
Learning structured exploration strategies
through learned neuromodulated plasticity rules

Christos Georgiades

University of Cyprus

Department of Computer Science

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science

at the

University of Cyprus

APPROVAL PAGE

Bachelor of Science Thesis

LEARNING STRUCTURED EXPLORATION STRATEGIES THROUGH LEARNED
NEUROMODULATED PLASTICITY RULES

Presented by

Christos Georgiades

Research Supervisor __
Professor Christodoulou Christos

Committee Member __
Dr. Vassiliades Vassilis

University of Cyprus

June, 2021

ABSTRACT

If the end goal of the field of Artificial Neural Networks is to create an artificial mind

then it should be able to explore an environment, an innate behaviour in almost all living

beings. This leads to the project’s main question “Can structured exploration behavior be

encoded in an artificial neural network (ANN)?”. Using embedded neuromodulated plasticity

rules and imitation learning methodology we want to find out how an ANN trained this way

learns, adapts and performs and how it compares against a long short-term memory network

which is a state-of-the-art model that can be used for sequence modeling. We create non-

stationary environments with a changing reward function, T-mazes, where our human

participants will generate optimal/structured exploration behavior as they explore. Using those

traces we train both of the networks and attempt to reproduce similar traces. We conclude that

neuromodulated plasticity rules and imitation learning can provide a powerful solution to

exploration problems and can outperform other conventional models.

i

ACKNOWLEDGMENTS

The completion of this study would not have been possible without my supervisor,

Professor Christos Christodoulou, for his continuous support and guidance, along with allowing

me to research and inquire deeper into my fields of interest.

I want to extend my gratitude to my co-supervisor Dr. Vassilis Vassiliades, who

generously provided me with his knowledge and experience throughout the undertaking of this

project, as well as the countless hours he set aside to assist me.

I want to thank my dear mother and father, who provided me with their wisdom and

moral support during the whole of my academic career. I sincerely appreciate their patience and

the fact they stood by me every step of the way.

Last, but not least, I want to to dedicate this to my brother, Demetris, who taught me that

few things matter in life as long as you are happy.

ii

Table of Contents
Chapter 1..1

1.1 Introduction...1
1.2 Related Work...1
1.2 Thesis outline..2

Chapter 2..3
2.1 Exploration in Neural Networks...3
2.1.1 T-Mazes...3
2.2 Differentiable Plasticity..4
2.3 Backpropamine...5
2.4 LSTM..6
2.5 Adam Optimization...6
2.6 One-Hot Encoding..7
2.7 Class Imbalance..7

Chapter 3..8
3.1 Training Methodology..8
3.2 Agent Environment...8
3.2.1 Agent Visibility..8
3.3 Maze Design...9
3.3.1 Maze Generation..11
3.4 Collecting Traces..12
3.4.1 Trace File Format...13
3.5 Evaluation...14
3.6 Long Short-Term Memory Model...14
3.6.1 Long Short-Term Memory Training...15
3.7 Backpropamine Network Model...16
3.7.1 Backpropamine Network Model Training...16
3.8 Softmax function..17
3.9 Normalizing Loss..17
3.10 Weighted Loss...18

Chapter 4..19
4.1 Long Short-Term Memory Learning...19
4.1.1 LSTM Learning Rate...19
4.1.2 LSTM Weight Decay...21
4.1.3 Weighted vs Unweighted Loss - LSTM...22
4.2 Backpropamine Network Learning...23
4.2.1 Backpropamine Network Learning Rate..23
4.2.2 Backpropamine Network Weight Decay..24

iii

 4.3 Training on traces Vs Training on Epochs..26
4.4.1 Long Short-Term Memory Performance..27
4.4.2 Backpropamine Network Performance..28
4.5 Expanding The Observation...30
4.6 Network Viability – Comparison..32

Chapter 5..34
5.1 Overview and conclusions..34
5.2 Future Work..34

Appendices...38
Appendix A tmaze.py...38
Appendix B diff_plasticity.py...49
Appendix C lstm.py..56
Appendix D nn_utils.py..63
Appendix E manual_control.py..68
Appendix F epoch.py..74
Appendix G trace.py...76

iv

Table of Figures
Figure 1: T-Maze layout. Single depth. Coloured are the start (green) and a turn (blue)..........................3
Figure 2: LSTM model diagram Author: Guillaume Chevalier...6
Figure 3: Maze generation process...12
Figure 4: LSTM Loss and hit percentage during training. Training Traces=15 Learning Rate η=0.15.
Weight Decay L2=0.001, Hidden Layer size=3, Weighted Loss = [1.0, 1.0, 1.0]....................................19
Figure 5: LSTM Loss and hit percentage during training with 15 different traces with Learning Rate
η=0.2. Weight Decay L2=0.001, Hidden Layer size=3, Weighted Loss = [1.0, 1.0, 1.0]........................20
Figure 6: LSTM Loss and hit percentage during training with 15 different traces with Learning Rate
η=0.3. Weight Decay L2=0.001, Weighted Loss = [1.0, 1.0, 1.0]..20
Figure 7: LSTM Loss and hit percentage during training with 15 different traces with Weight Decay
L2=0.001. Learning Rate η=0.15, Weighted Loss = [1.0, 1.0, 1.0]...21
Figure 8: LSTM Loss and hit percentage during training with 15 different traces with Weight Decay
L2=0.01. Learning Rate η=0.15, Weighted Loss = [1.0, 1.0, 1.0]...22
Figure 9: Loss and hit percentage for 15 different traces. (left) Weighted Loss = [1, 1, 1]......................22
Figure 10: BPN Loss and hit percentage during training with 15 different traces with Learning Rate
η=0.01. Weight Decay L2=0.001, Weighted Loss = [1.0, 1.0, 1.0]..23
Figure 11: BPN Loss and hit percentage during training with 15 different traces with Learning Rate
η=0.02. Weight Decay L2=0.001, Weighted Loss = [1.0, 1.0, 1.0]..24
Figure 12: BPN Loss and hit percentage during training, using Hidden Layer Size equal to 8. 15
different traces. Learning Rate η=0.1. Weight Decay L2=0.001, Weighted Loss = [1/6, 1/6 1/53].........25
Figure 13: BPN Loss and hit percentage during training, using Hidden Layer Size equal to 2. 15
different traces. Learning Rate η=0.1. Weight Decay L2=0.001, Weighted Loss = [1/6, 1/6 1/53].........25
Figure 14: BPN Loss and hit percentage during training, using Hidden Layer Size equal to 20. 15
different traces. Learning Rate η=0.1. Weight Decay L2=0.001, Weighted Loss = [1/6, 1/6 1/53].........25
Figure 15: LSTM loss and hit percentage. Training traces=12. Epochs=10, Weight Decay L2=0.001.
Learning Rate η=0.15, Weighted Loss = [1.0, 1.0, 1.0]...26
Figure 16: Backpropamine Train loss and hit percentage. Training traces=12. Epochs=10, Weight Decay
L2=0.001. Learning Rate η=0.15, Weighted Loss = [1.0, 1.0, 1.0]...27
Figure 17: Backpropamine Test loss and hit percentage. Training traces=12. Epochs=10, Weight Decay
L2=0.001. Learning Rate η=0.15, Weighted Loss = [1.0, 1.0, 1.0]...27
Figure 18: All these cases produce the same observation for the agent, yet the avialable actions are
different..31

v

Index of Tables
Table 1: T-Maze task order..10
Table 2: LSTM network performance..28
Table 3: LSTM network performance compared to humans..28
Table 4: Backpropamine network performance. Hidden Layer Size = 20,...29
Table 5: Backpropamine network performance compared to humans...30
Table 6: Backpropamine Testing Performance...31
Table 7: LSTM Testing Performance|...32
Table 8: Comparison of the LSTM and Backpropamine...33

vi

Chapter 1

1.1 Introduction
Exploration is a challenging problem for all fields of Neural Networks and in this project

we will attempt to solve it from the aspect of using recorded human actions to teach Neural

Networks. The question that underlies the topic of this thesis is whether structured exploration

behaviour can be taught and encoded in an Artificial Neural Network (ANN).

The objective of the project is to see if it is possible and viable to train an ANN using

human traces and to study how the performance of such a network compares in performance to

other conventionally trained networks. Via collecting traces of human agents trying to navigate

through non-stationary environments (T-mazes) and collect the reward and providing those

traces to an ANN. We will use a differentiable plasticity model along with an extension of that

model, backpropamine, which is a biologically inspired model that incorporates

neuromodulated plasticity in our ANN. We want to find out how an ANN trained this way

learns, adapts and performs and how it compares against a long short-term memory [1]

network, which is a state-of-the-art model that can be used for sequence modeling.

By proving that Neural Networks can be taught to solve simple exploration tasks in

controlled yet randomized envrironments we can extend our finding and pave the way to more

advanced exploration problems of unknown topography.

1.2 Related Work
The problem is based on animal cognition experiments and behavioral science, where

rats are tested for their ability to learn and memorise paths in physical mazes. Exploring T-

Mazes has been studied from the scope of Neural Networks before albeit with different forms of

NNs. Using Continuous-time recurrent neural networks [2] and a different training method to

the one proposed here, it has been managed to train a robot to traverse Single depth T-Mazes

successfully but had questionable results with Double T-Mazes. The study did not investigate

larger depth T-Mazes and homing tasks. Another example of a study using T-mazes is the work

1

of [3] which focused on how Neuromodulated neurons were able to achieve better learning and

memorisation in comparison to standard neurons. Furthermore, Vassiliades and Christodoulou

(2016) [4] introduced the novel computational model of switch neurons that were capable of

switching between behaviors in response to changes in the environment. These neurons were

trained in T-mazes very similar to the ones we are using for this dissertation

1.2 Thesis outline
The thesis consists of five chapters. In the first chapter we explain the topic of the thesis

and mention related work. The second chapter fleshes out the background surrounding the field

and the topic that helps grasp the perspective of this work. The third chapter includes details of

the methodology that was followed and the implementation of the work. The results and their

analysis are discussed on the fourth chapter. The last chapter is a summary of the conclusions

and possible future work, around this thesis.

2

Chapter 2
Epistimological Background

2.1 Exploration in Neural Networks

Exploration is a problem the field of Neural Networks and Reinforcement Learning has

yet to give a conclusive solution to with various methods and models proposed throughout the

years attempting to solve this challenge. From Eplsilon-Greedy[5] which attempts to balance

exploitation, using known data and repeat actions that have worked well, and exploration,

making novel decisions in attempt to achieve greater rewards, to Deep-Reinforcement Learning

(DRL) [6]. Proposed solutions suffer from various shortcomings either from sparse or deceptive

rewards, known as a Hard Exploration Problem or from various Noisy-Tvs [7] where in the

presence of uncontrollable & unpredictable random noise the agent effectively becomes a

“couch potato” as it obtains new rewards consistently, failing to make any meaningful progress.

Using human traces we hope to develop a method of teaching NNs to explore known and

unknown environments that will circumnvent such problems.

2.1.1 T-Mazes

T-Mazes are environments based on behavioral science and used in animal cognition

experiments [8]. T-mazes are used to study how the rodents function with memory and spatial

learning through applying various stimuli. With the insurgence of Neural Networks the T-

Mazes were naturally adapted to be used in navigation and memorisation experiments. A T-

Maze is made up of a T-Junction where the agent, physical or not, has to navigate and make a

choice of either turning left or right to find the reward places at the end of the two perpendicular

corridors.

3

Figure 1: T-Maze layout. Single depth. Coloured are
the start (green) and a turn (blue).

2.2 Differentiable Plasticity
The main ideas of how our ANN learns and works are based on the work of Miconi et al.

(2018)[9] on Differentiable Plasticity where we have a system of Nodes which are trained with

backpropagation which consists of a nonlinear forward pass and a linear backward pass and are

able to change the inner values of the network. Following this approach it is possible to

calculate parameters for the rules via stochastic gradient descent and effectively our Neural

Network is able to learn.

x j(t)=σ { ∑
i ∈ inputs

[wi , j x i(t −1)+αi , j Hebbi , j(t) x i(t −1)]}. (1)

In differentiable plasticity a connection between any two neurons i and j, has both a fixed

component and a plastic component. The fixed part is a weight w i,j while the plastic part is

stored in a Hebbian trace Hebbi,j . The “plasticity” of a connection can vary from fully fixed

to fully plastic based on the Plasticity coefficient αi,j (Eq. 1).

Hebbi , j(t +1)=ηx i(t − 1) x j(t)+(1− η)Hebbi , j(t) . (2)
The Hebbian Trace (Eq. 2) or the Hebbian Rule is responsible for providing simultaneity

to our ANN stemming from biological neurons. If interconnected neurons become active very

close in time during a particular event, their connection strengthens and “a memory” of this

event is formed, in simpler terms “neurons that fire together, wire together”.

In Hebbian rules there is often a weight decay term η (Eq. 3), to prevent explosive

positive feedback on Hebbian traces. However, in the lack of input Hebbian traces often decay

to zero. More complex Hebbian rules can maintain values indefinitely in the absence of

stimulation, thus allowing stable long-term memories, while still preventing runaway

divergences (Oja, 2008).

Hebbi , j(t +1)=Hebbi , j(t)+ηx j(t)(x i(t −1)− x j(t)Hebbi , j(t)) . (3)
Using embedded plasticity rules in the Neural Network architecture it is possible to

calculate the values of the learning rules via stochastic gradient descent and let a NN learn on

its own and we expect it to be a powerful tool when learning from demonstration.

4

σ : Non-linear function, usually tanh.

w i,j : Weight between neurons i, j. Non-plastic compoment connecting neurons i,j.

x : Neuron output

αi,j : Plasticity coefficient

Hebbi,j : Hebbian trace, plastic compoment connecting neurons i,j.

η : Weight decay value

2.3 Backpropamine
Backpropamine is an expansion of differential plasticity, showed that neuromodulated

networks can be trained with gradient descent. Using a mechanism called eligibility trace,

which keeps track of which synapses contributed to recent activity, a dopamine signal controls

how the eligibility traces are transformed into plasticity changes.

Replacing Eq. 3 above with the following two equations,

Hebbi , j(t +1)=Clip(Hebbi , j(t)+M (t)E i , j (t)) . (4)

E i , j(t +1)=(1− η)E i , j(t)+ηx i(t − 1) x j(t) . (5)

The function Clip(x) in Eq. 5 is any function or procedure that constrains Hebbi,j to

the[−1,1] range and replaces Oja’s rule that was used in Differentiable Plasticity.

Here E i,j(t) is a simple exponential average of the Hebbian product of pre- and post-

synaptic activity, with trainable decay factor η . Hebb i,j(t) , the actual plastic component of

the connection (Eq. 4), simply accumulates this trace, but gated by the current value of the

dopamine signal M (t) . Note that M (t) can be positive or negative, approximating the

effects of both rises and dips in the baseline dopamine levels [11]. The calculation of the

dopamine signal can be done in various ways. Our implementation uses a sclara output of the

network that is then passed through a meta-learned vector of weights.

5

E i,j(t) : Eligibility trace at connection i, j.

M (t) : Dopamine signal.

2.4 LSTM
A common Long Short-Term Memory [1] model works tremendously well on a large

variety of problems, and is now widely used. An LSTM unit is composed of a cell, an input

gate, an output gate and a forget gate. The cell remembers values over arbitrary time intervals

and the three gates regulate the flow of information into and out of the cell. Relative

insensitivity to gap length is an advantage of LSTM over RNNs which suffer from vanishing

and exploding gradient problems.

2.5 Adam Optimization
The Adam optimization algorithm [12] is an extension to stochastic gradient descent that

has recently seen broader adoption for deep learning applications in computer vision and

natural language processing. It is an algorithm that can be used instead of the classical

stochastic gradient descent to update network weights based on training data. It is appropriate

for problems with non-stationary objectives and has little memory requirements

The Adam algorithm adapts the parameter learning rates based on the average first

moment (the mean). Adam also makes use of the average of the second moments of the

gradients (the uncentered variance). Specifically, the algorithm calculates an exponential

6

Figure 2: LSTM model diagram
Author: Guillaume Chevalier

moving average of the gradient and the squared gradient, and the parameters beta1 and beta2

control the decay rates of these moving averages.

2.6 One-Hot Encoding
In machine learning, One-Hot Encoding [13] is a frequently used method to deal with

categorical data. Because many times, machine learning models need their input variables to be

numeric, categorical variables need to be transformed. An integer encoded variable is removed

and a new binary variable is added for each unique integer value. Thus for x different

categories, x different binary variables are needed. At each moment only one binary variable

is activated and its value set to 1, while all other variables are set to 0

2.7 Class Imbalance
An imbalanced classification problem is an example of a classification problem where

the distribution of examples across the known classes is biased or skewed. The distribution can

vary from a slight bias to a severe imbalance where there is one example in the minority class

for hundreds, thousands, or millions of examples in the majority class or classes.

Imbalanced classifications pose a challenge for predictive modeling as most of the

machine learning algorithms used for classification were designed around the assumption of an

equal number of examples for each class. This results in models that have poor predictive

performance, specifically for the minority class. This is a problem because typically, the

minority class is more important and therefore the problem is more sensitive to classification

errors for the minority class than the majority class.

Our project is a classical example of an imbalanced classification problem. Since our T-

Mazes naturally contain more straight corridors than turns. While corridors are undemanding

in their traversal, the more rare turns presented in the environment are complicated, requiring

the agent to orient themselves and memorise which paths they visited in the past.

7

Chapter 3
Design and Implementation

3.1 Training Methodology
The training of the ANN was split into two phases, first and foremost was generating the

human traces of optimal/structured exploration behavior in non-stationary environments, where

the reward function changes. Within the margins of this project we used randomized T-mazes of

varying depth. In the second phase we used imitation learning-like methodology to train the

backpropamine ANN and attempt to reproduce similar traces as well as the LSTM which stands

as a comparison point for our ANN.

3.2 Agent Environment
The agent environment is parameterized and randomly generated and similar to the

specifications other research used [4], specifically the agent’s visibility was restricted. The

agent’s actions are "move forward", "turn left" or "turn right", and the agent was allowed to

change orientation only when choosing a turn action at a turning point, or reverses

automatically in the homing task when reaching the end of a corridor. Each action was a single

step in the Maze and in the trace and invalid actions were not recorded and did not increment

the step counter in order to reduce junk data fed into the NNs.

3.2.1 Agent Visibility
The visibility of the agent was an integral part of the project, as it determined what data

was stored and encoded into the trace which was to be used to train our ANN. As part of the

experiments we allowed for a flexible impementation that makes it possible to restrict the

human observation to:

8

• Semi-full observability:

◦ the full maze with the rewards obscured

• Partial observability:

◦ limited agent observation

Later on Partial Observability in human experiments was scrapped since it proved to be a

difficult task for humans to solve the mazes using only the information of a single cell and that

was reflected in the quality of the traces collected.

3.3 Maze Design
For the construction of the mazes we used the Gym (https://gym.openai.com) and

Minigrid (https://github.com/maximecb/gym-minigrid) frameworks since they provided the

necessary tools to build our virtual rat maze as well as simple and intuitive ways that allowed us

to interact with our agent and the outside world. The level design consists of T-Mazes, which

are corridors connected in a way that forms a T-junction. The depth of a maze determines how

many choices an agent must make in order to reach an end point of the maze. Furthermore,

tasks were divided to non-homing and homing, where the agent has to return to their original

starting position after collecting the reward. This is designed to test the agent’s ability to

memorise its path and retract its steps.

Each tile in the maze was colour coded to represent its function and the available

movements. The Start tile was green, and in the case of homing tasks, when the agent picked up

the reward and had to return to its initial position, the tile would change to red. T-Junctions,

9

Drawing 2: Single
Depth T-Maze

Drawing 3: Double
Depth T-Maze

Drawing 5: Triple Depth T-
Maze

Drawing 4: Quadruple
Depth T-Maze

Drawing 1: Partial Observability(left).
Semi-full observability(right)

where an agent would turn left or right, were coloured blue while corridors were black and

walls were grey.

The different tasks appeared in the following order:

Table 1: T-Maze task order

1. Single, non-homing, partial
2. Double, non-homing, partial
3. Triple, non-homing, partial
4. Quadruple, non-homing, partial
5. Single, non-homing, semi-full
6. Double, non-homing, semi-full

7. Triple, non-homing, semi-full
8. Quadruple, non-homing, semi-full
9. Single, homing, semi-full
10. Double, homing, semi-full
11. Triple, homing, semi-full
12. Quadruple, homing, semi-full

• Tasks 1-4

◦ will test the human ability to solve the task when presented with input similar to the

one the agent observes.

• Tasks 5-8

◦ provide more information to the user - the traces from these tasks are expected to

have better overall performance.

• Tasks 9-12

◦ are about the homing task - the user will be provided with more information and

would determine if an agent learns to remember (by reversing its path).

Each task was repeated a number of times, with the same reward location, to allow the

agent not only to explore many ends of the maze but also exhibit memorisation after finding the

reward. Depending on the depth of the maze, each task was repeated for a number of episodes,

with Single T-Mazes repeating for 4-8 episodes. Double for 8-12 episodes, Triple for 16-20

episodes and quadruple for 32-36 episodes. This means that for all experiments the human

10

participants were asked to provide a trace containing 12 different tasks which contain 180 to

228 episodes.

The reward locations were randomized and selected from one of the possible corridor

ends of the maze. For each task the reward location changed once after a random number of

episodes to stipulate exploration and encourage the agent to revisit the Maze’s ends. Care was

taken to allow the agent to explore for at least two to three episodes for each reward location.

For each action taken, points were awarded to the agent. A step penalty was applied for

every step to avoid unnecessary moves and encourage optimal behaviour strategy. An additional

penalty was applied when the agent failed to find the reward in the maze or, in the case of

homing tasks, the agent does nor manage to successfully return to the start of the maze.

In the case of a Single-Depth Non-Homing T-Maze the agent begins from the start of the

T junction and the rewards are found at either end of the two perpendicular corridors. The

agent’s task was to nagivate down the corridor, turn either left or right, and reach the end of the

corridor, where it found the reward or in the absence of it, turned around to explore the rest of

the maze. The imposed maximum number of steps allowed the agent only to explore only one

end of the maze.

3.3.1 Maze Generation
The generation of the T-Mazes occured in multiple steps. First and foremost, the

interface [Appendix A] invokes the corresponding task and passes along the seed, and if needed,

the location of the reward in the form of an integer which determined which maze end held the

reward of the maze. Depending on the depth of maze, the number of corridors of the T-Maze

and the maximum number of steps the agent was allowed were determined. In the case of a

homing task the amount of steps were doubled.

Subsequently, the lengths of the corridors were generated in pseudorandom fashion, the

corridors were then checked for overlap to avoid circular paths. Then, based on the generated

corridor lengths the square size of the maze is calculated. In the last step of validity checking,

11

we calculate the negative offset of the grid. This offset is used for Triple and Quadruple depth

mazes which might extend past the initial starting position of the agent.

Afterwards the corridor lengths are generated and checked. The maze is build from the

ground up. The square grid is created and all the tiles are set to be blocked. Afterwards using a

recursive builder we iterate through the corridor lengths list and place alternating horizontal and

vertical corridors in the grid. The secondary role of this recursive builder is to return the

coordinates of all the maze ends and all the turning points in the maze. Using the two lists of

maze ends and turning points we place all the coloured tiles at the appropriate coordinates and

enable the movements allowed at those locations. i.e. the automatic reversal of direction, and

allowing the agent to turn at the turning points. Lastly the starting tile, the reward and the agent

are placed in the maze.

3.4 Collecting Traces
To train our Neural Networks we needed to gather data from human participants. The

mazes were distributed as a zip file with the required python code, and used bash or shell

scripting, depending on the host ecosystem, to handle installing any additional plugins and

running the maze experiments. Human agents were presented with the mazes discussed above

and were instructed to solve the mazes and find the reward as efficiently as possible. The human

agents were given as much guidance as possible without exposing the underlying systems of the

maze to assist them in creating efficient and accurate traces.

12

Figure 3: Maze generation process

The overall architecture of the human maze environment, was comprised of a handler

that was the entry point of the system and responsible for the configuration of the mazes and the

number episodes which were later passed on to an interface. The interface was responsible for

the creation of the actual maze and coo diff_plasticity.main(0.01, 0.001, 20, epochs=epochs,

save='dp')rdinating human inputs and the environment and creating traces with the outputs from

the maze.

A trace file was comprised of multiple tasks and episodes. When a new episode started

the type of the maze along with its seed was recorded in the trace file in the two seperate lines.

Following that was the recording of its step, comprised of the observation of the agent, which

indicated the type of tile the agent was located on, the human action, and the points awarded by

the maze for the action. After an episode was finished the keyword “done” was recorded in the

trace file, to signify the correct termination of the episode. Additionally the same was done

when all tasks were finished to signify the end of the trace file.

3.4.1 Trace File Format
A single step in the trace file was recorded with the following format;

[obsagent]actionhuman reward (7)
The agent obeservation was comprised of a One Hot Encoding comprised of five bits of

the possible different tile types the agent can be occupying. At each point only one of the five

bits was enabled and set to 1 and the rest were set to 0.

[obs0 , obs1 , obs2 , obs3 , obs4] (8)
Where each obsi signifies which kind of tile the agent is located on, as such:

obs0 Corridor Tile
obs1 Start Tile
obs2 Turning Point
obs3 Maze End, Dead end of a corridor
obs4 Maze Reward

13

In the later stages of the project the agent observation was expanded to include three more

points of data in addition to the original (8) One Hot Encoding (OHE). Specifically the NN

agent exhibited some difficulty when traversing turns and recognizing which directions of

movement were available. As such three more binary digits were added that represented on

which sides the agent was surrounded by walls.

[obsagent , obs5 , obs6 , obs7] (9)
obs5 Wall to the left
obs6 Wall to the right
obs7 Wall in front

The human actions were represented by a single integer from 0 to 2, for each action the

agent can perform, turning left, turning right, going forward, accordingly. While the reward was

a floating point number. A penalty of -0.05 was applied for each step, and an additional penalty

of -0.4 was given if the agent did not manage to find the reward or return to the starting tile, in

the case of a homing task. If the agent managed to pick up the reward during a homing task, a

reward of 0.5 was given, if the agent also managed to return successfully back to the start, it was

also rewarded with an additional reward of 1.0. This reward also applied for non-homing tasks

when the agent reached the reward.

3.5 Evaluation
Before training or testing the traces were split to two different sets. A training set with a

size of 80% and a test set of 20% and their order was shuffled once after being retrieved by the

system file manager. After training the models were evaluated by their performance in the T-

Mazes, based on the amount of rewards and pickups that were acquired in addition to how few

times the model was stuck in a destructive situation.

3.6 Long Short-Term Memory Model
The LSTM was the conventional model we used to solve the T-Maze exploration

problem. The model was readily available from the PyTorch library. The single, unstacked

14

LSTM was initialized with an input dimension, dim input , equal to the size of the obsagent and

an additional bias value that was always active, specifically 6 for the original observation format

which only included tile information and 9 later on using the expanded observation format that

encodes the sides where walls surround the agent as well. When used as a classifier the LSTM

must have a hidden dimension equal to the population of the classes. Thus we used a hidden

dimension, dimhidden , of 3, equal to the population of available actions. Furthermore the

hidden h and cell state c were initialized as a tensor of zeroes.

The LSTM worked in conjuction with a Loss Function or criterion, either Cross Entropy Loss

or the combination of the Softmax and NLLLoss, and an Adam optimizer. The output of the

network was compared to the OHE of the actionhuman to calculate loss and propagate it

backwards through the network and adjust the LSTM accordingly.

3.6.1 Long Short-Term Memory Training
The training of the LSTM was conducted with providing it with the human traces

collected in the first stage of the project. Before starting training, we clear the accumulated

gradients of the LSTM model and the Optimizer improving the training and testing

performance of our model. The traces from the train set would be given one by one to the

LSTM where they were parsed line by line. Lines that contained maze or seed information were

discarded, while lines containing the recording of a step were parsed. To the obsagent a bias bit

was added and the whole arrangement was converted to a tensor and reshaped to a (1, 1,

dim input) tensor. That is, a single batch, single sequence tensor with size equal to the

dimension of the input. This tensor format was used as the input for the NN at every step.

After retrieving the LSTM output, the hidden and cell states, h , c , were saved to be

given to the LSTM on the next step of input. While the OHE of the actionhuman was given to

the loss function. The resulting loss was backpropagated through the LSTM. During the

training of the LSTM the sum of the loss and the percentage of hit for all actions, as well as the

percentage of hit specifically for left or right actions were calculated. The two different

15

percentages were to ensure the NN did not favour one action over the other, as our data sets

were naturally biased towards forward actions, since our mazes contained more straight

corridors than turns.

3.7 Backpropamine Network Model
The Backpropamine network has a similar structure to the LSTM network, albeit with

different internal algorithms. The model is based on Miconi’s work for UberAi. The

Backpropamine network was initialized with the dim input similarly to the LSTM [3.6] and the

size of the hidden layer, hiddensize .

The optimizer was initialized with the learning rate, η , and a weight decay value, wd .

Furthermore the loss function used weight values, w l 0 , wl 1 ,w l 2 , that were applied to the loss

of the left, right, forward, action classes. Higher value w l work to counteract skewness

towards a majority class, since, just by its sheer majority the Neural Network pays more

attention to that class.

3.7.1 Backpropamine Network Model Training
Once more the Backpropamine Network, similarly to the LSTM, used the human traces

as input and the human action as target output. Before starting training the gradients for the

Network and the Optimizer were zeroed and the hidden state and hebbian traces, h , c

cleared. The recorded steps from the Trace were parsed. The observations of the agent,

obsagent along with a bias bit were converted to a (dim input) tensor. Given that tensor,

input tensor , the hidden h , and hebbian traces, c the ANN would output the raw scores of

the possible actions, y , the out value or its “chosen action”, y , as well as the changed

hidden state and hebbian traces, h ' , c ' . y and a tensor with the integer value of

actionhuman are then given to the loss function which calculates the loss, which is then

backpropagated through the network. At the end of the trace we stepped the optimizer and

zeroed once more the gradients of the Network and the Optimizer

16

3.8 Softmax function
A Softmax function takes as input a vector z of K real numbers, and normalizes it into a

probability distribution consisting of K probabilities proportional to the exponentials of the

input numbers. Within the bounds of our project that means taking the real numbers a Neural

Network produces after being given an input and converting them into probabilities that

represent which action is most likely to be the correct one.

The softmax function is defined by the formula

σ (z)i=
ezi

∑
j=1

K

ezj

 for i = 1,...,K and z = (z1 , ... , zk)∈ℝ
K (10)

σ (z)i : Softmax set

ezi : Exponent function applied to value z i

∑
j=1

K

ezj : Sum of exponentials

3.9 Normalizing Loss
Not all mazes are created equal, some are larger, more complex, and repeated for more

episodes, while others are smaller, simpler. Human participants did not always find the most

efficient path towards the reward. As a result some Traces were much larger than others and

Loss would be accumulated much more easily even though the NN would make less mistakes

than in previous batches it was given. To combat this problem the loss value would be

normalized according to the length of the trace file it originated from with the following

function:

l j norm=l j∗(

∑
i=1

n

leni

n)/ len j

(11)

17

l j : The original loss value that originated from passing the Trace file j through the

training phase.

∑
i=1

n

leni

n :The average length of all Trace files

use in the training phase.

(12)

l j norm : The Normalized loss value.
len j : The length, in lines, of the Trace file
j

3.10 Weighted Loss
To combat class imbalance of a naturally skewed dataset a weight was applied for each

action at the loss function. Using the Inverse Number of Samples (INS) function which is a

simplistic and popular weighting scheme. For each action its weight was equal to 1 over the

Number of Samples in Class c.

wn,c=
1

Number of Samples in Class c
(13)

The logic behind this function is that the loss of a large Class matters less than the loss of a

small Class discounting it and giving more attention to classifying correctly the small Class.

Since the large Class will be repeated many times, the Neural Network will equally learn how to

handle it.

18

Chapter 4
Results and discussion

4.1 Long Short-Term Memory Learning
The LSTM was relatively simpler than the Backpropamine Network. Since the Network

was unstacked we only needed to test different values for the learning rate η and the weight

decay L 2 that the Optimizer would use.

4.1.1 LSTM Learning Rate
Several different values of η stood out when training the LSTM network. Namely 0.15,

0.2, 0.3 which displayed the best accuracy in categorizing the observations given to the

Network.

The LSTM with Learning Rate value η=0.15 [Fig. 4] displays a good fit Learning Curve. It

approximately manages to categorize 90% of the all the actions in the training set, and ~50% of

all the Left/Right actions.

19

Figure 4: LSTM Loss and hit percentage during
training. Training Traces=15 Learning Rate η=0.15.
Weight Decay L2=0.001, Hidden Layer size hdim

=3, Weighted Loss = [1.0, 1.0, 1.0]

Likewise with an η=0.2 [Fig. 5] at the end of the training, the LSTM manages to achieve ~90%

accuracy in all actions and ~50% accuracy in categorizing Left/Right actions. The late jump of

accuracy in the hit percentage of the Left/Right actions might mean that the η might be too

large and the NN has a hard time settling down on the correct values for its weights.

20

Figure 5: LSTM Loss and hit percentage during
training with 15 different traces with Learning Rate
η=0.2. Weight Decay L2=0.001, Hidden Layer
size=3, Weighted Loss = [1.0, 1.0, 1.0]

Figure 6: LSTM Loss and hit percentage during
training with 15 different traces with Learning Rate
η=0.3. Weight Decay L2=0.001, Weighted Loss =
[1.0, 1.0, 1.0]

With a Learning Rate η=0.3 [Fig. 6], the training results in a similarly accurate results

with the two other values yet does not seem to properly reduce Loss as well as with a Learning

rate of 0.15 or 0.2

From the above figures it seems the most appropriate and accurate NN is created with a

Learning Rate η=0.15 as it combines both the best Loss Curve and the best action hit

percentages.

4.1.2 LSTM Weight Decay
We tested various various values of Weight Decay on a logarithmic scale from 0 to 0.1 in

order to understand how it affected the training of the NN. As our data in general was not noisy,

Weight decay did not affect the training of the Network very much. Nevertheless values larger

than 0.001 resulted in bad training fitment.

The LSTM in figure 4, shows a good loss curve and unimpacted action hit percentages.

21

Figure 7: LSTM Loss and hit percentage during training
with 15 different traces with Weight Decay L2=0.001.
Learning Rate η=0.15, Weighted Loss = [1.0, 1.0, 1.0]

The LSTM in figure 5, shows that the loss curve plateaus later than in figure 4, while also not

learning how to handle turns.

4.1.3 Weighted vs Unweighted Loss - LSTM
In an attempt to improve the LSTM’s Left/Right action accuracy we applied weights to

the loss function using the formula above and comparing them with unifrom Loss Weights

while keeping the rest of the NN parameters the same.

22

Figure 8: LSTM Loss and hit percentage during training
with 15 different traces with Weight Decay L2=0.01.
Learning Rate η=0.15, Weighted Loss = [1.0, 1.0, 1.0]

Figure 9: Loss and hit percentage for 15
different traces. (left) Weighted Loss = [1, 1, 1]

(right) Weighted Loss = [1/6, 1/6, 1/53]

From Fig. 6 we can deduce that the unweighted and weighted loss have similar results given that

the rest of the parameters remain the same. The one minor difference worth noting is that the

loss of the LSTM with the Weighted Loss Function plateaus earlier. Academic literature

supports our findings and states that a Weighted Loss Function is needed when dealing with

generally noisy data [14].

4.2 Backpropamine Network Learning
For the Backpropamine Network we had to ascertain the optimal values for η , L 2

similarly to the LSTM [4.1.1, 4.1.2, 4.1.3] as well as the size of the Hidden Layer. A larger

HiddenLayer usually exhibits greater loss, as there are more neurons to be corrected for each

step, but might achieve greater accuracy as it can encode information better.

4.2.1 Backpropamine Network Learning Rate
When testing the Backpropamine Network we use an η in the range of 0.001 to 1.0.

From those values, the learning rates that seemed to perform the best were 0.01, 0.02. In the

following figures we will analyse how they affect the networks loss and hit percentage.

Analysing the results in fig. 7 the NN displays a good loss curve though is slow to

plateau. Nevertheless the network achieves a hit percentage of ~90% and and a Left/Right hit

percentage of ~40%.

23

Figure 10: BPN Loss and hit percentage during
training with 15 different traces with Learning Rate
η=0.01. Weight Decay L2=0.001, Weighted Loss =
[1.0, 1.0, 1.0]

Similarly with a Learning Value η=0.02 [Fig. 11] the NN ties with the previous execution

in terms of final action hit. The network only has a hit percentage of ~85% and and a Left/Right

hit percentage of ~30% yet it manages to achieve that value much more consistently.

Meanwhile Loss is not being decreased harmoniously with every trace.

4.2.2 Backpropamine Network Weight Decay
Similarly to the LSTM the Weight decay values we tested ranged on a logarithmic scale

from 0 to 0.1. Values lower than 0.001 did not seem to impact performance while values higher

than that hindered the Neural Network’s ability to learn.

4.2.3 Backpropamine Network Hidden Layer Size

The size of the Hidden Layer drastictly affected the capabilities of the Backpropamine

Network. Various sizes from 1 to 100 were tested but the results showed that smaller to medium

sized networks performed better and were easier to train.

24

Figure 11: BPN Loss and hit percentage during
training with 15 different traces with Learning Rate
η=0.02. Weight Decay L2=0.001, Weighted Loss =
[1.0, 1.0, 1.0]

Small networks (Hidden Layer < 10) [Fig. 12] proved that they can still learn the rules of

the maze and could classify properly the actions from the traces. They did not present the same

Hit Percentage drop that larger mazes did and were less computationally intensive when

training. While the results are good on paper they were not consistent, thus on some runs the

network failed to learn the correct action for some part of the classification. Resulting in an

agent that in most cases gets softlocked in the testing phase.

A larger Hidden Layer [Fig. 14] helped

ameliorate the problem where agents would get

softlocked and produced more consistent learning.

Though would often display some “forgetfullness”

until its performance balances, this could be a result

of the vanishing or exploding gradients.

25

Figure 13: BPN Loss and hit percentage during
training, using Hidden Layer Size equal to 2. 15
different traces. Learning Rate η=0.1. Weight Decay
L2=0.001, Weighted Loss = [1/6, 1/6 1/53]

Figure 12: BPN Loss and hit percentage during
training, using Hidden Layer Size equal to 8. 15
different traces. Learning Rate η=0.1. Weight Decay
L2=0.001, Weighted Loss = [1/6, 1/6 1/53]

Figure 14: BPN Loss and hit percentage
during training, using Hidden Layer Size
equal to 20. 15 different traces. Learning Rate
η=0.1. Weight Decay L2=0.001, Weighted
Loss = [1/6, 1/6 1/53]

4.3 Training on traces Vs Training on Epochs
Up until now the Mazes were trained on individual Traces, the whole epoch repeating

only once. This while creating partially successful results and making the network easy to train

and avoiding overfitting does not produce consistent results and the Neural Network sometimes

does not manage to learn all the “rules” of the maze. Deciding on the number of Epochs is a

difficult task since we need to balance things in such a way that our Network does not lose the

ability to generalize yet still manages to learn in the whole course of training as best as possible.

For this, we pass the Training Traces through the Neural Network multiple times, and

testing with our Testing Traces once. We tested for how many Epochs each Network should be

trained for. Metrics for the optimal number of Epochs include the Loss, Hit percentage, L/R Hit

percentage we used earlier. From the resulting figures we will then determine when we need to

stop training early depending on how the networks perform in the testing phase.

From the fig. 15 above we can see that the LSTM Network after 3 training epochs still

displays a flat trend regarding the Loss and Hit percentage values. This trend continues for the

rest of the epochs tested. For a bigger number of epochs the LSTM displays the same

performance without any flunctuations in the resulting Hit percentages.

26

Figure 15: LSTM loss and hit percentage.
Training traces=12. Epochs=10, Weight Decay
L2=0.001. Learning Rate η=0.15, Weighted Loss
= [1.0, 1.0, 1.0]

Regarding the Backpropamine Network [fig. 16, 17]the number of epochs requires more

finetuning in comparison to the LSTM. When trained with 3 Epochs the Network seems to be

stops learning how to classify the Traces given to it. Hit percentages display an upwards trend

while Loss displays the opposite. After 7 epochs loss seems to display a reverse peak as a

greater number of epochs displays a detrimental effect on the loss of the network. Futhermore

we can see from the test results we can see that the network achieves almost identical results in

training and testing.

4.4.1 Long Short-Term Memory Performance
With the initialization values we gathered above, we setup our LSTM to be trained and

then tested in actual T-Maze environments. We gathered how many times the agent managed to

collect the reward or a pickup.

Table 2: Average(r=3) LSTM network performance. η=0.15 , L 2=0.001 , Training Traces=12,
Testing Traces=3, Epochs=4.

Maze Rewards Pickups Total Episodes
Tmaze 0 N/A 22
DoubleTMaze 0 N/A 30
TripleTMaze 20 N/A 60
QuadTMaze 0 N/A 104
TmazeHoming 0 4 15

27

Figure 16: Backpropamine Train loss and hit
percentage. Training traces=12. Epochs=10, Weight
Decay L2=0.001. Learning Rate η=0.15, Weighted
Loss = [1.0, 1.0, 1.0]

Figure 17: Backpropamine Test loss and hit
percentage. Training traces=12. Epochs=10,
Weight Decay L2=0.001. Learning Rate η=0.15,
Weighted Loss = [1.0, 1.0, 1.0]

DoubleTMazeHoming 0 0 29
TripleTMazeHoming 0 0 53
QuadTMazeHoming 0 0 101

The LSTM Network displays lackluster performance [Table 2] in the various tasks it is

presented with. While it displays some basis of learning [Fig. 16,17] when provided with the

traces it does not manage to apply that experience in the maze and collect the rewards. Its

success when finding the reward in the Triple Non-Homing maze seems to be based on luck.

Table 3: Average(r=3) LSTM network performance compared to humans. η=0.15 , L 2=0.001 ,
Training Traces=12, Testing Traces=3, Epochs=4. Optimal reward is an estimation based on the
maximum reward-(half of the allowed steps * step penalty).

Maze Human average LSTM average Minimum reward Optimal reward
TMaze 0.80 -0.29 -0.9 0.75
DoubleTMaze 0.62 -1.35 -1.4 0.5
TripleTMaze -0.04 -1.23 -2.15 0.13
QuadTMaze -0.79 -3.85 -3.9 -0.75
TMazeHoming 0.93 -0.79 -1.8 1
DoubleTMazeHoming -0.34 -2.35 -2.8 0.5
TripleTMazeHoming -1.75 -3.72 -4.3 -0.25
QuadTMazeHoming -4.83 -7.29 -7.8 -2

Comparing to the human averages we can see that the LSTM does not manage to achieve

that. While our human participants are close to the optimal reward estimation the models

inability to collect rewards hinders it a lot.

4.4.2 Backpropamine Network Performance
The performance of the Backpropamine [Table 4] was questionable. The agent displayed

some elements of understanding of how to navigate the maze and some sort of exploration

strategy but would often get stuck repeating the same invalid actions Sometimes such hiccups

would sort themselves out while others it would bring the whole computer system to a kneel.

Memorisation was mediocre. While sometimes displaying memorisation of the reward’s

28

previous location, the would often revisit the same empty corridors walking back and forth

from the two end points.

Table 4: Average(r=3) Backpropamine network performance. Hidden Layer Size = 20,

η=0.01 , L 2=0.001 , Training Traces=12, Testing Traces=3, Epochs=1.

Maze Reward Pickups Times Stuck Total Episodes
Tmaze 6 N/A 0 22
DoubleTMaze 0 N/A 17 30
TripleTMaze 0 N/A 52 60
QuadTMaze 1 N/A 103 104
TmazeHoming 4 4 6 15
DoubleTMazeHoming 0 0 29 29
TripleTMazeHoming 0 0 44 53
QuadTMazeHoming 0 0 101 101

Comparing the average of backpropamine [Table 4] to that of the LSTM network [Table 2] the

results aren’t much better. Backpropamine displays more diversity, even achieving to solve the

single depth homing task successfully but it does not achieve consecutive rewards in the same

way the LSTM does in regards to the triple depth non-homing task.

29

Table 5: Average(r=3) Backpropamine network performance compared to humans. η=0.01 ,
L 2=0.001 , Hidden Layer Size=20, Training Traces=12, Testing Traces=3, Epochs=4. Optimal

reward is an estimation based on the maximum reward-(half of the allowed steps * step penalty).
Maze Human average BP average Minimum reward Optimal reward

TMaze 0.80 -0.18 -0.9 0.75
DoubleTMaze 0.62 -0.87 -1.4 0.5
TripleTMaze -0.04 -2.10 -2.15 0.13
QuadTMaze -0.79 -3.42 -3.9 -0.75
TMazeHoming 0.93 -1.14 -1.8 1
DoubleTMazeHoming -0.34 -2.03 -2.8 0.5
TripleTMazeHoming -1.75 -3.85 -4.3 -0.25
QuadTMazeHoming -4.83 -7.29 -7.8 -2

In terms of average rewards [Table 5] backpropamine scores similarly to the LSTM. It

does achieve a better score when tested in single depth non-homing mazes but it does not

achieve a value close to the optimal reward.

4.5 Expanding The Observation
As stated before [3.4.1] after the initial round of training the Networks the first

Observation was expanded to include three distinct boolean variables that specified if there was

a wall, left, right, or infont of the agent. This was done in order to counteract a flaw both

networks exhibited, turning towards walls when passing a turn the agent already visited and

sometimes getting stuck ad infinitum. One reason for that could be that agent is not aware of

their orientation when approaching a turn, as seen in fig. 18 and thus fails to properly classify

the observation and pick the correct action. We tested if an expansion to the observation would

help the two Networks avoid softlocking while also achieving better results when tested in the

virtual T-Mazes.

30

There were seven different Human Traces collected in comparison to the fifteen Human

Traces that were used in the Original Observation Model. Nevertheless the Backpropamine

Network improved in performance even with the reduction in the amount of Trace Files that it

was trained on previously.

Table 6: Backpropamine Testing Performance. Epochs=7, Learning Rate=0.01, Hidden Layer Size=20,
5 Training Traces, 2 Testing Traces, r=3

Backpropamine Maze
Performance Reward Pickups Times Stuck Total Episodes

Tmaze 4 N/A 0 11
DoubleTMaze 12 N/A 0 21
TripleTMaze 17 N/A 1 35
QuadTMaze 35 N/A 15 70
TmazeHoming 2 4 0 9
DoubleTMazeHoming 0 9 0 17
TripleTMazeHoming 0 5 26 37
QuadTMazeHoming 16 17 33 65

 From the above table we can conclude that the Backpropamine Network manages to

reach the reward around half of the episodes in Non-Homing Tasks in comparison to its

previous performance without the expanded observation [Table 1].

We can also see that in Homing Tasks it also manages to pickup the reward for a number

of episodes. Although for the Double or Triple depth tasks it does not succeed in retracing its

steps back to the original position. This does not apply to the Single or Quadruple depth tasks

where the ANN agent returns to their original position most of the time.

31

Figure 18: All these cases produce the same observation for the agent, yet the
avialable actions are different.

While the results of the Backpropamine Network are good, the extended Observation

does not manage to eliminate the possibility of the agent getting stuck while exploring the larger

mazes.

Table 7: LSTM Testing Performance. Epochs=7, Learning Rate=0.15, Hidden Layer Size=3|

5 Training Traces, 2 Testing Traces, r=3

LSTM Maze Perfomance Reward Pickups Times Stuck Total Episodes
Tmaze 4 N/A 0 11
DoubleTMaze 6 N/A 0 21
TripleTMaze 0 N/A 0 35
QuadTMaze 0 N/A 0 70
TmazeHoming 0 4 0 9
DoubleTMazeHoming 0 4 0 17
TripleTMazeHoming 0 0 0 37
QuadTMazeHoming 0 0 0 65

The LSTM network does not benefit as much from the adjustment of the Observation

Format. The LSTM until now proved to be more resistant to getting stuck in a T-Maze than the

Backpropamine Network and its results in regards of achieving the Maximum Reward or

Picking up the Reward in Homing Tasks does not significantly improve.

4.6 Network Viability – Comparison
The Backpropamine Network performs better than the LSTM in almost all of the various

tasks. Although the Network suffers from repeating the same actions or behaviours in certain

situations that softlock it. It is much more flexible when tested in a T-Maze environment and

much more resistant to overtraining.

The LSTM’s ease of use and availability do not outweight its mediocre performance in

the T-Mazes. It fails to consintently navigate towards the reward in mazes of depth larger than

Double and does not exhibit the same memorisation in the homing tasks that the

Backpropamine Network does.

The LSTM’s lackluster performance could be that it lacks the continuously plastic

components that the Backpropamine network features.

32

Table 8: Comparison of the LSTM and Backpropamine in regards to performance in the T-Mazes.
Using tables 6, 7.

Maze

LSTM

Reward

LSTM

Pickups

LSTM Times

Stuck BP Reward BP Pickups

BP Times

Stuck Total Episodes

Tmaze 4 N/A 0 4 N/A 0 11

DoubleTMaze 6 N/A 0 12 N/A 0 21

TripleTMaze 0 N/A 0 11 N/A 1 35

QuadTMaze 0 N/A 0 33 N/A 15 70

TmazeHoming 0 4 0 2 3 0 9

DoubleTMazeHoming 0 4 0 0 8 0 17

TripleTMazeHoming 0 0 0 0 5 26 37

QuadTMazeHoming 0 0 0 16 17 33 65

Total: 10 8 0 86 35 75

33

Chapter 5
Conclusions and Future Work

5.1 Overview and conclusions
This thesis aimed to explore how achievable structured exploration behaviour is in an

Artificial Neural Network and test the ability of Neuromodulated Plasticity Rules to attain that.

Furthermore we compared how Neuromodulation performs against a different model of Neural

Networks, the LSTM. We developed a randomized and parameterized environment of T-Mazes

that allows us to create human traces and test the performance of ANNs for different kinds of

tasks.

Furthermore we successfully managed to collect a number of Traces from human

Participants, and feed them to two different models of neural networks. Testing different

combinations of parameters for the Neural Networks we found the best performers and put

them to the test in the different task environments. We analyzed and compared their

performance and have found that a network based on the Differentiable Plasticity with

Backpropamine model can effectively learn from human actors how to explore a T-Maze of

various depths and perform well in the homing tasks, exhibiting memorisation and retracting its

steps performing much more consistently than its conventional counterpart. We also determined

that the LSTM network is more stuck resistant in comparison to the neuromodulated plasticity

network as long as both networks are properly trained.

On a side note, we have tested how a weighted and unweighted loss function affects the

training and performance of the two models when using training data without any noise and

have found minimal effect on both the LSTM and backpropamine network.

5.2 Future Work
Throughout this project neuromodulated plasticity has shown its ability to imitate human

behaviour and continuously learn while applied to a task. Nevertheless to investigate the full

34

potential of our approach we need to reconsider how the model is trained and ways to minimize

the destructive cases when the agent is traversing through the maze. An application of this

model could help solve other hard tasks for machines that are relatively easy for humans. Using

both LSTM and Backpropamine models in a sequential approach could get us the best of both

worlds, combining LSTM’s stuck resistance with the backpropamine’s ability in exploration.

Combining backpropamine with different models or architectures that we haven’t

explored during this project could also expand the abilities of the network. For example using a

convolutional neural network can possibly scale this project to the 3D world. If we recall the 3D

maze screensaver that was used in the Windows 95 era we can potentially emulate such an

environment and outperform the left-hand rule that the implementation of the “player” used.

The controlled T-Maze environments we have created and used during this project can,

in the future, be replaced with more complex environments or tasks with higher stakes. We can

potentially pit the human participants and the trained agents against each other in a form of

adversarial learning. Creating an framework where the neural network has a clear target that it

needs to outperform as well as available traces to learn from.

35

BIBLIOGRAPHY
1. Hochreiter, Sepp & Schmidhuber, Jürgen. (1997). Long Short-term Memory. Neural

computation. 9. 1735-80. 10.1162/neco.1997.9.8.1735.

2. Blynel, Jesper & Floreano, Dario. (2003). Exploring the T-Maze: Evolving Learning-

Like Robot Behaviors using CTRNNs. 593-604. 10.1007/3-540-36605-9_54.

3. Soltoggio, Andrea. (2008). Neuromodulation Increases Decision Speed in Dynamic

Environments. 139.

4. Vassiliades, V., & Christodoulou, C. (2016). Behavioral plasticity through the

modulation of switch neurons. Neural networks : the official journal of the International

Neural Network Society, 74, 35–51

5. Wunder, Michael & Littman, Michael & Babes-Vroman, Monica. (2010). Classes of

Multiagent Q-learning Dynamics with -greedy Exploration. ICML 2010 - Proceedings,ɛ
27th International Conference on Machine Learning. 1167-1174.

6. Li, H., Zhang, Q., & Zhao, D. (2019). Deep reinforcement learning-based automatic

exploration for navigation in unknown environment. IEEE transactions on neural

networks and learning systems, 31(6), 2064-2076.

7. Burda, Y., Edwards, H., Storkey, A., & Klimov, O. (2018). Exploration by random

network distillation. arXiv preprint arXiv:1810.12894.

8. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

9. O'Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from

unit activity in the freely-moving rat. Brain Res. 1971;34(1):171-175.

36

10. Miconi, T., Stanley, K., & Clune, J. (2018, July). Differentiable plasticity: training plastic

neural networks with backpropagation. In International Conference on Machine

Learning (pp. 3559-3568). PMLR.

11. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science.

1997;275(5306):1593-1599.

12. Miconi, Thomas, et al. "Backpropamine: training self-modifying neural networks with

differentiable neuromodulated plasticity." arXiv preprint arXiv:2002.10585 (2020).

13. Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680

14. Byrd, J., & Lipton, Z. (2019, May). What is the effect of importance weighting in deep

learning?. In International Conference on Machine Learning (pp. 872-881)

37

Appendices

Appendix A tmaze.py
import random

import everything else from gym_minigrid
from gym_minigrid.minigrid import *

from gym_minigrid.register import register

Reward Values
DISTINCT_OBJECTS = 5

LOW = 0.2 # Low reward
HIGH = 1 # High Reward
PICKUP = 0.5 # Used in homing tasks, when the agent manages to
reach the first goal. Before returning home
FAIL_HOME = -0.4 # If the agent manages to pickup the reward but not
return home
CRASH_PENALTY = -0.4 # When the agent touches lava or crashes into a wall.
Might not be used
STEP_PENALTY = -0.05 # Penalty for every step taken

Helper class for keeping track of reward positions and ends of corridors
class MazeEnd(Goal):
 def __init__(self, color='black', reward='low'):
 self.color = color
 self.turnAround = True
 if reward == 'high':
 self.reward = HIGH
 else:
 self.reward = 0
 super().__init__(color)

 def can_overlap(self):
 return True

 def render(self, img):
 # Give the floor a pale color
 color = COLORS[self.color]
 # fill_coords(img, point_in_rect(1, 1, 0.031, 1), color)
 fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color)

 def return_reward(self):
 return self.reward

 def __str__(self):
 return 'MazeEnd'

The goal end of the maze
class MazeGoal(MazeEnd):

38

 def __init__(self, color='black'):
 super().__init__(color=color, reward='high')

 def __str__(self):
 return 'MazeGoal'

The Start of the maze
class Start(MazeEnd):
 def __init__(self):
 self.turnAround = True
 super().__init__(color='green')

 def render(self, img):
 color = COLORS[self.color]
 fill_coords(img, point_in_rect(0.031, 1, 0.031, 1), color)

 def __str__(self):
 return 'Start'

class TMazeEnv(MiniGridEnv):
 # Actions that the agent is permitted to make
 class Actions(IntEnum):
 # Turn left, turn right, move forward
 left = 0
 right = 1
 forward = 2
 # Done completing task
 done = 6

 def __init__(self, high_reward_end=None, size=None, homing=False, corridors=3,
corridor_lengths=None, seed=None):
 self.reward_range = (-1, 1) # unused
 self.actions = TMazeEnv.Actions
 self.high_reward_end = high_reward_end # Which maze end has the high
reward.
 self.size = size
 self.homing = homing
 self.corridors = corridors
 self.corridor_lengths = corridor_lengths
 self.DISTINCT_OBJECTS = DISTINCT_OBJECTS

 if corridors == 3:
 self.max_steps = 10
 elif corridors == 7:
 self.max_steps = 20
 elif corridors == 15:
 self.max_steps = 35
 elif corridors == 31:
 self.max_steps = 70

 if self.homing:
 self.max_steps *= 2

39

 super().__init__(
 max_steps=self.max_steps,
 seed=seed,
 agent_view_size=1,
 see_through_walls=True
)

 # Action enumeration for this environment
 self.actions = TMazeEnv.Actions
 # Actions are discrete integer values
 self.action_space = spaces.Discrete(len(self.actions))

 # Class which randomly generates maze corridor lengths
 # based on the number of the corridors
 def generate_corridors(self, corridors):
 def _check_overlap(corridor_lengths):
 if len(corridor_lengths) > 6:
 for i in range(7, len(corridor_lengths)):
 parent_corridor = math.ceil(((i - 2) / 2 - 2) / 2)

 # if the product of the length of a corridor and that of its
parent is negative
 # then there is a danger of corridors or overlapping
 if (corridor_lengths[i] * corridor_lengths[parent_corridor]) <
0:
 if abs(corridor_lengths[parent_corridor]) <=
abs(corridor_lengths[i]) + 1:
 stride = 2 if (i % 2) == 0 else -2
 corridor_lengths[parent_corridor] =
(corridor_lengths[i] + stride) * -1

 corridor_lengths = []

 for i in range(corridors):
 corridor_lengths.append(super()._rand_int(3, 6))
 if (i % 2) != 0:
 corridor_lengths[i] *= -1

 _check_overlap(corridor_lengths)
 return corridor_lengths

 # Calculates how offset the start position needs to be from the edge of the
maze
 # measure the negative height which we add to the grid height
 # thus avoiding exceeding the limits of the grid
 def negative_grid_offset(self, corridor_lengths):
 max_negative_height = 0
 if len(corridor_lengths) > 3:
 for i in [3, 5]:
 children = [(2 * i + 1) * 2 + 2 - (i % 2), (2 * i + 2) * 2 + 2 -
(i % 2)]
 if children[1] < len(corridor_lengths):

40

 for j in children:
 if corridor_lengths[i] + corridor_lengths[j] <
max_negative_height:
 max_negative_height = corridor_lengths[i] +
corridor_lengths[j]
 else:
 if corridor_lengths[i] < max_negative_height:
 max_negative_height = corridor_lengths[i]

 return max_negative_height

 # Calculates the size of the square grid that our maze will be placed in
 def maze_size(self, corridor_lengths):
 corridor_size = [0] * len(corridor_lengths)

 for i in reversed(range(len(corridor_lengths))):
 # find the subcorridors that are parallel to the parent corridor
 children = [(2 * i + 1) * 2 + 2 - (i % 2), (2 * i + 2) * 2 + 2 - (i %
2)]
 corridor_size[i] = abs(corridor_lengths[i])

 # if the subcorridors exist
 if children[1] < len(corridor_lengths):
 # measure the sum of the length of the corridors
 if corridor_size[children[0]] > corridor_size[children[1]]:
 corridor_size[i] += abs(corridor_size[children[0]]) - 1
 else:
 corridor_size[i] += abs(corridor_size[children[1]]) - 1

 # measure the negative height which we add to the grid height
 # thus avoiding exceeding the limits of the grid
 max_negative_height = self.negative_grid_offset(corridor_lengths)

 width = corridor_size[1] * 2 if corridor_size[1] > corridor_size[2] else
corridor_size[2] * 2
 height = corridor_size[0]

 if corridor_lengths[0] + max_negative_height < 0:
 height -= (corridor_lengths[0] + max_negative_height)

 size = 0

 if height > width:
 size = height + 2
 else:
 size = width + 2

 if (size % 2) == 0:
 size += 1

 return size

 def _gen_grid(self):

41

 # generates vertical corridors on the grid
 def _gen_vert_corridor(pos, length):
 stride = 1 if length > 0 else -1
 x = pos[0]
 y = pos[1]
 for i in range(0, length, stride):
 self.grid.set(x, y, None)
 y += stride
 return [x, y - stride]

 # generates horizontal corridors on the grid
 def _gen_horz_corridor(pos, length):
 stride = 1 if length > 0 else -1
 x = pos[0]
 y = pos[1]
 for i in range(0, length, stride):
 self.grid.set(x, y, None)
 x += stride
 return [x - stride, y]

 # recursively builds alternating vertical and horizontal corridors
 # in a tmaze manner
 # returns the ending points of the mazes, and every turn
 def recursive_builder(pos, seq, corridors, vert):
 maze_ends = []
 turning_points = []

 if vert:
 new_pos = _gen_vert_corridor(pos, corridors[seq])
 else:
 new_pos = _gen_horz_corridor(pos, corridors[seq])

 if seq < int(len(corridors) / 2):
 ends, turns = recursive_builder(new_pos, seq * 2 + 1, corridors,
not vert)
 maze_ends.extend(ends)
 turning_points.extend(turns)
 ends, turns = recursive_builder(new_pos, seq * 2 + 2, corridors,
not vert)
 maze_ends.extend(ends)
 turning_points.extend(turns)
 turning_points.append(new_pos)
 else:
 maze_ends.append(new_pos)

 return maze_ends, turning_points

 # generate the size of the corridors
 if self.corridor_lengths is None:
 self.corridor_lengths = self.generate_corridors(self.corridors)
 self.size = self.maze_size(self.corridor_lengths)
 self.width = self.size
 self.height = self.size

42

 # print("No corridors given")
 # print(str(self.corridor_lengths) + '\ngrid size=' + str(self.size))

 self.reward = 0
 self.grid = Grid(self.width, self.height)
 self.mission = "Find the Goal"

 # calculate the starting height of the agent
 start_height = 1
 max_negative_height = self.negative_grid_offset(self.corridor_lengths)

 if self.corridor_lengths[0] + max_negative_height < 0:
 start_height -= (self.corridor_lengths[0] + max_negative_height)

 self.agent_start_pos = (self.width // 2, start_height)
 self.agent_start_dir = 1

 # set all tiles to be blocked
 for i in range(self.width):
 for j in range(self.height):
 self.grid.vert_wall(i, j, 1)

 # create the paths using the lengths we generated earlier
 # self.turning_points = []
 self.maze_ends, self.turning_points = \
 recursive_builder(list(self.agent_start_pos), 0,
self.corridor_lengths, True)

 # Set the home square
 # Surrounding walls
 x = 0
 y = 0
 w = self.width
 h = self.height
 self.grid.horz_wall(x, y, w)
 self.grid.horz_wall(x, y + h - 1, w)
 self.grid.vert_wall(x, y, h)
 self.grid.vert_wall(x + w - 1, y, h)

 self.put_obj(Start(), self.agent_start_pos[0], self.agent_start_pos[1])
 for turn in self.turning_points:
 self.put_obj(Floor(color='blue'), turn[0], turn[1])

 # Set the maze ends with the correct rewards
 if self.high_reward_end is None:
 self.high_reward_end = self._rand_int(0, len(self.maze_ends))
 self.set_reward_pos(self.high_reward_end)

 # rotate maze according to seed
 rot = self._rand_int(0, 4)
 for i in range(rot):
 self.grid = self.grid.rotate_left()
 x = self.agent_start_pos[0]

43

 y = self.agent_start_pos[1]
 self.agent_start_pos = (y, self.grid.height - 1 - x)
 self.agent_start_dir -= 1
 if self.agent_start_dir < 0:
 self.agent_start_dir = 3

 # Place the agent
 if self.agent_start_pos is not None:
 self.agent_pos = self.agent_start_pos
 self.agent_dir = self.agent_start_dir
 else:
 self.place_agent()

 def set_reward_pos(self, i):
 self.put_obj(MazeGoal(), self.maze_ends[i][0], self.maze_ends[i][1])

 for j in range(len(self.maze_ends)):
 if j != i:
 self.put_obj(MazeEnd(), self.maze_ends[j][0], self.maze_ends[j]
[1])

 def reset(self):
 # Current position and direction of the agent
 self.agent_pos = None
 self.agent_dir = None

 # Generate a new random grid at the start of each episode
 # To keep the same grid for each episode, call env.seed() with
 # the same seed before calling env.reset()
 self._gen_grid()

 # These fields should be defined by _gen_grid
 assert self.agent_pos is not None
 assert self.agent_dir is not None

 # Check that the agent doesn't overlap with an object
 start_cell = self.grid.get(*self.agent_pos)
 assert start_cell is None or start_cell.can_overlap()

 # Item picked up, being carried, initially nothing
 self.carrying = None

 # Step count since episode start
 self.step_count = 0

 # Return first observation
 obs = self.gen_obs()
 return obs

 def step(self, action):
 # Some of the following code is copied from MiniGrid's step function
 self.step_count += 1
 reward = 0

44

 done = False

 # Get the position of and in front of the agent
 agent_pos = self.agent_pos
 fwd_pos = self.front_pos
 # Get the contents of the cell in front of the agent and where the agent
is standing
 agent_cell = self.grid.get(*agent_pos)
 fwd_cell = self.grid.get(*fwd_pos)

 # Rotate left
 if action == self.actions.left:
 if agent_cell is not None and agent_cell.type == 'floor':
 self.agent_dir -= 1
 if self.agent_dir < 0:
 self.agent_dir += 4
 action = self.actions.forward
 else: # remove invalid actions from step_count
 self.step_count -= 1

 # Rotate right
 if action == self.actions.right:
 if agent_cell is not None and agent_cell.type == 'floor':
 self.agent_dir = (self.agent_dir + 1) % 4
 action = self.actions.forward
 else:
 self.step_count -= 1

 # Get the position in front of the agent
 fwd_pos = self.front_pos
 # Get the contents of the cell in front of the agent
 fwd_cell = self.grid.get(*fwd_pos)

 # Move forward
 if action == self.actions.forward:
 if fwd_cell is None or fwd_cell.can_overlap():
 self.agent_pos = fwd_pos
 reward = STEP_PENALTY
 else:
 self.step_count -= 1

 # Check if we reached a Goal
 if fwd_cell is not None and type(fwd_cell) is MazeGoal:
 if self.homing:
 reward = PICKUP
 self.agent_dir = (self.agent_dir + 2) % 4 # rotate the agent

 # remove the goal object from the floor
 # replacing it with a grey floor tile
 self.put_obj(MazeEnd(color='black'), self.agent_pos[0],
self.agent_pos[1])
 self.put_obj(MazeGoal(color='red'), self.agent_start_pos[0],

45

self.agent_start_pos[1])
 self.homing = False
 reward = PICKUP
 else:
 self.put_obj(MazeEnd(color='green'), self.agent_pos[0],
self.agent_pos[1])
 self.agent_pos = fwd_pos
 reward = HIGH
 done = True
 # turn around the agent
 elif fwd_cell is not None and hasattr(fwd_cell, 'turnAround') == True:
 self.agent_dir = (self.agent_dir + 2) % 4 # rotate the agent

 # If the agent crashes the episode ends and a negative reward is given
 if fwd_cell is not None and fwd_cell.type == 'lava':
 done = True
 reward = CRASH_PENALTY

 # Checking for number of step taken to punish the agent when it fails to
return home
 if self.step_count >= self.max_steps:
 done = True
 reward = FAIL_HOME

 self.reward += reward
 obs = self.gen_obs()

 return obs, reward, done, {}

 # one hot take encoding of the observation of the agent
 # observation format =
 # [is agent in corridor, is agent at home, is agent at turning point, is agent
at maze end, is agent at goal]
 def OneHotEncoding(self):
 def wallOHE():
 # obj_type=Wall
 # [left, right, front]
 walls = [0] * 3

 right_vec = self.right_vec
 left_vec = np.array((right_vec[0] * -1, right_vec[1] * -1))

 agent_pos = self.agent_pos
 left_pos = agent_pos + left_vec
 right_pos = agent_pos + right_vec
 fwd_pos = self.front_pos
 # Get the contents of the cells left, right, and forward of the agent
 left_cell = self.grid.get(*left_pos)
 right_cell = self.grid.get(*right_pos)
 fwd_cell = self.grid.get(*fwd_pos)

 if type(left_cell) is Wall:

46

 walls[0] = 1
 if type(right_cell) is Wall:
 walls[1] = 1
 if type(fwd_cell) is Wall:
 walls[2] = 1

 return walls

 image = [0] * self.DISTINCT_OBJECTS

 # Get the observation of where the agent is standing
 agent_pos = self.agent_pos
 observed_cell = self.grid.get(*agent_pos)
 agent_obs = -1

 if observed_cell is None:
 agent_obs = 0
 elif isinstance(observed_cell, Start):
 agent_obs = 1
 elif isinstance(observed_cell, Floor):
 agent_obs = 2
 elif isinstance(observed_cell, MazeEnd):
 agent_obs = 3
 elif isinstance(observed_cell, MazeGoal):
 agent_obs = 4

 image[agent_obs] = 1

 # image.extend(wallOHE())
 # Comment out for debugging purposes
 # print(image)
 # print(np.array(image))
 #image = torch.FloatTensor(image)
 #image = torch.reshape(image, (1, 1, 5))
 return image

class DoubleTMaze(TMazeEnv):
 def __init__(self, homing=False, seed=None, high_reward_end=None):
 self.homing = homing
 self.corridors = 7

 super().__init__(corridors=self.corridors, homing=self.homing, seed=seed,
high_reward_end=high_reward_end)

class TripleTMaze(TMazeEnv):
 def __init__(self, homing=False, seed=None, high_reward_end=None):
 self.homing = homing
 self.corridors = 15

47

 super().__init__(corridors=self.corridors, homing=self.homing, seed=seed,
high_reward_end=high_reward_end)

class QuadTMaze(TMazeEnv):
 def __init__(self, homing=False, seed=None, high_reward_end=None):
 self.homing = homing
 self.corridors = 31

 super().__init__(corridors=self.corridors, homing=self.homing, seed=seed,
high_reward_end=high_reward_end)

class TMazeHoming(TMazeEnv):
 def __init__(self, seed=None, high_reward_end=None):
 super().__init__(homing=True, seed=seed, high_reward_end=high_reward_end)

class DoubleTMazeHoming(DoubleTMaze):
 def __init__(self, seed=None, high_reward_end=None):
 super().__init__(homing=True, seed=seed, high_reward_end=high_reward_end)

class TripleTMazeHoming(TripleTMaze):
 def __init__(self, seed=None, high_reward_end=None):
 super().__init__(homing=True, seed=seed, high_reward_end=high_reward_end)

class QuadTMazeHoming(QuadTMaze):
 def __init__(self, seed=None, high_reward_end=None):
 super().__init__(homing=True, seed=seed, high_reward_end=high_reward_end)

48

Appendix B diff_plasticity.py
import torch
import torch.nn as nn
from gym_minigrid.wrappers import *
import nn_utils

environment imports
from t_maze.envs import *

debug = nn_utils.debug

trace
traces_dir = "../collected_traces"
traces = nn_utils.retrieve_traces(traces_dir, shuffle=True)

give inputs of all episodes trace
test in maze
calculate average
next maze

list of mazes and seeds
mazes = []
seeds = []

lstm = None
loss_function = None
optimizer = None
hidden = None
hidden_dim = 3

train
def train(trace_file, zero_grad=False, zero_hidden=False):
 global hidden

 action_hit = 0
 action_total = 0
 total_loss = 0

 leftright_hit = 0
 leftright_total = 0

 line_count = 0

 with open(trace_file, "r") as fp:
 for line in fp:
 # trace format [x0, x1, x2, x3, x4] action reward
 line_count += 1
 if line.startswith('['):
 if zero_hidden:
 hidden = torch.FloatTensor([0] * hidden_dim)

49

 hidden = torch.reshape(hidden, (1, 1, hidden_dim))
 hidden = (hidden, hidden)

 # retrieve observation and the desired action
 # from trace file
 image, target_action, lab_reward = nn_utils.parse_line(line)
 nn_input = nn_utils.prepare_lstm_input(image)

 # give the observation to the lstm
 # out should contain the nn's proposed action
 # Forward pass
 out, hidden = lstm(nn_input, hidden)
 hidden[0].detach_()
 hidden[1].detach_()

 # Convert raw scores to probabilities
 softmax_output = torch.softmax(out, dim=2)

 # Reshape action
 action_tensor = torch.LongTensor([target_action])

 # Update parameters
 # optimizer.zero_grad()
 loss = loss_function(out[:, -1].clone(), action_tensor)
 loss.backward()

 if zero_grad:
 lstm.zero_grad()
 optimizer.zero_grad()

 _, nn_action = torch.max(out[:, -1], 1)

 action_hit = nn_utils.count_hit(nn_action, target_action,
action_hit)
 action_total += 1

 # measure hit percentage for left/right actions
 if target_action == 0 or target_action == 1:
 leftright_hit = nn_utils.count_hit(nn_action, target_action,
leftright_hit)
 leftright_total += 1

 total_loss += loss

 # Print pass info
 if debug:
 nn_utils.print_pass(line, nn_input, softmax_output,
target_action, nn_action, loss)
 elif line.startswith('MiniGrid-'): # new episode
 # zero the parameter gradients
 mazes.append(line.strip())
 line = fp.readline()
 seeds.append(int(line.strip()))

50

 if debug:
 print('\nTrain:')
 print(mazes[len(mazes) - 1])
 print(seeds[len(seeds) - 1])
 print('########')

 optimizer.step()
 lstm.zero_grad()
 optimizer.zero_grad()

 return action_hit / action_total, leftright_hit / leftright_total,
total_loss.item(), line_count

def test(trace_file):
 global hidden
 mazes = []
 seeds = []
 total_rewards = []

 with open(trace_file, "r") as fp:
 for line in fp:
 if line.startswith('MiniGrid'):
 maze = line.strip()
 seed = int(fp.readline())

 mazes.append(maze)
 seeds.append(seed)

 total_reward = 0

 # number_of_episodes = nn_utils.number_of_episodes(maze, seed)
 # print('Number of Episodes:' + str(number_of_episodes))
 env = gym.make(maze, seed=seed)
 env = FlatObsWrapper(env)

 # set initial observation
 ohe = env.OneHotEncoding()
 nn_input = nn_utils.prepare_lstm_input(ohe)

 while True:
 # Create a window to view the environment
 if debug:
 env.render('human')

 # Retrieve the agent's action
 out, hidden = lstm(nn_input, hidden)

 # transform out probability into a discrete action
 action = out[:, -1].tolist()[0]
 action = int(action.index(max(action)))

51

 # Give action to environment[
 _, reward, done, _ = env.step(action)

 # prepare tensor observation
 ohe = env.OneHotEncoding()
 nn_input = nn_utils.prepare_lstm_input(ohe)

 # sum up reward
 total_reward += reward

 if debug:
 print(ohe)
 print('probabilities: ' + str(out[:, -1].tolist()[0]))
 print('action: ' + str(action))

 if done:
 if debug:
 if not env.window.closed:
 env.window.close()
 break

 total_rewards.append(total_reward)

 return mazes, seeds, total_rewards

def lvq(trace_file):
 global hidden

 action_hit = 0
 action_total = 0

 with open(trace_file, "r") as fp:
 for line in fp:
 if debug:
 print('Line: ' + line.strip())
 # trace format [x0, x1, x2, x3, x4] action reward
 if line.startswith('['):
 # zero the parameter gradients
 # lstm.zero_grad()
 # retrieve observation and the desired action
 # from trace file
 image, action, _ = nn_utils.parse_line(line)
 nn_input = nn_utils.prepare_lstm_input(image)

 # give the observation to the lstm
 # out should contain the nn's proposed action
 # Forward pass
 out, hidden = lstm(nn_input, hidden)
 hidden[0].detach_()
 hidden[1].detach_()

 _, prediction = torch.max(out[:, -1], 1)

52

 # if lstm doesn't guess right propagate loss
 if action.item() != prediction.item():
 loss = loss_function(out[:, -1].clone(), action.clone())
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

 if debug:
 print('image: ' + str(image))
 print('out: ' + str(out[:, -1]))
 print('lstm action: ' + str(prediction.item()))
 print('loss: ' + str(loss.item()))
 print('########')
 else:
 action_hit += 1
 action_total += 1

 return action_hit / action_total

def main(learning_rate=None, weight_decay=None, save=None):
 global lstm, loss_function, optimizer, hidden, hidden_dim
 # input dimension
 # 5 - obs
 # 1 - reward
 # output dimension
 # 1 - output step
 input_dim = 6
 hidden_dim = 3
 batch_size = 1
 seq_len = 1
 n_layers = 1

 lr = learning_rate
 wd = weight_decay # Weight Decay - L2

 # create lstm nn
 lstm = nn.LSTM(input_dim, hidden_dim, n_layers, batch_first=True)

 # hidden represents the reward
 # passed in tuples
 # 0 initial reward
 hidden = torch.FloatTensor([0] * hidden_dim)
 hidden = torch.reshape(hidden, (1, 1, hidden_dim))
 hidden = (hidden, hidden)

 # declare loss function
 # or criterion
 # weights = torch.FloatTensor([1.0, 1.0, 1.0])
 weights = torch.FloatTensor([1 / 6, 1 / 6, 1 / 53])
 loss_function = torch.nn.CrossEntropyLoss(weight=weights)
 optimizer = torch.optim.Adam(lstm.parameters(), lr=lr, weight_decay=wd)

53

 lstm.zero_grad()
 optimizer.zero_grad()

 train_test_split = 0.8
 train_traces = int(len(traces) * train_test_split) if len(traces) > 4 else
len(traces)
 use_lvq = nn_utils.use_lvq
 find_worst_contenders = nn_utils.use_worst_contenders

 loss_list = []
 hit_list = []
 lr_hit_list = []
 lc_list = []

 print('Number of Traces:' + str(len(traces)))
 print('Traces: ' + str(traces))
 print('Training Traces: ' + str(train_traces))
 print('# ######## #')

 for i in range(train_traces):
 print('Train: ' + traces[i])

 # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad = False,
zero_hidden = False)
 # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad=True,
zero_hidden=False)
 hit_perc, lr_hit_perc, total_loss, line_count = train(traces[i],
zero_grad=False, zero_hidden=True)
 # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad=True,
zero_hidden=True)

 print('hit percentage: ' + str(hit_perc))
 print('left/right hit percentage: ' + str(lr_hit_perc))
 print('total loss: ' + str(total_loss))

 loss_list.append(total_loss)
 hit_list.append(hit_perc)
 lr_hit_list.append(lr_hit_perc)
 lc_list.append(line_count)

 print('##########')

 if use_lvq:
 for i in range(train_traces):
 print('LVQ: ' + traces[i])
 hit_perc = lvq(traces[i])
 print('hit percentage: ' + str(hit_perc))

 if find_worst_contenders:
 nn_utils.find_worst_contenders(loss_list, hit_list, lr_hit_list, traces)

 # create plots

54

 plot_name = 'LSTM | wd=' + str(wd)
 nn_utils.create_plot(plot_name, lr, hidden_dim, loss_list, hit_list,
lr_hit_list, traces, normalize_data=True, display=False, save=save)

 for i in range(train_traces, len(traces)):
 print('Test: ' + traces[i])
 mazes, seeds, total_rewards = test(traces[i])
 nn_utils.tabulate_print(mazes, seeds, total_rewards)

 return loss_list, hit_list, lr_hit_list, lc_list

if __name__ == '__main__':
 loss_list, hit_list, lr_hit_list, lc_list = main(0.15, 0.001)

55

Appendix C lstm.py
import torch
import torch.nn as nn
from gym_minigrid.wrappers import *
import nn_utils

environment imports
from t_maze.envs import *

debug = nn_utils.debug

trace
traces_dir = "../collected_traces"
traces = nn_utils.retrieve_traces(traces_dir, shuffle=True)

give inputs of all episodes trace
test in maze
calculate average
next maze

list of mazes and seeds
mazes = []
seeds = []

lstm = None
loss_function = None
optimizer = None
hidden = None
hidden_dim = 3

train
def train(trace_file, zero_grad=False, zero_hidden=False):
 global hidden

 action_hit = 0
 action_total = 0
 total_loss = 0

 leftright_hit = 0
 leftright_total = 0

 line_count = 0

 with open(trace_file, "r") as fp:
 for line in fp:
 # trace format [x0, x1, x2, x3, x4] action reward
 line_count += 1
 if line.startswith('['):
 if zero_hidden:
 hidden = torch.FloatTensor([0] * hidden_dim)
 hidden = torch.reshape(hidden, (1, 1, hidden_dim))

56

 hidden = (hidden, hidden)

 # retrieve observation and the desired action
 # from trace file
 image, target_action, lab_reward = nn_utils.parse_line(line)
 nn_input = nn_utils.prepare_lstm_input(image)

 # give the observation to the lstm
 # out should contain the nn's proposed action
 # Forward pass
 out, hidden = lstm(nn_input, hidden)
 hidden[0].detach_()
 hidden[1].detach_()

 # Convert raw scores to probabilities
 softmax_output = torch.softmax(out, dim=2)

 # Reshape action
 action_tensor = torch.LongTensor([target_action])

 # Update parameters
 # optimizer.zero_grad()
 loss = loss_function(out[:, -1].clone(), action_tensor)
 loss.backward()

 if zero_grad:
 lstm.zero_grad()
 optimizer.zero_grad()

 _, nn_action = torch.max(out[:, -1], 1)

 action_hit = nn_utils.count_hit(nn_action, target_action,
action_hit)
 action_total += 1

 # measure hit percentage for left/right actions
 if target_action == 0 or target_action == 1:
 leftright_hit = nn_utils.count_hit(nn_action, target_action,
leftright_hit)
 leftright_total += 1

 total_loss += loss

 # Print pass info
 if debug:
 nn_utils.print_pass(line, nn_input, softmax_output,
target_action, nn_action, loss)
 elif line.startswith('MiniGrid-'): # new episode
 # zero the parameter gradients
 mazes.append(line.strip())
 line = fp.readline()
 seeds.append(int(line.strip()))

57

 if debug:
 print('\nTrain:')
 print(mazes[len(mazes) - 1])
 print(seeds[len(seeds) - 1])
 print('########')

 optimizer.step()
 lstm.zero_grad()
 optimizer.zero_grad()

 return action_hit / action_total, leftright_hit / leftright_total,
total_loss.item(), line_count

def test(trace_file):
 global hidden
 mazes = []
 seeds = []
 total_rewards = []

 with open(trace_file, "r") as fp:
 for line in fp:
 if line.startswith('MiniGrid'):
 maze = line.strip()
 seed = int(fp.readline())

 mazes.append(maze)
 seeds.append(seed)

 total_reward = 0

 # number_of_episodes = nn_utils.number_of_episodes(maze, seed)
 # print('Number of Episodes:' + str(number_of_episodes))
 env = gym.make(maze, seed=seed)
 env = FlatObsWrapper(env)

 # set initial observation
 ohe = env.OneHotEncoding()
 nn_input = nn_utils.prepare_lstm_input(ohe)

 while True:
 # Create a window to view the environment
 if debug:
 env.render('human')

 # Retrieve the agent's action
 out, hidden = lstm(nn_input, hidden)

 # transform out probability into a discrete action
 action = out[:, -1].tolist()[0]
 action = int(action.index(max(action)))

 # Give action to environment[

58

 _, reward, done, _ = env.step(action)

 # prepare tensor observation
 ohe = env.OneHotEncoding()
 nn_input = nn_utils.prepare_lstm_input(ohe)

 # sum up reward
 total_reward += reward

 if debug:
 print(ohe)
 print('probabilities: ' + str(out[:, -1].tolist()[0]))
 print('action: ' + str(action))

 if done:
 if debug:
 if not env.window.closed:
 env.window.close()
 break

 total_rewards.append(total_reward)

 return mazes, seeds, total_rewards

def lvq(trace_file):
 global hidden

 action_hit = 0
 action_total = 0

 with open(trace_file, "r") as fp:
 for line in fp:
 if debug:
 print('Line: ' + line.strip())
 # trace format [x0, x1, x2, x3, x4] action reward
 if line.startswith('['):
 # zero the parameter gradients
 # lstm.zero_grad()
 # retrieve observation and the desired action
 # from trace file
 image, action, _ = nn_utils.parse_line(line)
 nn_input = nn_utils.prepare_lstm_input(image)

 # give the observation to the lstm
 # out should contain the nn's proposed action
 # Forward pass
 out, hidden = lstm(nn_input, hidden)
 hidden[0].detach_()
 hidden[1].detach_()

 _, prediction = torch.max(out[:, -1], 1)
 # if lstm doesn't guess right propagate loss

59

 if action.item() != prediction.item():
 loss = loss_function(out[:, -1].clone(), action.clone())
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

 if debug:
 print('image: ' + str(image))
 print('out: ' + str(out[:, -1]))
 print('lstm action: ' + str(prediction.item()))
 print('loss: ' + str(loss.item()))
 print('########')
 else:
 action_hit += 1
 action_total += 1

 return action_hit / action_total

def main(learning_rate=None, weight_decay=None, save=None):
 global lstm, loss_function, optimizer, hidden, hidden_dim
 # input dimension
 # 5 - obs
 # 1 - reward
 # output dimension
 # 1 - output step
 input_dim = 6
 hidden_dim = 3
 batch_size = 1
 seq_len = 1
 n_layers = 1

 lr = learning_rate
 wd = weight_decay # Weight Decay - L2

 # create lstm nn
 lstm = nn.LSTM(input_dim, hidden_dim, n_layers, batch_first=True)

 # hidden represents the reward
 # passed in tuples
 # 0 initial reward
 hidden = torch.FloatTensor([0] * hidden_dim)
 hidden = torch.reshape(hidden, (1, 1, hidden_dim))
 hidden = (hidden, hidden)

 # declare loss function
 # or criterion
 # weights = torch.FloatTensor([1.0, 1.0, 1.0])
 weights = torch.FloatTensor([1 / 6, 1 / 6, 1 / 53])
 loss_function = torch.nn.CrossEntropyLoss(weight=weights)
 optimizer = torch.optim.Adam(lstm.parameters(), lr=lr, weight_decay=wd)

60

 lstm.zero_grad()
 optimizer.zero_grad()

 train_test_split = 0.8
 train_traces = int(len(traces) * train_test_split) if len(traces) > 4 else
len(traces)
 use_lvq = nn_utils.use_lvq
 find_worst_contenders = nn_utils.use_worst_contenders

 loss_list = []
 hit_list = []
 lr_hit_list = []
 lc_list = []

 print('Number of Traces:' + str(len(traces)))
 print('Traces: ' + str(traces))
 print('Training Traces: ' + str(train_traces))
 print('# ######## #')

 for i in range(train_traces):
 print('Train: ' + traces[i])

 # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad = False,
zero_hidden = False)
 # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad=True,
zero_hidden=False)
 hit_perc, lr_hit_perc, total_loss, line_count = train(traces[i],
zero_grad=False, zero_hidden=True)
 # hit_perc, lr_hit_perc, total_loss = train(traces[i], zero_grad=True,
zero_hidden=True)

 print('hit percentage: ' + str(hit_perc))
 print('left/right hit percentage: ' + str(lr_hit_perc))
 print('total loss: ' + str(total_loss))

 loss_list.append(total_loss)
 hit_list.append(hit_perc)
 lr_hit_list.append(lr_hit_perc)
 lc_list.append(line_count)

 print('##########')

 if use_lvq:
 for i in range(train_traces):
 print('LVQ: ' + traces[i])
 hit_perc = lvq(traces[i])
 print('hit percentage: ' + str(hit_perc))

 if find_worst_contenders:
 nn_utils.find_worst_contenders(loss_list, hit_list, lr_hit_list, traces)

 # create plots
 plot_name = 'LSTM | wd=' + str(wd)

61

 nn_utils.create_plot(plot_name, lr, hidden_dim, loss_list, hit_list,
lr_hit_list, traces, normalize_data=True, display=False, save=save)

 for i in range(train_traces, len(traces)):
 print('Test: ' + traces[i])
 mazes, seeds, total_rewards = test(traces[i])
 nn_utils.tabulate_print(mazes, seeds, total_rewards)

 return loss_list, hit_list, lr_hit_list, lc_list

if __name__ == '__main__':
 loss_list, hit_list, lr_hit_list, lc_list = main(0.15, 0.001)

62

Appendix D nn_utils.py
import ast
import glob
import random
import sys

import torch
import numpy
from matplotlib import pyplot as plt
from torch.autograd import Variable

DISCRETE_ACTIONS = 3

debug = False
traces_dir = "../collected_traces"
results_folder = 'results/best_results/'

use_lvq = False
use_worst_contenders = False

environments = ['MiniGrid-TMaze-v0',
 'MiniGrid-DoubleTMaze-v0',
 'MiniGrid-TripleTMaze-v0',
 'MiniGrid-QuadTMaze-v0',
 'MiniGrid-TMazeHoming-v0',
 'MiniGrid-DoubleTMazeHoming-v0',
 'MiniGrid-TripleTMazeHoming-v0',
 'MiniGrid-QuadTMazeHoming-v0']

def number_of_episodes(maze, seed):
 maze_ends = [2, 4, 8, 16,
 2, 4, 8, 16]

 index = environments.index(maze)

 # initialize task random function
 task_rand = random.Random()
 task_rand.seed(seed)

 episodes = -1

 # calculate how many episodes the task will be played
 if maze_ends[index] == 2:
 episodes = task_rand.randint(4, 8)
 elif maze_ends[index] == 4:
 episodes = task_rand.randint(8, 12)
 elif maze_ends[index] == 8:
 episodes = task_rand.randint(16, 20)
 elif maze_ends[index] == 16:
 episodes = task_rand.randint(32, 36)

 return episodes

63

def encode_one_hot(value, max):
 encoding = [0] * max
 encoding[value] = 1

 return encoding

def retrieve_traces(directory, shuffle=False):
 traces = glob.glob(directory + "/*.txt")
 if shuffle:
 random.shuffle(traces)
 return traces

def parse_line(line):
 line = line.strip()
 split = line.split(']')
 image = ast.literal_eval(split[0] + ']')

 split = split[1].split()
 action = int(split[0])
 reward = float(split[1])

 action = torch.tensor([action])

 return image, action, reward

Input Format
observation - image
action
reward
bias
def prepare_dp_input(image, action, reward):
 bias = 1.0

 inputs = image
 inputs.append(bias)

 # Convert input to Numpy array
 inputs = numpy.array(inputs)

 return torch.FloatTensor(inputs)

Input Format
observation - image
action
reward
bias
def prepare_lstm_input(image):

64

 bias = 1.0
 image.append(bias)

 tensor_len = len(image)

 # Reshape image and action into tensors
 input = torch.FloatTensor(image)
 input = torch.reshape(input, (1, 1, tensor_len))

 return input

def print_pass(line, nn_input, softmax_output, target_action, prediction, loss):
 print('Line:\t\t' + line.strip())
 print('NN input:\t' + str(nn_input))
 print('NN output:\t' + str(softmax_output))
 print('\tNN action:\t\t' + str(prediction))
 print('\tTarget action:\t' + str(target_action.item()))

 print('Loss: ' + str(loss.item()))
 print('########')

def count_hit(output, target, counter):
 if torch.is_tensor(output):
 output = output.item()
 if torch.is_tensor(target):
 target = target.item()

 return counter + 1 if output == target else counter

def create_plot(name, lr, hidden_layer_size, loss_list, hit_list, lr_hit_list,
traces=None, normalize_data=False, display=False, save=None):
 def file_len(fname):
 with open(fname) as f:
 for i, l in enumerate(f):
 pass
 return i + 1

 normalized_loss = [0] * len(loss_list)

 if traces is not None and normalize_data:
 name += ' | Normalized Loss'
 sum_len = 0
 for i in range(len(loss_list)):
 sum_len += file_len(traces[i])

 avg_len = sum_len / len(loss_list)
 for i in range(len(loss_list)):
 normalized_loss[i] = loss_list[i] * (avg_len / file_len(traces[i]))

 loss_list = normalized_loss

65

 # Create plot
 fig, ax = plt.subplots()
 fig_title = name + ' | lr = ' + str(lr) + " | hidden_layer_size = " +
str(hidden_layer_size)
 fig.suptitle(fig_title)
 ax.plot(loss_list, label="loss", marker='o', color='blue')
 ax.tick_params(axis='y', labelcolor='blue')
 ax2 = ax.twinx()
 ax2.plot(hit_list, label="total hit percentage", marker='o', color='red')
 # ax2.plot(normalized_loss, label='Normalized Loss', color='tab:purple')
 plt.plot(lr_hit_list, label="left/right hit percentage", marker='o',
color='green')
 ax.set_ylim(bottom=0)
 ax2.set_ylim([0.0, 1.0])

 ax.set(xlabel="Epochs", ylabel="Loss")

 plt.ylabel("hit_percentage")

 ax.legend()
 ax2.legend()

 if save is not None:
 plt.savefig(results_folder + save + fig_title + '.png')

 if display:
 plt.show()

def find_worst_contenders(loss_list, hit_perc, lr_hit_perc, traces):
 loss = 0
 worst_loss = ''
 lr = sys.float_info.max
 worst_lr = ''
 hit = sys.float_info.max
 worst_hit = ''

 for i in range(len(loss_list)):
 if loss_list[i] > loss:
 loss = loss_list[i]
 worst_loss = traces[i]
 if lr_hit_perc[i] < lr:
 lr = lr_hit_perc[i]
 worst_lr = traces[i]
 if hit_perc[i] < hit:
 hit = hit_perc[i]
 worst_hit = traces[i]

 print('######\n')

 print('worst_loss: ' + worst_loss)

66

 print('worst_hit: ' + worst_hit)
 print('worst_lr: ' + worst_lr)

 print('######\n')

def tabulate_print(mazes, seeds, total_rewards):
 average_reward = [0] * len(environments)
 reward_counter = [0] * len(environments)

 for i in range(len(mazes)):
 for j in range(len(environments)):
 if mazes[i] == environments[j]:
 average_reward[j] += total_rewards[i]
 reward_counter[j] += 1

 with open(results_folder + 'average.txt', 'w') as f:
 for i in range(len(average_reward)):
 average_reward[i] = average_reward[i] / reward_counter[i]

 print(environments[i] + '\t' + str(average_reward[i]), file=f)

if __name__ == '__main__':
 traces = retrieve_traces(traces_dir)

 classes = [0] * 3

 for trace_file in traces:
 with open(trace_file, "r") as fp:
 for line in fp:
 if line.startswith('['):
 _, target_action, _ = parse_line(line)

 classes[target_action] += 1

 print(classes)

67

Appendix E manual_control.py
"""
This code was taken from gym-minigrid. It is need for manually controlling the
agent in the t-maze environment.
Some changes on the file were necessary so I considered it useful to exist here as
well.

Manual control: python manual_control.py --env MiniGrid-TMaze-v0
"""

import argparse

environment imports
from t_maze.envs import *

from trace import *
from gym_minigrid.wrappers import *
from window import Window

Environment Parameters
args = None
env = None
window = None

trace_file = None

reward_episode = False # has the goal been collected
 # if it has allow one more episode just to see the
reward collected

def redraw(img):
 if not args.agent_view:
 img = env.render('rgb_array', tile_size=args.tile_size)

 window.show_img(img)

def reset():
 init_episode(trace_file, args.env, args.seed)

 # one more step, allows the user to see what reward he has picked
 if reward_episode:
 reward_episode = False
 window.close()
 finalize_episode(trace_file)
 else:
 # retrieve the one hot encoding observation of the current tile
 ohe = env.OneHotEncoding()

 # send agent step to environment

68

 obs, reward, done, info = env.step(action)

 # update ui info
 window.set_caption(reward)
 window.update_steps()

 if reward != 0:
 log_step(trace_file, str(ohe), action.value, reward)

 if done:
 reward_episode = True

 redraw(obs)

def key_handler(event):
 # print('pressed', event.key)

 if event.key == 'escape':
 window.close()
 return

 if event.key == 'backspace':
 trace_file.write("reset\n")
 reset()
 return

 if event.key == 'left':
 step(env.actions.left)
 return
 if event.key == 'right':
 step(env.actions.right)
 return
 if event.key == 'up':
 step(env.actions.forward)
 return

 # Spacebar
 # if event.key == ' ':
 # step(env.actions.toggle)
 # return
 # if event.key == 'pageup':
 # step(env.actions.pickup)
 # return
 # if event.key == 'pagedown':
 # step(env.actions.drop)
 # return
 #
 # if event.key == 'enter':
 # step(env.actions.done)
 # return

69

def load_env(env_details, file, task_no, max_task, episode_no, max_episode):
 global args, env, window, trace_file
 trace_file = file

 parser = argparse.ArgumentParser()
 parser.add_argument(
 "--env",
 help="gym environment to load",
 default='MiniGrid-TMaze-v0'
)
 parser.add_argument(
 "--seed",
 type=int,
 help="random seed to generate the environment with",
 default=1
)
 parser.add_argument(
 "--end",
 type=int,
 help="which corridor end the reward is placed",
 default=None
)

 parser.add_argument(
 "--tile_size",
 type=int,
 help="which corridor end the reward is placed",
 default=32
)
 parser.add_argument(
 '--agent_view',
 default=False,
 help="draw the agent sees (partially observable view)",
 action='store_true'
)

 args = parser.parse_args(env_details)
 # print(args)
 if 'TMaze' in args.env:
 env = gym.make(args.env, seed=args.seed, high_reward_end=args.end)
 env.seed(args.seed)
 else:
 env = gym.make(args.env)
 env.seed(args.seed)

 if args.agent_view:
 # env = RGBImgObsWrapper(env)
 env = RGBImgPartialObsWrapper(env, 140)
 env = ImgObsWrapper(env)
 else:
 env = RGBImgObsWrapper(env, 70)

 window = Window('gym_minigrid - ' + args.env, env, task_no, max_task,

70

episode_no, max_episode)
 window.reg_key_handler(key_handler)

 global reward_episode
 reward_episode = False

 reset()

 # Blocking event loop
 window.show(block=True)
 obs = env.reset()
 redraw(obs)

def step(action):
 global reward_episode

 # one more step, allows the user to see what reward he has picked
 if reward_episode:
 reward_episode = False
 window.close()
 finalize_episode(trace_file)
 else:
 # retrieve the one hot encoding observation of the current tile
 ohe = env.OneHotEncoding()

 # send agent step to environment
 obs, reward, done, info = env.step(action)

 # update ui info
 window.set_caption(reward)
 window.update_steps()

 if reward != 0:
 log_step(trace_file, str(ohe), action.value, reward)

 if done:
 reward_episode = True

 redraw(obs)

def key_handler(event):
 # print('pressed', event.key)

 if event.key == 'escape':
 window.close()
 return

 if event.key == 'backspace':
 trace_file.write("reset\n")
 reset()

71

 return

 if event.key == 'left':
 step(env.actions.left)
 return
 if event.key == 'right':
 step(env.actions.right)
 return
 if event.key == 'up':
 step(env.actions.forward)
 return

 # Spacebar
 # if event.key == ' ':
 # step(env.actions.toggle)
 # return
 # if event.key == 'pageup':
 # step(env.actions.pickup)
 # return
 # if event.key == 'pagedown':
 # step(env.actions.drop)
 # return
 #
 # if event.key == 'enter':
 # step(env.actions.done)
 # return

def load_env(env_details, file, task_no, max_task, episode_no, max_episode):
 global args, env, window, trace_file
 trace_file = file

 parser = argparse.ArgumentParser()
 parser.add_argument(
 "--env",
 help="gym environment to load",
 default='MiniGrid-TMaze-v0'
)
 parser.add_argument(
 "--seed",
 type=int,
 help="random seed to generate the environment with",
 default=1
)
 parser.add_argument(
 "--end",
 type=int,
 help="which corridor end the reward is placed",
 default=None
)

 parser.add_argument(
 "--tile_size",

72

 type=int,
 help="which corridor end the reward is placed",
 default=32
)
 parser.add_argument(
 '--agent_view',
 default=False,
 help="draw the agent sees (partially observable view)",
 action='store_true'
)

 args = parser.parse_args(env_details)
 # print(args)
 if 'TMaze' in args.env:
 env = gym.make(args.env, seed=args.seed, high_reward_end=args.end)
 env.seed(args.seed)
 else:
 env = gym.make(args.env)
 env.seed(args.seed)

 if args.agent_view:
 # env = RGBImgObsWrapper(env)
 env = RGBImgPartialObsWrapper(env, 140)
 env = ImgObsWrapper(env)
 else:
 env = RGBImgObsWrapper(env, 70)

 window = Window('gym_minigrid - ' + args.env, env, task_no, max_task,
episode_no, max_episode)
 window.reg_key_handler(key_handler)

 global reward_episode
 reward_episode = False

 reset()

 # Blocking event loop
 window.show(block=True)

73

Appendix F epoch.py
import random
import manual_control
from trace import *

environments = ['MiniGrid-TMaze-v0',
 'MiniGrid-DoubleTMaze-v0',
 'MiniGrid-TripleTMaze-v0',
 'MiniGrid-QuadTMaze-v0',
 'MiniGrid-TMazeHoming-v0',
 'MiniGrid-DoubleTMazeHoming-v0',
 'MiniGrid-TripleTMazeHoming-v0',
 'MiniGrid-QuadTMazeHoming-v0']

task_order = [0, 1, 2, 3,
 4, 5, 6, 7]
maze_ends = [2, 4, 8, 16,
 2, 4, 8, 16]
agent_view = [False, False, False, False,
 False, False, False, False]

prepares the arguments to be passed on to the maze
def prepare_args(env, seed, agent_view, reward_end):
 if agent_view:
 args = ["--env", env, "--seed", seed, "--agent_view", "--end", reward_end]
 else:
 args = ["--env", env, "--seed", seed, "--end", reward_end]

 return args

def main():
 # initialize trace file and random function
 trace_file = initialize_trace()
 main_rand = random.Random()

 for i in range(len(task_order)):
 # create seed for task
 seed = str(main_rand.randint(0, 20000))

 # initialize task random function
 task_rand = random.Random()
 task_rand.seed(seed)

 episodes = -1

 # calculate how many episodes the task will be played
 if maze_ends[i] == 2:
 episodes = task_rand.randint(4, 8)
 elif maze_ends[i] == 4:
 episodes = task_rand.randint(8, 12)

74

 elif maze_ends[i] == 8:
 episodes = task_rand.randint(16, 20)
 elif maze_ends[i] == 16:
 episodes = task_rand.randint(32, 36)
 # print('episodes=' + str(episodes))

 # retrieve task environment
 env = environments[task_order[i]]

 # calculate when the reward end will change
 end_change = task_rand.randint(1, episodes - 1)
 reward_end = str(task_rand.randint(0, maze_ends[i]-1))
 # print('end_change=' + str(end_change))

 # prepare the arguments for the task
 args = prepare_args(env, seed, agent_view[i], reward_end)

 # start the task
 for j in range(end_change):
 manual_control.load_env(args, trace_file, j, episodes, i,
len(task_order))

 # generate a new reward end
 second_reward_end = reward_end
 while second_reward_end == reward_end:
 second_reward_end = str(task_rand.randint(0, maze_ends[i]-1))

 # prepare the arguments for the task
 args = prepare_args(env, seed, agent_view[i], second_reward_end)

 # start the task with a changed reward location
 for j in range(end_change, episodes):
 manual_control.load_env(args, trace_file, j, episodes, i,
len(task_order))

 # finalize trace file
 finalize_trace(trace_file)

if __name__ == '__main__':
 main()

75

Appendix G trace.py
import os
import time

path = "trace"

Initialize trace at start of epoch
def initialize_trace():
 if not os.path.exists(path):
 os.makedirs(path)

 timestamp = time.strftime("%Y%m%d-%H%M.txt")
 filepath = os.path.join(path, timestamp)
 file = open(filepath, "w")

 return file

Initialize trace at start of episode
def init_episode(file, env, seed):
 file.write(env + '\n')
 file.write(str(seed) + '\n')

Finalizes episode
def finalize_episode(file):
 file.write("done\n")

Logs action, the observation and the reward of a single timestep
def log_step(file, obs, action, reward):
 file.write(str(obs) + '\t' + str(action) + '\t' + str(reward) + '\n')

Close the trace
def finalize_trace(file):
 file.write('trace complete\n')
 file.close()

76

	
	ABSTRACT
	ACKNOWLEDGMENTS
	Table of Contents
	Table of Figures
	Index of Tables
	Chapter 1
	1.1 Introduction
	1.2 Related Work
	1.2 Thesis outline

	Chapter 2
	2.1 Exploration in Neural Networks
	2.1.1 T-Mazes
	2.2 Differentiable Plasticity
	2.3 Backpropamine
	2.4 LSTM
	2.5 Adam Optimization
	2.6 One-Hot Encoding
	2.7 Class Imbalance

	Chapter 3
	3.1 Training Methodology
	3.2 Agent Environment
	3.2.1 Agent Visibility
	3.3 Maze Design
	3.3.1 Maze Generation
	3.4 Collecting Traces
	3.4.1 Trace File Format
	3.5 Evaluation
	3.6 Long Short-Term Memory Model
	3.6.1 Long Short-Term Memory Training
	3.7 Backpropamine Network Model
	3.7.1 Backpropamine Network Model Training
	3.8 Softmax function
	3.9 Normalizing Loss
	3.10 Weighted Loss

	Chapter 4
	4.1 Long Short-Term Memory Learning
	4.1.1 LSTM Learning Rate
	4.1.2 LSTM Weight Decay
	4.1.3 Weighted vs Unweighted Loss - LSTM
	4.2 Backpropamine Network Learning
	4.2.1 Backpropamine Network Learning Rate
	4.2.2 Backpropamine Network Weight Decay

	4.3 Training on traces Vs Training on Epochs
	4.4.1 Long Short-Term Memory Performance
	4.4.2 Backpropamine Network Performance
	4.5 Expanding The Observation
	4.6 Network Viability – Comparison

	Chapter 5
	5.1 Overview and conclusions
	5.2 Future Work

	Appendices
	Appendix A tmaze.py
	Appendix B diff_plasticity.py
	Appendix C lstm.py
	Appendix D nn_utils.py
	Appendix E manual_control.py
	Appendix F epoch.py
	Appendix G trace.py

