with the use of window.crypto.subtle.sign()

function. The extension also appends the signature to the results statement before pre-

senting the user with a link to download the file and another link to upload it to Dropbox,

using the chrome.downloads API and HTML’s href attribute respectively. Given the

uploaded results statement and the knowledge of the extension’s key, we can authenticate

any results statement with the use of window.crypto.subtle.sign()’s mirror function,

window.crypto.subtle.verify(), which merely checks if the given results statement

matches or fails to match its given HMAC signature, which consequently determines data

authenticity, or lack thereof.

30

Chapter 6

Evaluation

Contents
6.1 General observations on the gathered data 31

6.2 TLS usage of individual e-mails . 33

6.2.1 E-mail deliveries comparisons per year 33

6.2.2 E-mail deliveries comparisons per e-mail size 34

6.2.3 E-mail deliveries comparisons per MIME type 37

6.2.4 E-mail deliveries comparisons per providers’ DNS status 37

6.3 TLS usage of the various e-mail providers 40

6.3.1 A definition of TLS inconsistency 40

6.3.2 Correlations between providers of unencrypted deliveries 40

6.3.3 An overview of some of the most prevailing e-mail providers . . 41

6.1 General observations on the gathered data

As Table 6.1 illustrates, TLS SCANNER FOR GMAIL processed a total of 16 Gmail mail-

boxes as part of this thesis, giving us insight into a total of 105,955 e-mails delivered

to Gmail’s MTA from 1084 distinct e-mail providers. The study’s participants are of

multiple ages and backgrounds, however, the majority of them are pregraduate and post-

graduate Computer Science students. The evaluation of the users’ data consists of two

main pillars, examining the TLS usage of individual e-mails as well as the TLS usage of

their respective e-mail providers.

Though only a handful of mailboxes were examined, as the user histogram of Fig-

ure 6.1 shows, there is an apparent deviation in the encrypted to unencrypted e-mail de-

liveries for each mailbox, with one mailbox’s unencrypted deliveries being as low as 40%,

31

e-mails mailboxes e-mail providers

total 105,955 16 1084

encrypted deliveries 92.71% 85.93%avg 82.20%

unencrypted deliveries 7.29% 14.07%avg 29.61%

overlap none none 11.81%

Table 6.1: Encrypted and unencrypted e-mail distributions for, (i) the total of inspected e-mails,

(ii) an average user mailbox and (iii) between the different e-mail providers

0% 20% 40% 60% 80% 100%

0x584d
0x1304
0x3586
0x609c
0x9b1f
0x6ae7
0x9139
0x0c15
0x7c8b
0x1783
0x0447
0xb976
0xdcc9
0x240f
0xc9dd
0x4b71

fir
st

 4
 d

ig
its

 o
f u

se
r h

as
he

s

Encrypted E-mails Unencrypted E-mails

Figure 6.1: Ratio of encrypted to unencrypted e-mails per user mailbox

though with the significant majority of mailboxes indicating an encrypted delivery portion

above 90%.

As Table 6.1 shows, the overall portion of unencrypted e-mails corresponds to a

bit more than 7% of the total processed e-mails, whereas this number doubles for an

average user mailbox. Looking back at Figure 6.1, the latter number does not represent

the generally descent portions of encrypted deliveries in most mailboxes, but only arises

as a result of a few mailboxes with deviating high rates of unencrypted deliveries.

The portion of unencrypted e-mail deliveries can moreover differentiate the behaviour

of e-mail providers, splitting them into those that deliver encrypted and those that deliver

unencrypted e-mails, corresponding to 82.20% and 29.61% respectively. Unlike individ-

ual e-mail deliveries per se, which we can classify as either encrypted or unencrypted

32

but not both, the sum of the e-mail providers’ deliveries indicates an overlap of 11.81%,

which in turn indicates that 11.81% of the e-mail providers deliver both encrypted and

unencrypted e-mails. This allows us to classify e-mail providers into not two but three

categories, those consistent in their TLS usage, those consistent in their lack of TLS

usage, and those inconsistent in their TLS usage altogether, either through time or be-

tween different mailboxes. Given that, subtracting the overlapping 11.81% portion of

TLS inconsistent providers from Table 6.1’s providers’ deliveries reveals that, out of the

82.20% of providers that send encrypted e-mails, only 70.39% of them do this consis-

tently, whereas out of the total of 29.61% providers guilty for unencrypted e-mails, it is

in fact 17.80% out of the total providers that constantly follow this pattern.

6.2 TLS usage of individual e-mails

Regardless of their e-mail providers behaviour, different e-mails may share some common

patterns with one another, which may potentially explain or hint at their TLS usage. This

section compares the encrypted and unencrypted e-mails based on four factors extracted

from their headers,

i their delivery year,

ii their size,

iii their MIME type and

iv their e-mail provider’s DNS status.

6.2.1 E-mail deliveries comparisons per year

We begin by examining the different e-mails in regards to their year of delivery.

Figure 6.2(a) displays how encrypted and unencrypted e-mails are distributed through-

out the years. The figure shows that more than 25% of all unencrypted e-mail deliveries

correspond to the year 2015, while the majority of encrypted e-mails are more recent,

corresponding to 2020. The worryingly large volume of unencrypted e-mails in 2015, es-

pecially in regards to the previous years, might potentially hint at the need for Gmail’s red

padlock update in 2016, a feature that not only would make users sceptical on their mail-

boxes’ security, but at the same time it would most likely obligate many e-mail providers

to reassess their use of e-mail encryption. This could in turn explain why the volume of

encrypted e-mails starts to raise after 2015, while unencrypted e-mail numbers raise up to

2015 before they begin to drop.

33

Figure 6.2(b) reinforces this observation, presenting the encrypted to unencrypted ra-

tio for each year. Though up until 2014, the portion of unencrypted e-mails compared to

encrypted ones is more than 50%, the volume of unencrypted e-mails starts to fade in the

next years, and after 2016 it even settles down to less than 5%, a still alarming number

yet drastically better compared to the magnitude of unencrypted e-mails before 2016.

6.2.2 E-mail deliveries comparisons per e-mail size

We can moreover classify and examine e-mails based on their size, searching for a possi-

ble correlation between an e-mail’s size and its TLS usage.

Figure 6.3(a) shows a uniform distribution of the encrypted e-mails in regards to the

unencrypted ones. The majority of encrypted e-mails, corresponding to around 45% of

their total, belong in the size spectrum [20,40)KB, while the majority of unencrypted

e-mails, corresponding to around 37% of their total, belong in the same size spectrum.

The smallest size spectrum, with e-mails of size less than 20KB, represents the second

most popular spectrum for both encrypted and unencrypted e-mails, with around 15% of

all encrypted e-mails and around 26% of all unencrypted e-mails. The distributions of

e-mails among the rest of the size classes are very similar, with a deviation that never

exceeds 4%.

The overall distribution of encrypted and unencrypted e-mails, illustrated in Fig-

ure 6.3(a), does not seem to hint at the e-mails’ TLS usage, as both encrypted and un-

encrypted e-mails have their own range of e-mail sizes, quite similar to each other. Their

similarity also appears in Figure 6.3(b) of the ratios of encrypted to unencrypted e-mails

for each size. The slight deviations for each size displayed in Figure 6.3(a) re-appear in

Figure 6.3(b), displaying a generally low rate of unencrypted e-mails, below 8% in most

cases, with a few exceptions of unencrypted e-mails fluctuating between 12% and 28%.

These exceptions all correspond to the most apparent deviations of Figure 6.3(a), where

unencrypted e-mails surpass the encrypted ones, therefore justifying their slightly bigger

portion in their ratio compared to other sizes.

It seems that neither Figure 6.3(a) nor Figure 6.3(b) display any sort of correlation

between e-mails’ sizes and their use of TLS, therefore rejecting the idea that an e-mail’s

security could potentially depend on its size. The most worrying ratio of unencrypted e-

mails appears for the largest e-mail sizes, but the overall volume of e-mails corresponding

to this size is not big enough to support that the largest e-mails are more likely than the

smallest ones to be delivered without encryption, though it could be a possibility. What

the two figures do support is rather the absence of any correlation between e-mail sizes

and their security, which makes the smallest e-mails just as prone to lacking encryption

as the largest ones.

34

0% 5% 10% 15% 20% 25% 30%

up until 2012

2013

2014

2015

2016

2017

2018

2019

2020 and beyond

Portion of Encrypted E-mails to Total Encrypted E-mails

Portion of Unencrypted E-mails to Total Unencrypted E-mails

(a) Distribution of encrypted and unencrypted e-mails among years

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

up until 2012

2013

2014

2015

2016

2017

2018

2019

2020 and beyond

Portion of Encrypted E-mails to Class's Total E-mails

Portion of Unencrypted E-mails to Class's Total E-mails

(b) Ratio of encrypted to unencrypted e-mails per year

Figure 6.2: E-mail observations per year

35

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

<20KB

[20,40)KB

[40,60)KB

[60,80)KB

[80,100)KB

[100,120)KB

[120,140)KB

[140,160)KB

[160,180)KB

[180K,200K)KB

≥200KB

Portion of Encrypted E-mails to Total Encrypted E-mails

Portion of Unencrypted E-mails to Total Unencrypted E-mails

(a) Distribution of encrypted and unencrypted e-mails among e-mail sizes

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

<20KB

[20,40)KB

[40,60)KB

[60,80)KB

[80,100)KB

[100,120)KB

[120,140)KB

[140,160)KB

[160,180)KB

[180K,200K)KB

≥200KB

Portion of Encrypted E-mails to Class's Total E-mails

Portion of Unencrypted E-mails to Class's Total E-mails

(b) Ratio of encrypted to unencrypted e-mails per e-mail size

Figure 6.3: E-mail observations per e-mail size

36

6.2.3 E-mail deliveries comparisons per MIME type

Another parameter worth examining when comparing the profiles of encrypted and un-

encrypted e-mails is the type of data lying within the e-mails, in other words their data

format, a piece of information presented in an e-mail’s headers via its MIME type.

Figure 6.4(a) shows that more than half of both encrypted and unencrypted e-mails are

of MIME type multipart/alternative, corresponding to almost 85% for encrypted e-

mails and a bit less than 65% for unencrypted ones. Though a number of different MIME

types appear in Figure 6.4(a), up to 95% of the total of encrypted e-mails are made up

of only multipart/alternative and text/html MIME types, with the remaining 5%

appearing very sparingly. For the case of unencrypted e-mails, however, the specific two

MIME types only make up for 80% of the total of unencrypted e-mails, which leaves a

remaining 20% of e-mails distributed among the remaining MIME types.

As illustrated in Figure 6.4(b), the two most prevailing MIME types for encrypted

deliveries, that is multipart/alternative and text/html, correspond to the two best

ratios of encrypted to unencrypted e-mails, with less than 10% of their total e-mails being

unencrypted. This is not the case for the ratios of the rest of the MIME types, with their

unencrypted portions of e-mails fluctuating from 15% and up to 100%.

Though Figure 6.4(a) presents a vast majority of unencrypted e-mails with MIME

types multipart/alternative and text/html, Figure 6.4(b) shows that the ratios of

encrypted to unencrypted e-mails for the specific MIME types are not quite alarming.

The most alarming ratios are more likely to appear for MIME types other than these two.

Though multipart/alternative and text/html MIME types still have their share of

unencrypted e-mails, it seems that their popularity among encrypted e-mails makes their

unencrypted instances pretty rare, something that in turn makes the e-mails of the rest of

the MIME types, other than these two, more likely to come without encryption.

6.2.4 E-mail deliveries comparisons per providers’ DNS status

A final parameter to consider when looking at e-mail profiles is the DNS status of their

e-mail providers.

The response of a DNS query can indicate a number of things, including format

or communication errors, among others. For this study, only DNS Status 0 and DNS

Status 3 were examined, the former indicating a living instance of the specified server

within its domain, and the latter indicating that the specified server is no longer functional

within its domain.

The motivation for examining the DNS status of a delivery server is to check whether

the TLS usage in an e-mail and hence the TLS usage applied or omitted by the e-mail’s

provider has anything to do with the server’s current state. Perhaps, servers found to have

37

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

multipart/alternative

multipart/mixed

text/plain

multipart/related

text/html

multipart/signed

multipart/report

Portion of Encrypted E-mails to Total Encrypted E-mails

Portion of Unencrypted E-mails to Total Unencrypted E-mails

(a) Distribution of encrypted and unencrypted e-mails among MIME types

0% 20% 40% 60% 80% 100%

multipart/alternative

multipart/mixed

text/plain

multipart/related

text/html

multipart/signed

multipart/report

Portion of Encrypted E-mails to Class's Total E-mails

Portion of Unencrypted E-mails to Class's Total E-mails

(b) Ratio of encrypted to unencrypted e-mails per MIME type

Figure 6.4: E-mail observations per MIME type

38

0% 10% 20% 30% 40% 50% 60% 70% 80%

sent by living server

sent by nonexistent server

Portion of Encrypted E-mails to Total Encrypted E-mails

Portion of Unencrypted E-mails to Total Unencrypted E-mails

(a) Distribution of encrypted and unencrypted e-mails among providers’ DNS statuses

0% 20% 40% 60% 80% 100%

sent by living server

sent by nonexistent server

Portion of Encrypted E-mails to Class's Total E-mails

Portion of Unencrypted E-mails to Class's Total E-mails

(b) Ratio of encrypted to unencrypted e-mails per providers’ DNS status

Figure 6.5: E-mail observations per providers’ DNS status

delivered unencrypted e-mails are now out of use, while servers found to have delivered

encrypted e-mails are more likely to still be functioning.

Figures 6.5(a) and 6.5(b) present a similar image of the distributions and ratios of

e-mails sent by nonexistent and living servers. The volume of encrypted e-mails sent

by nonexistent servers is not very different than the unencrypted volume of e-mails sent

by nonexistent servers, which in turn makes the encrypted and unencrypted portions of

e-mails sent by living servers also very similar. The ratios of unencrypted to encrypted

e-mails is not very different between the two cases either, corresponding to around 8% of

unencrypted e-mails for both cases.

The state of an e-mail’s delivery server does not seem to play any part in the e-mail’s

TLS usage, as both Figure 6.5(a) and Figure 6.5(b) support. A server currently out of

use is just as likely to have delivered an encrypted e-mail as it is to have delivered an

unencrypted one, with the e-mail’s use of TLS having nothing to do with its provider’s

current state.

39

6.3 TLS usage of the various e-mail providers

Though the DNS status and hence the state of e-mail providers does not seem to relate

in any way to the provider’s use of encryption, this does not mean that there are not still

other factors to consider when looking over the behaviour of e-mail providers. Rather

than looking at individual e-mails’ correlations, we may as well examine the profiles of

the different e-mail providers and compare them with each other.

6.3.1 A definition of TLS inconsistency

As already explained, we can classify e-mail providers given their TLS usage and their

consistency, or lack thereof. We measure the TLS inconsistency of a provider by com-

puting the frequency of how many times the provider’s behaviour swaps from delivering

encrypted e-mails to delivering unencrypted e-mails or vice versa, whether these swaps

occur between different users or even within the same mailbox. The higher a provider’s

protocol swap frequency, the more inconsistent a provider is considered, whereas for the

case of providers with protocol swap frequency equal to zero, their overall unencrypted

rate of e-mails can reveal whether their consistency is that of always using or always

omitting TLS in their transits.

6.3.2 Correlations between providers of unencrypted deliveries

This section aims to examine the possibility of various correlations between the profiles

and behaviours of the providers found to have delivered at least one unencrypted e-mail.

Specifically, we examine the different providers in regards to,

i their portion of unencrypted deliveries,

ii their consistency, as this arises from their protocol swap frequency,

iii their popularity among users and

iv their activity, as this arises from their total number of e-mail deliveries.

We begin by examining the whole range of providers that send unencrypted e-mails,

regardless of whether their behaviour is consistent or inconsistent.

Table 6.2(a) presents one medium and many weak correlations between the providers

guilty of unencrypted deliveries. With a medium, negative correlation of -0.529 between

providers’ unencrypted deliveries and their popularity among users, Table 6.2(a) indicates

that the more popular a provider is the less likely it is to be delivering high portions of

unencrypted e-mails, which is surely a comforting observation, as the most popular of

40

> 0

unencrypted e-mail ratio protocol swap frequency

protocol swap frequency -0.374 -

user popularity -0.529 -0.027

delivered e-mails -0.294 -0.057

(a) Correlations between e-mail providers with positive unencrypted e-mail ratio

> 0

unencrypted e-mail ratio protocol swap frequency

protocol swap frequency 0.152 -

user popularity -0.386 -0.346

delivered e-mails -0.237 -0.196

(b) Correlations between e-mail providers with positive protocol swap frequency

Table 6.2: Correlations between providers of unencrypted deliveries

providers tend to be less guilty of frequently omitting TLS in their transits. The remaining

correlations are not strong enough to present any relationship between two factors that

could justify a provider’s levels of unencrypted deliveries or its levels of inconsistency,

and unfortunately this does not change for Table 6.2(b)’s correlations either.

Table 6.2(b) displays how Table 6.2(a)’s correlations change after confining the whole

list of providers guilty of unencrypted deliveries to only those that are TLS inconsistent.

Table 6.2(b) reveals some even weaker correlations than before, with the correlations with

the providers’ unencrypted e-mail ratios dropping even more and the correlations with the

providers’ protocol swap frequencies raising noticeably but not enough, making the case

of TLS inconsistent providers all the more unjustifiable and unsettling.

6.3.3 An overview of some of the most prevailing e-mail providers

This section aims to present a more targeted overview of e-mail providers by discussing

the top 10 of,

i the most popular providers,

ii the most active providers,

iii the most unsecure providers, in terms of their unencrypted e-mail ratio, and

iv the most inconsistent providers, in terms of their protocol swap frequency.

41

The goal of this section is double. For one, going over specific providers’ profiles can

perhaps tell us more on the behaviour of specific groups of e-mail providers than the so

far calculated correlations revealed. Moreover, this section stands as a reference point for

participants of this study or otherwise to gain an idea of what the profiles of many known

e-mail providers look like.

User Popularity Delivered E-mails Unencrypted E-mail Ratio Protocol Swap Frequency
google.com. 100.00% 30151 0.00% 0.00%
protection.outlook.com. 100.00% 532 0.00% 0.00%
smtp-out.amazonses.com. 93.75% 3579 1.23% 0.08%
smtp-out.us-west-2.amazonses.com. 87.50% 1547 0.00% 0.00%
outbound-mail.sendgrid.net. 81.25% 450 0.22% 0.22%
sparkpostmail.com. 81.25% 1190 0.08% 0.17%
smtp-out.eu-west-1.amazonses.com. 81.25% 2628 0.30% 0.11%
mcdlv.net. 81.25% 1067 17.62% 0.09%
facebook.com. 81.25% 7799 1.31% 0.09%
mailgun.net. 81.25% 689 0.00% 0.00%

Table 6.3: Top 10 most popular e-mail providers

User Popularity Delivered E-mails Unencrypted E-mail Ratio Protocol Swap Frequency
google.com. 100.00% 30151 0.00% 0.00%
twitter.com. 50.00% 10983 0.95% 0.41%
facebook.com. 81.25% 7799 1.31% 0.09%
smtp-out.amazonses.com. 93.75% 3579 1.23% 0.08%
smtp-out.eu-west-1.amazonses.com. 81.25% 2628 0.30% 0.11%
quora.com. 56.25% 2220 0.00% 0.00%
emsmtp.us. 43.75% 2172 0.00% 0.00%
linkedin.com. 56.25% 1935 0.00% 0.00%
smtp-out.us-west-2.amazonses.com. 87.50% 1547 0.00% 0.00%
mailjet.com. 62.50% 1337 0.00% 0.00%

Table 6.4: Top 10 most active e-mail providers

Tables 6.3 and 6.4 present the most popular and the most active providers among the

study’s participants respectively, highlighting with red colour any providers that appear

between both the most popular and the most active ones.

By looking at Tables 6.3 and 6.4, with a single exception of a provider with 17.62%

ratio of unencrypted deliveries, it appears that neither the most popular nor the most active

providers are guilty of unencrypted e-mail ratios that surpass 1.5%, nor are they signifi-

cantly inconsistent in their TLS usage.

As Table 6.5 illustrates, the providers that are the most guilty for their lack of TLS

usage are actually providers with medium to low popularity and activity. Table 6.5 reveals

a list of providers with ranging popularities and activities, from some very unpopular and

inactive providers to some alarmingly more popular and active ones.

Though the most unsecure providers’ behaviour as a whole is upsetting, as every e-

mail of every context delivered by them always lacked encryption, at the very least their

behaviour is predictable. Table 6.6 presents the list of the most inconsistent and hence

42

User Popularity Delivered E-mails Unencrypted E-mail Ratio Protocol Swap Frequency
neoquin.com. 6.25% 688 100.00% 0.00%
cs.ucy.ac.cy. 50.00% 637 100.00% 0.00%
bigfishgames.com. 6.25% 472 100.00% 0.00%
play.com. 6.25% 216 100.00% 0.00%
csrv.ucy.ac.cy. 56.25% 104 100.00% 0.00%
newsgroup.kathimerini.com.cy. 6.25% 56 100.00% 0.00%
authoritynutrition.com. 6.25% 43 100.00% 0.00%
delivery.net. 12.50% 38 100.00% 0.00%
vsmail-cluster.visualsoft.co.uk. 6.25% 37 100.00% 0.00%
em.ea.com. 25.00% 36 100.00% 0.00%

Table 6.5: Top 10 most unsecure e-mail providers

User Popularity Delivered E-mails Unencrypted E-mail Ratio Protocol Swap Frequency
olympiagroup.gr. 12.50% 6 50.00% 83.33%
pbs.org. 6.25% 9 33.33% 55.56%
sendlabs.com. 12.50% 2 50.00% 50.00%
netsuite.com. 12.50% 2 50.00% 50.00%
graphisoft.hu. 6.25% 2 50.00% 50.00%
woozworld.com. 6.25% 2 50.00% 50.00%
acemserv.com. 6.25% 2 50.00% 50.00%
jawbone.com. 12.50% 4 25.00% 50.00%
chelseafc.com. 6.25% 91 54.95% 42.86%
srv2.de. 18.75% 43 51.16% 41.86%

Table 6.6: Top 10 most inconsistent e-mail providers

unpredictable of providers, a list of providers with considerably low popularities and some

definitely low levels of activity. Just by looking at those providers’ overall activities, the

apparent lack of information gathered for most of them can possibly explain their high

levels of inconsistency, as these may arise not from the providers’ unpredictability as a

whole but as a mere result of not enough information gathered on them. It is therefore

highly possible that collecting some more information on these providers would not only

raise their overall levels of activity but could also change their TLS inconsistency levels

altogether.

43

Chapter 7

Related Work

Contents
7.1 Studies that analyse e-mail patterns 44

7.2 Studies that target TLS in e-mail communication 45

7.1 Studies that analyse e-mail patterns

Back in 2007, in their paper, A study of e-mail patterns [11], S. Shah and B. D. Noble

discuss how they used their department’s servers to observe millions of e-mails over the

course of months, capturing and analysing several e-mail parameters, among which lying

some common to our study’s parameters of interest, such as message sizes and attachment

content types.

Contrary to our study’s focus on e-mail security, S. Shah and B. D. Noble’s goal did

not target the TLS usage in e-mail transits. Instead, their motivation lay in collecting

enough data to improve the modelling of e-mail workloads used for benchmarking and

systems engineering.

In 2009, in their paper, Behavioral Profiles for Advanced Email Features [10], T. Kara-

giannis and M. Vojnovic present their own study of analysing e-mail patterns, aiming to

explore the design possibilities of advanced e-mail features by investigating the presence

and significance of any factors that impact the probability and/or time of e-mail replies.

The work of T. Karagiannis and M. Vojnovic is different than ours not only in regards

to their study’s motive but in regards to their data of interest as well. Our work takes a

strictly anonymous approach that does not investigate or even address the study’s partic-

ipants, but the case is different for T. Karagiannis and M. Vojnovic’s study, whose target

on e-mail replies relies not only in inspecting e-mail properties but also the behavioral

44

profiles that describe their study’s users, as these emerge from the users’ behaviour in

processing and handling their e-mails.

7.2 Studies that target TLS in e-mail communication

In 2016, in their paper, TLS in the Wild: An Internet-wide Analysis of TLS-based Protocols

for Electronic Communication [8], R. Holz et al. present an experimental investigation of

the TLS usage in communication over e-mail and chat.

Though the study’s motive is similar to our project’s, the means via which R. Holz

et al. targeted the security of the Internet messaging infrastructure were different than

our own. Rather than scanning volunteering mailboxes of e-mails like TLS SCANNER

FOR GMAIL extension was designed to do, R. Holz et al. used active servers scans and

passive client connections monitoring to collect their parameters of interest and uncover

the degree of secure communications over unsecure ones. Similarly to our study’s results,

R. Holz et al. also revealed an alarming volume of unencrypted e-mails, however they

did not examine how the profiles of these e-mails or their deliverers can potentially hint

at this phenomenon.

In the recent 2020, in their paper, What Email Servers Can Tell to Johnny: An Empir-

ical Study of Provider-to-Provider Email Security [9], G. Kambourakis et al. assess the

security between MTA-to-MTA communications, as this was measured with the use of a

custom designed tool composed of a set of security evaluation tests.

Our work also targets the security between e-mail providers, however, our study does

not target the behaviour of e-mail providers as a whole. Our focus instead, lies in how

individual e-mail providers communicate with Gmail’s MTA specifically.

Finally, via a Google Transparency Report [2], Google sheds light on its inbound and

outbound encrypted e-mail traffic originating back from 1998 and up to today.

Similarly to our study’s results, emerging only from a sample of processed e-mails,

Google’s Transparency Report also presents a clear milestone in the rising volume of

unencrypted e-mail traffic in 2015, while it moreover presents the volume of encrypted

e-mail traffic corresponding to the most active domains by region, with some of the most

prevailing domains recorded by Google appearing within our sampling as well. Google’s

Transparency Report, nonetheless, does not record or present patterns on the characteris-

tics of individual e-mails or how these patterns link to their security.

45

Chapter 8

Conclusion

To measure the TLS usage in today’s e-mail transits does not entail a one and only so-

lution. As part of this project, we designed TLS SCANNER FOR GMAIL, a Google

Chrome extension meant to scan the e-mail headers within any Gmail mailbox, collecting

brief summaries of information to describe the profile of individual e-mail headers, while

at the same time classifying the e-mails as either delivered with or without encryption, by

going over the protocols via which different e-mails arrive to Gmail’s MTA with.

The information gathered via distributing TLS SCANNER FOR GMAIL revealed a

generally descent but not nearly flawless image of the distribution of encrypted and un-

encrypted deliveries, while at the same time it disclosed a worrying number of providers

inconsistent in their use of TLS.

Our analysis on individual e-mails’ profiles rejected any correlation between e-mails’

TLS usage with both their size and their providers’ DNS status, but it did reveal a de-

clining trend in the volumes of unencrypted e-mails delivered throughout the years, while

it also hinted that some e-mail MIME types are more likely to come without encryption

than others. Our focus on the profiles of the different e-mail providers moreover disclosed

how providers’ popularity and activity relate to their volumes of unencrypted deliveries

and their levels of inconsistency, indicating that the most popular and active providers are

more likely to be responsible for none or very few unencrypted deliveries, while the most

inconsistent providers are more likely to be of very low popularity and activity, which in

turn makes their worrying levels of inconsistency less likely to come as result of unpre-

dictability but more likely as a result of insufficient information gathered on them.

TLS SCANNER FOR GMAIL can be distributed to more users and gain a higher and

more defining volume of information as a result, considering the extension is adjusted

to comply with all the necessary guidelines of the General Data Protection Regulation

(GDPR). Possible further future work can include enhancing the extension so that it pro-

vides a better interface to its users. Specifically, the extension can be updated to offer its

users the choice to run it only for a limited time and/or a specific size of e-mails rather

46

than having to wait indefinitely. In addition to that, the extension can offer its users the

choice to be completely automated, capable to handle the complete circle of scanning and

data delivery at the users’ consent.

47

Bibliography

[1] Documentation for Chrome extensions developers. https://developer.chrome.

com/docs/extensions/.

[2] Email encryption in transit - Google Transparency Report. https://

transparencyreport.google.com/safer-email/overview.

[3] Gmail API. https://developers.google.com/gmail/api.

[4] Gmail Help: Check the security of your emails. Answer in https://support.

google.com/mail/.

[5] Gmail Help: Trace an email with its full headers. Answer in https://support.

google.com/mail/.

[6] Using OAuth 2.0 to Access Google APIs. https://developers.google.com/

identity/protocols/oauth2.

[7] What is TLS & How Does it Work? | ISOC Internet Society. https://www.

internetsociety.org/deploy360/tls/basics/.

[8] R. Holz et al. TLS in the Wild: An Internet-wide Analysis of TLS-based Protocols

for Electronic Communication. In NDSS Symposium 2016. Copyright 2016 Internet

Society.

[9] G. Kambourakis et al. What Email Servers Can Tell to Johnny: An Empirical Study

of Provider-to-Provider Email Security. IEEE Access, 2020.

[10] T. Karagiannis and M. Vojnovic. Behavioral Profiles for Advanced Email Features.

Proceedings of the 18th International Conference on World Wide Web, WWW 2009,

Madrid, Spain, April 20-24, 2009.

[11] S. Shah and B. D. Noble. A study of e-mail patterns. In Wiley InterScience

(www.interscience.wiley.com), pages 1515–1538. Copyright 2007 John Wiley &

Sons, Ltd.

48

Appendix A

The extension’s manifest.json is presented in this appendix.

1 {
2 " m a n i f e s t _ v e r s i o n " : 2 ,
3 " name " : "TLS Scanne r f o r Gmail " ,
4 " d e s c r i p t i o n " : " Scan your Gmail f o r any u n e n c r y p t e d e m a i l s " ,
5 " v e r s i o n " : " 0 . 1 " ,
6 " i c o n s " : {
7 " 16 " : " i co n1 6 . png " ,
8 " 32 " : " i co n3 2 . png " ,
9 " 48 " : " i co n4 8 . png " ,

10 " 128 " : " i con128 . png "
11 } ,
12 " b r o w s e r _ a c t i o n " : {
13 " d e f a u l t _ i c o n " : " i con128 . png " ,
14 " d e f a u l t _ p o p u p " : " popup . h tml "
15 } ,
16 " p e r m i s s i o n s " : [
17 " i d e n t i t y " ,
18 " downloads " ,
19 " * : / / * . go og l e . com / * " ,
20 " t a b s " ,
21 " h t t p s : / / a p i s . goo g l e . com / * "
22] ,
23 " c o n t e n t _ s c r i p t s " : [
24 {
25 " matches " : ["< a l l _ u r l s >"] ,
26 " j s " : [" popup . j s "]
27 }
28] ,
29 " background " : {
30 " s c r i p t s " : [" background . j s "]
31 } ,
32 " oau th 2 " : {
33 " c l i e n t _ i d " : " 420203891442 −2 n l c o 5 8 7 r 0 q k p a 3 j b k 6 r f 1 4 h h e 0 o h 2 l d . apps .

g o o g l e u s e r c o n t e n t . com" ,
34 " s c o p e s " : [
35 " h t t p s : / / www. g o o g l e a p i s . com / a u t h / gma i l . r e a d o n l y "
36]
37 } ,
38 " c o n t e n t _ s e c u r i t y _ p o l i c y " : " s c r i p t − s r c ’ s e l f ’ h t t p s : / / a p i s . go og l e . com h t t p s : / / maxcdn .

b o o t s t r a p c d n . com h t t p s : / / a j a x . g o o g l e a p i s . com h t t p s : / / c d n j s . c l o u d f l a r e . com ; o b j e c t
− s r c ’ s e l f ’ " ,

39 " key " : "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAzwmrtHKgVgZB3Uj5462TH7yM / 4
xDZpAC6TZT6wDvBCZ4j+CW+5HTsB5WS1sl6yJUQrf+
nq1E0rsJyt0oGSv3h7N73PVABVeFsTKI4gQSSvxkC5VZwP+

A-1

LWAweEflpqGylTkPzfp25VAtep6TvqJ4TsVNsOfGNTtSEgMbw7DNnfR5bVIawgrN5E /
ZHwydWqsNMDHWjfdLpn3d9TaNMjfihSXdAoBs2p1ZKRQEe0XnRNUz5 / WV7aORpbTwJ /
TCajNbJVW4OQFTI6uBRTD90ak5Xj95txrFEDI6p+ tE / eZjkZ2cenV31TytqR2 /
tndSAky1DRZdktggJfPyTnKSbgcq7swIDAQAB "

40 }

A-2

Appendix B

The extension’s background.js is presented in this appendix.

1 //wait for popup’s request to authenticate and open scan.html
2 chrome . r u n t i m e . onMessage . a d d L i s t e n e r (
3 f u n c t i o n (message , s ende r , sendResponse) {
4 i f (message . r e q u e s t === " a u t h e n t i c a t e _ A l l ") {
5 chrome . i d e n t i t y . ge tAuthToken ({ ’ i n t e r a c t i v e ’ : t rue } ,
6 async f u n c t i o n (t o k e n) {
7 window . open (’ s can . h tml ? a l l ’) ;
8 }) ;
9 }

10 e l s e i f (message . r e q u e s t === " a u t h e n t i c a t e _ B y L a b e l ") {
11 chrome . i d e n t i t y . ge tAuthToken ({ ’ i n t e r a c t i v e ’ : t rue } ,
12 async f u n c t i o n (t o k e n) {
13 window . open (’ s can . h tml ? custom ’) ;
14 }) ;
15 }
16 }
17) ;

B-1

Appendix C

The extension’s popup.html is presented in this appendix.

1 <!DOCTYPE html >
2 <html >
3 < s t y l e >
4
5 : r o o t {
6 −− w h i t e : #FEFEFE ;
7 −− w h i t e g r a y : #E7E7E7 ;
8 −− b l u e g r a y : # f 2 f 2 f 7 ;
9 −− r e d : # eb333a ;

10 −− l i g h t r e d : # f c 4 f 5 5 ;
11 }
12
13 body {
14 wid th : 280 px ;
15 background : v a r (−− w h i t e) ;
16 f o n t − f a m i l y : " H e l v e t i c a " ;
17 padding − l e f t : 10 px ;
18 padding − r i g h t : 10 px ;
19 padding − t o p : 10 px ;
20 padding − bot tom : 20 px ;
21 }
22
23 . t i t l e {
24 f o n t − we i gh t : 100 ;
25 f o n t − s i z e : 20 px ;
26 t e x t − a l i g n : c e n t e r ;
27 margin − t o p : −10px ;
28 }
29
30 . l ogo {
31 margin − bot tom : 0px ;
32 t e x t − a l i g n : c e n t e r ;
33 }
34
35 . i n t r o d u c t i o n {
36 t e x t − a l i g n : j u s t i f y ;
37 f o n t − s i z e : 13 px ;
38 margin − l e f t : 10 px ;
39 margin − r i g h t : 10 px ;
40 }
41
42 . s can {
43 t e x t − a l i g n : c e n t e r ;
44 }

C-1

45
46 . s can b u t t o n {
47 c o l o r : w h i t e ;
48 t e x t − a l i g n : c e n t e r ;
49 f o n t − s i z e : 13 px ;
50 padd ing : 10 px 50 px ;
51 p o s i t i o n : c e n t e r ;
52 background − c o l o r : # eb333a ;
53 borde r − s t y l e : s o l i d ;
54 borde r − r a d i u s : 23 px ;
55 borde r − c o l o r : # f 2 f 2 f 2 ;
56 c u r s o r : p o i n t e r ;
57 }
58
59 . s can b u t t o n : f o c u s {
60 o u t l i n e : 0 ;
61 }
62
63 . s can b u t t o n : hove r {
64 background − c o l o r : v a r (−− l i g h t r e d) ;
65 }
66
67 </ s t y l e >
68 <body >
69
70 <p c l a s s =" logo "> </p>
71
72 < d i v c l a s s =" t i t l e ">
73 <p>TLS Scanne r f o r Gmail < / p>
74 </ div >
75
76 < d i v c l a s s =" i n t r o d u c t i o n ">
77 <p>TLS Scanne r i s d e s i g n e d t o scan your Gmail f o r any u n e n c r y p t e d e− m a i l s you

r e c e i v e d . < p>
78 <p>You may choose t o scan your whole mai lbox or s p e c i f i c l a b e l s o f your c h o i c e .

Whichever o p t i o n you choose , you w i l l be prompted i n t o a new t a b t h a t w i l l
g r a d u a l l y be f i l l e d wi th l i n k s t o your u n e n c r y p t e d e− m a i l s . I f t h i s i s t h e
f i r s t t ime you a r e r u n n i n g t h e e x t e n s i o n , you w i l l f i r s t be asked t o a u t h o r i z e
wi th your Google a c c o u n t b e f o r e t h e t a b opens . < / p>

79 </ div >
80
81 < d i v c l a s s =" scan ">
82

83 < b u t t o n i d =" s c a n A l l _ B u t t o n ">Scan All < / b u t t o n >
84

85 < b u t t o n i d =" scanByLabe l_Bu t ton ">Scan by Label < / b u t t o n >
86 < s c r i p t t y p e =" t e x t / j a v a s c r i p t " s r c =" popup . j s " > </ s c r i p t >
87 </ div >
88
89 </ body >
90 </ html >

C-2

Appendix D

The extension’s popup.js is presented in this appendix.

1 v a r s c a n A l l _ B u t t o n = document . ge tE lemen tById (" s c a n A l l _ B u t t o n ") ;
2 i f (s c a n A l l _ B u t t o n) {
3 s c a n A l l _ B u t t o n . a d d E v e n t L i s t e n e r (" c l i c k " , messageBackground_Al l) ;
4 }
5 v a r scanByLabe l_Bu t ton = document . ge tE lemen tById (" scanByLabe l_Bu t ton ") ;
6 i f (s canByLabe l_Bu t ton) {
7 scanByLabe l_Bu t ton . a d d E v e n t L i s t e n e r (" c l i c k " , messageBackground_ByLabel) ;
8 }
9

10 f u n c t i o n messageBackground_Al l () {
11 chrome . r u n t i m e . sendMessage ({ r e q u e s t : " a u t h e n t i c a t e _ A l l " }) ;
12 re turn ;
13 }
14 f u n c t i o n messageBackground_ByLabel () {
15 chrome . r u n t i m e . sendMessage ({ r e q u e s t : " a u t h e n t i c a t e _ B y L a b e l " }) ;
16 re turn ;
17 }

D-1

Appendix E

The extension’s scan.html is presented in this appendix.

1 <!DOCTYPE html >
2 <html >
3 < s t y l e >
4
5 : r o o t {
6 −− w h i t e : #FEFEFE ;
7 −− w h i t e g r a y : #E7E7E7 ;
8 −− b l u e g r a y : # f 2 f 2 f 7 ;
9 −− r e d : # eb333a ;

10 −− d a r k r e d : # f f c c c c ;
11 −− b l u e : #2153 F6 ;
12 −− l i g h t p i n k : # f c e f e f ;
13 −− l i g h t r e d : # f c 4 f 5 5 ;
14 }
15
16 body {
17 f o n t − f a m i l y : " H e l v e t i c a " ;
18 t e x t − a l i g n : j u s t i f y ;
19 f o n t − s i z e : 15 px ;
20 padding − l e f t : 150 px ;
21 padding − r i g h t : 150 px ;
22 padding − t o p : 5 0 px ;
23 padding − bot tom : 5 0 px ;
24 }
25 . t i t l e {
26 f o n t − we i gh t : 200 ;
27 f o n t − s i z e : 40 px ;
28 t e x t − a l i g n : c e n t e r ;
29 margin − t o p : 5px ;
30 }
31
32 . l ogo {
33 margin − bot tom : 0px ;
34 t e x t − a l i g n : c e n t e r ;
35 }
36
37 . modal − c o n t e n t {
38 margin − bot tom : 28%;
39 margin − t o p : 28%;
40 }
41
42 * {
43 padd ing : 0 ;
44 box − s i z i n g : bo rde r −box ;

E-1

45 }
46
47 a {
48 c o l o r : i n h e r i t ;
49 t e x t − d e c o r a t i o n : none ;
50 }
51
52 o l {
53 l i s t − s t y l e : none ;
54 }
55
56 l a b e l {
57 c u r s o r : p o i n t e r ;
58 margin : 0 px ;
59 }
60
61 [t y p e =" checkbox "] {
62 p o s i t i o n : a b s o l u t e ;
63 l e f t : −9999 px ;
64 }
65
66 . s w i t c h e s {
67 wid th : 80%;
68 margin : 0px auto 0 ;
69 margin − t o p : −15px ;
70 margin − bot tom : −15px ;
71 borde r − r a d i u s : 0px ;
72 c o l o r : v a r (−− b l a c k) ;
73 background : v a r (−− w h i t e) ;
74 }
75
76 . s w i t c h e s l i {
77 p o s i t i o n : r e l a t i v e ;
78 c o u n t e r − i n c r e m e n t : s w i t c h C o u n t e r ;
79 }
80
81 . s w i t c h e s l i : not (: l a s t − c h i l d) {
82 margin − t o p : 6px ;
83 borde r − bot tom : 1px s o l i d v a r (−− w h i t e g r a y) ;
84 margin − bot tom : 6px ;
85 borde r − bot tom : 1px s o l i d v a r (−− w h i t e g r a y) ;
86 }
87
88 . s w i t c h e s l i : : b e f o r e {
89 c o n t e n t : c o u n t e r (s w i t c h C o u n t e r) ;
90 p o s i t i o n : a b s o l u t e ;
91 t o p : 50%;
92 l e f t : −30px ;
93 t r a n s f o r m : t r a n s l a t e Y (−50%) ;
94 f o n t − s i z e : 2rem ;
95 f o n t − we i gh t : bo ld ;
96 v i s i b i l i t y : h id de n ;
97 }
98
99 . s w i t c h e s l a b e l {

100 d i s p l a y : f l e x ;
101 a l i g n − i t e m s : c e n t e r ;

E-2

102 j u s t i f y − c o n t e n t : space − between ;
103 padd ing : 8px ;
104 }
105
106 . s w i t c h e s span : l a s t − c h i l d {
107 p o s i t i o n : r e l a t i v e ;
108 wid th : 50 px ;
109 h e i g h t : 26 px ;
110 borde r − r a d i u s : 15 px ;
111 box −shadow : i n s e t 0 0 5px rgba (0 , 0 , 0 , 0 . 1) ;
112 background : v a r (−− w h i t e g r a y) ;
113 t r a n s i t i o n : a l l 0 . 3 s ;
114 }
115
116 . s w i t c h e s span : l a s t − c h i l d : : b e f o r e ,
117 . s w i t c h e s span : l a s t − c h i l d : : a f t e r {
118 c o n t e n t : " " ;
119 p o s i t i o n : a b s o l u t e ;
120 }
121
122 . s w i t c h e s span : l a s t − c h i l d : : b e f o r e {
123 l e f t : 2px ;
124 t o p : 2px ;
125 wid th : 22 px ;
126 h e i g h t : 22 px ;
127 background : v a r (−− w h i t e) ;
128 borde r − r a d i u s : 50%;
129 z− i n d e x : 1 ;
130 t r a n s i t i o n : t r a n s f o r m 0 . 3 s ;
131 }
132
133 . s w i t c h e s span : l a s t − c h i l d : : a f t e r {
134 t o p : 50%;
135 r i g h t : 8px ;
136 wid th : 12 px ;
137 h e i g h t : 12 px ;
138 t r a n s f o r m : t r a n s l a t e Y (−50%) ;
139 background − s i z e : 12 px 12 px ;
140 }
141
142 . s w i t c h e s [t y p e =" checkbox "] : checked + l a b e l span : l a s t − c h i l d {
143 background : v a r (−− b l u e) ;
144 }
145
146 . s w i t c h e s [t y p e =" checkbox "] : checked + l a b e l span : l a s t − c h i l d : : b e f o r e {
147 t r a n s f o r m : t r a n s l a t e X (24 px) ;
148 }
149
150 . s w i t c h e s [t y p e =" checkbox "] : checked + l a b e l span : l a s t − c h i l d : : a f t e r {
151 wid th : 14 px ;
152 h e i g h t : 14 px ;
153 l e f t : 8px ;
154 background − s i z e : 14 px 14 px ;
155 }
156
157 . modal − h e a d e r {
158 margin : 0 auto ;

E-3

159 }
160
161 . modal − t i t l e {
162 t e x t − a l i g n : c e n t e r ;
163 }
164
165 . modal − f o o t e r {
166 margin : 0 auto ;
167 }
168
169 . modal − b u t t o n {
170 t e x t − a l i g n : c e n t e r ;
171 }
172
173 . mai l − b u t t o n s {
174 t e x t − a l i g n : r i g h t ;
175 margin − bot tom : 3px ;
176 margin − t o p : 3px ;
177 }
178
179 . modal − b u t t o n b u t t o n {
180 c o l o r : w h i t e ;
181 t e x t − a l i g n : c e n t e r ;
182 f o n t − s i z e : 15 px ;
183 padd ing : 10 px 50 px ;
184 p o s i t i o n : c e n t e r ;
185 background − c o l o r : # eb333a ;
186 borde r − s t y l e : s o l i d ;
187 borde r − r a d i u s : 23 px ;
188 borde r − c o l o r : # f 2 f 2 f 2 ;
189 c u r s o r : p o i n t e r ;
190 }
191
192 . modal − b u t t o n b u t t o n : f o c u s {
193 o u t l i n e : 0 ;
194 }
195
196 . mai l − b u t t o n s b u t t o n {
197 c o l o r : w h i t e ;
198 t e x t − a l i g n : r i g h t ;
199 f o n t − s i z e : 12 px ;
200 padd ing : 5px 25 px ;
201 p o s i t i o n : r i g h t ;
202 background − c o l o r : # eb333a ;
203 borde r − s t y l e : s o l i d ;
204 borde r − r a d i u s : 23 px ;
205 borde r − c o l o r : # f 2 f 2 f 2 ;
206 c u r s o r : p o i n t e r ;
207 }
208
209 . mai l − b u t t o n s b u t t o n : f o c u s {
210 o u t l i n e : 0 ;
211 }
212
213 . modal − b u t t o n b u t t o n : hove r {
214 background − c o l o r : v a r (−− l i g h t r e d) ;
215 }

E-4

216
217 . mai l − b u t t o n s b u t t o n : hove r {
218 background − c o l o r : v a r (−− l i g h t r e d) ;
219 }
220
221 . modal −body {
222 background − c o l o r : v a r (−− w h i t e) ;
223 margin : 2px ;
224 }
225
226 . modal −body : : − webki t − s c r o l l b a r {
227 −webki t − a p p e a r a n c e : none ;
228 wid th : 6px ;
229 }
230
231 . modal −body : : − webki t − s c r o l l b a r −thumb {
232 borde r − r a d i u s : 5px ;
233 background − c o l o r : rgba (0 , 0 , 0 , . 5) ;
234 −webki t −box −shadow : 0 0 1px rgba (2 5 5 , 2 5 5 , 2 5 5 , . 5) ;
235 }
236
237 . p roces sBox {
238 p o s i t i o n : r e l a t i v e ;
239 d i s p l a y : b l o c k ;
240 }
241 . p e r c e n t a g e B o x {
242 p o s i t i o n : a b s o l u t e ;
243 h e i g h t : 100%;
244 t e x t − a l i g n : c e n t e r ;
245 wid th : 100%;
246 }
247 . p e r c e n t a g e B o x : b e f o r e {
248 c o n t e n t : ’ ’ ;
249 d i s p l a y : i n l i n e − b l o c k ;
250 h e i g h t : 100%;
251 v e r t i c a l − a l i g n : midd le ;
252 }
253 . p e r c e n t a g e {
254 d i s p l a y : i n l i n e − b l o c k ;
255 f o n t − f a m i l y : " H e l v e t i c a " ;
256 f o n t − s i z e : 12 px ;
257 }
258
259 . l oade rBox {
260 t e x t − a l i g n : c e n t e r ;
261 f o n t : ;
262 }
263
264 . s t e p 1 {
265 d i s p l a y : f l e x ;
266 }
267
268 . u n s e l e c t a b l e A r e a {
269 −webki t − touch − c a l l o u t : none ;
270 −webki t − use r − s e l e c t : none ;
271 −khtml − use r − s e l e c t : none ;
272 −moz− use r − s e l e c t : none ;

E-5

273 −ms− use r − s e l e c t : none ;
274 f o n t − s i z e : 15 px ;
275 t e x t − a l i g n : j u s t i f y ;
276 }
277
278 </ s t y l e >
279
280 <body >
281
282 <p c l a s s =" logo "> </p>
283 < d i v c l a s s =" t i t l e ">
284 <p>TLS Scanne r f o r Gmail < / p>
285 </ div >
286
287 < l i n k r e l =" s t y l e s h e e t " h r e f =" h t t p s : / / maxcdn . b o o t s t r a p c d n . com / b o o t s t r a p / 4 . 5 . 2 / c s s /

b o o t s t r a p . min . c s s ">
288 < s c r i p t s r c =" h t t p s : / / a j a x . g o o g l e a p i s . com / a j a x / l i b s / j q u e r y / 3 . 5 . 1 / j q u e r y . min . j s " > </

s c r i p t >
289 < s c r i p t s r c =" h t t p s : / / c d n j s . c l o u d f l a r e . com / a j a x / l i b s / popper . j s / 1 . 1 6 . 0 / umd / popper . min

. j s " > </ s c r i p t >
290 < s c r i p t s r c =" h t t p s : / / maxcdn . b o o t s t r a p c d n . com / b o o t s t r a p / 4 . 5 . 2 / j s / b o o t s t r a p . min . j s "

> </ s c r i p t >
291
292 < d i v i d =" modalBox " c l a s s =" modal f a d e ">
293 < d i v c l a s s =" modal − d i a l o g modal − d i a l o g − s c r o l l a b l e " r o l e =" document ">
294 < d i v c l a s s =" modal − c o n t e n t ">
295 < d i v c l a s s =" modal − h e a d e r " s t y l e =" b o r d e r : none ; ">
296 < d i v c l a s s =" modal − t i t l e ">The f o l l o w i n g l a b e l s were found i n your mai lbox . < br >

Which of them do you want t o scan ? </ div >
297 </ div >
298 < d i v i d =" modal −body " c l a s s =" modal −body ">
299 < d i v t o g g l e s >
300 < o l c l a s s =" s w i t c h e s " i d =" s w i t c h e s ">
301 <!−− l a b e l s w i l l be d i s p l a y e d h e r e −−>
302 </ ol >
303 </ div >
304 </ div >
305 < d i v c l a s s =" modal − f o o t e r " s t y l e =" b o r d e r : none ; ">
306 < d i v c l a s s =" modal − b u t t o n ">
307 < b u t t o n i d =" moda lBut ton " t y p e =" b u t t o n " da t a − d i s m i s s =" modal ">Scan now </

b u t t o n >
308 </ div >
309 </ div >
310 </ div >
311 </ div >
312 </ div >
313
314 < d i v i d =" submitBox " c l a s s =" modal f a d e ">
315 < d i v c l a s s =" modal − d i a l o g modal − d i a l o g − s c r o l l a b l e " r o l e =" document ">
316 < d i v c l a s s =" modal − c o n t e n t " s t y l e =" o v e r f l o w : a u t o ; ">
317
318 < d i v c l a s s =" u n s e l e c t a b l e A r e a ">
319 < d i v i d =" modal −body " c l a s s =" modal −body ">
320
321 <div >Thank you f o r r u n n i n g TLS Scanne r f o r Gmail ! < / div >
322
323 < hr i d =" a l e r t L i n e ">

E-6

324
325 <div >Any r e s u l t s d i s p l a y e d on your s c r e e n i s on ly f o r you t o s e e . The

e x t e n s i o n has k e p t t r a c k o f i t s own r e s u l t s l o g f i l e which does not
i n c l u d e any of your p r i v a t e i n f o r m a t i o n . In o r d e r f o r t h e s e r e s u l t s t o
r e a c h us , f o l l o w t h e s t e p s below . < / div >

326 <p s t y l e =" f o n t − s i z e : 3 px ; ">
327
328 < d i v c l a s s =" s t e p 1 " i d =" s t e p 1 " s t y l e =" r i g h t − padd ing : 3 px ; "> S tep 1 : Download

your r e s u l t s l o g f i l e < d i v s t y l e =" c o l o r : w h i t e ; " >. </ div ><a i d ="
downloadLink " c l a s s =" downloadLink " h r e f =" # "> r e s u l t s . log < / a > </ div >

329
330 < d i v c l a s s =" s t e p 1 n o t e " i d =" s t e p 1 n o t e " s t y l e =" f o n t − s i z e : 1 0 px ; ">Note : r e s u l t s

. l o g on ly i n c l u d e s i n f o r m a t i o n on your e− ma i l h e a d e r s , not your e− ma i l
c o n t e n t s . < / div >

331 <p s t y l e =" f o n t − s i z e : 3 px ; ">
332
333 < d i v c l a s s =" s t e p 2 " i d =" s t e p 2 " s t y l e =" d i s p l a y : none ; "> S tep 2 : Upload your

r e s u l t s t o <a c l a s s =" dropboxLink " i d =" dropboxLink " h r e f =" h t t p s : / / www.
dropbox . com / r e q u e s t / CuRM83pXIdoxAmGlVHN6" t a r g e t =" _ b l an k ">TLS Scanne r
Dropbox </ a > </ div >

334 < d i v c l a s s =" s t e p 2 − i n v i s i b l e " i d =" s t e p 2 − i n v i s i b l e " s t y l e =" c o l o r : v a r (−−
w h i t e g r a y) ; "> S tep 2 : Upload your r e s u l t s t o TLS Scanne r Dropbox </ div >

335
336 < d i v c l a s s =" s t e p 2 n o t e " i d =" s t e p 2 n o t e " s t y l e =" f o n t − s i z e : 1 0 px ; d i s p l a y : none ; ">

Note : I f you have a Dropbox a c c o u n t and want t o h i d e your i d e n t i t y ,
t h e n s i g n o u t b e f o r e you up lo ad your r e s u l t s . Dropbox w i l l a sk f o r your

name and e− ma i l t o c o m p l e t e t h e up loa d i f you a r e not s ign ed i n . Your
e− ma i l w i l l be used by Dropbox t o v e r i f y your up lo ad and won ’ t be
v i s i b l e t o us . Your name , however , w i l l a p p e a r n e x t t o your f i l e n a m e ,
so w r i t e some th ing i n v a l i d i n t h e name f i e l d , l i k e a d o t (.) o r dash
(−) , t o e n s u r e your anonymi ty . < / div >

337 < d i v c l a s s =" s t e p 2 n o t e − i n v i s i b l e " i d =" s t e p 2 n o t e − i n v i s i b l e " s t y l e =" f o n t − s i z e
: 1 0 px ; c o l o r : v a r (−− w h i t e g r a y) ;" > Note : I f you have a Dropbox a c c o u n t and want t o
h i d e your i d e n t i t y , t h e n s i g n o u t b e f o r e you up lo ad your r e s u l t s . Dropbox w i l l a sk
f o r your name and e− ma i l t o c o m p l e t e t h e up lo ad i f you a r e n o t s i g n e d i n . Your e−
ma i l w i l l be used by Dropbox t o v e r i f y your up lo ad and won ’ t be v i s i b l e t o us . Your

name , however , w i l l a p p e a r n e x t t o your f i l e n a m e , so w r i t e some th ing i n v a l i d i n
t h e name f i e l d , l i k e a d o t (.) or dash (−) , t o e n s u r e your anonymi ty . < / div >

338
339 <p s t y l e =" f o n t − s i z e : 3 px ; ">
340
341 < d i v c l a s s =" s t e p 3 " i d =" s t e p 3 " s t y l e =" d i s p l a y : none ; "> S tep 3 : C l i c k F i n i s h < /

div >
342 < d i v c l a s s =" s t e p 3 − i n v i s i b l e " i d =" s t e p 3 − i n v i s i b l e " s t y l e =" c o l o r : v a r (−−

w h i t e g r a y) ; "> S tep 3 : C l i c k F i n i s h < / div >
343
344 < hr i d =" a l e r t L i n e ">
345
346 < d i v c l a s s =" mai l − b u t t o n s ">
347 < b u t t o n i d =" e x i t B u t t o n " t y p e =" b u t t o n " da t a − d i s m i s s =" modal " s t y l e =" d i s p l a y

: none ; "> F i n i s h < / b u t t o n >
348 < b u t t o n i d =" w a i t B u t t o n " t y p e =" b u t t o n " s t y l e =" background − c o l o r : v a r (−−

l i g h t r e d) ; " d i s a b l e d > F i n i s h < / b u t t o n >
349 </ div >
350
351 </ div >
352

E-7

353 </ div >
354
355 </ div >
356 </ div >
357 </ div >
358
359 < s c r i p t t y p e =" t e x t / j a v a s c r i p t " s r c =" h t t p s : / / a p i s . go og l e . com / j s / c l i e n t . j s ? on lo ad =

c a l l b a c k F u n c t i o n " > </ s c r i p t >
360 < s c r i p t t y p e =" t e x t / j a v a s c r i p t " s r c =" scan . j s " > </ s c r i p t >
361
362 </ body >
363 </ html >

E-8

Appendix F

The extension’s scan.js is presented in this appendix.

1 f u n c t i o n APPEND_ERROR_PARAGRAPH(par , theEnd) {
2 HIDE_LOADER () ;
3 v a r p a r a g r a p h = document . c r e a t e E l e m e n t (’ p ’) ;
4 p a r a g r a p h . s t y l e [" t e x t − a l i g n "] = " c e n t e r " ;
5 p a r a g r a p h . s t y l e [" c o l o r "] = " v a r (−− r e d) " ;
6 p a r a g r a p h . s t y l e [" bo rde r − s t y l e "] = " s o l i d " ;
7 p a r a g r a p h . s t y l e [" bo rde r − c o l o r "] = " v a r (−− d a r k r e d) " ;
8 p a r a g r a p h . s t y l e [" bo rde r − wid th "] = " 0 . 4 px " ;
9 p a r a g r a p h . s t y l e [" background "] = " v a r (−− l i g h t p i n k) " ;

10 p a r a g r a p h . s t y l e [" padd ing "] = " 10 px " ;
11 v a r t e x t = document . c r e a t e T e x t N o d e (p a r) ;
12 p a r a g r a p h . appendCh i ld (t e x t) ;
13 document . body . appendCh i ld (p a r a g r a p h) ;
14 i f (! theEnd) {
15 APPEND_LOADER () ;
16 }
17 re turn ;
18 }
19
20 f u n c t i o n APPEND_LEFT_PARAGRAPH(p a r) {
21 v a r p a r a g r a p h = document . c r e a t e E l e m e n t (’ p ’) ;
22 v a r t e x t = document . c r e a t e T e x t N o d e (p a r) ;
23 p a r a g r a p h . s t y l e [" t e x t − a l i g n "] = " l e f t " ;
24 p a r a g r a p h . appendCh i ld (t e x t) ;
25 document . body . appendCh i ld (p a r a g r a p h) ;
26 re turn ;
27 }
28
29 f u n c t i o n APPEND_CENTER_PARAGRAPH(p a r) {
30 v a r p a r a g r a p h = document . c r e a t e E l e m e n t (’ p ’) ;
31 p a r a g r a p h . s t y l e [" t e x t − a l i g n "] = " c e n t e r " ;
32 v a r t e x t = document . c r e a t e T e x t N o d e (p a r) ;
33 p a r a g r a p h . appendCh i ld (t e x t) ;
34 document . body . appendCh i ld (p a r a g r a p h) ;
35 re turn ;
36 }
37
38 f u n c t i o n APPEND_RIGHT_PARAGRAPH(p a r) {
39 v a r p a r a g r a p h = document . c r e a t e E l e m e n t (’ p ’) ;
40 p a r a g r a p h . s t y l e [" t e x t − a l i g n "] = " r i g h t " ;
41 p a r a g r a p h . s t y l e [" f o n t − s i z e "] = " 10 px " ;
42 v a r t e x t = document . c r e a t e T e x t N o d e (p a r) ;
43 p a r a g r a p h . appendCh i ld (t e x t) ;
44 document . body . appendCh i ld (p a r a g r a p h) ;

F-1

45 re turn ;
46 }
47
48 f u n c t i o n APPEND_LINK(l a b e l , from , s u b j e c t , da t e , p r o t o c o l , l i n k , p r o v i d e r) {
49
50 APPEND_LINE () ;
51
52 // from
53 APPEND_LEFT_PARAGRAPH(’FROM: ’ + from) ;
54
55 // icon, subject, link
56 v a r p , a , t e x t N o d e ;
57 p = document . c r e a t e E l e m e n t (’ p ’) ;
58 t e x t N o d e = document . c r e a t e T e x t N o d e (’SUBJECT : ’) ;
59 p . appendCh i ld (t e x t N o d e) ;
60 a = document . c r e a t e E l e m e n t (’ a ’) ;
61 t e x t N o d e = document . c r e a t e T e x t N o d e (s u b j e c t) ;
62 a . appendCh i ld (t e x t N o d e) ;
63 a . h r e f = l i n k ;
64 a . t a r g e t = " _b l an k " ;
65 p . appendCh i ld (a) ;
66 document . body . appendCh i ld (p) ;
67
68 // date
69 APPEND_LEFT_PARAGRAPH(’DATE: ’ + d a t e) ;
70
71 // protocol, label, provider
72 APPEND_RIGHT_PARAGRAPH(’LABEL: ’ + l a b e l) ;
73 APPEND_RIGHT_PARAGRAPH(’PROTOCOL: ’ + p r o t o c o l) ;
74 APPEND_RIGHT_PARAGRAPH(’PROVIDER : ’ + p r o v i d e r) ;
75
76 re turn ;
77 }
78
79 f u n c t i o n APPEND_LINE () {
80 v a r h r = document . c r e a t e E l e m e n t (’ h r ’) ;
81 h r . a l i g n = " r i g h t " ;
82 h r . s t y l e [" h e i g h t "] = " 1px " ;
83 h r . s t y l e [" wid th "] = "80%" ;
84 hr . s t y l e [" b o r d e r "] = " 0 " ;
85 h r . s t y l e [" background −image "] = " l i n e a r − g r a d i e n t (200 deg , gray , t r a n s p a r e n t) " ;
86 document . body . appendCh i ld (h r) ;
87 }
88
89 async f u n c t i o n APPEND_STATISTICS (p r o c e s s i n g S t a t u s) {
90 i f (p r o c e s s i n g S t a t u s !== " s u c c e s s ") {
91 APPEND_ERROR_PARAGRAPH(’ P r o c e s s i n g s t o p p e d u n e x p e c t e d l y . ’ + p r o c e s s i n g S t a t u s) ;
92 HIDE_LOADER () ;
93 APPEND_CENTER_PARAGRAPH(t o t a l U n e n c r y p t e d + " o u t o f " + t o t a l R e c e i v e d + " r e c e i v e d

e m a i l s were found u n e n c r y p t e d ") ;
94 }
95 e l s e {
96 HIDE_LOADER () ;
97 APPEND_CENTER_PARAGRAPH(t o t a l U n e n c r y p t e d + " o u t o f " + t o t a l R e c e i v e d + " r e c e i v e d

e m a i l s were found u n e n c r y p t e d ") ;
98
99 i f (m e s s a g e s T o t a l == 0) re turn ;

F-2

100
101 // 1. prepare logfile body
102 v a r logBody = ’ E r r o r s c o u n t : ’ + e r r o r s C o u n t + ’ \ n C l i e n t hash : ’ + c l i e n t H a s h + ’ \ n

\ n ’ ;
103 l e t i ;
104 v a r t o t a l D o m a i n s = r e s u l t s A s O b j e c t s . l e n g t h ;
105 f o r (i =0 ; i < t o t a l D o m a i n s ; i ++) {
106 l e t o b j = r e s u l t s A s O b j e c t s [i] ;
107 logBody += ’ (\ " ’ + o b j . l a s t D o m a i n + ’ \ " , \ " ’ + o b j . d n s S t a t u s + ’ \ " , \ " ’ + o b j . d a t e

+ ’ \ " , \ " ’ + o b j . s e c u r i t y + ’ \ " , \ " ’ + o b j . mimeType + ’ \ " , \ " ’ + o b j .
s i z e E s t i m a t e + ’ \ " , \ " ’ + o b j . senderDomain + ’ \ ") \ n ’ ;

108 }
109
110 // 2. create hmac symmetric key and hmac of logfile body
111 v a r h m a c S i g n a t u r e ;
112
113 f u n c t i o n s t r 2 a b (s t r) {
114 c o n s t buf = new A r r a y B u f f e r (s t r . l e n g t h) ;
115 c o n s t bufView = new U i n t 8 A r r a y (buf) ;
116 f o r (l e t i =0 , s t r L e n = s t r . l e n g t h ; i < s t r L e n ; i ++) {
117 bufView [i] = s t r . charCodeAt (i) ;
118 }
119 re turn buf ;
120 }
121
122 c o n s t mani f e s tKey = "

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAzwmrtHKgVgZB3Uj5462TH7yM / 4
xDZpAC6TZT6wDvBCZ4j+CW+5HTsB5WS1sl6yJUQrf+
nq1E0rsJyt0oGSv3h7N73PVABVeFsTKI4gQSSvxkC5VZwP+
LWAweEflpqGylTkPzfp25VAtep6TvqJ4TsVNsOfGNTtSEgMbw7DNnfR5bVIawgrN5E /
ZHwydWqsNMDHWjfdLpn3d9TaNMjfihSXdAoBs2p1ZKRQEe0XnRNUz5 / WV7aORpbTwJ /
TCajNbJVW4OQFTI6uBRTD90ak5Xj95txrFEDI6p+ tE / eZjkZ2cenV31TytqR2 /
tndSAky1DRZdktggJfPyTnKSbgcq7swIDAQAB " ;

123 c o n s t b i n a r y D e r S t r i n g = window . a t o b (man i f e s tKey) ;
124 c o n s t b i n a r y D e r = s t r 2 a b (b i n a r y D e r S t r i n g) ;
125
126 v a r symmetr icKey ;
127
128 l e t c ryp toKeyPromise = a w a i t window . c r y p t o . s u b t l e . impor tKey (
129 " jwk " , //can be "jwk" or "raw"
130 { //this is an example jwk key, "raw" would be an ArrayBuffer
131 k t y : " o c t " ,
132 k : buf2hex (b i n a r y D e r) ,
133 a l g : " HS256 " ,
134 e x t : true ,
135 } ,
136 { //algorithm options
137 name : "HMAC" ,
138 hash : {name : "SHA−256 " } ,
139 //length: 256, //optional, if you want your key length to differ from the

hash function’s block length
140 } ,
141 f a l s e , //key not extractable
142 [" s i g n " , " v e r i f y "]
143)
144 . t h e n (f u n c t i o n (key) {
145 symmetr icKey = key ;

F-3

146 }) ;
147
148 l e t encodedData = new Tex tEncoder () . encode (logBody) ;
149
150 l e t s i g n P r o m i s e = a w a i t window . c r y p t o . s u b t l e . s i g n (
151 {
152 name : "HMAC" ,
153 } ,
154 symmetricKey ,
155 encodedData
156) . t h e n (f u n c t i o n (s i g n a t u r e) {
157 h m a c S i g n a t u r e = buf2hex (new U i n t 8 A r r a y (s i g n a t u r e)) ;
158 }) ;
159
160 // 3. prepare logfile content
161 v a r l o g R e s u l t s ;
162 v a r timeNow = new Date () ;
163 l o g R e s u l t s = ’ t l s _ s c a n n e r _ r e s u l t s . l o g wi th hmac s i g n a t u r e ’ + h m a c S i g n a t u r e + ’ \

n c r e a t e d a t + ’ + timeNow . toUTCStr ing () + ’ \ n ’ ;
164 l o g R e s u l t s += ’ \ n−−−−RESULTS BODY BELOW. BEWARE THAT ANY ALTERATIONS OF BELOW

SECTION CAN BE DETECTED WITH HMAC SIGNATURE AND WILL IMMEDIATELY DISCLUDE YOUR
RESULTS FROM THE SURVEY−−−−\n \ n ’ ;

165 l o g R e s u l t s += logBody ;
166
167 $ (’ # submitBox ’) . modal ({
168 backdrop : ’ s t a t i c ’
169 }) ;
170
171 v a r downloadLink = document . ge tE lemen tById (" downloadLink ") ;
172 i f (downloadLink) {
173 downloadLink . a d d E v e n t L i s t e n e r (" c l i c k " , f u n c t i o n () {
174
175 v a r b lob = new Blob ([l o g R e s u l t s] , { t y p e : " b i n a r y / o c t e t − s t r e a m " }) ;
176 v a r f i leURL = URL. c rea t eObjec tURL (b lob) ;
177 chrome . downloads . download ({
178 u r l : f i leURL ,
179 f i l e n a m e : ’ t l s _ s c a n n e r _ r e s u l t s . l o g ’ ,
180 saveAs : t rue
181 }) ;
182
183 v a r s t e p 2 _ i n v = document . ge tE lemen tById (" s t e p 2 − i n v i s i b l e ") ;
184 s t e p 2 _ i n v . s t y l e . d i s p l a y = " none " ;
185 v a r s t e p 2 n o t e _ i n v = document . ge tE lemen tById (" s t e p 2 n o t e − i n v i s i b l e ") ;
186 s t e p 2 n o t e _ i n v . s t y l e . d i s p l a y = " none " ;
187
188 v a r s t e p 2 = document . ge tE lemen tById (" s t e p 2 ") ;
189 s t e p 2 . s t y l e . d i s p l a y = " " ;
190 v a r s t e p 2 n o t e = document . ge tE lemen tById (" s t e p 2 n o t e ") ;
191 s t e p 2 n o t e . s t y l e . d i s p l a y = " " ;
192
193 v a r dropboxLink = document . ge tE lemen tById (" dropboxLink ") ;
194 i f (d ropboxLink) {
195 dropboxLink . a d d E v e n t L i s t e n e r (" c l i c k " , f u n c t i o n () {
196
197 v a r s t e p 3 _ i n v = document . ge tE lemen tById (" s t e p 3 − i n v i s i b l e ") ;
198 s t e p 3 _ i n v . s t y l e . d i s p l a y = " none " ;
199

F-4

200 v a r s t e p 3 = document . ge tE lemen tById (" s t e p 3 ") ;
201 s t e p 3 . s t y l e . d i s p l a y = " " ;
202
203 v a r w a i t B u t t o n = document . ge tE lemen tById (" w a i t B u t t o n ") ;
204 w a i t B u t t o n . s t y l e . d i s p l a y = " none " ;
205
206 v a r e x i t B u t t o n = document . ge tE lemen tById (" e x i t B u t t o n ") ;
207 e x i t B u t t o n . s t y l e . d i s p l a y = " " ;
208
209 }) ;
210 }
211 }) ;
212 }
213 }
214 re turn ;
215 }
216
217 f u n c t i o n APPEND_MODAL(l a b e l s , t o t a l) {
218 //customize modal
219 f o r (v a r i =0 ; i < t o t a l ; i ++) {
220 l e t t h i s L a b e l = l a b e l s . s h i f t () ;
221 l e t l a b e l _ n a m e = t h i s L a b e l [" name "] ;
222 l e t l a b e l _ i d = " t o g g l e S w i t c h _ " + t h i s L a b e l [" i d "] ;
223 l e t l a b e l _ t y p e = t h i s L a b e l [" t y p e "] ;
224
225 i f (l a b e l _ t y p e === " sys tem ") {
226 i f (l a b e l _ n a m e !== "INBOX" && l a b e l _ n a m e !== "SPAM" && l a b e l _ n a m e !== "TRASH" &&

l a b e l _ n a m e !== "UNREAD" && l a b e l _ n a m e !== "STARRED" && l a b e l _ n a m e !== "IMPORTANT")
{

227 c o n t in u e ; //ignore all other system labels
228 }
229 }
230 v a r e l e m e n t = $ (’ # s w i t c h e s ’) ;
231 v a r t o g g l e _ b u t t o n = "< l i > \
232 < i n p u t t y p e = ’ checkbox ’ i d = ’ " + l a b e l _ i d + " ’ >\
233 < l a b e l f o r = ’ " + l a b e l _ i d + " ’ >\
234 " + l a b e l _ n a m e + " </ span >\
235 </ span > \
236 </ l a b e l > \
237 </ l i >" ;
238 e l e m e n t . append (t o g g l e _ b u t t o n) ;
239 }
240
241 //display modal
242 $ (’ #modalBox ’) . modal ({
243 backdrop : ’ s t a t i c ’
244 }) ;
245 re turn ;
246 }
247
248 f u n c t i o n APPEND_LOADER () {
249 HIDE_LOADER () ;
250 processBox = document . c r e a t e E l e m e n t (’ d i v ’) ;
251 processBox . c lassName = " processBox " ;
252 p e r c e n t a g e B o x = document . c r e a t e E l e m e n t (’ d i v ’) ;
253 p e r c e n t a g e B o x . c lassName = " p e r c e n t a g e B o x " ;
254 p e r c e n t a g e = document . c r e a t e E l e m e n t (’ d i v ’) ;

F-5

255 p e r c e n t a g e . c lassName = " p e r c e n t a g e " ;
256 i f (m e s s a g e s T o t a l == 0) {
257 p e r c e n t a g e . innerHTML = "0%" ;
258 }
259 e l s e {
260 p e r c e n t a g e . innerHTML = Math . round (p r o c e s s e d T o t a l / m e s s a g e s T o t a l) + ’%’ ;
261 }
262 p e r c e n t a g e B o x . appendCh i ld (p e r c e n t a g e) ;
263 processBox . appendCh i ld (p e r c e n t a g e B o x) ;
264 loade rBox = document . c r e a t e E l e m e n t (’ d i v ’) ;
265 loade rBox . c lassName = " loade rBox " ;
266 l o a d i n g I m a g e = document . c r e a t e E l e m e n t (’ img ’) ;
267 l o a d i n g I m a g e . s r c = " l o a d e r . g i f " ;
268 l o a d i n g I m a g e . s t y l e = " h e i g h t : 6 5 px ; wid th : 6 5 px ; " ;
269 loade rBox . appendCh i ld (l o a d i n g I m a g e) ;
270 processBox . appendCh i ld (loade rBox) ;
271 document . body . append (p roces sBox) ;
272 }
273
274 f u n c t i o n HIDE_LOADER () {
275 i f (p roces sBox) {
276 processBox . s t y l e . d i s p l a y = " none " ;
277 }
278 re turn ;
279 }
280
281 //START OF EXECUTION
282
283 v a r t o t a l R e c e i v e d = 0 ;
284 v a r t o t a l U n e n c r y p t e d = 0 ;
285
286 v a r s c a n L a b e l s = [] ;
287 v a r scanLabe l sCopy = [] ;
288 v a r s c a n L a b e l = ’ ’ ;
289 v a r s c a n L a b e l I d = ’ ’ ;
290
291 v a r e m a i l I d s = [] ;
292 v a r unsecureDomains = [] ;
293
294 v a r pendingAppends = [] ;
295
296 v a r p e n d i n g E m a i l s = t rue ;
297 v a r pendingPageToken = ’ ’ ;
298
299 v a r au thToken = ’ ’ ;
300
301 v a r processBox , pe rcen tageBox , p e r c e n t a g e , loaderBox , l o a d i n g I m a g e ;
302 v a r p r o c e s s e d T o t a l = 0 ;
303 v a r m e s s a g e s T o t a l = 0 ;
304 v a r m e s s a g e s T o t a l F e t c h e d = f a l s e ;
305
306 v a r r e s u l t s A s O b j e c t s = [] ;
307 v a r c l i e n t H a s h = ’ ’ ;
308
309 v a r e r r o r s C o u n t = 0 ;
310
311 v a r t h i s U r l = window . l o c a t i o n . h r e f ;

F-6

312
313 sw i t ch (t h i s U r l) {
314 case " chrome − e x t e n s i o n : / / e edg f jpgakgkecok jonmcbhch fne imhk / scan . h tml ? a l l " :
315 s c a n L a b e l = ’ A l l Mai l ’ ;
316 b e g i n P r o c e s s i n g () ;
317 break ;
318 case " chrome − e x t e n s i o n : / / e edg f jpgakgkecok jonmcbhch fne imhk / scan . h tml ? custom " :
319 f e t c h L a b e l s A n d D i s p l a y M o d a l () ;
320 break ;
321 d e f a u l t :
322 APPEND_ERROR_PARAGRAPH(" \ " " + t h i s U r l + " \ " r e q u e s t i s n o t v a l i d . TLS Scanne r

t e r m i n a t e d . " , t rue) ;
323 }
324
325 f u n c t i o n buf2hex (b u f f e r) {
326 re turn Array . p r o t o t y p e . map . c a l l (new U i n t 8 A r r a y (b u f f e r) , x => (’ 00 ’ + x . t o S t r i n g (1 6)) .

s l i c e (−2)) . j o i n (’ ’) ;
327 }
328
329 async f u n c t i o n d i g e s t M e s s a g e (message) {
330 v a r msgUint8 = new Tex tEncoder () . encode (message) ; //encode as utf-8
331 v a r h a s h B u f f e r = a w a i t c r y p t o . s u b t l e . d i g e s t (’SHA−256 ’ , msgUint8) ; //hash the message
332 v a r hashAr ray = Array . from (new U i n t 8 A r r a y (h a s h B u f f e r)) ; //convert buffer to byte

array
333 v a r hashHex = buf2hex (hashAr ray) ; //convert bytes to hex string
334 re turn hashHex ;
335 }
336
337 f u n c t i o n hex2buf (hex) {
338 v a r b y t e A r r a y = [] ;
339 f o r (v a r i =0 ; i <hex . l e n g t h ; i +=2) {
340 b y t e A r r a y . push (p a r s e I n t (hex . s u b s t r (i , 2) , 16)) ;
341 }
342 v a r u i n t 8 A r r a y = new U i n t 8 A r r a y (b y t e A r r a y . l e n g t h) ;
343 f o r (v a r i =0 ; i < u i n t 8 A r r a y . l e n g t h ; i ++) {
344 u i n t 8 A r r a y [i] = b y t e A r r a y [i] ;
345 }
346 re turn u i n t 8 A r r a y ;
347 }
348
349 f u n c t i o n f e t c h L a b e l s A n d D i s p l a y M o d a l () {
350 chrome . i d e n t i t y . ge tAuthToken ({ ’ i n t e r a c t i v e ’ : t rue } ,
351 async f u n c t i o n (t o k e n) {
352 authToken = t o k e n ;
353
354 // fetch labels
355 v a r u r l = " h t t p s : / / www. g o o g l e a p i s . com / gmai l / v1 / u s e r s / me / l a b e l s ? a c c e s s _ t o k e n =" +

authToken ;
356
357 l e t r e s p o n s e = a w a i t f e t c h (u r l) . ca tch ((e r r o r) => {
358 APPEND_ERROR_PARAGRAPH(’Some e r r o r o c c u r e d t r y i n g t o f e t c h your l a b e l s : ’ + e r r o r

, t rue) ;
359 re turn ;
360 }) ;
361
362 i f (! r e s p o n s e . ok) {
363 l e t r e s p o n s e S t a t u s = r e s p o n s e . s t a t u s ;

F-7

364 v a r e r r o r = ’HTTP ’ + r e s p o n s e S t a t u s + ’ e r r o r t r y i n g t o f e t c h your l a b e l s ’ ;
365 APPEND_ERROR_PARAGRAPH(e r r o r , t rue) ;
366 re turn ;
367 }
368
369 v a r l a b e l s = a w a i t r e s p o n s e . j s o n () . catch ((e r r o r) => {
370 APPEND_ERROR_PARAGRAPH(’Some e r r o r o c c u r e d t r y i n g t o f e t c h your l a b e l s : ’ + e r r o r

, t rue) ;
371 re turn ;
372 }) ; ;
373
374 v a r l a b e l s W i t h I d s = [] ; v a r l a b e l s W i t h I d s _ c o p y = [] ;
375 v a r t o t a l = l a b e l s [" l a b e l s "] . l e n g t h ;
376 v a r i ;
377 f o r (i =0 ; i < t o t a l ; i ++) {
378 l a b e l s W i t h I d s . push ({ name : l a b e l s [" l a b e l s "] [i] [" name "] , i d : l a b e l s [" l a b e l s "] [i] ["

i d "] , t y p e : l a b e l s [" l a b e l s "] [i] [" t y p e "] }) ;
379 l a b e l s W i t h I d s _ c o p y . push ({ name : l a b e l s [" l a b e l s "] [i] [" name "] , i d : l a b e l s [" l a b e l s "] [

i] [" i d "] , t y p e : l a b e l s [" l a b e l s "] [i] [" t y p e "] }) ;
380
381 }
382
383 APPEND_MODAL(l a b e l s W i t h I d s _ c o p y , t o t a l) ;
384
385 v a r moda lBut ton = document . ge tE lemen tById (" moda lBut ton ") ;
386 i f (moda lBut ton) {
387 modalBut ton . a d d E v e n t L i s t e n e r (" c l i c k " , f u n c t i o n () {
388
389 f o r (i =0 ; i < t o t a l ; i ++) {
390 l e t t h i s L a b e l = l a b e l s W i t h I d s . s h i f t () ;
391 l e t l a b e l _ n a m e = t h i s L a b e l [" name "] ;
392 l e t l a b e l _ i d = t h i s L a b e l [" i d "] ;
393
394 l e t e l e m e n t = document . ge tE lemen tById (" t o g g l e S w i t c h _ " + l a b e l _ i d) ;
395 i f (! e l e m e n t) { c o n t in u e ; } //element does not exist
396 i f (! e l e m e n t . checked) { c o n t in u e ; }
397 s c a n L a b e l s . push ({ name : labe l_name , i d : l a b e l _ i d }) ;
398 }
399
400 scanLabe l sCopy = [. . . s c a n L a b e l s] ; //needed to fetch message totals
401 p r e p a r e N e x t L a b e l () ;
402 b e g i n P r o c e s s i n g () ;
403 }) ;
404 }
405 re turn ;
406
407 }) ;
408 }
409
410 f u n c t i o n p r e p a r e N e x t L a b e l () {
411 i f (s c a n L a b e l s . l e n g t h >0) {
412 l e t t h i s L a b e l = s c a n L a b e l s . s h i f t () ;
413 s c a n L a b e l = t h i s L a b e l [" name "] ;
414 s c a n L a b e l I d = ’&l a b e l I d s = ’ + t h i s L a b e l [" i d "] ;
415 p e n d i n g E m a i l s = t rue ;
416 pendingPageToken = ’ ’ ;
417 }

F-8

418 e l s e {
419 p e n d i n g E m a i l s = f a l s e ;
420 }
421 }
422
423 f u n c t i o n inboxProcess ingWithNewAuthToken () {
424
425 chrome . i d e n t i t y . ge tAuthToken ({ ’ i n t e r a c t i v e ’ : t rue } ,
426 async f u n c t i o n (t o k e n) {
427 authToken = t o k e n ;
428
429 i f (! m e s s a g e s T o t a l F e t c h e d) {
430 l e t t o t a l L a b e l s T o B e F e t c h e d = 1 ;
431 l e t u r l = ’ ’ ;
432 i f (t h i s U r l === " chrome − e x t e n s i o n : / / e edg f jpgakgkecok jonmcbhch fne imhk / scan . h tml ?

a l l ") {
433 u r l = ’ h t t p s : / / www. g o o g l e a p i s . com / gmai l / v1 / u s e r s / me / p r o f i l e ? a c c e s s _ t o k e n = ’ +

authToken ;
434 }
435 e l s e {
436 t o t a l L a b e l s T o B e F e t c h e d = scanLabe l sCopy . l e n g t h ;
437 i f (scanLabe l sCopy . l e n g t h >0) {
438 //prepare first url
439 l e t t h i s L a b e l = scanLabe l sCopy . s h i f t () ;
440 u r l = ’ h t t p s : / / www. g o o g l e a p i s . com / gmai l / v1 / u s e r s / me / l a b e l s / ’ + t h i s L a b e l [" i d "

] + ’ ? a c c e s s _ t o k e n = ’ + authToken ;
441 }
442 }
443
444 l e t i ;
445 f o r (i =0 ; i < t o t a l L a b e l s T o B e F e t c h e d ; i ++) {
446 i f (i >0) {
447 //prepare next url
448 l e t t h i s L a b e l = scanLabe l sCopy . s h i f t () ;
449 u r l = ’ h t t p s : / / www. g o o g l e a p i s . com / gmai l / v1 / u s e r s / me / l a b e l s / ’ + t h i s L a b e l [" i d "

] + ’ ? a c c e s s _ t o k e n = ’ + authToken ;
450 }
451 //fetch url
452 l e t r e s p o n s e = a w a i t f e t c h (u r l) . catch ((e r r o r) => {
453 APPEND_STATISTICS (’Some e r r o r o c c u r e d t r y i n g t o f e t c h messages t o t a l : ’ +

e r r o r) ;
454 re turn ;
455 }) ;
456
457 i f (! r e s p o n s e . ok) {
458 l e t r e s p o n s e S t a t u s = r e s p o n s e . s t a t u s ;
459 APPEND_STATISTICS (’HTTP ’ + r e s p o n s e S t a t u s + ’ e r r o r t r y i n g t o f e t c h messages

t o t a l ’) ;
460 re turn ;
461 }
462
463 v a r i n f o = a w a i t r e s p o n s e . j s o n () . catch ((e r r o r) => {
464 APPEND_STATISTICS (’Some e r r o r o c c u r e d t r y i n g t o f e t c h messages t o t a l : ’ +

e r r o r) ;
465 re turn ;
466 }) ; ;
467

F-9

468 i f (! i n f o . hasOwnProper ty (" m e s s a g e s T o t a l ")) {
469 APPEND_STATISTICS (’Some e r r o r o c c u r e d t r y i n g t o f e t c h messages t o t a l :

I m p o r t a n t j s o n p r o p e r t y m i s s i n g ’) ;
470 re turn ;
471 }
472 m e s s a g e s T o t a l += i n f o [" m e s s a g e s T o t a l "] ;
473 }
474 m e s s a g e s T o t a l F e t c h e d = t rue ;
475 }
476
477 async f u n c t i o n i n b o x P r o c e s s i n g () {
478 i f (! p e n d i n g E m a i l s) {
479 p r e p a r e N e x t L a b e l () ;
480 i f (! p e n d i n g E m a i l s) { //pendingEmails is false still
481 APPEND_STATISTICS (" s u c c e s s ") ;
482 re turn ;
483 }
484 }
485
486 APPEND_LOADER () ;
487
488 v a r u r l ;
489 i f (pendingPageToken === ’ ’) { //first request
490 u r l = " h t t p s : / / www. g o o g l e a p i s . com / gmai l / v1 / u s e r s / me / messages ? a c c e s s _ t o k e n =" +

authToken + s c a n L a b e l I d ;
491 }
492 e l s e {
493 u r l = " h t t p s : / / www. g o o g l e a p i s . com / gmai l / v1 / u s e r s / me / messages ? a c c e s s _ t o k e n =" +

authToken + s c a n L a b e l I d + "&pageToken=" + pendingPageToken ;
494 }
495
496 l e t r e s p o n s e = a w a i t f e t c h (u r l) . catch ((e r r o r) => {
497 APPEND_STATISTICS (’Some e r r o r o c c u r e d t r y i n g t o f e t c h your messages : ’ + e r r o r)

;
498 re turn ;
499 }) ;
500
501 i f (! r e s p o n s e . ok) {
502 HIDE_LOADER () ;
503 l e t r e s p o n s e S t a t u s = r e s p o n s e . s t a t u s ;
504 i f (r e s p o n s e S t a t u s == 401) {
505 inboxProcess ingWithNewAuthToken () ;
506 re turn ;
507 }
508 APPEND_STATISTICS (’HTTP ’ + r e s p o n s e S t a t u s + ’ e r r o r t r y i n g t o f e t c h your

messages ’) ;
509 re turn ;
510 }
511
512 v a r msgs = a w a i t r e s p o n s e . j s o n () . catch ((e r r o r) => {
513 APPEND_STATISTICS (’Some e r r o r o c c u r e d t r y i n g t o f e t c h your messages : ’ + e r r o r)

;
514 re turn ;
515 }) ; ;
516
517 i f (! msgs . hasOwnProper ty (" messages ")) {
518 HIDE_LOADER () ;

F-10

519 p e n d i n g E m a i l s = f a l s e ;
520 p r e p a r e N e x t L a b e l () ;
521 i n b o x P r o c e s s i n g () ;
522 re turn ;
523 }
524
525 v a r i ;
526 v a r h e a d e r s = [] ;
527 v a r mimeTypes = [] ;
528 v a r s i z e E s t i m a t e s = [] ;
529 v a r t o t a l = msgs [" messages "] . l e n g t h ;
530
531 f o r (i =0 ; i < t o t a l ; i ++) { //fetch all messages of this token
532
533 v a r msgUrl = " h t t p s : / / www. g o o g l e a p i s . com / gmai l / v1 / u s e r s / me / messages / " + msgs ["

messages "] [i] [" i d "] + " ? a c c e s s _ t o k e n =" + authToken + "&f o r m a t = m e t a d a t a&
f i e l d s = s i z e E s t i m a t e , p a y l o a d (mimeType , h e a d e r s) " ;

534
535 l e t r e s p o n s e = a w a i t f e t c h (msgUrl) . ca tch ((e r r o r) => {
536 APPEND_STATISTICS (’Some e r r o r o c c u r e d t r y i n g t o f e t c h an e− ma i l h e a d e r : ’ +

e r r o r) ;
537 re turn ;
538 }) ;
539
540 i f (! r e s p o n s e . ok) {
541 HIDE_LOADER () ;
542 l e t r e s p o n s e S t a t u s = r e s p o n s e . s t a t u s ;
543 i f (r e s p o n s e S t a t u s == 401) {
544 inboxProcess ingWithNewAuthToken () ;
545 re turn ;
546 }
547 APPEND_STATISTICS (’HTTP ’ + r e s p o n s e S t a t u s + ’ e r r o r t r y i n g t o f e t c h an e−

ma i l h e a d e r ’) ;
548 re turn ;
549 }
550
551 v a r msg = a w a i t r e s p o n s e . j s o n () . catch ((e r r o r) => {
552 APPEND_STATISTICS (’Some e r r o r o c c u r e d t r y i n g t o f e t c h an e− ma i l h e a d e r : ’ +

e r r o r) ;
553 re turn ;
554 }) ; ;
555
556 e m a i l I d s . push (msgs [" messages "] [i] [" i d "]) ;
557 h e a d e r s . push (msg [" p a y l o a d "] [" h e a d e r s "]) ;
558 mimeTypes . push (msg [" p a y l o a d "] [" mimeType "]) ;
559 s i z e E s t i m a t e s . push (msg [" s i z e E s t i m a t e "]) ;
560
561 }
562
563 //a maximum of 100 mails were fetched successfully
564
565 i f (msgs . hasOwnProper ty (" nex tPageToken ")) {
566 pendingPageToken = msgs [" nextPageToken "] ;
567 }
568 e l s e {
569 p e n d i n g E m a i l s = f a l s e ;
570 }

F-11

571
572 f o r (i =0 ; i < t o t a l ; i ++) { //process this token’s e-mail headers
573
574 v a r thisMimeType = mimeTypes . pop () ;
575 v a r t h i s S i z e E s t i m a t e = s i z e E s t i m a t e s . pop () ;
576
577 v a r e m a i l I d = e m a i l I d s . pop () ;
578 v a r h e a d e r = h e a d e r s . pop () ;
579 v a r f i e l d s = h e a d e r . l e n g t h ;
580
581 v a r from = ’ ’ ;
582 v a r f romSe t = f a l s e ;
583
584 v a r s u b j e c t = ’ ’ ;
585 v a r s u b j e c t S e t = f a l s e ;
586
587 v a r d a t e = ’ ’ ;
588 v a r d a t e S e t = f a l s e ;
589
590 v a r l a s t R e c e i v e d = ’ ? ’ ;
591 v a r hops = 0 ;
592
593 f o r (v a r j =0 ; j < f i e l d s ; j ++) {
594
595 i f (! f romSe t && h e a d e r [j] [" name "] === " From ") {
596 from = h e a d e r [j] [" v a l u e "] ;
597 f romSe t = t rue ;
598 }
599
600 i f (! s u b j e c t S e t && h e a d e r [j] [" name "] === " S u b j e c t ") {
601 s u b j e c t = h e a d e r [j] [" v a l u e "] ;
602 s u b j e c t S e t = t rue ;
603 }
604
605 i f (! d a t e S e t && h e a d e r [j] [" name "] === " Date ") {
606 d a t e = h e a d e r [j] [" v a l u e "] ;
607 d a t e S e t = t rue ;
608 }
609
610 i f (h e a d e r [j] [" name "] === " Rece ived ") {
611 hops ++;
612 i f (hops == 2) {
613 l a s t R e c e i v e d = h e a d e r [j] [" v a l u e "] ;
614 }
615 }
616 }
617
618 i f (s u b j e c t === ’ ’) {
619 s u b j e c t = " (no s u b j e c t) " ;
620 s u b j e c t S e t = t rue ;
621 }
622
623 v a r dateAdded = ’ (added by ’ ;
624 i f (d a t e . i n c l u d e s (dateAdded)) {
625 d a t e = d a t e . s u b s t r i n g (0 , d a t e . indexOf (dateAdded)) ;
626 }
627

F-12

628 i f (hops < 2 | | l a s t R e c e i v e d === ’ ? ’) { //ignore message with no received
fields

629 c o n t in u e ;
630 }
631 e l s e {
632 v a r r e g e x = / * by mx \ . go og l e \ . com * wi th (. *) i d / g ;
633 v a r p r o t o c o l = r e g e x . exec (l a s t R e c e i v e d) ; //SMTP, SMTPS, ESMPT, ESMPTS, etc
634 v a r s e c u r e = / s$ / i ; //case insensitive, ends with an ’s’
635 t r y {
636
637 t o t a l R e c e i v e d ++; //if an exception occurs processing this e-mail,

totalReceived will not increament
638
639 v a r l i n k = ’ h t t p s : / / ma i l . go og l e . com / ma i l / u / 0 / # a l l / ’ + e m a i l I d ;
640
641 v a r domain ;
642 i f (/ ^ from . * ? \ ((. * ?) \ [/ g . t e s t (l a s t R e c e i v e d) == f a l s e) {
643 //desired regex failed
644 domain = / ^ from (. * ?) \ (/ g . exec (l a s t R e c e i v e d) ;
645 }
646 e l s e {
647 domain = / ^ from . * ? \ ((. * ?) \ [/ g . exec (l a s t R e c e i v e d) ;
648 }
649
650 v a r d n s _ s e a r c h = " h t t p s : / / dns . go og l e . com / r e s o l v e ?name=" + domain [1] + "&

t y p e =PTR" ;
651
652 l e t r e s p o n s e = a w a i t f e t c h (d n s _ s e a r c h) . ca tch ((e r r o r) => {
653 APPEND_STATISTICS (’Some e r r o r o c c u r e d t r y i n g t o f e t c h DNS i n f o r m a t i o n

from ’ + d n s _ s e a r c h + ’ : ’ + e r r o r) ;
654 re turn ;
655 }) ;
656 i f (! r e s p o n s e . ok) {
657 l e t r e s p o n s e S t a t u s = r e s p o n s e . s t a t u s ;
658 APPEND_STATISTICS (’HTTP ’ + r e s p o n s e S t a t u s + ’ e r r o r t r y i n g t o f e t c h DNS

i n f o r m a t i o n from ’ + d n s _ s e a r c h) ;
659 re turn ;
660 }
661
662 v a r dom = a w a i t r e s p o n s e . j s o n () . ca tch ((e r r o r) => {
663 APPEND_STATISTICS (’Some e r r o r o c c u r e d t r y i n g t o f e t c h DNS i n f o r m a t i o n

from ’ + d n s _ s e a r c h + ’ : ’ + e r r o r) ;
664 re turn ;
665 }) ; ;
666
667 v a r th i sDomain = ’ ’ ;
668
669 i f (! dom . hasOwnProper ty (" A u t h o r i t y ") | | ! dom [" A u t h o r i t y "] . l e n g t h >0 | | ! dom [

" A u t h o r i t y "] [0] . hasOwnProper ty (" name ")) {
670 i f (! dom . hasOwnProper ty (" Answer ") | | ! dom [" Answer "] . l e n g t h >0 | | ! dom ["

Answer "] [0] . hasOwnProper ty (" name ")) { //has neither authority nor
answer property

671 //this can be a result of a dns status 2 f.i., where the server refused
the query

672 th i sDomain = domain [1] ;
673
674 }

F-13

675 e l s e { //doesn’t have authority property but has answer property
676 th i sDomain = dom [" Answer "] [0] [" name "] ;
677 }
678 }
679 e l s e { //has authority property
680 th i sDomain = dom [" A u t h o r i t y "] [0] [" name "] ;
681 }
682
683 v a r domSta tus = dom [" S t a t u s "] ;
684 v a r p r o t o c o l S e c u r i t y = ’ ’ ;
685
686 v a r domainId = −1; //will remain -1 if the domain was secure
687
688 i f (! s e c u r e . t e s t (p r o t o c o l [1])) {
689 t o t a l U n e n c r y p t e d ++;
690
691 //update unencrypted domains list
692 v a r foundDomain = f a l s e ;
693 f o r (v a r d =0; d< unsecureDomains . l e n g t h ; d ++) {
694 i f (unsecureDomains [d] . domain === th i sDomain) {
695 foundDomain = t rue ;
696 (unsecureDomains [d] . c o u n t) ++;
697 domainId = unsecureDomains [d] . i d ;
698 break ;
699 }
700 }
701 i f (! foundDomain) {
702 domainId = unsecureDomains . l e n g t h ;
703 unsecureDomains . push ({ i d : domainId , domain : th i sDomain , c o u n t : 1}) ;
704 }
705 pendingAppends . push ({ l a b e l : s canLabe l , from : from , s u b j e c t : s u b j e c t , d a t e

: da t e , p r o t o c o l : p r o t o c o l [1] , l i n k : l i n k , p r o v i d e r : t h i sDomain }) ;
706 p r o t o c o l S e c u r i t y = ’ :UNSECURE’ ;
707
708 }
709 e l s e {
710 p r o t o c o l S e c u r i t y = ’ : SECURE ’ ;
711 }
712
713 c o n s t hashDomain = a w a i t d i g e s t M e s s a g e (th i sDomain) ;
714
715 from = from . r e p l a c e ("<" , " ") ;
716 from = from . r e p l a c e (">" , " ") ;
717 v a r fromTok = from . s p l i t (" ") ; //this has length at least 1
718 v a r senderDomain = " ? " ;
719 v a r f i ;
720 f o r (f i =0 ; f i <fromTok . l e n g t h ; f i ++) {
721 i f (fromTok [f i] . i n c l u d e s ("@")) {
722 v a r mai lTok = fromTok [f i] . s p l i t ("@") ;
723 i f (mai lTok . l e n g t h < 2) break ; //make sure mailTok[1] exists
724 senderDomain = mailTok [1] ;
725 break ;
726 }
727 }
728
729 r e s u l t s A s O b j e c t s . push ({ i d : domainId ,
730 hash : hashDomain . t o S t r i n g () ,

F-14

731 d n s S t a t u s : ’ dns s t a t u s ’ + domStatus ,
732 d a t e : da t e ,
733 s e c u r i t y : p r o t o c o l [1] + p r o t o c o l S e c u r i t y ,
734 hops : hops + ’ hops ’ ,
735 l a s t D o m a i n : th i sDomain ,
736 mimeType : thisMimeType ,
737 s i z e E s t i m a t e : t h i s S i z e E s t i m a t e ,
738 senderDomain : senderDomain }) ;
739
740 } catch (e r r o r) { //something went wrong trying to process given header
741 APPEND_ERROR_PARAGRAPH(’Some e r r o r o c c u r e d t r y i n g t o p r o c e s s t h e h e a d e r o f

e− ma i l \ " ’ + l i n k + " \ " : " + e r r o r , f a l s e) ;
742 e r r o r s C o u n t ++;
743 }
744 }
745
746 p r o c e s s e d T o t a l += t o t a l ;
747
748 }
749
750 whi le (pendingAppends . l e n g t h > 0) {
751 HIDE_LOADER () ;
752 //display unsecure e-mails’ information on the screen
753 v a r pendingAppend = pendingAppends . s h i f t () ;
754 APPEND_LINK(pendingAppend . l a b e l , pendingAppend . from , pendingAppend . s u b j e c t ,

pendingAppend . da t e , pendingAppend . p r o t o c o l , pendingAppend . l i n k ,
pendingAppend . p r o v i d e r) ;

755 }
756
757 i n b o x P r o c e s s i n g () ; //recursive function call until all messages are processed or

authToken expires
758
759 }
760
761 i n b o x P r o c e s s i n g () ; //first function call with this authToken
762
763 }) ;
764 }
765
766 async f u n c t i o n b e g i n P r o c e s s i n g () {
767 APPEND_CENTER_PARAGRAPH(" Your e− ma i l p r o c e s s i n g j u s t began . Do n o t c l o s e t h i s t a b

u n t i l p r o c e s s i n g i s comple t ed . ") ;
768 document . body . appendCh i ld (document . c r e a t e E l e m e n t (" b r ")) ;
769 APPEND_LOADER () ;
770
771 chrome . i d e n t i t y . ge tAuthToken ({ ’ i n t e r a c t i v e ’ : t rue } ,
772 async f u n c t i o n (t o k e n) {
773 authToken = t o k e n ;
774
775 //fetch profile info
776 v a r u r l = " h t t p s : / / gma i l . g o o g l e a p i s . com / gmai l / v1 / u s e r s / me / p r o f i l e ? a c c e s s _ t o k e n =" +

authToken ;
777
778 l e t r e s p o n s e = a w a i t f e t c h (u r l) . ca tch ((e r r o r) => {
779 APPEND_ERROR_PARAGRAPH(’Some e r r o r o c c u r e d t r y i n g t o f e t c h your p r o f i l e

i n f o r m a t i o n : ’ + e r r o r , t rue) ;
780 re turn ;

F-15

781 }) ;
782
783 i f (! r e s p o n s e . ok) {
784 l e t r e s p o n s e S t a t u s = r e s p o n s e . s t a t u s ;
785 v a r e r r o r = ’HTTP ’ + r e s p o n s e S t a t u s + ’ e r r o r t r y i n g t o f e t c h your p r o f i l e

i n f o r m a t i o n ’ ;
786 APPEND_ERROR_PARAGRAPH(e r r o r , t rue) ;
787 re turn ;
788 }
789
790 v a r p r o f i l e = a w a i t r e s p o n s e . j s o n () . catch ((e r r o r) => {
791 APPEND_ERROR_PARAGRAPH(’Some e r r o r o c c u r e d t r y i n g t o f e t c h your p r o f i l e

i n f o r m a t i o n : ’ + e r r o r , t rue) ;
792 re turn ;
793 }) ; ;
794
795 c l i e n t H a s h = a w a i t d i g e s t M e s s a g e (p r o f i l e [" e m a i l A d d r e s s "]) ;
796
797 inboxProcess ingWithNewAuthToken () ;
798 }) ;
799 }

F-16

	Introduction
	Problem statement
	Project objectives
	Project contributions
	Thesis organization

	Ethics
	Background
	Transport Layer Security in e-mail communication
	Routing information lying in e-mail headers
	Google Chrome extensions

	Architecture
	The need for a tool to inspect Gmail mailboxes
	How a Chrome extension can gain insight into any Gmail mailbox
	The practicality of Chrome extensions in developing Gmail-based applications
	The extension's interface with the user
	The extension's required permissions and data of interest
	How a user of the extension becomes a study participant

	Implementation
	Communication between the extension's components
	User authorization
	How the extension's execution differs for scanning different scopes of a mailbox
	Steps and hurdles of fetching e-mail IDs
	The handling of e-mail metadata
	Preparation and validation of user results

	Evaluation
	General observations on the gathered data
	TLS usage of individual e-mails
	E-mail deliveries comparisons per year
	E-mail deliveries comparisons per e-mail size
	E-mail deliveries comparisons per MIME type
	E-mail deliveries comparisons per providers' DNS status

	TLS usage of the various e-mail providers
	A definition of TLS inconsistency
	Correlations between providers of unencrypted deliveries
	An overview of some of the most prevailing e-mail providers

	Related Work
	Studies that analyse e-mail patterns
	Studies that target TLS in e-mail communication

	Conclusion
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F

