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ABSTRACT

If the end goal of the field of Artificial Neural Networks is to create an artificial mind

then it  should be able  to  explore  an environment,  an innate  behaviour in  almost  all  living

beings.  This  leads  to  the  project’s  main  question  “Can  structured  exploration  behavior  be

encoded in an artificial neural network (ANN)?”. Using embedded neuromodulated plasticity

rules and imitation learning methodology we want to find out how  an ANN trained this way

learns, adapts and performs and how it compares against a  long short-term memory network

which is  a  state-of-the-art  model  that  can be  used for  sequence  modeling.  We create  non-

stationary  environments  with  a  changing  reward  function,  T-mazes,  where  our  human

participants will generate optimal/structured exploration behavior as they explore. Using those

traces we train both of the networks and attempt to reproduce similar traces. We conclude that

neuromodulated  plasticity  rules  and  imitation  learning  can  provide  a  powerful  solution  to

exploration problems and can outperform other conventional models.
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Chapter 1

1.1 Introduction
Exploration is a challenging problem for all fields of Neural Networks and in this project

we will attempt to solve it from the aspect of using recorded human actions to teach Neural

Networks. The question that underlies the topic of this thesis is whether structured exploration

behaviour can be taught and encoded in an Artificial Neural Network (ANN). 

The objective of the project is to see if it is possible and viable to train an ANN using

human traces and to study how the performance of such a network compares in performance to

other conventionally trained networks. Via collecting traces of human agents trying to navigate

through non-stationary environments  (T-mazes)  and collect  the  reward  and providing those

traces to an ANN. We will use a differentiable plasticity model along with an extension of that

model,  backpropamine,  which  is  a  biologically  inspired  model  that  incorporates

neuromodulated plasticity in our ANN.  We want to find out how an ANN trained this way

learns,  adapts  and  performs  and  how  it  compares  against  a  long  short-term  memory  [1]

network, which is a state-of-the-art model that can be used for sequence modeling.

By proving that Neural  Networks  can be taught  to  solve simple  exploration tasks  in

controlled yet randomized envrironments we can extend our finding and pave the way to more

advanced exploration problems of unknown topography.

1.2 Related Work
The problem is based on animal cognition experiments and behavioral science, where

rats are tested for their ability to learn and memorise paths in physical mazes. Exploring T-

Mazes has been studied from the scope of Neural Networks before albeit with different forms of

NNs. Using Continuous-time recurrent neural networks [2] and a different training method to

the one proposed here, it has been managed to train a robot to traverse Single depth T-Mazes

successfully but had questionable results with Double T-Mazes. The study did not investigate

larger depth T-Mazes and homing tasks. Another example of a study using T-mazes is the work
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of [3] which focused on how Neuromodulated neurons were able to achieve better learning and

memorisation in comparison to standard neurons. Furthermore, Vassiliades and Christodoulou

(2016) [4] introduced the novel computational model of switch neurons that were capable of

switching between behaviors in response to changes in the environment. These neurons were

trained in T-mazes very similar to the ones we are using for this dissertation

1.2 Thesis outline
The thesis consists of five chapters. In the first chapter we explain the topic of the thesis

and mention related work. The second chapter fleshes out the background surrounding the field

and the topic that helps grasp the perspective of this work. The third chapter includes details of

the methodology that was followed and the implementation of the work. The results and their

analysis are discussed on the fourth chapter. The last chapter is a summary of the conclusions

and possible future work, around this thesis.
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Chapter 2
Epistimological Background

2.1 Exploration in Neural Networks

Exploration is a problem the field of Neural Networks and Reinforcement Learning has

yet to give a conclusive solution to with various methods and models proposed throughout the

years attempting to solve this challenge. From Eplsilon-Greedy[5] which attempts to balance

exploitation,  using  known data  and  repeat  actions  that  have  worked  well,  and  exploration,

making novel decisions in attempt to achieve greater rewards, to Deep-Reinforcement Learning

(DRL) [6]. Proposed solutions suffer from various shortcomings either from sparse or deceptive

rewards, known as a Hard Exploration Problem or from various Noisy-Tvs [7] where in the

presence  of  uncontrollable  &  unpredictable  random noise  the  agent  effectively  becomes  a

“couch potato” as it obtains new rewards consistently, failing to make any meaningful progress.

Using human traces  we hope to develop a  method of  teaching NNs to explore known and

unknown environments that will circumnvent such problems. 

2.1.1 T-Mazes

T-Mazes are environments  based on behavioral science and used in animal cognition

experiments [8]. T-mazes are used to study how the rodents function with memory and spatial

learning through applying various  stimuli.  With  the  insurgence  of  Neural  Networks  the  T-

Mazes were naturally adapted to be used in navigation and memorisation experiments. A T-

Maze is made up of a T-Junction where the agent, physical or not, has to navigate and make a

choice of either turning left or right to find the reward places at the end of the two perpendicular

corridors.
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2.2 Differentiable Plasticity
The main ideas of how our ANN learns and works are based on the work of Miconi et al.

(2018)[9] on Differentiable Plasticity where we have a system of Nodes which are trained with

backpropagation which consists of a nonlinear forward pass and a linear backward pass and are

able  to  change  the  inner  values  of  the  network.  Following  this  approach  it  is  possible  to

calculate parameters for the rules via stochastic gradient descent and effectively our Neural

Network is able to learn.

x j(t)=σ { ∑
i ∈ inputs

[wi , j x i(t −1)+αi , j Hebbi , j( t) x i(t −1)]}. (1)

In differentiable plasticity a connection between any two neurons i and j, has both a fixed

component and a plastic component. The fixed part is a weight w i,j  while the plastic part is

stored in a Hebbian trace Hebbi,j . The “plasticity” of a connection can vary from fully fixed

to fully plastic based on the Plasticity coefficient αi,j (Eq. 1).

Hebbi , j(t +1)=ηx i(t − 1) x j(t)+(1− η)Hebbi , j(t) . (2)
The Hebbian Trace (Eq. 2) or the Hebbian Rule is responsible for providing simultaneity

to our ANN stemming from biological neurons. If interconnected neurons become active very

close in time during a particular event, their connection strengthens and “a memory” of this

event is formed, in simpler terms “neurons that fire together, wire together”.

In Hebbian rules there is often a weight decay term η  (Eq.  3), to prevent explosive

positive feedback on Hebbian traces. However, in the lack of input Hebbian traces often decay

to  zero.  More  complex  Hebbian  rules  can  maintain  values  indefinitely  in  the  absence  of

stimulation,  thus  allowing  stable  long-term  memories,  while  still  preventing  runaway

divergences (Oja, 2008).

Hebbi , j(t +1)=Hebbi , j(t )+ηx j( t)(x i( t −1)− x j( t )Hebbi , j(t)) . (3)
Using embedded plasticity  rules  in  the  Neural  Network architecture  it  is  possible  to

calculate the values of the learning rules via stochastic gradient descent and let a NN learn on

its own and we expect it to be a powerful tool when learning from demonstration.
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σ : Non-linear function, usually tanh.

w i,j : Weight between neurons i, j. Non-plastic compoment connecting neurons i,j.

x : Neuron output

αi,j : Plasticity coefficient

Hebbi,j : Hebbian trace, plastic compoment connecting neurons i,j.

η : Weight decay value

2.3 Backpropamine
Backpropamine is an expansion of differential plasticity, showed that neuromodulated

networks  can  be trained with  gradient  descent.  Using a  mechanism called  eligibility  trace,

which keeps track of which synapses contributed to recent activity, a dopamine signal controls

how the eligibility traces are transformed into plasticity changes. 

Replacing Eq. 3 above with the following two equations,

Hebbi , j(t +1)=Clip(Hebbi , j(t )+M ( t)E i , j (t)) . (4)

E i , j(t +1)=(1− η)E i , j( t)+ηx i(t − 1) x j(t) . (5)

The function  Clip(x )  in  Eq.  5 is  any function or  procedure that  constrains  Hebbi,j  to

the[−1,1] range and replaces Oja’s rule that was used in Differentiable Plasticity.

Here E i,j(t)  is a simple exponential average of the Hebbian product of pre- and post-

synaptic activity, with trainable decay factor η . Hebb i,j(t) , the actual plastic component of

the connection (Eq. 4), simply accumulates this trace, but gated by the current value of the

dopamine signal  M (t) .  Note that  M (t)  can be positive or negative, approximating the

effects  of  both  rises  and dips  in  the  baseline  dopamine levels  [11].  The calculation of  the

dopamine signal can be done in various ways. Our implementation uses a sclara output of the

network that is then passed through a meta-learned vector of weights.
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E i,j(t) : Eligibility trace at connection i, j.

M (t) : Dopamine signal.

2.4 LSTM
A common  Long  Short-Term  Memory  [1] model works tremendously well on a large

variety of problems, and is now widely used. An LSTM unit is composed of a  cell, an input

gate, an output gate and a forget gate. The cell remembers values over arbitrary time intervals

and  the  three  gates  regulate  the  flow  of  information  into  and  out  of  the  cell.  Relative

insensitivity to gap length is an advantage of LSTM over RNNs which suffer from vanishing

and exploding gradient problems.

2.5 Adam Optimization
The Adam optimization algorithm [12] is an extension to stochastic gradient descent that

has  recently  seen  broader  adoption  for  deep  learning  applications  in  computer  vision  and

natural  language  processing.  It  is  an  algorithm  that  can  be  used  instead  of  the  classical

stochastic gradient descent to update network weights based on training data. It is appropriate

for problems with non-stationary objectives and has little memory requirements

The  Adam algorithm adapts the  parameter  learning  rates  based  on  the  average  first

moment  (the  mean).  Adam also  makes  use  of  the  average  of  the  second  moments  of  the

gradients  (the  uncentered  variance).  Specifically,  the  algorithm  calculates  an  exponential

6
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moving average of the gradient and the squared gradient, and the parameters beta1 and beta2

control the decay rates of these moving averages.

2.6 One-Hot Encoding
In machine learning, One-Hot Encoding [13] is a frequently used method to deal with

categorical data. Because many times, machine learning models need their input variables to be

numeric, categorical variables need to be transformed. An integer encoded variable is removed

and a  new binary variable  is  added for  each unique  integer  value.  Thus for  x  different

categories, x  different binary variables are needed. At each moment only one binary variable

is activated and its value set to 1, while all other variables are set to 0

2.7 Class Imbalance
An imbalanced classification problem is an example of a classification problem where

the distribution of examples across the known classes is biased or skewed. The distribution can

vary from a slight bias to a severe imbalance where there is one example in the minority class

for hundreds, thousands, or millions of examples in the majority class or classes.

Imbalanced  classifications  pose  a  challenge  for  predictive  modeling  as  most  of  the

machine learning algorithms used for classification were designed around the assumption of an

equal  number of  examples  for  each class.  This  results  in  models  that  have poor  predictive

performance,  specifically  for  the  minority  class.  This  is  a  problem  because  typically,  the

minority class is more important and therefore the problem is more sensitive to classification

errors for the minority class than the majority class.

Our project is a classical example of an imbalanced classification problem. Since our T-

Mazes  naturally contain more straight corridors than turns. While corridors are undemanding

in their traversal, the more rare turns presented in the environment are complicated, requiring

the agent to orient themselves and memorise which paths they visited in the past.
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Chapter 3
Design and Implementation

3.1 Training Methodology
The training of the ANN was split into two phases, first and foremost was generating the

human traces of optimal/structured exploration behavior in non-stationary environments, where

the reward function changes. Within the margins of this project we used randomized T-mazes of

varying depth. In the second phase we used imitation learning-like methodology to train the

backpropamine ANN and attempt to reproduce similar traces as well as the LSTM which stands

as a comparison point for our ANN.

3.2 Agent Environment
The  agent  environment  is  parameterized  and  randomly generated  and  similar  to  the

specifications  other  research  used  [4],  specifically  the  agent’s  visibility  was  restricted.  The

agent’s actions are "move forward", "turn left" or "turn right", and the agent was allowed to

change  orientation  only  when  choosing  a  turn  action  at  a  turning  point,  or  reverses

automatically in the homing task when reaching the end of a corridor. Each action was a single

step in the Maze and in the trace and invalid actions were not recorded and did not increment

the step counter in order to reduce junk data fed into the NNs.

3.2.1 Agent Visibility
The visibility of the agent was an integral part of the project, as it determined what data

was stored and encoded into the trace which was to be used to train our ANN. As part of the

experiments  we allowed for  a  flexible  impementation  that  makes  it  possible  to  restrict  the

human observation to:
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• Semi-full observability:

◦ the full maze with the rewards obscured

• Partial observability:

◦ limited agent observation

Later on Partial Observability in human experiments was scrapped since it proved to be a

difficult task for humans to solve the mazes using only the information of a single cell and that

was reflected in the quality of the traces collected.

3.3 Maze Design
For  the  construction  of  the  mazes  we  used  the  Gym  (https://gym.openai.com)  and

Minigrid  (https://github.com/maximecb/gym-minigrid)  frameworks  since  they  provided  the

necessary tools to build our virtual rat maze as well as simple and intuitive ways that allowed us

to interact with our agent and the outside world. The level design consists of T-Mazes, which

are corridors connected in a way that forms a T-junction. The depth of a maze determines how

many choices an agent must make in order to reach an end point of the maze. Furthermore,

tasks were divided to non-homing and homing, where the agent has to return to their original

starting  position  after  collecting  the  reward.  This  is  designed  to  test  the  agent’s  ability  to

memorise its path and retract its steps.

Each  tile  in  the  maze  was  colour  coded  to  represent  its  function  and  the  available

movements. The Start tile was green, and in the case of homing tasks, when the agent picked up

the reward and had to return to its initial position, the tile would change to red. T-Junctions,

9

Drawing 2: Single 
Depth T-Maze

Drawing 3: Double
Depth T-Maze

Drawing 5: Triple Depth T-
Maze

Drawing 4: Quadruple 
Depth T-Maze

Drawing 1: Partial Observability(left).
Semi-full observability(right)



where an agent would turn left or right, were coloured blue  while corridors were black and

walls were grey.

The different tasks appeared in the following order:

Table 1: T-Maze task order

1. Single, non-homing, partial
2. Double, non-homing, partial
3. Triple, non-homing, partial
4. Quadruple, non-homing, partial
5. Single, non-homing, semi-full
6. Double, non-homing, semi-full

7. Triple, non-homing, semi-full
8. Quadruple, non-homing, semi-full
9. Single, homing, semi-full
10. Double, homing, semi-full
11. Triple, homing, semi-full
12. Quadruple, homing, semi-full

• Tasks 1-4

◦ will test the human ability to solve the task when presented with input similar to the

one the agent observes.

• Tasks 5-8

◦ provide more information to the user - the traces from these tasks are expected to

have better overall performance.

• Tasks 9-12

◦ are about the homing task - the user will be provided with more information and

would determine if an agent learns to remember (by reversing its path).

Each task was repeated a number of times, with the same reward location, to allow the

agent not only to explore many ends of the maze but also exhibit memorisation after finding the

reward. Depending on the depth of the maze, each task was repeated for a number of episodes,

with Single T-Mazes repeating for 4-8 episodes. Double for 8-12 episodes, Triple for 16-20

episodes and quadruple for 32-36 episodes. This  means that for all  experiments the human
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participants were asked to provide a trace containing 12 different tasks which contain 180 to

228 episodes.

The reward locations were randomized and selected from one of the possible corridor

ends of the maze. For each task the reward location changed once after a random number of

episodes to stipulate exploration and encourage the agent to revisit the Maze’s ends. Care was

taken to allow the agent to explore for at least two to three episodes for each reward location.

For each action taken, points were awarded to the agent. A step penalty was applied for

every step to avoid unnecessary moves and encourage optimal behaviour strategy. An additional

penalty was applied when the agent failed to find the reward in the maze or, in the case of

homing tasks, the agent does nor manage to successfully return to the start of the maze.

In the case of a Single-Depth Non-Homing T-Maze the agent begins from the start of the

T junction and the rewards are found at either end of the two perpendicular corridors.  The

agent’s task was to nagivate down the corridor, turn either left or right, and reach the end of the

corridor, where it found the reward or in the absence of it, turned around to explore the rest of

the maze. The imposed maximum number of steps allowed the agent only to explore only one

end of the maze.

3.3.1 Maze Generation
The  generation  of  the  T-Mazes  occured  in  multiple  steps.  First  and  foremost,  the

interface [Appendix A] invokes the corresponding task and passes along the seed, and if needed,

the location of the reward in the form of an integer which determined which maze end held the

reward of the maze. Depending on the depth of maze, the number of corridors of the T-Maze

and the maximum number of steps the agent was allowed were determined. In the case of a

homing task the amount of steps were doubled.

Subsequently, the lengths of the corridors were generated in pseudorandom fashion, the

corridors were then checked for overlap to avoid circular paths. Then, based on the generated

corridor lengths the square size of the maze is calculated. In the last step of validity checking,
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we calculate the negative offset of the grid. This offset is used for Triple and Quadruple depth

mazes which might extend past the initial starting position of the agent.

Afterwards the corridor lengths are generated and checked. The maze is build from the

ground up. The square grid is created and all the tiles are set to be blocked. Afterwards using a

recursive builder we iterate through the corridor lengths list and place alternating horizontal and

vertical  corridors  in  the  grid.  The  secondary  role  of  this  recursive  builder  is  to  return  the

coordinates of all the maze ends and all the turning points in the maze. Using the two lists of

maze ends and turning points we place all the coloured tiles at the appropriate coordinates and

enable the movements allowed at those locations.  i.e. the automatic reversal of direction, and

allowing the agent to turn at the turning points. Lastly the starting tile, the reward and the agent

are placed in the maze.

3.4 Collecting Traces
To train our Neural Networks we needed to gather data from human participants. The

mazes were distributed as a zip file with the required python code, and used bash or shell

scripting,  depending on the host  ecosystem, to  handle installing any additional  plugins  and

running the maze experiments. Human agents were presented with the mazes discussed above

and were instructed to solve the mazes and find the reward as efficiently as possible. The human

agents were given as much guidance as possible without exposing the underlying systems of the

maze to assist them in creating efficient and accurate traces.

12
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The overall architecture of the human maze environment, was comprised of a handler

that was the entry point of the system and responsible for the configuration of the mazes and the

number episodes which were later passed on to an interface. The interface was responsible for

the creation of the actual maze and coo    diff_plasticity.main(0.01, 0.001, 20, epochs=epochs,

save='dp')rdinating human inputs and the environment and creating traces with the outputs from

the maze.

A trace file was comprised of multiple tasks and episodes. When a new episode started

the type of the maze along with its seed was recorded in the trace file in the two seperate lines.

Following that was the recording of its step, comprised of the observation of the agent, which

indicated the type of tile the agent was located on, the human action, and the points awarded by

the maze for the action. After an episode was finished the keyword “done” was recorded in the

trace file, to signify the correct termination of the episode. Additionally the same was done

when all tasks were finished to signify the end of the trace file.

3.4.1 Trace File Format
A single step in the trace file was recorded with the following format;

[obsagent]actionhuman reward (7)
The agent obeservation was comprised of a One Hot Encoding comprised of five bits of

the possible different tile types the agent can be occupying. At each point only one of the five

bits was enabled and set to 1 and the rest were set to 0.

[obs0 , obs1 , obs2 , obs3 , obs4] (8)
Where each obsi signifies which kind of tile the agent is located on, as such:

obs0 Corridor Tile
obs1 Start Tile
obs2 Turning Point
obs3 Maze End, Dead end of a corridor
obs4 Maze Reward
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In the later stages of the project the agent observation was expanded to include three more

points of data in addition to the original (8) One Hot Encoding (OHE). Specifically the NN

agent  exhibited  some  difficulty  when  traversing  turns  and  recognizing  which  directions  of

movement were available. As such three more binary digits were added that represented on

which sides the agent was surrounded by walls.

[obsagent , obs5 , obs6 , obs7 ] (9)
obs5 Wall to the left
obs6 Wall to the right
obs7 Wall in front

The human actions were represented by a single integer from 0 to 2, for each action the

agent can perform, turning left, turning right, going forward, accordingly. While the reward was

a floating point number. A penalty of -0.05 was applied for each step, and an additional penalty

of -0.4 was given if the agent did not manage to find the reward or return to the starting tile, in

the case of a homing task. If the agent managed to pick up the reward during a homing task, a

reward of 0.5 was given, if the agent also managed to return successfully back to the start, it was

also rewarded with an additional reward of 1.0. This reward also applied for non-homing tasks

when the agent reached the reward.

3.5 Evaluation
Before training or testing the traces were split to two different sets. A training set with a

size of 80% and a test set of 20% and their order was shuffled once after being retrieved by the

system file manager. After training the models were evaluated by their performance in the T-

Mazes, based on the amount of rewards and pickups that were acquired in addition to how few

times the model was stuck in a destructive situation.

3.6 Long Short-Term Memory Model
The LSTM  was  the  conventional  model  we  used  to  solve  the  T-Maze  exploration

problem.  The model  was readily available  from the PyTorch library.  The single,  unstacked
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LSTM was initialized with an input dimension, dim input , equal to the size of the obsagent and

an additional bias value that was always active, specifically 6 for the original observation format

which only included tile information and 9 later on using the expanded observation format that

encodes the sides where walls surround the agent as well. When used as a classifier the LSTM

must have a hidden dimension equal to the population of the classes. Thus we used a hidden

dimension,  dimhidden ,  of  3,  equal  to  the  population of  available  actions.  Furthermore  the

hidden h  and cell state c  were initialized as a tensor of zeroes.

The LSTM worked in conjuction with a Loss Function or criterion, either Cross Entropy Loss

or the combination of the Softmax and NLLLoss, and an Adam optimizer. The output of the

network  was  compared to  the  OHE of  the  actionhuman  to  calculate  loss  and propagate  it

backwards through the network and adjust the LSTM accordingly. 

3.6.1 Long Short-Term Memory Training
The  training  of  the  LSTM was  conducted  with  providing  it  with  the  human  traces

collected in the first  stage of the project.  Before starting training, we clear the accumulated

gradients  of  the  LSTM  model  and  the  Optimizer  improving  the  training  and  testing

performance of our model.  The traces from the train set would be given one by one to the

LSTM where they were parsed line by line. Lines that contained maze or seed information were

discarded, while lines containing the recording of a step were parsed. To the obsagent  a bias bit

was added and the whole  arrangement  was converted to  a tensor  and reshaped to a  (1,  1,

dim input )  tensor.  That  is,  a  single  batch,  single  sequence  tensor  with  size  equal  to  the

dimension of the input. This tensor format was used as the input for the NN at every step. 

After retrieving the LSTM output, the hidden and cell states, h , c , were saved to be

given to the LSTM on the next step of input. While the OHE of the actionhuman was given to

the  loss  function.  The  resulting  loss  was  backpropagated  through  the  LSTM.  During  the

training of the LSTM the sum of the loss and the percentage of hit for all actions, as well as the

percentage  of  hit  specifically  for  left  or  right  actions  were  calculated.  The  two  different
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percentages were to ensure the NN did not favour one action over the other, as our data sets

were  naturally  biased  towards  forward  actions,  since  our  mazes  contained  more  straight

corridors than turns.

3.7 Backpropamine Network Model
The Backpropamine network  has a similar structure to the LSTM network, albeit with

different  internal  algorithms.  The  model  is  based  on  Miconi’s  work  for  UberAi.  The

Backpropamine network was initialized with the dim input similarly to the LSTM [3.6] and the

size of the hidden layer, hiddensize .

The optimizer was initialized with the learning rate,  η , and a weight decay value,  wd .

Furthermore the loss function used weight values, w l 0 , wl 1 ,w l 2 , that were applied to the loss

of  the  left,  right,  forward,  action  classes.  Higher  value  w l  work  to  counteract  skewness

towards  a  majority  class,  since,  just  by  its  sheer  majority  the  Neural  Network  pays  more

attention to that class.

3.7.1 Backpropamine Network Model Training
Once more the Backpropamine Network, similarly to the LSTM, used the human traces

as input and the human action as target output. Before starting training the gradients for the

Network and the Optimizer were zeroed and the hidden state and hebbian traces,  h ,  c

cleared.  The  recorded  steps  from  the  Trace  were  parsed.  The  observations  of  the  agent,

obsagent along  with  a  bias  bit  were  converted  to  a  ( dim input )  tensor.  Given  that  tensor,

input tensor , the hidden h , and hebbian traces, c  the ANN would output the raw scores of

the possible actions,  y , the out value or its “chosen action”,  y , as well as the changed

hidden  state  and  hebbian  traces,  h ' ,  c ' .  y and  a  tensor  with  the  integer  value  of

actionhuman  are  then  given  to  the  loss  function  which  calculates  the  loss,  which  is  then

backpropagated through the network. At the end of the trace we stepped the optimizer and

zeroed once more the gradients of the Network and the Optimizer
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3.8 Softmax function
A Softmax function takes as input a vector z of K real numbers, and normalizes it into a

probability distribution consisting of K probabilities  proportional to the exponentials of the

input numbers. Within the bounds of our project that means taking the real numbers a Neural

Network  produces  after  being  given  an  input  and  converting  them  into  probabilities  that

represent which action is most likely to be the correct one.

The softmax function is defined by the formula

σ (z )i=
ezi

∑
j=1

K

ezj

 for i = 1,...,K and z = ( z1 , ... , zk )∈ℝ
K (10)

σ (z )i : Softmax set

ezi : Exponent function applied to value z i

∑
j=1

K

ezj : Sum of exponentials

3.9 Normalizing Loss
Not all mazes are created equal, some are larger, more complex, and repeated for more

episodes, while others are smaller, simpler.  Human participants did not always find the most

efficient path towards the reward. As a result some Traces were much larger than others and

Loss would be accumulated much more easily even though the NN would make less mistakes

than  in  previous  batches  it  was  given.  To  combat  this  problem  the  loss  value  would  be

normalized  according  to  the  length  of  the  trace  file  it  originated  from with  the  following

function:

l j norm=l j∗(

∑
i=1

n

leni

n )/ len j

(11)
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l j :  The  original  loss  value that  originated  from passing  the  Trace  file  j  through the

training phase.

∑
i=1

n

leni

n :The average length of all Trace files

use in the training phase.

(12)

l j norm : The Normalized loss value.
len j : The length, in lines, of the Trace file
j

3.10 Weighted Loss
To combat class imbalance of a naturally skewed dataset a weight was applied for each

action at the loss function. Using the Inverse Number of Samples (INS) function which is a

simplistic and popular weighting scheme. For each action its weight was equal to 1 over the

Number of Samples in Class c.

wn,c=
1

Number of Samples in Class c
(13)

The logic behind this function is that the loss of a large Class matters less than the loss of a

small Class discounting it and giving more attention to classifying correctly the small Class.

Since the large Class will be repeated many times, the Neural Network will equally learn how to

handle it.
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Chapter 4
Results and discussion

4.1 Long Short-Term Memory Learning
The LSTM was relatively simpler than the Backpropamine Network. Since the Network

was unstacked we only needed to test different values for the learning rate η and the weight

decay L 2  that the Optimizer would use.

4.1.1 LSTM Learning Rate
Several different values of η stood out when training the LSTM network. Namely 0.15,

0.2,  0.3  which  displayed  the  best  accuracy  in  categorizing  the  observations  given  to  the

Network.

The LSTM  with Learning Rate value η=0.15 [Fig.  4]  displays a good fit Learning Curve. It

approximately manages to categorize 90% of the all the actions in the training set, and ~50% of

all the Left/Right actions.
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Figure 4: LSTM Loss and hit percentage during 
training. Training Traces=15 Learning Rate η=0.15. 
Weight Decay L2=0.001, Hidden Layer size hdim

=3, Weighted Loss = [1.0, 1.0, 1.0]



Likewise with an η=0.2 [Fig. 5] at the end of the training, the LSTM manages to achieve ~90%

accuracy in all actions and ~50% accuracy in categorizing Left/Right actions. The late jump of

accuracy in the hit percentage of the Left/Right actions might mean that the η might be too

large and the NN has a hard time settling down on the correct values for its weights.
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Figure 5: LSTM Loss and hit percentage during 
training with 15 different traces with Learning Rate
η=0.2. Weight Decay L2=0.001, Hidden Layer 
size=3, Weighted Loss = [1.0, 1.0, 1.0]

Figure 6: LSTM Loss and hit percentage during 
training with 15 different traces with Learning Rate 
η=0.3. Weight Decay L2=0.001, Weighted Loss = 
[1.0, 1.0, 1.0]



With a Learning Rate  η=0.3 [Fig.  6], the training results in a similarly accurate results

with the two other values yet does not seem to properly reduce Loss as well as with a Learning

rate of 0.15 or 0.2

From the  above  figures  it  seems  the  most  appropriate  and  accurate  NN is  created  with  a

Learning  Rate   η=0.15  as  it  combines  both  the  best  Loss  Curve  and  the  best  action  hit

percentages.

4.1.2 LSTM Weight Decay
We tested various various values of Weight Decay on a logarithmic scale from 0 to 0.1 in

order to understand how it affected the training of the NN. As our data in general was not noisy,

Weight decay did not affect the training of the Network very much. Nevertheless values larger 

than 0.001 resulted in bad training fitment.

The LSTM in figure 4, shows a good loss curve and unimpacted action hit percentages.
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Figure 7: LSTM Loss and hit percentage during training 
with 15 different traces with Weight Decay L2=0.001. 
Learning Rate η=0.15, Weighted Loss = [1.0, 1.0, 1.0]



The LSTM in figure 5, shows that the loss curve plateaus later than in figure 4, while also not 

learning how to handle turns.

4.1.3 Weighted vs Unweighted Loss - LSTM
In an attempt to improve the LSTM’s Left/Right action accuracy we applied weights to

the loss function using the formula above and comparing them with unifrom Loss Weights

while keeping the rest of the NN parameters the same.
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Figure 8: LSTM Loss and hit percentage during training
with 15 different traces with Weight Decay L2=0.01. 
Learning Rate η=0.15, Weighted Loss = [1.0, 1.0, 1.0]

Figure 9: Loss and hit percentage for 15 
different traces. (left) Weighted Loss = [1, 1, 1]

(right) Weighted Loss = [1/6, 1/6, 1/53]



From Fig. 6 we can deduce that the unweighted and weighted loss have similar results given that

the rest of the parameters remain the same. The one minor difference worth noting is that the 

loss of the LSTM with the Weighted Loss Function plateaus earlier. Academic literature 

supports our findings and states that a Weighted Loss Function is needed when dealing with 

generally noisy data [14].

4.2 Backpropamine Network Learning
For the Backpropamine Network we had to ascertain the optimal values for η , L 2

similarly to the LSTM [4.1.1, 4.1.2, 4.1.3] as well as the size of the Hidden Layer. A larger

HiddenLayer usually exhibits greater loss, as there are more neurons to be corrected for each

step, but might achieve greater accuracy as it can encode information better.

4.2.1 Backpropamine Network Learning Rate
When testing the Backpropamine Network we use an η  in the range of 0.001 to 1.0.

From those values, the learning rates that seemed to perform the best were 0.01, 0.02. In the

following figures we will analyse how they affect the networks loss and hit percentage.

Analysing the results  in  fig.  7  the  NN displays  a  good loss  curve though is  slow to

plateau. Nevertheless the network achieves a hit percentage of ~90% and and a Left/Right hit

percentage of  ~40%.
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Figure 10: BPN Loss and hit percentage during 
training with 15 different traces with Learning Rate 
η=0.01. Weight Decay L2=0.001, Weighted Loss = 
[1.0, 1.0, 1.0]



Similarly with a Learning Value η=0.02 [Fig. 11] the NN ties with the previous execution

in terms of final action hit. The network only has a hit percentage of ~85% and and a Left/Right

hit  percentage  of   ~30%  yet  it  manages  to  achieve  that  value  much  more  consistently.

Meanwhile Loss is not being decreased  harmoniously with every trace.

4.2.2 Backpropamine Network Weight Decay
Similarly to the LSTM the Weight decay values we tested ranged on a logarithmic scale

from 0 to 0.1. Values lower than 0.001 did not seem to impact performance while values higher

than that hindered the Neural Network’s ability to learn.

4.2.3 Backpropamine Network Hidden Layer Size

The size of the Hidden Layer drastictly affected the capabilities of the Backpropamine

Network. Various sizes from 1 to 100 were tested but the results showed that smaller to medium

sized networks performed better and were easier to train. 
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Figure 11: BPN Loss and hit percentage during 
training with 15 different traces with Learning Rate 
η=0.02. Weight Decay L2=0.001, Weighted Loss = 
[1.0, 1.0, 1.0]



Small networks (Hidden Layer < 10) [Fig. 12] proved that they can still learn the rules of

the maze and could classify properly the actions from the traces. They did not present the same

Hit  Percentage  drop  that  larger  mazes  did  and  were  less  computationally  intensive  when

training. While the results are good on paper they were not consistent, thus on some runs the

network failed to learn the correct action for some part of the classification. Resulting in an

agent that in most cases gets softlocked in the testing phase.

A  larger  Hidden  Layer  [Fig.  14]  helped

ameliorate  the  problem  where  agents  would  get

softlocked and produced more  consistent  learning.

Though would  often display some “forgetfullness”

until its performance balances, this could be a result

of the vanishing or exploding gradients.
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Figure 13: BPN Loss and hit percentage during 
training, using Hidden Layer Size equal to 2. 15 
different traces. Learning Rate η=0.1. Weight Decay 
L2=0.001, Weighted Loss = [1/6, 1/6 1/53]

Figure 12: BPN Loss and hit percentage during 
training, using Hidden Layer Size equal to 8. 15 
different traces. Learning Rate η=0.1. Weight Decay 
L2=0.001, Weighted Loss = [1/6, 1/6 1/53]

Figure 14: BPN Loss and hit percentage 
during training, using Hidden Layer Size 
equal to 20. 15 different traces. Learning Rate
η=0.1. Weight Decay L2=0.001, Weighted 
Loss = [1/6, 1/6 1/53]



4.3 Training on traces Vs Training on Epochs
Up until now the Mazes were trained on individual Traces, the whole epoch repeating

only once. This while creating partially successful results and making the network easy to train

and avoiding overfitting does not produce consistent results and the Neural Network sometimes

does not manage to learn all the “rules” of the maze. Deciding on the number of Epochs is a

difficult task since we need to balance things in such a way that our Network does not lose the

ability to generalize yet still manages to learn in the whole course of training as best as possible.

For this, we pass the Training Traces through the Neural Network multiple times, and

testing with our Testing Traces once. We tested for how many Epochs each Network should be

trained for. Metrics for the optimal number of Epochs include the Loss, Hit percentage, L/R Hit

percentage we used earlier. From the resulting figures we will then determine when we need to

stop training early depending on how the networks perform in the testing phase.

From the fig. 15 above we can see that the LSTM Network after 3 training epochs still

displays a flat trend regarding the Loss and Hit percentage values. This trend continues for the

rest  of  the  epochs  tested.  For  a  bigger  number  of  epochs  the  LSTM  displays  the  same

performance without any flunctuations in the resulting Hit percentages.
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Figure 15: LSTM loss and hit percentage. 
Training traces=12. Epochs=10, Weight Decay 
L2=0.001. Learning Rate η=0.15, Weighted Loss 
= [1.0, 1.0, 1.0]



Regarding the Backpropamine Network [fig. 16, 17]the number of epochs requires more

finetuning in comparison to the LSTM. When trained with 3 Epochs the Network seems to be

stops learning how to classify the Traces given to it. Hit percentages display an upwards trend

while Loss displays the opposite.  After 7 epochs  loss seems to display  a reverse peak as a

greater number of epochs displays a detrimental effect on the loss of the network. Futhermore

we can see from the test results we can see that the network achieves almost identical results in

training and testing.

4.4.1 Long Short-Term Memory Performance
With the initialization values we gathered above, we setup our LSTM to be trained and

then tested in actual T-Maze environments. We gathered how many times the agent managed to

collect the reward or a pickup.

Table 2: Average(r=3) LSTM network performance. η=0.15 , L 2=0.001 , Training Traces=12, 
Testing Traces=3, Epochs=4.

Maze Rewards Pickups Total Episodes
Tmaze 0 N/A 22
DoubleTMaze 0 N/A 30
TripleTMaze 20 N/A 60
QuadTMaze 0 N/A 104
TmazeHoming 0 4 15
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Figure 16: Backpropamine Train loss and hit 
percentage. Training traces=12. Epochs=10, Weight 
Decay L2=0.001. Learning Rate η=0.15, Weighted 
Loss = [1.0, 1.0, 1.0]

Figure 17: Backpropamine Test loss and hit 
percentage. Training traces=12. Epochs=10, 
Weight Decay L2=0.001. Learning Rate η=0.15, 
Weighted Loss = [1.0, 1.0, 1.0]



DoubleTMazeHoming 0 0 29
TripleTMazeHoming 0 0 53
QuadTMazeHoming 0 0 101

The LSTM Network displays lackluster performance [Table 2] in the various tasks it is

presented with. While it displays some basis of learning [Fig. 16,17] when provided with the

traces it  does not manage to apply that experience in the maze and collect the rewards. Its

success when finding the reward in the Triple Non-Homing maze seems to be based on luck.

Table 3: Average(r=3) LSTM network performance compared to humans. η=0.15 , L 2=0.001 , 
Training Traces=12, Testing Traces=3, Epochs=4. Optimal reward is an estimation based on the 
maximum reward-(half of the allowed steps * step penalty).

Maze Human average LSTM average Minimum reward Optimal reward
TMaze 0.80 -0.29 -0.9 0.75
DoubleTMaze 0.62 -1.35 -1.4 0.5
TripleTMaze -0.04 -1.23 -2.15 0.13
QuadTMaze -0.79 -3.85 -3.9 -0.75
TMazeHoming 0.93 -0.79 -1.8 1
DoubleTMazeHoming -0.34 -2.35 -2.8 0.5
TripleTMazeHoming -1.75 -3.72 -4.3 -0.25
QuadTMazeHoming -4.83 -7.29 -7.8 -2

Comparing to the human averages we can see that the LSTM does not manage to achieve

that.  While  our  human participants  are  close  to  the  optimal  reward  estimation  the  models

inability to collect rewards hinders it a lot.

4.4.2 Backpropamine Network Performance
The performance of the Backpropamine [Table 4] was questionable. The agent displayed

some elements of understanding of how to navigate the maze and some sort of exploration

strategy but would often get stuck repeating the same invalid actions Sometimes such hiccups

would sort themselves out while others it would bring the whole computer system to a kneel.

Memorisation  was  mediocre.  While  sometimes  displaying  memorisation  of  the  reward’s
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previous location, the would often revisit  the same empty corridors walking back and forth

from the two end points.

Table 4: Average(r=3) Backpropamine network performance. Hidden Layer Size = 20,

η=0.01 , L 2=0.001 , Training Traces=12, Testing Traces=3, Epochs=1.

Maze Reward Pickups Times Stuck Total Episodes
Tmaze 6 N/A 0 22
DoubleTMaze 0 N/A 17 30
TripleTMaze 0 N/A 52 60
QuadTMaze 1 N/A 103 104
TmazeHoming 4 4 6 15
DoubleTMazeHoming 0 0 29 29
TripleTMazeHoming 0 0 44 53
QuadTMazeHoming 0 0 101 101

Comparing the average of backpropamine [Table 4] to that of the LSTM network [Table 2] the

results aren’t much better. Backpropamine displays more diversity, even achieving to solve the

single depth homing task successfully but it does not achieve consecutive rewards in the same

way the LSTM does in regards to the triple depth non-homing task.
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Table 5: Average(r=3) Backpropamine network performance compared to humans. η=0.01 ,
L 2=0.001 , Hidden Layer Size=20, Training Traces=12, Testing Traces=3, Epochs=4. Optimal 

reward is an estimation based on the maximum reward-(half of the allowed steps * step penalty).
Maze Human average BP average Minimum reward Optimal reward

TMaze 0.80 -0.18 -0.9 0.75
DoubleTMaze 0.62 -0.87 -1.4 0.5
TripleTMaze -0.04 -2.10 -2.15 0.13
QuadTMaze -0.79 -3.42 -3.9 -0.75
TMazeHoming 0.93 -1.14 -1.8 1
DoubleTMazeHoming -0.34 -2.03 -2.8 0.5
TripleTMazeHoming -1.75 -3.85 -4.3 -0.25
QuadTMazeHoming -4.83 -7.29 -7.8 -2

In terms of average rewards [Table 5] backpropamine scores similarly to the LSTM. It

does achieve a better score when tested in single depth non-homing mazes but it  does not

achieve a value close to the optimal reward.

4.5 Expanding The Observation
As  stated  before  [3.4.1]  after  the  initial  round  of  training  the  Networks  the  first

Observation was expanded to include three distinct boolean variables that specified if there was

a wall,  left,  right,  or infont of the agent.  This  was done in order to counteract a flaw both

networks exhibited, turning towards walls when passing a turn the agent already visited and

sometimes getting stuck ad infinitum. One reason for that could be that agent is not aware of

their orientation when approaching a turn, as seen in fig. 18 and thus fails to properly classify

the observation and pick the correct action. We tested if an expansion to the observation would

help the two Networks avoid softlocking while also achieving better results when tested in the

virtual T-Mazes.
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There were seven different Human Traces collected in comparison to the fifteen Human

Traces  that were used in  the  Original  Observation Model.  Nevertheless  the Backpropamine

Network improved in performance even with the reduction in the amount of Trace Files that it

was trained on previously.

Table 6: Backpropamine Testing Performance. Epochs=7, Learning Rate=0.01, Hidden Layer Size=20,
5 Training Traces, 2 Testing Traces, r=3

Backpropamine Maze
Performance Reward Pickups Times Stuck Total Episodes

Tmaze 4 N/A 0 11
DoubleTMaze 12 N/A 0 21
TripleTMaze 17 N/A 1 35
QuadTMaze 35 N/A 15 70
TmazeHoming 2 4 0 9
DoubleTMazeHoming 0 9 0 17
TripleTMazeHoming 0 5 26 37
QuadTMazeHoming 16 17 33 65

 From the above table we can conclude that the Backpropamine Network manages to

reach  the  reward  around  half  of  the  episodes  in  Non-Homing  Tasks  in  comparison  to  its

previous performance without the expanded observation [Table 1].

We can also see that in Homing Tasks it also manages to pickup the reward for a number

of episodes. Although for the Double or Triple depth tasks it does not succeed in retracing its

steps back to the original position. This does not apply to the Single or Quadruple depth tasks

where the ANN agent returns to their original position most of the time.
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Figure 18: All these cases produce the same observation for the agent, yet the 
avialable actions are different.



While the results of the Backpropamine Network are good, the extended Observation

does not manage to eliminate the possibility of the agent getting stuck while exploring the larger

mazes.

Table 7: LSTM Testing Performance. Epochs=7, Learning Rate=0.15, Hidden Layer Size=3|

5 Training Traces, 2 Testing Traces, r=3

LSTM Maze Perfomance Reward Pickups Times Stuck Total Episodes
Tmaze 4 N/A 0 11
DoubleTMaze 6 N/A 0 21
TripleTMaze 0 N/A 0 35
QuadTMaze 0 N/A 0 70
TmazeHoming 0 4 0 9
DoubleTMazeHoming 0 4 0 17
TripleTMazeHoming 0 0 0 37
QuadTMazeHoming 0 0 0 65

The LSTM network does not benefit as much from the adjustment of the Observation

Format. The LSTM until now proved to be more resistant to getting stuck in a T-Maze than the

Backpropamine  Network  and  its  results  in  regards  of  achieving  the  Maximum  Reward  or

Picking up the Reward in Homing Tasks does not significantly improve.

4.6 Network Viability – Comparison
The Backpropamine Network performs better than the LSTM in almost all of the various

tasks. Although the Network suffers from repeating the same actions or behaviours in certain

situations that softlock it. It is much more flexible when tested in a T-Maze environment and

much more resistant to overtraining.

The LSTM’s ease of use and availability do not outweight its mediocre performance in

the T-Mazes. It fails to consintently navigate towards the reward in mazes of depth larger than

Double  and  does  not  exhibit  the  same  memorisation  in  the  homing  tasks  that  the

Backpropamine Network does.

The  LSTM’s  lackluster  performance  could  be  that  it  lacks  the  continuously  plastic

components that the Backpropamine network features.
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Table 8: Comparison of the LSTM and Backpropamine in regards to performance in the T-Mazes. 
Using tables 6, 7.

Maze

LSTM 

Reward

LSTM 

Pickups

LSTM Times

Stuck BP Reward BP Pickups

BP Times

Stuck Total Episodes

Tmaze 4 N/A 0 4 N/A 0 11

DoubleTMaze 6 N/A 0 12 N/A 0 21

TripleTMaze 0 N/A 0 11 N/A 1 35

QuadTMaze 0 N/A 0 33 N/A 15 70

TmazeHoming 0 4 0 2 3 0 9

DoubleTMazeHoming 0 4 0 0 8 0 17

TripleTMazeHoming 0 0 0 0 5 26 37

QuadTMazeHoming 0 0 0 16 17 33 65

Total: 10 8 0 86 35 75
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Chapter 5
Conclusions and Future Work

5.1 Overview and conclusions
This thesis aimed to explore how achievable structured exploration behaviour is in an

Artificial Neural Network and test the ability of Neuromodulated Plasticity Rules to attain that.

Furthermore we compared how Neuromodulation performs against a different model of Neural

Networks, the LSTM. We developed a randomized and parameterized environment of T-Mazes

that allows us to create human traces and test the performance of ANNs for different kinds of

tasks.

Furthermore  we  successfully  managed  to  collect  a  number  of  Traces  from  human

Participants,  and  feed  them  to  two  different  models  of  neural  networks.  Testing  different

combinations of parameters for the Neural Networks we found the best performers and put

them  to  the  test  in  the  different  task  environments.  We  analyzed  and  compared  their

performance  and  have  found  that  a  network  based  on  the  Differentiable  Plasticity  with

Backpropamine model can effectively learn from human actors how to explore a T-Maze of

various depths and perform well in the homing tasks, exhibiting memorisation and retracting its

steps performing much more consistently than its conventional counterpart. We also determined

that the LSTM network is more stuck resistant in comparison to the neuromodulated plasticity

network as long as both networks are properly trained.

On a side note, we have tested how a weighted and unweighted loss function affects the

training and performance of the two models  when using training data without any noise and

have found minimal effect on both the LSTM and backpropamine network.

5.2 Future Work
Throughout this project neuromodulated plasticity has shown its ability to imitate human

behaviour and continuously learn while applied to a task. Nevertheless to investigate the full
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potential of our approach we need to reconsider how the model is trained and ways to minimize

the destructive cases when the agent is  traversing through the maze. An application of this

model could help solve other hard tasks for machines that are relatively easy for humans. Using

both LSTM and Backpropamine models in a sequential approach could get us the best of both

worlds, combining LSTM’s stuck resistance with the backpropamine’s ability in exploration.

Combining  backpropamine  with  different  models  or  architectures  that  we  haven’t

explored during this project could also expand the abilities of the network. For example using a

convolutional neural network can possibly scale this project to the 3D world. If we recall the 3D

maze screensaver that was used in the Windows 95 era we can potentially emulate such an

environment and outperform the left-hand rule that the implementation of the “player” used.

The controlled T-Maze environments we have created and used during this project can,

in the future, be replaced with more complex environments or tasks with higher stakes. We can

potentially pit the human participants and the trained agents against each other in a form of

adversarial learning. Creating an framework where the neural network has a clear target that it

needs to outperform as well as available traces to learn from.
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Appendices

Appendix A tmaze.py
import random

# import everything else from gym_minigrid
from gym_minigrid.minigrid import *

from gym_minigrid.register import register

# Reward Values
DISTINCT_OBJECTS = 5

LOW = 0.2                   # Low reward
HIGH = 1                    # High Reward
PICKUP = 0.5                # Used in homing tasks, when the agent manages to 
reach the first goal. Before returning home
FAIL_HOME = -0.4            # If the agent manages to pickup the reward but not 
return home
CRASH_PENALTY = -0.4        # When the agent touches lava or crashes into a wall. 
Might not be used
STEP_PENALTY = -0.05        # Penalty for every step taken

# Helper class for keeping track of reward positions and ends of corridors
class MazeEnd(Goal):
    def __init__(self, color='black', reward='low'):
        self.color = color
        self.turnAround = True
        if reward == 'high':
            self.reward = HIGH
        else:
            self.reward = 0
        super().__init__(color)

    def can_overlap(self):
        return True

    def render(self, img):
        # Give the floor a pale color
        color = COLORS[self.color]
        # fill_coords(img, point_in_rect(1, 1, 0.031, 1), color)
        fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color)

    def return_reward(self):
        return self.reward

    def __str__(self):
        return 'MazeEnd'

# The goal end of the maze
class MazeGoal(MazeEnd):
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    def __init__(self, color='black'):
        super().__init__(color=color, reward='high')

    def __str__(self):
        return 'MazeGoal'

# The Start of the maze
class Start(MazeEnd):
    def __init__(self):
        self.turnAround = True
        super().__init__(color='green')

    def render(self, img):
        color = COLORS[self.color]
        fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color)

    def __str__(self):
        return 'Start'

class TMazeEnv(MiniGridEnv):
    # Actions that the agent is permitted to make
    class Actions(IntEnum):
        # Turn left, turn right, move forward
        left = 0
        right = 1
        forward = 2
        # Done completing task
        done = 6

    def __init__(self, high_reward_end=None, size=None, homing=False, corridors=3,
corridor_lengths=None, seed=None):
        self.reward_range = (-1, 1)  # unused
        self.actions = TMazeEnv.Actions
        self.high_reward_end = high_reward_end  # Which maze end has the high 
reward.
        self.size = size
        self.homing = homing
        self.corridors = corridors
        self.corridor_lengths = corridor_lengths
        self.DISTINCT_OBJECTS = DISTINCT_OBJECTS

        if corridors == 3:
            self.max_steps = 10
        elif corridors == 7:
            self.max_steps = 20
        elif corridors == 15:
            self.max_steps = 35
        elif corridors == 31:
            self.max_steps = 70

        if self.homing:
            self.max_steps *= 2
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        super().__init__(
            max_steps=self.max_steps,
            seed=seed,
            agent_view_size=1,
            see_through_walls=True
        )

        # Action enumeration for this environment
        self.actions = TMazeEnv.Actions
        # Actions are discrete integer values
        self.action_space = spaces.Discrete(len(self.actions))

    # Class which randomly generates maze corridor lengths
    # based on the number of the corridors
    def generate_corridors(self, corridors):
        def _check_overlap(corridor_lengths):
            if len(corridor_lengths) > 6:
                for i in range(7, len(corridor_lengths)):
                    parent_corridor = math.ceil(((i - 2) / 2 - 2) / 2)

                    # if the product of the length of a corridor and that of its 
parent is negative
                    # then there is a danger of corridors or overlapping
                    if (corridor_lengths[i] * corridor_lengths[parent_corridor]) <
0:
                        if abs(corridor_lengths[parent_corridor]) <= 
abs(corridor_lengths[i]) + 1:
                            stride = 2 if (i % 2) == 0 else -2
                            corridor_lengths[parent_corridor] = 
(corridor_lengths[i] + stride) * -1

        corridor_lengths = []

        for i in range(corridors):
            corridor_lengths.append(super()._rand_int(3, 6))
            if (i % 2) != 0:
                corridor_lengths[i] *= -1

        _check_overlap(corridor_lengths)
        return corridor_lengths

    # Calculates how offset the start position needs to be from the edge of the 
maze
    # measure the negative height which we add to the grid height
    # thus avoiding exceeding the limits of the grid
    def negative_grid_offset(self, corridor_lengths):
        max_negative_height = 0
        if len(corridor_lengths) > 3:
            for i in [3, 5]:
                children = [(2 * i + 1) * 2 + 2 - (i % 2), (2 * i + 2) * 2 + 2 - 
(i % 2)]
                if children[1] < len(corridor_lengths):
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                    for j in children:
                        if corridor_lengths[i] + corridor_lengths[j] < 
max_negative_height:
                            max_negative_height = corridor_lengths[i] + 
corridor_lengths[j]
                else:
                    if corridor_lengths[i] < max_negative_height:
                        max_negative_height = corridor_lengths[i]

        return max_negative_height

    # Calculates the size of the square grid that our maze will be placed in
    def maze_size(self, corridor_lengths):
        corridor_size = [0] * len(corridor_lengths)

        for i in reversed(range(len(corridor_lengths))):
            # find the subcorridors that are parallel to the parent corridor
            children = [(2 * i + 1) * 2 + 2 - (i % 2), (2 * i + 2) * 2 + 2 - (i % 
2)]
            corridor_size[i] = abs(corridor_lengths[i])

            # if the subcorridors exist
            if children[1] < len(corridor_lengths):
                # measure the sum of the length of the corridors
                if corridor_size[children[0]] > corridor_size[children[1]]:
                    corridor_size[i] += abs(corridor_size[children[0]]) - 1
                else:
                    corridor_size[i] += abs(corridor_size[children[1]]) - 1

        # measure the negative height which we add to the grid height
        # thus avoiding exceeding the limits of the grid
        max_negative_height = self.negative_grid_offset(corridor_lengths)

        width = corridor_size[1] * 2 if corridor_size[1] > corridor_size[2] else 
corridor_size[2] * 2
        height = corridor_size[0]

        if corridor_lengths[0] + max_negative_height < 0:
            height -= (corridor_lengths[0] + max_negative_height)

        size = 0

        if height > width:
            size = height + 2
        else:
            size = width + 2

        if (size % 2) == 0:
            size += 1

        return size

    def _gen_grid(self):

41



        # generates vertical corridors on the grid
        def _gen_vert_corridor(pos, length):
            stride = 1 if length > 0 else -1
            x = pos[0]
            y = pos[1]
            for i in range(0, length, stride):
                self.grid.set(x, y, None)
                y += stride
            return [x, y - stride]

        # generates horizontal corridors on the grid
        def _gen_horz_corridor(pos, length):
            stride = 1 if length > 0 else -1
            x = pos[0]
            y = pos[1]
            for i in range(0, length, stride):
                self.grid.set(x, y, None)
                x += stride
            return [x - stride, y]

        # recursively builds alternating vertical and horizontal corridors
        # in a tmaze manner
        # returns the ending points of the mazes, and every turn
        def recursive_builder(pos, seq, corridors, vert):
            maze_ends = []
            turning_points = []

            if vert:
                new_pos = _gen_vert_corridor(pos, corridors[seq])
            else:
                new_pos = _gen_horz_corridor(pos, corridors[seq])

            if seq < int(len(corridors) / 2):
                ends, turns = recursive_builder(new_pos, seq * 2 + 1, corridors, 
not vert)
                maze_ends.extend(ends)
                turning_points.extend(turns)
                ends, turns = recursive_builder(new_pos, seq * 2 + 2, corridors, 
not vert)
                maze_ends.extend(ends)
                turning_points.extend(turns)
                turning_points.append(new_pos)
            else:
                maze_ends.append(new_pos)

            return maze_ends, turning_points

        # generate the size of the corridors
        if self.corridor_lengths is None:
            self.corridor_lengths = self.generate_corridors(self.corridors)
            self.size = self.maze_size(self.corridor_lengths)
            self.width = self.size
            self.height = self.size
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            # print("No corridors given")
            # print(str(self.corridor_lengths) + '\ngrid size=' + str(self.size))

        self.reward = 0
        self.grid = Grid(self.width, self.height)
        self.mission = "Find the Goal"

        # calculate the starting height of the agent
        start_height = 1
        max_negative_height = self.negative_grid_offset(self.corridor_lengths)

        if self.corridor_lengths[0] + max_negative_height < 0:
            start_height -= (self.corridor_lengths[0] + max_negative_height)

        self.agent_start_pos = (self.width // 2, start_height)
        self.agent_start_dir = 1

        # set all tiles to be blocked
        for i in range(self.width):
            for j in range(self.height):
                self.grid.vert_wall(i, j, 1)

        # create the paths using the lengths we generated earlier
        # self.turning_points = []
        self.maze_ends, self.turning_points = \
            recursive_builder(list(self.agent_start_pos), 0, 
self.corridor_lengths, True)

        # Set the home square
        # Surrounding walls
        x = 0
        y = 0
        w = self.width
        h = self.height
        self.grid.horz_wall(x, y, w)
        self.grid.horz_wall(x, y + h - 1, w)
        self.grid.vert_wall(x, y, h)
        self.grid.vert_wall(x + w - 1, y, h)

        self.put_obj(Start(), self.agent_start_pos[0], self.agent_start_pos[1])
        for turn in self.turning_points:
            self.put_obj(Floor(color='blue'), turn[0], turn[1])

        # Set the maze ends with the correct rewards
        if self.high_reward_end is None:
            self.high_reward_end = self._rand_int(0, len(self.maze_ends))
        self.set_reward_pos(self.high_reward_end)

        # rotate maze according to seed
        rot = self._rand_int(0, 4)
        for i in range(rot):
            self.grid = self.grid.rotate_left()
            x = self.agent_start_pos[0]
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            y = self.agent_start_pos[1]
            self.agent_start_pos = (y, self.grid.height - 1 - x)
            self.agent_start_dir -= 1
            if self.agent_start_dir < 0:
                self.agent_start_dir = 3

        # Place the agent
        if self.agent_start_pos is not None:
            self.agent_pos = self.agent_start_pos
            self.agent_dir = self.agent_start_dir
        else:
            self.place_agent()

    def set_reward_pos(self, i):
        self.put_obj(MazeGoal(), self.maze_ends[i][0], self.maze_ends[i][1])

        for j in range(len(self.maze_ends)):
            if j != i:
                self.put_obj(MazeEnd(), self.maze_ends[j][0], self.maze_ends[j]
[1])

    def reset(self):
        # Current position and direction of the agent
        self.agent_pos = None
        self.agent_dir = None

        # Generate a new random grid at the start of each episode
        # To keep the same grid for each episode, call env.seed() with
        # the same seed before calling env.reset()
        self._gen_grid()

        # These fields should be defined by _gen_grid
        assert self.agent_pos is not None
        assert self.agent_dir is not None

        # Check that the agent doesn't overlap with an object
        start_cell = self.grid.get(*self.agent_pos)
        assert start_cell is None or start_cell.can_overlap()

        # Item picked up, being carried, initially nothing
        self.carrying = None

        # Step count since episode start
        self.step_count = 0

        # Return first observation
        obs = self.gen_obs()
        return obs

    def step(self, action):
        # Some of the following code is copied from MiniGrid's step function
        self.step_count += 1
        reward = 0
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        done = False

        # Get the position of and in front of the agent
        agent_pos = self.agent_pos
        fwd_pos = self.front_pos
        # Get the contents of the cell in front of the agent and where the agent 
is standing
        agent_cell = self.grid.get(*agent_pos)
        fwd_cell = self.grid.get(*fwd_pos)

        # Rotate left
        if action == self.actions.left:
            if agent_cell is not None and agent_cell.type == 'floor':
                self.agent_dir -= 1
                if self.agent_dir < 0:
                    self.agent_dir += 4
                action = self.actions.forward
            else:   # remove invalid actions from step_count
                self.step_count -= 1

        # Rotate right
        if action == self.actions.right:
            if agent_cell is not None and agent_cell.type == 'floor':
                self.agent_dir = (self.agent_dir + 1) % 4
                action = self.actions.forward
            else:
                self.step_count -= 1

        # Get the position in front of the agent
        fwd_pos = self.front_pos
        # Get the contents of the cell in front of the agent
        fwd_cell = self.grid.get(*fwd_pos)

        # Move forward
        if action == self.actions.forward:
            if fwd_cell is None or fwd_cell.can_overlap():
                self.agent_pos = fwd_pos
                reward = STEP_PENALTY
            else:
                self.step_count -= 1

            # Check if we reached a Goal
            if fwd_cell is not None and type(fwd_cell) is MazeGoal:
                if self.homing:
                    reward = PICKUP
                    self.agent_dir = (self.agent_dir + 2) % 4   # rotate the agent

                    # remove the goal object from the floor
                    # replacing it with a grey floor tile
                    self.put_obj(MazeEnd(color='black'), self.agent_pos[0], 
self.agent_pos[1])
                    self.put_obj(MazeGoal(color='red'), self.agent_start_pos[0], 
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self.agent_start_pos[1])
                    self.homing = False
                    reward = PICKUP
                else:
                    self.put_obj(MazeEnd(color='green'), self.agent_pos[0], 
self.agent_pos[1])
                    self.agent_pos = fwd_pos
                    reward = HIGH
                    done = True
            # turn around the agent
            elif fwd_cell is not None and hasattr(fwd_cell, 'turnAround') == True:
                self.agent_dir = (self.agent_dir + 2) % 4  # rotate the agent

            # If the agent crashes the episode ends and a negative reward is given
            if fwd_cell is not None and fwd_cell.type == 'lava':
                done = True
                reward = CRASH_PENALTY

        # Checking for number of step taken to punish the agent when it fails to 
return home
        if self.step_count >= self.max_steps:
            done = True
            reward = FAIL_HOME

        self.reward += reward
        obs = self.gen_obs()

        return obs, reward, done, {}

    # one hot take encoding of the observation of the agent
    # observation format =
    # [is agent in corridor, is agent at home, is agent at turning point, is agent
at maze end, is agent at goal]
    def OneHotEncoding(self):
        def wallOHE():
            # obj_type=Wall
            # [left, right, front]
            walls = [0] * 3

            right_vec = self.right_vec
            left_vec = np.array((right_vec[0] * -1, right_vec[1] * -1))

            agent_pos = self.agent_pos
            left_pos = agent_pos + left_vec
            right_pos = agent_pos + right_vec
            fwd_pos = self.front_pos
            # Get the contents of the cells left, right, and forward of the agent
            left_cell = self.grid.get(*left_pos)
            right_cell = self.grid.get(*right_pos)
            fwd_cell = self.grid.get(*fwd_pos)

            if type(left_cell) is Wall:
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                walls[0] = 1
            if type(right_cell) is Wall:
                walls[1] = 1
            if type(fwd_cell) is Wall:
                walls[2] = 1

            return walls

        image = [0] * self.DISTINCT_OBJECTS

        # Get the observation of where the agent is standing
        agent_pos = self.agent_pos
        observed_cell = self.grid.get(*agent_pos)
        agent_obs = -1

        if observed_cell is None:
            agent_obs = 0
        elif isinstance(observed_cell, Start):
            agent_obs = 1
        elif isinstance(observed_cell, Floor):
            agent_obs = 2
        elif isinstance(observed_cell, MazeEnd):
            agent_obs = 3
        elif isinstance(observed_cell, MazeGoal):
            agent_obs = 4

        image[agent_obs] = 1

        # image.extend(wallOHE())
        # Comment out for debugging purposes
        # print(image)
        # print(np.array(image))
        #image = torch.FloatTensor(image)
        #image = torch.reshape(image, (1, 1, 5))
        return image

class DoubleTMaze(TMazeEnv):
    def __init__(self, homing=False, seed=None, high_reward_end=None):
        self.homing = homing
        self.corridors = 7

        super().__init__(corridors=self.corridors, homing=self.homing, seed=seed, 
high_reward_end=high_reward_end)

class TripleTMaze(TMazeEnv):
    def __init__(self, homing=False, seed=None, high_reward_end=None):
        self.homing = homing
        self.corridors = 15
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        super().__init__(corridors=self.corridors, homing=self.homing, seed=seed, 
high_reward_end=high_reward_end)

class QuadTMaze(TMazeEnv):
    def __init__(self, homing=False, seed=None, high_reward_end=None):
        self.homing = homing
        self.corridors = 31

        super().__init__(corridors=self.corridors, homing=self.homing, seed=seed, 
high_reward_end=high_reward_end)

class TMazeHoming(TMazeEnv):
    def __init__(self, seed=None, high_reward_end=None):
        super().__init__(homing=True, seed=seed, high_reward_end=high_reward_end)

class DoubleTMazeHoming(DoubleTMaze):
    def __init__(self, seed=None, high_reward_end=None):
        super().__init__(homing=True, seed=seed, high_reward_end=high_reward_end)

class TripleTMazeHoming(TripleTMaze):
    def __init__(self, seed=None, high_reward_end=None):
        super().__init__(homing=True, seed=seed, high_reward_end=high_reward_end)

class QuadTMazeHoming(QuadTMaze):
    def __init__(self, seed=None, high_reward_end=None):
        super().__init__(homing=True, seed=seed, high_reward_end=high_reward_end)
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Appendix B diff_plasticity.py
import torch
import torch.nn as nn
from gym_minigrid.wrappers import *
import nn_utils

# environment imports
from t_maze.envs import *

debug = nn_utils.debug

# trace
traces_dir = "../collected_traces"
traces = nn_utils.retrieve_traces(traces_dir, shuffle=True)

# give inputs of all episodes trace
# test in maze
# calculate average
# next maze

# list of mazes and seeds
mazes = []
seeds = []

lstm = None
loss_function = None
optimizer = None
hidden = None
hidden_dim = 3

# train
def train(trace_file, zero_grad=False, zero_hidden=False):
    global hidden

    action_hit = 0
    action_total = 0
    total_loss = 0

    leftright_hit = 0
    leftright_total = 0

    line_count = 0

    with open(trace_file, "r") as fp:
        for line in fp:
            # trace format [x0, x1, x2, x3, x4] action reward
            line_count += 1
            if line.startswith('['):
                if zero_hidden:
                    hidden = torch.FloatTensor([0] * hidden_dim)
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                    hidden = torch.reshape(hidden, (1, 1, hidden_dim))
                    hidden = (hidden, hidden)

                # retrieve observation and the desired action
                # from trace file
                image, target_action, lab_reward = nn_utils.parse_line(line)
                nn_input = nn_utils.prepare_lstm_input(image)

                # give the observation to the lstm
                # out should contain the nn's proposed action
                # Forward pass
                out, hidden = lstm(nn_input, hidden)
                hidden[0].detach_()
                hidden[1].detach_()

                # Convert raw scores to probabilities
                softmax_output = torch.softmax(out, dim=2)

                # Reshape action
                action_tensor = torch.LongTensor([target_action])

                # Update parameters
                # optimizer.zero_grad()
                loss = loss_function(out[:, -1].clone(), action_tensor)
                loss.backward()

                if zero_grad:
                    lstm.zero_grad()
                    optimizer.zero_grad()

                _, nn_action = torch.max(out[:, -1], 1)

                action_hit = nn_utils.count_hit(nn_action, target_action, 
action_hit)
                action_total += 1

                # measure hit percentage for left/right actions
                if target_action == 0 or target_action == 1:
                    leftright_hit = nn_utils.count_hit(nn_action, target_action, 
leftright_hit)
                    leftright_total += 1

                total_loss += loss

                # Print pass info
                if debug:
                    nn_utils.print_pass(line, nn_input, softmax_output, 
target_action, nn_action, loss)
            elif line.startswith('MiniGrid-'):  # new episode
                # zero the parameter gradients
                mazes.append(line.strip())
                line = fp.readline()
                seeds.append(int(line.strip()))
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                if debug:
                    print('\nTrain:')
                    print(mazes[len(mazes) - 1])
                    print(seeds[len(seeds) - 1])
                    print('########')

    optimizer.step()
    lstm.zero_grad()
    optimizer.zero_grad()

    return action_hit / action_total, leftright_hit / leftright_total, 
total_loss.item(), line_count

def test(trace_file):
    global hidden
    mazes = []
    seeds = []
    total_rewards = []

    with open(trace_file, "r") as fp:
        for line in fp:
            if line.startswith('MiniGrid'):
                maze = line.strip()
                seed = int(fp.readline())

                mazes.append(maze)
                seeds.append(seed)

                total_reward = 0

                # number_of_episodes = nn_utils.number_of_episodes(maze, seed)
                # print('Number of Episodes:' + str(number_of_episodes))
                env = gym.make(maze, seed=seed)
                env = FlatObsWrapper(env)

                # set initial observation
                ohe = env.OneHotEncoding()
                nn_input = nn_utils.prepare_lstm_input(ohe)

                while True:
                    # Create a window to view the environment
                    if debug:
                        env.render('human')

                    # Retrieve the agent's action
                    out, hidden = lstm(nn_input, hidden)

                    # transform out probability into a discrete action
                    action = out[:, -1].tolist()[0]
                    action = int(action.index(max(action)))
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                    # Give action to environment[
                    _, reward, done, _ = env.step(action)

                    # prepare tensor observation
                    ohe = env.OneHotEncoding()
                    nn_input = nn_utils.prepare_lstm_input(ohe)

                    # sum up reward
                    total_reward += reward

                    if debug:
                        print(ohe)
                        print('probabilities: ' + str(out[:, -1].tolist()[0]))
                        print('action: ' + str(action))

                    if done:
                        if debug:
                            if not env.window.closed:
                                env.window.close()
                        break

                total_rewards.append(total_reward)

    return mazes, seeds, total_rewards

def lvq(trace_file):
    global hidden

    action_hit = 0
    action_total = 0

    with open(trace_file, "r") as fp:
        for line in fp:
            if debug:
                print('Line: ' + line.strip())
            # trace format [x0, x1, x2, x3, x4] action reward
            if line.startswith('['):
                # zero the parameter gradients
                # lstm.zero_grad()
                # retrieve observation and the desired action
                # from trace file
                image, action, _ = nn_utils.parse_line(line)
                nn_input = nn_utils.prepare_lstm_input(image)

                # give the observation to the lstm
                # out should contain the nn's proposed action
                # Forward pass
                out, hidden = lstm(nn_input, hidden)
                hidden[0].detach_()
                hidden[1].detach_()

                _, prediction = torch.max(out[:, -1], 1)
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                # if lstm doesn't guess right propagate loss
                if action.item() != prediction.item():
                    loss = loss_function(out[:, -1].clone(), action.clone())
                    loss.backward()
                    optimizer.step()
                    optimizer.zero_grad()

                    if debug:
                        print('image: ' + str(image))
                        print('out: ' + str(out[:, -1]))
                        print('lstm action: ' + str(prediction.item()))
                        print('loss: ' + str(loss.item()))
                        print('########')
                else:
                    action_hit += 1
                action_total += 1

    return action_hit / action_total

def main(learning_rate=None, weight_decay=None, save=None):
    global lstm, loss_function, optimizer, hidden, hidden_dim
    # input dimension
    # 5 - obs
    # 1 - reward
    # output dimension
    # 1 - output step
    input_dim = 6
    hidden_dim = 3
    batch_size = 1
    seq_len = 1
    n_layers = 1

    lr = learning_rate
    wd = weight_decay     # Weight Decay - L2

    # create lstm nn
    lstm = nn.LSTM(input_dim, hidden_dim, n_layers, batch_first=True)

    # hidden represents the reward
    # passed in tuples
    # 0 initial reward
    hidden = torch.FloatTensor([0] * hidden_dim)
    hidden = torch.reshape(hidden, (1, 1, hidden_dim))
    hidden = (hidden, hidden)

    # declare loss function
    # or criterion
    # weights = torch.FloatTensor([1.0, 1.0, 1.0])
    weights = torch.FloatTensor([1 / 6, 1 / 6, 1 / 53])
    loss_function = torch.nn.CrossEntropyLoss(weight=weights)
    optimizer = torch.optim.Adam(lstm.parameters(), lr=lr, weight_decay=wd)
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    lstm.zero_grad()
    optimizer.zero_grad()

    train_test_split = 0.8
    train_traces = int(len(traces) * train_test_split) if len(traces) > 4 else 
len(traces)
    use_lvq = nn_utils.use_lvq
    find_worst_contenders = nn_utils.use_worst_contenders

    loss_list = []
    hit_list = []
    lr_hit_list = []
    lc_list = []

    print('Number of Traces:' + str(len(traces)))
    print('Traces: ' + str(traces))
    print('Training Traces: ' + str(train_traces))
    print('# ######## #')

    for i in range(train_traces):
        print('Train: ' + traces[i])

        # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad = False, 
zero_hidden = False)
        # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad=True, 
zero_hidden=False)
        hit_perc, lr_hit_perc, total_loss, line_count = train(traces[i], 
zero_grad=False, zero_hidden=True)
        # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad=True, 
zero_hidden=True)

        print('hit percentage: ' + str(hit_perc))
        print('left/right hit percentage: ' + str(lr_hit_perc))
        print('total loss: ' + str(total_loss))

        loss_list.append(total_loss)
        hit_list.append(hit_perc)
        lr_hit_list.append(lr_hit_perc)
        lc_list.append(line_count)

    print('##########')

    if use_lvq:
        for i in range(train_traces):
            print('LVQ: ' + traces[i])
            hit_perc = lvq(traces[i])
            print('hit percentage: ' + str(hit_perc))

    if find_worst_contenders:
        nn_utils.find_worst_contenders(loss_list, hit_list, lr_hit_list, traces)

    # create plots
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    plot_name = 'LSTM | wd=' + str(wd)
    nn_utils.create_plot(plot_name, lr, hidden_dim, loss_list, hit_list, 
lr_hit_list, traces, normalize_data=True, display=False, save=save)

    for i in range(train_traces, len(traces)):
        print('Test: ' + traces[i])
        mazes, seeds, total_rewards = test(traces[i])
        nn_utils.tabulate_print(mazes, seeds, total_rewards)

    return loss_list, hit_list, lr_hit_list, lc_list

if __name__ == '__main__':
    loss_list, hit_list, lr_hit_list, lc_list = main(0.15, 0.001)
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Appendix C lstm.py
import torch
import torch.nn as nn
from gym_minigrid.wrappers import *
import nn_utils

# environment imports
from t_maze.envs import *

debug = nn_utils.debug

# trace
traces_dir = "../collected_traces"
traces = nn_utils.retrieve_traces(traces_dir, shuffle=True)

# give inputs of all episodes trace
# test in maze
# calculate average
# next maze

# list of mazes and seeds
mazes = []
seeds = []

lstm = None
loss_function = None
optimizer = None
hidden = None
hidden_dim = 3

# train
def train(trace_file, zero_grad=False, zero_hidden=False):
    global hidden

    action_hit = 0
    action_total = 0
    total_loss = 0

    leftright_hit = 0
    leftright_total = 0

    line_count = 0

    with open(trace_file, "r") as fp:
        for line in fp:
            # trace format [x0, x1, x2, x3, x4] action reward
            line_count += 1
            if line.startswith('['):
                if zero_hidden:
                    hidden = torch.FloatTensor([0] * hidden_dim)
                    hidden = torch.reshape(hidden, (1, 1, hidden_dim))
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                    hidden = (hidden, hidden)

                # retrieve observation and the desired action
                # from trace file
                image, target_action, lab_reward = nn_utils.parse_line(line)
                nn_input = nn_utils.prepare_lstm_input(image)

                # give the observation to the lstm
                # out should contain the nn's proposed action
                # Forward pass
                out, hidden = lstm(nn_input, hidden)
                hidden[0].detach_()
                hidden[1].detach_()

                # Convert raw scores to probabilities
                softmax_output = torch.softmax(out, dim=2)

                # Reshape action
                action_tensor = torch.LongTensor([target_action])

                # Update parameters
                # optimizer.zero_grad()
                loss = loss_function(out[:, -1].clone(), action_tensor)
                loss.backward()

                if zero_grad:
                    lstm.zero_grad()
                    optimizer.zero_grad()

                _, nn_action = torch.max(out[:, -1], 1)

                action_hit = nn_utils.count_hit(nn_action, target_action, 
action_hit)
                action_total += 1

                # measure hit percentage for left/right actions
                if target_action == 0 or target_action == 1:
                    leftright_hit = nn_utils.count_hit(nn_action, target_action, 
leftright_hit)
                    leftright_total += 1

                total_loss += loss

                # Print pass info
                if debug:
                    nn_utils.print_pass(line, nn_input, softmax_output, 
target_action, nn_action, loss)
            elif line.startswith('MiniGrid-'):  # new episode
                # zero the parameter gradients
                mazes.append(line.strip())
                line = fp.readline()
                seeds.append(int(line.strip()))
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                if debug:
                    print('\nTrain:')
                    print(mazes[len(mazes) - 1])
                    print(seeds[len(seeds) - 1])
                    print('########')

    optimizer.step()
    lstm.zero_grad()
    optimizer.zero_grad()

    return action_hit / action_total, leftright_hit / leftright_total, 
total_loss.item(), line_count

def test(trace_file):
    global hidden
    mazes = []
    seeds = []
    total_rewards = []

    with open(trace_file, "r") as fp:
        for line in fp:
            if line.startswith('MiniGrid'):
                maze = line.strip()
                seed = int(fp.readline())

                mazes.append(maze)
                seeds.append(seed)

                total_reward = 0

                # number_of_episodes = nn_utils.number_of_episodes(maze, seed)
                # print('Number of Episodes:' + str(number_of_episodes))
                env = gym.make(maze, seed=seed)
                env = FlatObsWrapper(env)

                # set initial observation
                ohe = env.OneHotEncoding()
                nn_input = nn_utils.prepare_lstm_input(ohe)

                while True:
                    # Create a window to view the environment
                    if debug:
                        env.render('human')

                    # Retrieve the agent's action
                    out, hidden = lstm(nn_input, hidden)

                    # transform out probability into a discrete action
                    action = out[:, -1].tolist()[0]
                    action = int(action.index(max(action)))

                    # Give action to environment[

58



                    _, reward, done, _ = env.step(action)

                    # prepare tensor observation
                    ohe = env.OneHotEncoding()
                    nn_input = nn_utils.prepare_lstm_input(ohe)

                    # sum up reward
                    total_reward += reward

                    if debug:
                        print(ohe)
                        print('probabilities: ' + str(out[:, -1].tolist()[0]))
                        print('action: ' + str(action))

                    if done:
                        if debug:
                            if not env.window.closed:
                                env.window.close()
                        break

                total_rewards.append(total_reward)

    return mazes, seeds, total_rewards

def lvq(trace_file):
    global hidden

    action_hit = 0
    action_total = 0

    with open(trace_file, "r") as fp:
        for line in fp:
            if debug:
                print('Line: ' + line.strip())
            # trace format [x0, x1, x2, x3, x4] action reward
            if line.startswith('['):
                # zero the parameter gradients
                # lstm.zero_grad()
                # retrieve observation and the desired action
                # from trace file
                image, action, _ = nn_utils.parse_line(line)
                nn_input = nn_utils.prepare_lstm_input(image)

                # give the observation to the lstm
                # out should contain the nn's proposed action
                # Forward pass
                out, hidden = lstm(nn_input, hidden)
                hidden[0].detach_()
                hidden[1].detach_()

                _, prediction = torch.max(out[:, -1], 1)
                # if lstm doesn't guess right propagate loss
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                if action.item() != prediction.item():
                    loss = loss_function(out[:, -1].clone(), action.clone())
                    loss.backward()
                    optimizer.step()
                    optimizer.zero_grad()

                    if debug:
                        print('image: ' + str(image))
                        print('out: ' + str(out[:, -1]))
                        print('lstm action: ' + str(prediction.item()))
                        print('loss: ' + str(loss.item()))
                        print('########')
                else:
                    action_hit += 1
                action_total += 1

    return action_hit / action_total

def main(learning_rate=None, weight_decay=None, save=None):
    global lstm, loss_function, optimizer, hidden, hidden_dim
    # input dimension
    # 5 - obs
    # 1 - reward
    # output dimension
    # 1 - output step
    input_dim = 6
    hidden_dim = 3
    batch_size = 1
    seq_len = 1
    n_layers = 1

    lr = learning_rate
    wd = weight_decay     # Weight Decay - L2

    # create lstm nn
    lstm = nn.LSTM(input_dim, hidden_dim, n_layers, batch_first=True)

    # hidden represents the reward
    # passed in tuples
    # 0 initial reward
    hidden = torch.FloatTensor([0] * hidden_dim)
    hidden = torch.reshape(hidden, (1, 1, hidden_dim))
    hidden = (hidden, hidden)

    # declare loss function
    # or criterion
    # weights = torch.FloatTensor([1.0, 1.0, 1.0])
    weights = torch.FloatTensor([1 / 6, 1 / 6, 1 / 53])
    loss_function = torch.nn.CrossEntropyLoss(weight=weights)
    optimizer = torch.optim.Adam(lstm.parameters(), lr=lr, weight_decay=wd)
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    lstm.zero_grad()
    optimizer.zero_grad()

    train_test_split = 0.8
    train_traces = int(len(traces) * train_test_split) if len(traces) > 4 else 
len(traces)
    use_lvq = nn_utils.use_lvq
    find_worst_contenders = nn_utils.use_worst_contenders

    loss_list = []
    hit_list = []
    lr_hit_list = []
    lc_list = []

    print('Number of Traces:' + str(len(traces)))
    print('Traces: ' + str(traces))
    print('Training Traces: ' + str(train_traces))
    print('# ######## #')

    for i in range(train_traces):
        print('Train: ' + traces[i])

        # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad = False, 
zero_hidden = False)
        # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad=True, 
zero_hidden=False)
        hit_perc, lr_hit_perc, total_loss, line_count = train(traces[i], 
zero_grad=False, zero_hidden=True)
        # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad=True, 
zero_hidden=True)

        print('hit percentage: ' + str(hit_perc))
        print('left/right hit percentage: ' + str(lr_hit_perc))
        print('total loss: ' + str(total_loss))

        loss_list.append(total_loss)
        hit_list.append(hit_perc)
        lr_hit_list.append(lr_hit_perc)
        lc_list.append(line_count)

    print('##########')

    if use_lvq:
        for i in range(train_traces):
            print('LVQ: ' + traces[i])
            hit_perc = lvq(traces[i])
            print('hit percentage: ' + str(hit_perc))

    if find_worst_contenders:
        nn_utils.find_worst_contenders(loss_list, hit_list, lr_hit_list, traces)

    # create plots
    plot_name = 'LSTM | wd=' + str(wd)
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    nn_utils.create_plot(plot_name, lr, hidden_dim, loss_list, hit_list, 
lr_hit_list, traces, normalize_data=True, display=False, save=save)

    for i in range(train_traces, len(traces)):
        print('Test: ' + traces[i])
        mazes, seeds, total_rewards = test(traces[i])
        nn_utils.tabulate_print(mazes, seeds, total_rewards)

    return loss_list, hit_list, lr_hit_list, lc_list

if __name__ == '__main__':
    loss_list, hit_list, lr_hit_list, lc_list = main(0.15, 0.001)
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Appendix D nn_utils.py
import ast
import glob
import random
import sys

import torch
import numpy
from matplotlib import pyplot as plt
from torch.autograd import Variable

DISCRETE_ACTIONS = 3

debug = False
traces_dir = "../collected_traces"
results_folder = 'results/best_results/'

use_lvq = False
use_worst_contenders = False

environments = ['MiniGrid-TMaze-v0',
                    'MiniGrid-DoubleTMaze-v0',
                    'MiniGrid-TripleTMaze-v0',
                    'MiniGrid-QuadTMaze-v0',
                    'MiniGrid-TMazeHoming-v0',
                    'MiniGrid-DoubleTMazeHoming-v0',
                    'MiniGrid-TripleTMazeHoming-v0',
                    'MiniGrid-QuadTMazeHoming-v0']

def number_of_episodes(maze, seed):
    maze_ends = [2, 4, 8, 16,
                 2, 4, 8, 16]

    index = environments.index(maze)

    # initialize task random function
    task_rand = random.Random()
    task_rand.seed(seed)

    episodes = -1

    # calculate how many episodes the task will be played
    if maze_ends[index] == 2:
        episodes = task_rand.randint(4, 8)
    elif maze_ends[index] == 4:
        episodes = task_rand.randint(8, 12)
    elif maze_ends[index] == 8:
        episodes = task_rand.randint(16, 20)
    elif maze_ends[index] == 16:
        episodes = task_rand.randint(32, 36)

    return episodes
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def encode_one_hot(value, max):
    encoding = [0] * max
    encoding[value] = 1

    return encoding

def retrieve_traces(directory, shuffle=False):
    traces = glob.glob(directory + "/*.txt")
    if shuffle:
        random.shuffle(traces)
    return traces

def parse_line(line):
    line = line.strip()
    split = line.split(']')
    image = ast.literal_eval(split[0] + ']')

    split = split[1].split()
    action = int(split[0])
    reward = float(split[1])

    action = torch.tensor([action])

    return image, action, reward

# Input Format
# observation - image
# action
# reward
# bias
def prepare_dp_input(image, action, reward):
    bias = 1.0

    inputs = image
    inputs.append(bias)

    # Convert input to Numpy array
    inputs = numpy.array(inputs)

    return torch.FloatTensor(inputs)

# Input Format
# observation - image
# action
# reward
# bias
def prepare_lstm_input(image):
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    bias = 1.0
    image.append(bias)

    tensor_len = len(image)

    # Reshape image and action into tensors
    input = torch.FloatTensor(image)
    input = torch.reshape(input, (1, 1, tensor_len))

    return input

def print_pass(line, nn_input, softmax_output, target_action, prediction, loss):
    print('Line:\t\t' + line.strip())
    print('NN input:\t' + str(nn_input))
    print('NN output:\t' + str(softmax_output))
    print('\tNN action:\t\t' + str(prediction))
    print('\tTarget action:\t' + str(target_action.item()))

    print('Loss: ' + str(loss.item()))
    print('########')

def count_hit(output, target, counter):
    if torch.is_tensor(output):
        output = output.item()
    if torch.is_tensor(target):
        target = target.item()

    return counter + 1 if output == target else counter

def create_plot(name, lr, hidden_layer_size, loss_list, hit_list, lr_hit_list, 
traces=None, normalize_data=False, display=False, save=None):
    def file_len(fname):
        with open(fname) as f:
            for i, l in enumerate(f):
                pass
        return i + 1

    normalized_loss = [0] * len(loss_list)

    if traces is not None and normalize_data:
        name += ' | Normalized Loss'
        sum_len = 0
        for i in range(len(loss_list)):
            sum_len += file_len(traces[i])

        avg_len = sum_len / len(loss_list)
        for i in range(len(loss_list)):
            normalized_loss[i] = loss_list[i] * (avg_len / file_len(traces[i]))

        loss_list = normalized_loss
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    # Create plot
    fig, ax = plt.subplots()
    fig_title = name + ' | lr = ' + str(lr) + " | hidden_layer_size = " + 
str(hidden_layer_size)
    fig.suptitle(fig_title)
    ax.plot(loss_list, label="loss", marker='o', color='blue')
    ax.tick_params(axis='y', labelcolor='blue')
    ax2 = ax.twinx()
    ax2.plot(hit_list, label="total hit percentage", marker='o', color='red')
    # ax2.plot(normalized_loss, label='Normalized Loss', color='tab:purple')
    plt.plot(lr_hit_list, label="left/right hit percentage", marker='o', 
color='green')
    ax.set_ylim(bottom=0)
    ax2.set_ylim([0.0, 1.0])

    ax.set(xlabel="Epochs", ylabel="Loss")

    plt.ylabel("hit_percentage")

    ax.legend()
    ax2.legend()

    if save is not None:
        plt.savefig(results_folder + save + fig_title + '.png')

    if display:
        plt.show()

def find_worst_contenders(loss_list, hit_perc, lr_hit_perc, traces):
    loss = 0
    worst_loss = ''
    lr = sys.float_info.max
    worst_lr = ''
    hit = sys.float_info.max
    worst_hit = ''

    for i in range(len(loss_list)):
        if loss_list[i] > loss:
            loss = loss_list[i]
            worst_loss = traces[i]
        if lr_hit_perc[i] < lr:
            lr = lr_hit_perc[i]
            worst_lr = traces[i]
        if hit_perc[i] < hit:
            hit = hit_perc[i]
            worst_hit = traces[i]

    print('######\n')

    print('worst_loss: ' + worst_loss)
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    print('worst_hit: ' + worst_hit)
    print('worst_lr: ' + worst_lr)

    print('######\n')

def tabulate_print(mazes, seeds, total_rewards):
    average_reward = [0] * len(environments)
    reward_counter = [0] * len(environments)

    for i in range(len(mazes)):
        for j in range(len(environments)):
            if mazes[i] == environments[j]:
                average_reward[j] += total_rewards[i]
                reward_counter[j] += 1

    with open(results_folder + 'average.txt', 'w') as f:
        for i in range(len(average_reward)):
            average_reward[i] = average_reward[i] / reward_counter[i]

            print(environments[i] + '\t' + str(average_reward[i]), file=f)

if __name__ == '__main__':
    traces = retrieve_traces(traces_dir)

    classes = [0] * 3

    for trace_file in traces:
        with open(trace_file, "r") as fp:
            for line in fp:
                if line.startswith('['):
                    _, target_action, _ = parse_line(line)

                    classes[target_action] += 1

    print(classes)
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Appendix E manual_control.py
"""
This code was taken from gym-minigrid. It is need for manually controlling the 
agent in the t-maze environment.
Some changes on the file were necessary so I considered it useful to exist here as 
well.

Manual control: python manual_control.py --env MiniGrid-TMaze-v0
"""

import argparse

# environment imports
from t_maze.envs import *

from trace import *
from gym_minigrid.wrappers import *
from window import Window

# Environment Parameters
args = None
env = None
window = None

trace_file = None

reward_episode = False      # has the goal been collected
                            # if it has allow one more episode just to see the 
reward collected

def redraw(img):
    if not args.agent_view:
        img = env.render('rgb_array', tile_size=args.tile_size)

    window.show_img(img)

def reset():
    init_episode(trace_file, args.env, args.seed)

    # one more step, allows the user to see what reward he has picked
    if reward_episode:
        reward_episode = False
        window.close()
        finalize_episode(trace_file)
    else:
        # retrieve the one hot encoding observation of the current tile
        ohe = env.OneHotEncoding()

        # send agent step to environment
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        obs, reward, done, info = env.step(action)

        # update ui info
        window.set_caption(reward)
        window.update_steps()

        if reward != 0:
            log_step(trace_file, str(ohe), action.value, reward)

        if done:
            reward_episode = True

        redraw(obs)

def key_handler(event):
    # print('pressed', event.key)

    if event.key == 'escape':
        window.close()
        return

    if event.key == 'backspace':
        trace_file.write("reset\n")
        reset()
        return

    if event.key == 'left':
        step(env.actions.left)
        return
    if event.key == 'right':
        step(env.actions.right)
        return
    if event.key == 'up':
        step(env.actions.forward)
        return

    # Spacebar
    # if event.key == ' ':
    #     step(env.actions.toggle)
    #     return
    # if event.key == 'pageup':
    #     step(env.actions.pickup)
    #     return
    # if event.key == 'pagedown':
    #     step(env.actions.drop)
    #     return
    #
    # if event.key == 'enter':
    #     step(env.actions.done)
    #     return
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def load_env(env_details, file, task_no, max_task, episode_no, max_episode):
    global args, env, window, trace_file
    trace_file = file

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--env",
        help="gym environment to load",
        default='MiniGrid-TMaze-v0'
    )
    parser.add_argument(
        "--seed",
        type=int,
        help="random seed to generate the environment with",
        default=1
    )
    parser.add_argument(
        "--end",
        type=int,
        help="which corridor end the reward is placed",
        default=None
    )

    parser.add_argument(
        "--tile_size",
        type=int,
        help="which corridor end the reward is placed",
        default=32
    )
    parser.add_argument(
        '--agent_view',
        default=False,
        help="draw the agent sees (partially observable view)",
        action='store_true'
    )

    args = parser.parse_args(env_details)
    # print(args)
    if 'TMaze' in args.env:
        env = gym.make(args.env, seed=args.seed, high_reward_end=args.end)
        env.seed(args.seed)
    else:
        env = gym.make(args.env)
        env.seed(args.seed)

    if args.agent_view:
        # env = RGBImgObsWrapper(env)
        env = RGBImgPartialObsWrapper(env, 140)
        env = ImgObsWrapper(env)
    else:
        env = RGBImgObsWrapper(env, 70)

    window = Window('gym_minigrid - ' + args.env, env, task_no, max_task, 
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episode_no, max_episode)
    window.reg_key_handler(key_handler)

    global reward_episode
    reward_episode = False

    reset()

    # Blocking event loop
    window.show(block=True)
    obs = env.reset()
    redraw(obs)

def step(action):
    global reward_episode

    # one more step, allows the user to see what reward he has picked
    if reward_episode:
        reward_episode = False
        window.close()
        finalize_episode(trace_file)
    else:
        # retrieve the one hot encoding observation of the current tile
        ohe = env.OneHotEncoding()

        # send agent step to environment
        obs, reward, done, info = env.step(action)

        # update ui info
        window.set_caption(reward)
        window.update_steps()

        if reward != 0:
            log_step(trace_file, str(ohe), action.value, reward)

        if done:
            reward_episode = True

        redraw(obs)

def key_handler(event):
    # print('pressed', event.key)

    if event.key == 'escape':
        window.close()
        return

    if event.key == 'backspace':
        trace_file.write("reset\n")
        reset()
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        return

    if event.key == 'left':
        step(env.actions.left)
        return
    if event.key == 'right':
        step(env.actions.right)
        return
    if event.key == 'up':
        step(env.actions.forward)
        return

    # Spacebar
    # if event.key == ' ':
    #     step(env.actions.toggle)
    #     return
    # if event.key == 'pageup':
    #     step(env.actions.pickup)
    #     return
    # if event.key == 'pagedown':
    #     step(env.actions.drop)
    #     return
    #
    # if event.key == 'enter':
    #     step(env.actions.done)
    #     return

def load_env(env_details, file, task_no, max_task, episode_no, max_episode):
    global args, env, window, trace_file
    trace_file = file

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--env",
        help="gym environment to load",
        default='MiniGrid-TMaze-v0'
    )
    parser.add_argument(
        "--seed",
        type=int,
        help="random seed to generate the environment with",
        default=1
    )
    parser.add_argument(
        "--end",
        type=int,
        help="which corridor end the reward is placed",
        default=None
    )

    parser.add_argument(
        "--tile_size",
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        type=int,
        help="which corridor end the reward is placed",
        default=32
    )
    parser.add_argument(
        '--agent_view',
        default=False,
        help="draw the agent sees (partially observable view)",
        action='store_true'
    )

    args = parser.parse_args(env_details)
    # print(args)
    if 'TMaze' in args.env:
        env = gym.make(args.env, seed=args.seed, high_reward_end=args.end)
        env.seed(args.seed)
    else:
        env = gym.make(args.env)
        env.seed(args.seed)

    if args.agent_view:
        # env = RGBImgObsWrapper(env)
        env = RGBImgPartialObsWrapper(env, 140)
        env = ImgObsWrapper(env)
    else:
        env = RGBImgObsWrapper(env, 70)

    window = Window('gym_minigrid - ' + args.env, env, task_no, max_task, 
episode_no, max_episode)
    window.reg_key_handler(key_handler)

    global reward_episode
    reward_episode = False

    reset()

    # Blocking event loop
    window.show(block=True)
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Appendix F epoch.py
import random
import manual_control
from trace import *

environments = ['MiniGrid-TMaze-v0',
                'MiniGrid-DoubleTMaze-v0',
                'MiniGrid-TripleTMaze-v0',
                'MiniGrid-QuadTMaze-v0',
                'MiniGrid-TMazeHoming-v0',
                'MiniGrid-DoubleTMazeHoming-v0',
                'MiniGrid-TripleTMazeHoming-v0',
                'MiniGrid-QuadTMazeHoming-v0']

task_order = [0, 1, 2, 3,
              4, 5, 6, 7]
maze_ends = [2, 4, 8, 16,
             2, 4, 8, 16]
agent_view = [False, False, False, False,
              False, False, False, False]

# prepares the arguments to be passed on to the maze
def prepare_args(env, seed, agent_view, reward_end):
    if agent_view:
        args = ["--env", env, "--seed", seed, "--agent_view", "--end", reward_end]
    else:
        args = ["--env", env, "--seed", seed, "--end", reward_end]

    return args

def main():
    # initialize trace file and random function
    trace_file = initialize_trace()
    main_rand = random.Random()

    for i in range(len(task_order)):
        # create seed for task
        seed = str(main_rand.randint(0, 20000))

        # initialize task random function
        task_rand = random.Random()
        task_rand.seed(seed)

        episodes = -1

        # calculate how many episodes the task will be played
        if maze_ends[i] == 2:
            episodes = task_rand.randint(4, 8)
        elif maze_ends[i] == 4:
            episodes = task_rand.randint(8, 12)
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        elif maze_ends[i] == 8:
            episodes = task_rand.randint(16, 20)
        elif maze_ends[i] == 16:
            episodes = task_rand.randint(32, 36)
        # print('episodes=' + str(episodes))

        # retrieve task environment
        env = environments[task_order[i]]

        # calculate when the reward end will change
        end_change = task_rand.randint(1, episodes - 1)
        reward_end = str(task_rand.randint(0, maze_ends[i]-1))
        # print('end_change=' + str(end_change))

        # prepare the arguments for the task
        args = prepare_args(env, seed, agent_view[i], reward_end)

        # start the task
        for j in range(end_change):
            manual_control.load_env(args, trace_file, j, episodes, i, 
len(task_order))

        # generate a new reward end
        second_reward_end = reward_end
        while second_reward_end == reward_end:
            second_reward_end = str(task_rand.randint(0, maze_ends[i]-1))

        # prepare the arguments for the task
        args = prepare_args(env, seed, agent_view[i], second_reward_end)

        # start the task with a changed reward location
        for j in range(end_change, episodes):
            manual_control.load_env(args, trace_file, j, episodes, i, 
len(task_order))

    # finalize trace file
    finalize_trace(trace_file)

if __name__ == '__main__':
    main()
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Appendix G trace.py
import os
import time

path = "trace"

# Initialize trace at start of epoch
def initialize_trace():
    if not os.path.exists(path):
        os.makedirs(path)

    timestamp = time.strftime("%Y%m%d-%H%M.txt")
    filepath = os.path.join(path, timestamp)
    file = open(filepath, "w")

    return file

# Initialize trace at start of episode
def init_episode(file, env, seed):
    file.write(env + '\n')
    file.write(str(seed) + '\n')

# Finalizes episode
def finalize_episode(file):
    file.write("done\n")

# Logs action, the observation and the reward of a single timestep
def log_step(file, obs, action, reward):
    file.write(str(obs) + '\t' + str(action) + '\t' + str(reward) + '\n')

# Close the trace
def finalize_trace(file):
    file.write('trace complete\n')
    file.close()
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