
Controlling Video Game using Reinforcement

Learning

Christos Yiannakou

June 1, 2021

University Of Cyprus

COMPUTER SCIENCE DEPARTMENT

1



UNIVERSITY OF CYPRUS COMPUTER SCIENCE DEPARTMENT

2



Abstract

On this thesis we Control virtual characters by using Reinforcement learning.

For this project we recreate a retro game the Bomber Man using Unity game

engine and the machine learning library of unity ML-Agents to train the agent

of the game and observe the strategies that use to complied the game tasks

3



Content

1 Chapter 1 : Introduction

2 Chapter 2 : Reinforcement Learning

2.1 Markov Decision Processes

2.2 Taxonomy Of Reinforcement Learning Algorithms

2.3 Q-Learning

2.4 PPO

2.5 Exploration vs Exploitation

3 Chapter 3 : Related Work For

Reinforcement Learning

4 Chapter 4 : ML-Agents

4.1 Proximal Policy Optimization

4.2 Tensor Flow

4.3 Tensor Board

5 Chapter 5 : Bomber Man

5.1 History

5.2 Game Play

5.3 The Project

4



6 Chapter 6 : Design And Implementation

6.1 Stage

6.1.1 Prefabs

6.1.2 Stage Implementation

6.1.3 Stage Generator

6.1.4 Player And Enemy Placement

6.2 Bomb

6.2.1 Bomb Asset

6.2.2 Explosion Asset

6.2.3 Explosion Representation

6.3 Agent

6.3.1 Agent Asset

7 Chapter 7 : Training And Results

8 Chapter 8 : Conclusion

9 Chapter 9: Bibliography

5



Chapter 1 : Introduction

The topic of Machine Learning and Artificial Intelligence in Computer Science

was always something that pique interest to the fans of technology and the

thought that one day computers would be better than humans is something

that scares people but is also exciting as an idea.

The reason I choose ”Controlling Virtual Characters using Reinforcement

Learning and Examples” as a theme for my thesis is that I find very

interesting the fact that a machine can develop by its ”own” intelligence and

decide what action is best in every situation according to its training and its

in-time observations from the environment in which it is located.

The first time that humanity created such an artificial intelligence that can

beat a human in a game was the Deep Blue chess computer developed by IBM

to challenge the then world champion at chess Garry Kasparov and in one

thousand nine hundred ninety-six in a six-game of chess, the Deep Blue won

the match.

It’s fascinating that computers actually can be better than humans and that’s

inspired me to deal with reinforcement learning and create a game that the

computer can train with and observe its actions and strategies that are used to

complete the tasks of the game.

To accomplish the dissertation I use Unity 3D to create the game Bomber-Man

and the library of Unity ML-Agents to attach Reinforcement Learning in the

game so the agent can train and learn behaviors to accomplish the game tasks.

I choose Unity because is a user friendly game engine and is easy to use and

learn it. Al-sow has lots of free assets in the assets store and lots of packages

and library’s that helps me to develop the game and to run the training on.

The challenges that I have to go through are the observations that parse in the

neural network and the reward’s the agent receives which is the most

challenging part of reinforcement learning because the training and the agent’s

next actions depend on rewards.

6



Reinforcement Learning

Reinforcement Learning is a type of machine learning technique that enables

an agent to learn in an interactive environment by trial and error using

feedback from its actions and experiences.

According to Sutton and Bardon (1998) reinforcement learning is a merge of

trial and error law-of-effect tradition in psychology.

The agent isn’t told which actions to take or the optimal way of performing a

task. Reinforcement Learning uses rewards and penalties to signal whether a

taken action is good or bad.

Figure 1: Reinforcement Learning explanation image

The image above show’s the interaction between the agent and the

environment. The agent takes an action that parses into the environment and

the environment sent to the agent as input the state St+1 that the agent is in

time t+1 according to its previous action and a reward Rt+1 for the action that

it takes.

7



2.1 Markov Decision Processes
A reinforcement learning task that satisfies Markov properly is a Markov

Decision Processes. If the state and the action spaces are finite then its called

a finite Markov Decision Processes.

Finite Markov Decision Processes are practically significant in the theory of

reinforcement learning.

A particular finite Markov Decision Processes is determined by its state and

action sets and by the one-step dynamics of the environment. Given any state

s and action a the probability of each possible next state s’ is

P ass′ = Ert + 1|st = s, at = a, st+ 1 = s′

These quantities are called transition probability’s. Similarly, given any

current state and action s and a together with any next state s’, the expected

value of the next reward is

Rass′ = Ert + 1|st = s, at = a, st+ 1 = s′

These quantities specify the most important aspects of the dynamics of a finite

Markov Decision Processes.

2.2 Taxonomy Of Reinforcement Learning
Algorithms

Model-Free vs Model-Based

One of the most important branching points in Reinforcement Learning of the

question of whether the agent has access to a model of the environment. By a

model of the environment, mean a function that predicts state transitions and

rewards. The upside to having a model is that it allows the agent to plan by

thinking ahead seeing what would happen for a range of possible choices, and

explicitly deicing between options. Agents can distill the results from planning

8



Figure 2: Reinforcement Learning Taxonomy

ahead into a learned policy. a particular example is Alpha zero. The main

downside is that a ground-truth model of the environment is usually not

available to the agent. If the agent wants to use a model in this case, it has to

learn the model purely from experience, which creates several changes. The

biggest challenge is that bias in the model can be exploited by the agent,

resulting in an agent which performs well with respect to the learned model,

but behaves sub-optimally in the real environment willing to throw lots of time

to compute at it can fail to pay off. Algorithms that use a model are called

model-based methods. Those that don’t use a model are called model-free

methods. While model-free methods forego the potential gains in sample

efficiency from using a model, they tend to be easier to implement and tune.

2.3 Q-Learning
The main idea in Q-Learning is to acknowledge or learn the optimal action in

every state visited by the system (optimal policy) via trial and error.

Trial and error mechanism can be implemented within the real-world system

or a simulator.

The agent chooses an action, acquire feedback for that action, and uses the

feedback to update its database.

9



In its database, the agent stores a Q-factor for every state-action pair. When

the feedback for selecting an action in a state is positive, the associated

Q-factor’s value increases, while the feedback is negative the value is decrease.

Q(st, at) = max(rewardst+ 1)

The best possible score at the end of a game after performing a in state s.

Bellman’s Equation

Q(s, a) = r + ymax(Q(s′, a′))

The maximum feature reward for this state and actions is the immediate

reward plus the maximum feature reward for the next state.

2.4 PPO
There are two primary variants of PPO, the PPO-Penalty and the PPO clip.

The PPO-Penalty approximately solves a KL-constrained update like TRPO

but penalties the KL-divergence in the objective function instead of making it

a hard constrain, and automatically adjust the penalty coefficient over the

cause of training so that is scaled appropriately. The PPO-clip doesn’t have a

KL-divergence term in the objective function and doesn’t have a constraint at

all. Instead relies on specialized clipping in the objective function to remove

incentives for the new policy to get far from the old policy. PPO is an

on-policy algorithm that can be used for environments with either discrete or

continuous action spaces. PPO updates via

θk+1 = arg max
θ
s, a ∼ πθkE [L(s, a, θk, θ)] ,

typically taking multiple steps SGD to maximize the objective. The L on the

above equation is given by

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip

(
πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε

)
Aπθk (s, a)

)
in which is a hyperparameter which roughly says how far the new policy is

allowed to go from old. There is a more simplify equation that is used to

implement in codes

10



L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ε, Aπθk (s, a))

)
where

g(ε, A) =

 (1 + ε)A A ≥ 0

(1− ε)A A < 0.

To figure out what intuition to take away from this, let’s look at a single

state-action pair (s,a), and think of cases.

2.5 Exploration vs Exploitation
PPO trains a stochastic policy in an on-policy way. This means that it

explores by sampling actions according to the latest version of its stochastic

policy. The amount of randomness in action selection depends on both initial

conditions and the training procedure. Over the course of training, the policy

typically becomes progressively less random, as the update rule encourages it

to exploit rewards that it has already found. This may cause the policy to get

trapped in local optima.

11



Figure 3: PPO-clip Algorithm

Chapter3: Related Work For Reinforcement
Learning

Games such as chess, Go, and Atari has become testbeds of testing deep

reinforcement learning algorithms. Companies like Deep Mind and OpenAI

have done a tremendous amount of research in this field and have set up gyms

that can be used to train reinforcement learning. Some examples f this

reinforcement learning approach is the AlphaGo Zero, Count-Based

Exploration, SATNet. The AlphaGo Zero has as a task to play the game of

GO. Go was invented in China and is 2500 years old game where the players

make strategies to lock each other moves. Those who fail to make a move,

lose. After a millennia Deep Mind which is now owned by Alphabet, create a

policy-based deep neural network called AlphaGo that competed against

legendary GO player Mr. Lee Sedel, the winner of 18 world titles, and beat

him 4-1 in the world championship back in 2016. The authors of the AlphaZero

algorithm generalize this approach into a single Alpha zero algorithm that can

archive superhuman performance in many challenging domains. Alpha zero

12



Figure 4: Alpha Go Logo

with no prior domain knowledge has manege to achieve an expert level play of

chess and within 24hrs defeated a world-champion program in chess.

Count-Based Exploration for Deep Reinforcement Learning algorithm has as

task the Atari games. This work describes a simple generalization of the

classic count-based approach that can reach near state-of-the-art approaches

on various high-dimensional and continuous deep reinforcement learning

benchmarks. This goes against the thought process that count-based methods

cannot be applied in high-dimensional state spaces since most of the state

spaces will occur once. The authors use hash functions in their method, where

state spaces are mapped to hash codes. This mapping allows counting their

occurrences with a hash table. These counts are then used to compute a

reward bonus according to the classic count-based exploration theory.

13



Figure 5: Count Based Algorithm

SATNet has as the task to solve sudoku puzzles by integrating logical

reasoning within deep learning architectures which has been a major goal of

modern AI systems. In this paper, the authors propose a new direction

towards this goal by introducing a solver that can be integrated into the loop

of larger deep learning systems. This work showed how to analytically

differentiate through the solution and efficiently solve the associated backward

pass. The authors demonstrate that by integrating this solver into end-to-end

learning systems can learn the logical structure of challenging problems in a

minimally supervised fashion. In particular, with this method, they show that

Sudoku learned solely from examples. By combining MAX-SAT solver with

traditional convolutional architecture, they have also solved a “visual Sudoku”

problem that maps images of Sudoku puzzles to their associated logical

solutions

14



Figure 6: Sudoku

15



Figure 7: ML-Agents Examples

Chapter4: ML-Agents

The Unity Machine Learning Agents (ML-Agents) is an open-source project

that gives to the user the opportunity to use its games and simulations as

environments for training intelligent agents. It provides user applications

based on futuristic PyTorch algorithms to give the power to game developers

to easily train intelligent agents for 3d games.

ML-Agents can also use the provided simple-to-use Python API to train

agents using reinforcement learning, imitation learning, neuroevolution, and

many other methods.

4.1 Proximal Policy Optimization
ML-Agents uses a reinforcement learning technique called Proximal Policy

Optimization (PPO). PPO uses a neural network to approximate the idea

function that maps an agent’s observations to the best action an agent can

take in a given state. The ML-Agents PPO algorithm is implemented in

Tensor flow and runs in a separate python process that communicates with the

running unity application via socket.

16



Figure 8: TensorBoard Graphs

4.2 Tensor Flow
Tensor Flow is an end-to-end open-source platform for machine learning. It

has an inclusive and flexible ecosystem of tools and community resources that

lets the user push the state-of-the-art in machine learning, build and deploy

machine learning-powered applications.

4.3 Tensor Board
Tensor Board provides the visualization and tooling needed for machine

learning experimentation.

It can track and visualize metrics such as loss and accuracy, it can provide a

visualising model graph, viewing histograms of weights and biases or other

tensors as they change over time.

17



Chapter5: Bomber-Man

5.1 History

Bomber-Man is a retro strategy maze-based video game witch is released first

time in Japan on December 20 1985.

The Bomber-Man game play has two modes, the single mode and the

multiplayer mode. In the first mode the player try’s to defeat a sires of

enemy’s and exit the maze to move on the next stage. On the multiplayer

mode the player try’s to eliminate the other players in the arena.

5.2 Game Play

The game play involves strategically placing down bombs, witch explode after

a specific amount of time, in order to destroy obstacles and eliminate enemy’s

and other players with the goal to be the last-man standing in the arena.

18



5.3 The Project

The mode that is chosen for this project is the multiplayer mode that will be

two agents and try to eliminate each other in the arena with the purpose to

observe the strategical bomb placing and the arena exploitation from the

agents to achieve their goal.

The two agents will have the same trained brain and the same actions and

observations, the characteristics of the two agents will be the same.

19



Design And Implementation
The design of the project was inspired by the original game of Bomber-Man

with similar mechanisms and implementation. The way that the player moves

and the concept of the game are an adaption of the classic game.

6.1 Stage
The environment that the game takes place in the arena. The arena includes a

parametric wall that encloses the area with unbreakable blocks that are not

affected by the bomb explosions. Also, those blocks will found in the arena as

obstacles and a way to make the players take more strategic actions to win the

game.

Also in the arena, there are bricks that are vulnerable to the bomb explosions

and also force the players to break them to move forward or to open a path

that leads to each other.

6.1.1 Prefabs
The first prefab is the arena blocks that is the first thing tats made on the

arena creation is the green and white blocks that combine to create a floor

that looks like chess.

Figure:Green Block Prefab

20



Figure:White Block Prefab

The stage has some boundary’s that the players cant cross, and cant break.

Those boundaries are created with unbreakable blocks to keep the players in

the game.

Figure: Unbreakable Block

The first part of the stage is always the same so when the game starts is the

first thing that’s created and looks like this:

21



Figure: Stage Initial.

The reason that the stage should look like chess board is because the game use

discrete actions and when the player takes an move action it change block so

its easier for the observer to watch the change of the player placement.

22



For the stage, creation makes use of the function of Unity Instantiate that is

useful to place objects on the scene on specific coordinates and with specific

rotation.

6.1.2 Stage Implementation
In machine learning, there is a term that calls ”overfeeding” the neural

network and that leads to the agent to take the same actions all over again

because it has learned the environment by rote memory or in other words, the

agent learns the stage by repetition so the agent doesn’t try to find the other

way to complied the task and it has no need to explore the arena because it

has already known the stage.

For that reason, the stage at the end of each episode must change randomly to

avoid that overfeeding of the neural network so we can take the best results

from the training.

6.1.3 Stage Generator
To accomplish that in that project, the design of the arena makes use of a

Stage-Generator function that use randomly choices of what object will be

instantiated in the arena and where.

Also, this function makes use of some probabilities such as the percentage of

empty space in the arena or the percentage of the obstacles or the bricks to

avoid the creation of stages with dead ends and to be the stage more playable

and easier for the agent to learn some behaviors.

6.1.4 Player And Enemy Placement

For the project, the percentages that have been used for the stage creation are

15 percent of bricks, 15 percent of blocks(obstacles), and 70 percent of empty

23



space.

For the last step of the stage creation is the placement of the player and the

enemy in the arena.

The player makes of use of a function called ValidPlayerPlacement() where in

that function decided the x and y coordinates for the player in the stage

randomly and then their is a check of this place if its valid.

For the placement of the player to be valid it should first be an empty space in

the arena, second, the squares of the diagonals of the chosen square to be

empty and to be a way out of this position, if those criteria are not met then

the function choose randomly other x and y coordinates until the placement of

the player would be valid, the same is for the enemy placement.

And the last check is the distance between the player and the enemy to be

bigger than the half-length of the arena size.

Figure:Final Stage.

24



6.2 Bomb
The bomb in the game is the only weapon such as the players can use and is

the most important part of the game because is the only asset that the players

can use to break bricks and open roads, eliminate their enemies, and set up

strategic traps for the other players.

The bomb in the original game can explode in four directions (up, down, left,

right) and the explosion cannot affect any bricks or players in a diagonal

direction.

6.2.1 Bomb Asset
The bomb asset that is chosen for the bomb is a sphere item with size in 3D

(.07,.07.07).

Those dimensions take place because the floor blocks are size (1,1,1) and if the

bomb prefab was the same size as the floor block there will be a problem with

the normal execution of the game.

Also, the color of the bomb is silver and shine so it can be observable by the

observer in a real-time game.

Figure:Bomb Asset.

6.2.2 Explosion Asset
For the explosion asset for this project, its been used a free particle system

asset from the asset store.

25



The explosion prefab takes place in the scene when the bomb explodes after

three second’s delay after the placement in the arena to conjugate the

explosion feeling in the game.

The explosion prefab also has a rigid body and box collider and the reason is

when the player collides with the explosion particle system it dies and if a

brick gets hit by the explosion asset the break breaks.

Figure:Explosion Asset.

6.2.3 Explosion Representation
As mentioned above when the bomb explodes the explosion prefab would be

instantiated in the scene in four directions and not diagonally.

To accomplish that is been useful the use of another function of Unity the

coroutine.

A coroutine is a function that allows pausing its execution and resuming from

the same point after a condition is met.

For the purpose of the project, this special function is used to represent the

explosion when the bomb explodes, it starts a series of coroutine execution one

for each direction.

26



For each coroutine, it starts a reycast where when the ray collides on an object

the instantiate doesn’t execute, and the coroutine intercept so the particles

don’t appear inside the blocks and or the player and give the feeling of the

collision of the explosions and the objects in the environment.

Also if the bomb collides with an explosion particle the three-second delay

intercept and the Explode() function execute to make possible the chain

reaction of bombs in the game.

27



6.3 Agent
An agent in reinforcement learning is an actor that can observe its

environment, deiced on the best course of action using those observations, and

execute those actions within the environment.

The agent’s in this project they observe the arena by using sensor and special

functionalities and try to take the wright action due to the state that they are

in a specific time.

6.3.1 Agent Asset
The agent asset that is decided to used for this project is a capsule because is

more close to a human figure.

28



The agent characteristics are the capsule collider where is useful in the game

because with the collider the agent can observe collisions in the environment.

The capsule collider has no physics material, its radius value is 0.5 and the

height value is 2.

The agent has attached a script of ml-agents library the Decision Requester

script. The Decision Requester component automatically requests decisions for

an agent instance at regular intervals. It provides a convenient and flexible

way to trigger the agent decision-making process. The Decision Requester

script has two fields. The field with the name Decision Period is used to set a

period of when the agent will take an action, lets say if the Decision Period

29



gets the value 5 that means that the agent will request a decision every 5

Academy steps. The second field of the Decision Requester script is the Take

Actions Between check box that indicates whenever or not the agent will take

an action during the academy steps where it does not request a decision.

An other important script that is attached on the agent to determinate its

actions and policy is the Behavior Parameters script. Behavior Parameters

script is a component for setting an Agent instance’s behavior brain

parameters. At run time, this component generates the agent’s policy objects

according to the settings the developer specified in the editor. The behavior

parameters script has some fields that specify the behavior of the agent. The

first field is the Behavior Name where is the name of this behavior, which is

used as a base name. The vector observation section determines a vector of

observations that the agents collect during their interaction with the

environment. The vector observations have two sections, the first section is the

space size where it takes an integer value to declare the size of the vector that

is equal to the number of elements that parse in the observation vector during

a step in the episode, and the second field is the stacked observation that is

use-full to the training if we need the agent to take actions based on the

current observations and the previous observations. This field takes as input

an integer that determines the value of the stacked observations we need the

agent to observed. That space gives the agent the ability to has memory and

remember its previous actions and observations so it can calculate more

accurately the next policy.

30



The actions section declares the number of actions and the type of actions of

the agent. The actions have three fields, the first field and the second field

define the type of the actions of the agent. The first option is continuous

actions. The continuous actions reference values that are not discrete such as

floats and double. An example if the action is to turn certain degrees this

action will be continuous. The discrete actions reference values that are

integers for example if the player should move a square the action will be

described. In the project, the actions are discrete because the agent must

move by squares, and also there is no rotation in the game, which makes the

training easier and reduce the complexity of the game. The last section of the

actions is the Branch Size that defines the number of actions in each branch.

The inference Device is a drop-down menu with options on where does the

user needs the inference to perform. The first choice is the Burst which is a

CPU inference using Burst. The second choice is the CPU but the Burst

option is recommended. The CPU choice is kept for legacy compatibility. The

third choice is the Default that is currently the same as Burst.

31



The Behavior type field is used to declare the behavior of the agent. This

category has also a drop-down menu with three choices. The first choice is the

Default option where the engine understands if the mode of the game is

training or its gameplay and chooses on its own. The second option is the

Heuristic model that gives to the developer the opportunity to test the actions

of the agent and the game before training. The third choice is Inference and

this mode is only for training.

If the game contains teams, the team id field is used, and the engine clusters

the agents by team number in training mode. The last field of the Parameters

Behavior script is the Use Child Sensors in the training.

32



On the agent model there are attached Ray Perception Sensors that used to

parse extra observations to the agent neural network and help on the

development of a policy for the environment around the agent.

The Ray Perception script has lots of fields and from those fields the developer

can control the length of the rays, the number of rays per angle, the start and

the end vertical offset of the rays that changes the field of the rays hits, there

are ray layer masks for the collision and detectable tags for objects that the

agent must observe. On the player the number of rays that are attached are

four one for each side of the capsule 3d object so it can take a full 360 degrees

of observations.

33



The agent also uses another script for observations collection the GridSensor.

The ML-Agents provides two types of sensors to generate observations for the

agent that are used to train reinforcement learning models. The first is the

raycast that has been explained above, which allows the agents to observe and

collect data about a GameObject on line sight. The second type use pixels

from the camera that is attached to an agent. The camera provides the agent

with either a grayscale or an RGB image of the game environment based on

how the camera is rigged and positioned. Those images can be used to train

convectional neural networks which learn to understand the nonlinear

relationship between pixels. Both of those sensors have limitations. The length

of the ray cast is usually limited because the agent does not need to know the

objects that are on the other side of the scene. Also, the ray cast is not

computational efficient so fewer ray casts are conducted. By using camera

rendering of the scene can significantly slow down the number of engine ticks

per minute versus other alternatives, such as running heedlessly with only

discrete observations.

34



The Grid Sensor combines the generality of data extraction from ray casts

with the computational efficiency of the convolution neural networks. The

Grid Sensor collects data from game objects by querying the physics

properties and the structures of the data into a height x width x channel

matrix. This matrix is analogous to an image from an orthographic camera

but rather the representing red, green, and blue color values of objects, the

pixels of the grid sensor represent a vector of arbitrary data of objects to the

sensor. Another benefit is that the grid sensor can have a lower resolution

which improves the training by times. This matrix can then be fed in a

convolution neural network and used to train a reinforcement learning model.

35



The components of the grid sensor are the grid settings which in that field the

developer can modify the scale of the grid and its position in the scene

according to the player position. Also on the grid sensor has to be parsed in

the detectable tags of the objects that the agent must observe, there is also the

option of collider mask so it can ignore some collisions if there are not

desirable. On the sensor settings field, there are options for stacking

observations and the settings of the collision buffer. Also, there is the Debug

color section where it can be chosen the color that appears in the sensor when

an object with a specific tag is detected from the sensor.

36



The player script that implements in the project inherits the subclass Agent

from the ml-agents. Agents in an environment operate in steps. At each step,

an agent collects observations, passes them into its decision-making policy, and

receives an action vector in response.

37



The agent class gives the functionality that is needed to generate an agent

that would interact with the environment and build its decision-making policy

by overwitting specific functions such as OnActionReceive() function,

CollectObservations(), and other functions that help the agent build.

The first function that’s bean overwrite in from the agent class is

OnEpisodeBegin(). The OnEpisodeBegin function is called when an episode

reaches its end and is used to reset the agent to its initial state.

The other function that is useful in the agent building is the

OnActionReceive(). This function is used to generate an action vector array

that parses into the AgentAct function where all the actions are implemented.

38



The actions they needed for the agent in this project are six. The agent should

be able to move forward, backward, left, right, to not move at all and, to place

a bomb in the scene. The agent when the action vector is received in the

AgentAct execute the action on the first cell of the array. If the action in the

first cell is the forward, backward, left or right the agent check if the cell he

wants to move is free and then move to its new position. If the action is drop

bomb then the AgentAct executes the function DropBomb(). The Drop Bomb

function instantiates a bomb prefab on the coordinates of the player.

The Heuristic function implemented to specify the agent actions using the

developer own heuristic algorithm. Implementing heuristic function can be

useful for debugging.

39



The CollectObservations() function is used to parse the observations into the

agent and make a decision policy. The player has a point of view array in the

size of the arena. The Point of view array change as the player moves in the

environment and has as its center the player. This array contains all the

objects in the scene and is used to feed the agents decision making policy with

this observations.

40



The Rewards that been used for this project on the training are the following:

• Player Dead = -1f

• Enemy Dead = 1f

• Bomb Placement = -1/MaxSteps

• Live Penalty = -1/MaxSteps

• Brick Break = 1/MaxSteps

41



When the player archive to eliminate the enemy receives a reward of 1 point

and if the enemy eliminates the agent or the agent killed by its bomb receives

the reward of -1 point. When the agent place a bomb in the scene receives the

reward of -1/MaxSteps which is a small penalty so he can learn to not place

bombs uncontrolled and fill the arena with bombs because is more possible to

be killed by its bombs. The agent receives the penalty of -1/MaxSteps as a

living penalty to force the agent to take action and don’t sit in the arena if he

doesn’t know what to do. If the agent breaks a brick with the bomb then it

receives the reward of 1/MaxStep to encourage him to continue breaking

bricks so it can open roads that lead to the enemy.

42



Chapter7: Training And Results

The Unity ML-Agents Toolkit provides a wide range of training methods and

options. As such, specific training runs may require different training

configurations and may generate different artifacts and Tensor Board

statistics. It is important to highlight that successfully training Behaviors in

the ML-Agents toolkit involves turning the training hyper-parameters and

configuration. The trainer’s config file determines the features that are used by

the developer during the training. the primary section of the trainer config file

is a set of configurations for each behavior. These are defined under the

section behaviors in the trainer config file. For the project, the config file

that’s been used is below.

43



The drainer type defines the type of the algorithm that is bean used in the

training. There are three types of training algorithms in ml-agents the PPO,

SAC, and the POCA.

Under the hyper parameters section is the option of batch size where is set to

1024 and this defines the number of experiences in each iteration of gradient

descent. This should always be smaller than the buffer range and the number

of batch size depends on the type of the actions and the type of the training

algorithm.

The buffer size for PPO default is 10240 and for SAC is set to 5000. For the

PPO algorithm, the buffer size represents the number of experiences collected

before updating the policy model. Typically a larger buffer size corresponds to

more stable training updates.

The learning rate corresponds to the strength of each gradient descent update

step. This value should typically be decreased if training is unstable, and the

reward does not constantly increase. The range of learning rate is between

1e−5to1e−3.

The beta value is the strength of the entropy regularization which makes the

policy more random. this ensures that agents properly explore the action

space during training. By increasing the beta value will ensure random actions

will be taken.

The epsilon parameter influences how rapidly the policy can involve during

training. This corresponds to the acceptable threshold of divergence between

the old and the new policy.

The lambda parameter used when calculating the generalized advantage

estimate. This can be thought of as how much the agent relies on its current

value estimate when calculating an updated value estimate.

The network settings field is the hyper parameters of the neural network and

how it will be build. In the project the neural network has 256 hidden layers

and number of layers 1.

The reward signals section enables the specification of settings for both

extrinsic and intrinsic reward signals. Each reward signal should define two

44



parameters, strengths and gamma. The strength parameter is the factor by

which to multiply the reward from the environment and the gamma parameter

is the discount factor for future rewards coming from the environment.

The goals of this project was to rebuild a retro game from scratch by using

Unity 3d game engine and create an agent that he will learn the functionalities

of the game by training using reinforcement learning. The first approach to

achieve this goal was by using simple arenas and train the agent to walk

around to find the enemy in the arena.

As we can see from the above graph the agent achieve that simple task pretty

easily in short time period and to do that it needed only 130k steps.

45



The graph above shows the episode length how decreases over time, this is

something that shows that the agent complete the task faster every episode

and the episode length drops and the reward rises so the agent has successfully

complete this training.

The rewards for this training was:

• Reach the enemy by distance 1.5 float units: +1f

• Living penalty : -1/MaxSteps

If the agent finds the enemy receives the reward of 1 point and if he random

walk pointless or stay in the spot without taking an action receives the reward

of -1/MaxSteps. The living penalty forces the agent to take actions so it can

explore the arena and find a way to the positive reward.

The second approach for to complete the task was to involve in the training

and the bombs since this is the way to win the game in the real game is to

eliminate the enemy by using bombs and be careful to not eliminate your self

by the enemy’s bombs or your bombs. The scenario for this approach was

simple again.The point in this scenario was the agent to use the previous

training that walks and finds the enemy position but this time should learn to

eliminate him by using bombs. This scenario was more complicated from the

46



previous training because the agent know must learn to avoid the bombs also

and not to place them in a way that would kill him. As mention in the chapter

of the implementation in the bomb section, the bombs needs 3s to explodes

but if a bomb near explodes and collide with the new bomb the new bomb

explodes to overlooking the rule of the 3s. That detail was a part of the agent

training and to help the training of the agent in this scenario was added one

more reward. The rewards for the second scenario:

• Kill enemy with bomb: +1f

• Killed by bomb : -1f

• Living penalty : -1/MaxSteps

• Placing Bomb : -1/MaxSteps

The first reward is if the agent achieve to eliminate the enemy with a bomb

then receives the reward of 1 point. If the agent eliminate its self by using

bombs receives the reward of -1 point. The living penalty stays the same as

above. If the agent place a bomb in the arena receives the reward of

-1/MaxStep. By using the last reward for the bomb placing it achieves that

the agent is more careful of bomb placing and not spawn them uncontrollable

in the arena and increases the chances of self-elimination.

47



In the second scenario the agent took more steps to learn the expected

behavior as seen in the graph above the agent starts with a minus reward

because the bomb placement was a new ability that he has to learn and

become familiar with.

But after 200k steps the agent start to understand the goal in this scenario

and learn that he should place the bomb and then try to hide from the bombs

so he dont eliminate him self by them and receive a negative reward.

Also he started to place the bomb near the enemy position to eliminate him

and receive the positive reward because he achieve the goal of the training.

The agent on the 325k steps has already became very familiar with the idea of

the scenario and started to receive constantly positive rewards and stabilize

the training rate.

As show in the graph the episode length start to decrease dramatically after

the 100k steps which is something that shows that the agent already started to

understand the goal of the training and the decision policy of the agent is

more accurate and more efficient so he end the goal faster and reduce the time

that he needed to complete the episode.

48



The third scenario is to make the arena more complicated and push the agent

to learn how to create paths to achieve its goal. To make that possible in the

arena the roads that leads to the enemy are now blocked by breakable blocks

or unbreakable blocks that leads the agent to find a new way to reach its goal.

Now the agent has to use the bombs not only to eliminate the enemy and

receive the positive reward but also to open road that leads to the enemy. For

that scenario the reward stay the same except that one reward added on. The

rewards for the second scenario:

• Kill enemy with bomb: +1f

49



• Killed by bomb : -1f

• Living penalty : -1/MaxSteps

• Placing Bomb : -1/MaxSteps

• Block Break : +1/MaxSteps

As in the second scenario the enemy elimination and the dead by bomb has

the same values. Also the living penalty and the bomb placement are the

same. The new reward that takes place in the training is the block break

reward. This reward has a purpose to encourage the agent to place bombs

near the breakable blocks and destroy them, with this approach the agent now

try’s to brake blocks and try to find the enemy behind this blocks.

The final scenario for this project is the scenario of two agents that share the

same brain try to eliminate each other by using the above knowledge that they

learn from the training’s. The two agents has the same behavior parameters,

the same observations and receive the same rewards. There are multiple

environments for this training and that leads to a competitive game between

two equal rivals.

50



Chapter8: Conclusion

The reinforcement learning is a pioneering way of artificial intelligence in

games.

With machine learning in the game industry the companies can create more

competitive enemy’s in the games and more intelligence than the classic

artificial intelligence that has a given structure of actions in any situation.

By training agents to play a game could be usefully also to find bugs in the

game or shortcut’s that the developers cant see that they exist in the game

and the game’s can exploit them.

Also by using reinforcement learning already the industry achieve superhuman

abilities in classic games such as Go, chess and more other games.

That show the possibility’s that we can archive by using more the power of the

computers and the power of machine learning.

51



Chapter9: Bibliography

[1]URL:https://github.com/Unity-Technologies/ml-

agents/blob/main/docs/Training-ML-Agents.mdtraining-configurations

[2]URL:https://github.com/Unity-Technologies/ml-

agents/blob/main/docs/Training-ML-Agents.md

[3]URL:https://analyticsindiamag.com/reinforcement-learning-top-state-of-

the-art-games-alphago/

[4]URL:https://www.kdnuggets.com/2018/03/5-things-reinforcement-

learning.html

[5]URL:https://jonathan-hui.medium.com/rl-proximal-policy-optimization-

ppo-explained-77f014ec3f12

[6]URL:https://towardsdatascience.com/proximal-policy-optimization-tutorial-

part-1-actor-critic-method-d53f9afffbf6

[7]URL:https://spinningup.openai.com/en/latest/algorithms/ppo.html

[8]URL:https://docs.unity3d.com/Packages/com.unity.ml-

agents@2.0/api/Unity.MLAgents.Sensors.GridSensorComponent.html

[9]URL:https://blog.unity.com/technology/how-eidos-montreal-created-grid-

sensors-to-improve-observations-for-training-agents

[10]URL: https://bigdataanalyticsnews.com/history-of-artificial-intelligence-in-

video-games/

[11]URL:

https://www.andreykurenkov.com/writing/ai/a-brief-history-of-game-ai/

[12]URL:https://sitn.hms.harvard.edu/flash/2017/ai-video-games-toward-

intelligent-game/

52


